WO2018119639A1 - 转向装置、悬挂油缸、控制系统、方法和起重机 - Google Patents

转向装置、悬挂油缸、控制系统、方法和起重机 Download PDF

Info

Publication number
WO2018119639A1
WO2018119639A1 PCT/CN2016/112320 CN2016112320W WO2018119639A1 WO 2018119639 A1 WO2018119639 A1 WO 2018119639A1 CN 2016112320 W CN2016112320 W CN 2016112320W WO 2018119639 A1 WO2018119639 A1 WO 2018119639A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
wheel
angle
cylinder
steering angle
Prior art date
Application number
PCT/CN2016/112320
Other languages
English (en)
French (fr)
Inventor
单增海
陈建凯
马云旺
俞宗嘉
赵玉峰
赵留福
鹿鹏程
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to PCT/CN2016/112320 priority Critical patent/WO2018119639A1/zh
Priority to US16/473,979 priority patent/US11364950B2/en
Priority to EP16925899.3A priority patent/EP3564095A4/en
Publication of WO2018119639A1 publication Critical patent/WO2018119639A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/10Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of power unit
    • B62D5/12Piston and cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1509Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels with different steering modes, e.g. crab-steering, or steering specially adapted for reversing of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/26Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/02Resilient suspensions for a single wheel with a single pivoted arm
    • B60G3/04Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially transverse to the longitudinal axis of the vehicle
    • B60G3/06Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially transverse to the longitudinal axis of the vehicle the arm being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/20Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle specially adapted for particular type of steering gear or particular application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/14Independent suspensions with lateral arms
    • B60G2200/142Independent suspensions with lateral arms with a single lateral arm, e.g. MacPherson type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/44Indexing codes relating to the wheels in the suspensions steerable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/36Independent Multi-axle long vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • B60G2400/412Steering angle of steering wheel or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle

