WO2018120520A1 - 光伏集装箱 - Google Patents

光伏集装箱 Download PDF

Info

Publication number
WO2018120520A1
WO2018120520A1 PCT/CN2017/080695 CN2017080695W WO2018120520A1 WO 2018120520 A1 WO2018120520 A1 WO 2018120520A1 CN 2017080695 W CN2017080695 W CN 2017080695W WO 2018120520 A1 WO2018120520 A1 WO 2018120520A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
layer
container
support frame
photovoltaic module
Prior art date
Application number
PCT/CN2017/080695
Other languages
English (en)
French (fr)
Inventor
王健
梁荣鑫
江金源
唐文强
方聪聪
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US16/327,684 priority Critical patent/US20190372511A1/en
Priority to ES17889480T priority patent/ES2903428T3/es
Priority to EP17889480.4A priority patent/EP3560858B1/en
Priority to CA3034746A priority patent/CA3034746A1/en
Priority to AU2017386178A priority patent/AU2017386178A1/en
Publication of WO2018120520A1 publication Critical patent/WO2018120520A1/zh
Priority to AU2020203759A priority patent/AU2020203759B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • B65D88/121ISO containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of container technology, and in particular to a photovoltaic container.
  • Photovoltaic containers can generate electricity through the photovoltaic panels laid on the top of the container to form an independent supply and use system.
  • it has been widely used in places where power facilities such as wilderness and isolated islands are difficult to popularize, especially by the military and the harsh environment. The esteem of the field workers.
  • the weight of the photovoltaic module tends to deform the top surface of the container, which is not conducive to the service life of the container, and the top surface of the container itself is uneven. It is difficult to meet the technical requirements for the laying of photovoltaic modules. Moreover, directly installing photovoltaic modules on the top of the container, excessive installation procedures and high-altitude operations will increase the construction difficulty of the installers.
  • the present invention provides a photovoltaic container, the main purpose of which is to solve the technical problem that the existing photovoltaic component is directly laid on the top surface of the container, and the weight of the photovoltaic component is easy to deform the top surface of the container.
  • the present invention mainly provides the following technical solutions:
  • an embodiment of the present invention provides a photovoltaic container including a photovoltaic module, a support frame, and a case, the case including a case skeleton;
  • the photovoltaic module is mounted on the casing skeleton through the support frame and located outside the casing such that the photovoltaic module is supported by the casing skeleton.
  • the photovoltaic component is located at the top of the box Above the face;
  • the photovoltaic module is mounted on the support frame, the support frame is mounted on a first portion of the case frame, and the first portion is located at a top end of the case.
  • the photovoltaic container further includes a horizontal adjustment foot
  • the support frame is mounted on the frame of the casing through the horizontal adjustment foot to adjust the level of the photovoltaic module on the support frame through the horizontal adjustment foot.
  • the photovoltaic container has at least two layers of photovoltaic components in a vertical direction;
  • the photovoltaic modules of each layer are relatively movable to move to a first relative position that is stacked one on another in the vertical direction, and to a second relative position that is relatively unfolded.
  • each layer of the photovoltaic module has a first layer of photovoltaic components and a second layer of photovoltaic components disposed adjacent to each other;
  • the first layer of photovoltaic components is fixed on the support frame
  • the second layer of photovoltaic components are movably disposed on the support frame for movement relative to the first layer of photovoltaic components to the first relative position and the second relative position.
  • the second layer photovoltaic module has a first row of photovoltaic components and a second row of photovoltaic components in a horizontal direction;
  • the first row of photovoltaic components and the second row of photovoltaic components can be relatively close such that the second layer of photovoltaic components are located at the first relative position relative to the first layer of photovoltaic components; and relatively far apart Having the second layer of photovoltaic components in the second relative position relative to the first layer of photovoltaic components.
  • the support frame is provided with a linear slide rail, and the support frame is connected to each row of the photovoltaic components through the linear slide rail to the second layer photovoltaic component.
  • Each row of PV modules is guided;
  • each row of photovoltaic modules in the second layer of photovoltaic modules is connected to the support frame by a screw nut structure to be driven by the lead screw nut structure, so that the second layer of photovoltaic components is opposite to the first
  • a layer of photovoltaic components is located at the first relative position and the second relative position.
  • each of the second layer photovoltaic modules includes at least one photovoltaic module unit;
  • the photovoltaic module unit includes a keel and a photovoltaic component mounted on the keel;
  • the keels are respectively connected to a nut platform of the screw nut structure and a slider of the linear slide rail.
  • the support frame has at least two layers in a vertical direction
  • the adjacent two layers of the support frame are vertically spaced apart, and the photovoltaic modules of each layer are disposed in different layers of the support frame in a one-to-one correspondence.
  • each layer of the support frame includes a frame structure formed by connecting a plurality of links on the same plane;
  • the photovoltaic container of the invention has at least the following beneficial effects:
  • the photovoltaic module is mounted on the frame of the container through the support frame, wherein the strength of the frame skeleton is high, the photovoltaic component can be provided with strong support, compared with the existing photovoltaic component installation.
  • the top of the container causes deformation of the outer casing of the box top, the casing skeleton and the outer casing of the photovoltaic container of the present invention are not deformed, so that the service life of the photovoltaic module of the present invention is high.
  • FIG. 1 is a front view of a photovoltaic container according to an embodiment of the present invention.
