WO2018120194A1 - 一种生成波长路由网络拓扑方法和装置 - Google Patents

一种生成波长路由网络拓扑方法和装置 Download PDF

Info

Publication number
WO2018120194A1
WO2018120194A1 PCT/CN2016/113893 CN2016113893W WO2018120194A1 WO 2018120194 A1 WO2018120194 A1 WO 2018120194A1 CN 2016113893 W CN2016113893 W CN 2016113893W WO 2018120194 A1 WO2018120194 A1 WO 2018120194A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
network element
network
port
information
Prior art date
Application number
PCT/CN2016/113893
Other languages
English (en)
French (fr)
Inventor
乔跃刚
胡歌华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/113893 priority Critical patent/WO2018120194A1/zh
Priority to CN201680082144.3A priority patent/CN108702233B/zh
Publication of WO2018120194A1 publication Critical patent/WO2018120194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present application relates to the field of communications, and in particular, to a method and an apparatus for generating a wavelength routing network topology.
  • the logical topology of the network can be obtained according to network planning and logical configuration.
  • the network node topology can be obtained according to the data communication network (DCN), and the physical topology of the optical wavelength routing of the service layer is not yet good. The method is quickly obtained.
  • DCN data communication network
  • the first one is to generate the network wavelength topology information based on the logical configuration, and automatically obtain the network wavelength topology map according to the planned service configuration.
  • the default physical wavelength topology is consistent with the logical topology, and can be quickly and easily obtained.
  • the second technology of the prior art is to obtain a network topology by running a network topology protocol in the existing network.
  • Network monitoring and management communication channels running Open Shortest Path First (OSPF) or Neighbor Topology Discovery Protocol (NTDP) protocols to generate network node topologies, and then combining network elements (Network Element) , NE) Information generation network logic.
  • OSPF Open Shortest Path First
  • NTDP Neighbor Topology Discovery Protocol
  • the service may change during the actual network operation.
  • the service planned by the user cannot truly reflect the actual networking information on the live network, that is, the physical networking and logic. There may be differences in configuration.
  • flooding information needs to be sent in the network, and the network networking size is restricted.
  • the embodiment of the present invention provides a method and a device for generating a wavelength routing network topology, which can solve the problem that the physical wavelength topology is different from the network topology generated according to the logical configuration, and the sending flooding information has a constraint on the network networking size.
  • a method for generating a wavelength routing network topology including: receiving, by a first network element, a set of wavelength information sent by a second network element, where each wavelength information includes a spanning of wavelengths The number, the sending port of the second network element, and the identifier of the wavelength; the first network element determines whether the wavelength corresponding to the identifier of each wavelength passes through the first network element; and for each wavelength information, if it is determined that the wavelength corresponding to the wavelength information passes the first a network element, the first network element updates the cross-segment count of the wavelength; the first network element sends the updated wavelength information to the next network element corresponding to the port that does not receive the wavelength information, and the updated wavelength information And including the updated cross-segment count, the sending port of the first network element, and the identifier of the wavelength, and sending the updated span count, the sending port of the second network element, and the first network element receiving the wavelength to the network management device.
  • the port and the identifier of the wavelength are received, so that the network management device acquires the routing network topology of the wavelength according to the received updated wavelength information of each network element and the receiving port of the wavelength.
  • the first network element determines that the wavelength corresponding to the wavelength information passes through the first network element
  • the first network element updates the span count and the transmission port of the wavelength, and the updated The wavelength information is sent to the next network element corresponding to the port that does not receive the wavelength information.
  • the network element sends flooding information to any connected network element. Simple interaction, that is, sending updated wavelength information is limited, and does not need to send flooding information, which can solve the problem that flooding information has constraints on the network networking size.
  • the first network element may save the updated cross-segment count, the sending port of the second network element, the receiving port of the first network element, and the wavelength receiving identifier in the local network element, and the network management device needs to generate
  • each network element may send a cross-segment count, a transmit port, a receive port, and a wavelength identifier to the network management device to facilitate the network management device to generate a wavelength routing network topology, which is generated according to a logical configuration according to the prior art.
  • the network topology causes the physical wavelength topology to be different from the generated network topology.
  • the network management device generates a routing network topology according to the cross-segment count, the sending port, the receiving port, and the wavelength identifier of the same wavelength in each network element. It is not a network topology generated based on logical configuration, which can solve the problem that the physical wavelength topology differs from the network topology generated according to the logical configuration.
  • the first network element determines whether the wavelength corresponding to the identifier of each wavelength passes through the first network element, and the first network element determines a set of wavelengths that pass through the first network element; the first network element is based on the wavelength.
  • the set of sets and the intersection of the sets of wavelength information determines whether the wavelength corresponding to the identity of each wavelength in the set of wavelength information passes through the first network element. In this way, the first network element can determine the wavelength set passing through the first network element by the set of wavelengths and the intersection of the sets of wavelength information.
  • the method further includes: if the first network element determines the set of wavelength information If the wavelength corresponding to any wavelength information in the combination does not pass through the first network element, the first network element discards any wavelength information. In this way, the first network element can discard the wavelength information corresponding to the wavelength of the first network element, which can save the storage space of the first network element.
  • the updating, by the first network element, the span count of the wavelength comprises: the first network element accumulating the span count of the wavelength to a preset value.
  • the order in which the wavelengths pass through the network element can be represented by the span count of the wavelengths, so that the network management device can obtain the routing network topology of the wavelength according to the updated span count sent by the first network element.
  • the method further includes: saving, by the first network element, the updated span count, the sending port of the second network element, the receiving port of the first network element receiving the wavelength, and the identifier of the wavelength.
  • the network management device needs to acquire the routing network topology of the wavelength
  • the updated cross-segment count saved by each network element, the sending port of the second network element, and the first network element receive the receiving port of the wavelength.
  • the identification of the wavelength to obtain the routing network topology of the wavelength.
  • a method for generating a wavelength routing network topology including: the network management device receives wavelength information of the same wavelength sent by at least one network element, where the wavelength information includes a cross-segment count of the wavelength passing through, a sending port of the network element, and a network element. The receiving port and the identifier of the wavelength; the network management device generates a routing network topology of the same wavelength according to the wavelength information of the same wavelength sent by the at least one network element. In this way, the network management device generates the routing network topology of the wavelength according to the wavelength information of the same wavelength that is sent by the at least one network element, and the flooding information needs to be sent when the routing network topology is generated in the prior art.
  • the network topology does not need to send flooding information. Therefore, this application can solve the problem that flooding information has constraints on the network networking size.
  • each network element may send a cross-segment count, a sending port, a receiving port, and a wavelength identifier to the network management device, so that the network management device generates a wavelength routing network topology, compared to The network topology generated by the prior art according to the logical configuration causes the physical wavelength topology to be different from the generated network topology.
  • the network management device counts, transmits, receives, and wavelengths according to the same wavelength in each network element.
  • the identifier generates a routing network topology, rather than a network topology generated according to the logical configuration, which can solve the problem that the physical wavelength topology differs from the network topology generated according to the logical configuration.
  • the network management device generates a routing network topology of the same wavelength according to the wavelength information of the same wavelength sent by the at least one network element, where the network management device is configured according to at least The sending port of the network element corresponding to the identifier of the same wavelength in the wavelength information sent by one network element and the receiving port of the network element are sequentially connected according to the span count corresponding to the identifier of the same wavelength, to obtain a routing network topology of the same wavelength.
  • the network management device can obtain the routing network topology of the same wavelength according to the sending port of the network element corresponding to the identifier of the same wavelength in the wavelength information sent by each network element and the receiving port of the network element.
  • a first network element including: an optical monitoring communication unit, configured to receive a set of wavelength information sent by the second network element, where each wavelength information includes a cross-segment count of a wavelength passing through, and a second network element The identifier of the sending port and the wavelength; the wavelength monitoring unit is configured to determine whether the wavelength corresponding to the identifier of each wavelength passes through the first network element; and the updating unit is configured to, for each wavelength information, determine the wavelength corresponding to the wavelength information a network element, the cross-segment count of the wavelength is updated; the sending unit is configured to send the updated wavelength information to the next network element corresponding to the port that does not receive the wavelength information, and the updated wavelength information includes the updated information.
  • the cross-segment count, the sending port of the first network element, and the identifier of the wavelength and send the updated cross-segment count to the network management device, the sending port of the second network element, the receiving port of the first network element receiving the wavelength, and The identification of the wavelength, so that the network management device obtains the wavelength routing network according to the updated wavelength information of each network element received and the receiving port of the wavelength .
  • the wavelength monitoring unit is configured to: determine a set of wavelengths passing through the first network element; determine a wavelength corresponding to the identifier of each wavelength in the set of wavelength information according to the set of wavelengths and the intersection of the sets of wavelength information Whether to pass the first network element.
  • the discarding unit is further configured to discard any wavelength information if it is determined that the wavelength corresponding to any wavelength information in the set of wavelength information does not pass through the first network element.
  • the update unit is configured to: accumulate a preset value for the span count of the wavelength.
  • a saving unit is further configured to: save the updated span count, the sending port of the second network element, the receiving port of the first network element receiving the wavelength, and the identifier of the wavelength.
  • a network management device including: a receiving unit, configured to receive wavelength information of the same wavelength sent by at least one network element, where the wavelength information includes a spanning interval of wavelengths
  • the processing unit is configured to generate a routing network topology of the same wavelength according to the wavelength information of the same wavelength sent by the at least one network element.
  • the processing unit is configured to: according to the sending port of the network element corresponding to the identifier of the same wavelength in the wavelength information sent by the at least one network element, and the receiving port of the network element, according to the identifier of the same wavelength