Definitions

  • the invention relates to the field of construction machinery, in particular to a steering device, a suspension cylinder, a control system, a method and a crane.
  • the all-terrain crane has gradually transformed from the original integral axle to the independent suspension axle.
  • the application of the independent suspension axle eliminates the influence of the up and down movement of the left and right wheels during the running of the vehicle, which greatly improves the driving comfort during the driving of the all terrain crane.
  • the electro-hydraulic axle steering system of engineering machinery vehicles is designed.
  • the current steering system has the following drawbacks:
  • the steering mechanism of the steering system includes a transition rocker arm, a trapezoidal arm, a steering lever, etc., which causes the steering mechanism to be too heavy.
  • the tire corner data is indirectly obtained by using the fitting tool, and the accuracy of the tire corner data is poor.
  • the left and right wheel tires have a fixed angular relationship.
  • the tire corner angle of one side is insufficient or the corner is too large, which may cause abnormal tire wear.
  • the inventors of the present invention have found that there is a problem in the above prior art, and thus propose a new technical solution to at least one of the problems.
  • a steering apparatus comprising: a knuckle arm and a steering assist cylinder; wherein the knuckle arm is located between a suspension cylinder and an axle wheel; the steering assist cylinder includes a first The end and the second end are connected to the bottom of the frame, and the second end is connected to the knuckle arm.
  • the steering device further includes: a fixing bracket; wherein the fixing bracket is fixedly connected to a first end of the steering assist cylinder is hinged with the fixed bracket; the knuckle arm is connected to the suspension cylinder and the axle wheel edge by a bolt; the second of the steering assist cylinder The end is hinged to the knuckle arm.
  • the steering device of the present invention can be applied to a chassis of a construction machinery vehicle, which can significantly reduce the weight of the steering system components of the vehicle and make a significant contribution to the lightweight design of the whole machine.
  • a suspension cylinder comprising: a cylinder rod, a cylinder barrel, a connecting rod, and an angle sensor, wherein the angle sensor includes a rotating portion and a fixing portion, the rotating portion and the cylinder a barrel is connected, the fixing portion is connected to the connecting rod; and the connecting rod is connected to the cylinder rod.
  • the suspension cylinder further includes: a displacement sensor fixedly coupled to the cylinder rod and slidably coupled to the connecting rod; and a rotation limiting device disposed on the connecting rod, the restriction The relative rotation between the displacement sensor and the connecting rod.
  • the suspension cylinder further includes a bearing mounted on the cylinder, wherein a rotating portion of the angle sensor is coupled to the bearing.
  • the suspension cylinder of the invention realizes the rotation motion detection between the cylinder barrel and the cylinder rod through the angle sensor, and can directly acquire the tire rotation angle, thereby solving the problem that the indirect acquisition of the tire rotation angle leads to poor precision.
  • a steering control system includes: a first angle sensor, a second angle sensor, and a steering controller; the first angle sensor and the second angle sensor respectively and the steering The controller is electrically connected; the first angle sensor collects an actual steering angle of the wheel corresponding to the mechanical steering axis, denotes a first steering angle, and transmits the first steering angle to the steering controller; The two-angle sensor collects an actual steering angle of the wheel corresponding to the electronically controlled steering shaft, recorded as a second steering angle, and transmits the second steering angle to the steering controller; the steering controller is according to the first Steering angle obtains a theoretical steering angle of a wheel corresponding to the electronically controlled steering axis in a corresponding driving mode, and compares the second steering angle with the theoretical steering angle, and controls the difference according to the difference between the two The wheel corresponding to the electronically controlled steering shaft is steered until the difference between the second steering angle and the theoretical steering angle is within a preset range.
  • the first angle sensor is mounted on a first suspension cylinder corresponding to the mechanical steering shaft; the second angle sensor is mounted on a second suspension cylinder corresponding to the electronically controlled steering shaft .
  • the first angle sensor is integrated with the first suspension cylinder
  • the second angle sensor is integrated with the second suspension cylinder
  • the first angle sensor includes a rotating portion and a first fixing portion, the first rotating portion is connected to a cylinder of the first suspension cylinder, the first solid
  • the fixed portion is connected to the connecting rod of the first suspension cylinder
  • the second angle sensor includes a second rotating portion and a second fixing portion, and the second rotating portion is connected to the cylinder of the second suspension cylinder,
  • the second fixing portion is connected to the connecting rod of the second suspension cylinder.
  • the mechanical steering shaft is an independent mechanical axle
  • the electronically controlled steering shaft is an independent electronically controlled axle
  • a first angle sensor is respectively mounted on the suspension cylinders on the left and right sides of the independent mechanical axle
  • a second angle sensor is respectively mounted on the suspension cylinders on the left and right sides of the independent electronically controlled axle; wherein the steering controller separately controls the independent electronic control according to the first steering angle and the second steering angle The wheels on the left and right sides of the axle are turned.
  • the steering controller calculates a theoretical steering angle of a wheel corresponding to the electronically controlled steering axis in a corresponding driving mode according to Ackerman's theorem; wherein the driving mode includes: a normal road driving mode, Small turn travel mode, crab travel mode, anti-tail drive mode, rear axle independent steering mode and rear axle lock travel mode.
  • the mechanical steering shaft includes: a first mechanical steering shaft and a second mechanical steering shaft; a wheel corresponding to the mechanical steering shaft includes: a first wheel corresponding to the first mechanical steering shaft and a second wheel corresponding to the second mechanical steering shaft; the first steering angle includes: a steering angle of the first wheel and a steering angle of the second wheel; wherein the steering controller is based on the first wheel An Ackerman's theorem relationship between the steering angle and the steering angle of the second wheel and the steering angle of the second wheel determine whether the steering angle of the first wheel is correct, if the first wheel If the steering angle is correct, the theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the corresponding driving mode is calculated according to the steering angle of the first wheel.
  • the steering control system further includes: a steering hydraulic system, configured to control the steering device of the corresponding wheel by hydraulic oil after receiving the steering electrical signal of the steering controller, thereby controlling and controlling a wheel steering corresponding to the electronically controlled steering shaft; wherein the steering controller transmits a steering electrical signal to the steering hydraulic system according to a difference between the second steering angle and the theoretical steering angle.
  • the steering device includes: a knuckle arm and a steering assist cylinder; wherein the knuckle arm is located between the suspension cylinder and the axle wheel wheel; the steering assist cylinder includes a first end and a second end The first end is coupled to the bottom of the frame, and the second end is coupled to the knuckle arm.
  • the steering hydraulic system includes: a hydraulic pump, a hydraulic oil tank, a directional solenoid valve group, and an oil chamber lock valve group; wherein the steering controller is respectively associated with the directional solenoid valve group and the oil chamber lock
  • the valve block group is electrically connected, and the directional solenoid valve group passes through the oil passage and the hydraulic pump, the hydraulic oil tank and the corresponding oil respectively a chamber lock valve group is connected, the hydraulic pump is connected to the hydraulic oil tank through an oil passage, and the oil chamber lock valve group is connected to an oil chamber of a steering assist cylinder of the steering device through an oil passage;
  • the steering control Transmitting, according to the difference between the second steering angle and the theoretical steering angle, a steering electric signal to the corresponding direction solenoid valve group and the oil chamber locking valve group, respectively, so that the corresponding directional solenoid valve group and the oil chamber lock
  • the oil passage of the valve group is turned on, thereby controlling the corresponding steering assist cylinder to extend or retract, thereby controlling the corresponding wheel to perform steering
  • the steering control system further includes: a vehicle speed detecting device for obtaining a vehicle speed and transmitting the vehicle speed to the steering controller; wherein the steering controller incorporates the vehicle speed pair The steering angle of the wheel corresponding to the electronically controlled steering shaft is adjusted.
  • the steering control system further includes: a position detecting switch disposed on a steering assist cylinder of the steering device for detecting a piston position in the steering assist cylinder and transmitting the piston position To the steering controller; wherein the steering controller determines whether the steering assist cylinder is in a neutral position according to the piston position, and controls the piston movement when the steering cylinder is not in a neutral position, such that the steering The booster cylinder is in the neutral position.
  • the steering control system further includes: a cylinder displacement sensor disposed on a steering assist cylinder of the steering device for detecting a displacement of the steering assist cylinder and transmitting the displacement to the a steering controller; wherein the steering controller determines whether the steering assist cylinder is in a neutral position according to the displacement, and controls movement of the piston when the steering cylinder is not in a neutral position, so that the steering assist cylinder is in the Median.
  • the steering controller is further configured to lock a position of the piston after the steering assist cylinder is in the neutral position, and to the first angle sensor after adjusting a positioning parameter of the wheel And the second angle sensor performs an automatic zeroing operation.
  • the steering control system of the present invention achieves control of wheel steering.
  • the system can realize the independent control steering of the left and right wheels of the independent suspension axle, and significantly reduce the occurrence of abnormal tire wear when switching work in various steering modes of the construction machinery vehicle.
  • a new four-wheel alignment scheme for the construction machinery vehicle can be realized, and the positional parameters of the single axle tire can be independently adjusted.
  • the method of positioning adjustment is simple and reliable.
  • an auxiliary emergency control system comprising: an auxiliary controller electrically connected to a steering controller for reading a signal of the steering controller when it is known that the steering controller is present When the fault or the steering hydraulic system corresponding to the steering controller fails, the emergency power is sent to the auxiliary hydraulic system. And an auxiliary hydraulic system for controlling a steering assist cylinder of the steering device of the corresponding wheel by hydraulic oil when the emergency electric signal is received, so that the wheel returns to the neutral position.
  • the auxiliary hydraulic system includes: a transfer case, an auxiliary emergency pump, and a plurality of auxiliary control solenoid valves; the auxiliary emergency pump is mounted on the transfer case, and the auxiliary emergency pump passes through the oil passage Connected to the hydraulic oil tank and connected to the plurality of auxiliary control solenoid valves through an oil passage; each of the auxiliary control solenoid valves is respectively connected to a large cavity and a small cavity of a corresponding steering assist cylinder through an oil passage; the auxiliary control The device is electrically connected to the plurality of auxiliary control solenoid valves; wherein the auxiliary controller sends the emergency electric signal to the auxiliary control solenoid valve, and controls the auxiliary control solenoid valve to open and close, thereby controlling the corresponding steering assist The cylinder moves.
  • the auxiliary emergency control system further includes: a position detecting switch disposed on the steering assist cylinder for detecting a position of a piston in the steering assist cylinder, and transmitting the piston position to the The auxiliary controller; wherein the auxiliary controller determines that the wheel returns to the neutral position when the steering assist cylinder is returned to the neutral position according to the piston position, thereby stopping the control of the steering assist cylinder.
  • the auxiliary emergency control system further includes: a cylinder displacement sensor disposed on the steering assist cylinder for detecting a displacement of the steering assist cylinder and transmitting the displacement to the auxiliary control
  • the auxiliary controller determines that the wheel returns to the neutral position when the steering assist cylinder is returned to the neutral position according to the displacement, thereby stopping the control of the steering assist cylinder.
  • the auxiliary hydraulic system further includes: an on-off solenoid valve and a preference valve; the on-off solenoid valve is electrically connected to the auxiliary controller; the on-off solenoid valve passes through the oil passage and the An auxiliary emergency pump is connected and connected to the priority selection valve through an oil passage; the priority selection valve is connected to a steering hydraulic system corresponding to the mechanical steering shaft through an oil passage; wherein, when the electronically controlled steering shaft of the vehicle fails The auxiliary controller sends a conduction signal to the on-off solenoid valve and the priority selection valve, and controls the on-off solenoid valve and the priority selection valve to be turned on, thereby controlling wheel steering corresponding to the mechanical steering shaft .
  • the auxiliary controller calculates a current steering angle of the wheel according to the displacement after receiving the displacement, and combines the current steering The angle controls the steering of the wheel.
  • a crane comprising: a steering control system as previously described.
  • the crane further includes an auxiliary emergency control system as previously described.
  • a steering control method includes: collecting an actual steering angle of a wheel corresponding to a mechanical steering shaft, which is recorded as a first steering angle; and collecting a wheel corresponding to the electronically controlled steering shaft The steering angle is recorded as a second steering angle; and the theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the corresponding driving mode is obtained according to the first steering angle, and the second steering angle is Comparing the theoretical steering angles, controlling the wheels corresponding to the electronically controlled steering shaft to perform steering according to the difference between the two, until the difference between the second steering angle and the theoretical steering angle is within a preset range .
  • the mechanical steering shaft is an independent mechanical axle
  • the electronically controlled steering axle is an independent electronically controlled axle
  • the step of acquiring the first steering angle and the second steering angle includes: collecting a first steering angle of the wheels on the left and right sides of the independent mechanical axle and a second steering angle of the wheels on the left and right sides of the independent electronically controlled axle
  • the step of controlling the steering of the wheel corresponding to the electronically controlled steering axle includes : controlling wheel steering on the left and right sides of the independent electronically controlled axle according to the first steering angle and the second steering angle, respectively.
  • the step of obtaining the theoretical steering angle comprises: calculating a theoretical steering angle of a wheel corresponding to the electronically controlled steering axis in a corresponding driving mode according to Ackerman's theorem; wherein the driving mode comprises: Normal road driving mode, small turning driving mode, crab-shaped driving mode, anti-tailing driving mode, rear axle independent steering driving mode, and rear axle locking driving mode.
  • the wheel corresponding to the mechanical steering shaft includes: a first wheel corresponding to the first mechanical steering shaft and a second wheel corresponding to the second mechanical steering shaft; and the wheel corresponding to the electronically controlled steering shaft includes: a third wheel corresponding to the third electronically controlled steering shaft, a fourth wheel corresponding to the fourth electronically controlled steering axis, a fifth wheel corresponding to the fifth electronically controlled steering axis, and a sixth wheel corresponding to the sixth electronically controlled steering axis And a seventh wheel corresponding to the seventh electronically controlled steering shaft.
  • a steering direction of the fifth wheel, the sixth wheel, and the seventh wheel is opposite to the first wheel, the second wheel,
  • the steering directions of the third wheel and the fourth wheel are opposite, and the steering angles of the first wheel to the seventh wheel satisfy the Ackerman theorem.
  • a steering direction of the fifth wheel, the sixth wheel, and the seventh wheel is opposite to the first wheel, the second wheel,
  • the steering directions of the third wheel and the fourth wheel are opposite, and the steering angles of the first wheel to the seventh wheel satisfy the Ackerman theorem.
  • steering directions of the first wheel to the seventh wheel are the same, and steering angles of the first wheel and the second wheel satisfy Kerman's theorem.
  • the steering direction of the seventh wheel is The steering directions of the first wheel, the second wheel, the third wheel, and the fourth wheel are opposite, the fifth wheel and the sixth wheel do not participate in steering, and the first wheel, The steering angles of the second wheel, the third wheel, the fourth wheel, and the seventh wheel satisfy the Ackerman theorem.
  • steering directions of the fifth wheel, the sixth wheel, and the seventh wheel are related to the third wheel and the fourth
  • the steering direction of the wheel is reversed, the first wheel and the second wheel do not participate in steering, and the steering angle of the third wheel to the seventh wheel satisfies the Ackerman theorem; wherein the theoretical steering angle is obtained
  • the steps include: obtaining a knob rotation angle of the vehicle and a vertical distance of the knob to the steering center; and calculating a theoretical steering angle of the third wheel to the seventh wheel in combination with the knob rotation angle and the vertical distance.
  • the third wheel to the seventh wheel do not participate in steering, and the steering angles of the first wheel and the second wheel satisfy Acker Mann's theorem.
  • the first steering angle includes: a steering angle of the first wheel and a steering angle of the second wheel; and the step of obtaining the theoretical steering angle includes: according to the steering angle of the first wheel and the The Ackerman theorem relationship between the steering angles of the second wheel and the steering angle of the second wheel determines whether the steering angle of the first wheel is correct; and if the steering angle of the first wheel is correct, And calculating a theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the corresponding driving mode according to the steering angle of the first wheel.
  • the step of controlling the steering of the wheel corresponding to the electronically controlled steering shaft according to the difference between the two comprises: steering the hydraulic system according to a difference between the second steering angle and the theoretical steering angle Sending a steering electric signal; and after receiving the steering electric signal, the steering hydraulic system controls the steering device of the corresponding wheel by hydraulic oil to control the steering of the wheel corresponding to the electronically controlled steering shaft.
  • the method further includes: obtaining a vehicle speed; and adjusting a steering angle of the wheel corresponding to the electronically controlled steering shaft in conjunction with the vehicle speed.
  • the method further includes: detecting a position of the piston in the steering assist cylinder; and determining, based on the position of the piston, whether the steering assist cylinder is in a neutral position, and controlling the steering cylinder when the steering cylinder is not in the neutral position The piston is moved such that the steering assist cylinder is in the neutral position.
  • the method further includes: locking a position of the piston after the steering assist cylinder is in the neutral position; adjusting a positioning parameter of the wheel; and the first steering angle of the acquisition and the The second steering angle performs an automatic zeroing operation.
  • the steering control method of the present invention achieves control of wheel steering.
  • the method can realize the independent control steering of the left and right wheels of the independent suspension axle, and significantly reduce the occurrence of abnormal tire wear when switching work in various steering modes of the construction machinery vehicle.
  • a new four-wheel alignment scheme for the construction machinery vehicle can be realized, and the positional parameters of the single axle tire can be independently adjusted.
  • the method of positioning adjustment is simple and reliable.
  • FIG. 1 is a schematic structural view schematically showing a steering device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a suspension cylinder according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view schematically showing a steering control system according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the bottom of a vehicle mounted with a steering system, according to an embodiment of the present invention.
  • Fig. 5 is a schematic structural view schematically showing a hydraulic system according to an embodiment of the present invention.
  • Fig. 6 is a schematic structural view schematically showing a steering control system according to another embodiment of the present invention.
  • Fig. 7A is a schematic view schematically showing steering of a vehicle in a normal road traveling mode according to an embodiment of the present invention.
  • Fig. 7B is a schematic view schematically showing a state of a wheel during steering of a vehicle in a normal road traveling mode according to an embodiment of the present invention.
  • FIG. 8A is a schematic view schematically showing steering of a vehicle in a small-turn running mode according to an embodiment of the present invention.
  • FIG. 8B is a schematic view schematically showing a state of a wheel during steering of a vehicle in a small-turn running mode according to an embodiment of the present invention.
  • Fig. 9A is a schematic view schematically showing the steering of the vehicle in a crab-shaped traveling mode according to an embodiment of the present invention.
  • 9B is a schematic view schematically showing a state of a wheel during steering of a vehicle in a crab-shaped traveling mode according to an embodiment of the present invention.
  • Fig. 10A is a schematic view schematically showing the steering of the vehicle in the anti-snap mode of travel according to an embodiment of the present invention.
  • FIG. 10B is a schematic view schematically showing a state of a wheel during steering of a vehicle in an anti-tail-sliding mode according to an embodiment of the present invention.
  • Fig. 11A is a schematic view schematically showing the steering of the vehicle in the rear axle independent steering mode according to an embodiment of the present invention.
  • 11B is a schematic view schematically showing a state of a wheel during steering of a vehicle in a rear axle independent steering mode according to an embodiment of the present invention.
  • Fig. 12 is a schematic view schematically showing the steering of the vehicle in the rear axle locking steering mode according to an embodiment of the present invention.
  • Fig. 13 is a schematic structural view schematically showing a steering assist cylinder with a position detecting switch according to an embodiment of the present invention.
  • Figure 14 is a schematic view showing the structure of a hydraulic system according to an embodiment of the present invention.
  • Fig. 15 is a schematic structural view schematically showing a control system according to an embodiment of the present invention.
  • Figure 16 is a flow chart showing a steering control method according to an embodiment of the present invention.
  • Figure 17 is a flow chart showing a method of assisting emergency control in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic structural view schematically showing a steering device according to an embodiment of the present invention.
  • FIG. 1 illustrates a disconnected non-driven axle 120 and a disconnected drive axle 130.
  • the axle is coupled to the frame (not shown in Figure 1) by a suspension cylinder 111.
  • the top of the cylinder rod of the suspension cylinder 111 is connected to the frame, and the bottom of the cylinder is connected to the axle wheel 112.
  • the cylinder rod can rotate without rotation relative to the frame, and the axle wheel 112 drives the cylinder to rotate.
  • the steering device 100 may include a knuckle arm 102 and a steering assist cylinder (a cylinder that assists the steering of the wheel) 101.
  • the knuckle arm 102 is located between the suspension cylinder 111 and the axle rim 112.
  • the knuckle arm 102 can be coupled to the suspension cylinder 111 and the axle rim 112 (eg, the knuckle on the axle side of the axle) by bolts.
  • the steering assist cylinder 101 can include a first end 1011 and a second end 1012.
  • the first end 1011 is attached to the bottom of the frame (not shown in Figure 1).
  • the second end 1012 is coupled to the knuckle arm 102.
  • the second end 1012 of the steering assist cylinder can be hinged to the knuckle arm 102.
  • the steering device 100 may further include: a fixing bracket 103 .
  • the fixing bracket 103 can be fixed to the bottom of the frame, and the first end 1011 of the steering assist cylinder 101 can be hinged with the fixing bracket 103.
  • the power comes from the steering assist cylinder connected to the wheel side, and the steering assist cylinder converts the telescopic movement of the cylinder into the rotation of the tire in the form of hydraulic assist.
  • the steering device of the embodiment of the invention has a simple structure, is light in weight, and is easy to operate.
  • the steering device of the present invention can be applied to a chassis of a construction machinery vehicle, which can significantly reduce the weight of the steering system components of the vehicle and make a significant contribution to the lightweight design of the whole machine.
  • one knuckle arm can be respectively mounted on the left and right wheel knuckles, and two fixing brackets are mounted on the bottom surface of the frame of the fixed independent suspension axle, and the fixing brackets on the same side are
  • a steering assist cylinder is disposed between the knuckle arms, and the steering assist cylinder is hingedly connected to the fixed bracket, and the steering assist cylinder is hingedly connected with the knuckle arm.
  • the oil pressure is supplied to the steering assist cylinder through the hydraulic oil pump, and the steering angle of the steering assist cylinder is controlled to control the steering angle of the single-side wheel, so that the single-side wheel independent of the independent suspension axle is realized. Steering function.
  • FIG. 2 is a schematic view showing the structure of a suspension cylinder according to an embodiment of the present invention.
  • the upper end 210 of the suspension cylinder can be coupled to the frame, and the bottom 220 can be coupled to the wheel edge.
  • the rotation of the wheel can drive the cylinder to rotate along the axis of the cylinder rod.
  • the suspension cylinder may include a cylinder rod 201, a cylinder 206, a connecting rod 204, and an angle sensor 208.
  • the angle sensor 208 can include a rotating portion and a fixed portion.
  • the rotating portion may be coupled to the cylinder 206, which may be coupled to the connecting rod 204.
  • the connecting rod 204 can be coupled to the cylinder rod 201.
  • the suspension cylinder may also include a bearing 207.
  • the bearing 207 is mounted on the cylinder 206.
  • the rotating portion of the angle sensor 208 is connected to the bearing 207.
  • the suspension cylinder may also include a displacement sensor 202.
  • the displacement sensor 202 is fixed to the cylinder rod 201.
  • the displacement sensor 202 (e.g., by a rod of a displacement sensor) can be slidably coupled to the connecting rod 204 (e.g., slidable up and down).
  • a magnetic sensing block 203 of the displacement sensor 202 is also shown in FIG.
  • the suspension cylinder may also include a rotation limiting device 205.
  • the rotation limiting device 205 can be disposed on the connecting rod 204 to limit relative rotation between the displacement sensor 202 and the connecting rod 204.
  • a threaded counterbore is provided at the bottom of the rod of the displacement sensor 202, and a rotation limiting device 205 is mounted on the connecting rod 204.
  • the rotation limiting device 205 may be a spline-like connection or other connection.
  • one end (i.e., the fixing portion) of the angle sensor 208 mounted below is fixed together with the rotation restricting means 205 through the center portion of the bearing 207, and the other end (i.e., the rotating portion) of the angle sensor 208 is mounted on the cylinder barrel, following the tire Rotate together to detect the tire angle.
  • FIG. 2 shows a suspension cylinder with a displacement sensor and an angle sensor, which can detect the cylinder displacement and the tire rotation angle.
  • a displacement sensor and an angle sensor which can detect the cylinder displacement and the tire rotation angle.