  • FIG. 2 is a front view of a second layer photovoltaic module on a support frame in a first relative position relative to a first layer of photovoltaic components according to an embodiment of the present invention
  • FIG. 3 is a front view of a second layer photovoltaic module on a support frame in a second relative position with respect to a first layer of photovoltaic components according to an embodiment of the present invention
  • FIG. 4 is a second layer photovoltaic group on a support frame according to an embodiment of the invention. a top view of the first layer of photovoltaic components in a second relative position;
  • FIG. 5 is a top plan view of a photovoltaic module unit according to an embodiment of the invention.
  • FIG. 6 is a schematic structural view of a support frame according to an embodiment of the present invention.
  • a photovoltaic container 100 includes a photovoltaic module 1 , a support frame 2 , and a casing 3 .
  • the case 3 includes a case skeleton.
  • the photovoltaic module 1 is mounted on the frame of the casing through the support frame 2 and outside the casing 3 so that the photovoltaic module 1 is supported by the casing skeleton.
  • box body 3 further includes a box body shell mounted on the frame of the box body, wherein the strength of the box body frame is high, and the box body frame can provide support for the box body shell to ensure the entire box body. 3 structural strength, and also facilitate the installation of the cabinet shell.
  • the above-mentioned case body can be made of a material such as iron.
  • the photovoltaic module 1 since the photovoltaic module 1 is mounted on the frame of the container through the support frame 2, wherein the strength of the frame skeleton is high, the photovoltaic module 1 can be strongly supported, compared to the existing photovoltaic.
  • the assembly of the assembly to the top of the container causes deformation of the outer casing of the box top, and the casing skeleton and the outer casing of the photovoltaic container 100 of the present invention are not deformed, so that the service life of the photovoltaic module 1 of the present invention is high.
  • the number of the foregoing support frames 2 may be two or more to reduce the volume and weight of the single support frame 2, so that the operator can install the support frame 2 to the frame of the box body 3.
  • the aforementioned photovoltaic module 1 may be located above the top surface of the casing 3.
  • the photovoltaic module 1 is mounted on a support frame 2 which is mounted on a first portion of the frame of the casing, the first portion being located at the top end of the casing 3.
  • photovoltaic module 1 Both the support frame 2 and the support frame 2 are located in a relatively empty space on the top surface of the box body 3, so that the installation is not limited by the installation space, and the user's access to the side of the box body 3 is not affected.
  • the photovoltaic container 100 of the present invention may further include a leveling foot 4 .
  • the aforementioned support frame 2 is mounted on the frame of the casing through the horizontal adjustment foot 4 to adjust the level of the photovoltaic module 1 on the support frame 2 by the horizontal adjustment foot 4.
  • the angle of the photovoltaic module 1 can be adjusted to better receive the sunlight and improve the working efficiency of the photovoltaic module 1.
  • the photovoltaic container 100 of the present invention has at least two photovoltaic modules in a vertical direction.
  • the photovoltaic modules of each layer are relatively movable to move to a first relative position (shown in FIG. 2) stacked on each other in the vertical direction, and to a second relative position of the relative deployment (see FIGS. 3 and 4). Shown).
  • the number of photovoltaic modules 1 can be increased by the multi-layer photovoltaic modules provided, increasing the photovoltaic capacity of the photovoltaic container 100 of the present invention.
  • the adjacent two-layer photovoltaic modules may have a space in the vertical direction or may be in contact with each other.
  • the adjacent two-layer photovoltaic modules are vertically spaced apart.
  • the aforementioned first layer photovoltaic modules have adjacent first layer photovoltaic modules 11 and second layer photovoltaic modules 12 disposed therein.
  • the first layer of photovoltaic modules 11 is fixed to the support frame 2.
  • the second layer of photovoltaic modules 12 are movably disposed on the support frame 2 to move relative to the first layer of photovoltaic modules 11 to the aforementioned first relative position and second relative position.
  • Both the first layer photovoltaic module 11 and the second layer photovoltaic module 12 are movable, in this example, by fixing the first layer photovoltaic module 11 and only the second layer photovoltaic module 12 is movable, the structure of the moving mechanism can be simplified ,cut costs.
  • the aforementioned second layer photovoltaic module 12 has a first row of photovoltaic modules 121 and a second row of photovoltaic modules 122 in a horizontal direction.
  • the first row of photovoltaic modules 121 and the second row of photovoltaic modules 122 can be relatively close together such that the second layer of photovoltaic modules 12 are located relative to the first layer of photovoltaic modules 11 in the aforementioned first relative position (as shown in Figure 2); Relatively far apart, the second layer of photovoltaic component 12 is positioned relative to the first layer of photovoltaic component 11 in the aforementioned second relative position (as shown in Figures 3 and 4).
  • the number of photovoltaic modules 1 can be further increased to increase the photovoltaic capacity of the photovoltaic container 100 of the present invention.
  • the arrangement of the photovoltaic modules 1 can be made more reasonable, and the photovoltaic modules 1 can be blocked from each other, so that the sunlight can be sufficiently irradiated onto the respective photovoltaic modules 1 so that each The efficiency of the photovoltaic module 1 is maximized.
  • the aforementioned support frame 2 is provided with a guiding structure for guiding the rows of photovoltaic modules 1 in the second layer photovoltaic module 12.
  • each row of photovoltaic components in the second layer photovoltaic module 12 is connected to the support frame 2 through the screw nut structure 5 to be driven by the screw nut structure 5, so that the second layer photovoltaic module 12 is opposite to the first layer photovoltaic component 11 Located at the aforementioned first relative position and second relative position.
