WO2018119972A1 - 起重机液压控制系统和起重机 - Google Patents

起重机液压控制系统和起重机 Download PDF

Info

Publication number
WO2018119972A1
WO2018119972A1 PCT/CN2016/113339 CN2016113339W WO2018119972A1 WO 2018119972 A1 WO2018119972 A1 WO 2018119972A1 CN 2016113339 W CN2016113339 W CN 2016113339W WO 2018119972 A1 WO2018119972 A1 WO 2018119972A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
control
valve port
energy recovery
Prior art date
Application number
PCT/CN2016/113339
Other languages
English (en)
French (fr)
Inventor
单增海
东权
刘东宏
向小强
张正得
邓永建
王帅
胡小冬
杜孝杰
仲维超
韩建营
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to EP16925872.0A priority Critical patent/EP3543546B1/en
Priority to US16/474,341 priority patent/US10822211B2/en
Priority to PCT/CN2016/113339 priority patent/WO2018119972A1/zh
Publication of WO2018119972A1 publication Critical patent/WO2018119972A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/54Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with pneumatic or hydraulic motors, e.g. for actuating jib-cranes on tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/82Luffing gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • F15B2011/0243Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits the regenerative circuit being activated or deactivated automatically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/50Monitoring, detection and testing means for accumulators
    • F15B2201/51Pressure detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/3054In combination with a pressure compensating valve the pressure compensating valve is arranged between directional control valve and output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/613Feeding circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • F15B2211/851Control during special operating conditions during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • F15B2211/853Control during special operating conditions during stopping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the invention relates to the technical field of cranes, in particular to a hydraulic control system for cranes and a crane.
  • One technical problem to be solved by the present invention is to recover the kinetic energy during the braking process of the crane and the potential energy during the falling of the heavy object, thereby reducing energy waste.
  • the present invention provides a crane hydraulic control system including a prime mover capable of driving a crane to travel, an execution control mechanism for controlling an operation of an actuator of a crane, and a hydraulic pressure having a power connection state with a prime mover.
  • An energy conversion device, an energy recovery device, and a work energy recovery device wherein:
  • the hydraulic energy conversion device includes a pump motor that is switchably operable between a pump operating condition and a motor operating condition, the pump motor having a first working port connectable to the fuel tank and a second working port connectable to the execution control mechanism
  • the exercise energy recovery device includes a first accumulator connectable to the first working port, the working energy recovery device includes a second accumulator connected to the second working port;
  • the working energy recovery device cooperates with the hydraulic energy conversion device to convert the gravitational potential energy during the execution of the weight drop operation of the actuator into hydraulic energy stored in the first accumulator to realize the operation energy recovery function.
  • the pump motor is at a motor operating condition
  • the first working port is in communication with the first accumulator and is disconnected from the oil passage of the first working port to the fuel tank
  • the second working port is in communication with the execution control mechanism and is disconnected from the second accumulator;
  • the driving energy recovery device cooperates with the hydraulic energy conversion device to convert the mechanical energy during the crane braking process into hydraulic energy stored in the second energy storage device to realize the driving energy recovery function.
  • the pump motor is in the pump working condition, a working port is connected to the fuel tank, and the second working port is connected to the second accumulator and is executed with the control machine Disconnected.
  • the hydraulic energy conversion device is further capable of supplying hydraulic oil to the execution control mechanism when the actuator performs the work normally.
  • the pump motor is in the pump working condition
  • the first working port is in communication with the fuel tank
  • the second working port and the execution control are performed.
  • the mechanism is in communication and disconnected from the second accumulator.
  • the crane hydraulic control system further includes a first on-off control device for controlling the first working port to open and close with the fuel tank, and a second on-off control device for controlling the second working port to open and close the execution control mechanism
  • the working energy recovery device further includes a third on-off control device for controlling the first accumulator to be turned on and off with the first working port
  • the driving energy recovery device further comprises: controlling the second accumulator to open and close with the second working port
  • the fourth on-off control device wherein:
  • the first on-off control device controls the oil passage from the first working port to the fuel tank to be disconnected, and the second on-off control device controls the second working port to communicate with the execution control mechanism, and the third on-off control The device controls the first working port to communicate with the first accumulator, and the fourth on-off control device controls the second working port to be disconnected from the second accumulator;
  • the first on-off control device controls the first working port to communicate with the oil tank
  • the second on-off control device controls the second working port to be disconnected from the execution control mechanism
  • the fourth on-off control device controls The second working port is in communication with the second accumulator.
  • the first on-off control device comprises a hydraulically controlled check valve, wherein the oil inlet of the hydraulic control check valve is in communication with the oil tank, and the oil outlet of the hydraulic control check valve is in communication with the first working port; and/or
  • the second on-off control device comprises an upper and lower vehicle switching valve, and the upper and lower vehicle switching valves comprise a first valve port and a second valve port, the first valve port of the upper and lower vehicle switching valve is in communication with the second working port, and the second switching valve is connected to the second valve port.
  • the valve port is in communication with the execution control mechanism, and the upper and lower vehicle switching valve has a first working state and a second working state.
  • the third on/off control device comprises a first energy storage control valve
  • the first energy storage control valve includes a first valve port and a second valve port.
  • the first valve port of the first energy storage control valve is in communication with the first working port, and the second valve port of the first energy storage control valve is coupled to the first energy storage port.
  • the device is connected, and the first energy storage control valve has a first working state and a second working state
  • the first energy storage control valve When the first energy storage control valve is in the first working state, the first valve port of the first energy storage control valve is disconnected from the second valve port, or the first valve port and the second valve of the first energy storage control valve
  • the port is unidirectionally communicated along the direction from the first working port to the first accumulator, and when the first accumulator control valve is in the second working state, the first port and the second port of the first accumulator control valve Connected; and/or, the fourth on/off control device includes a second energy storage control valve, the second energy storage control valve includes a first valve port and a second valve port, the first valve port of the second energy storage control valve is in communication with the second working port, and the second energy storage control valve is The second valve port is in communication with the second accumulator, and the second accumulator control valve has a first working state and a second working state.
  • the second accumulator control valve When the second accumulator control valve is in the first working state, the second accumulator control valve is The first valve port is disconnected from the second valve port, and when the second energy storage control valve is in the second working state, the first valve port of the second energy storage control valve is in communication with the second valve port.
  • the execution control mechanism includes a hoisting control mechanism for controlling the hoisting of the actuator to perform the hoisting and hoisting operation
  • the hoisting control mechanism includes a hoisting motor having a rising and a falling mouth, and getting on and off the vehicle
  • the second valve port of the switching valve is connected with the lift port, and when the winch control mechanism controls the hoisting to perform the hoisting weight drop operation, the second valve port of the upper and lower vehicle switching valve can communicate with the lift port to realize the hoisting drop
  • the operating energy recovery function; and/or the execution control mechanism includes a variable amplitude control mechanism for controlling the actuator to perform a variable amplitude lifting and a variable amplitude falling operation, the variable amplitude control mechanism including a variable amplitude cylinder, and a second of the upper and lower vehicle switching valves
  • the valve port is connected with the rodless cavity of the variable amplitude cylinder, and when the variable amplitude control mechanism controls the actuator to perform the variable amplitude falling operation, the second valve port of the
  • the execution control mechanism includes a winch control mechanism and a variable amplitude control mechanism
  • the work energy recovery device further includes an energy recovery switching device disposed between the second valve port of the loading and unloading switching valve and the execution control mechanism, and energy recovery switching
  • the second valve port of the device for controlling the upper and lower vehicle switching valves is switchably connected to one of the lift-free and the rodless chambers of the variable-amplitude cylinder to switch the energy recovery function of the hoisting drop operation and the energy recovery function of the variable-falling operation .
  • the energy recovery switching device includes an energy recovery switching valve
  • the energy recovery switching valve includes a first valve port, a second valve port, and a third valve port, and the first valve port of the energy recovery switching valve and the first valve port of the energy recovery switching valve
  • the second valve port is connected
  • the second valve port of the energy recovery switching valve is connected with the rising port
  • the third valve port of the energy recovery switching valve is connected with the rodless cavity of the variable amplitude cylinder
  • the energy recovery switching valve has the first working state and the first In the second working state, when the energy recovery switching valve is in the first working state, the first valve port of the energy recovery switching valve is in communication with the second valve port and the third valve port is closed, when the energy recovery switching valve is in the second working state, The first valve port of the energy recovery switching valve is in communication with the third valve port and the second valve port is closed.
  • the energy recovery switching valve further includes a fourth valve port, and the fourth valve port of the energy recovery switching valve is in communication with the execution control mechanism, and the energy recovery switching is performed when the energy recovery switching valve is in the first working state and the second working state.
  • the fourth valve port of the valve is cut off, and the energy recovery switching valve further has a third working state.
  • the fourth valve port of the energy recovery switching valve is in communication with the first valve port and the first valve port Two valve port And the third valve port are both closed, so that the hydraulic energy conversion device can also supply oil to the execution control mechanism when the actuator performs the work normally.
  • the hoisting control mechanism further comprises a hoisting motor control device, wherein the hoisting motor control device is configured to control one of the rising and lowering ports and the other of the oil is discharged, and the fourth valve port of the energy recovery switching valve is passed through the volume
  • the motor control device is coupled to the hoist motor; and/or the luffing control mechanism further includes a luffing cylinder control device for controlling one of the rod cavity and the rodless cavity of the luffing cylinder And another oil discharge, the fourth valve port of the energy recovery switching valve is connected to the variable amplitude cylinder through the variable amplitude cylinder control device.
  • the hoisting motor control device comprises a hoisting lifting control valve
  • the hoisting lifting control valve comprises a first valve port, a second valve port, a third valve port and a fourth valve port, and the first of the hoisting lifting control valve
  • the valve port is connected with the fourth valve port of the energy recovery switching valve
  • the second valve port of the hoisting lifting control valve is in communication with the oil tank
  • the third valve port of the hoisting lifting control valve is connected to the rising port in an on-off manner, and the lifting and lowering is performed.
  • the fourth valve port of the control valve is in communication with the drop port
  • the hoisting lift control valve has a first working state and a second working state.
  • the variable amplitude cylinder control device comprises a variable amplitude lifting control valve
  • the variable amplitude lifting control valve comprises a first valve port, a second valve port, a third valve port and a fourth valve Port, the first valve port of the variable amplitude lifting control valve and the fourth of the energy recovery switching valve
  • the valve port is connected, the second valve port of the variable amplitude lifting control valve is connected with the oil tank, and the third valve port of the variable amplitude lifting control valve is connected to the rodless cavity of the variable amplitude cylinder, and the fourth of the variable amplitude lifting control valve is connected.
  • the valve port is connected with the rod cavity of the variable amplitude cylinder, and the variable amplitude lifting control valve has a first working state and a second working state.
  • the first valve of the variable amplitude lifting control valve When the variable amplitude lifting control valve is in the first working state, the first valve of the variable amplitude lifting control valve The port is in communication with the third valve port and the second valve port is in communication with the fourth valve port.
  • the first valve port of the variable amplitude lifting control valve is in communication with the fourth valve port and The second valve port is in communication with the third valve port.
  • the luffing motor control device further includes a variable amplitude balancing valve including a first valve port and a second valve port, a first valve port of the variable amplitude balancing valve and a third valve of the variable amplitude lifting control valve
  • the port is connected, the second valve port of the variable amplitude balance valve is connected to the rodless cavity of the variable amplitude cylinder, and the variable amplitude balance valve has a first working state and a second working state, and when the variable amplitude balancing valve is in the first working state, the change
  • the first valve port and the second valve port of the amplitude balance valve are in one-way communication along the direction from the third valve port of the variable amplitude lifting control valve to the rodless cavity of the variable amplitude cylinder, and the variable amplitude balancing valve is in the second working state.
  • the first valve port of the variable amplitude balance valve is in communication with the second valve port; the third valve port of the energy recovery switching valve is in communication with the first valve port of the variable
  • the first valve port of the hoisting lift control valve is further connected with the upper vehicle main oil supply device of the crane, so that the upper vehicle main oil supply device can also supply oil to the hoist control mechanism; and/or, the variable amplitude lifting control
  • the first valve port of the valve is also connected to the upper vehicle oil supply device, so that the upper vehicle main oil supply device can also supply oil to the variable amplitude control mechanism.
  • the first valve port of the hoisting lift control valve and the fourth valve port of the energy recovery switching valve are along a direction from the fourth valve port of the energy recovery switching valve to the first valve port of the hoisting lift control valve.
  • Connecting, and the first valve port of the hoisting lift control valve and the main oil supply device are unidirectionally connected along a direction from the main oil supply device to the first valve port of the hoisting lift control valve; and/or
  • the first valve port of the lift control valve and the fourth valve port of the energy recovery switching valve are unidirectionally connected along the direction from the fourth valve port of the energy recovery switching valve to the first valve port of the variable amplitude lifting control valve, and are changed
  • the first valve port of the lift control valve is in one-way communication with the main oil supply device along a direction from the main oil supply device to the first valve port of the variable amplitude lift control valve.
  • the crane hydraulic control system further includes a power transmission control device for controlling switching between the prime mover and the hydraulic energy conversion device between the power connection state and the power cut state, wherein the driving energy recovery is realized.
  • the power transmission control device controls the power connection state between the hydraulic energy conversion device and the prime mover.
  • the power transmission control device also controls the power connection state between the hydraulic energy conversion device and the prime mover.
  • the hydraulic energy conversion device further includes an auxiliary pump, and the oil inlet of the auxiliary pump is in communication with the oil tank, and the oil outlet of the auxiliary pump is in communication with the first working port.
  • the oil outlet of the auxiliary pump is also connected to the second working port, and when the pump motor is in the motor working condition, the oil outlet of the auxiliary pump can be along with the second working port along the oil outlet of the auxiliary pump The direction of the second working port is unidirectionally communicated to enable the auxiliary pump to replenish the pump motor when the pump motor is in motor condition.
  • the hydraulic actuating device further includes an overflow valve connected between the oil outlet of the auxiliary pump and the second working port, and the oil inlet of the overflow valve communicates with the second working port, and the oil outlet of the overflow valve It is connected to the oil outlet of the auxiliary pump.
  • the working energy recovery device further includes a first energy storage pressure detecting device, wherein the first energy storage pressure detecting device is configured to detect the pressure of the first energy storage device; and/or the driving energy recovery device further includes the second energy storage device a pressure detecting device, wherein the second accumulator pressure detecting device is configured to detect the pressure of the second accumulator; and/or the working energy recovery device further includes an upper vehicle pressure detecting device, wherein the loading pressure detecting device is configured to detect the execution control mechanism pressure.
  • Another aspect of the present invention also provides a crane including an actuator and a crane fluid of the present invention Pressure control system.
  • the crane hydraulic control system of the present invention can recover and store the potential energy during the crane braking process and the potential energy in the falling process of the crane through the operation energy recovery device and the energy recovery device and the hydraulic energy conversion device.
  • the accumulator and the second accumulator are reused. Therefore, the invention can realize the recycling of the energy of the crane on board and the energy of getting off, and effectively reduce energy waste.
  • FIG. 1 is a hydraulic schematic diagram of a hydraulic control system for a crane according to an embodiment of the present invention.
  • 61 a second accumulator
  • 62 a second accumulator pressure detecting device
  • 63 a second accumulator control valve
  • orientations such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” and the like are indicated. Or the positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplification of the description, which are not intended to indicate or imply the indicated device or component. It must be constructed and operated in a specific orientation or in a specific orientation, and thus is not to be construed as limiting the scope of the invention; the orientations “inside and outside” refer to the inside and outside of the contour of the components themselves.
  • Figure 1 shows an embodiment of the crane hydraulic control system of the present invention.
  • a hydraulic control system for a crane provided by the present invention includes a prime mover capable of driving a crane, an execution control mechanism for controlling an actuator of a crane, and a hydraulic energy conversion having a power connection state with the prime mover 1.
  • the device 3 the energy recovery device and the working energy recovery device, wherein:
  • the hydraulic energy conversion device 3 includes a pump motor 31 that is switchably operable in a pump operating condition and a motor operating condition.
  • the pump motor 31 has a first working port A that can be connected to and from the oil tank 7 and can be connected to and from the execution control mechanism.
  • the exercise energy recovery device includes a first accumulator 51 connectable to the first working port A, and the working energy recovery device includes a second working port B connected to the second working port B Energy device 61;
  • the working energy recovery device cooperates with the hydraulic energy conversion device 3, and can convert the gravitational potential energy during the execution of the heavy object falling operation into hydraulic energy and store it in the first accumulator 51 to realize the operation energy recovery.
  • the pump motor 31 is in the motor operating condition
  • the first working port A is in communication with the first accumulator 51 and the oil passage from the first working port A to the oil tank 7 is disconnected and disconnected
  • the second working port B is The execution control mechanism is in communication and disconnected from the second accumulator 61;
  • the driving energy recovery device cooperates with the hydraulic energy conversion device 3 to convert the mechanical energy during the braking and braking process of the crane into hydraulic energy stored in the second energy storage device 61 to realize the driving energy recovery function.
  • the pump motor 31 is in the pumping process.
  • the first working port A is in communication with the oil tank 7, and the second working port B is in communication with the second accumulator 61 and is disconnected from the execution control mechanism.
  • the crane hydraulic control system of the present invention can cooperate with the working energy recovery device and the energy recovery device and the hydraulic energy conversion device 3, respectively, to be able to move the kinetic energy during the braking (braking) process of the crane and the potential energy during the falling of the heavy object respectively.
  • the recovery is stored in the first accumulator 51 and the second accumulator 61 for reuse. Therefore, the present invention can realize the recycling of the energy of the crane and the energy of the vehicle, thereby effectively reducing energy waste.
  • the crane hydraulic control system may further include a first on-off control device and a second on-off control device
  • the work energy recovery device may further include a third on-off control device
  • the driving energy recovery device may further include a fourth on/off control device, wherein: the first on/off control device is configured to control the on and off of the first working port A and the oil tank 7, and the second on/off control device is configured to control the second working port B and the on/off of the execution control mechanism
  • the third on/off control device is for controlling the on and off of the first accumulator 51 and the first working port A
  • the fourth on/off control device is for controlling the second accumulator 52 and The second working port B is turned on and off.
  • the first on/off control device controls the oil passage from the first working port A to the oil tank 7, and the second on/off control device controls the second working port B to communicate with the execution control mechanism.
  • the third on-off control device controls the first working port A to communicate with the first accumulator 51, and the fourth on-off control device controls the second working port B to be disconnected from the second accumulator 61;
  • the first on/off control device controls the first working port A to communicate with the oil tank 7, the third on/off control device controls the first working port A to be disconnected from the first accumulator 51, and the fourth on/off control device controls the first
  • the second working port B is in communication with the second accumulator 61.
  • the first on/off control device, the second on/off control device, the third on/off control device, and the fourth on/off control device can respectively control the on and off of the first working port A and the oil tank 7, and the second working port B and
  • the opening and closing of the control mechanism, the opening and closing of the first accumulator 51 and the first working port A, and the opening and closing of the second accumulator 52 and the second working port B are performed, so that the control is more convenient and the control precision is higher;
  • the four on-off control devices not only can the operation energy recovery function and the driving energy recovery function be independent of each other and not mutually independent.
  • the impact of the energy recovery process and the driving energy recovery process on the normal operation of the vehicle and the normal driving process of the vehicle can be avoided, ensuring that it is not required.
  • the crane can run normally or work normally during energy recovery. It can be seen that the invention can conveniently and effectively ensure the normal and in-order operation of the normal driving process, the normal working process of the getting-on vehicle, the working energy recovery process and the driving energy recovery process.
  • the second on-off control device may include an on-off switch valve 4, and the on-off switch valve 4 includes a first valve port and a second valve port, and the vehicle is switched on and off.
  • the first valve port of the valve 4 is in communication with the second working port B
  • the second valve port of the upper and lower vehicle switching valve 4 is in communication with the execution control mechanism, and the upper and lower vehicle switching valve 4 has a first working state and a second working state.
  • the first valve port of the upper and lower vehicle switching valve 4 When the vehicle switching valve 4 is in the first working state, the first valve port of the upper and lower vehicle switching valve 4 is disconnected from the second valve port, and when the upper and lower vehicle switching valve 4 is in the second working state, the first of the upper and lower vehicle switching valves 4 The valve port is in communication with the second valve port.
  • the opening and closing of the second working port B and the execution control mechanism can be conveniently controlled.
  • the actuator of the crane can usually perform single and composite operation modes such as hoisting, luffing and telescopic.
  • the execution control mechanism of the crane usually includes a winch control mechanism, a variable amplitude control mechanism and a telescopic control mechanism, among which:
  • the hoisting of the control mechanism controls the hoisting operation and the hoisting drop operation, which generally includes a hoisting motor 211 and a hoisting motor control device, and the hoisting motor 211 is used to drive the hoisting rotation, and the hoisting motor control
  • the device controls the steering of the hoisting motor 211 by controlling one of the lift H and the drop D of the hoist motor 211 to feed oil and the other oil, thereby controlling the hoisting to perform the hoisting operation or the hoisting drop operation.
  • the hoisting motor control device generally includes a hoisting lift control valve 212 and a hoisting balance valve 2131; the variator control mechanism controls the actuator to perform a swell lifting operation and a sag drop operation, which generally includes a slewing cylinder 221 and a variable amplitude
  • the cylinder control device, the variable amplitude cylinder 221 is used for driving the boom amplitude, and the variable amplitude cylinder control device controls one of the rod chamber and the rodless chamber of the variable amplitude cylinder 221
  • the oil and the other oil are used to control the cylinder rod expansion and contraction of the variable amplitude cylinder 211, thereby controlling the variable amplitude lifting operation or the variable amplitude falling operation.
  • the variable amplitude cylinder control device usually includes a variable amplitude lifting control valve 222 and a variable amplitude balancing valve 2231. .
  • the crane hydraulic control system of the present invention can be configured to recover only the gravitational potential energy during the hoisting down operation, that is, to realize the energy recovery function of the hoisting drop operation;
  • the gravity potential energy during the falling and falling operation can be recovered, that is, the energy recovery function of the variable amplitude falling operation can be realized.
  • the second valve port of the upper and lower vehicle switching valve 4 can be connected to the lift H of the hoisting motor 211 of the hoist control mechanism, and the vehicle can be loaded and unloaded.
  • the second valve port of the switching valve 4 can communicate with the riser H when it is required to realize the hoisting drop operation energy recovery function.
  • the hydraulic oil flowing out from the rising port H of the hoisting motor 211 can pass through the second working state
  • the vehicle switching valve 4 flows to the pump motor 31 operating in the motor operating condition, and flows into the first accumulator 51 communicating with the first working port A of the pump motor 31 via the pump motor 31, so that the hoisting drop operation is lost.
  • the gravitational potential energy is converted into hydraulic energy stored in the first accumulator 51, and the hoisting drop operation energy recovery function is realized.
  • the second valve port of the upper and lower vehicle switching valve 4 may be connected to the rodless cavity of the variable amplitude cylinder 221 of the variable amplitude control mechanism, and the second valve of the upper and lower vehicle switching valve 4 The port can communicate with the rodless cavity of the variable amplitude cylinder 221 when it is desired to implement the variable-falling operation energy recovery function.
  • the hydraulic oil flowing out from the rodless chamber of the variable amplitude cylinder 221 can be loaded and unloaded via the second working state.
  • the switching valve 4 flows to the pump motor 31 operating in the motor operating condition, and flows into the first accumulator 51 communicating with the first working port A of the pump motor 31 via the pump motor 31, so that the lost portion is lost during the falling operation.
  • the gravitational potential energy is converted into hydraulic energy stored in the first accumulator 51, and the variable-falling operation energy recovery function is realized.
  • the crane hydraulic control system of the present invention is configured to realize both the hoisting drop operation energy recovery function and the variable amplitude drop operation energy recovery function.
  • the driving energy recovery device of the present invention may further include an energy recovery switching device disposed between the second valve port of the upper and lower vehicle switching valve 4 and the execution control mechanism, and the energy recovery switching device is used to control getting on and off the vehicle.
  • the second valve port of the switching valve 4 is switchably in communication with one of the rise H of the hoisting motor 211 and the rodless cavity of the variator cylinder 221.
  • the energy switching control device can be used to control the second valve port of the upper and lower vehicle switching valve 4 to communicate with the riser H, so that the hydraulic oil flowing out from the riser H can flow into the first energy storage.
  • the storage and recovery function is performed in the device 51, and when the variable-falling operation energy recovery function is required, the energy switching device can be used to control the second valve port of the upper and lower vehicle switching valve 4 to communicate with the rodless cavity of the variable amplitude cylinder 221, so as to facilitate The hydraulic oil flowing out of the rodless chamber of the slewing cylinder 221 flows into the first accumulator 51 for recovery and storage.
  • the energy recovery switching device of the present invention may include an energy recovery switching valve 54 including a first valve port, a second valve port and a third valve port, wherein: the first valve of the energy recovery switching valve 54 The port communicates with the second valve port of the upper and lower vehicle switching valve 4, the second valve port of the energy recovery switching valve 54 communicates with the rising port H, and the third valve port of the energy recovery switching valve 54 communicates with the rodless cavity of the variable amplitude cylinder 221 Moreover, the energy recovery switching valve 54 has a first operating state and a second operating state, wherein: when the energy recovery switching valve 54 is in the first operating state, the first valve port and the second valve port of the energy recovery switching valve 54 The third valve port is closed and the first valve port of the energy recovery switching valve 54 is in communication with the third valve port and the second valve port is closed when the energy recovery switching valve 54 is in the second operating state.
  • the second working port B can communicate with the riser H to facilitate the pump motor. 31.
  • the hydraulic oil flowing out from the riser H during the hoisting drop operation enters the first accumulator 51 for storage to realize the hoisting drop operation energy recovery function; and when the energy recovery switching valve 54 is in the second working state and up and down
  • the second working port B can communicate with the rodless cavity of the variable amplitude cylinder 211, so that the pump motor 31 can drive out of the rodless cavity of the variable amplitude cylinder 211 during the variable amplitude falling operation.
  • the hydraulic oil enters the first accumulator 51 for storage, and realizes a variable-falling operation energy recovery function.
  • the hydraulic energy conversion device 3 is further provided to be capable of supplying hydraulic oil to the execution control mechanism when the actuator normally performs the work (may be simply referred to as the hydraulic energy conversion device 3).
  • the upper vehicle oil supply function is used for description).
  • the pump motor 31 is in the pump working condition, the first working port A is in communication with the oil tank 7, and the second working port B is in communication with the execution control mechanism and the second accumulator 61 disconnected.
  • the hydraulic energy conversion device 3 of the present invention can not only work under the condition of requiring energy recovery, but also can work under the normal working condition of the vehicle, and is used as an oil source for getting on the vehicle, which is a normal operation process of getting on the vehicle.
  • this aspect can improve the utilization rate of the hydraulic energy conversion device 3, enrich the function of the hydraulic energy conversion device 3 in the crane hydraulic control system; on the other hand, this makes the hydraulic pressure
  • the energy conversion device 3 can supply oil to the loading operation together with the original oil source of the crane, effectively improve the working efficiency of the crane, and reduce the requirements on the original oil source equipment, and can also omit the original oil source of the crane, alone
  • the overall structure of the crane can be simplified and the cost can be reduced.
  • the upper fuel supply function of the hydraulic energy conversion device can also be realized based on the aforementioned energy recovery switching valve 54.
