WO2018117713A1 - High strength magnesium alloy with excellent flame retardancy, and method for producing same - Google Patents

High strength magnesium alloy with excellent flame retardancy, and method for producing same Download PDF

Info

Publication number
WO2018117713A1
WO2018117713A1 PCT/KR2017/015291 KR2017015291W WO2018117713A1 WO 2018117713 A1 WO2018117713 A1 WO 2018117713A1 KR 2017015291 W KR2017015291 W KR 2017015291W WO 2018117713 A1 WO2018117713 A1 WO 2018117713A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
flame retardancy
intermetallic compound
strength
excellent flame
Prior art date
Application number
PCT/KR2017/015291
Other languages
French (fr)
Korean (ko)
Inventor
박우진
엄형섭
최대환
김상진
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to US16/471,939 priority Critical patent/US20200087757A1/en
Priority to JP2019533182A priority patent/JP2020509196A/en
Priority to CN201780079314.7A priority patent/CN110114485A/en
Priority to EP17883943.7A priority patent/EP3561097A4/en
Publication of WO2018117713A1 publication Critical patent/WO2018117713A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to a high strength magnesium alloy excellent in flame retardancy and a method of manufacturing the same.
  • Magnesium is one of the lightest metals in practical metals, so it can be applied as a structural material for portable electronic products such as smartphones, tablet PCs, and laptops, as well as for transportation of automobiles, trains, aircrafts, etc. Is spotlighted as an eco-friendly lightweight metal material.
  • Magnesium alloys are excellent in castability, so cast products manufactured through mold casting methods such as high pressure casting, low pressure casting and gravity casting have been mainly applied to practical products, and recently, they have been manufactured through processing processes such as rolling or extrusion. The development of products for the whole body materials and market expansion are also being promoted.
  • the alloying elements added to the casting magnesium alloy and the magnesium alloy for the whole material are similar, and the most commonly used magnesium alloys are AZ-based alloys containing Al and Zn or AM containing Al and Mn. A system alloy is mentioned.
  • the two kinds of alloys commonly contain Al, in order to improve the castability and tensile strength of magnesium.
  • AZ and AM-based magnesium alloys which occupy most of commercial magnesium alloys, are suitable for manufacturing various mold casting products by improving the flowability of molten metal by Al addition, and also have advantages in billet casting and sheet casting for whole body materials.
  • yield strength or tensile strength is significantly lower than that of competing aluminum alloys, so there is a problem in that the thickness of the product or the product shape should be modified and applied.
  • magnesium alloy has a problem that the use conditions are limited because of the high possibility of ignition due to high oxygen affinity.
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2015-0077494
  • One aspect of the present invention is to provide a high-strength magnesium alloy excellent in flame retardancy and a method of manufacturing the same.
  • Mg-Al contains at least 6.5% by volume fraction of the intermetallic compound, the average particle diameter of the Mg-Al intermetallic compound relates to a high-strength magnesium alloy excellent in flame retardancy of 20 ⁇ 500nm.
  • another aspect of the present invention is by weight, Al: 2.0-13.0%, Mn: 0.1-0.5%, B: 0.0015-0.025%, Y: 0.1-1.0%, molten metal containing the remaining Mg and unavoidable impurities Preparing a;
  • It relates to a method of producing a high-strength magnesium alloy having excellent flame retardancy comprising; aging treatment of the cooled magnesium alloy for 2 to 48 hours at 150 ⁇ 250 °C.
  • Figure 2 is a microstructure photograph after completion of the solution treatment of Comparative Material 1.
  • Figure 3 is a microstructure photograph after the solution treatment of Inventive Material 7.
  • Figure 4 is a graph showing the results of measuring the hardness value according to the aging time for Comparative Material 1 (a) and Inventive Material 7 (b) at 200 °C.
  • Comparative Material 5 is a photograph observing the microstructure of the magnesium alloy after the aging treatment of Comparative Material 1 (a), Invention Material 7 (b), and Comparative Material 5 (c).
  • FIG. 6 is a graph showing the change in hardness value and the size of Mg-Al intermetallic compound in the grains with respect to the aging time of the invention material 7.
  • the present inventors have studied in depth to solve the problems of the ignition characteristics and low strength of magnesium alloys, it is possible to finely distribute a large amount of intermetallic compound by complex addition of B and Y and aging treatment, accordingly It was confirmed that the flame retardancy and high strength can be secured and came to complete the present invention.
  • High-strength magnesium alloy having excellent flame retardancy according to an aspect of the present invention is by weight%, Al: 2.0 ⁇ 13.0%, Mn: 0.1 ⁇ 0.5%, B: 0.0015 ⁇ 0.025%, Y: 0.1 ⁇ 1.0%, the remaining Mg and inevitable Impurities, containing at least 6.5% Mg-Al intermetallic compound by volume fraction, the average particle diameter of the Mg-Al intermetallic compound is 20 ⁇ 500nm.