  • the guiding structure cooperates with the screw nut structure to effectively ensure the smoothness of the movement of each row of the photovoltaic modules in the second layer photovoltaic module 12, and realize the smooth expansion and contraction of the photovoltaic modules of the second layer of the photovoltaic module 12.
  • the lead screw in the screw nut structure 5 described above may be a ball screw to reduce the movement resistance.
  • the foregoing guiding structure may include a linear slide rail 6 connected to each row of photovoltaic modules in the second layer photovoltaic module 12 through the linear slide rail 6 to guide each row of photovoltaic modules in the second layer photovoltaic module 12.
  • the number of the lead screw nut structure 5 and the linear slide rail 6 may be multiple to further guide and provide motion power to each row of photovoltaic modules in the second photovoltaic module 1 to realize the second layer of photovoltaic.
  • each of the foregoing second layer photovoltaic modules 12 may include at least one photovoltaic module unit 120 including a keel 7 and mounted on the keel 7.
  • the keels 7 are respectively connected to the nut platform 51 of the screw nut structure 5 and the slider 61 of the linear slide 6.
  • each photovoltaic module unit 120 may be two.
  • Each photovoltaic module unit 120 is guided by two linear slide rails 6 and connected to the support frame 2 by a screw nut structure 5.
  • the aforementioned support frame 2 has at least two layers in the vertical direction.
  • the adjacent two layers of the support frame 2 are vertically spaced apart, and the aforementioned photovoltaic modules are disposed in different layers of the support frame 2 in a one-to-one correspondence. Since the adjacent two layers of the support frame 2 are vertically spaced apart, the installation of the aforementioned photovoltaic modules 1 is facilitated, and interference between adjacent two-layer photovoltaic modules 1 is avoided.
  • Each of the aforementioned support frames 2 may include a frame structure in which a plurality of links are connected in the same plane. Wherein, two adjacent frame structures are fixedly connected.
  • the frame structure formed by connecting a plurality of connecting rods on the same plane facilitates the installation of the photovoltaic module 1, and can effectively ensure the horizontality of the installed photovoltaic module 1, so that the photovoltaic module 1 can receive solar energy with maximum efficiency. .
  • the aforementioned support frame 2 has two layers in the vertical direction, which are the first layer 21 and the second layer 22, respectively.
  • the first layer 21 and the second layer 22 may each comprise a frame structure formed by connecting a plurality of links on the same plane.
  • the frame structure of the first layer 21 is fixedly connected to the frame structure of the second layer 22.
  • the technical solution provided by the invention solves the following technical problems: 1. Solving the technical problem that the existing container top-laying photovoltaic component, the heavy pressure of the photovoltaic component is easy to deform the top surface of the container, and the service life of the container is reduced; The top surface of the existing container is not flat, and it is difficult to meet the technical problems of the PV module laying requirements; 3. The existing solution is solved. The area of the top of the container is limited, and the technical problem of insufficient photovoltaic capacity is caused by directly laying photovoltaic components on the top surface of the container.
  • the photovoltaic module 1 is mounted on the frame of the casing on the four sides of the container through the support frame 2, so that the casing of the container top such as the iron sheet can be prevented from being subjected to excessive load and deformed by the heavy load, thereby improving the container. Service life.
  • the photovoltaic module 1 is mounted on a support frame 2 which is mounted on the frame of the container at the top of the container by means of a horizontal adjustment foot 4. Wherein, the horizontal adjusting foot 4 can adjust the level of the photovoltaic module 1 on the support frame 2 to meet the technical requirements of the photovoltaic module 1 laying.
  • the photovoltaic module 1 when the photovoltaic module 1 is installed, the photovoltaic module 1 can be first mounted on the support frame 2 on the ground, and then the support frame 2 on which the photovoltaic module 1 is mounted is hoisted and mounted on the top of the container, so that the operation is convenient and the safety is high.
  • the photovoltaic module 1 can be double-layered on the support frame 2, so that the number of the photovoltaic modules 1 can be increased and the photovoltaic capacity of the container can be increased.
  • the lower layer photovoltaic component that is, the aforementioned first layer photovoltaic module 11 is directly fixed on the support frame 2;
  • the upper layer photovoltaic component that is, the aforementioned second layer photovoltaic component 12 is mounted on the support frame 2 through the ball screw nut structure 5, to pass
  • the spindle nut structure 5 achieves a telescopic movement on the support frame 2.
  • the foregoing lower layer photovoltaic module is directly fixed on the support frame 2 by the pressure block connection.
  • the upper photovoltaic module is divided into six independent units, and the photovoltaic modules 1 of each unit are connected by a pressure block and fixedly mounted on the keel 7.
  • the keel 7 is connected to the nut platform 51 of the aforementioned screw nut structure 5, and the lead screw of the screw nut structure 5 is mounted on the support frame 2.
  • the ball screw can drive the nut platform 51 to move to realize the telescopic movement of the upper layer photovoltaic component on the support frame 2.
  • a linear slide 6 is also mounted on the support frame 2, and the slider 61 of the linear slide 6 is connected to the keel 7 of the upper photovoltaic module. Through the movement of the slider 61 on the slide rail, the smooth expansion and contraction movement of the upper photovoltaic module on the support frame 2 can be realized.
  • the aforementioned photovoltaic module support system can be divided into two or more parts for assembly and then mated with the container. More layers of photovoltaic module stretching and contracting devices can be designed on the aforementioned support frame 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏集装箱(100),涉及集装箱领域,主要目的在于解决现有光伏组件直接铺设在集装箱顶面,光伏组件的重压容易使集装箱顶层铁皮凹陷变形的技术问题。主要采用的技术方案为:光伏集装箱,包括光伏组件(1)、支撑架(2)以及箱体(3),所述箱体(3)包括箱体骨架;所述光伏组件(1)通过所述支撑架(2)安装在所述箱体骨架上、且位于所述箱体(3)的外侧,以使所述光伏组件(1)被所述箱体骨架所支撑。其中,因为光伏组件(1)通过支撑架(2)安装在集装箱(100)的箱体骨架上,箱体骨架的强度较高,可以对光伏组件(1)提供有力的支撑,相对于现有光伏组件(1)安装到集装箱(100)顶部导致箱顶的外壳变形,该光伏集装箱的箱体骨架和外壳均不会变形,从而使得光伏组件的使用寿命较高。