  • the energy recovery switching valve 54 of the present invention may further include a fourth valve port, and the fourth valve port of the energy recovery switching valve 54 is in communication with the execution control mechanism when the energy recovery switching valve 54 is at In the first working state and the second working state, the fourth valve port of the energy recovery switching valve 54 is all closed, and the energy recovery switching valve 54 further has a third working state, when the energy recovery switching valve 54 is in the third working state, The fourth valve port of the energy recovery switching valve 54 is in communication with the first valve port of the energy recovery switching valve 54 and the second valve port and the third valve port of the energy recovery switching valve 54 are both closed.
  • the second working port B of the third working port B communicates with the execution control mechanism to facilitate the hydraulic energy conversion device 3 in the pump working condition to supply oil to the execution control mechanism when the actuator performs the normal operation, and realize the oil supply function of the hydraulic energy conversion device 3 .
  • the communication between the fourth valve port of the energy recovery switching valve 54 and the execution control mechanism can be realized by the communication between the fourth valve port of the energy recovery switching valve 54 and the hoisting motor control device, for example, the energy recovery switching valve 54
  • the four valve port may be in communication with the hoisting lift control valve 212.
  • the fourth valve port of the energy recovery switching valve 54 is connected to the hoisting motor 211 by a hoisting motor control device, so that the pump motor 31 can be hoisted
  • the motor control device supplies oil to the hoisting motor 211; alternatively, it can be realized by the communication between the fourth valve port of the energy recovery switching valve 54 and the luffing cylinder control device, for example, the fourth valve port of the energy recovery switching valve 54 can be
  • the variable amplitude lifting control valve 222 is in communication.
  • the fourth valve port of the energy recovery switching valve 54 is connected to the variable amplitude cylinder 221 through the variable amplitude cylinder control device, so that the pump motor 31 can be changed by the variable amplitude cylinder control device.
  • the oil cylinder 221 is supplied with oil. More preferably, the fourth valve port of the energy recovery switching valve 54 can be in communication with both the hoisting motor control device and the luffing cylinder control device to enable the hydraulic energy conversion device 3 to be provided for both the hoisting condition and the variator condition. oil.
  • the fourth valve port of the energy recovery switching valve 54 can also be in communication with the telescopic cylinder control device at the same time, so that the hydraulic energy conversion device 3 can also supply oil for the telescopic working condition, and the principle is similar to the variable amplitude working condition, so this It will not be detailed.
  • the crane hydraulic control system of the embodiment can meet the normal working requirements of getting on and off the vehicle, and can realize the energy recovery function, and the energy recovery function that can be realized includes both the driving energy recovery function and the working energy recovery function, and The energy recovery function of the operation includes both the energy recovery function of the hoisting drop operation and the energy recovery function of the variable amplitude drop operation.
  • the crane hydraulic control system includes a prime mover 1, an execution control machine Structure, hydraulic energy conversion device 3, hydraulic control check valve 33 serving as a first on/off control device, on/off switching valve 4 serving as a second on/off control device, working energy recovery device, traveling energy recovery device, power
  • the control device and the controller 9 are transmitted.
  • the prime mover 1 is used as a power source of the crane hydraulic control system, and may be, for example, an engine.
  • the prime mover 1 of this embodiment can not only provide power for the normal running process of the crane, but also provide power for the energy recovery process and the normal working process of the crane, which is mainly realized by driving the hydraulic energy conversion device 3, which is achieved. It will be explained in more detail below.
  • the hydraulic energy conversion device 3 is used to realize the conversion of hydraulic energy and mechanical energy.
  • the hydraulic energy conversion device 3 can realize the functions of three aspects, which can cooperate with the working energy recovery device to realize the operation energy recovery function, and can cooperate with the driving energy recovery device to realize the driving energy recovery function, and can also It is used as the oil source for the vehicle during normal operation, and supplies oil for the normal operation of the vehicle.
  • This multi-purpose setting of the hydraulic energy conversion device 3 can effectively simplify the structure and control process of the hydraulic control system of the crane.
  • the hydraulic energy conversion device 3 of this embodiment is connected to the prime mover 1 by a power transmission control device, and the hydraulic energy conversion device of this embodiment includes a pump motor 31 and an auxiliary pump 32.
  • the pump motor 31 is a hydraulic component (also referred to as a secondary component) capable of converting hydraulic energy and mechanical energy to each other, and is switchable between a pump operating condition and a motor operating condition, wherein: when the pump is in a working condition, the mechanical energy can be Converted to hydraulic energy, the hydraulic oil flows from the first working port A of the pump motor 31 to the second working port B; in the motor working condition, the hydraulic energy can be converted into mechanical energy, and the hydraulic oil is used by the second working port of the pump motor 31. B flows to the first working port A.
  • the pump motor 31 of this embodiment has the same rotational direction regardless of whether it is operated in a pump operating condition or a motor operating condition, with the difference that the quadrant of the swash plate angle is different, that is, the pump motor 31 of this embodiment is controlled by The swashplate swing angle changes in different quadrants to achieve the switching of the working conditions.
  • the pump motor 31 is connected to the prime mover 1 by the power transmission control device, and under the control of the power transmission control device, the pump motor 31 and the prime mover 1 have a power connection state and power cutoff. a state in which the prime mover 1 can transmit power to the pump motor 31 such that the pump motor 31 can be rotated in a certain direction under the driving of the prime mover 1; and in the power cut-off state, the prime mover 1 cannot Power is transmitted to the pump motor 31. Further, as shown in Fig.
  • the pump motor 31 of this embodiment has a variable control mechanism 311 capable of adjusting the swing angle of the swash plate, and the variable control mechanism 311 is electrically connected to the controller 9, so that the controller 9 can control the variable control mechanism.
  • 311 changes the swash plate swing position of the pump motor 31, and realizes control of the pump motor 31 operating condition switching, displacement, and the like. It can be seen that the pump of this embodiment Up to 31, the pumping condition and the motor working condition are switched by means of electronically controlled variables, and the structure is simple and the control is convenient.
  • the first working port A of the pump motor 31 serves as an oil suction port when the pump motor 31 is in a pump operating condition, and serves as a pressure port when the pump motor 31 is in a motor operating condition.
  • the first working port A of the pump motor 31 is connected to the oil tank 7 through the pilot operated check valve 33, and the pilot operated check valve 33 controls the opening and closing between the first working port A and the oil tank 7. .
  • the oil inlet of the pilot valve 31 is in communication with the oil tank 7, and the oil outlet of the pilot valve 33 is in communication with the first working port A.
  • the hydraulic control check valve 33 is the same as the ordinary one-way valve, and the control hydraulic oil can only flow from the oil tank 7 through the hydraulic control check valve 33 to the first
  • the working port A can not be reversely flowed, that is, the locking function of the motor working condition is realized, which is convenient for controlling the hydraulic oil outputted by the pump motor 31 to be returned to the oil tank 7 and only flowing into the working energy recovery device when the energy of the loading vehicle needs to be recovered.
  • the first accumulator 51 is stored; when the hydraulic control end of the pilot operated check valve 33 passes the pressure oil, the pilot operated check valve 33 opens bidirectionally, at which time the hydraulic oil flows through the pilot operated check valve 33.
  • the flow direction depends on which of the inlet port and the outlet port is relatively large. If the pressure at the first working port A is greater than the pressure of the tank 7, the hydraulic oil can flow from the first working port A through the pilot operated check valve 33.
  • the hydraulic control check valve 33 of this embodiment has a hydraulic control end connected to a check valve control valve 331 for controlling the hydraulic control check valve 33. Whether the hydraulic control end passes the pressure oil, thereby controlling the on-off between the first working port A and the oil tank 7.
  • the check valve control valve 331 is not limited to the two-position three-way solenoid valve structure having the control terminal Y1 shown in FIG. 1, in fact, as long as the oil control port of the hydraulic control check valve 33 can be controlled. Broken, all within the scope of the present invention.
  • the second working port B of the pump motor 31 serves as a pressure port when the pump motor 31 is in the pump operating condition, and serves as an oil suction port when the pump motor 31 is in the motor operating condition.
  • the second working port B of the pump motor 31 is connected to the execution control mechanism through the upper and lower vehicle switching valve 4, and the upper and lower vehicle switching valve 4 controls the communication between the second working port B and the execution control mechanism.
  • the upper and lower vehicle switching valve 4 of this embodiment adopts a single valve structure (two-position two-way valve), including a first valve port and a second valve port, wherein: the upper and lower vehicle switching valve 4 A valve port is in communication with the second working port B, and the second valve port of the upper and lower vehicle switching valve 4 is in communication with the execution control mechanism.
  • the upper and lower vehicle switching valve 4 has a first valve position (left position in FIG. 1) and a second valve position (right position in FIG.
  • the second working port B and the execution control mechanism can be conveniently controlled to be turned on and off, thereby facilitating control of switching between getting on and off. And it is convenient to control the switching to realize the driving energy recovery function and the working energy recovery function.
  • the on-vehicle switching valve 4 of this embodiment realizes the first step by providing two check valves in the opposite direction between the first valve port and the second valve port at the first valve position.
  • One valve port and the second valve port are disconnected at the first valve position, but those skilled in the art should understand that other methods such as directly sealing the first valve port and the second valve port at the first valve position may also be used.
  • the first valve port and the second valve port are disconnected at the first valve position; in addition, the upper and lower vehicle switching valve 4 shown in FIG. 1 has a control terminal Y2 electrically connected to the controller 9, and the controller 9 controls the upper and lower sides.
  • the vehicle switching valve 4 is switched between the first valve position and the second valve position, but in fact, the upper and lower vehicle switching valve 4 can also be implemented between the first valve position and the second valve position by other means such as hydraulic control. Switch.
  • the auxiliary pump 32 is used to convert mechanical energy into hydraulic energy, such as a centrifugal pump.
  • the auxiliary pump 32 is also in a power connection state with the prime mover 1, in order to make the structure of the hydraulic energy conversion device 3 simpler and more compact, and to facilitate the control of the auxiliary pump 32 to operate in synchronization with the pump motor 31, the assistance of this embodiment
  • the pump 32 is connected to the pump motor 31 via a shaft, and the auxiliary pump 32 is mainly used for assisting the supercharging to improve the performance of the hydraulic energy conversion device 3.
  • the auxiliary pump 32 of this embodiment has an oil inlet port communicating with the oil tank 7, and an oil outlet port communicating with the first working port A. Based on this, when the auxiliary pump 32 is in operation, the oil pumped from the oil tank 7 can flow to the first working port A of the pump motor 31, which can effectively prevent the pump motor 31 from operating at the first operating port A when operating under pump conditions.
  • the generation of a negative pressure can not only reduce the risk of the suction of the pump motor 31, but also help to prolong the service life of the pump motor 31 and reduce the noise during operation of the pump motor 31, and also facilitate the maximum displacement of the pump motor 31.
  • the amount of work has a higher working speed and improves the performance of the hydraulic energy conversion device 3.
  • the oil outlet of the auxiliary pump 32 is also connected to the second working port B, and when the pump motor 31 is in the motor operating condition, the oil outlet of the auxiliary pump 32 can be along with the second working port B.
  • the direction from the oil outlet of the auxiliary pump 32 to the second working port B is unidirectionally communicated.
  • the hydraulic oil pumped from the oil tank 7 no longer flows to the first working port A via the connecting oil passage between the outlet port of the auxiliary pump 31 and the first working port A, but flows to the second working port B, so that the auxiliary pump 32
  • the oil can be replenished for the pump motor 31 in the motor operating condition, which can effectively avoid the suction phenomenon when the pump motor 31 operates in the motor working condition, help to further extend the service life of the pump motor 31, and further improve the pump motor 31. Work performance.
  • the pump motor 31 in the motor operating condition can be used for the re-release of the running brake energy recovered by the running energy recovery device, and therefore, the auxiliary pump 32 replenishes the pump motor 31 in the process. It can also make the process more stable and efficient.
  • the hydraulic energy conversion device 3 further includes a charge check valve 341, the oil inlet of the charge check valve 341 is in communication with the oil outlet of the auxiliary pump 32, and the oil outlet and the second work of the charge check valve 341 Port B is connected. Based on this, when the pump motor 31 operates in the motor operating condition, and the difference between the high pressure at the oil outlet of the auxiliary pump 32 and the low pressure at the second working port B enables the charge check valve 341 to be opened, the auxiliary pump 32 is controlled.
  • the oil outlet and the second working port B are unidirectionally communicated along the direction from the oil outlet of the auxiliary pump 32 to the second working port B, so that the auxiliary pump 32 can pump oil to the second working port B, thereby achieving the desired The oil filling function; and since the charge check valve 341 is reversely closed, when the pump motor 31 operates in the pump operating condition or the auxiliary pump 31 outlet port and the second working port B of the pump motor 31 operating in the motor operating condition When the pressure difference is insufficient, the charge check valve 341 cannot be opened, and the hydraulic oil pumped by the auxiliary pump 32 cannot flow through the charge check valve 341 to the second working port B, but can only be discharged via the auxiliary pump 31.
  • the connecting oil passage between the port and the first working port A flows to the first working port A to achieve the required replenishment of the first working port A.
  • the auxiliary pump 32 can replenish the pump motor 31 in the pump working condition and the oil in the motor working condition of the pump motor 31, and can realize the duplexing of the pump motor 31.
  • the auxiliary boosting prevents the pump motor 31 from absorbing air erosion under the pump operating conditions and the motor operating conditions, effectively improving the working performance of the pump motor 31 and prolonging the service life of the pump motor 31.
  • the hydraulic energy conversion device 3 further includes a relief valve 342, and the oil inlet of the relief valve 342 is in communication with the second working port B, and the overflow valve 342 is out.
  • the oil port is in communication with the oil outlet of the auxiliary pump 32.
  • the relief valve 342 can be opened when the pressure at the second working port B is too high, the second work is made
  • the hydraulic oil at the port B flows through the overflow valve 342 and the connecting oil passage between the oil outlet of the auxiliary pump 32 and the first working port A overflows to the first working port A (at this time, the pump motor 31 is in the pump working condition)
  • the internal oil circulation is formed, and therefore, the high pressure overflow function of the second working port B can be realized, and the pump motor 31 operating in the pump operating condition is formed with safety protection.
  • the charge check valve 341 and the relief valve 342 are integrated into the charge relief valve 34 such that the oil discharge port of the auxiliary pump 32 passes through the charge relief valve 34.
  • the second working port B such an arrangement makes the overall structure of the crane hydraulic control system of this embodiment simpler and more compact, and more convenient to control.
  • the power transmission control device is for controlling whether or not the prime mover 1 and the hydraulic energy conversion device 3 are dynamically connected, so that the prime mover 1 and the hydraulic energy conversion device 3 can be switched between a power connection state and a power cut state.
  • the power transmission control device of this embodiment includes a clutch 81 and a clutch control device 82, a clutch 81 is coupled between the prime mover 1 and the hydraulic energy conversion device 3, and the clutch control device 82 is used to control the clutch.
  • 81 is switched between the engaged state and the open state to control one of the power connection state and the power cut state that is switchably between the hydraulic energy conversion device 3 and the prime mover 1.
  • the clutch control device 82 controls the clutch 81 to be in the engaged state, and controls the hydraulic energy conversion device 3 and the prime mover 1 to be in a power connection state
  • the prime mover 1 is capable of transmitting power to the hydraulic energy conversion device 3, thereby enabling the hydraulic energy conversion device 3 to cooperate with the work energy recovery device and the travel energy recovery device to realize the energy recovery function; and, in the course of the normal execution of the operation by the actuator,
  • the clutch control device 82 can also control the clutch 81 to be in an engaged state. This aspect facilitates the hydraulic energy conversion device 3 to supply oil to the upper vehicle when the vehicle is in normal operation, and also facilitates the energy recovered during the falling operation. Re-use, assists in improving the oil absorption performance of the pump motor 31.
  • the clutch control device 82 can control the clutch 81 to be in the off state, and control the hydraulic energy conversion device 3 and the prime mover 1 to be in the power cut state.
  • the power transmission from the prime mover 1 to the hydraulic energy conversion device 3 is cut off so that the hydraulic energy conversion device 3 or the like does not affect the normal running process; when the prime mover 1 is difficult to satisfy the driving
  • the clutch control device 82 can also control the clutch 81 to be engaged, so that the energy recovered during the running braking can be reused and converted into mechanical energy to assist the running.
  • the clutch control device 82 of this embodiment employs a hydraulic component, specifically a two-position three-way solenoid valve having a control end Y10, such that the embodiment controls the clutch 81 by a hydraulic control method.
  • clutch 81 may also be controlled by other means such as electronic or mechanical control.
  • the execution control mechanism is used to control the execution of the crane's actuator, such as performing hoisting, luffing, and telescopic work.
  • the execution control mechanism includes a winch control mechanism and a variable amplitude control mechanism, wherein: the winch control mechanism is used to control the hoisting of the actuator to perform the hoisting operation and the hoisting drop
  • the operation includes a hoisting motor 211 for driving the hoisting rotation, and a hoisting motor control device for controlling one of the lift H and the drop D of the hoisting motor 211.
  • the oil and the other oil are used to control the steering of the hoisting motor 211, thereby controlling the hoisting to perform the hoisting lifting operation or the hoisting drop operation; the sizing control mechanism controls the actuator to perform the hoisting lifting operation and the variable amplitude falling operation,
  • the utility model comprises a luffing cylinder 221 and a luffing cylinder control device, wherein the luffing cylinder 221 is used for driving the boom luffing, and the luffing cylinder control device controls the oil in the rod cavity and the rodless cavity of the luffing cylinder 221
  • the other oil is used to control the expansion and contraction of the cylinder rod of the variable amplitude cylinder 211, thereby controlling the variable amplitude lifting operation or the variable amplitude falling operation.
  • the hoisting motor control apparatus of this embodiment includes a hoisting lift control valve 212 and a hoisting balance control mechanism 213; and the slewing cylinder control apparatus of this embodiment includes a slewing and lowering control valve 222 and A variable amplitude control mechanism 223.
  • the hoisting lift control valve 212 is for controlling the flow of the hydraulic oil through the hoisting motor 221, thereby controlling the hoisting to perform the hoisting lifting operation or the hoisting falling operation by controlling the steering of the hoisting motor 211. As shown in FIG.
  • the hoisting lift control valve 212 of this embodiment includes a first valve port, a second valve port, a third valve port and a fourth valve port, and the first valve port and the upper vehicle oil supply device of the crane Connected, the second valve port is in communication with the oil tank 7, the third valve port is connected to the riser H in an openable manner, and the fourth valve port is connected to the drop port D; moreover, the winch lift control valve 212 has the first The working state (corresponding to the upper position in FIG. 1) and the second working state (corresponding to the lower position in FIG.
  • the valve 212 enters the drop D, and flows back from the riser H to the oil tank 7 via the hoisting lift control valve 212 in the second working state, and drives the hoisting motor 211 to rotate in a second direction opposite to the first direction (abbreviated as Turn) to achieve the hoisting drop operation.
  • the hoisting lift control valve 212 of this embodiment also has a third operational state (corresponding to the neutral position shown in FIG. 1), and when the hoisting lift control valve 212 is in the third working state, the volume The first valve port of the lift control valve 212 is disconnected from the third valve port, and the second valve port is in communication with the fourth valve port, so that the pressure oil supplied by the upper fuel supply device can no longer be controlled by the winch lift
  • the valve 212 forms a circuit and the hoisting operation is stopped.
  • the third working state of the hoisting and lowering control valve 212 is not limited to the setting mode shown in FIG. 1, for example, the hoisting and lowering control valve 212 is set to be in the third working state, the first valve port thereof.
  • the second valve port, the third valve port and the fourth valve port are both cut off, and the hoisting operation can also be stopped.
  • the hoisting balance control mechanism 212 is disposed between the lift port H and the third valve port of the hoisting lift control valve 212, and controls the opening and closing between the third valve port and the lift port H of the hoisting lift control valve 212, To improve the safety of the hoisting process.
  • the hoisting balance control mechanism 213 of this embodiment includes a hoisting balancing valve 2131 including a first valve port and a second valve port, and a first valve port of the hoisting balancing valve 2131 and The third valve port of the hoisting lift control valve 212 is in communication, and the second valve port of the hoisting balance valve 2131 is in communication with the lift port H; and the hoisting balance valve 2131 has a first working state (corresponding to the left position in FIG. 1) And a second working state (corresponding to the right position in FIG.
  • the mouth flow to the rise H, but not to the reverse flow, can improve the safety during the hoisting operation; and when the hoisting balance valve 2131 is in the second working state, the first valve port and the second valve of the hoist balance valve 2131 The port is connected so that the hydraulic oil can flow from the riser H through the hoisting balance valve 2131 in the second working state to the roll
  • the third valve port of the lift control valve 212 facilitates the hoisting drop operation.
  • the first valve port of the hoisting balance valve 2131 and the second valve port are connected by providing a one-way valve to realize the above-mentioned edge.
  • Lifting by hoisting The one-way communication of the third valve port of the control valve 212 to the rising port H direction; when the winding balancing valve 2131 is in the second working state, the damping between the first valve port and the second valve port of the winding balancing valve 2131 is damped Connected, so that the flow rate through the winding balance valve 2131 can be adjusted by adjusting the size of the damping, thereby adjusting the hoisting drop speed.
  • the hoisting balance control mechanism 213 of the embodiment further includes a hoisting balancing valve control valve 2132, which The hoisting balance valve control valve 2132 is connected to the control end Y9 of the hoisting balancing valve 2131, and controls the hoisting balancing valve 2131 in the first working state by controlling whether the pressure oil is supplied to the control end Y9 of the hoisting balancing valve 2131. Switch between the second working states.
  • the slewing lift control valve 222 is for controlling the flow direction of the hydraulic oil through the slewing cylinder 221, thereby controlling the execution of the slewing lifting operation or the sag falling operation by controlling the expansion and contraction direction of the variator cylinder 221. As shown in FIG.
  • the variable amplitude lifting control valve 222 of this embodiment includes a first valve port, a second valve port, a third valve port and a fourth valve port, and the first valve port of the variable amplitude lifting control valve 222 and the crane
  • the upper fuel supply device is connected, the second valve port of the variable amplitude lifting control valve 222 is in communication with the oil tank 7, and the third valve port of the variable amplitude lifting control valve 222 is connected to the rodless cavity of the variable amplitude cylinder 221 in an openable manner.
  • the fourth valve port of the variable amplitude lifting control valve 222 is in communication with the rod chamber of the variable amplitude cylinder 221; and the variable amplitude lifting control valve 222 has a first working state (corresponding to the upper position in FIG.
  • the lifting control valve 222 flows back to the oil tank 7, and drives the cylinder rod of the variable amplitude cylinder 221 to extend, thereby realizing the variable amplitude lifting
  • the first valve port of the variable amplitude lifting control valve 222 is in communication with the fourth valve port
  • the second valve port is in communication with the third valve port, which enables the upper vehicle oil supply device
  • the supplied pressure oil can enter the rodless cavity of the slewing cylinder 221 via the slewing and lowering control valve 222 at this time, and the hydraulic oil in the slewing cylinder 221 having the rod cavity can be flowed back through the slewing and lowering control valve 222.
  • the oil tank 7 drives the cylinder rod of the variable amplitude cylinder 221 to retract, thereby realizing a variable amplitude falling operation.
  • variable amplitude lifting control valve 222 of this embodiment also has a third working state (right In the middle position of FIG. 1 , when the variable amplitude lifting control valve 222 is in the third working state, the first valve port of the variable amplitude lifting control valve 222 is disconnected from the third valve port, and the second valve port and the fourth valve port are closed. The port is connected, so that the pressure oil supplied from the upper fuel supply device can no longer be looped through the winding lift control valve 222, and the luffing operation is stopped.
  • the luffing and lowering control valve 222 can also be set to be in the third working state, the first valve port, the second valve port, the third valve port and the fourth valve port are all closed, and the figure
  • the setting mode of the third working state of the variable amplitude lifting control valve 222 shown in FIG. 1 is more convenient to realize the energy recovery function of the variable amplitude falling operation, and is also convenient to pass through in the process of realizing the energy recovery function of the variable amplitude falling operation.
  • the second valve port of the variable amplitude lifting control valve 222 of the working state is supplied with pressure oil to replenish the rod cavity of the variable amplitude cylinder 221 to prevent air eroding.
  • variable amplitude balance control mechanism 223 is disposed between the rodless cavity of the variable amplitude cylinder 221 and the third valve port of the variable amplitude lifting control valve 222, and controls the third valve port of the variable amplitude lifting control valve 222 and the variable amplitude cylinder 221
  • the opening and closing between the rodless chambers improves the safety during the variable width operation.
  • variable amplitude balance control mechanism of the embodiment includes a variable amplitude balance valve 2231 including a first valve port and a second valve port, and the first valve port of the amplitude equalization balance valve 2231 is changed.
  • the third valve port of the lifting control valve 222 is connected, and the rodless cavity of the second valve port variable cylinder 221 of the amplitude equalizing valve 2231 is connected; and the variable amplitude balancing valve 2231 has a first working state (corresponding to the left in FIG. 1) And a second working state (corresponding to the right bit in FIG.
  • the third valve port of the variable amplitude lifting control valve 222 is unidirectionally connected to the direction of the rodless cavity of the variable amplitude cylinder 221, so that the hydraulic oil can only be controlled by the variable amplitude lifting when flowing through the variable amplitude balancing valve 2231 in the first working state.
  • the third valve port of the valve 222 flows to the rodless cavity of the slewing cylinder 221, and cannot flow in the reverse direction, which can improve the safety during the variable width operation; when the squash balance valve 2231 is in the second working state, the amplitude is balanced.
  • the first valve port of the valve 2231 communicates with the second valve port, so that the hydraulic oil can be driven by the variable amplitude cylinder 221 Flowing in the rod chamber of the second operating state amplitude balancing hoist lift flow control valve 2231 the third port 212, facilitate falling luffing operation.
  • the first valve port of the amplitude-balancing balancing valve 2231 and the second valve port are connected by providing a one-way valve to realize the above-mentioned edge.
  • the one-way communication from the third valve port of the variable amplitude lifting control valve 222 to the rodless cavity direction of the variable amplitude cylinder 221; the first valve of the variable amplitude balancing valve 2231 when the variable amplitude balancing valve 2231 is in the second working state The port and the second valve port are connected by damping, so that the flow rate through the variable amplitude balance valve 2231 can be adjusted by adjusting the magnitude of the damping, and then To adjust the falling speed of the variable amplitude.
  • variable amplitude balancing valve 2231 By switching between the first working state and the second working state by controlling the variable amplitude balancing valve 2231, the opening and closing between the third valve port of the variable amplitude lifting control valve 222 and the rodless cavity of the variable amplitude cylinder 221 can be controlled. .
  • the amplitude-balancing balance control mechanism 223 of the embodiment further includes a variable-amplitude balancing valve control valve 2232, which The variable amplitude balance valve control valve 2232 is connected to the control end Y8 of the amplitude equalization balance valve 2231, and controls the variable amplitude balance valve 2231 in the first working state by controlling whether the pressure oil is supplied to the control end Y8 of the amplitude equalization balance valve 2231. Switch between the second working states.
  • the respective second valve ports are in communication with the respective fourth valve ports, such that
  • the utility model has the advantages that the falling oil replenishing function is realized by introducing the pressure oil to the second valve port of the two when the falling operation is realized, so as to prevent the falling D of the motor 211 and the variable-width cylinder 221 from being hoisted during the falling process.
  • the rod chamber 221 has a suction phenomenon, which further reduces the risk of falling stall.
  • the hoisting lift control valve 212 adopts a four-position three-way valve having the control terminals Y61 and Y62, and the variable amplitude lifting control valve 222 is adopted.
  • a four-position three-way valve having control terminals Y71 and Y72 but those skilled in the art should understand that the hoisting lift control valve 212 and the variable amplitude lift control valve 222 are not limited thereto, and for example, a hydraulic control valve may be employed, or The corresponding function can be achieved by several valve combinations.
  • the aforementioned upper vehicle oil supply device is a device for supplying oil to the execution control mechanism during the execution of the work on the vehicle.
  • the first valve port of the hoisting lift control valve 212 and the variator lifting control valve 222 are A valve port-connected upper vehicle oil supply device adopts a multi-pump system, which includes both the hydraulic energy conversion device 3 of the embodiment and an upper vehicle main oil supply device (which may include one or more pumps), that is,
  • the hydraulic energy conversion device 3 and the upper vehicle main oil supply device are both used as the oil source of the upper vehicle, and both of them can supply oil to the upper vehicle, and since they are independently arranged, the oil source for executing the control mechanism is independent, Helps improve the performance of composite conditions.
  • this arrangement of the embodiment can also reduce the supply of oil to the hydraulic energy conversion device 3 and the upper vehicle owner with respect to the case where only one of the hydraulic energy conversion device 3 and the upper vehicle main oil supply device is used to supply oil to the upper vehicle.
  • the requirements of the device facilitate the use of a smaller installed power of the hydraulic energy conversion device 3 and/or the upper vehicle main oil supply device, which contributes to further reducing the emission of harmful gases and helps to further improve the service life of the prime mover 1 and the like.
  • the connection manner between the first valve port of the hoisting and lowering control valve 212 and the first valve port of the swaying and lowering control valve 222 and the hydraulic control device 3 will be described in more detail later when the working energy recovery device is described.
  • only the first valve port of the hoisting lift control valve 212 and the first valve port of the slewing and lowering control valve 222 are connected to the upper vehicle main oil supply device.
  • the first valve port of the hoisting lift control valve 212 and the first valve port of the slewing lift control valve 222 are connected to the upper vehicle main oil supply device via a one-way valve.
  • the upper vehicle main oil supply device of the embodiment is connected to the first valve port of the hoisting lift control valve 212 and the first valve port of the slewing lift control valve 222 through the first check valve 23 .
  • the oil inlet of the first check valve 23 is in communication with the upper vehicle oil supply device, the oil outlet of the first check valve 23 and the first valve port of the winding lift control valve 212 and the variable amplitude lifting control valve 222
  • the first valve ports are connected such that the upper main oil supply device and the first valve port of the hoisting and lowering control valve 212 are in the direction of the first valve port of the hoisting and lowering control valve 212 from the upper lorry oil supply device 212.