  • the unit of each element content hereafter means weight% unless there is particular notice.
  • Al is an element that increases tensile strength or yield strength and improves castability by improving flowability of the molten alloy.
  • the Al content is less than 2.0%, the above effects are insufficient. On the other hand, when the Al content is more than 13.0% can increase the brittleness can reduce the workability and ductility. Therefore, the Al content is preferably 2.0 to 13.0%.
  • the lower limit of Al content may be 2.5%, and the lower limit may be 6.5% to secure a tensile strength of 160 MPa or more.
  • a more preferable upper limit of the Al content may be 12.0%, and a more preferable upper limit may be 11.0%.
  • Mn is an element that contributes to an increase in tensile strength by making grains fine by forming an intermetallic compound with Al.
  • intermetallic compounds it lowers the corrosion rate of magnesium by lowering the Fe, a representative impurity element unnecessary for magnesium alloy.
  • the Mn content is less than 0.1%, the above effects are insufficient. On the other hand, when the Mn content is more than 0.5%, brittleness may be caused by excessive formation of acicular intermetallic compounds. Therefore, the Mn content is preferably 0.1 to 0.5%.
  • the lower limit of the Mn content may be 0.11%, and the upper limit may be 0.45%.
  • B boron
  • the present invention it is added to ensure flame retardancy and high strength, and in particular, by adding B and Y to a magnesium alloy and performing aging treatment, it contributes to the formation of a large amount of Mg-Al intermetallic compound to improve tensile strength.
  • flame retardancy and strength can be further improved than when B is added alone.
  • it can contribute to preventing the oxidation of the molten metal can reduce the use of expensive SF 6 gas or SO 2 gas that can cause environmental pollution can be reduced production costs and environmental protection.
  • B content When the B content is less than 0.0015%, the above effects are insufficient. On the other hand, when the B content is greater than 0.025%, there is a problem in that the Al-B compound is formed at the grain boundary to reduce ductility. Therefore, it is preferable that B content is 0.0015 to 0.025%.
  • the lower limit of the B content may be more preferably 0.002%, and more preferably 0.02%.
  • Y is an element that combines with Al to form a precipitate and contributes to the improvement of strength, and has a high oxygen affinity to strengthen the protective film on the surface of the molten metal to inhibit oxidation of the molten metal and to improve flame retardancy even after solidification.
  • the Y content is less than 0.1%, the above effects are insufficient.
  • the Y content is more than 1.0%, there is a fear that ductility is reduced due to coarse Al-Y compound formation. Therefore, the Y content is preferably 0.1 to 1.0%.
  • the lower limit of the Y content may be 0.11%, and the upper limit may be 0.95%.
  • the remaining component of the present invention is magnesium (Mg).
  • Mg magnesium
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification. For example, there may be Fe, Cu, Ni, Ca, Na, Ba, F, S, N and the like.
  • Zn 0.3 to 3.0% by weight% may be further included.
  • Zn is a solid solution strengthening element, and promotes the formation of Mg 17 Al 12 phase, or is an element to improve the tensile strength by forming a separate intermetallic compound containing Zn, such as Mg 2 Zn.
  • the Zn content is less than 0.3%, the above effects are insufficient.
  • the Zn content is more than 3.0%, a large amount of separate intermetallic compounds containing Zn such as Mg 2 Zn may be formed to increase brittleness, which may result in a decrease in ductility or toughness.
  • Zn content is 0.3 to 3.0%.
  • a more preferable range is 0.5 to 1.5% by weight.
  • the high-strength magnesium alloy excellent in flame retardancy according to an aspect of the present invention not only satisfies the alloy composition described above, but also contains Mg-Al intermetallic compound in a volume fraction of 6.5% or more, and the average particle diameter of the Mg-Al intermetallic compound is 20 ⁇ 500 nm.
  • Mg-Al intermetallic compound may be formed when the main alloying element added to magnesium is Al, and a representative Mg-Al intermetallic compound is Mg 17 Al 12 phase. Mg-Al intermetallic compound plays a role of ensuring high strength.
  • Mg-Al metal is used because most Al is dissolved in the Mg matrix rather than causing the formation of intermetallic compounds in the grains.
  • the formation of the liver compound is not a general phenomenon, and it is difficult to form a large amount of Mg-Al intermetallic compound.
  • a large amount of Mg-Al intermetallic compound can be secured by complex addition of B and Y and aging treatment.
  • the volume fraction of the Mg-Al intermetallic compound is less than 6.5%, it is difficult to secure high strength. Therefore, the volume fraction of the Mg-Al intermetallic compound is preferably at least 6.5%, more preferably at least 7.0%, even more preferably at least 7.5%.
