WO2018120591A1 - 一种远程控制rtg大车自动定位的系统 - Google Patents

一种远程控制rtg大车自动定位的系统 Download PDF

Info

Publication number
WO2018120591A1
WO2018120591A1 PCT/CN2017/084458 CN2017084458W WO2018120591A1 WO 2018120591 A1 WO2018120591 A1 WO 2018120591A1 CN 2017084458 W CN2017084458 W CN 2017084458W WO 2018120591 A1 WO2018120591 A1 WO 2018120591A1
Authority
WO
WIPO (PCT)
Prior art keywords
cart
automatic positioning
rtg
processor
bay
Prior art date
Application number
PCT/CN2017/084458
Other languages
English (en)
French (fr)
Inventor
丁晓刚
Original Assignee
深圳市招科智控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市招科智控科技有限公司 filed Critical 深圳市招科智控科技有限公司
Publication of WO2018120591A1 publication Critical patent/WO2018120591A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/04Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track

Definitions

  • the utility model relates to an automatic positioning system, in particular to a system for remotely controlling automatic positioning of an RTG cart, belonging to the technical field of RTG remote control.
  • RTG's work efficiency is related to whether the container transportation supply chain is unblocked. Because the RTG equipment is very large and the distance from the container positions on both sides is very close, the driver manipulates these huge mechanical equipment to carry out long-distance straight walking in a very narrow space of the yard, and controls it to walk in a straight line by visual inspection. It is easy to cause a collision accident due to the deviation of the cart. In addition, there will be two big cars in the same field or in the adjacent field, causing a crash due to the driver's misjudgment.
  • the purpose of the utility model is to provide a system for remotely controlling the automatic positioning of an RTG cart.
  • the system uses laser scanner, shell identification device and PLC to remotely control the automatic positioning of the cart, avoiding collisions between carts in the yard and between obstacles on the cart and the track, ensuring The safety of the cart operation improves the work efficiency.
  • the remote control RTG cart automatic positioning system includes a processor, a cart, a cart and a spreader, and also includes a control center, a first bay position recognition device, an absolute encoder, and a plurality of laser scanners.
  • the first bayonet identification device, the absolute value encoder and the laser scanner are all connected to the control center via a processor.
  • the first bay identification device employs an RFID radio frequency identification device that can identify a particular target by radio signals and read and write relevant data without establishing a mechanical or optical contact between the recognition system and a particular target.
  • the first bay-level identification device includes a head and a code carrier, the head is mounted on a cart, and the code carrier is mounted on a yard track. The read/write head is close to the code carrier, and the code body information can be read without contact, the position of the RTG cart is judged by reading the code body information, and the collected information is transmitted to the control center via the processor.
  • Each of the aforementioned bays is equipped with a code carrier that writes a bay number, and the code carrier writes unique information and can be permanently stored.
  • the aforementioned absolute encoder is mounted on the cart running sprocket, and the absolute encoder can calculate the position of the cart in real time, and the data is calibrated each time a bay code carrier is passed.
  • the aforementioned laser scanner is installed at the balance beam on both sides of the cart.
  • the laser scanner uses a 2D laser scanner, and the laser scanner collects obstacle information in real time and transmits it to the control center for the cart and the cart. Between, as well as big cars and lines Anti-collision between obstacles on the car track.
  • system further includes a second bay position identifying device consisting of a sensor and a reflector.
  • a reflector is installed in each shell position, and a sensor is installed at a position corresponding to the height on the RTG cart, and the sensor is a photoelectric sensor.
  • the aforementioned sensor is connected to the control center via a processor.
  • the sensor senses the reflector and sends information to the processor, thereby achieving the purpose of automatic alignment of the cart.
  • the aforementioned processor is a PLC programmable logic controller, which is convenient to use, simple to program, and strong in anti-interference ability.
  • the utility model enables the RTG carts to recognize each other's position information of the shell position when the RTG cart is in operation, and realizes remote control by using a laser scanner, a shell position recognition device and a PLC device.
  • the automatic positioning of the cart avoids collisions between the carts in the yard and between obstacles on the cart and the track, ensuring the safety of the cart and improving work efficiency.
  • Figure 1 is a schematic view of the connection relationship of the present invention
  • Figure 2 is a partial structural view of the utility model
  • Figure 3 is a view taken along line A of Figure 2 of the present invention.
  • Embodiment 1 of the present invention As shown in FIG. 1 , FIG. 2 and FIG. 3 , the system for automatically controlling the automatic positioning of the RTG cart includes a control center 1 , a processor 2 , a first shell identification device 3 , and an absolute value.