  • the one-way communication is also unidirectionally communicated with the first valve port of the variable amplitude lifting control valve 222 in the direction from the upper vehicle main oil supply device to the first valve port of the variable amplitude lifting control valve 222.
  • the advantage of this arrangement is that it can further ensure that the upper main vehicle oil supply device and the hydraulic energy conversion device 3 used as the upper vehicle oil source are independent of each other, preventing the hydraulic oil from generating unnecessary reverse flow, and improving the hydraulic pressure control of the crane of the embodiment. System stability and reliability.
  • the first valve port of the hoisting lift control valve 212 and the first valve port of the slewing lift control valve 222 are connected to the upper vehicle main oil supply device, so that the upper vehicle main oil supply device can be The car is supplied with oil.
  • the second valve port of the hoisting lift control valve 212 and the second valve port of the slewing lift control valve 222 are also passed through the one-way valve (second shown in FIG. 1).
  • the check valve 223) is connected to the oil tank 7.
  • This arrangement causes the second valve port of the hoisting lift control valve 212 to communicate with the oil tank 7 in a unidirectional direction along the direction from the second valve port of the hoisting lift control valve 212 to the oil tank 7, and the slewing lift control valve 222
  • the second valve port and the oil tank 7 are unidirectionally communicated along the direction from the second valve port of the variable amplitude lifting control valve 222 to the oil tank 7, since the oil can be prevented from being in the oil tank 7 and the winding lifting control valve 212 and the variable amplitude Undesired reverse flow occurs between the lift control valves 222, and therefore, the operational stability and reliability of the hydraulic control system of the crane of this embodiment can also be improved.
  • a return oil filter 25 is provided on the connecting oil passage between the second check valve 24 and the oil tank 7, and the oil return filter 25 is used to flow through it. Filtration of the oil in the oil return tank 7 is advantageous for improving the purity of the oil in the oil tank 7, and further improving the operational reliability of the hydraulic control system of the crane.
  • the working energy recovery device is used to cooperate with the hydraulic energy conversion device 3 to realize the work energy recovery function.
  • the working energy recovery device can recover the gravitational potential energy during the hoisting drop operation, and can recover the gravitational potential energy during the sag drop operation, so that the crane hydraulic control system of the embodiment
  • the achievable energy recovery function includes both the energy recovery function of the hoisting drop operation and the energy recovery function of the variable amplitude drop operation.
  • the working energy recovery device of this embodiment includes a first accumulator 51, a first accumulator control valve 53, and an energy recovery switching valve 54, wherein: the first accumulator 51 is used to store a falling operation process The energy recovered in the medium can be connected to the first working port A through the first energy storage control valve 53; the first energy storage control valve 53 serves as a third on-off control device connected to the first energy storage device Between the 51 and the first working port A, for controlling the on and off of the first accumulator 51 and the first working port A; the energy recovery switching valve 54 is used as an energy recovery switching device connected to the on/off switching valve 4 Between the second valve port and the execution control mechanism, not only the second valve port for controlling the upper and lower vehicle switching valve 4 is switchably connected to one of the riser H and the rodless cavity of the variable amplitude cylinder 221 to switch the volume The falling energy recovery function and the variable-falling operation energy recovery function are also used to control the opening and closing between the second valve port of the upper and lower vehicle switching valve 4
  • the first accumulator control valve 53 of this embodiment includes a first valve port and a second valve port, and the first valve port of the first accumulator control valve 53 is in communication with the first working port A.
  • the second valve port of the first accumulator control valve 53 is in communication with the first accumulator 51; and the first accumulator control valve 53 has a first operating state (corresponding to the left position in FIG. 1) and a second operating state ( Corresponding to the right position in FIG.
  • the on-off between the first accumulator 51 and the first working port A can be controlled, and the first energy storage can be controlled when the energy of the falling operation process needs to be recovered.
  • the control valve 53 is in the first working state, so that the pump motor 31 operating in the motor operating condition can transport the upper return oil to the first accumulator 51 for recovery and storage, and the first valve of the first accumulator control valve 53
  • the port and the second valve port are unidirectionally communicated along the direction from the first working port A to the first accumulator 51, so after the recovery is completed, the first accumulator
  • the hydraulic oil stored in 51 cannot flow out in the reverse direction, and the reliable storage of the hydraulic energy can be realized.
  • the first energy storage control valve 53 can be controlled to switch to the second working state.
  • the hydraulic oil stored in the first accumulator 51 is released, assisting the oil suction function of the lift pump motor 31.
  • first valve port and the second valve port of the first accumulator control valve 53 in the first working state achieve the above-described one-way communication by a one-way valve connected therebetween, but it should be noted that in other embodiments of the present invention, the first valve port and the second valve port of the first energy storage control valve 53 may also be disconnected in the first working state, for example, the first energy storage control valve 53 may be The first valve port and the second valve port are both closed in the first working state or may cause the first valve port and the second valve port of the first energy storage control valve 53 to pass through two reversely arranged singles in the first working state.
  • the first accumulator control valve 53 shown in FIG. 1 is a two-position two-way solenoid valve having a control end Y3, so that the first accumulator control valve 53 can be conveniently controlled by controlling whether or not the control terminal Y3 is energized. Switching between an operational state and a second operational state, but those skilled in the art will appreciate that the first energy storage control valve 53 is not limited to this particular configuration.
  • the energy recovery switching valve 54 of this embodiment is a three-position four-way valve having control terminals Y51 and Y52, which includes a first valve port, a second valve port, a third valve port, and a fourth valve port.
  • the first valve port of the energy recovery switching valve 54 communicates with the second valve port of the upper and lower vehicle switching valve 4, the second valve port of the energy recovery switching valve 54 communicates with the rise port H, and the third of the energy recovery switching valve 54
  • the valve port and the rodless cavity of the horn cylinder 221 are unidirectionally communicated in the direction from the second valve port to the rodless cavity of the variator cylinder 221, and the fourth valve port of the energy recovery switching valve 54 is controlled by the hoisting motor
  • the device and the luffing cylinder control device are connected.
  • the energy recovery switching valve 54 has a first valve position (right position in FIG. 1), a second valve position (left position in FIG. 1), and a third valve position (in FIG.
  • the energy recovery switching valve 54 when it is necessary to return the gravitational potential energy during the hoisting drop operation At the time of receiving, the energy recovery switching valve 54 can be controlled to switch to the first valve position, so that the hydraulic oil flowing out from the riser H during the hoisting down operation can be switched to the second working state by the energy recovery switching valve 54.
  • the valve 4 and finally, under the driving action of the pump motor 31 under the working condition of the motor, flows into the first accumulator 51 to realize the energy recovery function of the hoisting drop operation;
  • the energy recovery switching valve 54 can be controlled to switch to the second valve position, so that the hydraulic oil flowing out of the rodless chamber of the variable amplitude cylinder 221 during the variable amplitude falling operation can flow through the energy recovery switching valve 54.
  • the upper and lower vehicle switching valve 4 in the second working state finally flows into the first accumulator 51 under the driving action of the pump motor 31 operating under the motor operating condition, thereby realizing the energy recovery function of the variable amplitude falling operation; and, when When the vehicle is in normal operation and the vehicle energy recovery is not required, the energy recovery switching valve 54 can be controlled to be in the third valve position, so that the pump motor 31 operating in the pump operating condition can drive the hydraulic oil.
  • the switching valve 4 and the energy recovery switching valve 54 and a flow control means luffing winch motor cylinder control apparatus Off in the second operating state by the switching valve 4 and the energy recovery switching valve 54 and a flow control means luffing winch motor cylinder control apparatus, the normal operation of the vehicle so as to realize the function of oil.
  • the third valve port of the energy recovery switching valve 54 and the above-described one-way communication of the rod chamber of the horn cylinder 221 are realized by the splay balancing valve 2231.
  • the third valve port of the energy recovery switching valve 54 is in communication with the first valve port of the amplitude-balancing balancing valve 2231, so that when the amplitude-balancing balancing valve 231 is in the first working state, the third of the energy recovery switching valve 54 can be made.
  • the valve port and the rodless cavity of the horn cylinder 221 are unidirectionally communicated in a direction from the second valve port to the slewing cylinder 221 without the rod cavity.
  • the advantage of this arrangement is that not only is the work safety higher, but it is also convenient to adjust the weight drop speed by using the amplitude equalization balance valve 2231 in the initial stage of realizing the variable amplitude drop energy recovery process.
  • the fourth valve port of the energy recovery switching valve 54 is connected to the hoisting motor control device, and in this embodiment is specifically the fourth valve port of the energy recovery switching valve 54 and the hoisting lifting control valve.
  • the connection of the first valve port of 212, and the connection of the fourth valve port of the energy recovery switching valve 54 to the slewing motor control device, in this embodiment, specifically the fourth valve port and the amplitude of the energy recovery switching valve 54 The connection of the first valve port of the lift control valve 222.
  • the hydraulic energy conversion device 3 can supply the hoisting motor 211 with the hoisting and lowering control valve 212 through the hoisting and lowering control valve 212 together with the upper vehicle main oil supply device and/or through the slewing and lowering control valve 221
  • the variable oil cylinder 221 is supplied with oil.
  • the fourth valve port of the energy recovery switching valve 54 and the first valve port of the hoisting and lowering control valve 212 and the first valve port of the variable amplitude lifting control valve 222 are connected to the oil passage.
  • a third check valve 56 is also provided.
  • the third check valve 56 is provided to further ensure the upper main oil supply device and the oil source for the upper vehicle.
  • the hydraulic energy conversion devices 3 are independent of each other. And simultaneously providing the first check valve 23 and the third check valve 56, the hydraulic oil supplied from one of the upper main oil supply device and the hydraulic energy conversion device 3 can be prevented from flowing to the other, and the hydraulic pressure supplied by the two can be ensured. The oil flows as expected, allowing the crane hydraulic control system to work more reliably and reliably.
  • the energy recovery switching valve 54 between the second valve port and the execution control mechanism connected to the upper and lower vehicle switching valve 54 is controlled to switch between the three valve positions, thereby facilitating switching to realize energy recovery of the hoisting drop operation.
  • the function and the variable-falling operation energy recovery function also facilitate the hydraulic energy conversion device 3 to realize the normal operation oil supply function of the vehicle.
  • the energy recovery switching valve 54 of this embodiment has two control terminals Y51 and Y52, and two control terminals Y51 and At least one of the Y52s may be electrically coupled to the controller 9, and the energy recovery switching valve 54 is controlled by the controller 9 to switch between the three valve positions.
  • the work energy recovery device further includes an upper vehicle pressure detecting device 55 and a first energy storage pressure detecting device 52.
  • the upper vehicle pressure detecting device 55 is for detecting the pressure of the execution control mechanism. Specifically, as can be seen from FIG. 1, the upper vehicle pressure detecting device 55 of this embodiment is disposed on the connecting oil passage between the second valve port of the upper and lower vehicle switching valve 4 and the first valve port of the energy recovery switching valve 54, which is convenient.
  • the boarding-up pressure detecting device 55 detects the pressure of the execution control mechanism during the boarding-down operation, so that it is possible to determine whether the work energy recovery function needs to be performed according to the pressure of the execution control unit, which is accurate and convenient; and, in the embodiment, The vehicle pressure detecting device 55 is electrically connected to the controller 9, which enables the boarding pressure detecting device 55 to timely feedback the detected pressure of the executing control mechanism to the controller 9, thereby facilitating the controller 9 to perform work energy
  • the hydraulic valves that control the hydraulic control system of the crane and the pump motor 31 are in a desired working state during recovery.
  • the first accumulator pressure detecting means 52 is for detecting the pressure of the first accumulator 51.
  • the first accumulator pressure detecting device 52 of the embodiment is disposed on the connecting oil passage between the first accumulator 51 and the first accumulator control valve 53, so that the first accumulating energy is facilitated.
  • the pressure detecting device 52 detects the pressure in the first accumulator 51 during the work energy recovery process, so that the first working port A and the first accumulator 51 are controlled after the pressure in the first accumulator 51 reaches the set value.
  • the first energy storage pressure detecting device 52 of this embodiment is also electrically connected to the controller 9, so that the controller 9 can
  • the pressure of the first accumulator 51 conveniently and accurately controls the respective hydraulic valves and the pump motor 31 and the like in a desired operational state.
  • the driving energy recovery device is used to cooperate with the hydraulic energy conversion device 3 to realize the driving energy recovery function.
  • the driving energy recovery device includes a second accumulator 61, a second accumulator control valve 63, and a second accumulator pressure detecting device 62, wherein: the second accumulator 61 is used
  • the energy recovered during the storage of the running brake can be connected to the second working port B through the second energy storage control valve 63;
  • the second energy storage control valve 63 serves as a fourth switching control device, which is connected Between the second accumulator 61 and the second working port B, for controlling the opening and closing of the second accumulator 61 and the second working port B;
  • the second accumulating pressure detecting device 62 is for detecting the second accumulating energy The pressure of the device 61.
  • the second accumulator control valve 63 of this embodiment includes a first valve port and a second valve port, and the first valve port of the second accumulator control valve 63 is in communication with the second working port B.
  • the second valve port of the second accumulator control valve 63 is in communication with the second accumulator 61; and the second accumulator control valve 63 has a first operating state (corresponding to the left position in FIG. 1) and a second operating state ( Corresponding to the right position in FIG.
  • the second accumulator control valve 63 By providing the second accumulator control valve 63, the on/off between the second accumulator 61 and the second working port B can be controlled, and the second can be controlled when the energy of the running brake process needs to be recovered.
  • the accumulator control valve 63 is switched to the second working state, so that the pump motor 31 operating in the pump operating condition can output the hydraulic oil to the second accumulator 61 under the driving of the prime mover 1 for recovery and storage, and can be controlled after the recovery is completed.
  • the second accumulator control valve 63 is switched to the first operating state, preventing the hydraulic oil from re-entering the second accumulator 61, and also preventing the hydraulic oil stored in the second accumulator 61 from flowing out, and when it is necessary to reuse the stored
  • the second accumulator control valve 63 is controlled to switch to the second working state, so that the hydraulic oil stored in the second accumulator 61 can flow to the pump operating in the motor condition via the second accumulator control valve 63.
  • the motor 31 outputs mechanical energy to assist the crane to start or climb the slope.
  • the first valve port and the second valve port of the second accumulator control valve 63 in the first operating state are interrupted by two check valves arranged in opposite directions.
  • the second valve port of the second accumulator control valve 63 can be set to be directly cut off in the first working state.
  • the open state of the first valve port and the second valve port of the valve 63 in the first operating state can be controlled; moreover, the control end of the second accumulator control valve 63 of this embodiment Y4 is electrically coupled to the controller 9, which enables the controller 9 to conveniently control the second accumulator control valve 63 to switch between the first operational state and the second operational state.
  • the second accumulator pressure detecting means 62 is for detecting the pressure of the second accumulator 61.
  • the second accumulator pressure detecting device 62 of this embodiment is disposed on the connecting oil passage between the second accumulator 61 and the second accumulator control valve 63, thereby facilitating the second accumulating energy.
  • the pressure detecting device 62 detects the pressure in the second accumulator 61 during the running energy recovery process, and controls the second working port B and the second accumulator 61 after the pressure in the second accumulator 61 reaches the set value.
  • the second accumulator pressure detecting device 62 of this embodiment is also electrically connected to the controller 9, so that the controller 9 can be conveniently according to the pressure of the second accumulator 61 and The hydraulic valves, the pump motor 31, and the like are accurately controlled to be in a desired working state.
  • the clutch control device 82 controls the clutch 81 to be in the off state.
  • the hydraulic energy conversion device 3 and the prime mover 1 are in the power cut state, the hydraulic energy conversion device 3 does not operate, and the prime mover 1 drives the crane.
  • Driving normally In the process, it is possible to determine whether the driving brake can be performed according to parameters such as the foot brake pedal position of the crane, the gear position of the gearbox, and the pressure of the second accumulator 61 detected by the second accumulator pressure detecting device 62. Kinetic energy is recovered, and if possible, the driving energy recovery function is activated.
  • the control terminal Y10 of the clutch control device 82 is energized, the control clutch 81 is switched to the engaged state, and the hydraulic energy conversion device 3 and the prime mover 1 are switched to the power connection state, so that the original The driving inertia energy (mechanical energy) generated by the motive 1 and the transmission can be input to the pump motor 31.
  • the variable control mechanism 331 controls the pump motor 31 to be in the pump operating condition, and energizes the control terminal Y4 of the second accumulator control valve 63.
  • the pump motor 31 can pump the oil from the tank 7 and pressurize it, and then output it to the second via the second working port B and the second accumulator control valve 63.
  • the mechanical energy during the running brake is converted into hydraulic energy stored in the second accumulator 61 to realize the running energy recovery function.
  • the auxiliary pump 32 is also driven to perform the replenishment of the first working port A, and the pressure oil pumped from the oil tank 7 is connected to the first working port A via the oil outlet thereof.
  • the oil passage flows to the first working port A, is pressurized by the pump motor 31 together with the oil pumped from the oil tank 7 by the pump motor 31, and is sent to the second accumulator 61.
  • the second accumulator pressure detecting device 62 can detect the pressure in the second accumulator 61 in real time, and when detecting that the pressure in the second accumulator 61 reaches a certain threshold, control The second accumulator control valve 63 is switched to the first operating state so that the pressurized oil no longer flows into the second accumulator 61, improving the safety of the running energy recovery process.
  • the above-mentioned recovered running brake energy can be utilized again when needed (for example, when the crane is started next time): the pump motor 31 is controlled to switch to the motor operating condition, and the control end Y4 of the second accumulator control valve 63 is The control end Y1 of the check valve 331 is opened and closed, and the second accumulator control valve 63 is controlled to switch to the second working state and the hydraulic check valve 33 is controlled to open bidirectionally.
  • the clutch 81 is operated, and the second accumulator is operated.
  • the hydraulic oil stored in 61 can be returned to the oil tank 7 via the second accumulator control valve 63 and the pump motor 31 and the pilot check valve 33, so that the hydraulic energy stored in the second accumulator 61 can be released and driven.
  • the auxiliary pump 32 is also driven to operate, and the hydraulic oil pumped from the oil tank 7 flows through the oil outlet port and the charge check valve 341 to the second working port B to realize the second working port B.
  • Replenishing oil which makes the discharge process smoother and more efficient, and helps to further extend the service life of the pump motor 31 because, when the discharge is completed, the pressure oil in the first accumulator 61 stops flowing, even if When the clutch 81 is cut off, the pump motor 31 will continue to rotate under the action of the inertia of motion, so that the oil in the connecting oil passage between the second working port B and the second accumulator pressure control valve 63 will quickly pass through the pump.
  • the motor 31 is returned to the oil tank 7. At this time, if no oil is replenished into the second working port B, the pump motor 31 generates air absorbing corrosion, which affects the service life of the pump motor 31 and the smoothness of the discharging process.
  • the upper vehicle main oil supply device and the hydraulic energy conversion device 3 are both used as the upper vehicle oil source to supply oil to the execution control mechanism.
  • the hydraulic oil supplied from the upper vehicle oil supply device is output to the execution control mechanism through the first check valve 23.
  • the control clutch 81 is in the engaged state and the pump motor 31 is adjusted to be in the pump working condition, and the upper and lower vehicle switching valve 4 is provided.
  • the control terminal Y2 is energized to switch the upper and lower vehicle switching valve 4 to the second valve position.
  • the control terminal Y1 of the check valve control valve 331 and the control terminals Y51 and Y52 of the energy recovery switching valve 54 are not energized, and the hydraulic control unit is controlled.
  • the valve 33 can only be opened in one direction and the energy recovery switching valve 54 is in the third valve position (median position), so that the hydraulic energy conversion device 3 can pressurize the oil and drive from the second under the driving action of the prime mover 1.
  • the pressure oil flowing out of the working port B flows into the execution control mechanism via the upper and lower vehicle switching valve 4 and the energy recovery switching valve 54 to supply oil to the upper vehicle.
  • both the pump motor 31 and the auxiliary pump 32 pump oil from the oil tank 7, and the pressure oil pumped by the auxiliary pump 32 flows through the connecting oil passage between the oil outlet of the auxiliary pump 32 and the first working port A.
  • a working port A flows out from the second working port B to the execution control mechanism together with the oil pumped from the oil tank 7 by the pump motor 31 through the pressurization of the pump motor 31.
  • the control end Y62 of the hoisting lift control valve 212 is energized and the control end Y9 of the hoisting balance valve 2131 is out of hydraulic oil, so that the hoisting lift control valve 212 is in the first working state. (upper position) and the hoisting balance valve 2131 is in the first operating state (left position), therefore, the pressure oil supplied from the upper vehicle main oil supply device and the pressure oil supplied from the hydraulic energy conversion device 3 can be passed through the hoisting lift control valve 212.
  • the hoisting balance valve 2131 flows into the lift H of the hoisting motor 211, and flows back from the drop D through the hoisting lift control valve 212 and the second check valve 24 to the oil tank 7, so that the hoisting motor 211 can drive the roll Yang forwards, driving heavy objects to lift, and achieving lifting and lifting operations.
  • the control end Y61 of the hoisting lift control valve 212 is energized and the control end Y9 of the hoisting balance valve 2131 is open to the hydraulic oil, so that the hoisting lift control valve 212 is in the second working state (lower position) And the hoisting balance valve 2131 is in the second operating state (right position), so that the pressure oil supplied from the upper vehicle oil supply device and the pressure oil supplied from the hydraulic energy conversion device 3 can flow into the roll via the hoisting lift control valve 212.
  • the drop D of the motor 211 is returned from the riser H to the oil tank 7 via the winding balance valve 2131, the hoisting lift control valve 212 and the second check valve 24, so that the hoisting motor 211 can drive the hoisting reverse , to drive heavy objects to fall, to achieve the hoisting drop operation.
  • the pressure oil supplied from the upper vehicle oil supply device and the pressure oil supplied from the hydraulic energy conversion device 3 can pass through the upper position of the slewing and lowering control valve 222 and the variable amplitude balancing valve 2231.
  • the left position flows into the rodless chamber of the variable amplitude cylinder 221, and the oil in the rod chamber 221 has the oil in the rod chamber can be returned to the oil tank 7 via the variable amplitude lifting control valve 222 and the second check valve 24, so that the variable amplitude cylinder 221
  • the cylinder rod extends to drive the heavy object to lift and realize the variable amplitude lifting operation; and during the variable amplitude falling operation, the pressure oil supplied by the upper main oil supply device and the pressure oil supplied by the hydraulic energy conversion device 3 can also
  • the lower position of the variable amplitude lifting control valve 222 flows into the rod cavity of the variable amplitude cylinder 221, and the oil in the rodless chamber of the variable amplitude cylinder 221 can pass through the right position of the variable amplitude balance valve 2231, the variable amplitude lifting control valve 222 and the
  • the two check valves 24 are returned to the oil tank 7, so that the cylinder rod of the variable amplitude cylinder 221 is retracted, and the weight is lowered to realize the
  • the loading pressure detecting device 55 can be used to detect the pressure of the executing control mechanism, and based on the detected pressure value, it is determined whether the falling operation is required. The gravitational potential energy is recovered and, if necessary, the operational energy recovery function is initiated.
  • Hoisting drop operation energy recovery process During the hoisting drop operation, if the upper vehicle pressure detecting device 55 detects that it is necessary to recover the energy during the hoisting drop operation, the energy recovery can be cut. The control terminal Y51 of the valve 54 is energized, and the control energy recovery switching valve 54 is switched to the first valve position (right position).
  • the upper and lower vehicle switching valve 4 is in the second working state (right position), and the winding balancing valve 2131 is in the first In a working state (left position), the first accumulator control valve 53 is in the first working state (left position), and the hydraulic control end of the pilot operated check valve 33 is not in oil (ie, the connection from the first working port A to the fuel tank 7)
  • the clutch 81 is in the engaged state. Therefore, when the pump motor 31 is controlled to switch to the motor operating condition, the hydraulic oil flowing out from the riser H during the falling of the weight can be recovered by the pump motor 31 via the energy recovery.
  • the switching valve 54, the upper and lower vehicle switching valve 4, the second working port B, the first working port A, and the first energy storage control valve 53 flow into the first accumulator 51 to cause the gravitational potential energy lost during the hoisting operation. It is converted into hydraulic energy and stored in the first accumulator 51 to realize the energy recovery function of the hoisting drop operation.
  • the falling speed of the weight can be controlled by adjusting the displacement of the pump motor 31, since it is not necessary to use the hoisting balance valve 2131 to adjust the weight falling speed, thereby contributing to reduction
  • the system generates heat to improve the system performance; moreover, the mechanical energy outputted by the pump motor 31 operating in the motor working condition can be further utilized to assist the prime mover 1 to drive the upper vehicle main oil supply device, and the winch lifting control valve 212 is controlled to be in the second work.
  • the state (lower position) and the hoisting balance valve 2131 are in the first working state, so that the upper lord oil supply device can replenish the sump D through the first check valve 23 and the hoisting lift control valve 212 during the process, which can Reducing the risk of air erosion due to the drop D helps to extend the service life of the hoist motor 211 and helps to improve the smoothness of the energy process.
  • the pump motor 31 can also be switched to Before the motor operating condition, the pump motor 31 is controlled to operate under the pump working condition, so that the pump motor 31 can hold the load by filling the connecting oil passage between the second working port B and the rising port H, and then pressurizing the load, and then The pump motor 31 is further adjusted to gradually switch to the motor operating condition, so as to prevent the hoisting motor 211 from being hoisted due to the oil filling pressure in the connecting oil passage between the second working port B and the rising port H.
  • the brake is opened, an instantaneous high-speed rotation occurs, causing the weight to wobble and affect the drop stability.
  • the energy recovery switching valve 54 can be controlled to switch to the second valve position (left position), and the variable amplitude lifting can be controlled.
  • the control valve 222 is in the third working state (median position).
  • the getting on and off switching valve 4 is also in the second working state (right position), and the first energy storage control valve 53 Also in the first working state (left position), the hydraulic control end of the pilot operated check valve 33 is also not oiled (ie, by the first working port) A is connected to the fuel tank 7 and the clutch 81 is also in the engaged state.
  • variable amplitude balancing valve 2231 is controlled to be in the second operating state (right position), and the pump motor 31 is controlled to switch to the motor operating condition.
  • the hydraulic oil flowing out of the rodless chamber of the variable-width cylinder 221 during the falling process can be driven by the pump motor 31 via the variable-amplitude balance valve 2231, the energy recovery switching valve 54, the upper and lower vehicle switching valve 4, and the second working port B.
  • the first working port A and the first accumulator control valve 53 flow into the first accumulator 51, so that the gravitational potential energy lost during the luffing operation is converted into hydraulic energy and stored in the first accumulator 51. Achieve the energy recovery function of the variable amplitude drop operation.
  • the second valve port is in communication with the fourth valve port, so that the variable can be realized by introducing another oil source at the second valve port.
  • the oil cylinder 221 has a rod cavity replenishing oil to prevent the occurrence of suction.
  • the pump motor 31 can also be controlled to work under the pump working condition to realize the pressure build-up, and then gradually control.
  • the pump motor 31 is switched to the motor operating condition.
  • the pressure oil outputted by the auxiliary pump 32 is firstly supplied together with the hydraulic oil outputted by the pump motor 31.
  • the accumulator control valve 53 flows into the first accumulator 51 for storage; and the first accumulator pressure detecting means 52 detects the pressure in the first accumulator 51 when the first accumulator pressure detecting means 52 detects After the pressure in the first accumulator 51 reaches a certain threshold, the control terminal Y1 of the check valve control valve 331 can be energized, so that the pilot operated check valve 33 is opened bidirectionally due to the oil passage of the hydraulic control end, thereby making the pump motor The hydraulic oil outputted by the auxiliary pump 32 and 31 can be returned to the tank 7 via the pilot check valve 33 to perform unloading.
  • the energy recovered by the energy recovery process of the hoisting drop operation or the energy recovered during the energy recovery process of the above-mentioned variable-falling operation can be re-applied during the next operation of the vehicle.
  • the first accumulator 51 is driven by the pump motor 31.
  • Stored in The pressure oil can be released, outputted to the first working port A, assisting the oil absorption performance of the pump motor 31, preventing the pump motor 31 from generating an air suction, so that the hydraulic energy conversion device 3 can better provide for the normal working process of the vehicle. oil.
  • the embodiment can conveniently realize the driving energy recovery function, the energy recovery function of the hoisting drop operation, and the energy recovery function of the variable amplitude falling operation, which can make the driving brake process
  • the kinetic energy and the gravitational potential energy during the falling operation are reused. Therefore, the energy loss caused by the direct conversion of these energy into heat energy can be effectively reduced, and the purpose of energy saving and emission reduction can be achieved.
  • the hydraulic control system of the crane of the embodiment has a relatively simple structure and a low cost. When the three energy recovery functions are separately implemented, only the clutch control device 82, the pump motor 31, and the energy recovery switching valve 54 are controlled. The components (two proportional signals and two switching signals) can be used, the control process is simpler and the control precision is higher.
  • the first energy storage pressure detecting device 51, the second energy storage pressure detecting device 52, and the boarding pressure detecting device 55 may each be in the form of a pressure sensor or the like.
  • the hydraulic valves that are electronically commutated may actually be reversed by means of hydraulic control or mechanical control, and similarly, hydraulically commutated.
  • the hydraulic valves can also be reversed by means of electronic control or mechanical control.
  • the hydraulic valves shown in the above embodiments all adopt a single valve structure, each working state of each hydraulic valve and each of the respective valve positions are One-to-one correspondence, but it should be noted that each hydraulic valve can actually use a combination of several valves to achieve the corresponding function. In this case, each working state of each hydraulic valve is no longer limited to one.
  • One of the valve positions of the valve corresponds, but these variations are also intended to be within the scope of the present invention.