Description

光伏集装箱 技术领域
本发明涉及集装箱技术领域,特别是涉及一种光伏集装箱。
背景技术
光伏集装箱通过集装箱顶所铺设的光伏板发电,可形成一个独立的供、用电系统,近年来在荒野、孤岛等电力设施难以普及的地方得到了很大的应用,尤其受军方以及恶劣环境下的野外工作者的推崇。
然而,鉴于集装箱顶层的铁皮厚度较薄,光伏组件如果直接铺设在集装箱顶面,光伏组件的重压容易使集装箱顶层铁皮凹陷变形,不利于集装箱的使用寿命,且集装箱的顶面本身是不平整的,难以满足光伏组件铺设的技术要求。而且,直接在集装箱顶铺设光伏组件,过多安装工序及高空作业会加大安装人员的施工难度。
发明内容
有鉴于此,本发明提供一种光伏集装箱,主要目的在于解决现有光伏组件直接铺设在集装箱顶面,光伏组件的重压容易使集装箱顶层铁皮凹陷变形的技术问题。
为达到上述目的,本发明主要提供如下技术方案:
一方面,本发明的实施例提供一种光伏集装箱,包括光伏组件、支撑架以及箱体,所述箱体包括箱体骨架;
所述光伏组件通过所述支撑架安装在所述箱体骨架上、且位于所述箱体的外侧,以使所述光伏组件被所述箱体骨架所支撑。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
在前述的光伏集装箱中,可选的,所述光伏组件位于所述箱体顶 面的上方;
所述光伏组件安装在所述支撑架上,所述支撑架安装在所述箱体骨架的第一部分上,所述第一部分位于所述箱体的顶端。
在前述的光伏集装箱中,可选的,光伏集装箱还包括水平调节脚座;
所述支撑架通过所述水平调节脚座安装在所述箱体骨架上,以通过所述水平调节脚座对所述支撑架上光伏组件的水平性进行调节。
在前述的光伏集装箱中,可选的,所述光伏集装箱在竖向方向上具有至少两层光伏组件;
其中,各层光伏组件之间能相对活动,以运动至在竖向上相互层叠的第一相对位置、和运动至相对展开的第二相对位置。
在前述的光伏集装箱中,可选的,各层所述光伏组件中具有相邻设置的第一层光伏组件和第二层光伏组件;
所述第一层光伏组件固定在所述支撑架上;
所述第二层光伏组件可活动地设置在所述支撑架上,以相对所述第一层光伏组件运动至所述的第一相对位置和所述的第二相对位置。
在前述的光伏集装箱中,可选的,所述第二层光伏组件在沿水平方向上具有第一排光伏组件和第二排光伏组件;
所述第一排光伏组件和所述第二排光伏组件两者能相对靠近,以使所述第二层光伏组件相对所述第一层光伏组件位于所述的第一相对位置;和相对远离,以使所述第二层光伏组件相对所述第一层光伏组件位于所述的第二相对位置。
在前述的光伏集装箱中,可选的,所述支撑架上设有直线滑轨,所述支撑架通过所述直线滑轨与各排所述光伏组件相连,以对所述第二层光伏组件中的各排光伏组件导向;
其中,所述第二层光伏组件中的各排光伏组件均通过丝杠螺母结构与所述支撑架相连,以被所述丝杠螺母结构驱动,使所述第二层光伏组件相对所述第一层光伏组件位于所述的第一相对位置和所述的第二相对位置。
在前述的光伏集装箱中,可选的,所述第二层光伏组件中的每排光伏组件均包括至少一个光伏组件单元;
所述光伏组件单元包括龙骨和安装在所述龙骨上的光伏组件;
所述龙骨分别与所述丝杠螺母结构的螺母平台、以及所述直线滑轨的滑块连接。
在前述的光伏集装箱中,可选的,所述支撑架在竖向方向上具有至少两层;
所述支撑架的相邻的两层之间在竖向上具有间隔,各层光伏组件一一对应地设置在所述支撑架的不同层。
在前述的光伏集装箱中,可选的,所述支撑架的每一层均包括由多个连杆在同一平面上连接而成的框架结构;
其中,相邻的两层框架结构固定连接。
借由上述技术方案,本发明光伏集装箱至少具有以下有益效果:
在本发明提供的技术方案中,因为光伏组件通过支撑架安装在集装箱的箱体骨架上,其中,箱体骨架的强度较高,可以对光伏组件提供有力的支撑,相对于现有光伏组件安装到集装箱顶导致箱顶的外壳变形,本发明光伏集装箱的箱体骨架和外壳均不会变形,从而本发明光伏组件的使用寿命较高。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明的一实施例提供的一种光伏集装箱的主视图;
图2是本发明的一实施例提供的一种支撑架上的第二层光伏组件相对第一层光伏组件位于第一相对位置时的主视图;
图3是本发明的一实施例提供的一种支撑架上的第二层光伏组件相对第一层光伏组件位于第二相对位置时的主视图;
图4是本发明的一实施例提供的一种支撑架上的第二层光伏组 件相对第一层光伏组件位于第二相对位置时的俯视图;
图5是本发明的一实施例提供的一种光伏组件单元的俯视图;
图6是本发明的一实施例提供的一种支撑架的结构示意图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明申请的具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