  • the segment counts are sequentially connected to obtain a routing network topology of the same wavelength.
  • a first network element including: a transceiver, configured to receive a set of wavelength information sent by a second network element, where each wavelength information includes a cross-segment count of a wavelength passing through, and a sending port of the second network element.
  • the processor is configured to determine whether the wavelength corresponding to the identifier of each wavelength passes through the first network element; and the processor is further configured to, for each wavelength information, determine that the wavelength corresponding to the wavelength information passes through the first network And updating the cross-segment count of the wavelength; the transceiver is further configured to: send the updated wavelength information to the next network element corresponding to the port that does not receive the wavelength information, where the updated wavelength information includes the updated The span count, the sending port of the first network element, and the identifier of the wavelength, and send the updated span count, the sending port of the second network element, the receiving port of the first network element receiving the wavelength, and the wavelength to the network management device.
  • the identifier is such that the network management device acquires the routing network topology of the wavelength according to the received updated wavelength information of each network element and the receiving port of the wavelength.
  • the processor is configured to: determine a set of wavelengths passing through the first network element; determine, according to the set of wavelengths and the intersection of the sets of wavelength information, whether the wavelength corresponding to the identifier of each wavelength in the set of wavelength information passes The first network element.
  • the processor is further configured to discard any wavelength information if it is determined that the wavelength corresponding to any wavelength information in the set of wavelength information does not pass through the first network element.
  • the processor is configured to: accumulate a preset value for the span of the wavelength.
  • the memory is further configured to: save the updated cross-segment count, the sending port of the second network element, the receiving port of the first network element receiving the wavelength, and the identifier of the wavelength.
  • a network management device including: a transceiver, configured to receive wavelength information of the same wavelength sent by at least one network element, where the wavelength information includes a cross-segment count of the wavelength passing through, The sending port of the network element, the receiving port of the network element, and the identifier of the wavelength; the processor is configured to generate a routing network topology of the same wavelength according to the wavelength information of the same wavelength sent by the at least one network element.
  • the processor is configured to: according to the sending port of the network element corresponding to the identifier of the same wavelength in the wavelength information sent by the at least one network element, and the receiving port of the network element, the span corresponding to the identifier of the same wavelength Count the sequential connections to get the routing network topology of the same wavelength.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the first network element, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network management device, which includes a program designed to perform the above aspects.
  • the first network element determines that the wavelength corresponding to the wavelength information passes through the first network element, the first network element updates the span count and the transmission port of the wavelength and updates the wavelength.
  • the information is sent to the next network element corresponding to the port that does not receive the wavelength information, and the first network element can receive the updated span count, the sending port of the second network element, and the first network element receives the wavelength.
  • the identifier of the receiving port and the wavelength is stored in the local network element.
  • each network element can send the identifier of the spanning count, the sending port, the receiving port, and the wavelength to the network management device to facilitate the network.
  • the management device generates a routing network topology for wavelengths.
  • the network element sends the flooding information to any connected network element.
  • the wavelength information sent by the embodiment of the present application is limited, and does not need to send flooding information, and can solve the flooding information to the network group.
  • the size of the network is constrained.
  • FIG. 1 is a system architecture diagram of a network management device, a first network element, and a second network element according to an embodiment of the present disclosure
  • FIG. 2a is a schematic diagram of an internal structure of a power grid element according to an embodiment of the present application.
  • 2b is a schematic diagram of an internal structure of an optical network element according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an internal structure of a network management device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of generating a wavelength routing network topology method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an optical network according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a first network element according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a first network element according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a first network element according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network management device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network management device according to an embodiment of the present disclosure.
  • the network architecture of the embodiment of the present application may include a network management device and at least two network elements, where the first network element and the second network element are used as an example, and the first network element and the second network element may form a network element.
  • the first network element may be configured to receive a set of wavelength information sent by the second network element.
  • the second network element can be configured to send a set of wavelength information to the first network element.
  • the network architecture of the embodiment of the present application may further include a third network element, where the third network element may be configured to receive the updated wavelength information sent by the first network element.
  • the first network element, the second network element, and the third network element may be WDM network elements.
  • the network management device may be a Software Defined Network (SDN) controller, which can be run on a separate server and managed by connecting each of at least two network elements through an Ethernet cable or a third-party network. The entire optical network.
  • SDN controller can view the optical wavelength routing network topology of the network in real time, so as to improve the efficiency of the network operation and maintenance and the convenience brought by the visualization.
  • the first network element may include two functions of the photoelectric conversion and the wavelength scheduling.
  • the first network element may have multiple modes in hardware deployment, and the present application does not limit the hardware deployment mode of the first network element.
  • the first network element may be divided into a power grid element and an optical network element.
  • the first network element may be a power grid element or an optical network element.
  • the internal structure diagram of the grid element is shown in Fig. 2a, and can be composed of a system control unit, a photoelectric conversion unit, a wavelength information writing and extracting unit.
  • the wavelength writing process of the wavelength information writing and extracting unit in the grid element may be completed before the photoelectric conversion unit converts the business information into a standard wavelength into the wavelength division system; the wavelength extraction process may be performed in the photoelectric conversion unit
  • the standard wavelength output of the WDM system is converted into Business information is completed before.
  • the internal structure diagram of the optical network element is shown in FIG. 2b, and may be composed of a system control unit, a wavelength division scheduling unit, a wavelength monitoring unit, and an optical monitoring communication unit.
  • the wavelength monitoring unit of the optical network element can support each main line dimension.
  • FIG. 3 is a schematic diagram of an internal structure of a network management device according to the present application.
  • the network management device may include a processing module 301, a communication module 303, and a storage module 303.
  • the processing module 301 is configured to control various parts of the network management device, the hardware device, the application software, and the like;
  • the communication module 303 is configured to receive commands sent by other devices by using a communication manner such as cellular, Ethernet, and infrared, or may use the network.
  • the data of the management device is sent to the cloud or other device; the storage module 303 is configured to execute the storage of the software program of the network management device, the storage of the data, the operation of the software, etc., and may be a random access memory or an erasable programmable read-only register.
  • An embodiment of the present application provides a method for generating an optical wavelength routing network topology, where the first network element receives a set of wavelength information sent by a second network element, where the wavelength can be an optical wavelength, and the set of wavelength information is determined. Whether the wavelength corresponding to each wavelength information passes through the first network element; if it is determined that the wavelength corresponding to the wavelength information passes through the first network element, the first network element updates the span count of the wavelength; and then, the first network element is not received. The updated network information is sent to the next network element corresponding to the port of the wavelength information, and the port that does not receive the wavelength information refers to a port other than the port that receives the wavelength information on the first network element.
  • a network element can continue to perform actions similar to those performed by the first network element.
  • the network management device may obtain the routing network topology of the wavelength according to the updated wavelength information sent by each network element and the receiving port of the network element receiving the wavelength.
  • An embodiment of the present application provides a method for generating an optical wavelength routing network topology, as shown in FIG. 4, including:
  • each wavelength information includes a cross-segment count of the wavelength passing through, a sending port of the second network element, and an identifier of the wavelength.
  • the first network element may receive, by the optical monitoring communication unit, a set of wavelength information sent by the second network element.
  • FIG. 5 is a simple optical network
  • the optical network includes eight network elements, which are divided into NE1, NE2, NE3, NE4, NE5, NE6, and NE7. and NE8, the first network element is set to NE3, the second NE NE1, NE3 NE1 receives wavelength information transmitted to the set: ⁇ NE1- ⁇ 1 ⁇ NE1- port 1 ⁇ 0, NE1- ⁇ 2 ⁇ NE1 - Port 1 to 0 ⁇ .
  • the set of wavelength information includes wavelength information of wavelength ⁇ 1 and wavelength ⁇ 2 , and the span count of each wavelength information, the transmission port of the second network element, and the identifier of the wavelength may be separated by a symbol “ ⁇ ” or “,”;
  • the wavelength of NE1- ⁇ 1 passes through the segment count is 0, the transmission port of NE1 is NE1-port 1, the wavelength is identified as NE1- ⁇ 1 ; the wavelength of NE1- ⁇ 2 passes the count of 0, NE1 Transmitting port NE1-port 1, the wavelength is identified as NE1- ⁇ 2 .
  • the span count in the wavelength information sent by the initial network element is an initial value, for example, 0.
  • the initial network element is a network element that generates wavelengths. Assume that the initial value of the cross-segment count is 0.
  • the second network element NE1 is the initial network element, and the set of wavelength information received by the first network element NE3 is sent by the initial network element.
  • the first network element determines a set of wavelengths that pass through the first network element, and determines, according to the set of the wavelengths and the intersection of the sets of the wavelength information, whether the wavelength corresponding to the identifier of each wavelength in the set of the wavelength information passes the first network element.
  • the set of wavelengths refers to a set of standard wavelengths that the photoelectric conversion unit of the initial network element converts the service information into.
  • the set of wavelengths may include information such as the slot number and the optical port number and the wavelength generated by the wavelength, and the set of wavelengths may be based on the service wavelength.
  • the overhead transmission so the first network element can detect the set of wavelengths passing through the first network element through the wavelength monitoring unit or the associated overhead receiving device. It should be noted that the set of wavelengths is unchanged during the transmission process.
  • the photoelectric conversion unit in the destination network element can convert the wavelength into service information, and the destination network element can It is understood to be a network element capable of converting wavelengths in a set of wavelengths into service information.
  • the intersection is determined according to the set of wavelengths received by the same port of the first network element and the set of wavelength information.
  • NE3 receives the set of wavelength information sent by NE1, it is received by port 1 of NE3.