Abstract

一种起重机液压控制系统和起重机,起重机液压控制系统包括原动机(1)、执行控制机构、液压能量转换装置(3)、行驶能量回收装置和作业能量回收装置,且通过作业能量回收装置及行驶能量回收装置与液压能量转换装置(3)的配合,能够将起重机行驶制动过程中的动能及重物下落过程中的势能分别转化为液压能进行回收存储并加以再次利用。通过上述结构,实现了对起重机上车能量和下车能量的回收利用,有效减少能源浪费。

Description

起重机液压控制系统和起重机 技术领域
本发明涉及起重机技术领域,特别涉及一种起重机液压控制系统和起重机。
背景技术
现有的起重机,在下车行驶制动过程中以及在上车执行重物下落作业过程中,均存在能量浪费现象,制动过程中的动能以及重物下落过程中的重力势能通常转化为热能散失掉,这会增加油耗及有害气体的排放,影响制动装置、原动机及液压系统的使用寿命。
发明内容
本发明所要解决的一个技术问题是:对起重机行驶制动过程中的动能以及重物下落过程中的势能进行回收,减少能源浪费。
为了解决上述技术问题,本发明提供了一种起重机液压控制系统,其包括能够驱动起重机行驶的原动机、用于控制起重机的执行机构实施作业的执行控制机构、与原动机具有动力连接状态的液压能量转换装置、行使能量回收装置和作业能量回收装置,其中:
液压能量转换装置包括能够可切换地工作于泵工况和马达工况的泵马达,泵马达具有与油箱可通断连接的第一工作口和与执行控制机构可通断连接的第二工作口;行使能量回收装置包括与第一工作口可通断地连接的第一蓄能器,作业能量回收装置包括与第二工作口可通断地连接第二蓄能器;
作业能量回收装置与液压能量转换装置配合,能够将执行机构执行重物下落作业过程中的重力势能转化为液压能储存于第一蓄能器中,实现作业能量回收功能,此时,泵马达处于马达工况,第一工作口与第一蓄能器连通且由第一工作口至油箱的油路断开,第二工作口与执行控制机构连通并与第二蓄能器断开;
行驶能量回收装置与液压能量转换装置配合,能够将起重机行驶制动过程中的机械能转化为液压能储存于第二蓄能器中实现行驶能量回收功能,此时,泵马达处于泵工况,第一工作口与油箱连通,第二工作口与第二蓄能器连通并与执行控制机 构断开。
可选地,液压能量转换装置还能够在执行机构正常执行作业时为执行控制机构供给液压油,此时,泵马达处于泵工况,第一工作口与油箱连通,第二工作口与执行控制机构连通并与第二蓄能器断开。
可选地,起重机液压控制系统还包括用于控制第一工作口与油箱通断的第一通断控制装置和用于控制第二工作口与执行控制机构通断的第二通断控制装置,作业能量回收装置还包括用于控制第一蓄能器与第一工作口通断的第三通断控制装置,行驶能量回收装置还包括用于控制第二蓄能器与第二工作口通断的第四通断控制装置,其中:
在实现作业能量回收功能时,第一通断控制装置控制由第一工作口至油箱的油路断开,第二通断控制装置控制第二工作口与执行控制机构连通,第三通断控制装置控制第一工作口与第一蓄能器连通,且第四通断控制装置控制第二工作口与第二蓄能器断开;
在实现行驶能量回收功能时,第一通断控制装置控制第一工作口与油箱连通,第二通断控制装置控制第二工作口与执行控制机构断开,且第四通断控制装置控制第二工作口与第二蓄能器连通。
可选地,第一通断控制装置包括液控单向阀,液控单向阀的进油口与油箱连通,液控单向阀的出油口与第一工作口连通;和/或,第二通断控制装置包括上下车切换阀,上下车切换阀包括第一阀口和第二阀口,上下车切换阀的第一阀口与第二工作口连通,上下车切换阀的第二阀口与执行控制机构连通,且上下车切换阀具有第一工作状态和第二工作状态,当上下车切换阀处于第一工作状态时,上下车切换阀的第一阀口与第二阀口断开,当上下车切换阀处于第二工作状态时,上下车切换阀的第一阀口与第二阀口连通;和/或,第三通断控制装置包括第一蓄能控制阀,第一蓄能控制阀包括第一阀口和第二阀口,第一蓄能控制阀的第一阀口与第一工作口连通,第一蓄能控制阀的第二阀口与第一蓄能器连通,且第一蓄能控制阀具有第一工作状态和第二工作状态,当第一蓄能控制阀处于第一工作状态时,第一蓄能控制阀的第一阀口与第二阀口断开,或者,第一蓄能控制阀的第一阀口与第二阀口沿着由第一工作口至第一蓄能器的方向单向连通,当第一蓄能控制阀处于第二工作状态时,第一蓄能控制阀的第一阀口与第二阀口连通;和/或,第四通断控制装置包括 第二蓄能控制阀,第二蓄能控制阀包括第一阀口和第二阀口,第二蓄能控制阀的第一阀口与第二工作口连通,第二蓄能控制阀的第二阀口与第二蓄能器连通,且第二蓄能控制阀具有第一工作状态和第二工作状态,当第二蓄能控制阀处于第一工作状态时,第二蓄能控制阀的第一阀口与第二阀口断开,当第二蓄能控制阀处于第二工作状态时,第二蓄能控制阀的第一阀口与第二阀口连通。
可选地,执行控制机构包括用于控制执行机构的卷扬执行卷扬起升和卷扬下落作业的卷扬控制机构,卷扬控制机构包括具有升口和落口的卷扬马达,上下车切换阀的第二阀口与升口连接,且当卷扬控制机构控制卷扬执行卷扬重物下落作业时,上下车切换阀的第二阀口能够与升口连通,以实现卷扬下落作业能量回收功能;和/或,执行控制机构包括用于控制执行机构执行变幅起升和变幅下落作业的变幅控制机构,变幅控制机构包括变幅油缸,上下车切换阀的第二阀口与变幅油缸的无杆腔连接,且当变幅控制机构控制执行机构执行变幅下落作业时,上下车切换阀的第二阀口能够与变幅油缸的无杆腔连通,以实现变幅下落作业能量回收功能。
可选地,执行控制机构包括卷扬控制机构和变幅控制机构,作业能量回收装置还包括设置于上下车切换阀的第二阀口与执行控制机构之间的能量回收切换装置,能量回收切换装置用于控制上下车切换阀的第二阀口可切换地与升口和变幅油缸的无杆腔中的一个连通,以切换实现卷扬下落作业能量回收功能和变幅下落作业能量回收功能。
可选地,能量回收切换装置包括能量回收切换阀,能量回收切换阀包括第一阀口、第二阀口和第三阀口,能量回收切换阀的第一阀口与上下车切换阀的第二阀口连通,能量回收切换阀的第二阀口与升口连通,能量回收切换阀的第三阀口与变幅油缸的无杆腔连通,且能量回收切换阀具有第一工作状态和第二工作状态,当能量回收切换阀处于第一工作状态时,能量回收切换阀的第一阀口与第二阀口连通且第三阀口截止,当能量回收切换阀处于第二工作状态时,能量回收切换阀的第一阀口与第三阀口连通且第二阀口截止。
可选地,能量回收切换阀还包括第四阀口,能量回收切换阀的第四阀口与执行控制机构连通,当能量回收切换阀处于第一工作状态和第二工作状态时,能量回收切换阀的第四阀口均截止,且能量回收切换阀还具有第三工作状态,当能量回收切换阀处于第三工作状态时,能量回收切换阀的第四阀口与第一阀口连通且第二阀口 和第三阀口均截止,以使液压能量转换装置还能够在执行机构正常执行作业时为执行控制机构供油。
可选地,卷扬控制机构还包括卷扬马达控制装置,卷扬马达控制装置用于控制升口和落口中的一个进油且另一个出油,能量回收切换阀的第四阀口通过卷扬马达控制装置与卷扬马达连接;和/或,变幅控制机构还包括变幅油缸控制装置,变幅油缸控制装置用于控制变幅油缸的有杆腔和无杆腔中的一个进油且另一个出油,能量回收切换阀的第四阀口通过变幅油缸控制装置与变幅油缸连接。
可选地,卷扬马达控制装置包括卷扬升降控制阀,卷扬升降控制阀包括第一阀口、第二阀口、第三阀口和第四阀口,卷扬升降控制阀的第一阀口与能量回收切换阀的第四阀口连通,卷扬升降控制阀的第二阀口与油箱连通,卷扬升降控制阀的第三阀口与升口可通断地连接,卷扬升降控制阀的第四阀口与落口连通,卷扬升降控制阀具有第一工作状态和第二工作状态,当卷扬升降控制阀处于第一工作状态时,卷扬升降控制阀的第一阀口与第三阀口连通且第二阀口与第四阀口连通,当卷扬升降控制阀处于第二工作状态时,卷扬升降控制阀的第一阀口与第四阀口连通且第二阀口与第三阀口连通;和/或,变幅油缸控制装置包括变幅升降控制阀,变幅升降控制阀包括第一阀口、第二阀口、第三阀口和第四阀口,变幅升降控制阀的第一阀口与能量回收切换阀的第四阀口连通,变幅升降控制阀的第二阀口与油箱连通,变幅升降控制阀的第三阀口与变幅油缸的无杆腔可通断地连接,变幅升降控制阀的第四阀口与变幅油缸的有杆腔连通,变幅升降控制阀具有第一工作状态和第二工作状态,当变幅升降控制阀处于第一工作状态时,变幅升降控制阀的第一阀口与第三阀口连通且第二阀口与第四阀口连通,当变幅升降控制阀处于第二工作状态时,变幅升降控制阀的第一阀口与第四阀口连通且第二阀口与第三阀口连通。
可选地,变幅马达控制装置还包括变幅平衡阀,变幅平衡阀包括第一阀口和第二阀口,变幅平衡阀的第一阀口与变幅升降控制阀的第三阀口连通,变幅平衡阀的第二阀口变幅油缸的无杆腔连通,且变幅平衡阀具有第一工作状态和第二工作状态,当变幅平衡阀处于第一工作状态时,变幅平衡阀的第一阀口与第二阀口沿着由变幅升降控制阀的第三阀口至变幅油缸的无杆腔的方向单向连通,当变幅平衡阀处于第二工作状态时,变幅平衡阀的第一阀口与第二阀口连通;能量回收切换阀的第三阀口与变幅平衡阀的第一阀口连通。
可选地,卷扬升降控制阀的第一阀口还与起重机的上车主供油装置连接,以使上车主供油装置也能够为卷扬控制机构供油;和/或,变幅升降控制阀的第一阀口还与上车主供油装置连接,以使上车主供油装置也能够为变幅控制机构供油。
可选地,卷扬升降控制阀的第一阀口与能量回收切换阀的第四阀口沿着由能量回收切换阀的第四阀口至卷扬升降控制阀的第一阀口的方向单向连通,且卷扬升降控制阀的第一阀口与主供油装置之间沿着由主供油装置至卷扬升降控制阀的第一阀口的方向单向连通;和/或,变幅升降控制阀的第一阀口与能量回收切换阀的第四阀口沿着由能量回收切换阀的第四阀口至变幅升降控制阀的第一阀口的方向单向连通,且变幅升降控制阀的第一阀口与主供油装置之间沿着由主供油装置至变幅升降控制阀的第一阀口的方向单向连通。
可选地,起重机液压控制系统还包括动力传递控制装置,动力传递控制装置用于控制原动机与液压能量转换装置之间在动力连接状态和动力切断状态之间切换,其中,在实现行驶能量回收功能的过程中以及在实现作业能量回收功能的过程中,动力传递控制装置控制液压能量转换装置与原动机之间处于动力连接状态。
可选地,在执行机构正常执行作业的过程中,动力传递控制装置也控制液压能量转换装置与原动机之间处于动力连接状态。
可选地,液压能量转换装置还包括辅助泵,辅助泵的进油口与油箱连通,辅助泵的出油口与第一工作口连通。
可选地,辅助泵的出油口还与第二工作口连接,且在泵马达处于马达工况时,辅助泵的出油口能够与第二工作口沿着由辅助泵的出油口至第二工作口的方向单向连通,以使辅助泵能够在泵马达处于马达工况时为泵马达补油。
可选地,液压致动装置还包括连接于辅助泵的出油口与第二工作口之间溢流阀,溢流阀的进油口与第二工作口连通,溢流阀的出油口与辅助泵的出油口连通。
可选地,作业能量回收装置还包括第一蓄能压力检测装置,第一蓄能压力检测装置用于检测第一蓄能器的压力;和/或,行驶能量回收装置还包括第二蓄能压力检测装置,第二蓄能压力检测装置用于检测第二蓄能器的压力;和/或,作业能量回收装置还包括上车压力检测装置,上车压力检测装置用于检测执行控制机构的压力。
本发明另一方面还提供了一种起重机,其包括执行机构和本发明的的起重机液 压控制系统。
本发明的起重机液压控制系统,通过其作业能量回收装置及行使能量回收装置与液压能量转换装置的配合,能够将起重机行驶制动过程中的动能及重物下落过程中的势能分别回收存储于第一蓄能器和第二蓄能器中并加以再次利用,因此,本发明可以实现对起重机上车能量和下车能量的回收利用,有效减少能源浪费。
通过以下参照附图对本发明的示例性实施例进行详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明一实施例的起重机液压控制系统的液压原理图。
图中:
1、原动机;
211、卷扬马达;212、卷扬升降控制阀;213、卷扬平衡控制机构;2131、卷扬平衡阀;2132、卷扬平衡阀控制阀;221、变幅油缸;222、变幅升降控制阀;223、变幅平衡控制机构;2231、变幅平衡阀;变幅平衡阀控制阀;23、第一单向阀;24、第二单向阀;25、回油过滤器;
3、液压能量转换装置;31、泵马达;311、变量控制机构;32、辅助泵;33、液控单向阀;331、单向阀控制阀;34、补油溢流阀;341、补油单向阀;342、溢流阀;
4、上下车切换阀;
51、第一蓄能器;52、第一蓄能压力检测装置;53、第一蓄能控制阀;54、能量回收切换阀;55、上车压力检测装置;56、第三单向阀;
61、第二蓄能器;62、第二蓄能压力检测装置;63、第二蓄能控制阀;
7、油箱;
81、离合器;82、离合器控制装置;
9、控制器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
在本发明的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
图1示出了本发明起重机液压控制系统的一个实施例。参照图1,本发明所提供的起重机液压控制系统,包括能够驱动起重机行驶的原动机1、用于控制起重机的执行机构实施作业的执行控制机构、与原动机1具有动力连接状态的液压能量转换装置3、行使能量回收装置和作业能量回收装置,其中:
液压能量转换装置3包括能够可切换地工作于泵工况和马达工况的泵马达31,泵马达31具有与油箱7可通断连接的第一工作口A和与执行控制机构可通断连接的第二工作口B;行使能量回收装置包括与第一工作口A可通断地连接的第一蓄能器51,作业能量回收装置包括与第二工作口B可通断地连接第二蓄能器61;
作业能量回收装置与液压能量转换装置3配合,能够将执行机构执行重物下落作业过程中的重力势能转化为液压能储存于第一蓄能器51中,实现作业能量回收 功能,此时,泵马达31处于马达工况,第一工作口A与第一蓄能器51连通且由第一工作口A至油箱7的油路断开断开,第二工作口B与执行控制机构连通并与第二蓄能器61断开;
行驶能量回收装置与液压能量转换装置3配合,能够将起重机行驶制动过程中的机械能转化为液压能储存于第二蓄能器61中实现行驶能量回收功能,此时,泵马达31处于泵工况,第一工作口A与油箱7连通,第二工作口B与第二蓄能器61连通并与执行控制机构断开。
本发明的起重机液压控制系统,通过其作业能量回收装置及行使能量回收装置与液压能量转换装置3的配合,能够将起重机行驶制动(刹车)过程中的动能及重物下落过程中的势能分别回收存储于第一蓄能器51和第二蓄能器61中以便于再次加以利用,因此,本发明可以实现对起重机上车能量和下车能量的回收利用,有效减少能源浪费。
为了实现上述各可通断连接,在本发明中,起重机液控系统可以还包括第一通断控制装置和第二通断控制装置,作业能量回收装置可以还包括第三通断控制装置,且行驶能量回收装置可以还包括第四通断控制装置,其中:第一通断控制装置用于控制第一工作口A与油箱7的通断,第二通断控制装置用于控制第二工作口B与执行控制机构的通断,第三通断控制装置用于控制第一蓄能器51与第一工作口A的通断,第四通断控制装置用于控制第二蓄能器52与第二工作口B的通断。而且,在实现作业能量回收功能时,第一通断控制装置控制由第一工作口A至油箱7的油路断开,第二通断控制装置控制第二工作口B与执行控制机构连通,第三通断控制装置控制第一工作口A与第一蓄能器51连通,且第四通断控制装置控制第二工作口B与第二蓄能器61断开;在实现行驶能量回收功能时,第一通断控制装置控制第一工作口A与油箱7连通,第三通断控制装置控制第一工作口A与第一蓄能器51断开,且第四通断控制装置控制第二工作口B与第二蓄能器61连通。
由于可以利用第一通断控制装置、第二通断控制装置、第三通断控制装置和第四通断控制装置分别控制第一工作口A与油箱7的通断、第二工作口B与执行控制机构的通断、第一蓄能器51与第一工作口A的通断以及第二蓄能器52与第二工作口B的通断,因此,控制更加方便,控制精度更高;而且,通过这四个通断控制装置的配合,不但可以保证作业能量回收功能和行驶能量回收功能彼此独立、互不干 涉,实现更加有效的上车能量回收过程及下车能量回收过程,还可以避免作业能量回收过程和行驶能量回收过程对上车正常作业过程和下车正常行驶过程的影响,保证在不需要进行能量回收时起重机能够正常行驶或正常作业。可见,本发明可以方便有效地保证下车正常行驶过程、上车正常作业过程及作业能量回收过程和行驶能量回收过程独立且有序的进行。
其中,作为本发明第二通断控制装置的一种实施方式,第二通断控制装置可以包括上下车切换阀4,上下车切换阀4包括第一阀口和第二阀口,上下车切换阀4的第一阀口与第二工作口B连通,上下车切换阀4的第二阀口与执行控制机构连通,且上下车切换阀4具有第一工作状态和第二工作状态,当上下车切换阀4处于第一工作状态时,上下车切换阀4的第一阀口与第二阀口断开,当上下车切换阀4处于第二工作状态时,上下车切换阀4的第一阀口与第二阀口连通。这样通过控制上下车切换阀4在第一工作状态和第二工作状态之间切换,即可方便地控制第二工作口B与执行控制机构的通断。
起重机的执行机构通常能够执行卷扬、变幅和伸缩等的单一及复合作业模式,相应地,起重机的执行控制机构通常包括卷扬控制机构、变幅控制机构和伸缩控制机构等,其中:卷扬控制机构控制执行机构的卷扬执行卷扬起升作业和卷扬下落作业,其通常包括卷扬马达211和卷扬马达控制装置,卷扬马达211用于驱动卷扬转动,卷扬马达控制装置则通过控制卷扬马达211的升口H和落口D中的一个进油且另一个出油来控制卷扬马达211的转向,进而控制卷扬执行卷扬起升作业或卷扬下落作业,卷扬马达控制装置通常包括卷扬升降控制阀212和卷扬平衡阀2131;变幅控制机构控制执行机构执行变幅起升作业和变幅下落作业,其通常包括变幅油缸221和变幅油缸控制装置,变幅油缸221用于驱动臂架变幅,变幅油缸控制装置则通过控制变幅油缸221的有杆腔和无杆腔中的一个进油且另一个出油来控制变幅油缸211的缸杆伸缩,进而控制实现变幅起升作业或变幅下落作业,变幅油缸控制装置通常包括变幅升降控制阀222和变幅平衡阀2231。
在这种情况下,本发明的起重机液压控制系统既可以设置为仅能够对卷扬下落作业过程中的重力势能进行回收,即能够实现卷扬下落作业能量回收功能;也可以设置为仅能够对变幅下落作业过程中的重力势能进行回收,即能够实现变幅下落作业能量回收功能。
其中,基于前述上下车切换阀4,为了实现卷扬下落作业能量回收功能,上下车切换阀4的第二阀口可以与卷扬控制机构的卷扬马达211的升口H连接,且上下车切换阀4的第二阀口能够在需要实现卷扬下落作业能量回收功能时与升口H连通。基于此,当卷扬控制机构控制卷扬执行卷扬下落作业且需要实现卷扬下落作业能量回收功能时,从卷扬马达211的升口H流出的液压油可以经由处于第二工作状态的上下车切换阀4流向工作于马达工况的泵马达31,并经由泵马达31流入与泵马达31的第一工作口A连通的第一蓄能器51中,使得卷扬下落作业过程中所损失的重力势能被转化为存储于第一蓄能器51中的液压能,实现卷扬下落作业能量回收功能。
而为了实现变幅下落作业能量回收功能,前述上下车切换阀4的第二阀口则可以与变幅控制机构的变幅油缸221的无杆腔连接,且上下车切换阀4的第二阀口能够在需要实现变幅下落作业能量回收功能时与变幅油缸221的无杆腔连通。基于此,变幅控制机构控制执行机构执行变幅下落作业且需要实现变幅下落作业能量回收功能时,从变幅油缸221的无杆腔流出的液压油可以经由处于第二工作状态的上下车切换阀4流向工作于马达工况的泵马达31,并经由泵马达31流入与泵马达31的第一工作口A连通的第一蓄能器51中,使得变幅下落作业过程中所损失的重力势能被转化为存储于第一蓄能器51中的液压能,实现变幅下落作业能量回收功能。
更优选地,本发明的起重机液压控制系统设置为既能够实现卷扬下落作业能量回收功能,又能够实现变幅下落作业能量回收功能。在这种情况下,本发明的行驶能量回收装置还可以包括设置于上下车切换阀4的第二阀口与执行控制机构之间的能量回收切换装置,该能量回收切换装置用于控制上下车切换阀4的第二阀口可切换地与卷扬马达211的升口H和变幅油缸221的无杆腔中的一个连通。这样当需要实现卷扬下落作业能量回收功能时,可以利用能量切换控制装置控制上下车切换阀4的第二阀口与升口H连通,便于从升口H流出的液压油流入第一蓄能器51中进行回收存储,而当需要实现变幅下落作业能量回收功能时,则可以利用能量切换装置控制上下车切换阀4的第二阀口与变幅油缸221的无杆腔连通,便于从变幅油缸221的无杆腔流出的液压油流入第一蓄能器51中进行回收存储。可见,通过设置能量回收切换装置,可以方便地切换实现卷扬下落作业能量回收功能和变幅下落作业能量回收功能,实现更加有效的节能减排效果。
其中,本发明的能量回收切换装置可以包括能量回收切换阀54,该能量回收切换阀54包括第一阀口、第二阀口和第三阀口,其中:能量回收切换阀54的第一阀口与上下车切换阀4的第二阀口连通,能量回收切换阀54的第二阀口与升口H连通,能量回收切换阀54的第三阀口与变幅油缸221的无杆腔连通;而且,该能量回收切换阀54具有第一工作状态和第二工作状态,其中:当能量回收切换阀54处于第一工作状态时,能量回收切换阀54的第一阀口与第二阀口连通且第三阀口截止,当能量回收切换阀54处于第二工作状态时,能量回收切换阀54的第一阀口与第三阀口连通且第二阀口截止。
通过设置上述能量回收切换阀54,使得当该能量回收切换阀54处于第一工作状态且上下车切换阀54处于第二工作状态时,第二工作口B能够与升口H连通,便于泵马达31驱动卷扬下落作业过程中从升口H流出的液压油进入第一蓄能器51中进行存储,实现卷扬下落作业能量回收功能;而当能量回收切换阀54处于第二工作状态且上下车切换阀54处于第二工作状态时,第二工作口B能够与变幅油缸211的无杆腔连通,便于泵马达31驱动变幅下落作业过程中从变幅油缸211的无杆腔中流出的液压油进入第一蓄能器51中进行存储,实现变幅下落作业能量回收功能。
另外,为了更充分地利用液压能量转换装置3,在本发明中,液压能量转换装置3还设置为能够在执行机构正常执行作业时为执行控制机构供给液压油(可以简称为液压能量转换装置3的上车供油功能,以便于描述),此时,泵马达31处于泵工况,第一工作口A与油箱7连通,第二工作口B与执行控制机构连通并与第二蓄能器61断开。基于此,本发明的液压能量转换装置3不但能够在需要能量回收的情况下工作,而且还能在上车正常作业的情况下工作,用作上车的油源,为上车的正常作业过程(例如卷扬、变幅和伸缩)供油,这一方面可以提高液压能量转换装置3的利用率,丰富液压能量转换装置3在起重机液压控制系统中的功能;另一方面,这使得该液压能量转换装置3既可以与起重机原有的油源一起为上车作业供油,有效提高起重机的作业效率,并降低对原有油源设备的要求,也可以省略起重机原有的油源,单独为上车供油,实现对起重机整体结构的简化,降低成本。