如图1所示,本发明的一个实施例提出的一种光伏集装箱100,包括光伏组件1、支撑架2以及箱体3。箱体3包括箱体骨架。光伏组件1通过支撑架2安装在箱体骨架上、且位于箱体3的外侧,以使光伏组件1被箱体骨架所支撑。
这里需要说明的是:前述的箱体3还包括安装在箱体骨架上的箱体外壳,其中,箱体骨架的强度较高,箱体骨架可以为箱体外壳提供支撑,以保证整个箱体3的结构强度,并且也方便箱体外壳的安装。
上述的箱体外壳可以采用铁皮等材料。
在上述提供的技术方案中,因为光伏组件1通过支撑架2安装在集装箱的箱体骨架上,其中,箱体骨架的强度较高,可以对光伏组件1提供有力的支撑,相对于现有光伏组件安装到集装箱顶导致箱顶的外壳变形,本发明光伏集装箱100的箱体骨架和外壳均不会变形,从而本发明光伏组件1的使用寿命较高。
这里需要说明的是:前述支撑架2的数量可以为两个以上,以减小单个支撑架2的体积和重量,方便作业人员将支撑架2安装到箱体3的箱体骨架上。
进一步的,如图1所示,前述的光伏组件1可以位于箱体3顶面的上方。光伏组件1安装在支撑架2上,支撑架2安装在箱体骨架的第一部分上,第一部分位于箱体3的顶端。在本示例中,光伏组件1 和支撑架2均位于箱体3顶面上较为空旷的空间内,从而其安装不会受到安装空间的限制,也不会影响用户在箱体3侧面的进出。
如图1所示,本发明的光伏集装箱100还可以包括水平调节脚座4。前述的支撑架2通过水平调节脚座4安装在箱体骨架上,以通过水平调节脚座4对支撑架2上光伏组件1的水平性进行调节。在本示例中,通过设置的水平调节脚座4,可以对光伏组件1的角度进行调节,以更好地接收太阳光照,提高光伏组件1的工作效率。
这里需要说明的是:前述的水平调节脚座4为市购件,可以根据需要在市场上购买,具体在此不再赘述。
进一步的,如图2至图4所示,本发明的光伏集装箱100在竖向方向上具有至少两层光伏组件。其中,各层光伏组件之间能相对活动,以运动至在竖向上相互层叠的第一相对位置(如图2所示)、和运动至相对展开的第二相对位置(如图3和图4所示)。在本示例中,通过设置的多层光伏组件,可以增加光伏组件1的数量,增大本发明光伏集装箱100的光伏容量。
这里需要说明的是:当相邻的两层光伏组件在竖向上相互层叠时,该相邻的两层光伏组件在竖向上可以具有间隔,也可以相互接触。为了避免相邻的两层光伏组件之间发生干涉,优选的,当相邻的两层光伏组件在竖向上相互层叠时,该相邻的两层光伏组件在竖向上具有间隔。
前述的各层光伏组件可以通过直线平移的方式在第一相对位置与第二相对位置之间切换,如此具有方便操作的技术效果。
具体在实施时,如图2所示,前述的各层光伏组件中具有相邻设置的第一层光伏组件11和第二层光伏组件12。第一层光伏组件11固定在支撑架2上。第二层光伏组件12可活动地设置在支撑架2上,以相对第一层光伏组件11运动至前述的第一相对位置和第二相对位置。相对于第一层光伏组件11和第二层光伏组件12均可活动,在本示例中,通过将第一层光伏组件11固定,仅第二层光伏组件12可活动,可以简化运动机构的结构,节省成本。
进一步的,如图2至图4所示,前述的第二层光伏组件12在沿水平方向上具有第一排光伏组件121和第二排光伏组件122。第一排光伏组件121和第二排光伏组件122两者能相对靠近,以使第二层光伏组件12相对第一层光伏组件11位于前述的第一相对位置(如图2所示);和相对远离,以使第二层光伏组件12相对第一层光伏组件11位于前述的第二相对位置(如图3和图4所示)。在本示例中,通过在第二层设置双排光伏组件,可以进一步增加光伏组件1的数量,提高本发明光伏集装箱100的光伏容量。
这里需要说明的是:如图4所示,当前述的第二层光伏组件12相对第一层光伏组件11位于第二相对位置时,前述的第一排光伏组件121在第一层光伏组件11所在平面上的投影位于第一层光伏组件11的第一侧,第二排光伏组件122在第一层光伏组件11所在平面上的投影位于第一层光伏组件11的第二侧,其中,第一侧与第二侧相背。其中,通过本示例中的设置,可以使各光伏组件1的排布更加合理,各光伏组件1不会相互干涉被挡到,从而使太阳光可以充分地照射到各光伏组件1上,使各光伏组件1的工作效率达到最大。
进一步的,如图2至图4所示,前述的支撑架2上设有导向结构,导向结构用于对第二层光伏组件12中的各排光伏组件1导向。其中,第二层光伏组件12中的各排光伏组件均通过丝杠螺母结构5与支撑架2相连,以被丝杠螺母结构5驱动,使第二层光伏组件12相对第一层光伏组件11位于前述的第一相对位置和第二相对位置。在本示例中,导向结构与丝杠螺帽结构配合,可以有效保证第二层光伏组件12中各排光伏组件的运动平稳性,实现第二层光伏组件12中各排光伏组件的平稳伸缩。