  • the suspension cylinder of the embodiment of the invention realizes the rotation motion detection between the cylinder barrel and the cylinder rod through the angle sensor, and can directly acquire the tire rotation angle, thereby solving the problem that the indirect acquisition of the tire rotation angle leads to poor precision.
  • FIG. 3 is a schematic structural view schematically showing a steering control system according to an embodiment of the present invention.
  • the steering control system may include a first angle sensor 301, a second angle sensor 302, and a steering controller 310.
  • the first angle sensor 301 and the second angle sensor 302 are respectively coupled to the steering controller 310 Electrical connection.
  • the steering control system can be applied to a vehicle having a mechanical steering shaft and an electronically controlled steering shaft.
  • an actuator 320 is also shown in FIG.
  • the first angle sensor 301 can collect the actual steering angle of the wheel corresponding to the mechanical steering shaft, denote the first steering angle, and transmit the first steering angle to the steering controller 310.
  • the second angle sensor 302 can collect the actual steering angle of the wheel corresponding to the electronically controlled steering shaft, denote the second steering angle, and transmit the second steering angle to the steering controller 310.
  • the steering controller 310 can obtain a theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the corresponding driving mode according to the first steering angle, and compare the second steering angle with the theoretical steering angle, according to the two
  • the difference control controls steering of the wheel corresponding to the electronically controlled steering shaft until the difference between the second steering angle and the theoretical steering angle is within a preset range.
  • the steering controller 310 transmits a steering electrical signal to the actuator 320 in real time to control the corresponding wheel steering
  • the second angle sensor acquires a second steering angle in real time and transmits to the steering controller, the steering controller in real time or It is periodically determined whether the difference between the second steering angle and the theoretical steering angle is within a preset range, and when the difference between the two is within a preset range, the wheel steering is stopped.
  • the above embodiment provides a steering control system that achieves the purpose of controlling wheel steering.
  • the first angle sensor 301 can be mounted on a first suspension cylinder corresponding to the mechanical steering shaft (here, a suspension cylinder mounted on the mechanical steering shaft is referred to as a first suspension cylinder).
  • the second angle sensor 302 is mounted on a second suspension cylinder corresponding to the electronically controlled steering shaft (here, the suspension cylinder mounted on the electronically controlled steering shaft is referred to as a second suspension cylinder).
  • the first angle sensor 301 is integrated with the first suspension cylinder
  • the second angle sensor 302 is integrated with the second suspension cylinder.
  • the integrated device can be referred to FIG.
  • the suspension cylinder shown in FIG. 2 includes an angle sensor
  • a plurality of suspension cylinders as shown in FIG. 2 can be disposed on the mechanical steering shaft or the electronically controlled steering shaft, and the angle sensors of the suspension cylinders are respectively used as the first An angle sensor or a second angle sensor.
  • the first angle sensor may include a first rotating portion and a first fixed portion.
  • the first rotating portion is coupled to the cylinder of the first suspension cylinder, and the first fixing portion is coupled to the connecting rod of the first suspension cylinder.
  • the second angle sensor may include a second rotating portion and a second fixed portion. The second rotating portion is coupled to the cylinder of the second suspension cylinder, and the second fixing portion is coupled to the connecting rod of the second suspension cylinder.
  • the mechanical steering shaft is an independent mechanical axle and the electronically controlled steering axle is an independently electrically controlled axle. That is, the mechanical steering shaft and the electronically controlled steering shaft are independent axles.
  • the independent axle has no rigid beam or non-disconnected axle connection between the left and right wheels.
  • the left and right wheels are connected to the frame or the body "independently" or form a disconnected vehicle. bridge.
  • a first angle sensor is respectively mounted on the suspension cylinders on the left and right sides of the independent mechanical axle, that is, on the left and right sides of the independent mechanical axle, a first angle sensor may be respectively provided to measure the steering angles of the left and right wheels respectively.
  • a second angle sensor is respectively mounted on the left and right suspension cylinders of the independent electronically controlled axles, that is, on the left and right sides of the independent electronically controlled axles, a second angle sensor can be respectively provided to measure the steering angles of the left and right wheels respectively.
  • the steering controller respectively controls wheel steering on the left and right sides of the independent electronically controlled axle according to the first steering angle and the second steering angle. This embodiment achieves independent steering control of the wheels on different sides of the electronically controlled steering shaft.
  • FIG. 4 is a schematic view showing the bottom of a vehicle mounted with a steering system, according to an embodiment of the present invention.
  • the vehicle has seven axles at the bottom, which are a first mechanical steering shaft 401, a second mechanical steering shaft 402, a third electronically controlled steering shaft 403, a fourth electronically controlled steering axle 404, a fifth electronically controlled steering axle 405, and a sixth
  • the steering shaft 406 is electrically controlled and the seventh electronically controlled steering shaft 407.
  • the bottom of the vehicle having the seven-axis structure shown in FIG. 4 will be described below as an example.
  • the mechanical steering shaft described above may include a first mechanical steering shaft (hereinafter referred to as a first shaft) 401 and a second mechanical steering shaft (hereinafter referred to as a second shaft) 402.
  • the wheel corresponding to the mechanical steering shaft may include a first wheel corresponding to the first mechanical steering shaft 401 and a second wheel corresponding to the second mechanical steering shaft 402.
  • the electronically controlled steering shaft described above may include a third electronically controlled steering shaft (hereinafter referred to as a third shaft) 403 and a fourth electronically controlled steering shaft (hereinafter referred to as a fourth shaft). 404.
  • the fifth electronically controlled steering shaft (hereinafter referred to as the fifth shaft) 405, the sixth electronically controlled steering shaft (hereinafter referred to as the sixth shaft) 406, and the seventh electronically controlled steering shaft (hereinafter referred to as the seventh shaft) 407.
  • the wheel corresponding to the electronically controlled steering shaft may include: a third wheel corresponding to the third electronically controlled steering shaft 403, a fourth wheel corresponding to the fourth electronically controlled steering shaft 404, and a fifth electronically controlled steering shaft 405
  • the third shaft 403, the fourth shaft 404, the fifth shaft 405, the sixth shaft 406, and the seventh shaft 407 may each take the form of the axle structure shown in FIG.
  • the steering device mounted on these axles may employ the steering device shown in Fig. 1.
  • a steering assist cylinder 409 of the steering device is shown, for example, in FIG.
  • FIG. 4 also shows a mechanical steering system 408 and a mechanical steering cylinder 410.
  • the mechanical steering system 408 and the mechanical steering cylinder 410 can employ existing steering systems and cylinders.
  • a suspension cylinder such as a suspension cylinder with a displacement sensor and an angle sensor (which may be referred to as shown in Fig. 2) 411, a suspension cylinder 412 with an angle sensor, and the like.
  • the tire between the first shaft 401 and the second shaft 402 is connected by a mechanical tie rod and then passed
  • the hydraulic assisting form rotates the tire, wherein an oil cylinder is mounted on the right side of the first shaft, and an angle sensor is disposed on the right side of the second shaft suspension cylinder.
  • the first steering angle may include a steering angle of the first wheel and a steering angle of the second wheel.
  • the steering controller (not shown in FIG. 4) can determine the first according to the Ackerman theorem relationship between the steering angle of the first wheel and the steering angle of the second wheel and the steering angle of the second wheel Whether the steering angle of a wheel is correct, and if the steering angle of the first wheel is correct, calculating, corresponding to the electronically controlled steering axis (eg, the third axis to the seventh axis) in the corresponding driving mode according to the steering angle of the first wheel The theoretical steering angle of the wheel.
  • the electronically controlled steering axis eg, the third axis to the seventh axis
  • the steering controller may calculate the theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the respective travel mode in accordance with Ackerman's theorem.
  • the travel mode may include a normal road travel mode, a small turn travel mode, a crab travel mode, an anti-tail drive mode, a rear axle independent steering travel mode, and a rear axle lock travel mode. The steering conditions in these six driving modes will be described in detail later.
  • FIG. 5 is a schematic structural view schematically showing a hydraulic system according to an embodiment of the present invention.
  • the first wheel 51, the second wheel 52, the third wheel 53, the fourth wheel 54, the fifth wheel 55, the sixth wheel 56, and the seventh wheel 57 are shown in FIG.
  • FIG. 5 also shows a three-axis left steering assist cylinder 5301, a three-axis right steering assist cylinder 5302, a four-axis left steering assist cylinder 5401, a four-axis right steering assist cylinder 5402, and a five-axis left steering.
  • a hydraulic pump for example, a plunger pump
  • a power take-off 512 an engine 513
  • a first steering pump 514, a second steering pump 515, a front steering emergency pump 516, and a first valve block are also shown in FIG. 517 and the second valve block 518, etc., for example, these components can be connected using existing connections.
  • the steering control system may also include a steering hydraulic system.
  • the steering hydraulic system is configured to control the steering of the corresponding wheel by hydraulic oil after receiving the steering electric signal of the steering controller, thereby controlling the steering of the wheel corresponding to the electronically controlled steering shaft.
  • the steering controller sends a steering electrical signal to the steering hydraulic system according to a difference between the second steering angle and the theoretical steering angle.
  • the steering hydraulic system may include a hydraulic pump, a hydraulic oil tank, a directional solenoid valve group, and an oil chamber lock valve group.
  • the steering controller is electrically connected to the directional solenoid valve group and the oil chamber lock valve group, respectively.
  • the directional solenoid valve group is respectively connected to the hydraulic pump, the hydraulic oil tank and the corresponding oil chamber lock valve group through the oil passage.
  • the hydraulic pump is connected to the hydraulic oil tank through an oil passage.
  • the oil chamber locking valve group is connected to the steering assist of the steering device through the oil passage The oil chamber of the cylinder.
  • the steering controller sends a steering electric signal to the corresponding direction solenoid valve group and the oil chamber locking valve group according to the difference between the second steering angle and the theoretical steering angle, so that the corresponding direction solenoid valve group and the oil chamber locking valve group
  • the oil passage is turned on, thereby controlling the corresponding steering assist cylinder to extend or retract, thereby controlling the corresponding wheel to perform steering.
  • the steering hydraulic system may include: a hydraulic pump 511, a hydraulic oil tank 501, a third axial direction solenoid valve group 531, a third shaft oil chamber lock valve group 532, and a fourth shaft direction solenoid valve group. 541.
  • Each direction solenoid valve group may include a plurality of directional solenoid valves corresponding to different wheels, respectively.
  • Each of the oil chamber lock valve groups may include a large chamber lock valve and a small chamber lock valve corresponding to the large and small chambers of the steering assist cylinders of the different wheels, respectively.
  • the steering controller (not shown in FIG. 5) according to the difference between the second steering angle and the theoretical steering angle respectively to the third axis direction solenoid valve group 531 and the third shaft oil chamber lock valve Group 532 sends a steering electrical signal.
  • the two-direction solenoid valves in the third-axis direction solenoid valve group 531 corresponding to the left third wheel and the right third wheel respectively obtain steering electric signals, thereby correspondingly entering the oil passage and the return oil passage.
  • the large chamber lock valve and the small chamber lock valve in the third shaft oil chamber lock valve group 532 respectively obtain a steering electric signal, so that the corresponding large chamber oil passage and the small chamber oil passage are electrically connected.
  • the hydraulic pump 511 passes the hydraulic oil in the hydraulic oil tank 501 through the third oil shaft direction solenoid valve group 531 and the third shaft oil chamber lock valve group 532 into the three-axis left-direction steering assist cylinder 5301 and the three-axis right side through the oil inlet passage.
  • the steering assist cylinder 5302 enters a large cavity of the two cylinders, and then the hydraulic oil in the small cavity returns to the hydraulic oil tank through the return oil passage, thereby finally realizing the steering action of the third wheel.
  • the steering control operation of the other wheels is similar to that of the third wheel, and will not be repeated here.
  • Fig. 6 is a schematic structural view schematically showing a steering control system according to another embodiment of the present invention.
  • the steering control system includes three steering controllers 610.
  • the three steering controllers can also be integrated into one steering controller, and the three steering controllers 610 and the steering shown in FIG. Controller 310 is similar.
  • the steering control system can also include a first angle sensor and a second angle sensor.
  • the first angle sensor may include: a first shaft angle sensor 6011 and a second Axis angle sensor 6012.
  • the first axis angle sensor 6011 is used to collect the actual steering angle of the first wheel
  • the second axis angle sensor 6012 is used to collect the actual steering angle of the second wheel.
  • the second angle sensor may include: a third axis angle sensor, a fourth axis angle sensor, a fifth axis angle sensor, a sixth axis angle sensor, and a seventh axis angle sensor (not shown in FIG. 6) .
  • the third axis angle sensor is used to collect the actual steering angle of the third wheel
  • the fourth axis angle sensor is used to collect the actual steering angle of the fourth wheel
  • the fifth axis angle sensor is used to collect the actual steering angle of the fifth wheel
  • the sixth axis angle sensor is for acquiring the actual steering angle of the sixth wheel
  • the seventh axis angle sensor is for collecting the actual steering angle of the seventh wheel.
  • the third axis direction solenoid valve group may include: a three-axis left wheel left turn solenoid valve 6321, a three-axis left wheel right turn solenoid valve 6322, and a three-axis right wheel left.
  • the third shaft oil chamber lock valve group may include: a three-axis left cylinder large chamber lock valve 6331, a three-axis left cylinder small chamber lock valve 6332, three axes.
  • the fourth axis direction solenoid valve group may include: a four-axis left wheel left turn solenoid valve 6421, a four-axis left wheel right turn solenoid valve 6422, and a four-axis right wheel left.
  • the fourth shaft oil chamber lock valve group may include: a four-axis left cylinder large chamber lock valve 6431, a four-axis left cylinder small chamber lock valve 6432, four axes The right cylinder large chamber lock valve 6451 and the four-axis right cylinder small chamber lock valve 6452.
  • the fifth axis direction solenoid valve group may include: a five-axis left wheel left turn solenoid valve 6521, a five-axis left wheel right turn solenoid valve 6522, and a five-axis right wheel left.
  • the fifth shaft oil chamber lock valve group may include: a five-axis left cylinder large chamber lock valve 6531, a five-axis left cylinder small chamber lock valve 6532, five axes The right cylinder large chamber lock valve 6551 and the five-axis right cylinder small chamber lock valve 6552.
  • the sixth axis direction solenoid valve group may include: a six-axis left wheel left-turn solenoid valve 6621, a six-axis left wheel right-turn solenoid valve 6622, and a six-axis right wheel left.
  • the sixth shaft oil chamber lock valve group may include: a six-axis left cylinder large chamber lock valve 6631, a six-axis left cylinder small chamber lock valve 6632, six shafts.
  • the seventh axis direction solenoid valve group may include: a seven-axis left wheel left turn solenoid valve 6721, a seven-axis left wheel right turn solenoid valve 6722, and a seven-axis right wheel left.
  • the seventh shaft oil chamber lock valve group may include: a seven-axis left cylinder large chamber lock valve 6731, a seven-axis left cylinder small chamber lock valve 6732, seven shafts.
  • FIG. 6 Also shown in FIG. 6 is a three-axis left steering assist cylinder 5301, a three-axis right steering assist cylinder 5302, a four-axis left steering assist cylinder 5401, a four-axis right steering assist cylinder 5402, and a five-axis left steering assist cylinder. 5501, five-axis right-direction steering assist cylinder 5502, six-axis left-side steering assist cylinder 5601, six-axis right-side steering assist cylinder 5602, seven-axis left-direction steering assist cylinder 5701 and seven-axis right-hand steering assist cylinder 5702.
  • FIG. 6 also shown in FIG. 6 is a three-axis left steering assist cylinder 5301, a three-axis right steering assist cylinder 5302, a four-axis left steering assist cylinder 5401, a four-axis right steering assist cylinder 5402, and a five-axis left steering assist cylinder. 5501, five-axis right-direction steering assist cylinder 5502,
  • FIG. 6 also shows a three-axis left wheel corner 6311, a three-axis right wheel corner 6312, a four-axis left wheel corner 6411, a four-axis right wheel corner 6412, and a five-axis left wheel corner 6511, five.
  • the steering controller 610 receives the actual steering angle of the first wheel and the actual steering angle of the second wheel from the first axle angle sensor 6011 and the second axle angle sensor 6012, respectively.
  • the two steering angles should satisfy the Ackermann theorem relationship, so the steering angle of the first wheel can be calculated according to the Ackerman's theorem relationship and the actual steering angle of the second wheel, and the calculated first wheel is calculated.
  • the steering angle is compared with the actual steering angle of the first garage. If the difference between the two is within the allowable range, it can be determined that the actual steering angle of the first wheel acquired is correct.
  • the steering controller 610 then calculates a theoretical steering angle of the third wheel in the respective driving mode based on the actual steering angle of the first wheel.
  • the steering controller 610 turns the solenoid valve 6321 to the left side of the three-axis wheel according to the difference between the actual steering angle of the third wheel and the theoretical steering angle, and the three-axis left-hand side left-turn solenoid valve 6341, the left side of the three-axis.
  • Cylinder large chamber lock valve 6331, three-axis left cylinder small chamber lock valve 6332, three-axis right cylinder large chamber lock valve 6351 and three-axis right cylinder small chamber lock valve 6352 send steering electric signal, control three The left shaft steering assist cylinder 5301 and the three-axis right steering assist cylinder 5302 operate, thereby Control the third wheel to turn left.
  • the difference is a positive value indicating that the wheel is turning to the left; the difference is a negative value indicating that the wheel is turning to the right.
  • the actual steering angle of the second wheel can be used as a reference input for the rear axle angle.
  • the actual steering angle of the second wheel can be used as the judgment design and redundant design of the first wheel steering angle.
  • the first wheel steering angle is input to the steering controller, and the second wheel steering angle is used to determine whether the first wheel angle input signal is correct.
  • the first wheel and the second wheel angle relationship are pre-stored to the steering controller.
  • the steering control system may further include: a vehicle speed detecting device 603.
  • the vehicle speed detecting device 603 is for obtaining a vehicle speed and transmitting the vehicle speed to the steering controller 610.
  • the steering controller 610 can adjust the steering angle of the wheel corresponding to the electronically controlled steering shaft in conjunction with the vehicle speed.
  • the vehicle speed detecting device 603 may be a gearbox or an ABS (antilock brake system) of the vehicle itself. That is, the vehicle speed signal can be obtained from the gearbox or from the interior of the vehicle's own ABS.
  • the steering control system may further include: a central controller 691 and a display 692.
  • the central controller 691 controls the vehicle and communicates with the steering controller to transmit a corner signal to the display 692, and the driver can observe the state of the vehicle steering system on the display.
  • Fig. 7A is a schematic view schematically showing steering of a vehicle in a normal road traveling mode according to an embodiment of the present invention.
  • the steering directions of the fifth wheel 55, the sixth wheel 56, and the seventh wheel 57 are the first wheel 51, the second wheel 52, the third wheel 53, and the fourth wheel 54.
  • the steering directions are opposite, and the steering angles of the first to seventh wheels 51 to 57 satisfy the Ackerman's theorem.
  • Fig. 7B is a schematic view schematically showing a state of a wheel during steering of a vehicle in a normal road traveling mode according to an embodiment of the present invention.
  • the left wheel (or tire) corner is indicated by L
  • the left wheel angle of each axis is represented by L 1 , L 2 , L 3 , L 4 , L 5 , L 6 and L 7 , respectively
  • the corner value after steering center O is a negative value.
  • the right wheel (or tire) corner is indicated by R
  • the right wheel angle of each axis is represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 respectively
  • the corner value after steering center O is Negative value.
  • the distance from the axle to the steering center O is indicated by H, and the distance from each axle to the steering center is represented by H 1 , H 2 , H 3 , H 4 , H 5 , H 6 and H 7 , respectively, and the distance after the steering center O Is a negative value.
  • the steering controller knows the one-axis corner L 1 (ie, the actual steering angle of the first wheel, which is acquired by the first angle sensor)
  • the corresponding each in the normal road driving mode can be calculated.
  • the theoretical steering angle of the wheel of the axle, and the steering of the wheel is controlled in combination with the actual steering angle of each wheel until the difference between the actual steering angle of the corresponding wheel and the theoretical steering angle is within a preset range.
  • FIG. 8A is a schematic view schematically showing steering of a vehicle in a small-turn running mode according to an embodiment of the present invention.
  • FIG. 8A in the small turning travel mode, the steering directions of the fifth wheel 55, the sixth wheel 56, and the seventh wheel 57 are the first wheel 51, the second wheel 52, the third wheel 53, and the fourth wheel 54.
  • the steering directions are opposite, and the steering angles of the first to seventh wheels 51 to 57 satisfy the Ackerman's theorem.
  • FIG. 8B is a schematic view schematically showing a state of a wheel during steering of a vehicle in a small-turn running mode according to an embodiment of the present invention.
  • the left wheel (or tire) corner is indicated by L
  • the left wheel angle of each axis is L 1 , L 2 (not shown L 2 in Fig. 8B), L 3 , L 4 , L 5 , respectively.
  • L 6 and L 7 represent a case where the corner value after the steering center O is a negative value.
  • the right wheel (or tire) corner is indicated by R
  • the right wheel angle of each axis is R 1 , R 2 (R 1 and R 2 are not shown in Fig.
  • R 3 , R 4 , R 5 , R 6 And R 7 indicates that the corner value is negative after turning to the center O.
  • the distance from the axle to the steering center O is represented by Q, and the distance from each axle to the steering center is represented by Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 and Q 7 , respectively, and the distance after the steering center O Is a negative value.
  • the steering controller knows the one-axis corner L 1 (ie, the actual steering angle of the first wheel, which is acquired by the first angle sensor)
  • the corresponding each in the small-turn driving mode can be calculated.
  • the theoretical steering angle of the wheel of the axle, and the steering of the wheel is controlled in combination with the actual steering angle of each wheel until the difference between the actual steering angle of the corresponding wheel and the theoretical steering angle is within a preset range.
  • Fig. 9A is a schematic view schematically showing the steering of the vehicle in a crab-shaped traveling mode according to an embodiment of the present invention. As shown in FIG. 9A, in the crab-shaped traveling mode, the steering directions of the first to seventh wheels 51 to 57 are the same, and the steering angles of the first and second wheels 51 and 52 satisfy the Ackerman's theorem.
  • FIG. 9B is a schematic view schematically showing a state of a wheel during steering of a vehicle in a crab-shaped traveling mode according to an embodiment of the present invention.
  • the left wheel (or tire) corner is indicated by L
  • the left wheel angle of each axis is L 1 , L 2 (not shown L 2 in Fig. 9B), L 3 , L 4 , L 5 , respectively.
  • L 6 and L 7 are indicated.
  • the right wheel (or tire) corner is indicated by R
  • the right wheel angle of each axis is R 1 , R 2 (R 1 and R 2 are not shown in Fig. 9B), R 3 , R 4 , R 5 , R 6 respectively.
  • R 7 said. Knowing the one-axis rotation angle L 1 , the relationship between the steering angle of each axle and the one-axis rotation angle is as follows:
  • the steering controller knows the one-axis corner L 1 (ie, the actual steering angle of the first wheel, which is acquired by the first angle sensor)
  • the corresponding axles in the crab-shaped driving mode can be calculated.
  • the theoretical steering angle of the wheel combined with the actual steering angle of each wheel, controls the wheel steering until the actual steering angle of the respective wheel is adjusted to be equal to the one-axis angle.
  • Fig. 10A is a schematic view schematically showing the steering of the vehicle in the anti-snap mode of travel according to an embodiment of the present invention.
  • the steering direction of the seventh wheel 57 is opposite to the steering directions of the first wheel 51, the second wheel 52, the third wheel 53, and the fourth wheel 54, and the fifth wheel 55
  • the sixth wheel 56 does not participate in steering, and the steering angles of the first wheel 51, the second wheel 52, the third wheel 53, the fourth wheel 54, and the seventh wheel 57 satisfy the Ackerman theorem.
  • FIG. 10B is a schematic view schematically showing a state of a wheel during steering of a vehicle in an anti-tail-sliding mode according to an embodiment of the present invention.
  • the left wheel (or tire) corner is represented by L
  • the left wheel angle of each axis is represented by L 1 , L 2 , L 3 , L 4 , L 5 , L 6 and L 7 , respectively
  • the corner value after steering center O is a negative value.
  • the right wheel (or tire) corner is indicated by R
  • the right wheel angle of each axis is represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 respectively
  • the corner value after the steering center O is Negative value.
  • the distance from the axle to the steering center O is denoted by S, and the distance from each axle to the steering center is represented by S 1 , S 2 , S 3 , S 4 , S 5 , S 6 and S 7 , respectively, and the distance value after the steering center O Is a negative value.
  • the steering controller can calculate the driving mode in the anti-small driving mode.
  • the steering angle of the wheel corresponding to each axle is controlled, and the steering of the wheel is controlled in combination with the actual steering angle of each wheel until the difference between the actual steering angle of the corresponding wheel and the theoretical steering angle is within a preset range.
  • Fig. 11A is a schematic view schematically showing the steering of the vehicle in the rear axle independent steering mode according to an embodiment of the present invention.
  • the steering directions of the fifth wheel 55, the sixth wheel 56, and the seventh wheel 57 are opposite to the steering directions of the third wheel 53 and the fourth wheel 54, the first wheel The 51 and second wheels 52 do not participate in the steering, and the steering angles of the third to fifth wheels 53 to 57 satisfy the Ackerman's theorem.
  • FIG. 11B is a schematic view schematically showing a state of a wheel during steering of a vehicle in a rear axle independent steering mode according to an embodiment of the present invention.
  • the left wheel (or tire) corner is indicated by L
  • the left wheel angle of each axis is L 1 , L 2 (L 1 and L 2 are not shown in Fig. 11B), L 3 , L 4 , respectively.
  • L 5 , L 6 and L 7 represent, wherein the corner value after the steering center O is a negative value.
  • the right wheel (or tire) corner is indicated by R, and the right wheel angle of each axis is R 1 , R 2 (R 1 and R 2 are not shown in Figure 11B), R 3 , R 4 , R 5 , R 6 And R 7 indicates that the corner value is negative after turning to the center O.
  • the distance from the axle to the steering center O is denoted by K, and the distance from each axle to the steering center is K 1 , K 2 (K 1 and K 2 are not indicated in Fig. 11B), K 3 , K 4 , K 5 , K 6 And K 7 indicates that the distance value after the steering center O is a negative value.
  • the knob rotation angle P is known (the knob refers to the rear axle independent steering knob.
  • the main function of this knob is: the mechanical steering shaft is controlled by the steering wheel.
  • the so-called rear axle independent steering means that the mechanical steering shaft does not steer, and the electronically controlled steering shaft is independently turned.