为了简化起重机液压控制系统的结构,并便于切换控制,液压能量转换装置的上车供油功能也可以基于前述能量回收切换阀54来实现。而为了实现液压能量转 换装置3的上车供油功能,本发明的能量回收切换阀54还可以包括第四阀口,该能量回收切换阀54的第四阀口与执行控制机构连通,当能量回收切换阀54处于第一工作状态和第二工作状态时,能量回收切换阀54的第四阀口均截止,且能量回收切换阀54还具有第三工作状态,当能量回收切换阀54处于第三工作状态时,能量回收切换阀54的第四阀口与能量回收切换阀54的第一阀口连通且能量回收切换阀54的第二阀口和第三阀口均截止。这样不仅可以保证能量回收切换阀54仍能够切换实现卷扬下落作业能量回收功能以及变幅下落作业能量回收功能,而且还可以通过控制能量回收切换阀54处于第三工作状态来控制液压能量转换装置3的第二工作口B与执行控制机构连通,便于处于泵工况的液压能量转换装置3在执行机构正常执行作业时为执行控制机构供油,实现液压能量转换装置3的上车供油功能。
其中,能量回收切换阀54的第四阀口与执行控制机构的连通,可以通过能量回收切换阀54的第四阀口与卷扬马达控制装置的连通来实现,例如能量回收切换阀54的第四阀口可以与卷扬升降控制阀212连通,这种情况下,能量回收切换阀54的第四阀口通过卷扬马达控制装置与卷扬马达211连接,从而使得泵马达31能够通过卷扬马达控制装置为卷扬马达211供油;或者,也可以通过能量回收切换阀54的第四阀口与变幅油缸控制装置的连通来实现,例如能量回收切换阀54的第四阀口可以与变幅升降控制阀222连通,这种情况下,能量回收切换阀54的第四阀口通过变幅油缸控制装置与变幅油缸221连接,从而使得泵马达31能够通过变幅油缸控制装置为变幅油缸221供油。更优选地,能量回收切换阀54的第四阀口可以与卷扬马达控制装置和变幅油缸控制装置均连通,以使液压能量转换装置3能够为卷扬工况和变幅工况均供油。当然,能量回收切换阀54的第四阀口还可以同时与伸缩油缸控制装置连通,以使液压能量转换装置3还能够为伸缩工况供油,其原理与变幅工况类似,所以,此处不再详述。
下面结合图1所示的实施例来对本发明进行进一步地说明。该实施例的起重机液压控制系统既能够满足上下车正常工作需求,又能够实现能量回收功能,且所能实现的能量回收功能既包括行驶能量回收功能,又包括作业能量回收功能,而且,其中的作业能量回收功能既包括卷扬下落作业能量回收功能,又包括变幅下落作业能量回收功能。
如图1所示,在该实施例中,起重机液压控制系统包括原动机1、执行控制机 构、液压能量转换装置3、用作第一通断控制装置的液控单向阀33、用作第二通断控制装置的上下车切换阀4、作业能量回收装置、行驶能量回收装置、动力传递控制装置和控制器9。
其中,原动机1用作起重机液压控制系统的动力源,例如可以为发动机。该实施例的原动机1不仅能够为起重机的正常行驶过程提供动力,还能够为能量回收过程及起重机的上车正常作业过程提供动力,后者主要通过驱动液压能量转换装置3来实现,这一点会在下面更详细地说明。
液压能量转换装置3用于实现液压能与机械能的转换。在该实施例中,液压能量转换装置3能够实现三方面的功能,其既能与作业能量回收装置配合实现作业能量回收功能,又能与行驶能量回收装置配合实现行驶能量回收功能,还能够在上车正常作业时用作上车油源,为上车正常作业过程供油,这种一液压能量转换装置3多用的设置方式,可以有效简化起重机液压控制系统的结构及控制过程。
由图1可知,该实施例的液压能量转换装置3通过动力传递控制装置与原动机1连接,且该实施例的液压能量转换装置包括泵马达31和辅助泵32。
泵马达31是一种能将液压能与机械能互相转换的液压元件(又称二次元件),其能在泵工况和马达工况之间切换,其中:处于泵工况时,能将机械能转换为液压能,液压油由泵马达31的第一工作口A流向第二工作口B;处于马达工况时,又能将液压能转化为机械能,液压油由泵马达31的第二工作口B流向第一工作口A。无论工作于泵工况还是马达工况,该实施例的泵马达31的转动方向均相同,差别在于其斜盘摆角所处的象限不同,也即该实施例的泵马达31是通过控制其斜盘摆角在不同象限内变化来实现工况切换的。
由图1可知,在该实施例中,泵马达31通过动力传递控制装置与原动机1连接,在动力传递控制装置的控制下,泵马达31与原动机1之间具有动力连接状态和动力切断状态,其中,处于动力连接状态时,原动机1能够向泵马达31传递动力,使得泵马达31能够在原动机1的驱动下沿着一定方向转动;而处于动力切断状态时,原动机1则无法向泵马达31传递动力。而且,如图1所示,该实施例的泵马达31具有能够调节斜盘摆角位置的变量控制机构311,且变量控制机构311与控制器9电连接,这样控制器9可以控制变量控制机构311改变泵马达31的斜盘摆角位置,实现对泵马达31工况切换及排量等的控制。可见,该实施例的泵马 达31通过电控变量的方式实现泵工况和马达工况的切换,结构简单,控制方便。
泵马达31的第一工作口A在泵马达31处于泵工况时用作吸油口,且在泵马达31处于马达工况时用作压油口。在该实施例中,泵马达31的第一工作口A通过液控单向阀33与油箱7可通断连接,液控单向阀33控制第一工作口A与油箱7之间的通断。
具体地,如图1所示,液控单向阀33的进油口与油箱7连通,液控单向阀33的出油口与第一工作口A连通。基于此,当液控单向阀33的液控端不通压力油时,液控单向阀33与普通单向阀相同,控制液压油只能由油箱7经液控单向阀33流向第一工作口A,而不能反向流动,即实现马达工况的闭锁功能,这便于在需要回收上车能量时控制泵马达31所输出的液压油无法回流至油箱7而只能流入作业能量回收装置的第一蓄能器51中储存起来;当液控单向阀33的液控端通压力油时,液控单向阀阀33双向打开,此时液压油流经液控单向阀33的流向取决于其进油口和出油口哪一个压力比较大,若第一工作口A处的压力大于油箱7的压力,则液压油能够由第一工作口A经液控单向阀33流向油箱7,这便于在需要卸荷或需要再次利用所回收的制动能量时控制第一工作口A处的液压油无背压地直接回流至油箱7。
更具体地,由图1可知,该实施例的液控单向阀33,其液控端与单向阀控制阀331连接,该单向阀控制阀331用于控制液控单向阀33的液控端是否通压力油,进而控制第一工作口A与油箱7之间的通断。当然,单向阀控制阀331并不局限于图1所示的具有控制端Y1的二位三通电磁阀结构,实际上,只要能够控制液控单向阀33的液控端压力的油通断,均在本发明的保护范围之内。
泵马达31的第二工作口B在泵马达31处于泵工况时用作压油口,且在泵马达31处于马达工况时用作吸油口。在该实施例中,泵马达31的第二工作口B通过上下车切换阀4与执行控制机构可通断地连接,上下车切换阀4控制第二工作口B与执行控制机构之间的通断。
具体地,如图1所示,该实施例的上下车切换阀4采用单一阀结构(二位二通阀),包括第一阀口和第二阀口,其中:上下车切换阀4的第一阀口与第二工作口B连通,上下车切换阀4的第二阀口与执行控制机构连通。而且,该上下车切换阀4具有第一阀位(在图1中即为左位)和第二阀位(在图1中即为右位),其中: 当上下车切换阀4处于第一阀位时,上下车切换阀4工作于第一工作状态,上下车切换阀4的第一阀口与第二阀口断开,使得第二工作口B与执行控制机构之间的油路断开;当上下车切换阀4处于第二阀位时,上下车切换阀4工作于第二工作状态,上下车切换阀4的第一阀口与第二阀口连通,使得第二工作口B与执行控制机构之间的油路连通。这样通过控制上下车切换阀4在第一阀位和第二阀位之间切换,即可方便地控制第二工作口B与执行控制机构的通断,进而便于控制上车和下车进行切换以及便于控制切换实现行驶能量回收功能和作业能量回收功能。
更具体地,由图1可知,该实施例的上下车切换阀4,其通过在第一阀位处于第一阀口和第二阀口之间反向设置两个单向阀来实现其第一阀口和第二阀口在第一阀位的断开,但本领域技术人员应当理解,也可以采用在第一阀位处直接封堵第一阀口和第二阀口等其他方式来实现第一阀口和第二阀口在第一阀位处的断开;另外,图1所示的上下车切换阀4,其控制端Y2与控制器9电连接,控制器9控制该上下车切换阀4在第一阀位和第二阀位之间切换,但实际上,上下车切换阀4也可以采用液控等其他方式来实现在第一阀位和第二阀位之间的切换。
辅助泵32用于将机械能转化为液压能,例如可以为离心泵。在该实施例中,辅助泵32也与原动机1具有动力连接状态,为了使液压能量转换装置3的结构更加简单紧凑,并方便控制辅助泵32与泵马达31同步工作,该实施例的辅助泵32与泵马达31通轴连接,辅助泵32主要用于辅助增压,改善液压能量转换装置3的工作性能。
如图1所示,该实施例的辅助泵32,其进油口与油箱7连通,其出油口与第一工作口A连通。基于此,当辅助泵32工作时,其从油箱7泵出的油能够流向泵马达31的第一工作口A,这可以有效防止泵马达31在工作于泵工况时于第一工作口A处产生负压,不仅能够降低泵马达31产生吸空气蚀的风险,有助于延长泵马达31的使用寿命并降低泵马达31工作过程中的噪声,并且还有利于使泵马达31在最大排量时具有更高的工作转速,改善液压能量转换装置3的工作性能。
而且,在该实施例中,辅助泵32的出油口还与第二工作口B连接,且在泵马达31处于马达工况时,辅助泵32的出油口能够与第二工作口B沿着由辅助泵32的出油口至第二工作口B的方向单向连通。这样当泵马达31工作于马达工况时,由于泵马达31的第二工作口B的压力小于第一工作口A的压力,因此,辅助泵31 从油箱7泵出的液压油不再经由辅助泵31出油口与第一工作口A之间的连接油路流向第一工作口A,而是流向第二工作口B处,使得辅助泵32能够为处于马达工况的泵马达31补油,这可以有效避免泵马达31工作于马达工况时出现吸空现象,有助于进一步延长泵马达31的使用寿命,并进一步改善泵马达31的工作性能。尤其,在该实施例中,处于马达工况的泵马达31可以用于行驶能量回收装置所回收的行驶制动能量再次释放利用过程,因此,辅助泵32在该过程中对泵马达31补油,还能使得该过程更加平稳高效,这部分内容后面会结合起重机液压控制系统的工作过程进一步说明。且由于辅助油泵32出油口至第二工作口B是单向连通,所以,可以使得辅助泵32泵出的液压油在泵马达31工作于泵工况时仍能流向第一工作口A,实现前述对第一工作口A的补油。
具体地,为了使辅助泵32的出油口与第二工作口B能够沿着由辅助泵32的出油口至第二工作口B的方向单向连通,如图1所示,该实施例的液压能量转换装置3还包括补油单向阀341,该补油单向阀341的进油口与辅助泵32的出油口连通,补油单向阀341的出油口与第二工作口B连通。基于此,当泵马达31工作于马达工况、且辅助泵32出油口处的高压与第二工作口B处的低压之差能够使补油单向阀341打开时,控制辅助泵32的出油口与第二工作口B沿着由辅助泵32的出油口至第二工作口B的方向单向连通,使得辅助泵32能够向第二工作口B泵油,进而实现所需的补油功能;且由于补油单向阀341反向截止,因此,当泵马达31工作于泵工况或辅助泵31出油口与工作于马达工况的泵马达31的第二工作口B的压差不足时,补油单向阀341无法打开,则辅助泵32泵出的液压油无法流经补油单向阀341流向第二工作口B,而只能仍经由辅助泵31出油口与第一工作口A之间的连接油路流向第一工作口A,实现所需的对第一工作口A的补油。
可见,基于该实施例的设置方式,辅助泵32既能为处于泵工况的泵马达31补油,又能为处于马达工况的泵马达31补油,可以实现对泵马达31在双工况下的辅助增压,防止泵马达31在泵工况和马达工况下发生吸空气蚀,有效改善泵马达31的工作性能,并延长泵马达31的使用寿命。
另外,如图1所示,在该实施例中,液压能量转换装置3还包括溢流阀342,该溢流阀342的进油口与第二工作口B连通,该溢流阀342的出油口与辅助泵32的出油口连通。由于溢流阀342可以在第二工作口B处压力过高时打开,使第二工 作口B处的液压油流经溢流阀342及辅助泵32出油口与第一工作口A之间的连接油路溢流至第一工作口A(此时泵马达31处于泵工况,形成内部油液循环),因此,能够实现第二工作口B的高压溢流功能,对工作于泵工况的泵马达31形成安全保护。
而且,如图1所示,在该实施例中,补油单向阀341与溢流阀342集成为补油溢流阀34,使得辅助泵32的出油口通过该补油溢流阀34与第二工作口B连接,这样设置可以使得该实施例的起重机液压控制系统的整体结构更加简单紧凑,也更便于控制。
动力传递控制装置用于控制原动机1与液压能量转换装置3之间是否动力连接,使原动机1与液压能量转换装置3之间能够在动力连接状态和动力切断状态之间切换。通过设置动力传递控制装置,由于可以使得原动机1与液压能量转换装置3只在需要时才切换至动力连接状态,因此,相对于原动机1与液压能量转换装置3之间一直处于动力连接状态的情况,能够更有效地降低能耗,节约成本。
具体地,如图1所示,该实施例的动力传递控制装置包括离合器81和离合器控制装置82,离合器81连接于原动机1与液压能量转换装置3之间,离合器控制装置82用于控制离合器81在接合状态和断开状态之间切换,以控制液压能量转换装置3与原动机1之间可切换地处于动力连接状态和动力切断状态中的一个状态。其中,在实现行驶能量回收功能的过程中以及在实现作业能量回收功能的过程中,离合器控制装置82控制离合器81处于接合状态,控制液压能量转换装置3与原动机1之间处于动力连接状态,使原动机1能够向液压能量转换装置3传递动力,进而使液压能量转换装置3可以与作业能量回收装置及行驶能量回收装置配合实现能量回收功能;而且,在执行机构正常执行作业的过程中,离合器控制装置82也可以控制离合器81处于接合状态,这一方面便于液压能量转换装置3在上车正常作业时为上车供油,另一方面也便于在下落作业过程中所回收的能量能够被再次利用,辅助提升泵马达31的吸油性能。
而在起重机正常行驶过程中,当原动机1自身即能够满足行驶要求时,离合器控制装置82可以控制离合器81处于断开状态,控制液压能量转换装置3与原动机1之间处于动力切断状态,切断原动机1向液压能量转换装置3的动力传递,以使液压能量转换装置3等不会对正常行驶过程产生影响;当原动机1难以满足行驶要 求时,例如起步或爬坡等情况下,离合器控制装置82也可以控制离合器81处于接合状态,便于在行驶制动过程中所回收的能量能够被再次利用,转化为机械能辅助行驶。
更具体地,由图1可知,该实施例的离合器控制装置82采用液压元件,具体为一个具有控制端Y10的二位三通电磁阀,使得该实施例通过液控方式实现对离合器81的控制。但本领域技术人员应当理解,在本发明的其他实施例中,也可以采用电控或机械控制等其他方式对离合器81进行控制。
执行控制机构用于控制起重机的执行机构实施作业,例如实施卷扬、变幅和伸缩等作业。如图1所示,在该实施例中,执行控制机构包括卷扬控制机构和变幅控制机构,其中:卷扬控制机构用于控制执行机构的卷扬执行卷扬起升作业和卷扬下落作业,其包括卷扬马达211和卷扬马达控制装置,卷扬马达211用于驱动卷扬转动,卷扬马达控制装置则通过控制卷扬马达211的升口H和落口D中的一个进油且另一个出油来控制卷扬马达211的转向,进而控制卷扬执行卷扬起升作业或卷扬下落作业;变幅控制机构控制执行机构执行变幅起升作业和变幅下落作业,其包括变幅油缸221和变幅油缸控制装置,变幅油缸221用于驱动臂架变幅,变幅油缸控制装置则通过控制变幅油缸221的有杆腔和无杆腔中的一个进油且另一个出油来控制变幅油缸211的缸杆伸缩,进而控制实现变幅起升作业或变幅下落作业。
具体地,由图1可知,该实施例的卷扬马达控制装置包括卷扬升降控制阀212和卷扬平衡控制机构213;而该实施例的变幅油缸控制装置包括变幅升降控制阀222和变幅平衡控制机构223。
其中,卷扬升降控制阀212用于控制液压油流经卷扬马达221的流向,从而通过控制卷扬马达211的转向来控制卷扬执行卷扬起升作业或者卷扬下落作业。如图1所示,该实施例的卷扬升降控制阀212包括第一阀口、第二阀口、第三阀口和第四阀口,其第一阀口与起重机的上车供油装置连接,其第二阀口与油箱7连通,其第三阀口与升口H可通断地连接,其第四阀口与落口D连通;而且,该卷扬升降控制阀212具有第一工作状态(对应图1中的上位)和第二工作状态(对应图1中的下位),其中:卷扬升降控制阀212处于第一工作状态时,卷扬升降控制阀212的第一阀口与第三阀口连通且第二阀口与第四阀口连通,这使得上车供油装置所供给的压力油此时能够经由卷扬升降控制阀212进入升口H,并从落口D再经由卷扬升 降控制阀212流回油箱7,驱动卷扬马达211向第一方向转动(简称正转),实现卷扬起升作业;卷扬升降控制阀212处于第二工作状态时,卷扬升降控制阀212的第一阀口与第四阀口连通且第二阀口与第三阀口连通,这使得上车供油装置所供给的压力油此时能够经由处于第二工作状态的卷扬升降控制阀212进入落口D,并从升口H再经由处于第二工作状态的卷扬升降控制阀212流回油箱7,驱动卷扬马达211向与第一方向相反的第二方向转动(简称反转),实现卷扬下落作业。
而且,由图1可知,该实施例的卷扬升降控制阀212还具有第三工作状态(对应图1所示的中位),且当卷扬升降控制阀212处于第三工作状态时,卷扬升降控制阀212的第一阀口与第三阀口断开且第二阀口与第四阀口连通,这使得上车供油装置所供给的压力油此时无法再经由卷扬升降控制阀212形成回路,卷扬作业停止。需要说明的是,卷扬升降控制阀212的第三工作状态并不局限于图1所示的设置方式,例如,将卷扬升降控制阀212设置为处于第三工作状态时其第一阀口、第二阀口、第三阀口和第四阀口均截止,也能够使得卷扬作业停止。
卷扬平衡控制机构212设置于升口H与卷扬升降控制阀212的第三阀口之间,其通过控制卷扬升降控制阀212的第三阀口与升口H之间的通断,来提高卷扬作业过程的安全性。
由图1可知,该实施例的卷扬平衡控制机构213包括卷扬平衡阀2131,该卷扬平衡阀2131包括第一阀口和第二阀口,卷扬平衡阀2131的第一阀口与卷扬升降控制阀212的第三阀口连通,卷扬平衡阀2131的第二阀口与升口H连通;且该卷扬平衡阀2131具有第一工作状态(对应图1中的左位)和第二工作状态(对应图1中的右位),其中:当卷扬平衡阀2131处于第一工作状态时,卷扬平衡阀2131的第一阀口与第二阀口沿着由卷扬升降控制阀212的第三阀口至升口H的方向单向连通,以使液压油流经处于第一工作状态的卷扬平衡阀2131时只能由卷扬升降控制阀212的第三阀口流向升口H,而不能反向流动,可以提高卷扬作业时的安全性;而当卷扬平衡阀2131处于第二工作状态时,卷扬平衡阀2131的第一阀口与第二阀口连通,使得液压油能够由升口H流经处于第二工作状态的卷扬平衡阀2131流向卷扬升降控制阀212的第三阀口,便于实现卷扬下落作业。
更具体地,如图1所示,当卷扬平衡阀2131处于第一工作状态时,卷扬平衡阀2131的第一阀口与第二阀口之间通过设置单向阀连来实现上述沿着由卷扬升降 控制阀212的第三阀口至升口H方向的单向连通;当卷扬平衡阀2131处于第二工作状态时,卷扬平衡阀2131的第一阀口和第二阀口之间通过阻尼连通,这样可以通过调节阻尼的大小来调节流经卷扬平衡阀2131的流量,进而可以调节卷扬下落速度。
可见,通过控制卷扬平衡阀2131在第一工作状态和第二工作状态之间切换,即可控制卷扬升降控制阀212的第三阀口与升口H之间的通断。
而为了方便控制卷扬平衡阀2131在第一工作状态和第二工作状态之间切换,如图1所示,该实施例的卷扬平衡控制机构213还包括卷扬平衡阀控制阀2132,该卷扬平衡阀控制阀2132连接于卷扬平衡阀2131的控制端Y9,通过控制是否向卷扬平衡阀2131的控制端Y9通入压力油,来控制卷扬平衡阀2131在第一工作状态和第二工作状态之间切换。
变幅升降控制阀222用于控制液压油流经变幅油缸221的流向,从而通过控制变幅油缸221的伸缩方向来控制执行变幅起升作业或者变幅下落作业。如图1所示,该实施例的变幅升降控制阀222包括第一阀口、第二阀口、第三阀口和第四阀口,变幅升降控制阀222的第一阀口与起重机的上车供油装置连接,变幅升降控制阀222的第二阀口与油箱7连通,变幅升降控制阀222的第三阀口与变幅油缸221的无杆腔可通断地连接,变幅升降控制阀222的第四阀口与变幅油缸221的有杆腔连通;且变幅升降控制阀222具有第一工作状态(对应图1中的上位)和第二工作状态(对应图1中的下位),其中:变幅升降控制阀222处于第一工作状态时,变幅升降控制阀222的第一阀口与第三阀口连通且第二阀口与第四阀口连通,这使得上车供油装置所供给的压力油此时能够经由该变幅升降控制阀222进入变幅油缸221有杆腔,且变幅油缸221无杆腔内的液压油能够再经由该变幅升降控制阀222流回油箱7,驱动变幅油缸221的缸杆伸出,实现变幅起升作业;变幅升降控制阀222处于第二工作状态时,变幅升降控制阀222的第一阀口与第四阀口连通且第二阀口与第三阀口连通,这使得上车供油装置所供给的压力油此时能够经由该变幅升降控制阀222进入变幅油缸221的无杆腔,且变幅油缸221有杆腔内的液压油能够再经由该变幅升降控制阀222流回油箱7,驱动变幅油缸221的缸杆缩回,实现变幅下落作业。
而且,由图1可知,该实施例的变幅升降控制阀222还具有第三工作状态(对 应图1中的中位),当变幅升降控制阀222处于第三工作状态时,变幅升降控制阀222的第一阀口与第三阀口断开且第二阀口与第四阀口连通,这使得上车供油装置所供给的压力油此时无法再经由该卷扬升降控制阀222形成回路,变幅作业停止。当然,要实现变幅作业停止,变幅升降控制阀222也可以设置为处于第三工作状态时其第一阀口、第二阀口、第三阀口和第四阀口均截止,而图1所示的变幅升降控制阀222的第三工作状态的设置方式,更便于实现变幅下落作业能量回收功能,且还便于在实现变幅下落作业能量回收功能的过程中通过在处于第三工作状态的变幅升降控制阀222的第二阀口处通入压力油来为变幅油缸221的有杆腔补油,防止吸空气蚀。
变幅平衡控制机构223设置于变幅油缸221的无杆腔与变幅升降控制阀222的第三阀口之间,其通过控制变幅升降控制阀222的第三阀口与变幅油缸221无杆腔之间的通断,来提高变幅作业时的安全性。
由图1可知,该实施例的变幅平衡控制机构包括变幅平衡阀2231,该变幅平衡阀2231包括第一阀口和第二阀口,变幅平衡阀2231的第一阀口与变幅升降控制阀222的第三阀口连通,变幅平衡阀2231的第二阀口变幅油缸221的无杆腔连通;且变幅平衡阀2231具有第一工作状态(对应图1中的左位)和第二工作状态(对应图1中的右位),其中:当变幅平衡阀2231处于第一工作状态时,变幅平衡阀2231的第一阀口与第二阀口沿着由变幅升降控制阀222的第三阀口至变幅油缸221的无杆腔的方向单向连通,使得液压油流经处于第一工作状态的变幅平衡阀2231时只能由变幅升降控制阀222的第三阀口流向变幅油缸221的无杆腔,而不能反向流动,这可以提高变幅作业时的安全性;当变幅平衡阀2231处于第二工作状态时,变幅平衡阀2231的第一阀口与第二阀口连通,使得液压油能够由变幅油缸221无杆腔流经处于第二工作状态的变幅平衡阀2231流向卷扬升降控制阀212的第三阀口,便于实现变幅下落作业。
更具体地,如图1所示,当变幅平衡阀2231处于第一工作状态时,变幅平衡阀2231的第一阀口与第二阀口之间通过设置单向阀连来实现上述沿着由变幅升降控制阀222的第三阀口至变幅油缸221的无杆腔方向的单向连通;当变幅平衡阀2231处于第二工作状态时,变幅平衡阀2231的第一阀口和第二阀口之间通过阻尼连通,这样可以通过调节阻尼的大小来调节流经变幅平衡阀2231的流量,进而可 以调节变幅下落速度。