这里需要说明的是:前述丝杠螺母结构5中的丝杠可以为滚珠丝杠,以减小运动阻力。
前述的导向结构可以包括直线滑轨6,支撑架2通过直线滑轨6与第二层光伏组件12中的各排光伏组件相连,以对第二层光伏组件12中的各排光伏组件导向。
这里需要说明的是:前述丝杠螺母结构5以及直线滑轨6的数量可以为多个,以进一步对第二光伏组件1中的各排光伏组件导向和提供运动的动力,实现第二层光伏组件12中各排光伏组件的平稳伸缩。
在一个具体的应用示例中,如图5所示,前述第二层光伏组件12中的每排光伏组件均可以包括至少一个光伏组件单元120,光伏组件单元120包括龙骨7和安装在龙骨7上的光伏组件1。龙骨7分别与丝杠螺母结构5的螺母平台51、以及直线滑轨6的滑块61连接。
进一步的,前述的每个光伏组件单元120上光伏组件1的数量可以为两个。每个光伏组件单元120均通过两个直线滑轨6导向,且通过一个丝杠螺母结构5与支撑架2相连。
进一步的,前述的支撑架2在竖向方向上具有至少两层。支撑架2的相邻的两层之间在竖向上具有间隔,前述的各层光伏组件一一对应地设置在支撑架2的不同层。由于支撑架2的相邻两层之间在竖向上具有间隔,从而方便前述各层光伏组件1的安装,避免相邻的两层光伏组件1之间发生干涉。
前述支撑架2的每一层均可以包括由多个连杆在同一平面上连接而成的框架结构。其中,相邻的两层框架结构固定连接。在本示例中,由多个连杆在同一平面上连接而成的框架结构利于光伏组件1的安装,能够有效保证所安装光伏组件1的水平性,以利于光伏组件1能够最大效率地接收太阳能。
在一个具体的应用示例中,如图6所示,前述的支撑架2在竖向上具有两层,分别为第一层21和第二层22。其中,第一层21和第二层22均可以包括由多个连杆在同一平面上连接而成的框架结构。第一层21的框架结构与第二层22的框架结构固定连接。
下面介绍一下本发明的工作原理和优选实施例。
本发明提供的技术方案解决如下技术问题:1、解决了现有集装箱顶铺设光伏组件,光伏组件的重压容易使集装箱顶层铁皮凹陷变形,使集装箱的使用寿命降低的技术问题;2、解决了现有集装箱顶面不平整,难以满足光伏组件铺设要求的技术问题;3、解决了现有 集装箱顶的面积有限,直接在集装箱的顶面铺设光伏组件导致光伏容量不够的技术问题。
在本发明提供的技术方案中,光伏组件1通过支撑架2安装在集装箱四侧的箱体骨架上,可以避免集装箱顶的箱体外壳比如铁皮承受过重负荷而凹陷变形,从而提高了集装箱的使用寿命。光伏组件1安装在支撑架2上,支撑架2通过水平调节脚座4安装在集装箱顶的箱体骨架上。其中,水平调节脚座4可以调节支撑架2上光伏组件1的水平性,以满足光伏组件1铺设的技术要求。
具体在安装光伏组件1时,可在地面上先将光伏组件1安装在支撑架2上,再将安装好光伏组件1的支撑架2吊起安装于集装箱顶,如此方便操作且安全性高。
其中,光伏组件1在支撑架2上可采用双层铺设的方式,如此可以增加光伏组件1的铺设数量,增大集装箱的光伏容量。其中,下层光伏组件即前述的第一层光伏组件11直接固定在支撑架2上;上层光伏组件即前述的第二层光伏组件12通过滚珠丝杠螺母结构5安装在支撑架2上,以通过丝杠螺母结构5在支撑架2上实现伸缩运动。
其中,前述的下层光伏组件通过压块连接,直接固定在支撑架2上。上层光伏组件分成6个独立的单元,每个单元的光伏组件1均通过压块连接,固定安装在龙骨7上。龙骨7与前述丝杠螺母结构5的螺母平台51连接,丝杠螺母结构5的丝杠安装在支撑架2上。其中,滚珠丝杠可以带动螺母平台51移动以实现上层光伏组件在支撑架2上的伸缩运动。
在支撑架2上还安装了直线滑轨6,直线滑轨6的滑块61与上层光伏组件的龙骨7连接。通过滑块61在滑轨上的移动,能够实现上层光伏组件在支撑架2上平稳的伸缩运动。
前述的光伏组件支撑架系统可以分割为两个或多个部分进行组装,然后再与集装箱配合。前述的支撑架2上可以设计更多层的光伏组件伸展收缩装置。
这里需要说明的是:在不冲突的情况下,本领域的技术人员可以 根据实际情况将上述各示例中相关的技术特征相互组合,以达到相应的技术效果,具体对于各种组合情况在此不一一赘述。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种光伏集装箱,其特征在于,包括光伏组件(1)、支撑架(2)以及箱体(3),所述箱体(3)包括箱体骨架;
    所述光伏组件(1)通过所述支撑架(2)安装在所述箱体骨架上、且位于所述箱体(3)的外侧,以使所述光伏组件(1)被所述箱体骨架所支撑。
  2. 如权利要求1所述的光伏集装箱,其特征在于,
    所述光伏组件(1)位于所述箱体(3)顶面的上方;