  • NE3 detects that the set of wavelengths passing through the first network element is ⁇ NE1- ⁇ 1 ⁇ , and ⁇ NE1- ⁇ 1 ⁇ is also received by port 1 of NE3, then NE3 obtains an intersection according to the set of wavelengths and the set of wavelength information. :NE1- ⁇ 1 ; then NE3 can determine that the wavelength corresponding to the identifier NE1- ⁇ 1 of the wavelength passes through the first network element.
  • the example 2 is as follows: As shown in FIG. 5, assuming that the first network element is NE5 and the second network element is NE1, the set of wavelengths that NE5 receives from port 1 of NE5 is: ⁇ NE1- ⁇ 2 ⁇ , from The set of wavelength information received by port 1 is: ⁇ NE1- ⁇ 1 to NE1 - port 2 to 0, NE1- ⁇ 2 to NE1 - port 2 to 0 ⁇ , according to the set of the above wavelengths and the set of wavelength information. The intersection is: NE1- ⁇ 2 ; then NE5 can determine that the wavelength corresponding to the identifier NE1- ⁇ 2 of the wavelength passes through the first network element.
  • the first network element determines that the wavelength corresponding to any one of the wavelength information sets does not pass through the first network element, the first network element discards the wavelength information.
  • NE3 can determine the wavelength information in the set of wavelength information ⁇ NE1- ⁇ 2 to NE1 - port 1 to 0 ⁇ If the corresponding wavelength NE1- ⁇ 2 does not pass through the first network element, NE3 discards ⁇ NE1- ⁇ 2 to NE1-port 1 to 0 ⁇ .
  • step 401 and step 402 can be performed simultaneously.
  • the first network element For each wavelength information, if it is determined that the wavelength corresponding to the wavelength information passes through the first network element, the first network element sends the updated wavelength information to the next network element corresponding to the port that does not receive the wavelength information,
  • the updated wavelength information includes an updated span count, a transmit port of the first network element, and an identifier of the wavelength.
  • the next network element may be multiple.
  • the following network element is a third network element as an example for description.
  • the cross-segment count of the first network element update wavelength may be that the first network element accumulates the preset value of the span of the wavelength, and the preset value may be a positive integer, for example, 1.
  • the set of wavelengths received by NE3 from NE1 is: ⁇ NE1- ⁇ 1 ⁇ , if the wavelength of NE3 determined by NE3 is the wavelength corresponding to NE1- ⁇ 1 ; NE3 then accumulates the span count 0 in the wavelength information of NE1- ⁇ 1 by 1, that is, updates the span count to 1, and updates the transmit port NE1-port 1 to the transmit port of NE3, that is, the NE3 is to be sent after the update.
  • the port for wavelength information is: ⁇ NE1- ⁇ 1 ⁇
  • the port of the first network element that transmits the updated wavelength information is different from the port that receives the wavelength information.
  • NE3 has two ports, namely port 1 and port 2, and the port receiving ⁇ NE1- ⁇ 1 to NE1-port 1 to 0 ⁇ is port 1, and NE3 sends the updated wavelength.
  • NE3 may be ⁇ NE1- ⁇ 1 ⁇ NE1- port 1 ⁇ 0 ⁇ is updated to ⁇ NE1- ⁇ 1 ⁇ NE3- port 2 ⁇ 1 ⁇ and NE6 transmits through port 2.
  • NE5 is composed of three ports.
  • the port on which the updated wavelength information is to be sent on NE5 is port 2
  • NE5 updates the wavelength information to ⁇ NE1- ⁇ . 2
  • the preset value of the span count is 1
  • NE5 updates the wavelength information to ⁇ NE1- ⁇ 2 to NE5- Port 3 ⁇ 1 ⁇
  • NE5 can send updated wavelength information through port 2 and port 3.
  • the first network element For each wavelength information, if it is determined that the wavelength corresponding to the wavelength information passes through the first network element, the first network element sends the updated cross-segment count to the network management device when the network management device needs to acquire the network routing topology of the wavelength. And the sending port of the second network element, the first network element receiving the receiving port of the wavelength, and the identifier of the wavelength.
  • the first network element may save the updated span count, the sending port of the second network element, and the first network element receives the wavelength.
  • the receiving port and the identifier of the wavelength may be saved in the following format: ⁇ wavelength identifier - source sending port indication - sink receiving port indication - spanning section count ⁇ .
  • the source sending port indicates a sending port for indicating the second network element
  • the sink receiving port indicates a port for indicating that the first network element receives the wavelength information.
  • NE5 wavelength determined by NE5 is: NE1- ⁇ 2
  • NE5 can correspond to NE1- ⁇ 2 corresponding to ⁇ NE1- ⁇ 2 to NE1-port 2 to 0.
  • the span count in ⁇ is updated from 0 to 1, and the wavelength information updated across the segment count and the port "NE5-port 1" that NE5 receives NE1- ⁇ 2 are saved to NE5.
  • the first network element may receive the updated wavelength information stored in the first network element and the first network element.
  • the receiving port of the wavelength is sent to the network management device.
  • the source sending port indication and the sink receiving port indication may be the same, for example, in FIG. 5, saving in NE1.
  • ⁇ wavelength identification - source transmission port indication - sink reception port indication - span count] is ⁇ NE1- ⁇ 1 to NE1 - port 1 to NE1 - port 1 to 0, NE1 - ⁇ 2 to NE1 - port 2 to NE1 - Port 2 to 0 ⁇ .
  • the network management device generates a routing network topology of the same wavelength according to the wavelength information of the same wavelength sent by the at least one network element and the receiving port of the wavelength.
  • the network management device can receive the updated cross-segment count, the sending port, the receiving port, and the identifier of the wavelength sent by the multiple network elements.
  • Each of the plurality of network elements can perform the steps of the first network element in this embodiment.
  • the network management device may sequentially connect the sending port of the network element corresponding to the identifier of the same wavelength in the wavelength information sent by the multiple network elements and the receiving port of the network element according to the span of the same wavelength, to obtain the same wavelength. Routing network topology.
  • NE1- ⁇ 1 passes through NE1, NE3, NE6, and NE2, and NE1, NE3, NE6, and NE2 are saved.
  • the identifiers of the span count, the transmit port, the receive port, and the wavelength are ⁇ NE1- ⁇ 1 to NE1 - port 1 to 0 ⁇ , ⁇ NE1- ⁇ 1 to NE1 - port 1 to 1 to NE3 - port 1 ⁇ , ⁇ NE1 - ⁇ 1 to NE3 - port 2 to 2 to NE6 - port 1 ⁇ , ⁇ NE1- ⁇ 1 to NE6 - port 2 to 3 to NE2 - port 1 ⁇ , the network management device generates a routing network topology of NE1 - ⁇ 1 At the same time, it can search for the route NE1-port 1 to NE3-port 1 to NE3-port 2 to NE6-port 1 to NE6-port 2 to NE2-port 1.
  • the NE1 sends the cross-segment count to 0.
  • the NE1 can be regarded as the initial network element. Therefore, the NE1 does not need to send the receiving port to the network management device. This is because the wavelength corresponding to the wavelength information is generated by NE1, so NE1 does not need to The network management device sends a receiving port.
  • the first network element determines that the wavelength corresponding to the wavelength information passes through the first network element
  • the first network element updates the span count and the transmission port of the wavelength and updates the wavelength.
  • the information is sent to the next network element corresponding to the port that does not receive the wavelength information.
  • the network element sends flooding information to any connected network element.
  • the embodiment of the present application does not need to send flooding information. Solve the problem that flooding information has constraints on the network network size.
  • the network element may store the updated cross-segment count, the sending port of the second network element, the receiving port of the first network element, and the identifier of the wavelength in the local network element, where the network management device needs
  • each network element may send a cross-segment count, a sending port, a receiving port, and a wavelength identifier to the network management device, so that the network management device generates a wavelength routing network topology, which is configured according to the logic according to the prior art.
  • the generated network topology causes the physical wavelength topology to be different from the generated network topology.
  • the network management device generates a routing network topology according to the identifiers of the spanning, sending, receiving, and wavelength of the same wavelength in each network element. Rather than the network topology generated based on the logical configuration, it can solve the problem that the physical wavelength topology differs from the network topology generated according to the logical configuration.
  • the solution provided by the embodiment of the present application is introduced from the perspective of the first network element and the network management device.
  • the first network element and the network management device include corresponding hardware structures and/or software modules for performing respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in conjunction with the algorithm steps described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function modules of the first network element and the network management device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one process.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 6 is a schematic diagram showing a possible structure of the first network element 6 involved in the foregoing embodiment, where the first network element includes: an optical monitoring communication unit 601.
  • the optical monitoring communication unit 601 is configured to support the first network element to perform the process 401 in FIG. 4
  • the wavelength monitoring unit 602 is configured to support the first network element to perform the process 402 in FIG. 4
  • the updating unit 603 is configured to support the first network element to perform Process 403 in FIG. 4
  • the sending unit 604 is configured to support the first network element to perform the processes 403 and 404 in FIG.
  • FIG. 7 shows a possible structural diagram of the first network element involved in the above embodiment.
  • the first network element 7 includes a processing module 701 and a communication module 702.
  • the processing module 701 is configured to perform control and management on the action of the first network element.
  • the processing module 701 is configured to support the first network element to perform the process 402 in FIG. 4, and the communication module 702 is configured to support the first network element and other network entities.
  • Communication such as communication with a server, downloading an installation package of an application from a server, and the like.
  • the first network element may further include a storage module 703, configured to store program code and data of the first network element, for example, to store updated wavelength information and the like in the embodiment of the present application.
  • the processing module 701 can be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 702 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 703 can be a memory.
  • the processing module 701 is a processor
  • the communication module 702 is a transceiver
  • the storage module 703 is a memory
  • the first network element involved in the embodiment of the present application may be the first network element shown in FIG. 8.
  • the first network element 8 includes a processor 801, a transceiver 802, a memory 803, and a bus 804.
  • the transceiver 802, the processor 801, and the memory 803 are connected to each other through a bus 804.
  • the bus 804 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus. Wait.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • FIG. 9 is a schematic diagram showing a possible structure of the network management device 9 involved in the foregoing embodiment.
  • the network management device includes: a receiving unit 901 and a processing unit 902.
  • the receiving unit 901 is configured to support the network management device to perform the process 404 in FIG. 4;
  • the processing unit 902 is configured to support the network management device to perform the process 405 in FIG.
  • FIG. 3 shows a possible structural diagram of the network management device involved in the above embodiment.
  • the processing module 301 is configured to perform control and management on the actions of the network management device.
  • the processing module 301 is configured to support the network management device to perform the process 405 in FIG. 4, and the communication module 302 is configured to support communication between the network management device and other network entities.
  • communication with the server downloading an installation package of the application from the server, and the like.
  • the network management device may further include a storage module 303 for storing program codes and data of the network management device, for example, for storing updated wavelength information and the like in the embodiments of the present application.
  • the processing module 301 can be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 302 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 303 can be a memory.
  • the network management device involved in the embodiment of the present application may be the network management device shown in FIG.
  • the network management device 10 includes a processor 1001, a transceiver 1002, a memory 1003, and a bus 1004.
  • the transceiver 1002, the processor 1001, and the memory 1003 are connected to each other through a bus 1004.
  • the bus 1004 may be a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 10, but it does not mean that there is only one bus or one type. bus.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供一种生成波长路由网络拓扑方法和装置,涉及通信领域,能够解决物理波长拓扑与根据逻辑配置生成的网络拓扑存在差异以及发送洪泛信息对网络组网规模有约束的问题。其方法为:第一网元接收第二网元发送的波长信息的集合;对于每个波长信息,若确定该波长信息对应的波长经过第一网元,则第一网元更新该波长的跨段计数;第一网元向未接收到该波长信息的端口对应的下一网元发送更新后的该波长信息,并向网络管理设备发送更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识。本申请实施例应用于光网络中生成光波长路由网络拓扑的场景。