可见,通过控制变幅平衡阀2231在第一工作状态和第二工作状态之间切换,即可控制变幅升降控制阀222的第三阀口与变幅油缸221无杆腔之间的通断。
而为了方便控制变幅平衡阀2231在第一工作状态和第二工作状态之间切换,如图1所示,该实施例的变幅平衡控制机构223还包括变幅平衡阀控制阀2232,该变幅平衡阀控制阀2232连接于变幅平衡阀2231的控制端Y8,通过控制是否向变幅平衡阀2231的控制端Y8通入压力油,来控制变幅平衡阀2231在第一工作状态和第二工作状态之间切换。
如前所述,在该实施例中,卷扬升降控制阀212和变幅升降控制阀222处于第三工作状态时,各自的第二阀口均与各自的第四阀口连通,这样设置的好处在于,便于在实现下落作业时,通过向二者的第二阀口通入压力油,而实现下落补油功能,以防止在下落过程中卷扬马达211的落口D及变幅油缸221的有杆腔221出现吸空现象,进而可以进一步降低下落失速的风险。
另外,需要说明的是,虽然为了使结构更加简单,控制更加方便,在图1中,卷扬升降控制阀212采用具有控端Y61和Y62的四位三通阀,变幅升降控制阀222采用具有控制端Y71和Y72的四位三通阀,但本领域技术人员应当理解,卷扬升降控制阀212和变幅升降控制阀222并不局限于此,例如也可以采用液控阀,或者还可以通过几个阀组合来实现相应的功能。
前述上车供油装置为用于在上车执行作业过程向执行控制机构供油的装置。为了降低在多动作复合工况时出现系统无动作、冲击、响应慢或抖动等问题,在该实施例中,与卷扬升降控制阀212的第一阀口以及变幅升降控制阀222的第一阀口连接的上车供油装置采用多泵系统,其中既包括该实施例的液压能量转换装置3,也包括上车主供油装置(可以包括一个或多个泵),也即,在该实施例中,液压能量转换装置3和上车主供油装置均用作上车的油源,均可以为上车供油,且由于彼此独立设置,因此,使得执行控制机构的油源独立,有助于改善复合工况性能。而且,相对于只利用液压能量转换装置3和上车主供油装置中的一个为上车供油的情况,该实施例的这种设置方式还可以降低对液压能量转换装置3和上车主供油装置的要求,便于使用较小装机功率的液压能量转换装置3和/或上车主供油装置,这有助于进一步减少有害气体的排放,且有助于进一步提高原动机1等的使用寿命。
其中,关于卷扬升降控制阀212的第一阀口以及变幅升降控制阀222的第一阀口与液压控制装置3的连接实现方式,将在后面介绍作业能量回收装置时更详细地说明,此处仅先说明卷扬升降控制阀212的第一阀口以及变幅升降控制阀222的第一阀口与上车主供油装置的连接实现方式。
在该实施例中,卷扬升降控制阀212的第一阀口以及变幅升降控制阀222的第一阀口与上车主供油装置之间通过单向阀连接。具体地,如图1所示,该实施例的上车主供油装置通过第一单向阀23与卷扬升降控制阀212的第一阀口以及变幅升降控制阀222的第一阀口连接,其中,第一单向阀23的进油口与上车主供油装置连通,第一单向阀23的出油口与卷扬升降控制阀212的第一阀口以及变幅升降控制阀222的第一阀口均连接,这样使得上车主供油装置既与卷扬升降控制阀212的第一阀口沿着由上车主供油装置向卷扬升降控制阀212的第一阀口的方向单向连通,也与变幅升降控制阀222的第一阀口沿着由上车主供油装置向变幅升降控制阀222的第一阀口的方向单向连通。该设置的好处在于,可以进一步保证上车主供油装置与用作上车油源时的液压能量转换装置3彼此独立,防止液压油产生不需要的反向流动,提高该实施例的起重机液压控制系统的工作稳定性及可靠性。
可见,在该实施例中,通过使卷扬升降控制阀212的第一阀口以及变幅升降控制阀222的第一阀口与上车主供油装置连接,使得上车主供油装置能够为上车进行供油。
另外,由图1可知,在该实施例中,卷扬升降控制阀212的第二阀口以及变幅升降控制阀222的第二阀口也均通过单向阀(图1所示的第二单向阀223)与油箱7连接。该设置使得卷扬升降控制阀212的第二阀口与油箱7之间沿着由卷扬升降控制阀212的第二阀口至油箱7的方向单向连通,且变幅升降控制阀222的第二阀口与油箱7之间沿着由变幅升降控制阀222的第二阀口至油箱7的方向单向连通,由于能够防止油液在油箱7与卷扬升降控制阀212及变幅升降控制阀222之间产生不期望的反向流动,因此,也能够提高该实施例起重机液压控制系统的工作稳定性及可靠性。而且,如图1所示,在该实施例中,第二单向阀24与油箱7之间的连接油路上还设有回油过滤器25,该回油过滤器25用于对经由其流回油箱7的油液进行过滤,有利于提高油箱7中油液的纯度,进而可以进一步提高起重机液压控制系统的工作可靠性。
作业能量回收装置用于与液压能量转换装置3配合实现作业能量回收功能。在该实施例中,作业能量回收装置既能对卷扬下落作业过程中的重力势能进行回收,又能对变幅下落作业过程中的重力势能进行回收,使得该实施例的起重机液压控制系统所能实现的作业能量回收功能既包括卷扬下落作业能量回收功能,又包括变幅下落作业能量回收功能。
如图1所示,该实施例的作业能量回收装置包括第一蓄能器51、第一蓄能控制阀53以及能量回收切换阀54,其中:第一蓄能器51用于储存下落作业过程中所回收的能量,其通过第一蓄能控制阀53与第一工作口A可通断连接;第一蓄能控制阀53用作第三通断控制装置,其连接在第一蓄能器51与第一工作口A之间,用于控制第一蓄能器51与第一工作口A的通断;能量回收切换阀54用作能量回收切换装置,其连接在上下车切换阀4的第二阀口与执行控制机构之间,不仅用于控制上下车切换阀4的第二阀口可切换地与升口H和变幅油缸221的无杆腔中的一个连通,以切换实现卷扬下落作业能量回收功能和变幅下落作业能量回收功能,还用于控制上下车切换阀4的第二阀口与卷扬马达控制装置之间以及与变幅油缸控制装置之间的通断,使得上下车切换阀4的第二阀口能够通过卷扬马达控制装置与卷扬马达211连接并能够通过变幅油缸控制装置与变幅油缸221连接,便于液压能量转换装置3在上车正常作业过程中为卷扬马达211和/或变幅油缸221供油。
具体地,如图1所示,该实施例的第一蓄能控制阀53包括第一阀口和第二阀口,第一蓄能控制阀53的第一阀口与第一工作口A连通,第一蓄能控制阀53的第二阀口与第一蓄能器51连通;且第一蓄能控制阀53具有第一工作状态(对应图1中的左位)和第二工作状态(对应图1中的右位),其中:当第一蓄能控制阀53处于第一工作状态时,第一蓄能控制阀53的第一阀口与第二阀口之间沿着由第一工作口A至第一蓄能器51的方向单向连通;当第一蓄能控制阀53处于第二工作状态时,第一蓄能控制阀53的第一阀口与第二阀口连通。
通过设置第一蓄能控制阀53,可以控制第一蓄能器51与第一工作口A之间的通断,并且,可以在需要对下落作业过程的能量进行回收时,控制第一蓄能控制阀53处于第一工作状态,便于工作于马达工况的泵马达31将上车回油输送至第一蓄能器51中进行回收存储,且由于第一蓄能控制阀53的第一阀口与第二阀口沿着由第一工作口A至第一蓄能器51的方向单向连通,因此,回收完毕后,第一蓄能器 51中所存储的液压油无法反向流出,能够实现对液压能的可靠存储;而当需要再次利用所存储的液压能时,则可以控制第一蓄能控制阀53切换至第二工作状态,使得存储于第一蓄能器51中的液压油被释放,辅助提升泵马达31的吸油功能。
在图1中,处于第一工作状态的第一蓄能控制阀53的第一阀口与第二阀口通过连接于二者之间的单向阀实现上述单向连通,但需要说明的是,在本发明的其他实施例中,第一蓄能控制阀53的第一阀口与第二阀口在第一工作状态时也可以断开,例如可以使得第一蓄能控制阀53的第一阀口与第二阀口在第一工作状态时均截止或者可以使得第一蓄能控制阀53的第一阀口与第二阀口在第一工作状态时通过两个反向布置的单向阀连接,在这种情况下,控制第一蓄能控制阀53在需要进行作业能量回收以及需要再次利用所回收的能量时均处于第二工作状态并控制第一蓄能控制阀53在其他时候均处于第一工作状态,也能够实现稳定可靠的作业能量回收功能。另外,图1所示的第一蓄能控制阀53为具有控制端Y3的二位二通电磁阀,使得可以通过控制是否向控制端Y3通电来方便地控制第一蓄能控制阀53在第一工作状态和第二工作状态之间进行切换,但本领域技术人员应当理解,第一蓄能控制阀53并不局限于该具体结构形式。
如图1所示,该实施例的能量回收切换阀54为具有控制端Y51和Y52的三位四通阀,其包括第一阀口、第二阀口、第三阀口和第四阀口,其中:能量回收切换阀54的第一阀口与上下车切换阀4的第二阀口连通,能量回收切换阀54的第二阀口与升口H连通,能量回收切换阀54的第三阀口与变幅油缸221的无杆腔沿着由第二阀口至变幅油缸221的无杆腔的方向单向连通,而能量回收切换阀54的第四阀口则与卷扬马达控制装置及变幅油缸控制装置连接。而且,能量回收切换阀54具有第一阀位(在图1中即为右位)、第二阀位(在图1中即为左位)和第三阀位(在图1中即为中位),其中:当能量回收切换阀54处于第一阀位时,能量回收切换阀54工作于第一工作状态,其第一阀口与第二阀口连通且第三阀口和第四阀口均截止;当能量回收切换阀54处于第二阀位时,能量回收切换阀54工作于第二工作状态,其第一阀口与第三阀口连通且第二阀口和第四阀口均截止;当能量回收切换阀54处于第三阀位时,能量回收切换阀54工作于第三工作状态,其第一阀口与第四阀口连通且第二阀口和第三阀口均截止。
基于该能量回收切换阀54,当需要对卷扬下落作业过程中的重力势能进行回 收时,可以控制能量回收切换阀54切换至第一阀位,便于卷扬下落作业过程中从升口H流出的液压油能够经由该能量回收切换阀54流向处于第二工作状态的上下车切换阀4,并最终在工作于马达工况下的泵马达31的驱动作用下,流入第一蓄能器51中,实现卷扬下落作业能量回收功能;而当需要对变幅下落作业过程中的重力势能进行回收时,则可以控制能量回收切换阀54切换至第二阀位,便于变幅下落作业过程中从变幅油缸221无杆腔流出的液压油能够经由该能量回收切换阀54流向处于第二工作状态的上下车切换阀4,并最终在工作于马达工况下的泵马达31的驱动作用下,流入第一蓄能器51中,实现变幅下落作业能量回收功能;并且,当上车正常作业、无需进行上车能量回收时,可以控制能量回收切换阀54处于第三阀位,便于工作于泵工况的泵马达31驱动液压油经由处于第二工作状态的上下车切换阀4及该能量回收切换阀54流向卷扬马达控制装置和变幅油缸控制装置,进而实现上车正常作业供油功能。
在该实施例中,如图1所示,能量回收切换阀54的第三阀口与变幅油缸221的有杆腔的上述单向连通通过变幅平衡阀2231来实现。具体地,能量回收切换阀54的第三阀口与变幅平衡阀2231的第一阀口连通,从而当变幅平衡阀231处于第一工作状态时,可以使能量回收切换阀54的第三阀口与变幅油缸221的无杆腔沿着由第二阀口至变幅油缸221无杆腔的方向单向连通。这样设置的好处在于,不仅工作安全性更高,而且还便于在实现变幅下落能量回收过程的初始阶段,利用变幅平衡阀2231来调节重物下落速度。
另外,如图1所示,上述能量回收切换阀54第四阀口与卷扬马达控制装置的连接,在该实施例中具体为能量回收切换阀54的第四阀口与卷扬升降控制阀212的第一阀口的连接,而上述能量回收切换阀54第四阀口与变幅马达控制装置的连接,在该实施例中则具体为能量回收切换阀54的第四阀口与变幅升降控制阀222的第一阀口的连接。基于此,在上车正常作业过程中,液压能量转换装置3可以与上车主供油装置一起通过卷扬升降控制阀212为卷扬马达211供油和/或一起通过变幅升降控制阀221为变幅油缸221供油。而且,由图1可知,在该实施例中,能量回收切换阀54第四阀口与卷扬升降控制阀212第一阀口及变幅升降控制阀222第一阀口之间的连接油路上还设有第三单向阀56。与前述设置第一单向阀23类似地,设置该第三单向阀56,可以进一步地保证上车主供油装置与用作上车油源时 的液压能量转换装置3彼此独立。且同时设置第一单向阀23和第三单向阀56,可以防止上车主供油装置与液压能量转换装置3中的一个所提供的液压油向另一个流动,保证二者所供给的液压油均按预期流动,使得起重机液压控制系统能够更加稳定可靠地工作。
可见,连通于上下车切换阀54的第二阀口与执行控制机构之间的该能量回收切换阀54,通过控制其在三个阀位之间切换,不仅便于切换实现卷扬下落作业能量回收功能与变幅下落作业能量回收功能,还便于液压能量转换装置3实现上车正常作业供油功能。
为了方便地控制能量回收切换阀54在三个阀位之间进行切换,如图1所示,该实施例的能量回收切换阀54具有两个控制端Y51和Y52,且两个控制端Y51和Y52中的至少一个可以与控制器9电连接,通过控制器9来控制该能量回收切换阀54在三个阀位之间进行切换。
另外,如图1所示,在该实施例中,作业能量回收装置还包括上车压力检测装置55和第一蓄能压力检测装置52。
其中,上车压力检测装置55用于检测执行控制机构的压力。具体地,由图1可知,该实施例的上车压力检测装置55设置于上下车切换阀4的第二阀口与能量回收切换阀54的第一阀口之间的连接油路上,这样便于该上车压力检测装置55在上车下落作业过程中检测执行控制机构的压力,使得能够根据执行控制机构的压力来判断是否需要进行作业能量回收功能,准确且方便;而且,该实施例的上车压力检测装置55与控制器9电连接,这使得该上车压力检测装置55能够及时地将所检测到的执行控制机构的压力反馈至控制器9,从而便于控制器9在需要进行作业能量回收时控制起重机液压控制系统的各液压阀以及泵马达31等处于所需的工作状态。
第一蓄能压力检测装置52用于检测第一蓄能器51的压力。具体地,由图1可知,该实施例的第一蓄能压力检测装置52设置于第一蓄能器51与第一蓄能控制阀53之间的连接油路上,这样便于该第一蓄能压力检测装置52在作业能量回收过程中检测第一蓄能器51中的压力,使得在第一蓄能器51中的压力达到设定值后控制第一工作口A与第一蓄能器51断开,提高作业能量回收过程的安全性;而且,该实施例的第一蓄能压力检测装置52也与控制器9电连接,使得控制器9能够根据 第一蓄能器51的压力方便且准确地控制各液压阀以及泵马达31等处于所需的工作状态。
行驶能量回收装置用于与液压能量转换装置3配合实现行驶能量回收功能。如图1所示,在该实施例中,行驶能量回收装置包括第二蓄能器61、第二蓄能控制阀63以及第二蓄能压力检测装置62,其中:第二蓄能器61用于储存行驶制动过程中所回收的能量,其通过第二蓄能控制阀63与第二工作口B可通断连接;第二蓄能控制阀63用作第四通断控制装置,其连接在第二蓄能器61与第二工作口B之间,用于控制第二蓄能器61与第二工作口B的通断;第二蓄能压力检测装置62用于检测第二蓄能器61的压力。
具体地,如图1所示,该实施例的第二蓄能控制阀63包括第一阀口和第二阀口,第二蓄能控制阀63的第一阀口与第二工作口B连通,第二蓄能控制阀63的第二阀口与第二蓄能器61连通;且第二蓄能控制阀63具有第一工作状态(对应图1中的左位)和第二工作状态(对应图1中的右位),其中:当第二蓄能控制阀63处于第一工作状态时,第二蓄能控制阀63的第一阀口与第二阀口断开;当第二蓄能控制阀63处于第二工作状态时,第二蓄能控制阀63的第一阀口与第二阀口连通。
通过设置该第二蓄能控制阀63,可以控制第二蓄能器61与第二工作口B之间的通断,并且,可以在需要对行驶制动过程的能量进行回收时,控制第二蓄能控制阀63切换至第二工作状态,便于工作于泵工况的泵马达31在原动机1的驱动下输出液压油至第二蓄能器61中进行回收存储,且回收完毕后,可以控制第二蓄能控制阀63切换至第一工作状态,防止液压油再进入第二蓄能器61,也防止第二蓄能器61中所存储的液压油流出,而当需要再次利用所存储的液压能时,再控制第二蓄能控制阀63切换至第二工作状态,使得存储于第二蓄能器61中的液压油能够经由第二蓄能控制阀63流向工作于马达工况的泵马达31,输出机械能辅助起重机起步或者爬坡等。
更具体地,由图1可知,在该实施例中,处于第一工作状态的第二蓄能控制阀63的第一阀口与第二阀口通过反向布置的两个单向阀实现断开,但本领域技术人员应当理解,实际上,也可以通过将第二蓄能控制阀63的第一阀口与第二阀口在第一工作状态时设置为直接截止的来实现第二蓄能控制阀63的第一阀口与第二阀口在第一工作状态时的断开状态;而且,该实施例的第二蓄能控制阀63的控制端 Y4与控制器9电连接,这使得控制器9能够方便地控制第二蓄能控制阀63在第一工作状态和第二工作状态之间进行切换。
第二蓄能压力检测装置62用于检测第二蓄能器61的压力。具体地,由图1可知,该实施例的第二蓄能压力检测装置62设置于第二蓄能器61与第二蓄能控制阀63之间的连接油路上,这样便于该第二蓄能压力检测装置62在行驶能量回收过程中检测第二蓄能器61中的压力,便于在第二蓄能器61中的压力达到设定值后控制第二工作口B与第二蓄能器61断开,提高行驶能量回收过程的安全性;而且,该实施例的第二蓄能压力检测装置62也与控制器9电连接,使得控制器9能够根据第二蓄能器61的压力方便且准确地控制各液压阀以及泵马达31等处于所需的工作状态。
基于图1所示的液压回路,该实施例起重机液压控制系统的工作原理如下:
(1)下车正常行驶时,离合器控制装置82控制离合器81处于断开状态,此时液压能量转换装置3与原动机1处于动力切断状态,液压能量转换装置3不工作,原动机1驱动起重机正常行驶。在该过程中,可以依据起重机的脚制动踏板位置、变速箱档位以及第二蓄能压力检测装置62所检测到的第二蓄能器61的压力等参数,判断是否可以对行驶制动动能进行回收,若可以,则启动行驶能量回收功能。
(2)当需要实现行驶能量回收功能时,则给离合器控制装置82的控制端Y10通电,控制离合器81切换至接合状态,使液压能量转换装置3与原动机1切换至动力连接状态,使得原动机1以及变速器等产生的行驶惯性能量(机械能)能够输入给泵马达31,此时变量控制机构331控制泵马达31处于泵工况,并给第二蓄能控制阀63的控制端Y4通电,控制第二蓄能控制阀63切换至第二工作状态,则泵马达31能够将油液从油箱7中泵出并加压后经由第二工作口B及第二蓄能控制阀63输出至第二蓄能器61中,使得行驶制动过程中的机械能转化为液压能储存于第二蓄能器61中,实现行驶能量回收功能。在该过程中,辅助泵32也被驱动工作,对第一工作口A进行补油,其所从油箱7中所泵出的压力油经由其出油口与第一工作口A之间的连接油路流至第一工作口A处,与泵马达31从油箱7处泵出的油液一起被泵马达31加压后输送至第二蓄能器61中。
在上述行驶能量回收过程中,可以利用第二蓄能压力检测装置62实时检测第二蓄能器61内的压力,且当检测到第二蓄能器61内的压力达到一定的阈值后,控 制第二蓄能控制阀63切换至第一工作状态,使得压力油不再流入第二蓄能器61中,提高行驶能量回收过程的安全性。
上述所回收的行驶制动能量,当需要时(例如起重机下次启动时),可以再次加以利用:控制泵马达31切换至马达工况,并给第二蓄能控制阀63的控制端Y4及单向阀控制阀331的控制端Y1通断,控制第二蓄能控制阀63切换至第二工作状态且控制液压单向阀33双向打开,此时使离合器81工作,则第二蓄能器61中所储存的液压油能够经由第二蓄能控制阀63及泵马达31和液控单向阀33回流至油箱7,从而第二蓄能器61所储存的液压能能够被释放并驱动传动轴旋转,所输出的机械能可以辅助起重机起步或爬坡。在该过程中,辅助泵32同样被驱动工作,其从油箱7所泵出的液压油经由其出油口及补油单向阀341流向第二工作口B,实现对第二工作口B的补油,这样可以使得该放能过程更加平稳高效,并有助于进一步延长泵马达31的使用寿命,因为,当放能结束时,第一蓄能器61中的压力油停止流出,即使此时切断离合器81,但泵马达31在运动惯性的作用下仍然会保持继续旋转,使得第二工作口B与第二蓄能压力控制阀63之间的连接油路内的油液会迅速经泵马达31回流至油箱7,此时若无油液补充至第二工作口B中,则会造成泵马达31产生吸空气蚀,影响泵马达31的使用寿命及放能过程的平稳性。
(3)上车正常作业时,上车主供油装置与液压能量转换装置3均用作上车油源,向执行控制机构供油。其中,上车主供油装置所供给的液压油通过第一单向阀23输出至执行控制机构。而要实现液压能量转换装置3的上车正常作业供油功能,则在上车正常作业过程中,控制离合器81处于接合状态并调节泵马达31处于泵工况,且给上下车切换阀4的控制端Y2通电,使上下车切换阀4切换至第二阀位,此时单向阀控制阀331的控制端Y1以及能量回收切换阀54的控制端Y51和Y52均不通电,控制液控单向阀33只能单向打开且能量回收切换阀54处于第三阀位(中位),从而使得液压能量转换装置3在原动机1的驱动作用下能够对油液进行加压并驱动从第二工作口B流出的压力油经由上下车切换阀4及能量回收切换阀54流入执行控制机构中,实现对上车的供油。在该过程中,泵马达31和辅助泵32均从油箱7泵油,且辅助泵32所泵出的压力油经由辅助泵32出油口与第一工作口A之间的连接油路流向第一工作口A,与泵马达31从油箱7中所泵出的油液一起经过泵马达31的加压作用后从第二工作口B流出至执行控制机构。
以卷扬起升作业过程为例,此时卷扬升降控制阀212的控制端Y62得电且卷扬平衡阀2131的控制端Y9不通液压油,使得卷扬升降控制阀212处于第一工作状态(上位)且卷扬平衡阀2131处于第一工作状态(左位),因此,上车主供油装置所供给的压力油以及液压能量转换装置3所供给的压力油能够经由卷扬升降控制阀212和卷扬平衡阀2131流入卷扬马达211的升口H,并从落口D再经由该卷扬升降控制阀212和第二单向阀24回流至油箱7,使得卷扬马达211能够驱动卷扬正转,带动重物起升,实现卷扬起升作业。
类似地,在卷扬下落作业过程中,卷扬升降控制阀212的控制端Y61通电且卷扬平衡阀2131的控制端Y9通液压油,使得卷扬升降控制阀212处于第二工作状态(下位)且卷扬平衡阀2131处于第二工作状态(右位),因此,上车主供油装置所供给的压力油以及液压能量转换装置3所供给的压力油能够经由卷扬升降控制阀212流入卷扬马达211的落口D,并从升口H再经由卷扬平衡阀2131、卷扬升降控制阀212和第二单向阀24回流至油箱7,使得卷扬马达211能够驱动卷扬反转,带动重物下落,实现卷扬下落作业。
同理,在变幅起升作业过程中,上车主供油装置所供给的压力油以及液压能量转换装置3所供给的压力油能够经由变幅升降控制阀222的上位和变幅平衡阀2231的左位流入变幅油缸221的无杆腔,且变幅油缸221有杆腔内的油液能够经由变幅升降控制阀222和第二单向阀24回流至油箱7,使得变幅油缸221的缸杆伸出,带动重物起升,实现变幅起升作业;而在变幅下落作业过程中,上车主供油装置所供给的压力油以及液压能量转换装置3所供给的压力油也能够经由变幅升降控制阀222的下位流入变幅油缸221的有杆腔,且变幅油缸221无杆腔内的油液能够经由变幅平衡阀2231的右位、变幅升降控制阀222和第二单向阀24回流至油箱7,使得变幅油缸221的缸杆缩回,带动重物下降,实现变幅下落作业。