  • the rotation angle of the knob determines the steering angle of the rear axle.
  • the distance K from the steering center is related to the steering angle of each axle as follows:
  • the steering angle of the vehicle and the vertical distance of the knob to the steering center can be obtained, and then combined with the knob
  • the rotation angle and the vertical distance calculate the theoretical steering angle of the third to seventh wheels, and control the wheel steering in combination with the actual steering angle of each wheel until the difference between the actual steering angle of the corresponding wheel and the theoretical steering angle is within a preset range Inside.
  • Fig. 12 is a schematic view schematically showing the steering of the vehicle in the rear axle locking steering mode according to an embodiment of the present invention.
  • the third to fifth wheels 53 to 57 do not participate in steering (i.e., the steering angles of the third, fifth, fifth, fifth, fifth, and seventh wheels 57, 57, 57) 0), the steering angles of the first wheel 51 and the second wheel 52 satisfy the Ackerman theorem.
  • the lock rear axle steering mode the steering controller in a known crankshaft angle L 1, the third wheel to adjust the wheel steering angle of the seventh to 0 degrees (i.e., does not participate in steering), in order to achieve the steering mode in which operating.
  • the steering between the left and right tires of the electronically controlled steering shaft may be uncorrelated.
  • the steering wheel is no longer mechanically constrained and can be rotated into position according to a predetermined theorem.
  • the first axle wheel angle is input as a reference to the steering controller during the running of the vehicle
  • the second axle wheel angle is input as a redundant signal to the steering controller
  • the steering controller acquires the input condition
  • the steering electric signal for controlling the corresponding valve group to perform the action is output, and the steering assist cylinder as the actuator finally pushes the wheel to rotate.
  • the angle sensor inside the suspension cylinder feeds back the wheel angle signal to the steering controller.
  • the steering controller internally compares the obtained actual corner signal with the theoretical corner signal, and continuously adjusts the wheel angle to obtain the optimum. Wheel corner.
  • the steering control system can also include a position detection switch.
  • the position detecting switch is disposed on a steering assist cylinder of the steering device for detecting a piston position in the steering assist cylinder and transmitting the piston position to the steering controller.
  • the steering controller determines whether the steering assist cylinder is in the neutral position based on the piston position, and controls the piston movement when the steering cylinder is not in the neutral position, so that the steering assist cylinder is in the neutral position.
  • the steering control system may also include a cylinder displacement sensor.
  • the cylinder displacement sensor is disposed on a steering assist cylinder of the steering device for detecting displacement of the steering assist cylinder and transmitting the displacement to the steering controller.
  • the steering controller determines whether the steering assist cylinder is in the neutral position based on the displacement, and controls the piston movement when the steering cylinder is not in the neutral position, so that the steering assist cylinder is in the neutral position.
  • the steering controller is further configured to lock the position of the piston after the steering assist cylinder is in the neutral position, and perform an automatic zeroing operation on the first angle sensor and the second angle sensor after adjusting the positioning parameters of the wheel.
  • Fig. 13 is a schematic structural view schematically showing a steering assist cylinder with a position detecting switch according to an embodiment of the present invention.
  • the steering assist cylinder includes a steering assist cylinder head 1301, a cylinder 1302, a nut 1303, a piston 1304, a sealing device 1305, a cylinder rod 1306, a guide sleeve 1307, and an adjustable ball head 1308.
  • the ball head 1301 is coupled to the cylinder tube 1302.
  • the piston 1304 is disposed inside the cylinder tube 1302 and is fixed to one end of the cylinder rod 1306 by a nut 1303.
  • a sealing device 1305 is wrapped around the cylinder rod 1306.
  • a guide sleeve 1307 is provided between the cylinder tube 1302 and the cylinder rod 1306.
  • the adjustable ball head 1308 is coupled to the other end of the cylinder rod 1306.
  • the steering assist cylinder may further include a position detecting switch 1309.
  • the position detection switch is integrated with other components of the steering assist cylinder.
  • the position detecting switch 1309 is disposed on the cylinder 1302 of the steering assist cylinder.
  • an internal thread matching the position detecting switch 1309 may be provided at a specific position of the cylinder tube 1302.
  • the position detecting switch 1309 is externally threaded and can be directly mounted on the cylinder of the steering assist cylinder.
  • the position detecting switch 1309 can be used to detect the neutral position of the steering assist cylinder.
  • Each angle in the steering process of each wheel corresponds to a different displacement point of the steering assist cylinder, and when the wheel is in the neutral position
  • the cylinder length is used as the median detection point.
  • the median detection point of the booster cylinder corresponding to each tire is different.
  • the cylinder design process will be designed for the center position of the wheel.
  • a position detecting switch may be provided on each side of the center position of the steering assist cylinder.
  • the position detecting switch can automatically return the steering assist cylinder to the design neutral position at one key, and is used to detect whether the piston is to the left or the right of the position detecting switch, so as to turn left or right to return to the neutral position. the goal of.
  • the position detection switch can also detect whether the cylinder is returned to the neutral position, providing a key to achieve a reference for the steering assist cylinder to automatically return to the design neutral position.
  • the invention also proposes a novel four-wheel positioning method for the electronically controlled steering shaft.
  • the steering assist cylinders are matched according to the tire position, and each steering assist cylinder corresponds to a design center.
  • the neutral position of the steering assist cylinder is detected, and the detection signal is input to the steering controller.
  • the steering controller can automatically return the steering assist cylinder to the design center in one position in the cab according to the program set by itself.
  • the wheel positioning device fine-tunes the length of the steering assist cylinder to achieve the purpose of adjusting the posture of the tire. After the adjustment is completed, all the tires are in the design zero position, and the angle sensor inside the suspension cylinder can be reset to zero by the steering controller inside the cab. Through four-wheel positioning, the vehicle can be guaranteed to have good driving performance and reliability.
  • the adjustment of the wheel four wheel alignment parameters can be started, and the cylinder length of the cylinder rod end is adjusted to achieve fine adjustment of the cylinder length, and a reasonable tire attitude parameter is obtained.
  • the four-wheel positioning device can use existing equipment for detecting the posture of the tire. After the four-wheel alignment is completed, all the tires are in the neutral state, but the angle sensor signal may not be at the zero position. At this time, the angle sensor can be reset to zero by manual adjustment; or in order to save time and effort, the angle sensor can be automatically cleared by the cab control module, and the display shows zero value on the display, and the controller is in the system. The inside thinks that the corner is zero.
  • the vehicle may not be able to perform the steering operation, and thus the present invention also provides an auxiliary emergency control system.
  • the auxiliary emergency control system can include an auxiliary controller and an auxiliary hydraulic system.
  • the auxiliary controller is electrically connected to the steering controller for reading the signal of the steering controller, and sending to the auxiliary hydraulic system when it is known that the steering controller is faulty or the steering hydraulic system corresponding to the steering controller fails Emergency electrical signal.
  • the auxiliary hydraulic system is configured to control the steering assist cylinder of the steering device of the corresponding wheel by hydraulic oil when receiving the emergency electric signal, so that the wheel returns to the neutral position.
  • the system can be activated in the event of an alarm or malfunction in the main control system, causing the electronically controlled steering to return to the predetermined neutral position.
  • the auxiliary emergency control system may also include a position detection switch.
  • Position detection switch It is disposed on the steering assist cylinder (for example, as described above, the position detecting switch is integrated with the steering assist cylinder).
  • the position detecting switch is for detecting a piston position in the steering assist cylinder and transmitting the piston position to the auxiliary controller.
  • the auxiliary controller knows that the steering assist cylinder returns to the neutral position according to the piston position, it determines that the wheel returns to the neutral position, thereby stopping the control of the steering assist cylinder (ie, causing the steering assist cylinder to stop).
  • the auxiliary emergency control system may also include a cylinder displacement sensor.
  • the cylinder displacement sensor is disposed on the steering assist cylinder (eg, the cylinder displacement sensor is integrated with the steering assist cylinder) for detecting the displacement of the steering assist cylinder and transmitting the displacement to the auxiliary controller.
  • the auxiliary controller knows that the steering assist cylinder returns to the neutral position according to the displacement, it determines that the wheel returns to the neutral position, thereby stopping the control of the steering assist cylinder (ie, causing the steering assist cylinder to stop).
  • Figure 14 is a schematic view showing the structure of a hydraulic system according to an embodiment of the present invention.
  • the steering hydraulic system of FIG. 14 includes: a third axial direction solenoid valve group 731, a third shaft oil chamber lock valve group 732, a fourth five-axis left-direction electromagnetic valve group 741, and a fourth five-axis left.
  • the side oil chamber lock valve group 742, the fourth five-axis right side direction solenoid valve group 751, the fourth five-axis right side oil chamber lock valve group 752, the sixth and seventh shaft left direction solenoid valve group 761, and the sixth seven The left side oil chamber lock valve group 762, the sixth and seventh shaft right side direction solenoid valve group 771, and the sixth and seventh shaft right side oil chamber lock valve group 772.
  • the auxiliary hydraulic system may include: a transfer case (which may rotate as the vehicle operates) 820, an auxiliary emergency pump 810, and a plurality of auxiliary control solenoid valves (for example, two sets of three-position four-way assist control electromagnetics are shown in FIG. Valve blocks 831 and 832, which control the solenoid valve group include an auxiliary control solenoid valve).
  • the auxiliary emergency pump 810 is mounted on the transfer case 820 (specifically, the auxiliary emergency pump is mounted on the transfer case power take-off port), and the auxiliary emergency pump is connected to the hydraulic oil tank 501 through the oil passage, and through the oil passage and the plurality of auxiliary The control solenoid valve is connected.
  • Each of the auxiliary control solenoid valves is respectively connected to the large cavity and the small cavity of the corresponding steering assist cylinder through an oil passage.
  • the three-axis left auxiliary control solenoid valve is connected to the large cavity and the small cavity of the steering assist cylinder corresponding to the third axis, and the like.
  • An auxiliary controller (not shown in Figure 14) is electrically coupled to the plurality of auxiliary control solenoid valves. Wherein, the auxiliary controller sends an emergency electric signal to the auxiliary control solenoid valve, and controls the auxiliary control solenoid valve to be turned on, thereby controlling the corresponding steering assist cylinder to act, so that the corresponding wheel returns to the neutral position.
  • the auxiliary controller sends an emergency electric signal to the three-axis left auxiliary control solenoid valve, and controls the three-axis left auxiliary control solenoid valve to be turned on, thereby controlling the steering assist cylinder corresponding to the third axis to control the triaxial left.
  • the side wheels return to the neutral position.
  • the power source of the auxiliary emergency control system is derived from an auxiliary emergency pump installed on the power take-off port of the transfer case, where the auxiliary emergency pump and the three, four, five, six and seven axes and other electronically controlled steering axles Turn left and right Two sets of three-position four-way auxiliary control solenoid valve groups are added between the cylinders to respectively control the left and right steering assist cylinders of the electric control axle, and the solenoid valves are controlled by a separate auxiliary controller, and the auxiliary controller reads and controls the electronic control
  • the actual signal of the axle steering controller ie, the steering controller
  • the auxiliary controller controls the auxiliary control solenoid of the faulty circuit to be turned on and off.
  • the steering assist cylinder that realizes the loop control is in the middle stroke state, that is, the tire neutral state is realized, and the safety of the vehicle is ensured.
  • the auxiliary hydraulic system further includes an on-off solenoid valve 840 and a preference valve 850.
  • the on-off solenoid valve 840 is electrically connected to an auxiliary controller (not shown in Fig. 14).
  • the on-off solenoid valve 840 is connected to the auxiliary emergency pump 810 via an oil passage and is connected to the preference valve 850 via an oil passage.
  • the priority selection valve 850 is connected to the steering hydraulic system corresponding to the mechanical steering shaft through an oil passage.
  • the auxiliary controller when the electronically controlled steering shaft of the vehicle fails, the auxiliary controller sends a conduction signal to the on-off solenoid valve 840 and the preference selection valve 850, and controls the on-off solenoid valve 840 and the priority selection valve 850 to be turned on, thereby Control wheel steering corresponding to the mechanical steering shaft.
  • the electronically controlled steering shaft fails, the electronically controlled steering shaft is locked, and the mechanically operated steering is realized by the on-off solenoid valve and the preferential selection valve.
  • Fig. 15 is a schematic structural view schematically showing a control system according to an embodiment of the present invention. The same or similar structure as the steering control system of Fig. 6 is shown in Fig. 15. In addition, an auxiliary controller 910 and a plurality of auxiliary control solenoid valves are also shown in FIG.
  • the plurality of auxiliary control solenoid valves are: a three-axis left cylinder auxiliary solenoid valve 8313, a three-axis right cylinder auxiliary solenoid valve 8323, a four-axis left cylinder auxiliary solenoid valve 8314, a four-axis right cylinder auxiliary solenoid valve 8324, Five-axis left cylinder auxiliary solenoid valve 8315, five-axis right cylinder auxiliary solenoid valve 8325, six-axis left cylinder auxiliary solenoid valve 8316, six-axis right cylinder auxiliary solenoid valve 8326, seven-axis left cylinder auxiliary solenoid valve 8317 and Seven-axis right cylinder auxiliary solenoid valve 8327.
  • the control process of the auxiliary emergency control system is described: when the steering controller 610 fails or the steering hydraulic system corresponding to the steering controller 610 fails, the steering controller 610 Sending a signal (which may be referred to as a fault signal) to the auxiliary controller 910, after receiving the signal, the auxiliary controller 910 sends an emergency electric signal to the auxiliary hydraulic system, for example, currently needs to control the three-axis left wheel to return to the neutral position, then The three-axis left cylinder auxiliary solenoid valve 8313 sends an emergency electric signal to control the three-axis left cylinder auxiliary solenoid valve 8313 to conduct, thereby controlling the three-axis left steering assist cylinder to make the three-axis left-assisted cylinder steer.
  • a signal which may be referred to as a fault signal
  • the position detecting switch disposed on the three-axis left steering assist cylinder obtains the piston position of the boost cylinder in real time and feeds back to the auxiliary controller 910.
  • the auxiliary controller 910 determines the assistance based on the position of the piston When the cylinder returns to the neutral position (that is, the three-axis left wheel returns to the neutral position), the control of the boost cylinder is stopped.
  • the control process for other auxiliary solenoid valves is similar, and will not be repeated here.
  • the auxiliary controller receives the displacement (of the steering assist cylinder) (eg, from the cylinder displacement sensor), calculates the current steering angle of the wheel based on the displacement, and combines The current steering angle controls the steering of the wheel.
  • the first steering angle of the wheel corresponding to the mechanical steering shaft collected by the first angle sensor described above is also input to the auxiliary controller, and the auxiliary controller can be corresponding according to the first steering angle.
  • the theoretical steering angle of the wheel, and the corresponding wheel steering is controlled according to the difference between the current steering angle calculated here and the theoretical steering angle here until the difference between the two is within a preset range.
  • the invention also provides a crane comprising a steering control system as previously described.
  • the crane may further comprise: an auxiliary emergency control system as previously described.
  • Figure 16 is a flow chart showing a steering control method according to an embodiment of the present invention.
  • step S1601 the actual steering angle of the wheel corresponding to the mechanical steering axis is collected, which is recorded as the first steering angle; and the actual steering angle of the wheel corresponding to the electronically controlled steering axis is collected, which is recorded as the second steering angle.
  • step S1602 the theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the corresponding driving mode is obtained according to the first steering angle.
  • step S1603 the second steering angle is compared with the theoretical steering angle, and the steering wheel corresponding to the electronically controlled steering shaft is controlled to perform steering according to the difference between the two.
  • step S1604 it is determined whether the difference between the second steering angle and the theoretical steering angle is within a preset range. If so, the process ends; otherwise, returning to step S1603, the control of the respective wheel steering continues.
  • the first steering angle and the second steering angle are acquired, and then the theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the corresponding driving mode is obtained according to the first steering angle, and the second steering angle is The theoretical steering angle is compared, and the wheel corresponding to the electronically controlled steering shaft is controlled to perform steering according to the difference between the two, until the difference between the second steering angle and the theoretical steering angle is within a preset range, thereby realizing Control of wheel steering.
  • the mechanical steering shaft is an independent mechanical axle and the electronically controlled steering axle is an independently electrically controlled axle.
  • the step of acquiring the first steering angle and the second steering angle may include acquiring a first steering angle of the wheels on the left and right sides of the independent mechanical axle and a second steering angle of the wheels on the left and right sides of the independent electronically controlled axle.
  • Control and electricity The step of steering the wheel corresponding to the steering shaft may include: controlling wheel steering on the left and right sides of the independent electronically controlled axle according to the first steering angle and the second steering angle, respectively.
  • the step of obtaining the theoretical steering angle may include calculating a theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the respective driving mode according to the Ackerman theorem.
  • the driving mode may include: a normal road driving mode, a small turning driving mode, a crab-shaped driving mode, an anti-tailing driving mode, a rear axle independent steering driving mode, and a rear axle locking driving mode.
  • the wheel corresponding to the mechanical steering shaft may include a first wheel corresponding to the first mechanical steering shaft and a second wheel corresponding to the second mechanical steering shaft.
  • the wheel corresponding to the electronically controlled steering shaft may include: a third wheel corresponding to the third electronically controlled steering axis, a fourth wheel corresponding to the fourth electronically controlled steering axis, and a fifth electronically controlled steering shaft And a corresponding fifth wheel, a sixth wheel corresponding to the sixth electronically controlled steering shaft, and a seventh wheel corresponding to the seventh electronically controlled steering shaft.
  • the steering directions of the fifth wheel, the sixth wheel, and the seventh wheel are opposite to the steering directions of the first wheel, the second wheel, the third wheel, and the fourth wheel, and The steering angle of one wheel to the seventh wheel satisfies the Ackerman theorem.
  • the steering directions of the fifth wheel, the sixth wheel, and the seventh wheel are opposite to the steering directions of the first wheel, the second wheel, the third wheel, and the fourth wheel, and The steering angle of one wheel to the seventh wheel satisfies the Ackerman theorem.
  • the steering directions of the first to seventh wheels are the same, and the steering angles of the first and second wheels satisfy the Ackerman theorem.
  • the steering direction of the seventh wheel is opposite to the steering directions of the first wheel, the second wheel, the third wheel, and the fourth wheel, and the fifth wheel and the sixth wheel do not participate. Steering, and the steering angles of the first wheel, the second wheel, the third wheel, the fourth wheel, and the seventh wheel satisfy the Ackerman theorem.
  • the steering directions of the fifth, sixth, and seventh wheels are opposite to the steering directions of the third and fourth wheels, and the first and second wheels are not Participate in steering, and the steering angles of the third to seventh wheels satisfy the Ackerman theorem.
  • the step of obtaining the theoretical steering angle may include: obtaining a knob rotation angle of the vehicle and a vertical distance of the knob to the steering center; and calculating the third to seventh wheels in combination with the knob rotation angle and the vertical distance The theoretical steering angle.
  • the third to seventh wheels do not participate in steering, and the steering angles of the first and second wheels satisfy the Ackerman theorem.
  • the first steering angle may include a steering angle of the first wheel and a steering angle of the second wheel.
  • Obtaining the theoretical steering angle includes: determining a steering of the first wheel according to an Ackerman theorem relationship between a steering angle of the first wheel and a steering angle of the second wheel and a steering angle of the second wheel Whether the angle is correct; and if the steering angle of the first wheel is correct, the theoretical steering angle of the wheel corresponding to the electronically controlled steering axis in the corresponding driving mode is calculated according to the steering angle of the first wheel.
  • the step of controlling the steering of the wheel corresponding to the electronically controlled steering shaft according to the difference between the two may include: transmitting a steering electrical signal to the steering hydraulic system according to a difference between the second steering angle and the theoretical steering angle; And after receiving the steering electric signal, the steering hydraulic system controls the steering device of the corresponding wheel by hydraulic oil to control the steering of the wheel corresponding to the electronically controlled steering shaft.
  • the steering control method may further include: obtaining a vehicle speed; and adjusting a steering angle of the wheel corresponding to the electronically controlled steering shaft in conjunction with the vehicle speed.
  • the steering control method may further include: detecting a position of a piston in the steering assist cylinder; and determining whether the steering assist cylinder is in a neutral position according to the piston position, and controlling the piston when the steering cylinder is not in the neutral position Movement causes the steering assist cylinder to be in the neutral position.
  • the steering control method may further include: locking a position of the piston after the steering assist cylinder is in the middle position; adjusting a positioning parameter of the wheel; and automatically acquiring the collected first steering angle and the second steering angle Clear the operation.
  • Figure 17 is a flow chart showing a method of assisting emergency control in accordance with one embodiment of the present invention.
  • step S1701 the signal of the steering controller is read, and when it is known that the steering controller has failed or the steering hydraulic system corresponding to the steering controller has failed, an emergency electric signal is sent to the auxiliary hydraulic system.
  • step S1702 the auxiliary hydraulic system controls the steering assist cylinder of the steering device of the corresponding wheel by hydraulic oil when receiving the emergency electric signal, so that the wheel returns to the neutral position.
  • the above embodiment achieves a method of assisting emergency control when a steering control system fails, thereby causing the electronically controlled steering wheel to return to a predetermined neutral position.
  • the auxiliary emergency control method may further include: obtaining a position of a piston in the steering assist cylinder; and determining, when the steering assist cylinder is returned to the neutral position according to the position of the piston, determining that the wheel returns to the neutral position, thereby stopping Controls the steering assist cylinder action (ie, causes the steering assist cylinder to stop).
  • the auxiliary emergency control method may further include: obtaining a displacement in the steering assist cylinder; and determining, when the steering assist cylinder is returned to the neutral position according to the displacement, determining that the wheel returns to the neutral position, thereby stopping Controls the steering assist cylinder action (ie, causes the steering assist cylinder to stop).
  • the auxiliary emergency control method may further include: when the electronically controlled steering shaft of the vehicle fails, transmitting a conduction signal to the on-off solenoid valve and the preference control valve, controlling the on-off solenoid valve and the The valve is preferably turned on to control wheel steering corresponding to the mechanical steering shaft.
  • the auxiliary emergency control method may further include: when the steering control system of the vehicle fails, after obtaining the displacement of the steering assist cylinder, calculating a current steering angle of the wheel according to the displacement, and combining the current steering The angle controls the steering of the wheel.
  • the invention is applicable not only to independent suspension axles, but also to integral axles.
  • An independent suspension is a suspension in which there is no rigid beam or non-disconnected axle connection between the left and right wheels, and the left and right wheels are each "independently" connected to the frame or body or form a disconnected Axle.
  • the integral axle is such an axle: the wheels on both sides are connected by a single structural member, and the wheels together with the axle are suspended by the elastic suspension on the frame, and the left and right wheels are mutually affected when they jump.
  • the steering device of the present invention can be applied to a chassis of a construction machinery vehicle, which can significantly reduce the weight of the steering system components of the vehicle and make a significant contribution to the lightweight design of the whole machine.
  • the invention can realize a new suspension cylinder which can detect the displacement of the suspension cylinder and the rotation angle of the tire, and can also realize a new suspension cylinder which can separately detect the rotation angle of the tire.
  • the suspension cylinder of the invention realizes the rotation motion detection between the cylinder barrel and the cylinder rod through the angle sensor, and can directly acquire the tire rotation angle, thereby solving the problem that the indirect acquisition of the tire rotation angle leads to poor precision.
  • the left and right wheels of the independent suspension axle can be independently controlled to turn, which significantly reduces the abnormal wear of the tire when the engineering machinery vehicle switches in various steering modes.
  • a new four-wheel alignment scheme for construction machinery vehicles is realized, and the position parameters of a single axle tire are independently adjusted.
  • the method of positioning adjustment is simple and reliable.
  • the auxiliary emergency control system is activated in the event of an alarm or malfunction of the main control system, so that the electronically controlled steering wheel returns to the predetermined neutral position.
  • the methods and systems of the present invention may be implemented in a number of ways. For example, via software, hardware, firmware or Any combination of software, hardware, firmware, to implement the methods and systems of the present invention.
  • the above-described sequence of steps for the method is for illustrative purposes only, and the steps of the method of the present invention are not limited to the order specifically described above unless otherwise specifically stated.
  • the invention may also be embodied as a program recorded in a recording medium, the program comprising machine readable instructions for implementing the method according to the invention.
  • the invention also covers a recording medium storing a program for performing the method according to the invention.