  • the upper limit of the volume fraction of the Mg-Al intermetallic compound does not need to be particularly limited. However, when the Mg-Al intermetallic compound is more than 30%, the Mg-Al intermetallic compound may have a coarse particle size and may increase brittleness.
  • the volume fraction of may be 30% or less, more preferably 25% or less.
  • the average particle diameter of the Mg-Al intermetallic compound is less than 20 nm, the fraction of the Mg-Al intermetallic compound is low, making it difficult to secure high strength, and when it exceeds 500 nm, brittleness is increased.
  • the Al-Mn intermetallic compound, Al-Y intermetallic compound further comprises one or more, the total may be 5% or less in volume fraction. If it is more than 5%, the Mn and Y content may be excessive and brittleness may increase.
  • the magnet alloy of the present invention may have a ignition temperature of 700 °C or more.
  • the magnetic alloy of the present invention may have a hardness of 70Hv or more.
  • the magnet alloy of the present invention may have a tensile strength of 130 MPa or more and an elongation of 3% or more. In addition, it is possible to secure the tensile strength of 160MPa or more by controlling the Al content and the like.
  • Another aspect of the present invention is a method for producing a high-strength magnesium alloy having excellent flame retardancy, comprising: preparing a melt that satisfies the alloy composition described above; Casting the molten metal to obtain a magnesium alloy cast material; Obtaining a magnesium alloy by solution treatment of the magnesium alloy casting material in a temperature range of 370 to 490 ° C. for 2 to 20 hours; Cooling the magnesium alloy to 100 ° C. or less; And aging the cooled magnesium alloy for 2 to 48 hours at 150 to 250 ° C.
  • a molten metal that satisfies the alloy composition described above is prepared. It does not need to specifically limit, According to the general preparation of the molten metal for magnesium alloys.
  • the above-described alloying elements are prepared in accordance with the proposed composition range, and then charged into a melting crucible and then dissolved. Since the melting point of the magnesium alloy is relatively low, any method such as gas, electric furnace, induction melting furnace, etc. may be applied.
  • each alloying element may be prepared in a pure form, but may be charged to the crucible in the form of a mother alloy in which Mn, B, and Y are mixed with Mg or Al. Since B, Y, and Mn have a high melting point, it is advantageous to dissolve it in the crucible in the form of a mother alloy mixed with Mg or Al.
  • the molten metal is cast to obtain a magnesium alloy cast material.
  • the casting step need not be particularly limited as in the molten metal preparation step.
  • the method of using a movable mold and the method of using a fixed mold can be used.
  • Representative methods of using a movable mold include twin roll casting and belt casting using a movable mold such as twin roll or twin belt.
  • a typical method using a stationary mold may be continuous casting or semi-continuous casting such as billet casting, and may also include mold casting such as high pressure casting, low pressure casting, and gravity casting.
  • the above various methods can be used as the casting process, it is advantageous to apply a casting method that can increase the cooling rate because boron or yttrium having a low solubility in magnesium is added together with aluminum.
  • the mold must be cooled with cooling water, and when cooling water is applied, the mold surface must be kept above room temperature so that condensate can be removed from the mold surface before casting, and then the mold surface should be kept below room temperature after condensate is removed.
  • the magnesium alloy casting material is subjected to a solution treatment for 2 to 20 hours at a temperature range of 370 to 490 ° C. to obtain a magnesium alloy.
  • Mg-Al intermetallic compounds are also formed in magnesium alloy castings, but due to their coarse form (Coarse Mg-Al) or mixed with Mg matrix (Lamellar Mg-Al) To solute the compound.
  • the solution temperature is less than 370 °C or the holding time is less than 2 hours, the total amount of Mg-Al intermetallic compound is difficult to be employed. If the solution temperature is higher than 490 °C or holding time is more than 20 hours, the production cost increases Productivity may drop, and oxidation may occur before B and Y are added. Therefore, more preferably, it can be carried out for 2 to 20 hours in the temperature range of 400 ⁇ 460 °C.
  • the magnesium alloy is cooled to 100 ° C. or less. This is to minimize the natural aging phenomenon that may appear before aging treatment.
  • the cooling rate may be 1 ⁇ 100 °C / sec. This is to minimize the natural aging phenomenon that can occur during cooling and to prevent the precipitated Al element from randomly precipitation. For example, it is preferable to cool rapidly by methods such as forced air blowing, water cooling, oil cooling, and the like.
  • the cooled magnesium alloy is aged at 150 to 250 ° C. for 2 to 48 hours.
  • the strength of the material cannot be efficiently increased.