  • the first bayonet identification device 3, the absolute encoder 6 and the laser scanner 10 are all connected to the control center 1 via the processor 2.
  • the processor 2 is a PLC programmable logic controller, and the processor 2 is convenient to use, simple to program, and strong in anti-interference ability.
  • the first bay identification device 3 employs an RFID radio frequency identification device that can identify a particular target by radio signals and read and write relevant data without the need to establish mechanical or optical contact between the system and a particular target.
  • the first bayonet identification device 3 includes a head 4 and a code carrier 5, and the head 4 is mounted on the cart 7, and the code carrier 5 is mounted on the yard track.
  • Each bay of the yard is equipped with a code carrier 5 written with a bay number, and the code carrier 5 writes unique information. And can be saved forever.
  • the read/write head 4 is close to the code carrier 5, and the information of the code carrier 5 can be read without contact, the position of the RTG cart 7 is judged by reading the information of the code carrier 5, and the collected information is transmitted through the processor 2. Go to Control Center 1.
  • the absolute encoder 6 is mounted on the traveling sprocket of the cart 7, and the absolute encoder 6 can calculate the position of the cart 7 in real time, and the data is calibrated each time a pack 5 of the bay position is passed.
  • the laser scanner 10 is installed on the balance beam on both sides of the cart 7, and the laser scanner 10 uses a 2D laser scanner.
  • the laser scanner 10 collects obstacle information in real time and transmits it to the control center 1 for the cart 7 and the cart. Between 7 and between the cart 7 and the obstacles on the track.
  • the system also includes a second bay position identifying device 13 which is comprised of the sensor 11 and the reflector 12.
  • a reflector 12 is installed in each of the shells, and the sensor 11 is mounted at a position corresponding to the height of the RTG cart 7, and the sensor 11 is a photoelectric sensor.
  • the sensor 11 is connected to the control center 1 via the processor 2. When the RTG cart 7 passes through each bay position, the sensor 11 senses the reflector 12 and transmits information to the processor 2, thereby achieving the purpose of automatically aligning the cart 7.
  • the remote control RTG cart automatic positioning system includes a processor 2, a cart 7, a cart 8 and a spreader 9, and also includes a control center 1, A bay identification device 3, an absolute encoder 6 and eight laser scanners 10.
  • the first bayonet identification device 3, the absolute encoder 6 and the laser scanner 10 are all connected to the control center 1 via the processor 2.
  • the first bay identification device 3 employs an RFID radio frequency identification device that can identify a particular target by radio signals and read and write relevant data without the need to establish mechanical or optical contact between the system and a particular target.
  • the first bayonet identification device 3 includes a head 4 and a code carrier 5, and the head 4 is mounted on the cart 7, and the code carrier 5 is mounted on the yard track.
  • the read/write head 4 is close to the code carrier 5, and the information of the code carrier 5 can be read without contact, the position of the RTG cart 7 is judged by reading the information of the code carrier 5, and the collected information is transmitted through the processor 2. Go to Control Center 1.
  • Embodiment 3 As shown in FIG. 1, FIG. 2 and FIG. 3, a remote control RTG cart automatic positioning method adopts the above-mentioned remote control RTG cart automatic positioning system, and each bay position is installed with a write.
  • the code number 5 of the bay number is written to the unique body of the code body 5:
  • the head 4 senses the information of the code carrier 5, and automatically stops after reaching the target shell position, thereby realizing the automatic alignment of the cart 7;
  • the sensor 11 senses the reflector 12 and sends a message to the processor 2, thereby realizing automatic alignment of the cart 7;
  • the control center 1 sends the processor 2 to the processor 2.
  • the warning signal is controlled by the processor 2 to decelerate or stop the cart 7 to avoid the occurrence of a collision accident.
  • the working principle of the utility model on the low-slide sliding contact steel structure of the yard, one shell number is installed in each shell position.
  • the code carrier 5 is provided with an RFID read/write head 4 at a position corresponding to the height of the RTG cart 7, the head 4 is connected to the processor 2, and the processor 2 is connected to the control center 1 in an appropriate communication form.
  • the head 4 senses the information of the code carrier 5, and automatically stops after reaching the target shell position, thereby realizing the automatic alignment of the cart 7.
  • a reflector 12 is installed in each of the shells, and the sensor 11 is installed at a position corresponding to the height of the RTG cart 7, and the sensor 11 is connected to the processor 2.
  • the sensor 11 senses the reflector 12 and sends a message to the control center 1 to achieve automatic alignment of the cart 7.
  • a counter is installed in the processor 2 for counting the number of bays.
  • An absolute encoder 6 is mounted on the RTG cart 7 travel sprocket to calculate the position of the cart 7 in real time, and the data is calibrated every time a bay of the carrier 5 is passed.