Abstract

一种转向装置(100)、悬挂油缸(111)、控制系统、方法和起重机,涉及工程机械领域。转向控制系统包括:第一角度传感器(301)、第二角度传感器(302)和转向控制器(310,610);第一角度传感器(301)采集与机械转向轴(401,402)对应的车轮(51,52)的第一转向角度,并传送至转向控制器(310);第二角度传感器(302)采集与电控转向轴(403,404,405,406,407)对应的车轮(53,54,55,56,57)的第二转向角度,并传送至转向控制器(310,610);转向控制器(310,610)根据第一转向角度获得相应行驶模式下的与电控转向轴(403,404,405,406,407)对应的车轮(53,54,55,56,57)的理论转向角度,并将第二转向角度与理论转向角度进行比较,根据这两者的差值控制与电控转向轴(403,404,405,406,407)对应的车轮(53,54,55,56,57)进行转向,直至第二转向角度与理论转向角度的差值在预设的范围内。该转向控制系统实现了控制车轮(51,52,53,54,55,56,57)转向的目的。

Description

转向装置、悬挂油缸、控制系统、方法和起重机 技术领域
本发明涉及工程机械领域,特别涉及一种转向装置、悬挂油缸、控制系统、方法和起重机。
背景技术
为了满足客户对全地面起重机驾乘舒适性的要求,全地面起重机由原来的整体式车轴逐渐向独立悬架式车轴转型。独立悬架车轴的应用,消除了车辆行驶过程中左右侧车轮上下运动相互影响,极大程度提升了全地面起重机行驶过程中的驾乘舒适性。
目前,为了匹配独立悬架车轴,设计了工程机械车辆电液车轴转向系统。但当前的转向系统存在以下缺陷:
(1)该转向系统的转向机构包括过渡摇臂、梯形臂和转向拉杆等,这造成转向机构重量太大。
(2)通过测量转向摇臂转角后,运用拟合工具间接获取轮胎转角数据,轮胎转角数据准确性较差。
(3)左右侧车轮轮胎转角关系固定,在切换不同转向模式的过程中,由于理论设计轮胎转角的变化而造成某一侧轮胎转角不足或转角过大,从而容易造成轮胎异常磨损。
(4)独立悬架车桥四轮定位困难,由于转向机构中梯形机构连接复杂,在进行四轮定位时,无法准确找到理论设计中位状态而造成四轮定位困难。
发明内容
本发明的发明人发现上述现有技术中存在问题,并因此针对所述问题中的至少一个问题提出了一种新的技术方案。
根据本发明的第一方面,提供了一种转向装置,包括:转向节臂和转向助力油缸;其中,所述转向节臂位于悬挂油缸与车轴轮边之间;所述转向助力油缸包括第一端和第二端,所述第一端连接在车架底部,所述第二端与所述转向节臂相连。
在一个实施例中,所述转向装置还包括:固定支架;其中,所述固定支架固连在 所述车架底部,所述转向助力油缸的第一端与所述固定支架铰接;所述转向节臂通过螺栓与所述悬挂油缸及所述车轴轮边连接;所述转向助力油缸的第二端与所述转向节臂铰接。
本发明的转向装置可以应用于工程机械车辆底盘,可显著减轻车辆转向系统部件的重量,为整机轻量化设计做出显著的贡献。
根据本发明的第二方面,提供了一种悬挂油缸,包括:缸杆、缸筒、连接杆和角度传感器,其中,所述角度传感器包括转动部和固定部,所述转动部与所述缸筒连接,所述固定部与所述连接杆相连;所述连接杆与所述缸杆连接。
在一个实施例中,所述悬挂油缸还包括:位移传感器,与所述缸杆固连,并且与所述连接杆可滑动地相连;以及旋转限制装置,设置在所述连接杆上,限制所述位移传感器和所述连接杆之间的相对旋转。
在一个实施例中,所述悬挂油缸还包括:轴承,安装在所述缸筒上,其中,所述角度传感器的转动部与所述轴承相连。
本发明的悬挂油缸通过角度传感器实现了缸筒和缸杆之间的旋转运动检测,可直接获取轮胎转角,解决了间接获取轮胎转角导致精度差的问题。
根据本发明的第三方面,提供了一种转向控制系统,包括:第一角度传感器、第二角度传感器和转向控制器;所述第一角度传感器和所述第二角度传感器分别与所述转向控制器电连接;所述第一角度传感器采集与机械转向轴对应的车轮的实际转向角度,记为第一转向角度,并将所述第一转向角度传送至所述转向控制器;所述第二角度传感器采集与电控转向轴对应的车轮的实际转向角度,记为第二转向角度,并将所述第二转向角度传送至所述转向控制器;所述转向控制器根据所述第一转向角度获得相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度,并将所述第二转向角度与所述理论转向角度进行比较,根据这两者的差值控制与所述电控转向轴对应的车轮进行转向,直至所述第二转向角度与所述理论转向角度的差值在预设的范围内。
在一个实施例中,所述第一角度传感器安装在与所述机械转向轴对应的第一悬挂油缸上;所述第二角度传感器安装在与所述电控转向轴对应的第二悬挂油缸上。
在一个实施例中,所述第一角度传感器与所述第一悬挂油缸集成在一起,所述第二角度传感器与所述第二悬挂油缸集成在一起;其中,所述第一角度传感器包括第一转动部和第一固定部,所述第一转动部与所述第一悬挂油缸的缸筒连接,所述第一固 定部与所述第一悬挂油缸的连接杆相连;所述第二角度传感器包括第二转动部和第二固定部,所述第二转动部与所述第二悬挂油缸的缸筒连接,所述第二固定部与所述第二悬挂油缸的连接杆相连。
在一个实施例中,所述机械转向轴为独立机械车轴,所述电控转向轴为独立电控车轴;在所述独立机械车轴的左右两侧的悬挂油缸上分别安装第一角度传感器,以及在所述独立电控车轴的左右两侧的悬挂油缸上分别安装第二角度传感器;其中,所述转向控制器根据所述第一转向角度和所述第二转向角度分别控制所述独立电控车轴的左右两侧的车轮转向。
在一个实施例中,所述转向控制器按照阿克曼定理计算相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度;其中,所述行驶模式包括:正常公路行驶模式、小转弯行驶模式、蟹形行驶模式、防甩尾行驶模式、后轴独立转向行驶模式和后轴锁定行驶模式。
在一个实施例中,所述机械转向轴包括:第一机械转向轴和第二机械转向轴;与所述机械转向轴对应的车轮包括:与所述第一机械转向轴对应的第一车轮和与所述第二机械转向轴对应的第二车轮;所述第一转向角度包括:第一车轮的转向角度和第二车轮的转向角度;其中,所述转向控制器根据所述第一车轮的转向角度和所述第二车轮的转向角度这二者之间的阿克曼定理关系以及所述第二车轮的转向角度判断所述第一车轮的转向角度是否正确,如果所述第一车轮的转向角度正确,则根据所述第一车轮的转向角度计算相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度。
在一个实施例中,所述转向控制系统还包括:转向液压系统,用于在收到所述转向控制器的转向电信号后,通过液压油控制相应车轮的转向装置进行动作,从而控制与所述电控转向轴对应的车轮转向;其中,所述转向控制器根据所述第二转向角度与所述理论转向角度的差值向所述转向液压系统发送转向电信号。
在一个实施例中,所述转向装置包括:转向节臂和转向助力油缸;其中,所述转向节臂位于悬挂油缸与车轴轮边之间;所述转向助力油缸包括第一端和第二端,所述第一端连接在车架底部,所述第二端与所述转向节臂相连。
在一个实施例中,所述转向液压系统包括:液压泵、液压油箱、方向电磁阀组和油腔锁止阀组;其中,所述转向控制器分别与所述方向电磁阀组和油腔锁止阀组电连接,所述方向电磁阀组分别通过油路与所述液压泵、所述液压油箱以及相应的所述油 腔锁止阀组相连,所述液压泵通过油路与所述液压油箱相连,所述油腔锁止阀组通过油路连接至所述转向装置的转向助力油缸的油腔;所述转向控制器根据所述第二转向角度与所述理论转向角度的差值分别向相应的方向电磁阀组和油腔锁止阀组发送转向电信号,使得所述相应的方向电磁阀组和油腔锁止阀组的油路导通,从而控制相应的转向助力油缸进行伸出或缩回动作,进而控制相应车轮进行转向。
在一个实施例中,所述转向控制系统还包括:车速检测设备,用于获得车速,并将所述车速传输至所述转向控制器;其中,所述转向控制器结合所述车速对与所述电控转向轴对应的车轮的转向角度进行调整。
在一个实施例中,所述转向控制系统还包括:位置检测开关,设置在所述转向装置的转向助力油缸上,用于检测所述转向助力油缸中的活塞位置,并且将所述活塞位置发送到所述转向控制器;其中,所述转向控制器根据所述活塞位置判断所述转向助力油缸是否处于中位,当所述转向油缸不处于中位时控制所述活塞运动,使得所述转向助力油缸处于所述中位。
在一个实施例中,所述的转向控制系统还包括:油缸位移传感器,设置在所述转向装置的转向助力油缸上,用于检测所述转向助力油缸的位移,并且将所述位移发送到所述转向控制器;其中,所述转向控制器根据所述位移判断所述转向助力油缸是否处于中位,当所述转向油缸不处于中位时控制活塞运动,使得所述转向助力油缸处于所述中位。
在一个实施例中,所述转向控制器还用于在所述转向助力油缸处于所述中位后锁定所述活塞的位置,并在调整所述车轮的定位参数后对所述第一角度传感器和所述第二角度传感器进行自动清零操作。
本发明的转向控制系统实现了对车轮转向的控制。该系统可以实现独立悬架车轴左、右侧车轮独立控制转向,显著降低工程机械车辆多种转向模式下切换工作时轮胎异常磨损现场发生。
进一步地,可以实现工程机械车辆四轮定位新方案,独立调整单个车轴轮胎的位置参数。该定位调整的方法简单可靠。
根据本发明的第四方面,提供了一种辅助应急控制系统,包括:辅助控制器,与转向控制器电连接,用于读取所述转向控制器的信号,当获知所述转向控制器出现故障或与所述转向控制器对应的转向液压系统出现故障时,向辅助液压系统发送应急电 信号;以及所述辅助液压系统,用于当接收到所述应急电信号时通过液压油控制对应车轮的转向装置的转向助力油缸动作,使得所述车轮回到中位。
在一个实施例中,所述辅助液压系统包括:分动箱、辅助应急泵和多个辅助控制电磁阀;所述辅助应急泵安装在所述分动箱上,所述辅助应急泵通过油路连接至液压油箱,并且通过油路与所述多个辅助控制电磁阀相连;每个所述辅助控制电磁阀分别通过油路连接至对应的转向助力油缸的大腔和小腔;所述辅助控制器与所述多个辅助控制电磁阀电连接;其中,所述辅助控制器向所述辅助控制电磁阀发送所述应急电信号,控制所述辅助控制电磁阀通断,从而控制相应的转向助力油缸动作。
在一个实施例中,所述辅助应急控制系统还包括:位置检测开关,设置在所述转向助力油缸上,用于检测所述转向助力油缸中的活塞位置,并且将所述活塞位置发送到所述辅助控制器;其中,所述辅助控制器当根据所述活塞位置获知所述转向助力油缸回到中位时,确定所述车轮回到中位,从而停止控制所述转向助力油缸动作。
在一个实施例中,所述辅助应急控制系统还包括:油缸位移传感器,设置在所述转向助力油缸上,用于检测所述转向助力油缸的位移,并且将所述位移发送到所述辅助控制器;其中,所述辅助控制器当根据所述位移获知所述转向助力油缸回到中位时,确定所述车轮回到中位,从而停止控制所述转向助力油缸动作。
在一个实施例中,所述辅助液压系统还包括:通断电磁阀和优先选择阀;所述通断电磁阀与所述辅助控制器电连接;所述通断电磁阀通过油路与所述辅助应急泵相连,并且通过油路与所述优先选择阀相连;所述优先选择阀通过油路连接至与机械转向轴对应的转向液压系统;其中,当车辆的电控转向轴发生故障时,所述辅助控制器向所述通断电磁阀和所述优先选择阀发送导通电信号,控制所述通断电磁阀和所述优先选择阀导通,从而控制与机械转向轴对应的车轮转向。
在一个实施例中,其中,当车辆的转向控制系统发生故障时,所述辅助控制器在接收到所述位移后,根据所述位移计算所述车轮的当前转向角度,并结合所述当前转向角度控制所述车轮转向。
根据本发明的第五方面,提供了一种起重机,包括:如前所述的转向控制系统。
在一个实施例中,所述起重机还包括:如前所述的辅助应急控制系统。
根据本发明的第六方面,提供了一种转向控制方法,包括:采集与机械转向轴对应的车轮的实际转向角度,记为第一转向角度;并采集与电控转向轴对应的车轮的实 际转向角度,记为第二转向角度;以及根据所述第一转向角度获得相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度,并将所述第二转向角度与所述理论转向角度进行比较,根据这两者的差值控制与所述电控转向轴对应的车轮进行转向,直至所述第二转向角度与所述理论转向角度的差值在预设的范围内。
在一个实施例中,所述机械转向轴为独立机械车轴,所述电控转向轴为独立电控车轴;采集所述第一转向角度和所述第二转向角度的步骤包括:采集在所述独立机械车轴的左右两侧的车轮的第一转向角度和在所述独立电控车轴的左右两侧的车轮的第二转向角度;控制与所述电控转向轴对应的车轮进行转向的步骤包括:根据所述第一转向角度和所述第二转向角度分别控制所述独立电控车轴的左右两侧的车轮转向。
在一个实施例中,获得所述理论转向角度的步骤包括:按照阿克曼定理计算相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度;其中,所述行驶模式包括:正常公路行驶模式、小转弯行驶模式、蟹形行驶模式、防甩尾行驶模式、后轴独立转向行驶模式和后轴锁定行驶模式。
在一个实施例中,与机械转向轴对应的车轮包括:与第一机械转向轴对应的第一车轮和与第二机械转向轴对应的第二车轮;与电控转向轴对应的车轮包括:与第三电控转向轴对应的第三车轮、与第四电控转向轴对应的第四车轮、与第五电控转向轴对应的第五车轮、与第六电控转向轴对应的第六车轮和与第七电控转向轴对应的第七车轮。
在一个实施例中,其中,在所述正常公路行驶模式下,所述第五车轮、所述第六车轮和所述第七车轮的转向方向与所述第一车轮、所述第二车轮、所述第三车轮和所述第四车轮的转向方向相反,并且所述第一车轮至所述第七车轮的转向角度满足阿克曼定理。
在一个实施例中,其中,在所述小转弯行驶模式下,所述第五车轮、所述第六车轮和所述第七车轮的转向方向与所述第一车轮、所述第二车轮、所述第三车轮和所述第四车轮的转向方向相反,并且所述第一车轮至所述第七车轮的转向角度满足阿克曼定理。
在一个实施例中,其中,在所述蟹形行驶模式下,所述第一车轮至所述第七车轮的转向方向相同,并且所述第一车轮和所述第二车轮的转向角度满足阿克曼定理。
在一个实施例中,其中,在所述防甩尾行驶模式下,所述第七车轮的转向方向与 所述第一车轮、所述第二车轮、所述第三车轮和所述第四车轮的转向方向相反,所述第五车轮和所述第六车轮不参与转向,并且所述第一车轮、所述第二车轮、所述第三车轮、所述第四车轮和所述第七车轮的转向角度满足阿克曼定理。
在一个实施例中,其中,在所述后轴独立转向行驶模式下,所述第五车轮、所述第六车轮和所述第七车轮的转向方向与所述第三车轮和所述第四车轮的转向方向相反,所述第一车轮和所述第二车轮不参与转向,并且所述第三车轮至所述第七车轮的转向角度满足阿克曼定理;其中,获得所述理论转向角度的步骤包括:获得车辆的旋钮旋转角度和旋钮至转向中心的垂直距离;以及结合所述旋钮旋转角度和所述垂直距离计算所述第三车轮至所述第七车轮的理论转向角度。
在一个实施例中,其中,在所述后轴锁定行驶模式下,所述第三车轮至所述第七车轮不参与转向,所述第一车轮和所述第二车轮的转向角度满足阿克曼定理。
在一个实施例中,所述第一转向角度包括:第一车轮的转向角度和第二车轮的转向角度;获得所述理论转向角度的步骤包括:根据所述第一车轮的转向角度和所述第二车轮的转向角度这二者之间的阿克曼定理关系以及所述第二车轮的转向角度判断所述第一车轮的转向角度是否正确;以及如果所述第一车轮的转向角度正确,则根据所述第一车轮的转向角度计算相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度。
在一个实施例中,根据这两者的差值控制与所述电控转向轴对应的车轮进行转向的步骤包括:根据所述第二转向角度与所述理论转向角度的差值向转向液压系统发送转向电信号;以及所述转向液压系统在收到所述转向电信号后,通过液压油控制相应车轮的转向装置进行动作,从而控制与所述电控转向轴对应的车轮转向。
在一个实施例中,所述方法还包括:获得车速;以及结合所述车速对与所述电控转向轴对应的车轮的转向角度进行调整。
在一个实施例中,所述方法还包括:检测转向助力油缸中的活塞位置;以及根据所述活塞位置判断所述转向助力油缸是否处于中位,当所述转向油缸不处于中位时控制所述活塞运动,使得所述转向助力油缸处于所述中位。
在一个实施例中,所述方法还包括:在所述转向助力油缸处于所述中位后锁定所述活塞的位置;调整车轮的定位参数;以及对采集的所述第一转向角度和所述第二转向角度进行自动清零操作。
本发明的转向控制方法实现了对车轮转向的控制。该方法可以实现独立悬架车轴左、右侧车轮独立控制转向,显著降低工程机械车辆多种转向模式下切换工作时轮胎异常磨损现场发生。
进一步地,可以实现工程机械车辆四轮定位新方案,独立调整单个车轴轮胎的位置参数。该定位调整的方法简单可靠。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解释本发明的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本发明,其中:
图1是示意性地示出根据本发明一个实施例的转向装置的结构示意图。
图2是示意性地示出根据本发明一个实施例的悬挂油缸的结构示意图。
图3是示意性地示出根据本发明一个实施例的转向控制系统的结构示意图。
图4是示意性地示出根据本发明一个实施例的安装有转向系统的车辆底部示意图。
图5是示意性地示出根据本发明一个实施例的液压系统的结构示意图。
图6是示意性地示出根据本发明另一个实施例的转向控制系统的结构示意图。
图7A是示意性地示出根据本发明一个实施例的车辆在正常公路行驶模式下的转向示意图。
图7B是示意性地示出根据本发明一个实施例的车辆在正常公路行驶模式下转向过程中的车轮状态示意图。
图8A是示意性地示出根据本发明一个实施例的车辆在小转弯行驶模式下的转向示意图。
图8B是示意性地示出根据本发明一个实施例的车辆在小转弯行驶模式下转向过程中的车轮状态示意图。
图9A是示意性地示出根据本发明一个实施例的车辆在蟹形行驶模式下的转向示意图。
图9B是示意性地示出根据本发明一个实施例的车辆在蟹形行驶模式下转向过程中的车轮状态示意图。
图10A是示意性地示出根据本发明一个实施例的车辆在防甩尾行驶模式下的转向示意图。
图10B是示意性地示出根据本发明一个实施例的车辆在防甩尾行驶模式下转向过程中的车轮状态示意图。
图11A是示意性地示出根据本发明一个实施例的车辆在后轴独立转向模式下的转向示意图。
图11B是示意性地示出根据本发明一个实施例的车辆在后轴独立转向模式下转向过程中的车轮状态示意图。
图12是示意性地示出根据本发明一个实施例的车辆在后轴锁定转向模式下的转向示意图。
图13是示意性地示出根据本发明一个实施例的带有位置检测开关的转向助力油缸的结构示意图。
图14是示意性地示出根据本发明一个实施例的液压系统的结构示意图。
图15是示意性地示出根据本发明一个实施例的控制系统的结构示意图。
图16是示出根据本发明一个实施例的转向控制方法的流程图。
图17是示出根据本发明一个实施例的辅助应急控制方法的流程图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
图1是示意性地示出根据本发明一个实施例的转向装置的结构示意图。图1示出了断开式非驱动车轴120和断开式驱动车轴130。车轴通过悬挂油缸111与车架(图1中未示出)相连。其中悬挂油缸111的缸杆顶部与车架相连,缸筒底部与车轴轮边112相连,在转向运动过程中,缸杆可相对于车架无旋转运动,车轴轮边112带动缸筒转动。
如图1所示,转向装置100可以包括:转向节臂102和转向助力油缸(为车轮转向提供助力作用的油缸)101。该转向节臂102位于悬挂油缸111与车轴轮边112之间。例如,如图1所示,该转向节臂102可以通过螺栓与悬挂油缸111及车轴轮边112(例如车轴轮边上的转向节)连接。该转向助力油缸101可以包括第一端1011和第二端1012。该第一端1011连接在车架底部(图1中未示出)。该第二端1012与转向节臂102相连。例如,如图1所示,该转向助力油缸的第二端1012可以与转向节臂102铰接。
在一个实施例中,如图1所示,该转向装置100还可以包括:固定支架103。其中,该固定支架103可以固连在车架底部,该转向助力油缸101的第一端1011可以与该固定支架103铰接。
在该实施例中,车轴上的轮胎在转向运动过程中,动力来自于与轮边相连的转向助力油缸,转向助力油缸通过液压助力的形式将油缸的伸缩运动转化为轮胎的转动。本发明实施例的转向装置的结构简单,重量较轻,且易于操作。本发明的转向装置可以应用于工程机械车辆底盘,可显著减轻车辆转向系统部件的重量,为整机轻量化设计做出显著的贡献。
在本发明的实施例中,可以在左、右轮边转向节上分别安装一个转向节臂,在固定独立悬架车桥的车架下底面上安装两个固定支架,同一侧的固定支架与转向节臂之间设置转向助力油缸,该转向助力油缸与固定支架采用铰接连接,并且该转向助力油缸与转向节臂采用铰接连接。通过液压油泵给转向助力油缸提供油压,而通过控制转向助力油缸的行程位移来控制单侧车轮转向角度,实现独立悬架车轴的单侧车轮独立 转向功能。
图2是示意性地示出根据本发明一个实施例的悬挂油缸的结构示意图。如前面所述,该悬挂油缸的上端210可以与车架相连,底部220可以与轮边相连,轮边转动可带动缸筒沿着缸杆轴线进行旋转。
如图2所示,该悬挂油缸可以包括:缸杆201、缸筒206、连接杆204和角度传感器208。该角度传感器208可以包括转动部和固定部。例如,该转动部可以与缸筒206连接,该固定部可以与连接杆204相连。该连接杆204可以与缸杆201连接。在一个实施例中,该悬挂油缸还可以包括轴承207。该轴承207安装在缸筒206上。其中,该角度传感器208的转动部与该轴承207相连。
在一个实施例中,如图2所示,该悬挂油缸还可以包括位移传感器202。该位移传感器202与缸杆201固连。并且该位移传感器202(例如通过位移传感器的杆)可以与连接杆204可滑动地(例如可上下滑动地)相连。另外,图2中还示出了位移传感器202的磁感应块203。
在一个实施例中,如图2所示,该悬挂油缸还可以包括旋转限制装置205。该旋转限制装置205可以设置在连接杆204上,限制位移传感器202和连接杆204之间的相对旋转。例如,在位移传感器202的杆底部设置一个螺纹沉孔,在连接杆204上安装一个旋转限制装置205,该旋转限制装置205可以是类似花键的连接方式,也可以是其他连接形式。这样在下方安装的角度传感器208的一端(即固定部)通过轴承207的中心部与旋转限制装置205一起固定不动,角度传感器208的另一端(即转动部)安装在缸筒上,跟随轮胎一起旋转,以检测轮胎角度。
在上述实施例中,图2示出了自带位移传感器及角度传感器的悬挂油缸,可以检测油缸位移和轮胎转角。但在车辆使用过程中,有时可能并不需要所有的油缸均带有位移传感器,因此在此处将位移传感器202的杆替换成铁杆,去除位移传感器的磁感应块203,即可成为另外一种不带位移检测的悬挂油缸,但可检测车轮旋转角度。
本发明实施例的悬挂油缸通过角度传感器实现了缸筒和缸杆之间的旋转运动检测,可直接获取轮胎转角,解决了间接获取轮胎转角导致精度差的问题。
图3是示意性地示出根据本发明一个实施例的转向控制系统的结构示意图。如图3所示,该转向控制系统可以包括:第一角度传感器301、第二角度传感器302和转向控制器310。该第一角度传感器301和该第二角度传感器302分别与转向控制器310 电连接。该转向控制系统可以应用在具有机械转向轴和电控转向轴的车辆上。另外,图3中还示出了执行机构320。
该第一角度传感器301可以采集与机械转向轴对应的车轮的实际转向角度,记为第一转向角度,并将该第一转向角度传送至该转向控制器310。
该第二角度传感器302可以采集与电控转向轴对应的车轮的实际转向角度,记为第二转向角度,并将该第二转向角度传送至该转向控制器310。
该转向控制器310可以根据该第一转向角度获得相应行驶模式下的与电控转向轴对应的车轮的理论转向角度,并将第二转向角度与该理论转向角度进行比较,根据这两者的差值控制与电控转向轴对应的车轮进行转向,直至该第二转向角度与该理论转向角度的差值在预设的范围内。例如,该转向控制器310实时地向执行机构320发送转向电信号,控制对应车轮转向,并且第二角度传感器实时地采集第二转向角度并传送到该转向控制器,该转向控制器实时地或周期性地判断第二转向角度与理论转向角度的差值是否在预设的范围内,当这两者的差值在预设范围内时,则停止车轮转向。上述实施例提供了一种转向控制系统,实现了控制车轮转向的目的。
在一个实施例中,该第一角度传感器301可以安装在与机械转向轴对应的第一悬挂油缸(这里,将安装在机械转向轴上的悬挂油缸称为第一悬挂油缸)上。该第二角度传感器302安装在与电控转向轴对应的第二悬挂油缸(这里,将安装在电控转向轴上的悬挂油缸称为第二悬挂油缸)上。例如,第一角度传感器301与第一悬挂油缸集成在一起,第二角度传感器302与第二悬挂油缸集成在一起,所集成形成的装置可以参考图2所示。或者,由于图2所示的悬挂油缸包括了角度传感器,因此可以将多个如图2所示的悬挂油缸设置在机械转向轴或电控转向轴上,将这些悬挂油缸的角度传感器分别作为第一角度传感器或第二角度传感器。
在一个实施例中,第一角度传感器可以包括第一转动部和第一固定部。该第一转动部与第一悬挂油缸的缸筒连接,该第一固定部与第一悬挂油缸的连接杆相连。在另一个实施例中,第二角度传感器可以包括第二转动部和第二固定部。该第二转动部与第二悬挂油缸的缸筒连接,该第二固定部与第二悬挂油缸的连接杆相连。
在一个实施例中,机械转向轴为独立机械车轴,电控转向轴为独立电控车轴。即机械转向轴和电控转向轴均是独立车轴。独立车轴是在左、右车轮之间没有一根刚性梁或非断开式车桥连接,左、右车轮各自“独立”地与车架或车身相连或构成断开式车 桥。在独立机械车轴的左右两侧的悬挂油缸上分别安装第一角度传感器,即在对应独立机械车轴的左右两侧的车轮,可以分别设置一个第一角度传感器来分别测量左右车轮的转向角度。在独立电控车轴的左右两侧的悬挂油缸上分别安装第二角度传感器,即在对应独立电控车轴的左右两侧的车轮,可以分别设置一个第二角度传感器来分别测量左右车轮的转向角度。其中,转向控制器根据第一转向角度和第二转向角度分别控制独立电控车轴的左右两侧的车轮转向。该实施例实现了对电控转向轴同轴不同侧的车轮的各自独立的转向控制。
图4是示意性地示出根据本发明一个实施例的安装有转向系统的车辆底部示意图。该车辆底部具有七个车轴,分别为第一机械转向轴401、第二机械转向轴402、第三电控转向轴403、第四电控转向轴404、第五电控转向轴405、第六电控转向轴406和第七电控转向轴407。下面以图4所示的七轴结构的车辆底部为例进行说明。
在一个实施例中,如图4所示,前面所述的机械转向轴可以包括:第一机械转向轴(以下简称第一轴)401和第二机械转向轴(以下简称第二轴)402。与该机械转向轴对应的车轮可以包括:与第一机械转向轴401对应的第一车轮和与第二机械转向轴402对应的第二车轮。在一个实施例中,如图4所示,前面所述的电控转向轴可以包括:第三电控转向轴(以下简称第三轴)403、第四电控转向轴(以下简称第四轴)404、第五电控转向轴(以下简称第五轴)405、第六电控转向轴(以下简称第六轴)406和第七电控转向轴(以下简称第七轴)407。与该电控转向轴对应的车轮可以包括:与第三电控转向轴403对应的第三车轮、与第四电控转向轴404对应的第四车轮、与第五电控转向轴405对应的第五车轮、与第六电控转向轴406对应的第六车轮和与第七电控转向轴407对应的第七车轮。
如图4所示,第三轴403、第四轴404、第五轴405、第六轴406和第七轴407可以分别采用图1所示的车轴结构形式。在这些车轴上安装的转向装置可以采用图1中所示的转向装置,该转向装置的结构前面已经详述,这里不再赘述。例如图4中示出了该转向装置的转向助力油缸409。另外,图4还示出了机械转向系统408和机械转向油缸410。该机械转向系统408和该机械转向油缸410可以采用现有的转向系统和油缸。图4中还示出了悬挂油缸,例如带位移传感器和角度传感器的悬挂油缸(其结构可以参考图2所示)411以及带角度传感器的悬挂油缸412等。
第一轴401与第二轴402之间的轮胎通过机械拉杆的形式连接在一起,然后通过 液压助力的形式使轮胎转动,其中在第一轴右侧悬挂油缸、第二轴右侧悬挂油缸上设有角度传感器。
在一个实施例中,第一转向角度可以包括:第一车轮的转向角度和第二车轮的转向角度。转向控制器(图4中未示出)可以根据该第一车轮的转向角度和该第二车轮的转向角度这二者之间的阿克曼定理关系以及该第二车轮的转向角度判断该第一车轮的转向角度是否正确,如果该第一车轮的转向角度正确,则根据该第一车轮的转向角度计算相应行驶模式下的与电控转向轴(例如第三轴至第七轴)对应的车轮的理论转向角度。
在一个实施例中,转向控制器可以按照阿克曼定理计算相应行驶模式下的与电控转向轴对应的车轮的理论转向角度。在一个实施例中,该行驶模式可以包括:正常公路行驶模式、小转弯行驶模式、蟹形行驶模式、防甩尾行驶模式、后轴独立转向行驶模式和后轴锁定行驶模式。后面将详细描述这六种行驶模式下的转向情况。
图5是示意性地示出根据本发明一个实施例的液压系统的结构示意图。图5中示出了第一车轮51、第二车轮52、第三车轮53、第四车轮54、第五车轮55、第六车轮56和第七车轮57。此外,图5中还示出了三轴左侧转向助力油缸5301、三轴右侧转向助力油缸5302、四轴左侧转向助力油缸5401、四轴右侧转向助力油缸5402、五轴左侧转向助力油缸5501、五轴右侧转向助力油缸5502、六轴左侧转向助力油缸5601、六轴右侧转向助力油缸5602、七轴左侧转向助力油缸5701和七轴右侧转向助力油缸5702。再者,图5中还示出了液压泵(例如柱塞泵)511、取力器512、发动机513、第一转向泵514、第二转向泵515、前转向应急泵516、第一阀组517和第二阀组518等,例如这些部件可以采用现有的连接方式进行连接。
在本发明的实施例中,转向控制系统还可以包括转向液压系统。该转向液压系统用于在收到转向控制器的转向电信号后,通过液压油控制相应车轮的转向装置进行动作,从而控制与电控转向轴对应的车轮转向。其中,转向控制器根据第二转向角度与理论转向角度的差值向该转向液压系统发送转向电信号。
在一个实施例中,该转向液压系统可以包括:液压泵、液压油箱、方向电磁阀组和油腔锁止阀组。转向控制器分别与该方向电磁阀组和该油腔锁止阀组电连接。该方向电磁阀组分别通过油路与液压泵、液压油箱以及相应的油腔锁止阀组相连。该液压泵通过油路与该液压油箱相连。该油腔锁止阀组通过油路连接至转向装置的转向助力 油缸的油腔。转向控制器根据第二转向角度与理论转向角度的差值分别向相应的方向电磁阀组和油腔锁止阀组发送转向电信号,使得该相应的方向电磁阀组和油腔锁止阀组的油路导通,从而控制相应的转向助力油缸进行伸出或缩回动作,进而控制相应车轮进行转向。
例如,如图5所示,该转向液压系统可以包括:液压泵511、液压油箱501、第三轴方向电磁阀组531、第三轴油腔锁止阀组532、第四轴方向电磁阀组541、第四轴油腔锁止阀组542、第五轴方向电磁阀组551、第五轴油腔锁止阀组552、第六轴方向电磁阀组561、第六轴油腔锁止阀组562、第七轴方向电磁阀组571和第七轴油腔锁止阀组572。每个方向电磁阀组可以包括多个方向电磁阀,分别对应于不同的车轮。每个油腔锁止阀组可以包括分别对应于不同车轮的转向助力油缸的大腔和小腔的大腔锁止阀和小腔锁止阀。
下面以液压泵511、液压油箱501、第三轴方向电磁阀组531和第三轴油腔锁止阀组532为例详细说明该液压转向系统的工作过程。
当第三车轮需要转向时,转向控制器(图5中未示出)根据第二转向角度与理论转向角度的差值分别向第三轴方向电磁阀组531和第三轴油腔锁止阀组532发送转向电信号。例如,第三轴方向电磁阀组531中分别对应于左侧第三车轮和右侧第三车轮的两个方向电磁阀分别得到转向电信号,从而使得相应的进油油路和回油油路导通。又例如,第三轴油腔锁止阀组532中的大腔锁止阀和小腔锁止阀分别得到转向电信号,从而使得相应的大腔油路和小腔油路导通。液压泵511通过进油油路将液压油箱501中的液压油经第三轴方向电磁阀组531和第三轴油腔锁止阀组532进入三轴左侧转向助力油缸5301和三轴右侧转向助力油缸5302,例如进入这两个油缸的大腔,然后小腔中的液压油通过回油油路返回液压油箱,最终实现了第三车轮的转向动作。其他车轮的转向控制操作与第三车轮类似,这里不再一一赘述。
图6是示意性地示出根据本发明另一个实施例的转向控制系统的结构示意图。如图6所示,该转向控制系统包括了三个转向控制器610,当然这三个转向控制器也可以集成为一个转向控制器,这三个转向控制器610与图3中示出的转向控制器310类似。
该转向控制系统还可以包括第一角度传感器和第二角度传感器。
在一个实施例中,该第一角度传感器可以包括:第一轴角度传感器6011和第二 轴角度传感器6012。其中,第一轴角度传感器6011用于采集第一车轮的实际转向角度,第二轴角度传感器6012用于采集第二车轮的实际转向角度。
在一个实施例中,第二角度传感器可以包括:第三轴角度传感器、第四轴角度传感器、第五轴角度传感器、第六轴角度传感器和第七轴角度传感器(图6中未示出)。其中,第三轴角度传感器用于采集第三车轮的实际转向角度,第四轴角度传感器用于采集第四车轮的实际转向角度,第五轴角度传感器用于采集第五车轮的实际转向角度,第六轴角度传感器用于采集第六车轮的实际转向角度,第七轴角度传感器用于采集第七车轮的实际转向角度。