    所述光伏组件(1)安装在所述支撑架(2)上,所述支撑架(2)安装在所述箱体骨架的第一部分上,所述第一部分位于所述箱体(3)的顶端。
  3. 如权利要求1或2所述的光伏集装箱,其特征在于,还包括水平调节脚座(4);
    所述支撑架(2)通过所述水平调节脚座(4)安装在所述箱体骨架上,以通过所述水平调节脚座(4)对所述支撑架(2)上光伏组件(1)的水平性进行调节。
  4. 如权利要求1至3中任一项所述的光伏集装箱,其特征在于,
    所述光伏集装箱在竖向方向上具有至少两层光伏组件;
    其中,各层光伏组件之间能相对活动,以运动至在竖向上相互层叠的第一相对位置、和运动至相对展开的第二相对位置。
  5. 如权利要求4所述的光伏集装箱,其特征在于,
    各层光伏组件中具有相邻设置的第一层光伏组件(11)和第二层光伏组件(12);
    所述第一层光伏组件(11)固定在所述支撑架(2)上;
    所述第二层光伏组件(12)可活动地设置在所述支撑架(2)上,以相对所述第一层光伏组件(11)运动至所述的第一相对位置和所述的第二相对位置。
  6. 如权利要求5所述的光伏集装箱,其特征在于,
    所述第二层光伏组件(12)在沿水平方向上具有第一排光伏组件 (121)和第二排光伏组件(122);
    所述第一排光伏组件(121)和所述第二排光伏组件(122)两者能相对靠近,以使所述第二层光伏组件(12)相对所述第一层光伏组件(11)位于所述的第一相对位置;和相对远离,以使所述第二层光伏组件(12)相对所述第一层光伏组件(11)位于所述的第二相对位置。
  7. 如权利要求6所述的光伏集装箱,其特征在于,
    所述支撑架(2)上设有直线滑轨(6),所述支撑架(2)通过所述直线滑轨(6)与所述第二层光伏组件(12)中的各排光伏组件相连,以对所述第二层光伏组件(12)中的各排光伏组件导向;
    其中,所述第二层光伏组件(12)中的各排光伏组件均通过丝杠螺母结构(5)与所述支撑架(2)相连,以被所述丝杠螺母结构(5)驱动,使所述第二层光伏组件(12)相对所述第一层光伏组件(11)位于所述的第一相对位置和所述的第二相对位置。
  8. 如权利要求7所述的光伏集装箱,其特征在于,
    所述第二层光伏组件(12)中的每排光伏组件均包括至少一个光伏组件单元(120);
    所述光伏组件单元(120)包括龙骨(7)和安装在所述龙骨上的所述光伏组件(1);
    所述龙骨(7)分别与所述丝杠螺母结构(5)的螺母平台(51)、以及所述直线滑轨(6)的滑块(61)连接。
  9. 如权利要求4至8中任一项所述的光伏集装箱,其特征在于,
    所述支撑架(2)在竖向方向上具有至少两层;
    所述支撑架(2)的相邻的两层之间在竖向上具有间隔,各层光伏组件一一对应地设置在所述支撑架(2)的不同层。
  10. 如权利要求9所述的光伏集装箱,其特征在于,
    所述支撑架(2)的每一层均包括由多个连杆在同一平面上连接而成的框架结构;
    其中,相邻的两层框架结构固定连接。
PCT/CN2017/080695 2016-12-26 2017-04-17 光伏集装箱 WO2018120520A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/327,684 US20190372511A1 (en) 2016-12-26 2017-04-17 Photovoltaic Container
ES17889480T ES2903428T3 (es) 2016-12-26 2017-04-17 Contenedor fotovoltaico
EP17889480.4A EP3560858B1 (en) 2016-12-26 2017-04-17 Photovoltaic container
CA3034746A CA3034746A1 (en) 2016-12-26 2017-04-17 Photovoltaic container
AU2017386178A AU2017386178A1 (en) 2016-12-26 2017-04-17 Photovoltaic container
AU2020203759A AU2020203759B2 (en) 2016-12-26 2020-06-05 Photovoltaic container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611218651.3 2016-12-26
CN201611218651.3A CN106586310A (zh) 2016-12-26 2016-12-26 光伏集装箱