在上车执行下落作业(卷扬下落作业和变幅下落作业)过程中,可以利用上车压力检测装置55检测执行控制机构的压力,并依据所检测的压力值判断是否需要对下落作业过程中的重力势能进行回收,若需要,则启动作业能量回收功能。
(4)作业能量回收过程分为两种情况:
(41)卷扬下落作业能量回收过程:在卷扬下落作业过程中,若上车压力检测装置55检测到需要对卷扬下落作业过程中的能量进行回收,则可以给能量回收切 换阀54的控制端Y51通电,控制能量回收切换阀54切换至第一阀位(右位),此时上下车切换阀4处于第二工作状态(右位),卷扬平衡阀2131处于第一工作状态(左位),第一蓄能控制阀53处于第一工作状态(左位),液控单向阀33的液控端不通油(即由第一工作口A至油箱7的连接油路截止),离合器81处于接合状态,所以,控制泵马达31切换至马达工况,则重物下落过程中从升口H流出的液压油即能够在泵马达31的驱动作用下经由能量回收切换阀54、上下车切换阀4、第二工作口B、第一工作口A及第一蓄能控制阀53流入第一蓄能器51中,使卷扬下落作业过程中所损失的重力势能被转化为液压能储存于第一蓄能器51中,实现卷扬下落作业能量回收功能。
在上述卷扬下落作业能量回收过程中,可以通过调节泵马达31的排量来控制重物的下落速度,由于无需再利用卷扬平衡阀2131来调节重物下落速度,因此,有助于减少系统发热,改善系统性能;而且,可以进一步利用工作于马达工况的泵马达31所输出的机械能来辅助原动机1带动上车主供油装置工作,并控制卷扬升降控制阀212处于第二工作状态(下位)且卷扬平衡阀2131处于第一工作状态,使得上车主供油装置在该过程中能够经第一单向阀23和卷扬升降控制阀212为落口D补油,这可以降低因落口D发生吸空气蚀风险,有助于延长卷扬马达211的使用寿命,且有助于提高该能量过程的平稳性。
另外,为了防止因泵马达31突然由泵工况切换至马达工况而造成重物突然下落,进一步提高卷扬下落作业能量回收过程中的重物下落安全性,还可以在泵马达31切换至马达工况之前先控制泵马达31工作于泵工况,使得泵马达31能够通过使由第二工作口B至升口H之间的连接油路中充满压力油而建压托住负载,然后再调节泵马达31使其逐渐切换至马达工况,这样可以防止因未预先在第二工作口B至升口H之间的连接油路中充油建压而造成卷扬马达211在卷扬制动器打开的瞬间产生瞬间高速旋转,导致重物下落颤动,影响下落平稳性。
(42)变幅下落作业能量回收过程:当需要对变幅下落作业过程中的重力势能进行回收时,可以控制能量回收切换阀54切换至第二阀位(左位),并控制变幅升降控制阀222处于第三工作状态(中位),此时与上述卷扬下落作业能量回收过程类似地,上下车切换阀4也处于第二工作状态(右位),第一蓄能控制阀53也处于第一工作状态(左位),液控单向阀33的液控端也不通油(即由第一工作口 A至油箱7的连接油路截止),离合器81也处于接合状态,所以,控制变幅平衡阀2231处于第二工作状态(右位),并控制泵马达31切换至马达工况,则重物下落过程中从变幅油缸221无杆腔中流出的液压油即能够在泵马达31的驱动作用下经由变幅平衡阀2231、能量回收切换阀54、上下车切换阀4、第二工作口B、第一工作口A及第一蓄能控制阀53流入第一蓄能器51中,使变幅下落作业过程中所损失的重力势能被转化为液压能储存于第一蓄能器51中,实现变幅下落作业能量回收功能。在该过程中,由于变幅升降控制阀222处于第三工作状态,其第二阀口与第四阀口连通,因此,可以通过在第二阀口处通入另一油源来实现对变幅油缸221的有杆腔的补油,防止吸空现象的发生。
为了更平稳且更有效地控制变幅下落作业能量回收过程中的重物下落速度,在变幅下落作业能量回收过程的初始阶段(变幅平衡阀2231右位阀口尚未完全打开),可以通过控制变幅平衡阀2231右位阀口的开口大小来调节重物下落速度,实现微动下落过程,此时可以控制泵马达31工作于马达小排量工况;之后待到变幅平衡阀2231右位阀口完全打开之后,则可以通过调节泵马达31的排量来控制重物的下落速度。
而且,与卷扬下落作业能量回收过程类似地,为了进一步提高变幅下落作业能量回收过程中的重物下落安全性,也可以控制泵马达31先工作于泵工况实现建压,再逐渐控制泵马达31切换至马达工况。
需要说明的是,在上述卷扬下落作业能量回收过程中,以及在上述变幅下落作业能量回收过程中,辅助泵32所输出的压力油均与泵马达31所输出的液压油一起经由第一蓄能控制阀53流入第一蓄能器51中进行存储;并且,第一蓄能压力检测装置52均对第一蓄能器51中的压力进行检测,当第一蓄能压力检测装置52检测到第一蓄能器51中的压力达到一定阈值后,可以给单向阀控制阀331的控制端Y1通电,使得液控单向阀33因液控端通油而双向打开,从而使得泵马达31和辅助泵32所输出的液压油能够一起流经液控单向阀33回到油箱7,进行卸荷。
此外,还需要说明的是,无论是上述卷扬下落作业能量回收过程所回收的能量,还是上述变幅下落作业能量回收过程中所回收的能量,均可以在上车下次作业时被再次加以利用,只需控制泵马达31工作于泵工况,并控制第一蓄能控制阀53切换至第二工作状态(右位),则在泵马达31的驱动作用下,第一蓄能器51中所储存 的压力油能够被释放,输出至第一工作口A,辅助提升泵马达31的吸油性能,防止泵马达31产生吸空,使得液压能量转换装置3能够更好地为上车的正常作业过程供油。
可见,基于图1所示的起重机液压控制系统,该实施例可以方便地实现行驶能量回收功能、卷扬下落作业能量回收功能以及变幅下落作业能量回收功能,由于可以使得行驶制动过程中的动能以及下落作业过程中的重力势能被再次加以利用,因此,可以有效减少因这些能量直接转化为热能散失掉而造成的能量损失,实现节能减排的目的。而且,该实施例起重机液压控制系统的结构较为简单,成本较低,单独实现上述三个能量回收功能中的任何一个时,只需控制离合器控制装置82、泵马达31及能量回收切换阀54三个元件(两个比例信号和两个开关信号)即可,控制过程更加简单,控制精度更高。
在上述实施例中,第一蓄能压力检测装置51、第二蓄能压力检测装置52及上车压力检测装置55均可以采用压力传感器等结构形式。另外,本领域技术人员应当理解,在上述实施例中,采用电控方式换向的各液压阀实际上也可以采用液控或机械控制等方式换向,类似地,采用液控方式换向的各液压阀实际上也可以采用电控或机械控制等方式换向;而且,虽然上述实施例中所示各液压阀均采用单一阀结构,各液压阀的各工作状态与各自的各阀位均一一对应,但需要说明的是,各液压阀实际上也可以采用数个阀的组合结构来实现相应的功能,在这种情况下,各液压阀的各个工作状态不再局限于与某一个阀的某一个阀位对应,但这些变型也应当在本发明的保护范围之内。
以上所述仅为本发明的示例性实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种起重机液压控制系统,其特征在于,包括能够驱动起重机行驶的原动机(1)、用于控制所述起重机的执行机构实施作业的执行控制机构、与所述原动机(1)具有动力连接状态的液压能量转换装置(3)、行使能量回收装置和作业能量回收装置,其中:
    所述液压能量转换装置(3)包括能够可切换地工作于泵工况和马达工况的泵马达(31),所述泵马达(31)具有与油箱(7)可通断连接的第一工作口(A)和与所述执行控制机构可通断连接的第二工作口(B);所述行使能量回收装置包括与所述第一工作口(A)可通断地连接的第一蓄能器(51),所述作业能量回收装置包括与所述第二工作口(B)可通断地连接第二蓄能器(61);
    所述作业能量回收装置与所述液压能量转换装置(3)配合,能够将所述执行机构执行重物下落作业过程中的重力势能转化为液压能储存于所述第一蓄能器(51)中,实现作业能量回收功能,此时,所述泵马达(31)处于所述马达工况,所述第一工作口(A)与所述第一蓄能器(51)连通且由所述第一工作口(A)至所述油箱(7)的油路断开,所述第二工作口(B)与所述执行控制机构连通并与所述第二蓄能器(61)断开;
    所述行驶能量回收装置与所述液压能量转换装置(3)配合,能够将起重机行驶制动过程中的机械能转化为液压能储存于所述第二蓄能器(61)中实现行驶能量回收功能,此时,所述泵马达(31)处于所述泵工况,所述第一工作口(A)与所述油箱(7)连通,所述第二工作口(B)与所述第二蓄能器(61)连通并与所述执行控制机构断开。
  2. 根据权利要求1所述的起重机液压控制系统,其特征在于,所述液压能量转换装置(3)还能够在所述执行机构正常执行作业时为所述执行控制机构供给液压油,此时,所述泵马达(31)处于所述泵工况,所述第一工作口(A)与所述油箱(7)连通,所述第二工作口(B)与所述执行控制机构连通并与所述第二蓄能器(61)断开。
  3. 根据权利要求1或2所述的起重机液压控制系统,其特征在于,所述起重机液压控制系统还包括用于控制所述第一工作口(A)与所述油箱(7)通断的第一通 断控制装置和用于控制所述第二工作口(B)与所述执行控制机构通断的第二通断控制装置,所述作业能量回收装置还包括用于控制所述第一蓄能器(51)与所述第一工作口(A)通断的第三通断控制装置,所述行驶能量回收装置还包括用于控制所述第二蓄能器(61)与所述第二工作口(B)通断的第四通断控制装置,其中:
    在实现所述作业能量回收功能时,所述第一通断控制装置控制由所述第一工作口(A)至所述油箱(7)的油路断开,所述第二通断控制装置控制所述第二工作口(B)与所述执行控制机构连通,所述第三通断控制装置控制所述第一工作口(A)与所述第一蓄能器(51)连通,且所述第四通断控制装置控制所述第二工作口(B)与所述第二蓄能器(61)断开;
    在实现所述行驶能量回收功能时,所述第一通断控制装置控制所述第一工作口(A)与所述油箱(7)连通,所述第二通断控制装置控制所述第二工作口(B)与所述执行控制机构断开,且所述第四通断控制装置控制所述第二工作口(B)与所述第二蓄能器(61)连通。
  4. 根据权利要求3所述的起重机液压控制系统,其特征在于,
    所述第一通断控制装置包括液控单向阀(33),所述液控单向阀(33)的进油口与所述油箱(7)连通,所述液控单向阀(33)的出油口与所述第一工作口(A)连通;和/或,
    所述第二通断控制装置包括上下车切换阀(4),所述上下车切换阀(4)包括第一阀口和第二阀口,所述上下车切换阀(4)的第一阀口与所述第二工作口(B)连通,所述上下车切换阀(4)的第二阀口与所述执行控制机构连通,且所述上下车切换阀(4)具有第一工作状态和第二工作状态,当所述上下车切换阀(4)处于第一工作状态时,所述上下车切换阀(4)的第一阀口与第二阀口断开,当所述上下车切换阀(4)处于第二工作状态时,所述上下车切换阀(4)的第一阀口与第二阀口连通;和/或,
    所述第三通断控制装置包括第一蓄能控制阀(53),所述第一蓄能控制阀(53)包括第一阀口和第二阀口,所述第一蓄能控制阀(53)的第一阀口与所述第一工作口(A)连通,所述第一蓄能控制阀(53)的第二阀口与所述第一蓄能器(51)连通,且所述第一蓄能控制阀(53)具有第一工作状态和第二工作状态,当所述第一蓄能控制阀(53)处于第一工作状态时,所述第一蓄能控制阀(53)的第一阀口与 第二阀口断开,或者,所述第一蓄能控制阀(53)的第一阀口与第二阀口沿着由所述第一工作口(A)至所述第一蓄能器(51)的方向单向连通,当所述第一蓄能控制阀(53)处于第二工作状态时,所述第一蓄能控制阀(53)的第一阀口与第二阀口连通;和/或,
    所述第四通断控制装置包括第二蓄能控制阀(63),所述第二蓄能控制阀(63)包括第一阀口和第二阀口,所述第二蓄能控制阀(63)的第一阀口与所述第二工作口(B)连通,所述第二蓄能控制阀(63)的第二阀口与所述第二蓄能器(61)连通,且所述第二蓄能控制阀(63)具有第一工作状态和第二工作状态,当所述第二蓄能控制阀(63)处于第一工作状态时,所述第二蓄能控制阀(63)的第一阀口与第二阀口断开,当所述第二蓄能控制阀(63)处于第二工作状态时,所述第二蓄能控制阀(63)的第一阀口与第二阀口连通。
  5. 根据权利要求4所述的起重机液压控制系统,其特征在于,
    所述执行控制机构包括用于控制所述执行机构的卷扬执行卷扬起升和卷扬下落作业的卷扬控制机构,所述卷扬控制机构包括具有升口(H)和落口(D)的卷扬马达(211),所述上下车切换阀(4)的第二阀口与所述升口(H)连接,且当所述卷扬控制机构控制所述卷扬执行所述卷扬重物下落作业时,所述上下车切换阀(4)的第二阀口能够与所述升口(H)连通,以实现卷扬下落作业能量回收功能;和/或,
    所述执行控制机构包括用于控制所述执行机构执行变幅起升和变幅下落作业的变幅控制机构,所述变幅控制机构包括变幅油缸(221),所述上下车切换阀(4)的第二阀口与所述变幅油缸(221)的无杆腔连接,且当所述变幅控制机构控制所述执行机构执行变幅下落作业时,所述上下车切换阀(4)的第二阀口能够与所述变幅油缸(221)的无杆腔连通,以实现变幅下落作业能量回收功能。
  6. 根据权利要求5所述的起重机液压控制系统,其特征在于,所述执行控制机构包括所述卷扬控制机构和所述变幅控制机构,所述作业能量回收装置还包括设置于所述上下车切换阀(4)的第二阀口与所述执行控制机构之间的能量回收切换装置,所述能量回收切换装置用于控制所述上下车切换阀(4)的第二阀口可切换地与所述升口(H)和所述变幅油缸(221)的无杆腔中的一个连通,以切换实现所述卷扬下落作业能量回收功能和所述变幅下落作业能量回收功能。
  7. 根据权利要求6所述的起重机液压控制系统,其特征在于,所述能量回收切换装置包括能量回收切换阀(54),所述能量回收切换阀(54)包括第一阀口、第二阀口和第三阀口,所述能量回收切换阀(54)的第一阀口与所述上下车切换阀(4)的第二阀口连通,所述能量回收切换阀(54)的第二阀口与所述升口(H)连通,所述能量回收切换阀(54)的第三阀口与所述变幅油缸(221)的无杆腔连通,且所述能量回收切换阀(54)具有第一工作状态和第二工作状态,当所述能量回收切换阀(54)处于第一工作状态时,所述能量回收切换阀(54)的第一阀口与第二阀口连通且第三阀口截止,当所述能量回收切换阀(54)处于第二工作状态时,所述能量回收切换阀(54)的第一阀口与第三阀口连通且第二阀口截止。
  8. 根据权利要求7所述的起重机液压控制系统,其特征在于,所述能量回收切换阀(54)还包括第四阀口,所述能量回收切换阀(54)的第四阀口与所述执行控制机构连通,当所述能量回收切换阀(54)处于第一工作状态和第二工作状态时,所述能量回收切换阀(54)的第四阀口均截止,且所述能量回收切换阀(54)还具有第三工作状态,当所述能量回收切换阀(54)处于第三工作状态时,所述能量回收切换阀(54)的第四阀口与第一阀口连通且第二阀口和第三阀口均截止,以使所述液压能量转换装置(3)还能够在所述执行机构正常执行作业时为所述执行控制机构供油。
  9. 根据权利要求8所述的起重机液压控制系统,其特征在于,
    所述卷扬控制机构还包括卷扬马达控制装置,所述卷扬马达控制装置用于控制所述升口(H)和所述落口(D)中的一个进油且另一个出油,所述能量回收切换阀(54)的第四阀口通过所述卷扬马达控制装置与所述卷扬马达(211)连接;和/或,
    所述变幅控制机构还包括变幅油缸控制装置,所述变幅油缸控制装置用于控制所述变幅油缸(221)的有杆腔和无杆腔中的一个进油且另一个出油,所述能量回收切换阀(54)的第四阀口通过所述变幅油缸控制装置与所述变幅油缸(221)连接。
  10. 根据权利要求9所述的起重机液压控制系统,其特征在于,
    所述卷扬马达控制装置包括卷扬升降控制阀(212),所述卷扬升降控制阀(212)包括第一阀口、第二阀口、第三阀口和第四阀口,所述卷扬升降控制阀(212) 的第一阀口与所述能量回收切换阀(54)的第四阀口连通,所述卷扬升降控制阀(212)的第二阀口与所述油箱(7)连通,所述卷扬升降控制阀(212)的第三阀口与所述升口(H)可通断地连接,所述卷扬升降控制阀(212)的第四阀口与所述落口(D)连通,所述卷扬升降控制阀(212)具有第一工作状态和第二工作状态,当所述卷扬升降控制阀(212)处于第一工作状态时,所述卷扬升降控制阀(212)的第一阀口与第三阀口连通且第二阀口与第四阀口连通,当所述卷扬升降控制阀(212)处于第二工作状态时,所述卷扬升降控制阀(212)的第一阀口与第四阀口连通且第二阀口与第三阀口连通;和/或,
    所述变幅油缸控制装置包括变幅升降控制阀(222),所述变幅升降控制阀(222)包括第一阀口、第二阀口、第三阀口和第四阀口,所述变幅升降控制阀(222)的第一阀口与所述能量回收切换阀(54)的第四阀口连通,所述变幅升降控制阀(222)的第二阀口与所述油箱(7)连通,所述变幅升降控制阀(222)的第三阀口与所述变幅油缸(221)的无杆腔可通断地连接,所述变幅升降控制阀(222)的第四阀口与所述变幅油缸(221)的有杆腔连通,所述变幅升降控制阀(222)具有第一工作状态和第二工作状态,当所述变幅升降控制阀(222)处于第一工作状态时,所述变幅升降控制阀(222)的第一阀口与第三阀口连通且第二阀口与第四阀口连通,当所述变幅升降控制阀(222)处于第二工作状态时,所述变幅升降控制阀(222)的第一阀口与第四阀口连通且第二阀口与第三阀口连通。
  11. 根据权利要求10所述的起重机液压控制系统,其特征在于,
    所述变幅马达控制装置还包括变幅平衡阀(2231),所述变幅平衡阀(2231)包括第一阀口和第二阀口,所述变幅平衡阀(2231)的第一阀口与所述变幅升降控制阀(222)的第三阀口连通,所述变幅平衡阀(2231)的第二阀口所述变幅油缸(221)的无杆腔连通,且所述变幅平衡阀(2231)具有第一工作状态和第二工作状态,当所述变幅平衡阀(2231)处于第一工作状态时,所述变幅平衡阀(2231)的第一阀口与第二阀口沿着由所述变幅升降控制阀(222)的第三阀口至所述变幅油缸(221)的无杆腔的方向单向连通,当所述变幅平衡阀(2231)处于第二工作状态时,所述变幅平衡阀(2231)的第一阀口与第二阀口连通;
    所述能量回收切换阀(54)的第三阀口与所述变幅平衡阀(2231)的第一阀口连通。
  12. 根据权利要求10所述的起重机液压控制系统,其特征在于,所述卷扬升降控制阀(212)的第一阀口还与起重机的上车主供油装置连接,以使所述上车主供油装置也能够为所述卷扬控制机构供油;和/或,所述变幅升降控制阀(222)的第一阀口还与所述上车主供油装置连接,以使所述上车主供油装置也能够为所述变幅控制机构供油。
  13. 根据权利要求12所述的起重机液压控制系统,其特征在于,所述卷扬升降控制阀(212)的第一阀口与所述能量回收切换阀(54)的第四阀口沿着由所述能量回收切换阀(54)的第四阀口至所述卷扬升降控制阀(212)的第一阀口的方向单向连通,且所述卷扬升降控制阀(212)的第一阀口与所述主供油装置之间沿着由所述主供油装置至所述卷扬升降控制阀(212)的第一阀口的方向单向连通;和/或,所述变幅升降控制阀(222)的第一阀口与所述能量回收切换阀(54)的第四阀口沿着由所述能量回收切换阀(54)的第四阀口至所述变幅升降控制阀(222)的第一阀口的方向单向连通,且所述变幅升降控制阀(222)的第一阀口与所述主供油装置之间沿着由所述主供油装置至所述变幅升降控制阀(222)的第一阀口的方向单向连通。
  14. 根据权利要求1所述的起重机液压控制系统,其特征在于,所述起重机液压控制系统还包括动力传递控制装置,所述动力传递控制装置用于控制所述原动机(1)与所述液压能量转换装置(3)之间在动力连接状态和动力切断状态之间切换,其中,在实现所述行驶能量回收功能的过程中以及在实现所述作业能量回收功能的过程中,所述动力传递控制装置控制所述液压能量转换装置(3)与所述原动机(1)之间处于动力连接状态。
  15. 根据权利要求14所述的起重机液压控制系统,其特征在于,在所述执行机构正常执行作业的过程中,所述动力传递控制装置也控制所述液压能量转换装置(3)与所述原动机(1)之间处于动力连接状态。
  16. 根据权利要求1所述的起重机液压控制系统,其特征在于,所述液压能量转换装置(3)还包括辅助泵(32),所述辅助泵(32)的进油口与所述油箱(7)连通,所述辅助泵(32)的出油口与所述第一工作口(A)连通。
  17. 根据权利要求16所述的起重机液压控制系统,其特征在于,所述辅助泵(32)的出油口还与所述第二工作口(B)连接,且在所述泵马达(31)处于所 述马达工况时,所述辅助泵(32)的出油口能够与所述第二工作口(B)沿着由所述辅助泵(32)的出油口至所述第二工作口(B)的方向单向连通,以使所述辅助泵(32)能够在所述泵马达(31)处于所述马达工况时为所述泵马达(31)补油。
  18. 根据权利要求16所述的起重机液压控制系统,其特征在于,所述液压致动装置(3)还包括连接于所述辅助泵(32)的出油口与所述第二工作口(B)之间溢流阀(342),所述溢流阀(342)的进油口与所述第二工作口(B)连通,所述溢流阀(342)的出油口与所述辅助泵(32)的出油口连通。
  19. 根据权利要求1所述的起重机液压控制系统,其特征在于,所述作业能量回收装置还包括第一蓄能压力检测装置(52),所述第一蓄能压力检测装置(52)用于检测所述第一蓄能器(51)的压力;和/或,所述行驶能量回收装置还包括第二蓄能压力检测装置(62),所述第二蓄能压力检测装置(62)用于检测所述第二蓄能器(61)的压力;和/或,所述作业能量回收装置还包括上车压力检测装置(55),所述上车压力检测装置(55)用于检测所述执行控制机构的压力。
  20. 一种起重机,包括执行机构,其特征在于,所述起重机还包括如权利要求1-19任一所述的起重机液压控制系统。
PCT/CN2016/113339 2016-12-30 2016-12-30 起重机液压控制系统和起重机 WO2018119972A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16925872.0A EP3543546B1 (en) 2016-12-30 2016-12-30 Crane hydraulic control system and crane
US16/474,341 US10822211B2 (en) 2016-12-30 2016-12-30 Crane hydraulic control system and crane
PCT/CN2016/113339 WO2018119972A1 (zh) 2016-12-30 2016-12-30 起重机液压控制系统和起重机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113339 WO2018119972A1 (zh) 2016-12-30 2016-12-30 起重机液压控制系统和起重机