在一个实施例中,如图6所示,第三轴方向电磁阀组可以包括:三轴左侧车轮左转电磁阀6321、三轴左侧车轮右转电磁阀6322、三轴右侧车轮左转电磁阀6341和三轴右侧车轮右转电磁阀6342。
在一个实施例中,如图6所示,第三轴油腔锁止阀组可以包括:三轴左侧油缸大腔锁止阀6331、三轴左侧油缸小腔锁止阀6332、三轴右侧油缸大腔锁止阀6351和三轴右侧油缸小腔锁止阀6352。
在一个实施例中,如图6所示,第四轴方向电磁阀组可以包括:四轴左侧车轮左转电磁阀6421、四轴左侧车轮右转电磁阀6422、四轴右侧车轮左转电磁阀6441和四轴右侧车轮右转电磁阀6442。
在一个实施例中,如图6所示,第四轴油腔锁止阀组可以包括:四轴左侧油缸大腔锁止阀6431、四轴左侧油缸小腔锁止阀6432、四轴右侧油缸大腔锁止阀6451和四轴右侧油缸小腔锁止阀6452。
在一个实施例中,如图6所示,第五轴方向电磁阀组可以包括:五轴左侧车轮左转电磁阀6521、五轴左侧车轮右转电磁阀6522、五轴右侧车轮左转电磁阀6541和五轴右侧车轮右转电磁阀6542。
在一个实施例中,如图6所示,第五轴油腔锁止阀组可以包括:五轴左侧油缸大腔锁止阀6531、五轴左侧油缸小腔锁止阀6532、五轴右侧油缸大腔锁止阀6551和五轴右侧油缸小腔锁止阀6552。
在一个实施例中,如图6所示,第六轴方向电磁阀组可以包括:六轴左侧车轮左转电磁阀6621、六轴左侧车轮右转电磁阀6622、六轴右侧车轮左转电磁阀6641和六轴右侧车轮右转电磁阀6642。
在一个实施例中,如图6所示,第六轴油腔锁止阀组可以包括:六轴左侧油缸大腔锁止阀6631、六轴左侧油缸小腔锁止阀6632、六轴右侧油缸大腔锁止阀6651和六轴右侧油缸小腔锁止阀6652。
在一个实施例中,如图6所示,第七轴方向电磁阀组可以包括:七轴左侧车轮左转电磁阀6721、七轴左侧车轮右转电磁阀6722、七轴右侧车轮左转电磁阀6741和七轴右侧车轮右转电磁阀6742。
在一个实施例中,如图6所示,第七轴油腔锁止阀组可以包括:七轴左侧油缸大腔锁止阀6731、七轴左侧油缸小腔锁止阀6732、七轴右侧油缸大腔锁止阀6751和七轴右侧油缸小腔锁止阀6752。
图6中还示出了三轴左侧转向助力油缸5301、三轴右侧转向助力油缸5302、四轴左侧转向助力油缸5401、四轴右侧转向助力油缸5402、五轴左侧转向助力油缸5501、五轴右侧转向助力油缸5502、六轴左侧转向助力油缸5601、六轴右侧转向助力油缸5602、七轴左侧转向助力油缸5701和七轴右侧转向助力油缸5702。此外,图6中还示出了三轴左侧车轮转角6311、三轴右侧车轮转角6312、四轴左侧车轮转角6411、四轴右侧车轮转角6412、五轴左侧车轮转角6511、五轴右侧车轮转角6512、六轴左侧车轮转角6611、六轴右侧车轮转角6612、七轴左侧车轮转角6711和七轴右侧车轮转角6712。
下面以第三车轮转向为例描述转向控制系统的工作过程。
转向控制器610分别从第一轴角度传感器6011和第二轴角度传感器6012接收到第一车轮的实际转向角度和第二车轮的实际转向角度。当车轮转向时,这两个转向角度应该满足阿克曼定理关系,因此可以根据阿克曼定理关系以及第二车轮的实际转向角度计算第一车轮的转向角度,并对计算得到的第一车轮的转向角度和实际采集的第一车库的转向角度进行比较,如果二者差值在允许的范围内,则可以确定采集的第一车轮的实际转向角度正确。然后该转向控制器610根据该第一车轮的实际转向角度计算相应行驶模式下的第三车轮的理论转向角度。接下来,该转向控制器610根据第三车轮的实际转向角度与理论转向角度的差值向三轴左侧车轮左转电磁阀6321、三轴右侧车轮左转电磁阀6341、三轴左侧油缸大腔锁止阀6331、三轴左侧油缸小腔锁止阀6332、三轴右侧油缸大腔锁止阀6351和三轴右侧油缸小腔锁止阀6352发送转向电信号,控制三轴左侧转向助力油缸5301和三轴右侧转向助力油缸5302动作,从而 控制第三车轮向左转。在一些实施例中,上述差值为正值,表示车轮向左转;上述差值为负值,表示车轮向右转。该第二车轮的实际转向角度可以作为后轴转角的基准输入。第二车轮的实际转向角度可以作为第一车轮转向角度的判断设计和冗余设计,在第一车轮转向角度输入至转向控制器,利用第二车轮转向角度进行判断第一车轮转角输入信号是否正确,第一车轮和第二车轮转角关系预存至转向控制器。
关于其他车轮的转向控制操作,与第三车轮的上述实施例类似,这里不再一一赘述。
在本发明的实施例中,如图6所示,该转向控制系统还可以包括:车速检测设备603。该车速检测设备603用于获得车速,并将该车速传输至转向控制器610。该转向控制器610可以结合该车速对与电控转向轴对应的车轮的转向角度进行调整。例如,该车速检测设备603可以为变速箱或车辆自身的ABS(antilock brake system,制动防抱死系统)。即车速信号可从变速箱获得或者从车辆自身的ABS内部获得信号。
在本发明的实施例中,该转向控制系统还可以包括:中央控制器691和显示器692。中央控制器691为整车控制,与转向控制器之间进行通讯,将转角信号传递至显示器692,驾驶员可以在显示器上观察车辆转向系统状态。
图7A是示意性地示出根据本发明一个实施例的车辆在正常公路行驶模式下的转向示意图。如图7A所示,在正常公路行驶模式下,第五车轮55、第六车轮56和第七车轮57的转向方向与第一车轮51、第二车轮52、第三车轮53和第四车轮54的转向方向相反,并且第一车轮51至第七车轮57的转向角度满足阿克曼定理。
图7B是示意性地示出根据本发明一个实施例的车辆在正常公路行驶模式下转向过程中的车轮状态示意图。如图7所示,左侧车轮(或轮胎)转角用L表示,各轴左侧车轮转角分别用L1、L2、L3、L4、L5、L6和L7表示,其中,在转向中心O之后的转角值为负值。右侧车轮(或轮胎)转角用R表示,各轴右侧车轮转角分别用R1、R2、R3、R4、R5、R6和R7表示,在转向中心O之后转角值为负值。车轴至转向中心O的距离用H表示,各车轴至转向中心的距离分别用H1、H2、H3、H4、H5、H6和H7表示,在转向中心O之后的距离值为负值。
已知一轴转角L1、各车轴的轴距、两主销中心线延长线到地面交点之间的距离M以及各车轴至转向中心的距离H,则各车轴转向角度与一轴转角关系如下:
L1已知;
Figure PCTCN2016112320-appb-000001
Figure PCTCN2016112320-appb-000002
Figure PCTCN2016112320-appb-000003
Figure PCTCN2016112320-appb-000004
Figure PCTCN2016112320-appb-000005
在该正常公路行驶模式下,转向控制器在获知一轴转角L1(即第一车轮的实际转向角度,通过第一角度传感器采集得到)后,可以计算在该正常公路行驶模式下的对应各个车轴的车轮的理论转向角度,并结合各个车轮的实际转向角度控制车轮转向,直至相应车轮的实际转向角度与理论转向角度的差值在预设的范围内。
图8A是示意性地示出根据本发明一个实施例的车辆在小转弯行驶模式下的转向示意图。如图8A所示,在小转弯行驶模式下,第五车轮55、第六车轮56和第七车轮57的转向方向与第一车轮51、第二车轮52、第三车轮53和第四车轮54的转向方向相反,并且第一车轮51至第七车轮57的转向角度满足阿克曼定理。
图8B是示意性地示出根据本发明一个实施例的车辆在小转弯行驶模式下转向过程中的车轮状态示意图。如图8B所示,左侧车轮(或轮胎)转角用L表示,各轴左侧车轮转角分别用L1、L2(图8B中未标出L2)、L3、L4、L5、L6和L7表示,其中,在转向中心O之后的转角值为负值。右侧车轮(或轮胎)转角用R表示,各轴右侧车轮转角分别用R1、R2(图8B中未标出R1和R2)、R3、R4、R5、R6和R7表示,在转向中心O之后转角值为负值。车轴至转向中心O的距离用Q表示,各车轴至转向中心的距离分别用Q1、Q2、Q3、Q4、Q5、Q6和Q7表示,在转向中心O之后的距离值为负值。
已知一轴转角L1、各车轴的轴距、两主销中心线延长线到地面交点之间的距离M以及各车轴至转向中心的距离Q,则各车轴转向角度与一轴转角关系如下:
L1已知;
Figure PCTCN2016112320-appb-000006
Figure PCTCN2016112320-appb-000007
Figure PCTCN2016112320-appb-000008
Figure PCTCN2016112320-appb-000009
在该小转弯行驶模式下,转向控制器在获知一轴转角L1(即第一车轮的实际转向角度,通过第一角度传感器采集得到)后,可以计算在该小转弯行驶模式下的对应各个车轴的车轮的理论转向角度,并结合各个车轮的实际转向角度控制车轮转向,直至相应车轮的实际转向角度与理论转向角度的差值在预设的范围内。
图9A是示意性地示出根据本发明一个实施例的车辆在蟹形行驶模式下的转向示意图。如图9A所示,在蟹形行驶模式下,第一车轮51至第七车轮57的转向方向相同,并且第一车轮51和第二车轮52的转向角度满足阿克曼定理。
图9B是示意性地示出根据本发明一个实施例的车辆在蟹形行驶模式下转向过程中的车轮状态示意图。如图9B所示,左侧车轮(或轮胎)转角用L表示,各轴左侧车轮转角分别用L1、L2(图9B中未标出L2)、L3、L4、L5、L6和L7表示。右侧车轮(或轮胎)转角用R表示,各轴右侧车轮转角分别用R1、R2(图9B中未标出R1和R2)、R3、R4、R5、R6和R7表示。已知一轴转角L1,则各车轴转向角度与一轴转角关系如下:
L1已知;L1=L3=L4=L5=L6=L7=R3=R4=R5=R6=R7
该蟹形行驶模式下,转向控制器在获知一轴转角L1(即第一车轮的实际转向角度,通过第一角度传感器采集得到)后,可以计算在该蟹形行驶模式下的对应各个车轴的车轮的理论转向角度,并结合各个车轮的实际转向角度控制车轮转向,直至将相应车轮的实际转向角度调整到与一轴转角相等。
图10A是示意性地示出根据本发明一个实施例的车辆在防甩尾行驶模式下的转向示意图。如图10A所示,在防甩尾行驶模式下,第七车轮57的转向方向与第一车轮51、第二车轮52、第三车轮53和第四车轮54的转向方向相反,第五车轮55和第六车轮56不参与转向,并且第一车轮51、第二车轮52、第三车轮53、第四车轮54和第七车轮57的转向角度满足阿克曼定理。
图10B是示意性地示出根据本发明一个实施例的车辆在防甩尾行驶模式下转向过程中的车轮状态示意图。如图10B所示,左侧车轮(或轮胎)转角用L表示,各轴左侧车轮转角分别用L1、L2、L3、L4、L5、L6和L7表示,其中,在转向中心O之后的转角值为负值。右侧车轮(或轮胎)转角用R表示,各轴右侧车轮转角分别用R1、 R2、R3、R4、R5、R6和R7表示,在转向中心O之后转角值为负值。车轴至转向中心O的距离用S表示,各车轴至转向中心的距离分别用S1、S2、S3、S4、S5、S6和S7表示,在转向中心O之后的距离值为负值。已知一轴转角L1、各车轴的轴距、两主销中心线延长线到地面交点之间的距离M以及各车轴至转向中心的距离S,则各车轴转向角度与一轴转角关系如下:
L1已知;
Figure PCTCN2016112320-appb-000010
Figure PCTCN2016112320-appb-000011
Figure PCTCN2016112320-appb-000012
Figure PCTCN2016112320-appb-000013
在该防甩尾行驶模式下,转向控制器在获知一轴转角L1(即第一车轮的实际转向角度,通过第一角度传感器采集得到)后,可以计算在该防甩尾行驶模式下的对应各个车轴的车轮的理论转向角度,并结合各个车轮的实际转向角度控制车轮转向,直至相应车轮的实际转向角度与理论转向角度的差值在预设的范围内。
图11A是示意性地示出根据本发明一个实施例的车辆在后轴独立转向模式下的转向示意图。如图11A所示,在后轴独立转向行驶模式下,第五车轮55、第六车轮56和第七车轮57的转向方向与第三车轮53和第四车轮54的转向方向相反,第一车轮51和第二车轮52不参与转向,并且第三车轮53至第七车轮57的转向角度满足阿克曼定理。
图11B是示意性地示出根据本发明一个实施例的车辆在后轴独立转向模式下转向过程中的车轮状态示意图。如图11B所示,左侧车轮(或轮胎)转角用L表示,各轴左侧车轮转角分别用L1、L2(图11B中未标出L1和L2)、L3、L4、L5、L6和L7表示,其中,在转向中心O之后的转角值为负值。右侧车轮(或轮胎)转角用R表示,各轴右侧车轮转角分别用R1、R2(图11B中未标出R1和R2)、R3、R4、R5、R6和R7表示,在转向中心O之后转角值为负值。车轴至转向中心O的距离用K表示,各车轴至转向中心的距离分别用K1、K2(图11B中未标出K1和K2)、K3、K4、K5、K6和K7表示,在转向中心O之后的距离值为负值。已知旋钮旋转角度P(该旋 钮是指后轴独立转向旋钮,此旋钮主要功能是:机械转向轴受方向盘控制,所谓的后轴独立转向是指机械转向轴不转向,电控转向轴独立转向,此旋钮旋转角度的大小决定了后轴转向角度的大小)、旋钮至转向中心的垂直距离Kp、各车轴的轴距、两主销中心线延长线到地面交点之间的距离M以及各车轴至转向中心的距离K,则各车轴转向角度与一轴转角关系如下:
Figure PCTCN2016112320-appb-000014
Figure PCTCN2016112320-appb-000015
Figure PCTCN2016112320-appb-000016
Figure PCTCN2016112320-appb-000017
在该后轴独立转向模式下,转向控制器在获知一轴转角L1(此时L1=0)后,还可以获得车辆的旋钮旋转角度和旋钮至转向中心的垂直距离,然后结合该旋钮旋转角度和该垂直距离计算第三车轮至第七车轮的理论转向角度,并结合各个车轮的实际转向角度控制车轮转向,直至相应车轮的实际转向角度与理论转向角度的差值在预设的范围内。
图12是示意性地示出根据本发明一个实施例的车辆在后轴锁定转向模式下的转向示意图。在后轴锁定行驶模式下,第三车轮53至第七车轮57不参与转向(也即第三车轮53、第四车轮54、第五车轮55、第六车轮56和第七车轮57的转向角度为0),第一车轮51和第二车轮52的转向角度满足阿克曼定理。
在该后轴锁定转向模式下,转向控制器在获知一轴转角L1后,将第三车轮至第七车轮的转向角度调整到0度(即不参与转向),从而实现该模式下的转向操作。
在上述六种模式的布置形式中,电控转向轴左右侧轮胎之间转向可以没有关联,在转向模式切换过程中,转向车轮不再受到机械约束,可按照预定的定理转动到位。
在本发明的实施例中,在车辆行驶过程中,第一轴车轮转角作为基准输入至转向控制器,第二轴车轮转角作为冗余信号输入至该转向控制器,该转向控制器获取输入条件后,在其程序内部运算后输出控制相应阀组执行动作的转向电信号,转向助力油缸作为执行元件最终推动车轮转动。车轮转动后,悬挂油缸内部的角度传感器将车轮转角信号反馈至转向控制器,转向控制器内部会对获得的实际转角信号与理论转角信号进行对比,不断地对车轮转角进行调整,以获得最优的车轮转角。
在一个实施例中,该转向控制系统还可以包括位置检测开关。该位置检测开关设置在转向装置的转向助力油缸上,用于检测转向助力油缸中的活塞位置,并且将该活塞位置发送到转向控制器。该转向控制器根据该活塞位置判断该转向助力油缸是否处于中位,当该转向油缸不处于中位时控制活塞运动,使得该转向助力油缸处于中位。
在一个实施例中,转向控制系统还可以包括油缸位移传感器。该油缸位移传感器设置在转向装置的转向助力油缸上,用于检测转向助力油缸的位移,并且将该位移发送到转向控制器。该转向控制器根据该位移判断转向助力油缸是否处于中位,当转向油缸不处于中位时控制活塞运动,使得该转向助力油缸处于中位。
在一个实施例中,转向控制器还用于在转向助力油缸处于中位后锁定活塞的位置,并在调整车轮的定位参数后对第一角度传感器和第二角度传感器进行自动清零操作。
图13是示意性地示出根据本发明一个实施例的带有位置检测开关的转向助力油缸的结构示意图。如图13所示,该转向助力油缸包括:转向助力油缸球头1301、缸筒1302、螺母1303、活塞1304、密封装置1305、缸杆1306、导向套1307和可调节球头1308。球头1301与该缸筒1302连接。活塞1304设置在缸筒1302内部,并且通过螺母1303固定在缸杆1306的一端上。密封装置1305包绕地设置在缸杆1306上。另外,在缸筒1302和缸杆1306之间设置导向套1307。可调节球头1308与缸杆1306的另一端相连。
在一个实施例中,如图13所示,该转向助力油缸还可以包括位置检测开关1309。该位置检测开关与转向助力油缸的其他部件集成在一起。该位置检测开关1309设置在转向助力油缸的缸筒1302上。例如,可以在缸筒1302的特定位置设置与该位置检测开关1309匹配的内螺纹,该位置检测开关1309为外螺纹,可直接安装在转向助力油缸的缸筒上。该位置检测开关1309可以用来检测转向助力油缸的中位位置。每个车轮转向过程中的每个角度都对应转向助力油缸不同的位移点,车轮处于中位位置时 的油缸长度作为中位检测点,每个轮胎对应的助力油缸的中位检测点不同,油缸设计过程中将针对车轮中位进行设计。
例如,可以在转向助力油缸的中位位置两侧各设置一个位置检测开关。该位置检测开关可以在一键实现转向助力油缸自动回到设计中位过程中,用来检测活塞在该位置检测开关的左边还是右边,以实现向左转还是向右转车轮才能回到中位的目的。该位置检测开关还可以检测油缸是否回到中位,提供一键实现转向助力油缸自动回到设计中位过程的一个基准。
本发明针对电控转向轴还提出了一种新型的四轮定位方法。在设计过程中,按照轮胎中位对转向助力油缸进行匹配设计,每个转向助力油缸对应一个设计中位。对转向助力油缸设计中位进行检测,将检测信号输入转向控制器,转向控制器可根据自身设定的程序在驾驶室内部可一键实现转向助力油缸自动回到设计中位,此时利用四轮定位设备微调转向助力油缸长度,达到调整轮胎姿态的目的。调整完成后,所有的轮胎处于设计零位,在驾驶室内部通过转向控制器可实现悬挂油缸内部的角度传感器一键归零。通过四轮定位,可以确保车辆具有良好的行驶性能和可靠性。
例如,在转向助力油缸回到中位后锁定,即可开始车轮四轮定位参数的调整,通过调整油缸缸杆端部的球头螺纹来实现油缸长度的微调,获得合理的轮胎姿态参数。四轮定位设备可以采用现有的检测轮胎姿态的设备。在四轮定位完成后,所有的轮胎处于中位状态,但此时角度传感器信号可能不在零位。此时可以通过手动调节来使角度传感器归零;或者为了达到省时省力的效果,可以通过驾驶室控制模块,对角度传感器进行自动清零,在显示器上显示为零值,控制器即在系统内部认为该转角为零。
当转向控制系统出现故障时,车辆有可能不能进行转向操作,因此本发明还提供一种辅助应急控制系统。
在一个实施例中,该辅助应急控制系统可以包括:辅助控制器和辅助液压系统。该辅助控制器与转向控制器电连接,用于读取该转向控制器的信号,当获知该转向控制器出现故障或与该转向控制器对应的转向液压系统出现故障时,向辅助液压系统发送应急电信号。该辅助液压系统用于当接收到该应急电信号时通过液压油控制对应车轮的转向装置的转向助力油缸动作,使得该车轮回到中位。该系统可以在主控制系统出现报警或者故障的情况下启动,使电控转向轮回至预定的中位。
在一个实施例中,辅助应急控制系统还可以包括位置检测开关。该位置检测开关 设置在转向助力油缸上(例如,如前所述,该位置检测开关与转向助力油缸集成在一起)。该位置检测开关用于检测转向助力油缸中的活塞位置,并且将该活塞位置发送到辅助控制器。该辅助控制器当根据活塞位置获知转向助力油缸回到中位时,确定车轮回到中位,从而停止控制转向助力油缸动作(即使得转向助力油缸停止动作)。
在一个实施例中,辅助应急控制系统还可以包括油缸位移传感器。该油缸位移传感器设置在转向助力油缸上(例如,该油缸位移传感器与转向助力油缸集成在一起),用于检测该转向助力油缸的位移,并且将该位移发送到辅助控制器。其中,辅助控制器当根据该位移获知转向助力油缸回到中位时,确定车轮回到中位,从而停止控制转向助力油缸动作(即使得转向助力油缸停止动作)。
图14是示意性地示出根据本发明一个实施例的液压系统的结构示意图。图14中除了示出了与图5所示的转向液压系统相似的部分。所不同的是,图14的转向液压系统包括:第三轴方向电磁阀组731、第三轴油腔锁止阀组732、第四五轴左侧方向电磁阀组741、第四五轴左侧油腔锁止阀组742、第四五轴右侧方向电磁阀组751、第四五轴右侧油腔锁止阀组752、第六七轴左侧方向电磁阀组761、第六七轴左侧油腔锁止阀组762、第六七轴右侧方向电磁阀组771、第六七轴右侧油腔锁止阀组772。
图14中还示出了辅助液压系统。该辅助液压系统可以包括:分动箱(可以随着车辆运行而转动)820、辅助应急泵810和多个辅助控制电磁阀(例如,图14中示出了两组三位四通辅助控制电磁阀组831和832,这两个控制电磁阀组包括了辅助控制电磁阀)。辅助应急泵810安装在分动箱820上(具体地,该辅助应急泵安装在分动箱取力口上),该辅助应急泵通过油路连接至液压油箱501,并且通过油路与多个辅助控制电磁阀相连。每个辅助控制电磁阀分别通过油路连接至对应的转向助力油缸的大腔和小腔。例如,三轴左侧辅助控制电磁阀连接至与第三轴对应的转向助力油缸的大腔和小腔,其他类似。辅助控制器(图14中未示出)与该多个辅助控制电磁阀电连接。其中,辅助控制器向辅助控制电磁阀发送应急电信号,控制辅助控制电磁阀导通,从而控制相应的转向助力油缸动作,以使得相应的车轮回到中位。例如,辅助控制器向三轴左侧辅助控制电磁阀发送应急电信号,控制该三轴左侧辅助控制电磁阀导通,从而控制与第三轴对应的转向助力油缸动作,从而控制三轴左侧车轮回到中位。
在上述实施例中,辅助应急控制系统的动力源来自于安装在分动箱取力口上的辅助应急泵,在此该辅助应急泵与三、四、五、六和七轴等电控转向车轴的左、右侧转 向油缸之间增加两组三位四通辅助控制电磁阀组,分别控制电控车轴的左、右侧转向助力油缸,电磁阀由单独的辅助控制器控制,此辅助控制器读取控制电控车轴转向的控制器(即转向控制器)的实际信号,当控制电控车轴转向的控制器出现故障或某一个液压回路出现故障时,辅助控制器控制出现故障的回路的辅助控制电磁阀通断,实现该回路控制的转向助力油缸处于中位行程状态,即实现该轮胎中位状态,保证车辆的安全性。
在一个实施例中,如图14所示,辅助液压系统还包括:通断电磁阀840和优先选择阀850。该通断电磁阀840与辅助控制器(图14中未示出)电连接。该通断电磁阀840通过油路与辅助应急泵810相连,并且通过油路与优先选择阀850相连。该优先选择阀850通过油路连接至与机械转向轴对应的转向液压系统。其中,当车辆的电控转向轴发生故障时,辅助控制器向通断电磁阀840和优先选择阀850发送导通电信号,控制该通断电磁阀840和该优先选择阀850导通,从而控制与机械转向轴对应的车轮转向。在该实施例中,当电控转向轴发生故障时,对电控转向轴进行了锁定处理,通过这里的通断电磁阀和优先选择阀来实现机械操作转向。
图15是示意性地示出根据本发明一个实施例的控制系统的结构示意图。图15中示出了与图6中的转向控系统相同或相似的结构。此外,图15中还示出了辅助控制器910和多个辅助控制电磁阀。这多个辅助控制电磁阀分别是:三轴左侧油缸辅助电磁阀8313、三轴右侧油缸辅助电磁阀8323、四轴左侧油缸辅助电磁阀8314、四轴右侧油缸辅助电磁阀8324、五轴左侧油缸辅助电磁阀8315、五轴右侧油缸辅助电磁阀8325、六轴左侧油缸辅助电磁阀8316、六轴右侧油缸辅助电磁阀8326、七轴左侧油缸辅助电磁阀8317和七轴右侧油缸辅助电磁阀8327。
以三轴左侧油缸辅助电磁阀8313为例,描述辅助应急控制系统的控制过程:该转向控制器610出现故障或与该转向控制器610对应的转向液压系统出现故障时,该转向控制器610向辅助控制器910发送信号(可以称为故障信号),辅助控制器910在获得该信号后,向辅助液压系统发送应急电信号,例如当前需要控制三轴左侧车轮回到中位,则向三轴左侧油缸辅助电磁阀8313发送应急电信号,控制该三轴左侧油缸辅助电磁阀8313导通,从而控制三轴左侧转向助力油缸动作,使得三轴左侧助力油缸转向。并且设置在三轴左侧转向助力油缸上的位置检测开关实时的获得该助力油缸的活塞位置,并反馈给辅助控制器910。辅助控制器910当根据活塞位置确定该助 力油缸回到中位(也即三轴左侧车轮回到中位)时,停止控制该助力油缸动作。对其他辅助电磁阀的控制过程类似,这里不再一一赘述。
另外,前面描述了一种在对电控转向轴进行锁定处理后的转向操作。这里在描述一种对电控转向轴不锁定的转向操作。在一个实施例中,当车辆的转向控制系统发生故障时,辅助控制器在(例如从油缸位移传感器)接收到(转向助力油缸的)位移后,根据该位移计算车轮的当前转向角度,并结合当前转向角度控制所述车轮转向。例如,在该过程中,前面所述的第一角度传感器采集的与机械转向轴对应的车轮的第一转向角度也输入到该辅助控制器,该辅助控器可以根据该第一转向角度得到相应车轮的理论转向角度,并根据前面计算的当前转向角度和这里的理论转向角度的差值控制相应车轮转向,直至这二者的差值在预设的范围内。
本发明还提供了一种起重机,该起重机包括如前所述的转向控制系统。
在一个实施例中,该起重机还可以包括:如前所述辅助应急控制系统。
图16是示出根据本发明一个实施例的转向控制方法的流程图。
在步骤S1601,采集与机械转向轴对应的车轮的实际转向角度,记为第一转向角度;并采集与电控转向轴对应的车轮的实际转向角度,记为第二转向角度。
在步骤S1602,根据第一转向角度获得相应行驶模式下的与电控转向轴对应的车轮的理论转向角度。
在步骤S1603,将第二转向角度与理论转向角度进行比较,根据这两者的差值控制与电控转向轴对应的车轮进行转向。
在步骤S1604,判断第二转向角度与理论转向角度的差值是否在预设的范围内。如果是,则过程结束;否则返回步骤S1603,即继续控制相应车轮转向。
在该实施例中,采集第一转向角度和第二转向角度,然后根据第一转向角度获得相应行驶模式下的与电控转向轴对应的车轮的理论转向角度,并将该第二转向角度与该理论转向角度进行比较,根据这两者的差值控制与电控转向轴对应的车轮进行转向,直至该第二转向角度与该理论转向角度的差值在预设的范围内,从而实现了对车轮转向的控制。
在一个实施例中,机械转向轴为独立机械车轴,电控转向轴为独立电控车轴。采集第一转向角度和第二转向角度的步骤可以包括:采集在独立机械车轴的左右两侧的车轮的第一转向角度和在独立电控车轴的左右两侧的车轮的第二转向角度。控制与电 控转向轴对应的车轮进行转向的步骤可以包括:根据第一转向角度和第二转向角度分别控制独立电控车轴的左右两侧的车轮转向。
在一个实施例中,获得所述理论转向角度的步骤可以包括:按照阿克曼定理计算相应行驶模式下的与电控转向轴对应的车轮的理论转向角度。其中,该行驶模式可以包括:正常公路行驶模式、小转弯行驶模式、蟹形行驶模式、防甩尾行驶模式、后轴独立转向行驶模式和后轴锁定行驶模式。
在一个实施例中,与机械转向轴对应的车轮可以包括:与第一机械转向轴对应的第一车轮和与第二机械转向轴对应的第二车轮。在一个实施例中,与电控转向轴对应的车轮可以包括:与第三电控转向轴对应的第三车轮、与第四电控转向轴对应的第四车轮、与第五电控转向轴对应的第五车轮、与第六电控转向轴对应的第六车轮和与第七电控转向轴对应的第七车轮。
在一个实施例中,在正常公路行驶模式下,第五车轮、第六车轮和第七车轮的转向方向与第一车轮、第二车轮、第三车轮和第四车轮的转向方向相反,并且第一车轮至第七车轮的转向角度满足阿克曼定理。
在一个实施例中,在小转弯行驶模式下,第五车轮、第六车轮和第七车轮的转向方向与第一车轮、第二车轮、第三车轮和第四车轮的转向方向相反,并且第一车轮至第七车轮的转向角度满足阿克曼定理。
在一个实施例中,在蟹形行驶模式下,第一车轮至第七车轮的转向方向相同,并且第一车轮和第二车轮的转向角度满足阿克曼定理。
在一个实施例中,在防甩尾行驶模式下,第七车轮的转向方向与第一车轮、第二车轮、第三车轮和第四车轮的转向方向相反,第五车轮和第六车轮不参与转向,并且第一车轮、第二车轮、第三车轮、第四车轮和第七车轮的转向角度满足阿克曼定理。
在一个实施例中,在后轴独立转向行驶模式下,第五车轮、第六车轮和第七车轮的转向方向与第三车轮和第四车轮的转向方向相反,第一车轮和第二车轮不参与转向,并且第三车轮至第七车轮的转向角度满足阿克曼定理。在一个实施例中,获得所述理论转向角度的步骤可以包括:获得车辆的旋钮旋转角度和旋钮至转向中心的垂直距离;以及结合该旋钮旋转角度和该垂直距离计算第三车轮至第七车轮的理论转向角度。
在一个实施例中,在后轴锁定行驶模式下,第三车轮至第七车轮不参与转向,第一车轮和第二车轮的转向角度满足阿克曼定理。
在一个实施例中,第一转向角度可以包括:第一车轮的转向角度和第二车轮的转向角度。获得所述理论转向角度的步骤包括:根据第一车轮的转向角度和第二车轮的转向角度这二者之间的阿克曼定理关系以及该第二车轮的转向角度判断该第一车轮的转向角度是否正确;以及如果该第一车轮的转向角度正确,则根据该第一车轮的转向角度计算相应行驶模式下的与电控转向轴对应的车轮的理论转向角度。
在一个实施例中,根据这两者的差值控制与电控转向轴对应的车轮进行转向的步骤可以包括:根据第二转向角度与理论转向角度的差值向转向液压系统发送转向电信号;以及该转向液压系统在收到该转向电信号后,通过液压油控制相应车轮的转向装置进行动作,从而控制与电控转向轴对应的车轮转向。
在一个实施例中,所述转向控制方法还可以包括:获得车速;以及结合该车速对与电控转向轴对应的车轮的转向角度进行调整。
在一个实施例中,所述转向控制方法还可以包括:检测转向助力油缸中的活塞位置;以及根据该活塞位置判断转向助力油缸是否处于中位,当该转向油缸不处于中位时控制该活塞运动,使得该转向助力油缸处于中位。
在一个实施例中,所述转向控制方法还可以包括:在转向助力油缸处于中位后锁定该活塞的位置;调整车轮的定位参数;以及对采集的第一转向角度和第二转向角度进行自动清零操作。
图17是示出根据本发明一个实施例的辅助应急控制方法的流程图。
在步骤S1701,读取转向控制器的信号,当获知该转向控制器出现故障或与该转向控制器对应的转向液压系统出现故障时,向辅助液压系统发送应急电信号。
在步骤S1702,辅助液压系统当接收到应急电信号时通过液压油控制对应车轮的转向装置的转向助力油缸动作,使得该车轮回到中位。
上述实施例实现了当转向控制系统出现故障时进行辅助应急控制的方法,从而使电控转向车轮回至预定的中位。
在一个实施例中,所述辅助应急控制方法还可以包括:获得转向助力油缸中的活塞位置;以及当根据该活塞位置获知转向助力油缸回到中位时,确定车轮回到中位,从而停止控制转向助力油缸动作(即使得转向助力油缸停止动作)。
在一个实施例中,所述辅助应急控制方法还可以包括:获得转向助力油缸中的位移;以及当根据该位移获知转向助力油缸回到中位时,确定车轮回到中位,从而停止 控制转向助力油缸动作(即使得转向助力油缸停止动作)。
在一个实施例中,所述辅助应急控制方法还可以包括:当车辆的电控转向轴发生故障时,向通断电磁阀和优先选择阀发送导通电信号,控制该通断电磁阀和该优先选择阀导通,从而控制与机械转向轴对应的车轮转向。
在一个实施例中,所述辅助应急控制方法还可以包括:当车辆的转向控制系统发生故障时,在获得转向助力油缸的位移后,根据该位移计算车轮的当前转向角度,并结合该当前转向角度控制车轮转向。
本发明不仅适用于独立悬架车轴,而且适用于整体式车轴。独立悬架是这样的悬架:在左、右车轮之间没有一根刚性梁或非断开式车桥连接,左、右车轮各自“独立”地与车架或车身相连或构成断开式车桥。整体式车轴是这样的车轴:两侧车轮有一根整体式结构件相连,车轮连同车桥一起通过弹性悬架悬挂在车架上,左右车轮跳动时相互影响。
本发明具有以下优点中的至少一个优点:
1、本发明的转向装置可以应用于工程机械车辆底盘,可显著减轻车辆转向系统部件的重量,为整机轻量化设计做出显著的贡献。
2、本发明可以实现既可以检测悬挂油缸位移又可以检测轮胎转角的新型悬挂油缸,也可以实现可单独检测轮胎转角的新型悬挂油缸。本发明的悬挂油缸通过角度传感器实现了缸筒和缸杆之间的旋转运动检测,可直接获取轮胎转角,解决了间接获取轮胎转角导致精度差的问题。
3、可以实现独立悬架车轴左、右侧车轮独立控制转向,显著降低工程机械车辆多种转向模式下切换工作时轮胎异常磨损现场发生。
4、实现工程机械车辆四轮定位新方案,独立调整单个车轴轮胎的位置参数。该定位调整的方法简单可靠。
5、在主控制系统出现报警或者故障的情况下启动辅助应急控制系统,使电控转向车轮回至预定的中位。
至此,已经详细描述了本发明。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
可能以许多方式来实现本发明的方法和系统。例如,可通过软件、硬件、固件或 者软件、硬件、固件的任何组合来实现本发明的方法和系统。用于所述方法的步骤的上述顺序仅是为了进行说明,本发明的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本发明实施为记录在记录介质中的程序,这些程序包括用于实现根据本发明的方法的机器可读指令。因而,本发明还覆盖存储用于执行根据本发明的方法的程序的记录介质。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (41)