Publications (1)

Publication Number Publication Date
WO2018120520A1 true WO2018120520A1 (zh) 2018-07-05

Family

ID=58603962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080695 WO2018120520A1 (zh) 2016-12-26 2017-04-17 光伏集装箱

Country Status (7)

Country Link
US (1) US20190372511A1 (zh)
EP (1) EP3560858B1 (zh)
CN (1) CN106586310A (zh)
AU (2) AU2017386178A1 (zh)
CA (1) CA3034746A1 (zh)
ES (1) ES2903428T3 (zh)
WO (1) WO2018120520A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365819A (zh) * 2018-04-16 2018-08-03 张家港清研聚晟新能源科技有限公司 一种安装于集装箱活动房的手动折叠光伏支架
US11456695B2 (en) * 2020-01-20 2022-09-27 Erthos, Inc. Leading edge units device and methods
CN113545615B (zh) * 2021-07-19 2023-07-25 西安热工研究院有限公司 一种基于连杆自锁的光伏组件立体货架

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041350A (ja) * 2004-07-29 2006-02-09 Canon Inc 太陽電池セルの梱包方法
GB2463098A (en) * 2008-09-03 2010-03-10 Oliver Claridge Shipping container with photovoltaic panel
CN202954588U (zh) * 2012-10-25 2013-05-29 苏州景新电气有限公司 一种预装式光伏逆变集装箱
CN204957317U (zh) * 2015-08-31 2016-01-13 晋能清洁能源科技有限公司 光伏组件包装结构
CN205060248U (zh) * 2015-10-09 2016-03-02 中节能太阳能科技(镇江)有限公司 一种晶硅太阳能光伏组件的包装箱

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201256369Y (zh) * 2008-09-08 2009-06-10 动力新跃(北京)汽车科技有限公司 伸缩式太阳能电池板
CN201742332U (zh) * 2010-05-31 2011-02-09 潍坊广生新能源有限公司 展开式太阳能移动电源
DE102011120705A1 (de) * 2011-12-12 2013-06-13 Ludwig Metallbau GmbH Mobile Solaranlage
DE202012100567U1 (de) * 2012-02-20 2012-03-16 Wiegel Gebäudetechnik GmbH Mobile Vorrichtung zur Warmwasserbereitung
US20150090315A1 (en) * 2013-10-02 2015-04-02 SolaRover, Inc. Mobile solar power system and method for deploying same
WO2015164913A1 (en) * 2014-05-02 2015-11-05 Portagrid Systems Pty Ltd Portable power station and array module attachment therefor
CN204425240U (zh) * 2014-11-11 2015-06-24 扬州通利冷藏集装箱有限公司 集装箱
CN205005009U (zh) * 2015-09-10 2016-01-27 温州海蓝工业设计有限公司 一种折叠式太阳能板
CN105375862A (zh) * 2015-12-21 2016-03-02 黄旭华 移动式太阳能发电载具
CN107104624A (zh) * 2016-06-08 2017-08-29 申清章 一种供电用移动光伏发电车
CN106712674B (zh) * 2016-11-17 2018-07-03 中国电力建设股份有限公司 一种光伏支架
CN206318263U (zh) * 2016-12-26 2017-07-11 珠海格力电器股份有限公司 光伏集装箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041350A (ja) * 2004-07-29 2006-02-09 Canon Inc 太陽電池セルの梱包方法
GB2463098A (en) * 2008-09-03 2010-03-10 Oliver Claridge Shipping container with photovoltaic panel
CN202954588U (zh) * 2012-10-25 2013-05-29 苏州景新电气有限公司 一种预装式光伏逆变集装箱
CN204957317U (zh) * 2015-08-31 2016-01-13 晋能清洁能源科技有限公司 光伏组件包装结构
CN205060248U (zh) * 2015-10-09 2016-03-02 中节能太阳能科技(镇江)有限公司 一种晶硅太阳能光伏组件的包装箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3560858A4 *

Also Published As

Publication number Publication date
ES2903428T3 (es) 2022-04-01
AU2020203759A1 (en) 2020-06-25
CA3034746A1 (en) 2018-07-05
AU2017386178A1 (en) 2019-03-14
CN106586310A (zh) 2017-04-26
US20190372511A1 (en) 2019-12-05
EP3560858A4 (en) 2019-12-04
EP3560858B1 (en) 2021-12-08
AU2020203759B2 (en) 2022-01-20
EP3560858A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2018120520A1 (zh) 光伏集装箱
CN106992745B (zh) 一种提高防风能力的光伏发电设备
KR20100136556A (ko) 입체 태양전지판
CN102709369B (zh) 一种瓦片太阳能光伏组件
CN105811867A (zh) 一种角度可调的太阳能供电设备
CN202616242U (zh) 多层折叠式可跟踪光伏组件支架
CN105790695A (zh) 角度可调式太阳能电池板
CN210833411U (zh) 三维激光扫描仪防护装置
CN111605870A (zh) 一种光伏太阳能运输装置
CN215474717U (zh) 一种光伏板清扫机器人转场装置
CN206318263U (zh) 光伏集装箱
CN105888307A (zh) 一种具有空气净化装置的太阳能公交站台
KR101327417B1 (ko) 태양광 발전장치
CN208924150U (zh) 一种可升降式光伏集成储能装置
CN202678361U (zh) 一种瓦片太阳能光伏组件
CN207207870U (zh) 一种新能源多功能供电车厢
CN206195669U (zh) 一种新型高倍太阳能聚光发电装置
CN207518515U (zh) 一种可升降平移的抗风光伏组件结构
CN220466809U (zh) 一种电池中转搬移装置
CN220563589U (zh) 一种可升降调节物料输送装置
CN217010781U (zh) 一种基于建筑施工的太阳能防护板
CN111690906B (zh) 承载装置
CN208112554U (zh) 一种光伏组件支架
CN107946396A (zh) 活动曲面光伏组件
CN114024237B (zh) 一种配网电力检修平台小车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3034746

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017386178

Country of ref document: AU

Date of ref document: 20170417

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017889480

Country of ref document: EP