Abstract

一种远程控制RTG大车自动定位的系统,包括处理器(2)、大车(7)、小车(8)和吊具(9),还包括控制中心(1)、第一贝位识别装置(3)、绝对值编码器(6)和激光扫描仪(10),第一贝位识别装置(3)、绝对值编码器(6)和激光扫描仪(10)均经处理器(2)连接于控制中心(1),第一贝位识别装置(3)包括读写头(4)和载码体(5)。该系统采用激光扫描仪(10)、贝位识别装置和PLC等设备远程控制实现了大车(7)的自动定位,避免堆场内大车(7)之间以及大车(7)与行车轨道上的障碍物之间发生碰撞,保证了大车(7)作业的安全性,提高了工作效率。

Description

一种远程控制RTG大车自动定位的系统 技术领域
本实用新型涉及一种自动定位的系统,特别是一种远程控制RTG大车自动定位的系统,属于RTG远程控制技术领域。
背景技术
RTG作为集装箱码头的重要作业工具,其工作效率关系到集装箱运输供应链是否畅通。由于RTG设备非常庞大,而且离两边的集装箱箱位距离非常近,驾驶员操纵这些庞大的机械设备在堆场非常窄的空间中进行长距离直线行走,靠目视来控制其按直线行走,很容易因大车走偏而引发撞箱事故。此外,还会发生两台大车在同场或相邻场因司机判断失误而引发撞车事故。
实用新型内容
本实用新型的目的在于,提供一种远程控制RTG大车自动定位的系统。该系统采用激光扫描仪、贝位识别装置和PLC等设备远程控制实现了大车的自动定位,避免堆场内大车之间以及大车与行车轨道上的障碍物之间发生碰撞,保证了大车作业的安全性,提高了工作效率。
为解决上述技术问题,本实用新型采用如下的技术方案:
该种远程控制RTG大车自动定位的系统包括处理器、大车、小车和吊具,还包括控制中心、第一贝位识别装置、绝对值编码器和若干个激光扫描仪。所述第一贝位识别装置、绝对值编码器和激光扫描仪均经处理器连接于控制中心。所述第一贝位识别装置采用RFID射频识别设备,该设备可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。所述第一贝位识别装置包括读写头和载码体,所述读写头安装在大车上,所述载码体安装在堆场行车轨道上。其中读写头靠近载码体,无需接触即可读出载码体信息,通过读取载码体信息判断RTG大车的位置,并将采集到的信息经处理器传递到控制中心。
前述的堆场的每个贝位均安装有写入贝位号的载码体,载码体写入独一无二的信息,并能够永久保存。
前述的绝对值编码器安装在大车行走链轮上,所述绝对值编码器能够实时计算大车的位置,每当经过一个贝位的载码体时,就校准一次数据。
前述的激光扫描仪安装在大车两侧的平衡梁处,所述激光扫描仪采用2D激光扫描仪,所述激光扫描仪实时采集障碍物信息并传递到控制中心,用于大车与大车之间,以及大车与行 车轨道上的障碍物之间的防撞。
进一步的,该系统还包括第二贝位识别装置,所述第二贝位识别装置由传感器和反光板组成。
前述的堆场低架滑触线钢结构上,每个贝位安装一个反光板,在RTG大车上对应高度的位置安装传感器,所述传感器为光电传感器。
前述的传感器经处理器连接于控制中心。当RTG大车经过每个贝位时,传感器感应到反光板,发送信息给处理器,从而实现大车自动对位的目的。
有益的,前述的处理器为PLC可编程逻辑控制器,该种处理器使用方便、编程简单、抗干扰能力强。
与现有技术相比,本实用新型使得RTG大车在作业时,各个大车之间能够相互识别各自所在贝位的位置信息,采用激光扫描仪、贝位识别装置和PLC等设备远程控制实现了大车的自动定位,避免堆场内大车之间以及大车与行车轨道上的障碍物之间发生碰撞,保证了大车作业的安全性,提高了工作效率。
附图说明
图1是本实用新型的连接关系示意图;
图2是本实用新型的部分结构示意图;
图3是本实用新型中图2的A向视图。
附图标记的含义:1-控制中心,2-处理器,3-第一贝位识别装置,4-读写头,5-载码体,6-绝对值编码器,7-大车,8-小车,9-吊具,10-激光扫描仪,11-传感器,12-反光板,13-第二贝位识别装置。
下面结合附图和具体实施方式对本实用新型作进一步的说明。
具体实施方式