Description

一种生成波长路由网络拓扑方法和装置 技术领域
本申请涉及通信领域,尤其涉及一种生成波长路由网络拓扑方法和装置。
背景技术
随着用户对网络带宽需求的不断增长,光网络将在未来发挥越来越重要的作用。要更高效更直观地管理光网络业务,光网络拓扑可视化成为重要需求。目前,网络的逻辑拓扑可以根据网络规划和逻辑配置得到,网络结点拓扑可以根据数据通信网络(Data Communication Network,DCN)路由得到,而对于业务层的光波长路由物理拓扑目前还没有很好的方法快速获取。
现有技术一是基于逻辑配置生成网络波长拓扑信息,根据规划的业务配置自动获取网络波长拓扑图,默认物理波长拓扑与逻辑拓扑一致,可以快速简单获取。现有技术二是通过在现网中运行网络拓扑协议来获取网络拓扑。通过网络监控管理通信通道,运行开放式最短路径优先(Open Shortest Path First,OSPF)或邻居拓扑发现协议(Neighbor Topology Discovery Protocol,NTDP)等协议,生成网络结点拓扑,再结合网元(Network Element,NE)信息生成网络逻辑。
现有技术一中,由于在实际网络运营过程中,业务会发生变化,此时可能与前期规划不同,用户规划的业务无法真实反映现网中的实际组网信息,也就是物理组网和逻辑配置都可能存在差异。现有技术二需要在网络中发送洪泛信息,对网络组网规模有约束。
发明内容
本申请实施例提供一种生成波长路由网络拓扑方法和装置,能够解决物理波长拓扑与根据逻辑配置生成的网络拓扑存在差异以及发送洪泛信息对网络组网规模有约束的问题。
一方面,提供一种生成波长路由网络拓扑方法,包括:第一网元接收第二网元发送的波长信息的集合,每个波长信息包括波长经过的跨段计 数、第二网元的发送端口以及波长的标识;第一网元确定每个波长的标识对应的波长是否经过第一网元;对于每个波长信息,若确定该波长信息对应的波长经过第一网元,则第一网元更新该波长的跨段计数;第一网元向未接收到该波长信息的端口对应的下一网元发送更新后的该波长信息,更新后的该波长信息包括更新后的跨段计数、第一网元的发送端口以及波长的标识,并向网络管理设备发送更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识,以便网络管理设备根据接收到的各个网元的更新后的波长信息以及波长的接收端口获取波长的路由网络拓扑。这样一来,对于每个波长信息,当第一网元确定该波长信息对应的波长经过第一网元时,第一网元更新该波长的跨段计数和发送端口,并将更新后的该波长信息向未接收到该波长信息的端口对应的下一网元发送,相比现有技术,网元向所连接的任一网元发送洪泛信息,本申请实施例可通过网元邻居间简单交互,即发送更新后的波长信息是有限次的,不需要发送洪泛信息,能够解决洪泛信息对网络组网规模有约束的问题。并且,第一网元可以将更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识保存在本网元,当网络管理设备需要生成波长的路由网络拓扑时,各网元可以向网络管理设备发送跨段计数、发送端口、接收端口以及波长的标识以便于网络管理设备生成波长的路由网络拓扑,相比现有技术根据逻辑配置生成的网络拓扑导致物理波长拓扑与生成的网络拓扑存在差异,本申请实施例是网络管理设备根据各网元中相同波长的跨段计数、发送端口、接收端口以及波长的标识生成路由网络拓扑,而不是根据逻辑配置生成的网络拓扑,能够解决物理波长拓扑与根据逻辑配置生成的网络拓扑存在差异的问题。
在一种可能的设计中,第一网元确定每个波长的标识对应的波长是否经过第一网元包括:第一网元确定经过第一网元的波长的集合;第一网元根据波长的集合以及波长信息的集合的交集确定波长信息的集合中每个波长的标识对应的波长是否经过第一网元。这样一来,第一网元可以通过波长的集合以及波长信息的集合的交集来确定出经过第一网元的波长集合。
在一种可能的设计中,该方法还包括:若第一网元确定波长信息的集 合中的任一波长信息对应的波长不经过第一网元,则第一网元将任一波长信息丢弃。这样一来,第一网元可以丢弃不经过第一网元的波长对应的波长信息,可以节省第一网元的存储空间。
在一种可能的设计中,第一网元更新该波长的跨段计数包括:第一网元将该波长的跨段计数累加预设值。这样一来,可以通过波长的跨段计数来表示波长通过网元的顺序,以便网络管理设备可以根据第一网元发送的更新后的跨段计数来获取波长的路由网络拓扑。
在一种可能的设计中,方法还包括:第一网元保存更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识。这样一来,当网络管理设备需要获取波长的路由网络拓扑时,可以根据各网元保存的更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识,获取波长的路由网络拓扑。
另一方面,提供一种生成波长路由网络拓扑方法,包括:网络管理设备接收至少一个网元发送的同一波长的波长信息,波长信息包括波长经过的跨段计数、网元的发送端口、网元的接收端口以及波长的标识;网络管理设备根据至少一个网元发送的同一波长的波长信息生成同一波长的路由网络拓扑。这样一来,网络管理设备根据至少一个网元发送的同一波长的波长信息生成波长的路由网络拓扑,相比现有技术在生成路由网络拓扑时需要发送洪泛信息,本申请实施例在生成路由网络拓扑时不需要发送洪泛信息,因此本申请能够解决洪泛信息对网络组网规模有约束的问题。并且当网络管理设备需要生成波长的路由网络拓扑时,各网元可以向网络管理设备发送跨段计数、发送端口、接收端口以及波长的标识以便于网络管理设备生成波长的路由网络拓扑,相比现有技术根据逻辑配置生成的网络拓扑导致物理波长拓扑与生成的网络拓扑存在差异,本申请实施例是网络管理设备根据各网元中相同波长的跨段计数、发送端口、接收端口以及波长的标识生成路由网络拓扑,而不是根据逻辑配置生成的网络拓扑,能够解决物理波长拓扑与根据逻辑配置生成的网络拓扑存在差异的问题。
在一种可能的设计中,网络管理设备根据至少一个网元发送的同一波长的波长信息生成同一波长的路由网络拓扑包括:网络管理设备根据至少 一个网元发送的波长信息中的同一波长的标识对应的网元的发送端口和网元的接收端口按照同一波长的标识对应的跨段计数顺次连接,得到同一波长的路由网络拓扑。这样一来,网络管理设备可以根据各网元发送的波长信息中的同一波长的标识对应的网元的发送端口和网元的接收端口获取到同一波长的路由网络拓扑。
再一方面,提供一种第一网元,包括:光监控通信单元,用于接收第二网元发送的波长信息的集合,每个波长信息包括波长经过的跨段计数、第二网元的发送端口以及波长的标识;波长监控单元,用于确定每个波长的标识对应的波长是否经过第一网元;更新单元,用于对于每个波长信息,若确定该波长信息对应的波长经过第一网元,则更新该波长的跨段计数;发送单元,用于向未接收到该波长信息的端口对应的下一网元发送更新后的该波长信息,更新后的该波长信息包括更新后的跨段计数、第一网元的发送端口以及波长的标识,并向网络管理设备发送更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识,以便网络管理设备根据接收到的各个网元的更新后的波长信息以及波长的接收端口获取波长的路由网络拓扑。
在一种可能的设计中,波长监控单元用于:确定经过第一网元的波长的集合;根据波长的集合以及波长信息的集合的交集确定波长信息的集合中每个波长的标识对应的波长是否经过第一网元。
在一种可能的设计中,还包括丢弃单元,用于:若确定波长信息的集合中的任一波长信息对应的波长不经过第一网元,则将任一波长信息丢弃。
在一种可能的设计中,更新单元用于:将该波长的跨段计数累加预设值。
在一种可能的设计中,还包括保存单元,用于:保存更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识。
再一方面,提供一种网络管理设备,包括:接收单元,用于接收至少一个网元发送的同一波长的波长信息,波长信息包括波长经过的跨段计 数、网元的发送端口、网元的接收端口以及波长的标识;处理单元,用于根据至少一个网元发送的同一波长的波长信息生成同一波长的路由网络拓扑。
在一种可能的设计中,处理单元用于:根据至少一个网元发送的波长信息中的同一波长的标识对应的网元的发送端口和网元的接收端口,按照同一波长的标识对应的跨段计数顺次连接,得到同一波长的路由网络拓扑。
再一方面,提供一种第一网元,包括:收发器,用于接收第二网元发送的波长信息的集合,每个波长信息包括波长经过的跨段计数、第二网元的发送端口以及波长的标识;处理器,用于确定每个波长的标识对应的波长是否经过第一网元;处理器还用于,对于每个波长信息,若确定该波长信息对应的波长经过第一网元,则更新该波长的跨段计数;收发器还用于,向未接收到该波长信息的端口对应的下一网元发送更新后的该波长信息,更新后的该波长信息包括更新后的跨段计数、第一网元的发送端口以及波长的标识,并向网络管理设备发送更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识,以便网络管理设备根据接收到的各个网元的更新后的波长信息以及波长的接收端口获取波长的路由网络拓扑。
在一种可能的设计中,处理器用于:确定经过第一网元的波长的集合;根据波长的集合以及波长信息的集合的交集确定波长信息的集合中每个波长的标识对应的波长是否经过第一网元。
在一种可能的设计中,处理器还用于:若确定波长信息的集合中的任一波长信息对应的波长不经过第一网元,则将任一波长信息丢弃。