  1. 一种转向装置,其特征在于,包括:
    转向节臂和转向助力油缸;
    其中,所述转向节臂位于悬挂油缸与车轴轮边之间;
    所述转向助力油缸包括第一端和第二端,所述第一端连接在车架底部,所述第二端与所述转向节臂相连。
  2. 根据权利要求1所述的转向装置,其特征在于,还包括:
    固定支架;
    其中,所述固定支架固连在所述车架底部,所述转向助力油缸的第一端与所述固定支架铰接;
    所述转向节臂通过螺栓与所述悬挂油缸及所述车轴轮边连接;所述转向助力油缸的第二端与所述转向节臂铰接。
  3. 一种悬挂油缸,其特征在于,包括:
    缸杆、缸筒、连接杆和角度传感器,
    其中,所述角度传感器包括转动部和固定部,所述转动部与所述缸筒连接,所述固定部与所述连接杆相连;所述连接杆与所述缸杆连接。
  4. 根据权利要求3所述的悬挂油缸,其特征在于,还包括:
    位移传感器,与所述缸杆固连,并且与所述连接杆可滑动地相连;以及
    旋转限制装置,设置在所述连接杆上,限制所述位移传感器和所述连接杆之间的相对旋转。
  5. 根据权利要求3所述的悬挂油缸,其特征在于,还包括:
    轴承,安装在所述缸筒上,其中,所述角度传感器的转动部与所述轴承相连。
  6. 一种转向控制系统,其特征在于,包括:
    第一角度传感器、第二角度传感器和转向控制器;
    所述第一角度传感器和所述第二角度传感器分别与所述转向控制器电连接;
    所述第一角度传感器采集与机械转向轴对应的车轮的实际转向角度,记为第一转向角度,并将所述第一转向角度传送至所述转向控制器;
    所述第二角度传感器采集与电控转向轴对应的车轮的实际转向角度,记为第二转向角度,并将所述第二转向角度传送至所述转向控制器;
    所述转向控制器根据所述第一转向角度获得相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度,并将所述第二转向角度与所述理论转向角度进行比较,根据这两者的差值控制与所述电控转向轴对应的车轮进行转向,直至所述第二转向角度与所述理论转向角度的差值在预设的范围内。
  7. 根据权利要求6所述的转向控制系统,其特征在于,
    所述第一角度传感器安装在与所述机械转向轴对应的第一悬挂油缸上;
    所述第二角度传感器安装在与所述电控转向轴对应的第二悬挂油缸上。
  8. 根据权利要求7所述的转向控制系统,其特征在于,
    所述第一角度传感器与所述第一悬挂油缸集成在一起,所述第二角度传感器与所述第二悬挂油缸集成在一起;
    其中,所述第一角度传感器包括第一转动部和第一固定部,所述第一转动部与所述第一悬挂油缸的缸筒连接,所述第一固定部与所述第一悬挂油缸的连接杆相连;
    所述第二角度传感器包括第二转动部和第二固定部,所述第二转动部与所述第二悬挂油缸的缸筒连接,所述第二固定部与所述第二悬挂油缸的连接杆相连。
  9. 根据权利要求6所述的转向控制系统,其特征在于,
    所述机械转向轴为独立机械车轴,所述电控转向轴为独立电控车轴;
    在所述独立机械车轴的左右两侧的悬挂油缸上分别安装第一角度传感器,以及在所述独立电控车轴的左右两侧的悬挂油缸上分别安装第二角度传感器;
    其中,所述转向控制器根据所述第一转向角度和所述第二转向角度分别控制所述独立电控车轴的左右两侧的车轮转向。
  10. 根据权利要求6所述的转向控制系统,其特征在于,
    所述转向控制器按照阿克曼定理计算相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度;
    其中,所述行驶模式包括:正常公路行驶模式、小转弯行驶模式、蟹形行驶模式、防甩尾行驶模式、后轴独立转向行驶模式和后轴锁定行驶模式。
  11. 根据权利要求6所述的转向控制系统,其特征在于,
    所述机械转向轴包括:第一机械转向轴和第二机械转向轴;
    与所述机械转向轴对应的车轮包括:与所述第一机械转向轴对应的第一车轮和与所述第二机械转向轴对应的第二车轮;
    所述第一转向角度包括:第一车轮的转向角度和第二车轮的转向角度;
    其中,所述转向控制器根据所述第一车轮的转向角度和所述第二车轮的转向角度这二者之间的阿克曼定理关系以及所述第二车轮的转向角度判断所述第一车轮的转向角度是否正确,如果所述第一车轮的转向角度正确,则根据所述第一车轮的转向角度计算相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度。
  12. 根据权利要求6所述的转向控制系统,其特征在于,还包括:
    转向液压系统,用于在收到所述转向控制器的转向电信号后,通过液压油控制相应车轮的转向装置进行动作,从而控制与所述电控转向轴对应的车轮转向;
    其中,所述转向控制器根据所述第二转向角度与所述理论转向角度的差值向所述转向液压系统发送转向电信号。
  13. 根据权利要求12所述的转向控制系统,其特征在于,所述转向装置包括:转向节臂和转向助力油缸;
    其中,所述转向节臂位于悬挂油缸与车轴轮边之间;
    所述转向助力油缸包括第一端和第二端,所述第一端连接在车架底部,所述第二端与所述转向节臂相连。
  14. 根据权利要求12所述的转向控制系统,其特征在于,
    所述转向液压系统包括:液压泵、液压油箱、方向电磁阀组和油腔锁止阀组;
    其中,所述转向控制器分别与所述方向电磁阀组和油腔锁止阀组电连接,所述方向电磁阀组分别通过油路与所述液压泵、所述液压油箱以及相应的所述油腔锁止阀组相连,所述液压泵通过油路与所述液压油箱相连,所述油腔锁止阀组通过油路连接至所述转向装置的转向助力油缸的油腔;
    所述转向控制器根据所述第二转向角度与所述理论转向角度的差值分别向相应的方向电磁阀组和油腔锁止阀组发送转向电信号,使得所述相应的方向电磁阀组和油腔锁止阀组的油路导通,从而控制相应的转向助力油缸进行伸出或缩回动作,进而控制相应车轮进行转向。
  15. 根据权利要求6所述的转向控制系统,其特征在于,还包括:
    车速检测设备,用于获得车速,并将所述车速传输至所述转向控制器;其中,所述转向控制器结合所述车速对与所述电控转向轴对应的车轮的转向角度进行调整。
  16. 根据权利要求13所述的转向控制系统,其特征在于,还包括:
    位置检测开关,设置在所述转向装置的转向助力油缸上,用于检测所述转向助力油缸中的活塞位置,并且将所述活塞位置发送到所述转向控制器;
    其中,所述转向控制器根据所述活塞位置判断所述转向助力油缸是否处于中位,当所述转向油缸不处于中位时控制所述活塞运动,使得所述转向助力油缸处于所述中位。
  17. 根据权利要求13所述的转向控制系统,其特征在于,还包括:
    油缸位移传感器,设置在所述转向装置的转向助力油缸上,用于检测所述转向助力油缸的位移,并且将所述位移发送到所述转向控制器;
    其中,所述转向控制器根据所述位移判断所述转向助力油缸是否处于中位,当所述转向油缸不处于中位时控制活塞运动,使得所述转向助力油缸处于所述中位。
  18. 根据权利要求16或17所述的转向控制系统,其特征在于,
    所述转向控制器还用于在所述转向助力油缸处于所述中位后锁定所述活塞的位置,并在调整所述车轮的定位参数后对所述第一角度传感器和所述第二角度传感器进行自 动清零操作。
  19. 一种辅助应急控制系统,其特征在于,包括:
    辅助控制器,与转向控制器电连接,用于读取所述转向控制器的信号,当获知所述转向控制器出现故障或与所述转向控制器对应的转向液压系统出现故障时,向辅助液压系统发送应急电信号;以及
    所述辅助液压系统,用于当接收到所述应急电信号时通过液压油控制对应车轮的转向装置的转向助力油缸动作,使得所述车轮回到中位。
  20. 根据权利要求19所述的辅助应急控制系统,其特征在于,
    所述辅助液压系统包括:分动箱、辅助应急泵和多个辅助控制电磁阀;
    所述辅助应急泵安装在所述分动箱上,所述辅助应急泵通过油路连接至液压油箱,并且通过油路与所述多个辅助控制电磁阀相连;每个所述辅助控制电磁阀分别通过油路连接至对应的转向助力油缸的大腔和小腔;所述辅助控制器与所述多个辅助控制电磁阀电连接;
    其中,所述辅助控制器向所述辅助控制电磁阀发送所述应急电信号,控制所述辅助控制电磁阀导通,从而控制相应的转向助力油缸动作。
  21. 根据权利要求19所述的辅助应急控制系统,其特征在于,还包括:
    位置检测开关,设置在所述转向助力油缸上,用于检测所述转向助力油缸中的活塞位置,并且将所述活塞位置发送到所述辅助控制器;
    其中,所述辅助控制器当根据所述活塞位置获知所述转向助力油缸回到中位时,确定所述车轮回到中位,从而停止控制所述转向助力油缸动作。
  22. 根据权利要求19所述的辅助应急控制系统,其特征在于,还包括:
    油缸位移传感器,设置在所述转向助力油缸上,用于检测所述转向助力油缸的位移,并且将所述位移发送到所述辅助控制器;
    其中,所述辅助控制器当根据所述位移获知所述转向助力油缸回到中位时,确定所述车轮回到中位,从而停止控制所述转向助力油缸动作。
  23. 根据权利要求20所述的辅助应急控制系统,其特征在于,
    所述辅助液压系统还包括:通断电磁阀和优先选择阀;
    所述通断电磁阀与所述辅助控制器电连接;所述通断电磁阀通过油路与所述辅助应急泵相连,并且通过油路与所述优先选择阀相连;所述优先选择阀通过油路连接至与机械转向轴对应的转向液压系统;
    其中,当车辆的电控转向轴发生故障时,所述辅助控制器向所述通断电磁阀和所述优先选择阀发送导通电信号,控制所述通断电磁阀和所述优先选择阀导通,从而控制与机械转向轴对应的车轮转向。
  24. 根据权利要求22所述的辅助应急控制系统,其特征在于,
    其中,当车辆的转向控制系统发生故障时,所述辅助控制器在接收到所述位移后,根据所述位移计算所述车轮的当前转向角度,并结合所述当前转向角度控制所述车轮转向。
  25. 一种起重机,其特征在于,包括:如权利要求6至18任意一项所述的转向控制系统。
  26. 根据权利要求25所述的起重机,其特征在于,还包括:如权利要求19至24任意一项所述的辅助应急控制系统。
  27. 一种转向控制方法,其特征在于,包括:
    采集与机械转向轴对应的车轮的实际转向角度,记为第一转向角度;并采集与电控转向轴对应的车轮的实际转向角度,记为第二转向角度;以及
    根据所述第一转向角度获得相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度,并将所述第二转向角度与所述理论转向角度进行比较,根据这两者的差值控制与所述电控转向轴对应的车轮进行转向,直至所述第二转向角度与所述理论转向角度的差值在预设的范围内。
  28. 根据权利要求27所述的方法,其特征在于,
    所述机械转向轴为独立机械车轴,所述电控转向轴为独立电控车轴;
    采集所述第一转向角度和所述第二转向角度的步骤包括:采集在所述独立机械车轴的左右两侧的车轮的第一转向角度和在所述独立电控车轴的左右两侧的车轮的第二转向角度;
    控制与所述电控转向轴对应的车轮进行转向的步骤包括:根据所述第一转向角度和所述第二转向角度分别控制所述独立电控车轴的左右两侧的车轮转向。
  29. 根据权利要求27所述的方法,其特征在于,获得所述理论转向角度的步骤包括:
    按照阿克曼定理计算相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度;
    其中,所述行驶模式包括:正常公路行驶模式、小转弯行驶模式、蟹形行驶模式、防甩尾行驶模式、后轴独立转向行驶模式和后轴锁定行驶模式。
  30. 根据权利要求29所述的方法,其特征在于,
    与机械转向轴对应的车轮包括:与第一机械转向轴对应的第一车轮和与第二机械转向轴对应的第二车轮;
    与电控转向轴对应的车轮包括:与第三电控转向轴对应的第三车轮、与第四电控转向轴对应的第四车轮、与第五电控转向轴对应的第五车轮、与第六电控转向轴对应的第六车轮和与第七电控转向轴对应的第七车轮。
  31. 根据权利要求30所述的方法,其特征在于,
    其中,在所述正常公路行驶模式下,所述第五车轮、所述第六车轮和所述第七车轮的转向方向与所述第一车轮、所述第二车轮、所述第三车轮和所述第四车轮的转向方向相反,并且所述第一车轮至所述第七车轮的转向角度满足阿克曼定理。
  32. 根据权利要求30所述的方法,其特征在于,
    其中,在所述小转弯行驶模式下,所述第五车轮、所述第六车轮和所述第七车轮的转向方向与所述第一车轮、所述第二车轮、所述第三车轮和所述第四车轮的转向方 向相反,并且所述第一车轮至所述第七车轮的转向角度满足阿克曼定理。
  33. 根据权利要求30所述的方法,其特征在于,
    其中,在所述蟹形行驶模式下,所述第一车轮至所述第七车轮的转向方向相同,并且所述第一车轮和所述第二车轮的转向角度满足阿克曼定理。
  34. 根据权利要求30所述的方法,其特征在于,
    其中,在所述防甩尾行驶模式下,所述第七车轮的转向方向与所述第一车轮、所述第二车轮、所述第三车轮和所述第四车轮的转向方向相反,所述第五车轮和所述第六车轮不参与转向,并且所述第一车轮、所述第二车轮、所述第三车轮、所述第四车轮和所述第七车轮的转向角度满足阿克曼定理。
  35. 根据权利要求30所述的方法,其特征在于,
    其中,在所述后轴独立转向行驶模式下,所述第五车轮、所述第六车轮和所述第七车轮的转向方向与所述第三车轮和所述第四车轮的转向方向相反,所述第一车轮和所述第二车轮不参与转向,并且所述第三车轮至所述第七车轮的转向角度满足阿克曼定理;
    其中,获得所述理论转向角度的步骤包括:获得车辆的旋钮旋转角度和旋钮至转向中心的垂直距离;以及结合所述旋钮旋转角度和所述垂直距离计算所述第三车轮至所述第七车轮的理论转向角度。
  36. 根据权利要求30所述的方法,其特征在于,
    其中,在所述后轴锁定行驶模式下,所述第三车轮至所述第七车轮不参与转向,所述第一车轮和所述第二车轮的转向角度满足阿克曼定理。
  37. 根据权利要求30所述的方法,其特征在于,
    所述第一转向角度包括:第一车轮的转向角度和第二车轮的转向角度;
    获得所述理论转向角度的步骤包括:
    根据所述第一车轮的转向角度和所述第二车轮的转向角度这二者之间的阿克曼定 理关系以及所述第二车轮的转向角度判断所述第一车轮的转向角度是否正确;以及
    如果所述第一车轮的转向角度正确,则根据所述第一车轮的转向角度计算相应行驶模式下的与所述电控转向轴对应的车轮的理论转向角度。
  38. 根据权利要求27所述的方法,其特征在于,根据这两者的差值控制与所述电控转向轴对应的车轮进行转向的步骤包括:
    根据所述第二转向角度与所述理论转向角度的差值向转向液压系统发送转向电信号;以及
    所述转向液压系统在收到所述转向电信号后,通过液压油控制相应车轮的转向装置进行动作,从而控制与所述电控转向轴对应的车轮转向。
  39. 根据权利要求27所述的方法,其特征在于,还包括:
    获得车速;以及
    结合所述车速对与所述电控转向轴对应的车轮的转向角度进行调整。
  40. 根据权利要求27所述的方法,其特征在于,还包括:
    检测转向助力油缸中的活塞位置;以及
    根据所述活塞位置判断所述转向助力油缸是否处于中位,当所述转向油缸不处于中位时控制所述活塞运动,使得所述转向助力油缸处于所述中位。
  41. 根据权利要求40所述的方法,其特征在于,还包括:
    在所述转向助力油缸处于所述中位后锁定所述活塞的位置;
    调整车轮的定位参数;以及
    对采集的所述第一转向角度和所述第二转向角度进行自动清零操作。
PCT/CN2016/112320 2016-12-27 2016-12-27 转向装置、悬挂油缸、控制系统、方法和起重机 WO2018119639A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/112320 WO2018119639A1 (zh) 2016-12-27 2016-12-27 转向装置、悬挂油缸、控制系统、方法和起重机
US16/473,979 US11364950B2 (en) 2016-12-27 2016-12-27 Steering control system and method as well as crane
EP16925899.3A EP3564095A4 (en) 2016-12-27 2016-12-27 STEERING DEVICE, SUSPENSION CYLINDER, CONTROL SYSTEM AND PROCEDURE AND CRANE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112320 WO2018119639A1 (zh) 2016-12-27 2016-12-27 转向装置、悬挂油缸、控制系统、方法和起重机