Publications (1)

Publication Number Publication Date
WO2018119972A1 true WO2018119972A1 (zh) 2018-07-05

Family

ID=62706576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113339 WO2018119972A1 (zh) 2016-12-30 2016-12-30 起重机液压控制系统和起重机

Country Status (3)

Country Link
US (1) US10822211B2 (zh)
EP (1) EP3543546B1 (zh)
WO (1) WO2018119972A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030221A (zh) * 2019-04-15 2019-07-19 南京中船绿洲机器有限公司 一种锚绞设备集成控制器及其工作方法
CN111810477A (zh) * 2020-05-22 2020-10-23 武汉船用机械有限责任公司 用于插销升降装置的液压系统
CN113006691A (zh) * 2021-04-19 2021-06-22 高邮浩翔石油机械有限公司 液压储能车载钻修机的应急和功率补偿系统和方法
CN113217500A (zh) * 2021-06-10 2021-08-06 徐州徐工液压件有限公司 一种分时共享多路阀
CN113653695A (zh) * 2021-08-30 2021-11-16 杭州力龙液压有限公司 平衡阀结构及工程机械
CN113915177A (zh) * 2021-09-16 2022-01-11 利穗科技(苏州)有限公司 一种电液伺服驱动装置及层析设备
CN114505438A (zh) * 2022-04-02 2022-05-17 太原理工大学 一种大功率电液控制的压力机系统
CN116982441A (zh) * 2023-08-01 2023-11-03 山东弘宇农机股份有限公司 一种拖拉机液压独立式提升机构

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839269A1 (en) * 2019-12-20 2021-06-23 Dana Motion Systems Italia S.R.L. Hydraulic system with energy recovery
CN111623002A (zh) * 2020-06-28 2020-09-04 河南卫华特种车辆有限公司 一种多用应急动力单元
CN111959216B (zh) * 2020-07-01 2021-10-29 武汉理工大学 一种汽车能量回收系统
CN112460086B (zh) * 2020-11-30 2023-03-17 徐州重型机械有限公司 一种复合调速液压系统及其控制方法、起重机、工程机械
CN112982522B (zh) * 2021-02-20 2022-10-04 三一重机有限公司 挖掘机的属具更换装置的控制系统及具有其的挖掘机
CN113605888B (zh) * 2021-06-24 2023-10-13 浙江大学 一种用于小直径地层测试器的单泵驱动节能型液压系统
CN113417904B (zh) * 2021-07-15 2024-02-27 福建庄金科技有限公司 一种用于桩机的多斜撑液压平衡控制方法
CN113586557B (zh) * 2021-07-23 2023-11-17 三一汽车制造有限公司 泵送车辆的臂架控制方法、装置、系统及泵送车辆
CN114165490B (zh) * 2022-01-17 2024-01-19 湖南星邦智能装备股份有限公司 控制臂架缩回的控制方法、系统、机械设备及存储介质
DE102022206501A1 (de) 2022-06-28 2023-12-28 Robert Bosch Gesellschaft mit beschränkter Haftung Hydraulischer Antrieb und Verfahren zum regenerativen Absenken eines Elements einer Arbeitsmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133072A1 (en) * 2010-04-19 2011-10-27 Parker Hannifin Ab Arrangement for operating a hydraulic device
US20130125540A1 (en) * 2011-11-21 2013-05-23 Konecranes Plc Apparatus, method and computer program product for moving cargo, and a kit and method for upgrading an apparatus for moving cargo
CN203095422U (zh) * 2013-01-25 2013-07-31 杨靖 起重机械的能量回收再利用装置
CN103626057A (zh) * 2013-12-16 2014-03-12 三一汽车起重机械有限公司 起重机及其液压系统
CN104105888A (zh) * 2012-02-17 2014-10-15 日立建机株式会社 工程机械
CN105201937A (zh) * 2014-12-31 2015-12-30 徐州重型机械有限公司 液压系统、起重机及液压系统的辅助驱动方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971215A (en) * 1974-06-06 1976-07-27 Marion Power Shovel Company, Inc. Power shovel and crowd system therefor
DE3619639A1 (de) * 1986-06-11 1987-12-17 Man Nutzfahrzeuge Gmbh Anlage mit energiespeicher- und -abgabeeinrichtung
DE4436666A1 (de) * 1994-10-13 1996-04-18 Rexroth Mannesmann Gmbh Hydraulisches Antriebssystem für eine Presse
US6854268B2 (en) * 2002-12-06 2005-02-15 Caterpillar Inc Hydraulic control system with energy recovery
US7775040B2 (en) * 2006-11-08 2010-08-17 Caterpillar Inc Bidirectional hydraulic transformer
JP6090781B2 (ja) * 2013-01-28 2017-03-08 キャタピラー エス エー アール エル エンジンアシスト装置および作業機械
CN104196080B (zh) * 2014-09-17 2016-02-03 太原理工大学 变转速容积直驱纯电液压挖掘机驱动及能量回收系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133072A1 (en) * 2010-04-19 2011-10-27 Parker Hannifin Ab Arrangement for operating a hydraulic device
US20130125540A1 (en) * 2011-11-21 2013-05-23 Konecranes Plc Apparatus, method and computer program product for moving cargo, and a kit and method for upgrading an apparatus for moving cargo
CN104105888A (zh) * 2012-02-17 2014-10-15 日立建机株式会社 工程机械
CN203095422U (zh) * 2013-01-25 2013-07-31 杨靖 起重机械的能量回收再利用装置
CN103626057A (zh) * 2013-12-16 2014-03-12 三一汽车起重机械有限公司 起重机及其液压系统
CN105201937A (zh) * 2014-12-31 2015-12-30 徐州重型机械有限公司 液压系统、起重机及液压系统的辅助驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543546A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030221A (zh) * 2019-04-15 2019-07-19 南京中船绿洲机器有限公司 一种锚绞设备集成控制器及其工作方法
CN111810477A (zh) * 2020-05-22 2020-10-23 武汉船用机械有限责任公司 用于插销升降装置的液压系统
CN111810477B (zh) * 2020-05-22 2022-08-12 武汉船用机械有限责任公司 用于插销升降装置的液压系统
CN113006691A (zh) * 2021-04-19 2021-06-22 高邮浩翔石油机械有限公司 液压储能车载钻修机的应急和功率补偿系统和方法
CN113217500A (zh) * 2021-06-10 2021-08-06 徐州徐工液压件有限公司 一种分时共享多路阀
CN113217500B (zh) * 2021-06-10 2023-12-12 徐州徐工液压件有限公司 一种分时共享多路阀
CN113653695A (zh) * 2021-08-30 2021-11-16 杭州力龙液压有限公司 平衡阀结构及工程机械
CN113653695B (zh) * 2021-08-30 2023-08-25 杭州力龙液压有限公司 平衡阀结构及工程机械
CN113915177A (zh) * 2021-09-16 2022-01-11 利穗科技(苏州)有限公司 一种电液伺服驱动装置及层析设备
CN114505438A (zh) * 2022-04-02 2022-05-17 太原理工大学 一种大功率电液控制的压力机系统
CN116982441A (zh) * 2023-08-01 2023-11-03 山东弘宇农机股份有限公司 一种拖拉机液压独立式提升机构
CN116982441B (zh) * 2023-08-01 2024-02-27 山东弘宇农机股份有限公司 一种拖拉机液压独立式提升机构

Also Published As

Publication number Publication date
EP3543546A1 (en) 2019-09-25
EP3543546B1 (en) 2021-07-07
US20190337775A1 (en) 2019-11-07
EP3543546A4 (en) 2020-07-01
US10822211B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2018119972A1 (zh) 起重机液压控制系统和起重机
KR101378222B1 (ko) 작업 기계의 구동제어장치
JP6320417B2 (ja) エネルギを回収し、油圧システムにかかる負荷を平準化するための油圧システム用制御システム及び方法
US7565801B2 (en) Swing drive device and work machine
US10704229B2 (en) Hydraulic driving apparatus of work machine
JP5676641B2 (ja) ハイブリッドショベルのブーム駆動システム及びその制御方法
CN106678098B (zh) 起重机液压控制系统和起重机
US9309645B2 (en) Drive control method of operating machine
JP2006336844A (ja) 作業機械
JP2017536286A (ja) 静圧オプションを有する油圧ハイブリッド推進回路とその操作方法
JP2008063888A (ja) 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械
WO2006090655A1 (ja) バッテリ式産業車両の荷役回生方法及び荷役回生システム
KR20140009290A (ko) 하이브리드식 건설 기계
JP2009052339A (ja) ハイブリッド型作業機械の運転制御方法および同方法を用いた作業機械
US9777463B2 (en) Construction machine
CN108894274B (zh) 一种挖掘机回转能量回收和再利用系统
JP2015090193A (ja) 流体圧回路および作業機械
JP2011179280A (ja) 建設機械
JP2009264024A (ja) ハイブリッド建設機械の制御装置
KR101747519B1 (ko) 하이브리드식 건설 기계
JP2006336847A (ja) エネルギ回生装置
JP6383226B2 (ja) 作業機械の駆動システム
JP2006336849A (ja) 旋回用駆動装置
CN108915021B (zh) 一种液压挖掘机用多模式回转电液控制系统
WO2019140690A1 (zh) 轮式起重机的控制系统和轮式起重机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016925872

Country of ref document: EP

Effective date: 20190621