在一种可能的设计中,处理器用于:将该波长的跨段计数累加预设值。
在一种可能的设计中,还包括存储器,用于:保存更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识。
再一方面,提供一种网络管理设备,包括:收发器,用于接收至少一个网元发送的同一波长的波长信息,波长信息包括波长经过的跨段计数、 网元的发送端口、网元的接收端口以及波长的标识;处理器,用于根据至少一个网元发送的同一波长的波长信息生成同一波长的路由网络拓扑。
在一种可能的设计中,处理器用于:根据至少一个网元发送的波长信息中的同一波长的标识对应的网元的发送端口和网元的接收端口,按照同一波长的标识对应的跨段计数顺次连接,得到同一波长的路由网络拓扑。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第一网元所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络管理设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
这样一来,对于每个波长信息,当第一网元确定该波长信息对应的波长经过第一网元时,第一网元更新该波长的跨段计数和发送端口并将更新后的该波长信息向未接收到该波长信息的端口对应的下一网元发送,同时,第一网元可以将更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识保存在本网元,当网络管理设备需要生成波长的路由网络拓扑时,各网元可以向网络管理设备发送跨段计数、发送端口、接收端口以及波长的标识以便于网络管理设备生成波长的路由网络拓扑。相比现有技术,网元向连接的任一网元发送洪泛信息,本申请实施例发送更新后的波长信息是有限次的,不需要发送洪泛信息,能够解决洪泛信息对网络组网规模有约束的问题。
附图说明
图1为本申请实施例提供的一种网络管理设备、第一网元和第二网元的系统架构图;
图2a为本申请实施例提供的一种电网元的内部结构示意图;
图2b为本申请实施例提供的一种光网元的内部结构示意图;
图3为本申请实施例提供的一种网络管理设备的内部结构示意图;
图4为本申请实施例提供的一种生成波长路由网络拓扑方法信号交 互示意图;
图5为本申请实施例提供的一种光网络示意图;
图6为本申请实施例提供的一种第一网元的结构示意图;
图7为本申请实施例提供的一种第一网元的结构示意图;
图8为本申请实施例提供的一种第一网元的结构示意图;
图9为本申请实施例提供的一种网络管理设备的结构示意图;
图10为本申请实施例提供的一种网络管理设备的结构示意图。
具体实施方式
本申请实施例可应用于光网络中生成光波长路由网络拓扑的场景。如图1所示,本申请实施例的网络架构可以包括网络管理设备和至少两个网元,以第一网元和第二网元为例,第一网元和第二网元可以组成一个用于生成光波长路由网络拓扑的光网络。第一网元可以用于接收第二网元发送的波长信息的集合。第二网元可以用于向第一网元发送波长信息的集合。本申请实施例的网络架构还可以包括第三网元,第三网元可以用于接收第一网元发送的更新后的波长信息。其中,第一网元、第二网元和第三网元可以为波分网元。网络管理设备可以是软件定义网络(Software Defined Network,SDN)控制器,可以运行在独立的服务器上,并通过以太网线直连或第三方网络连接至少两个网元中的每个网元来管理整个光网络。在本申请实施例中,SDN控制器可以实时查看网络的光波长路由网络拓扑,以便于提升网络运维的效率和可视化带来的便利。
在本申请中,第一网元可以包括光电转换和波长调度两大功能,第一网元在硬件部署上可以有多种方式,本申请不限定第一网元的硬件部署方式。在实际组网中,可以将第一网元分为电网元和光网元,换句话说,第一网元可以是电网元,也可以是光网元。电网元的内部结构示意图如图2a所示,可以由系统控制单元、光电转换单元、波长信息写入和提取单元组成。其中,电网元中的波长信息写入和提取单元的波长写入过程,可以是在光电转换单元将业务信息转换成标准波长进入波分系统之前完成;波长提取过程,可以是在光电转换单元将波分系统输出的标准波长转换成 业务信息之前完成。光网元的内部结构示意图如图2b所示,可以由系统控制单元、波分调度单元、波长监控单元和光监控通信单元组成。光网元的波长监控单元可以对每个主线路维度都支持。
图3为本申请的网络管理设备的一种内部结构示意图,在本申请中,网络管理设备可以包括处理模块301、通讯模块303和存储模块303。其中,处理模块301用于控制网络管理设备的各部分硬件装置和应用程序软件等;通讯模块303用于可使用蜂窝、以太网、和红外等通讯方式接受其它设备发送的指令,也可以将网络管理设备的数据发送给云端或其它设备;存储模块303用于执行网络管理设备的软件程序的存储、数据的存储和软件的运行等,可以是随机存取存储器、可擦除可编程只读寄存器、固态硬盘和SD卡(Secure Digital Memory Card)等中的一种或多种。
本申请实施例提供一种生成光波长路由网络拓扑方法,其大致过程为,第一网元接收第二网元发送的波长信息的集合,波长可以为光波长,并确定波长信息的集合中的每个波长信息对应的波长是否经过第一网元;若确定该波长信息对应的波长经过第一网元,则第一网元更新该波长的跨段计数;然后,第一网元向未接收到该波长信息的端口(port)对应的下一网元发送更新后的该波长信息,未接收到该波长信息的端口是指第一网元上接收到该波长信息的端口以外的端口,下一网元可以继续执行类似第一网元执行的动作。当网络管理设备需要获取波长的路由网络拓扑时,网络管理设备可以根据每个网元发送的更新后的该波长信息以及该网元接收到该波长的接收端口,以获取波长的路由网络拓扑。
本申请实施例提供一种生成光波长路由网络拓扑方法,如图4所示,包括:
401、第二网元向第一网元发送的波长信息的集合,每个波长信息包括波长经过的跨段计数、第二网元的发送端口以及波长的标识。
第一网元可以通过光监控通信单元接收第二网元发送的波长信息的集合。
举例来说,记为举例1,如图5所示,假设图5为一个简单的光网络,该光网络包括8个网元,分被为NE1、NE2、NE3、NE4、NE5、NE6、 NE7和NE8,设定第一网元为NE3,第二网元为NE1,NE3接收到NE1发送的波长信息的集合为:{NE1-λ1~NE1-端口1~0,NE1-λ2~NE1-端口1~0}。波长信息的集合中包括波长λ1和波长λ2的波长信息,各波长信息的跨段计数、第二网元的发送端口和波长的标识可以用符号“~”或“,”隔开;其中,NE1-λ1的波长经过的跨段计数为0,NE1的发送端口为NE1-端口1,波长的标识为NE1-λ1;NE1-λ2的波长经过的跨段计数为0,NE1的发送端口NE1-端口1,波长的标识为NE1-λ2
需要说明的是,初始网元发送的波长信息中的跨段计数为初始值,例如为0。初始网元是产生波长的网元。假设跨段计数的初始值为0,按照上述举例,则第二网元NE1为初始网元,第一网元NE3接收到的波长信息的集合是初始网元发送的。
402、第一网元确定经过第一网元的波长的集合;并根据波长的集合以及波长信息的集合的交集确定波长信息的集合中每个波长的标识对应的波长是否经过第一网元。
波长的集合是指初始网元的光电转换单元将业务信息转换成的标准波长的集合,波长的集合可以包括波长产生的槽位号和光口号和波长等信息,波长的集合可以基于业务波长随路开销传输,因此第一网元可以通过波长监控单元或随路开销接收装置检测经过第一网元的波长的集合。需要说明的是,波长的集合在传输过程中是不变的,直至波长的集合中的波长到达目的网元时,目的网元中的光电转换单元可以将波长转换为业务信息,目的网元可以理解为能够将波长集合中的波长转换为业务信息的网元。
当第一网元确定波长的集合以及波长信息的集合的交集时,是根据第一网元的同一个端口接收到的波长的集合和波长信息的集合来确定交集的。
根据步骤401中的举例1,若NE3接收到NE1发送的波长信息的集合是由NE3的端口1接收的。NE3检测到经过第一网元的波长的集合为{NE1-λ1},且{NE1-λ1}也是由NE3的端口1接收的,那么NE3根据波长的集合和波长信息的集合得到交集为:NE1-λ1;则NE3可以确定波长 的标识NE1-λ1对应的波长经过第一网元。
类似地,举例2为:如图5所示,假设第一网元为NE5,第二网元为NE1,NE5从NE5的端口1接收到的波长的集合为:{NE1-λ2},从,端口1接收到的波长信息的集合为:{NE1-λ1~NE1-端口2~0,NE1-λ2~NE1-端口2~0},则根据上述波长的集合和波长信息的集合得到交集为:NE1-λ2;则NE5可以确定波长的标识NE1-λ2对应的波长经过第一网元。
另外,若第一网元确定波长信息的集合中的任一波长信息对应的波长不经过第一网元,则第一网元将该波长信息丢弃。
参照步骤401的举例1,假设当NE3接收到的波长的集合为:{NE1-λ1},则NE3可以确定波长信息的集合中的波长信息{NE1-λ2~NE1-端口1~0}对应的波长NE1-λ2不经过第一网元,则NE3将{NE1-λ2~NE1-端口1~0}丢弃。
可以理解的是,步骤401和步骤402可以同时进行。
403、对于每个波长信息,若确定该波长信息对应的波长经过第一网元,则第一网元向未接收到该波长信息的端口对应的下一网元发送更新后的该波长信息,更新后的该波长信息包括更新后的跨段计数、第一网元的发送端口以及波长的标识。