本实用新型的实施例1:如图1、图2和图3所示,该种远程控制RTG大车自动定位的系统包括控制中心1、处理器2、第一贝位识别装置3、绝对值编码器6、大车7、小车8、吊具9和六个激光扫描仪10。第一贝位识别装置3、绝对值编码器6和激光扫描仪10均经处理器2连接于控制中心1。处理器2为PLC可编程逻辑控制器,该种处理器2使用方便、编程简单、抗干扰能力强。第一贝位识别装置3采用RFID射频识别设备,该设备可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。第一贝位识别装置3包括读写头4和载码体5,读写头4安装在大车7上,载码体5安装在堆场行车轨道上。堆场的每个贝位均安装有写入贝位号的载码体5,载码体5写入独一无二的信息, 并能够永久保存。其中读写头4靠近载码体5,无需接触即可读出载码体5信息,通过读取载码体5信息判断RTG大车7的位置,并将采集到的信息经处理器2传递到控制中心1。
其中绝对值编码器6安装在大车7行走链轮上,绝对值编码器6能够实时计算大车7的位置,每当经过一个贝位的载码体5时,就校准一次数据。激光扫描仪10安装在大车7两侧的平衡梁处,激光扫描仪10采用2D激光扫描仪,激光扫描仪10实时采集障碍物信息并传递到控制中心1,用于大车7与大车7之间,以及大车7与行车轨道上的障碍物之间的防撞。该系统还包括第二贝位识别装置13,第二贝位识别装置13由传感器11和反光板12组成。在堆场低架滑触线钢结构上,每个贝位安装一个反光板12,在RTG大车7上对应高度的位置安装传感器11,传感器11为光电传感器。传感器11经处理器2连接于控制中心1。当RTG大车7经过每个贝位时,传感器11感应到反光板12,发送信息给处理器2,从而实现大车7自动对位的目的。
实施例2:如图1、图2和图3所示,该种远程控制RTG大车自动定位的系统包括处理器2、大车7、小车8和吊具9,还包括控制中心1、第一贝位识别装置3、绝对值编码器6和八个激光扫描仪10。第一贝位识别装置3、绝对值编码器6和激光扫描仪10均经处理器2连接于控制中心1。第一贝位识别装置3采用RFID射频识别设备,该设备可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。第一贝位识别装置3包括读写头4和载码体5,读写头4安装在大车7上,载码体5安装在堆场行车轨道上。其中读写头4靠近载码体5,无需接触即可读出载码体5信息,通过读取载码体5信息判断RTG大车7的位置,并将采集到的信息经处理器2传递到控制中心1。
实施例3:如图1、图2和图3所示,一种远程控制RTG大车自动定位的方法,采用上述的远程控制RTG大车自动定位的系统,每个贝位均安装有写入贝位号的载码体5,载码体5写入独一无二的信息:
当RTG大车7经过每个贝位时,读写头4感应到载码体5的信息,到达目标贝位后自动停止,以此实现大车7自动对位;
当RTG大车7经过每个贝位时,传感器11感应到反光板12,发出信息给处理器2,从而实现大车7自动对位;
RTG大车7在运行过程中,当激光扫描仪10检测到堆场内本贝位和相邻贝位堆码的集装箱的距离小于设定警告安全距离值时,控制中心1向处理器2发送警告信号,由处理器2控制大车7减速或者停止运行,避免碰撞事故的发生。
本实用新型的工作原理:在堆场低架滑触线钢结构上,每个贝位安装一个已写入贝位号 的载码体5,在RTG大车7上对应高度的位置安装RFID读写头4,读写头4与处理器2相连,处理器2再以适当的通讯形式与控制中心1相连。当RTG大车7经过每个贝位时,读写头4感应到载码体5的信息,到达目标贝位后自动停止,以此实现大车7自动对位。同时在堆场低架滑触线钢结构上,每个贝位安装一个反光板12,在RTG大车7上对应高度的位置安装传感器11,传感器11与处理器2相连。当RTG大车7经过每个贝位时,传感器11感应到反光板12,发出信息给控制中心1,从而实现大车7自动对位。处理器2内安装有计数器,用于统计贝位的数量。在RTG大车7行走链轮上安装绝对值编码器6,实时计算大车7的位置,每经过一个贝位的载码体5时,就校准一次数据。经控制中心1、贝位识别装置、激光扫描仪10和绝对值编码器6等的设置,实现大车7的安全运行,实现远程控制RTG大车7自动定位的目的。