Publications (1)

Publication Number Publication Date
WO2018119639A1 true WO2018119639A1 (zh) 2018-07-05

Family

ID=62706619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112320 WO2018119639A1 (zh) 2016-12-27 2016-12-27 转向装置、悬挂油缸、控制系统、方法和起重机

Country Status (3)

Country Link
US (1) US11364950B2 (zh)
EP (1) EP3564095A4 (zh)
WO (1) WO2018119639A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11579001B2 (en) * 2017-07-27 2023-02-14 Nikon Corporation Calibrator, encoder, driving device, stage device, robot, encoder manufacturing method, and calibration program
CN110001774B (zh) * 2019-04-02 2024-04-12 中国煤炭科工集团太原研究院有限公司 一种双转向器整体式支架搬运车
US11440551B2 (en) * 2019-09-04 2022-09-13 Deere & Company Automatic crab steering on side hills
JP7234962B2 (ja) * 2020-02-11 2023-03-08 トヨタ自動車株式会社 転舵装置およびそれが設けられたステアリングシステム
CN111483522B (zh) * 2020-04-14 2021-05-14 中国煤炭科工集团太原研究院有限公司 一种矿用重型四驱车及其控制方法
DE102020135022B4 (de) 2020-12-29 2023-05-25 Liebherr-Werk Ehingen Gmbh Hydraulisches Lenksystem für einen Mobilkran und fahrbares Arbeitsgerät mit einem solchen
CN114670917B (zh) * 2022-04-14 2024-04-05 山东蓬翔汽车有限公司 一种车用人工及线控双控转向的转向系统及其控制方法
US20230339539A1 (en) * 2022-04-21 2023-10-26 Caterpillar Inc. Alignment of Machine to Install Steering Frame Lock
CN114872786B (zh) * 2022-05-26 2023-07-25 湖南三一中型起重机械有限公司 电控转向桥转角确定方法、装置、设备及作业机械
CN114932948B (zh) * 2022-06-29 2023-03-17 北京主线科技有限公司 一种确定车辆轮角控制量的方法、装置及存储介质
CN114919656A (zh) * 2022-06-29 2022-08-19 天津港第二集装箱码头有限公司 一种车辆转向控制系统及方法
CN115257918A (zh) * 2022-09-06 2022-11-01 一汽解放汽车有限公司 电子液压助力转向系统、车辆及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211171A (ja) * 1985-03-18 1986-09-19 Nissan Motor Co Ltd パワ−ステアリング装置
CN201012706Y (zh) * 2006-10-20 2008-01-30 上海汇金汽车拖拉机零部件有限公司 拖拉机前驱动桥中液压转向油缸的位置结构
CN201329895Y (zh) * 2008-12-30 2009-10-21 民航协发机场设备有限公司 独立悬挂液压转向前桥
CN203332205U (zh) * 2013-07-05 2013-12-11 徐州徐工特种汽车有限公司 非公路矿用自卸车大扭矩转向系统
CN103963825A (zh) * 2014-05-20 2014-08-06 徐州重型机械有限公司 一种转向系统及独立悬架轮式重载车辆
CN106828597A (zh) * 2016-12-27 2017-06-13 徐州重型机械有限公司 转向装置、悬挂油缸、控制系统、方法和起重机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2341442A1 (de) * 1973-08-16 1975-03-06 Scheuerle Fahrzeugfabrik Willy Lenksystem fuer fahrzeuge, insbesondere schwerlastfahrzeuge
US6827176B2 (en) * 2003-01-07 2004-12-07 Jlg Industries, Inc. Vehicle with offset extendible axles and independent four-wheel steering control
US7731208B2 (en) * 2008-02-15 2010-06-08 Brooks Strong Tag axle operating system
CN201941836U (zh) 2010-12-06 2011-08-24 徐州重型机械有限公司 九轴汽车底盘起重机及其转向控制系统
CN201907559U (zh) 2010-12-06 2011-07-27 徐州重型机械有限公司 六轴汽车底盘起重机及其转向控制系统
CN102390430B (zh) 2011-09-09 2015-04-08 中联重科股份有限公司 汽车转向控制方法与系统以及汽车
CN102514619B (zh) 2011-12-05 2014-04-09 中联重科股份有限公司 多轴车辆全轮转向控制方法及控制系统
CN102730057B (zh) * 2012-07-12 2014-12-10 徐州重型机械有限公司 底盘转向控制方法、系统,及具有该系统的起重机
EP3060453B1 (en) 2013-10-21 2018-09-26 Volvo Truck Corporation A wheel steering system for controlling a steering angle of a second pair of steerable wheels of a vehicle
CN103522865B (zh) 2013-11-01 2016-08-17 徐州重型机械有限公司 独立悬架系统及具有该独立悬架系统的起重机
CN103552601B (zh) 2013-11-07 2016-04-13 邓平 具有自动补救功能的液压转向控制方法
EP3091771A4 (en) 2014-01-26 2017-03-01 Huawei Technologies Co., Ltd. Resources allocation method and device
CN204279618U (zh) 2014-11-20 2015-04-22 徐州重型机械有限公司 一种转向节及独立悬架
CN105257274B (zh) 2015-11-04 2019-01-29 杭州听物科技有限公司 一种掘进凿岩台车钻孔自动定位装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211171A (ja) * 1985-03-18 1986-09-19 Nissan Motor Co Ltd パワ−ステアリング装置
CN201012706Y (zh) * 2006-10-20 2008-01-30 上海汇金汽车拖拉机零部件有限公司 拖拉机前驱动桥中液压转向油缸的位置结构
CN201329895Y (zh) * 2008-12-30 2009-10-21 民航协发机场设备有限公司 独立悬挂液压转向前桥
CN203332205U (zh) * 2013-07-05 2013-12-11 徐州徐工特种汽车有限公司 非公路矿用自卸车大扭矩转向系统
CN103963825A (zh) * 2014-05-20 2014-08-06 徐州重型机械有限公司 一种转向系统及独立悬架轮式重载车辆
CN106828597A (zh) * 2016-12-27 2017-06-13 徐州重型机械有限公司 转向装置、悬挂油缸、控制系统、方法和起重机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564095A4 *

Also Published As

Publication number Publication date
US20190329819A1 (en) 2019-10-31
EP3564095A4 (en) 2020-08-12
EP3564095A1 (en) 2019-11-06
US11364950B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2018119639A1 (zh) 转向装置、悬挂油缸、控制系统、方法和起重机
CN106828597B (zh) 转向控制系统、起重机和转向控制方法
CN107826164B (zh) 一种基于电助力的多轮转向系统及控制方法
US8068955B2 (en) Vehicle with a variable rear toe angle
US8781684B2 (en) Steering and control systems for a three-wheeled vehicle
CN111108035A (zh) 用于控制车辆车道保持的方法和系统
CN102019958B (zh) 六轴汽车底盘起重机及其转向控制系统、方法
US8224527B2 (en) Steering control apparatus, steering control system, and steering control program
EP2944540B1 (en) Turning system and heavy-load wheeled vehicle having independent suspension
JP6452944B2 (ja) ステアリング装置
JP2013248896A (ja) 後輪トー角可変車両
EP3533688B1 (en) Active steering system for use in hoisting machinery, and hoisting machinery
CN110816650B (zh) 一种基于控制策略重构的六轴车辆电液转向控制方法和系统
WO1989001436A1 (en) A method of controlling a transport means and a transport means for effecting the method
JP2003170849A (ja) 車両用操舵装置
JP7320348B2 (ja) ステアリングシステムおよびこれを備えた車両
CN112977605A (zh) 一种无人驾驶矿用车用的线控全液压转向系统
JP2009208718A (ja) 後輪独立操舵制御装置
EP2651746A1 (en) A power steering system for a vehicle having two steered axles
CN216102363U (zh) 一种转向油缸及包含该转向油缸的转向控制系统
CN112977600B (zh) 转向系统和车辆
EP2716523B1 (en) Regulating system, and a method in a regulating system
CN113978546A (zh) 一种转向油缸及包含该转向油缸的转向控制系统
CN117382721A (zh) 一种宽体矿用自卸车的线控转向系统与控制方法
WO2020108260A1 (zh) 一种双电机线控复合转向系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016925899

Country of ref document: EP

Effective date: 20190729