其中,下一网元可以有多个,本申请实施例以下一网元为第三网元为例进行说明。第一网元更新波长的跨段计数可以是第一网元将该波长的跨段计数累加预设值,预设值可以为正整数,例如为1。
参照步骤401的举例1,假设预设值为1,NE3从NE1接收到的波长的集合为:{NE1-λ1},若NE3确定出的经过NE3的波长为NE1-λ1对应的波长;则NE3将NE1-λ1的波长信息中的跨段计数0累计1,即将跨段计数更新为1,并将发送端口NE1-端口1更新为NE3的发送端口,即NE3待发送该更新后的波长信息的端口。
第一网元的发送更新后的波长信息的端口与接收波长信息的端口是不同的。参照步骤401的举例1,假设NE3有两个端口,分别为端口1 和端口2,接收{NE1-λ1~NE1-端口1~0}的端口为端口1,则NE3发送更新后的该波长信息的端口不能为端口1,NE3可以将{NE1-λ1~NE1-端口1~0}更新为{NE1-λ1~NE3-端口2~1}后通过端口2发送NE6。
类似的,参考举例2,假设NE5由3个端口,当NE5上待发送更新的波长信息的端口为端口2,跨段计数的预设值为1时,NE5将波长信息更新为{NE1-λ2~NE5-端口2~1},当NE5上待发送更新的波长信息的端口为端口3,跨段计数的预设值为1时,NE5将波长信息更新为{NE1-λ2~NE5-端口3~1},当然,NE5可以同时通过端口2和端口3发送更新后的波长信息。
类似的,如图5所示,当NE6或NE2为第一网元时,执行与NE3相同的步骤。
404、对于每个波长信息,若确定该波长信息对应的波长经过第一网元,则第一网元在网络管理设备需要获取波长的网络路由拓扑时向网络管理设备发送更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识。
对于每个波长信息,若确定该波长信息对应的波长经过第一网元,则第一网元可以保存更新后的跨段计数、第二网元的发送端口、第一网元接收到该波长的接收端口以及波长的标识,保存的格式可以为:{波长的标识~源发送端口指示~宿接收端口指示~跨段计数}。其中,源发送端口指示用于指示第二网元的发送端口,宿接收端口指示用于指示第一网元接收该波长信息的端口。
参考举例2,若NE5确定出的经过NE5的波长为:NE1-λ2,当预设值为1时,则NE5可以将NE1-λ2对应的{NE1-λ2~NE1-端口2~0}中的跨段计数从0更新为1,并将更新了跨段计数的波长信息和NE5接收到NE1-λ2的端口“NE5-端口1”保存到NE5中。
当网络管理设备需要生成任一经过第一网元的波长的路由网络拓扑时,第一网元可以将第一网元中保存的更新了跨段计数的该波长信息以及第一网元接收到该波长的接收端口发送给网络管理设备。
另外,初始网元保存的{波长的标识~源发送端口指示~宿接收端口指 示~跨段计数}中,源发送端口指示和宿接收端口指示可以是相同的,例如图5中,NE1中保存的{波长的标识~源发送端口指示~宿接收端口指示~跨段计数}为{NE1-λ1~NE1-端口1~NE1-端口1~0,NE1-λ2~NE1-端口2~NE1-端口2~0}。
405、网络管理设备根据至少一个网元发送的同一波长的波长信息以及该波长的接收端口生成同一波长的路由网络拓扑。
可以理解的是,网络管理设备在生成任一波长的路由网络拓扑时,可以接收多个网元发送的更新后的跨段计数、发送端口、接收端口以及波长的标识。多个网元中的每一个网元都可以执行本实施例中第一网元的步骤。
网络管理设备可以根据多个网元发送的波长信息中的同一波长的标识对应的网元的发送端口和网元的接收端口按照同一波长的标识对应的跨段计数顺次连接,得到同一波长的路由网络拓扑。
举例来说,如图5所示,当网络管理设备需要得到NE1-λ1路由网络拓扑时,假设NE1-λ1经过了NE1、NE3、NE6和NE2,且NE1、NE3、NE6和NE2保存的跨段计数、发送端口、接收端口以及波长的标识分别为{NE1-λ1~NE1-端口1~0},{NE1-λ1~NE1-端口1~1~NE3-端口1},{NE1-λ1~NE3-端口2~2~NE6-端口1},{NE1-λ1~NE6-端口2~3~NE2-端口1},则网络管理设备在生成NE1-λ1的路由网络拓扑时,可搜索出其经过的路由NE1-端口1~NE3-端口1~NE3-端口2~NE6-端口1~NE6-端口2~NE2-端口1。其中,NE1发送的跨段计数为0,可以认为NE1为初始网元,因此NE1不需要向网络管理设备发送接收端口,这是由于波长信息对应的波长是由NE1生成的,因此NE1不需要向网络管理设备发送接收端口。
这样一来,对于每个波长信息,当第一网元确定该波长信息对应的波长经过第一网元时,第一网元更新该波长的跨段计数和发送端口并将更新后的该波长信息向未接收到该波长信息的端口对应的下一网元发送,相比现有技术,网元向连接的任一网元发送洪泛信息,本申请实施例不需要发送洪泛信息,能够解决洪泛信息对网络组网规模有约束的问题。并且,第 一网元可以将更新后的跨段计数、第二网元的发送端口、所述第一网元接收到该波长的接收端口以及所述波长的标识保存在本网元,当网络管理设备需要生成波长的路由网络拓扑时,各网元可以向网络管理设备发送跨段计数、发送端口、接收端口以及波长的标识以便于网络管理设备生成波长的路由网络拓扑,相比现有技术根据逻辑配置生成的网络拓扑导致物理波长拓扑与生成的网络拓扑存在差异,本申请实施例是网络管理设备根据各网元中相同波长的跨段计数、发送端口、接收端口以及波长的标识生成路由网络拓扑,而不是根据逻辑配置生成的网络拓扑,能够解决物理波长拓扑与根据逻辑配置生成的网络拓扑存在差异的问题。
上述主要从第一网元和网络管理设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,第一网元和网络管理设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一网元和网络管理设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图6示出了上述实施例中所涉及的第一网元6的一种可能的结构示意图,第一网元包括:光监控通信单元601,波长监控单元602、更新单元603、发送单元604、丢弃单元605和保存单元606。光监控通信单元601用于支持第一网元执行图4中的过程401;波长监控单元602用于支持第一网元执行图4中的过程402;更新单元603用于支持第一网元执行图4中的过程403;发送单元604用于支持第一网元执行图4中的过程403和404。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的第一网元的一种可能的结构示意图。第一网元7包括:处理模块701和通信模块702。处理模块701用于对第一网元的动作进行控制管理,例如处理模块701用于支持第一网元执行图4中的过程402,通信模块702用于支持第一网元与其他网络实体的通信,例如与服务器之间的通信,从服务器下载得到应用的安装包等。第一网元还可以包括存储模块703,用于存储第一网元的程序代码和数据,例如用于存储本申请实施例中更新后的波长信息等。
其中,处理模块701可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块702可以是收发器、收发电路或通信接口等。存储模块703可以是存储器。
当处理模块701为处理器,通信模块702为收发器,存储模块703为存储器时,本申请实施例所涉及的第一网元可以为图8所示的第一网元。
参阅图8所示,该第一网元8包括:处理器801、收发器802、存储器803以及总线804。其中,收发器802、处理器801以及存储器803通过总线804相互连接;总线804可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的网络管理设备9的一种可能的结构示意图,网络管理设备包括:接收单元901和处理单元902。接收单元901用于支持网络管理设备执行图4中的过程404;处理单元902用于支持网络管理设备执行图4中的过程405。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图3示出了上述实施例中所涉及的网络管理设备的一种可能的结构示意图。其中,处理模块301用于对网络管理设备的动作进行控制管理,例如处理模块301用于支持网络管理设备执行图4中的过程405,通讯模块302用于支持网络管理设备与其他网络实体的通信,例如与服务器之间的通信,从服务器下载得到应用的安装包等。网络管理设备还可以包括存储模块303,用于存储网络管理设备的程序代码和数据,例如用于存储本申请实施例中的更新后的波长信息等。
其中,处理模块301可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通讯模块302可以是收发器、收发电路或通信接口等。存储模块303可以是存储器。
当处理模块301为处理器,通信模块302为收发器,存储模块303为存储器时,本申请实施例所涉及的网络管理设备可以为图10所示的网络管理设备。
参阅图10所示,该网络管理设备10包括:处理器1001、收发器1002、存储器1003以及总线1004。其中,收发器1002、处理器1001以及存储器1003通过总线1004相互连接;总线1004可以是PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的 总线。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (21)