Claims (8)

  1. 一种远程控制RTG大车自动定位的系统,包括处理器(2)、大车(7)、小车(8)和吊具(9),其特征在于,还包括控制中心(1)、第一贝位识别装置(3)、绝对值编码器(6)和若干个激光扫描仪(10);所述第一贝位识别装置(3)、绝对值编码器(6)和激光扫描仪(10)均经处理器(2)连接于控制中心(1);
    其中所述第一贝位识别装置(3)包括读写头(4)和载码体(5),所述读写头(4)安装在大车(7)上,所述载码体(5)安装在堆场行车轨道上。
  2. 根据权利要求1所述的远程控制RTG大车自动定位的系统,其特征在于,所述堆场的每个贝位均安装有载码体(5)。
  3. 根据权利要求2所述的远程控制RTG大车自动定位的系统,其特征在于,所述绝对值编码器(6)安装在大车(7)行走链轮上。
  4. 根据权利要求3所述的远程控制RTG大车自动定位的系统,其特征在于,所述激光扫描仪(10)安装在大车(7)两侧的平衡梁处。
  5. 根据权利要求1所述的远程控制RTG大车自动定位的系统,其特征在于,还包括第二贝位识别装置(13),所述第二贝位识别装置(13)由传感器(11)和反光板(12)组成。
  6. 根据权利要求5所述的远程控制RTG大车自动定位的系统,其特征在于,所述堆场的每个贝位还安装有反光板(12),所述传感器(11)安装在大车(7)上。
  7. 根据权利要求6所述的远程控制RTG大车自动定位的系统,其特征在于,所述传感器(11)经处理器(2)连接于控制中心(1)。
  8. 根据权利要求4或7所述的远程控制RTG大车自动定位的系统,其特征在于,所述处理器(2)为PLC可编程逻辑控制器。
PCT/CN2017/084458 2016-12-26 2017-05-16 一种远程控制rtg大车自动定位的系统 WO2018120591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621440266.9 2016-12-26
CN201621440266.9U CN206328061U (zh) 2016-12-26 2016-12-26 一种远程控制rtg大车自动定位的系统

Publications (1)

Publication Number Publication Date
WO2018120591A1 true WO2018120591A1 (zh) 2018-07-05

Family

ID=59291912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084458 WO2018120591A1 (zh) 2016-12-26 2017-05-16 一种远程控制rtg大车自动定位的系统

Country Status (2)