  1. 一种生成波长路由网络拓扑方法,其特征在于,包括:
    第一网元接收第二网元发送的波长信息的集合,每个波长信息包括波长经过的跨段计数、所述第二网元的发送端口以及波长的标识;
    所述第一网元确定每个波长的标识对应的波长是否经过所述第一网元;
    对于所述每个波长信息,若确定该波长信息对应的波长经过所述第一网元,则所述第一网元更新该波长的跨段计数;
    所述第一网元向未接收到该波长信息的端口对应的下一网元发送更新后的该波长信息,所述更新后的该波长信息包括更新后的跨段计数、所述第一网元的发送端口以及所述波长的标识,并向网络管理设备发送所述更新后的跨段计数、所述第二网元的发送端口、所述第一网元接收到该波长的接收端口以及所述波长的标识,以便网络管理设备根据接收到的各个网元的更新后的所述波长信息以及波长的接收端口获取所述波长的路由网络拓扑。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网元确定每个波长的标识对应的波长是否经过所述第一网元包括:
    所述第一网元确定经过所述第一网元的波长的集合;
    所述第一网元根据所述波长的集合以及所述波长信息的集合的交集确定所述波长信息的集合中所述每个波长的标识对应的波长是否经过所述第一网元。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    若所述第一网元确定所述波长信息的集合中的任一波长信息对应的波长不经过所述第一网元,则所述第一网元将所述任一波长信息丢弃。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一网元更新该波长的跨段计数包括:
    所述第一网元将该波长的跨段计数累加预设值。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网元保存所述更新后的跨段计数、所述第二网元的发送端口、 所述第一网元接收到该波长的接收端口以及所述波长的标识。
  6. 一种生成光波长路由网络拓扑方法,其特征在于,包括:
    网络管理设备接收至少一个网元发送的同一波长的波长信息,所述波长信息包括所述波长经过的跨段计数、网元的发送端口、网元的接收端口以及所述波长的标识;
    所述网络管理设备根据所述至少一个网元发送的同一波长的波长信息生成所述同一波长的路由网络拓扑。
  7. 根据权利要求6所述的方法,其特征在于,所述网络管理设备根据所述至少一个网元发送的同一波长的波长信息生成所述同一波长的路由网络拓扑包括:
    所述网络管理设备根据所述至少一个网元发送的波长信息中的同一波长的标识对应的网元的发送端口和网元的接收端口,按照所述同一波长的标识对应的跨段计数顺次连接,得到所述同一波长的路由网络拓扑。
  8. 一种第一网元,其特征在于,包括:
    光监控通信单元,用于接收第二网元发送的波长信息的集合,每个波长信息包括波长经过的跨段计数、所述第二网元的发送端口以及波长的标识;
    波长监控单元,用于确定每个波长的标识对应的波长是否经过所述第一网元;
    更新单元,用于对于所述每个波长信息,若确定该波长信息对应的波长经过所述第一网元,则更新该波长的跨段计数;
    发送单元,用于向未接收到该波长信息的端口对应的下一网元发送更新后的该波长信息,所述更新后的该波长信息包括更新后的跨段计数、所述第一网元的发送端口以及所述波长的标识,并向网络管理设备发送所述更新后的跨段计数、所述第二网元的发送端口、所述第一网元接收到该波长的接收端口以及所述波长的标识,以便网络管理设备根据接收到的各个网元的更新后的所述波长信息以及波长的接收端口获取所述波长的路由网络拓扑。
  9. 根据权利要求8所述的第一网元,其特征在于,所述波长监控单元用于:
    确定经过所述第一网元的波长的集合;
    根据所述波长的集合以及所述波长信息的集合的交集确定所述波长信息的集合中所述每个波长的标识对应的波长是否经过所述第一网元。
  10. 根据权利要求8或9所述的第一网元,其特征在于,还包括丢弃单元,用于:
    若确定所述波长信息的集合中的任一波长信息对应的波长不经过所述第一网元,则将所述任一波长信息丢弃。
  11. 根据权利要求8-10任一项所述的第一网元,其特征在于,所述更新单元用于:
    将该波长的跨段计数累加预设值。
  12. 根据权利要求8-10任一项所述的第一网元,其特征在于,还包括保存单元,用于:
    保存所述更新后的跨段计数、所述第二网元的发送端口、所述第一网元接收到该波长的接收端口以及所述波长的标识。
  13. 一种网络管理设备,且特征在于,包括:
    接收单元,用于接收至少一个网元发送的同一波长的波长信息,所述波长信息包括所述波长经过的跨段计数、网元的发送端口、网元的接收端口以及所述波长的标识;
    处理单元,用于根据所述至少一个网元发送的同一波长的波长信息生成所述同一波长的路由网络拓扑。
  14. 根据权利要求13所述的网络管理设备,其特征在于,所述处理单元用于:
    根据所述至少一个网元发送的波长信息中的同一波长的标识对应的网元的发送端口和网元的接收端口,按照所述同一波长的标识对应的跨段计数顺次连接,得到所述同一波长的路由网络拓扑。
  15. 一种第一网元,其特征在于,包括:
    收发器,用于接收第二网元发送的波长信息的集合,每个波长信息包括波长经过的跨段计数、所述第二网元的发送端口以及波长的标识;
    处理器,用于确定每个波长的标识对应的波长是否经过所述第一网元;
    所述处理器还用于,对于所述每个波长信息,若确定该波长信息对应 的波长经过所述第一网元,则更新该波长的跨段计数;
    所述收发器还用于,向未接收到该波长信息的端口对应的下一网元发送更新后的该波长信息,所述更新后的该波长信息包括更新后的跨段计数、所述第一网元的发送端口以及所述波长的标识,并向网络管理设备发送所述更新后的跨段计数、所述第二网元的发送端口、所述第一网元接收到该波长的接收端口以及所述波长的标识,以便网络管理设备根据接收到的各个网元的更新后的所述波长信息以及波长的接收端口获取所述波长的路由网络拓扑。
  16. 根据权利要求15所述的第一网元,其特征在于,所述处理器用于:
    确定经过所述第一网元的波长的集合;
    根据所述波长的集合以及所述波长信息的集合的交集确定所述波长信息的集合中所述每个波长的标识对应的波长是否经过所述第一网元。
  17. 根据权利要求15或16所述的第一网元,其特征在于,所述处理器还用于:
    若确定所述波长信息的集合中的任一波长信息对应的波长不经过所述第一网元,则将所述任一波长信息丢弃。
  18. 根据权利要求15-17所述的第一网元,其特征在于,所述处理器用于:
    将该波长的跨段计数累加预设值。
  19. 根据权利要求15-17所述的第一网元,其特征在于,还包括存储器,用于:
    保存所述更新后的跨段计数、所述第二网元的发送端口、所述第一网元接收到该波长的接收端口以及所述波长的标识。
  20. 一种网络管理设备,其特征在于,包括:
    收发器,用于接收至少一个网元发送的同一波长的波长信息,所述波长信息包括所述波长经过的跨段计数、网元的发送端口、网元的接收端口以及所述波长的标识;
    处理器,用于根据所述至少一个网元发送的同一波长的波长信息生成所述同一波长的路由网络拓扑。
  21. 根据权利要求20所述的网络管理设备,其特征在于,所述处理器用于:
    根据所述至少一个网元发送的波长信息中的同一波长的标识对应的网元的发送端口和网元的接收端口,按照所述同一波长的标识对应的跨段计数顺次连接,得到所述同一波长的路由网络拓扑。
PCT/CN2016/113893 2016-12-30 2016-12-30 一种生成波长路由网络拓扑方法和装置 WO2018120194A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/113893 WO2018120194A1 (zh) 2016-12-30 2016-12-30 一种生成波长路由网络拓扑方法和装置
CN201680082144.3A CN108702233B (zh) 2016-12-30 2016-12-30 一种生成波长路由网络拓扑方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113893 WO2018120194A1 (zh) 2016-12-30 2016-12-30 一种生成波长路由网络拓扑方法和装置

Publications (1)

Publication Number Publication Date
WO2018120194A1 true WO2018120194A1 (zh) 2018-07-05

Family

ID=62706762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113893 WO2018120194A1 (zh) 2016-12-30 2016-12-30 一种生成波长路由网络拓扑方法和装置

Country Status (2)

Country Link
CN (1) CN108702233B (zh)
WO (1) WO2018120194A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115396299A (zh) * 2021-05-07 2022-11-25 华为技术有限公司 域间栓提供、获取方法、装置、网管设备及跨域管理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400005A (zh) * 2007-09-30 2009-04-01 华为技术有限公司 一种节点信息发布方法、系统和装置
CN101459469A (zh) * 2007-12-14 2009-06-17 华为技术有限公司 网元设备的光层业务调度方法及网管控制系统
CN101771490A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 获取波长连接关系信息的方法、系统及节点
CN103036812A (zh) * 2012-12-20 2013-04-10 中国联合网络通信集团有限公司 波长资源预留方法及光网络节点
WO2014094209A1 (zh) * 2012-12-17 2014-06-26 华为技术有限公司 一种电中继在电网元时信令建立的方法及光网元、电网元

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227248B (zh) * 2008-01-29 2011-05-25 中兴通讯股份有限公司 业务路径建立方法
CN101286931B (zh) * 2008-05-27 2011-01-26 华中科技大学 光网络自动发现方法和基于其的光链路建立方法
CN102075428B (zh) * 2011-01-20 2012-11-14 中国电信股份有限公司 联合路由设置方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400005A (zh) * 2007-09-30 2009-04-01 华为技术有限公司 一种节点信息发布方法、系统和装置
CN101459469A (zh) * 2007-12-14 2009-06-17 华为技术有限公司 网元设备的光层业务调度方法及网管控制系统
CN101771490A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 获取波长连接关系信息的方法、系统及节点
WO2014094209A1 (zh) * 2012-12-17 2014-06-26 华为技术有限公司 一种电中继在电网元时信令建立的方法及光网元、电网元
CN103036812A (zh) * 2012-12-20 2013-04-10 中国联合网络通信集团有限公司 波长资源预留方法及光网络节点

Also Published As

Publication number Publication date
CN108702233A (zh) 2018-10-23
CN108702233B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
US10341748B2 (en) Packet-optical in-band telemetry (POINT) framework
US10341141B2 (en) Flow entry generating method and apparatus
US11201809B1 (en) Network topology generation using traceroute data
RU2589340C2 (ru) Сетевая система и способ получения данных тега vlan
US20150055508A1 (en) System and method for communication
US9960998B2 (en) Forwarding packet in stacking system
US11272396B2 (en) Frame aggregation method, network setting frame sending method, and device
CN107800623B (zh) 异构网络通信方法和系统以及sdn控制器
JP6589060B2 (ja) ソフトウェア定義ネットワークのエントリ生成およびパケット転送
US10374935B2 (en) Link discovery method, system, and device
US9743367B2 (en) Link layer discovery protocol (LLDP) on multiple nodes of a distributed fabric
RU2587677C2 (ru) Система снижения нагрузки и способ снижения нагрузки
CN104704779A (zh) 用于加速软件定义网络中的转发的方法和设备
US20170012900A1 (en) Systems, methods, and apparatus for verification of a network path
EP2728797B1 (en) Message processing method, device and system
WO2020173424A1 (zh) 报文处理的方法和网关设备
WO2015070435A1 (zh) 业务部署方法、装置及网络设备
RU2602333C2 (ru) Сетевая система, способ обработки пакетов и носитель записи
WO2022121707A1 (zh) 报文传输方法、设备及系统
CN103001880A (zh) 基于非标准ospf路由协议的流量牵引方法及设备
WO2018120194A1 (zh) 一种生成波长路由网络拓扑方法和装置
WO2020233707A1 (zh) 网络控制方法、装置和系统
US20160315787A1 (en) Network system, control devices, control method, and program
CN113132129A (zh) 网络管理方法、装置及系统、存储介质
US11888959B2 (en) Data transmission method, system, device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925394

Country of ref document: EP

Kind code of ref document: A1