Country Link
CN (1) CN206328061U (zh)
WO (1) WO2018120591A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368503A (zh) * 2018-12-14 2019-02-22 天津港太平洋国际集装箱码头有限公司 场桥装卸作业远程控制操作系统
CN110956232A (zh) * 2019-10-23 2020-04-03 中船第九设计研究院工程有限公司 一种基于无线射频技术的造船起重机定位系统
CN113213340A (zh) * 2021-05-11 2021-08-06 上海西井信息科技有限公司 基于锁孔识别的集卡卸箱方法、系统、设备及存储介质
CN113753760A (zh) * 2020-06-04 2021-12-07 重庆柯沃起重机械有限公司 一种智能码砖装车系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106516985A (zh) * 2016-12-26 2017-03-22 深圳市招科智控科技有限公司 一种远程控制rtg大车自动定位的系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870433A (zh) * 2010-07-13 2010-10-27 大连斯博瑞科技有限公司 吊车定位装置
CN103332597A (zh) * 2013-07-08 2013-10-02 宁波大榭招商国际码头有限公司 一种基于主动视觉技术的起重机远程操作用监控系统及其实现方法
CN203284078U (zh) * 2013-05-08 2013-11-13 北京国泰星云科技有限公司 集装箱码头rtg/rmg吊具防碰箱自动控制系统
WO2016001481A1 (en) * 2014-06-30 2016-01-07 Konecranes Plc Load transport by means of load handling equipment
CN205676026U (zh) * 2016-04-26 2016-11-09 承德市中瑞自动化工程有限公司 起重机自动定位称重及安全监控管理系统
CN106516985A (zh) * 2016-12-26 2017-03-22 深圳市招科智控科技有限公司 一种远程控制rtg大车自动定位的系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870433A (zh) * 2010-07-13 2010-10-27 大连斯博瑞科技有限公司 吊车定位装置
CN203284078U (zh) * 2013-05-08 2013-11-13 北京国泰星云科技有限公司 集装箱码头rtg/rmg吊具防碰箱自动控制系统
CN103332597A (zh) * 2013-07-08 2013-10-02 宁波大榭招商国际码头有限公司 一种基于主动视觉技术的起重机远程操作用监控系统及其实现方法
WO2016001481A1 (en) * 2014-06-30 2016-01-07 Konecranes Plc Load transport by means of load handling equipment
CN205676026U (zh) * 2016-04-26 2016-11-09 承德市中瑞自动化工程有限公司 起重机自动定位称重及安全监控管理系统
CN106516985A (zh) * 2016-12-26 2017-03-22 深圳市招科智控科技有限公司 一种远程控制rtg大车自动定位的系统及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368503A (zh) * 2018-12-14 2019-02-22 天津港太平洋国际集装箱码头有限公司 场桥装卸作业远程控制操作系统
CN110956232A (zh) * 2019-10-23 2020-04-03 中船第九设计研究院工程有限公司 一种基于无线射频技术的造船起重机定位系统
CN113753760A (zh) * 2020-06-04 2021-12-07 重庆柯沃起重机械有限公司 一种智能码砖装车系统
CN113753760B (zh) * 2020-06-04 2023-10-03 重庆柯沃起重机械有限公司 一种智能码砖装车系统
CN113213340A (zh) * 2021-05-11 2021-08-06 上海西井信息科技有限公司 基于锁孔识别的集卡卸箱方法、系统、设备及存储介质
CN113213340B (zh) * 2021-05-11 2024-03-12 上海西井科技股份有限公司 基于锁孔识别的集卡卸箱方法、系统、设备及存储介质

Also Published As

Publication number Publication date
CN206328061U (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
WO2018120591A1 (zh) 一种远程控制rtg大车自动定位的系统
CN203439940U (zh) 集装箱码头rtg/rmg双激光吊具防碰箱自动控制系统
CN107045343B (zh) 一种agv交通管制方法和系统
CN204715836U (zh) 一种agv梳型搬运机器人
US10612261B2 (en) AGV comb-type transfer robot
US8380361B2 (en) System, method, and computer readable memory medium for remotely controlling the movement of a series of connected vehicles
CN203512793U (zh) 集装箱自动化码头装卸系统
CN203229326U (zh) 集装箱龙门吊智能装卸控制系统
CN110622082B (zh) 用于操作用于集装箱的自动引导的运输车辆的方法和系统
CN109719288A (zh) 铁水运输控制方法、后端及前端
CN104058261A (zh) 集装箱自动化码头装卸系统和方法
CN104442452B (zh) 无人驾驶电动无轨三向堆垛叉车
CN108773381A (zh) 一种基于行车电脑控制的矿山轨道机车无人自动驾驶系统
CN103231990A (zh) 集装箱门式起重机用吊具路径优化控制系统
CN105303890A (zh) 实现对周边异常行驶状态车辆的智能预警方法
CN104878970A (zh) 一种agv载车板交换汽车搬运机器人
CN206400350U (zh) 一种具有自动纠偏功能的大型重载式无人导航智能电动平车
KR20190119058A (ko) 컨테이너 자동 안내 운송 차량 및 그 작동 방법, 및 자동 운전 운송 차량을 갖는 시스템
CN204196727U (zh) 无人驾驶电动无轨三向堆垛叉车
CN106516985A (zh) 一种远程控制rtg大车自动定位的系统及方法
CN109179212A (zh) 集装箱码头自动化轨道桥内跨式双车道检测识别及堆场自动化控制方法
JP2007025745A (ja) 搬送台車システム
WO2014087180A2 (en) Rfid based control device for railroad transport
CN211004242U (zh) 一种起重机全自动化作业系统
CN110127500A (zh) 钢卷盘库起重机控制系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886313

Country of ref document: EP

Kind code of ref document: A1