  • by aging treatment to precipitate a large amount of Mg-Al intermetallic compound to increase the strength to ensure excellent flame retardancy.
  • B and Y are added in the range set forth in the present invention, a large amount of Mg-Al intermetallic compound can be precipitated through the above-described aging treatment.
  • the precipitation by the aging treatment is a solid phase reaction proceeding in a solid phase, it is possible to form an Mg-Al intermetallic compound having a particle shape, an average particle diameter, a volume fraction, etc., which is advantageous for improving strength and flame retardancy.
  • the aging treatment temperature is less than 150 ° C. or the holding time is less than 2 hours, it is difficult to sufficiently secure the Mg-Al intermetallic compound.
  • the aging treatment temperature is greater than 250 ° C. or the retention time is more than 48 hours, Mg-Al intermetallic compounds may be employed, and the production cost may increase and productivity may decrease. Therefore, it is preferable to aging for 2 to 48 hours at 150 ⁇ 250 °C. More preferably, the temperature and the holding time may be increased within the temperature and the holding time according to the amount of Al added.
  • the molten metal having the component composition shown in Table 1 was cast to cast a magnesium alloy casting material having a thickness of 10 mm.
  • the magnesium alloy casting material was solution treated at 420 ° C. for 4 hours, cooled to 20 ° C., and aged at 200 ° C. for 12 hours to prepare a magnesium alloy.
  • the Mg-Al intermetallic compound and mechanical properties of the magnesium alloy were measured and listed in Table 1 below.
  • the size of the Mg-Al intermetallic compound measured the average size measured by the equivalent circular diameter.
  • Mg-Al means Mg-Al intermetallic compound.
  • the ignition temperature measurement was confirmed as the temperature at which ignition occurred while raising the temperature inside the furnace body while leaving a sample of 10 g in the form of a chip in the furnace in an atmospheric atmosphere.
  • Inventive materials satisfying the alloy composition and manufacturing conditions presented in the present invention include Mg-Al intermetallic compound by more than 6.5% by volume fraction, and the average particle diameter of the Mg-Al intermetallic compound satisfies 20 ⁇ 500nm You can check it.
  • the ignition temperature is more than 700 °C excellent flame retardancy, it can be seen that the mechanical properties are also superior to the comparative materials.
  • the comparative materials satisfy the manufacturing conditions presented in the present invention, but did not satisfy the alloy composition, it could be confirmed that the Mg-Al intermetallic compound was not sufficiently secured.
  • the flame retardancy is inferior, and the mechanical properties can be confirmed that the heat is inferior to the invention materials.
  • Comparative Material 1 is a photograph of the microstructure of the magnesium alloy cast material of Comparative Material 1 (a) and Inventive Material 7 (b).
  • the casting structure of Comparative Material 1 was composed of Mg matrix and coarse Mg-Al intermetallic compound (Coarse Mg-Al), Mg matrix and Mg-Al intermetallic compound mixed structure (Lamellar Mg-Al), and Al-Mn intermetallic.
  • Al-Y intermetallic compound (Al-Y) was observed in the cast structure of Inventive Material 7, which is composed of a compound (Al-Mn), and yttrium and boron were added, and a boron-containing intermetallic compound was separately observed. It wasn't.
  • Inventive material 7 can confirm that a large amount of Mg-Al intermetallic compound having a size of several tens of nm is precipitated, and thus the hardness value of the inventive material is greatly increased.
  • FIG. 6 shows the change in hardness value (rhombus) and the size of Mg-Al intermetallic compound (square) in grains with respect to the aging time of Inventive Material 7, and FIG. 7 shows the Mg-Al intermetallic according to the aging time. The volume fraction of the compound is shown. As shown in FIGS. 6 and 7, when the inventive material 7 was aged for 3 hours or more, the average size and volume fraction of the Mg-Al intermetallic compound were grown to 20 nm or more and 10 vol% or more, respectively.

Abstract

An aspect of the present invention relates to a high strength magnesium alloy with excellent flame retardancy, wherein the magnesium alloy comprises 2.0-13.0 wt% of Al, 0.1-0.5 wt% of Mn, 0.0015-0.025 wt% of B, and 0.1-1.0 wt% of Y with the remainder comprising Mg and other unavoidable impurities, and comprises 6.5% or more of an Mg-Al intermetallic compound in terms of volume fraction, the Mg-Al intermetallic compound having an average grain size of 20-500 nm.

Description

난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법High strength magnesium alloy with excellent flame retardancy and its manufacturing method
본 발명은 난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법에 관한 것이다. The present invention relates to a high strength magnesium alloy excellent in flame retardancy and a method of manufacturing the same.
마그네슘은 실용금속 중에서 가장 가벼운 금속에 속하기 때문에 스마트폰, 타블렛 PC, 노트북과 같은 휴대용 전자 제품이나 자동차, 기차, 항공기 등의 운송수단의 구조재로 적용될 수 있으며, 마그네슘에 여러가지 원소가 첨가된 마그네슘 합금은 친환경 경량 금속소재로 각광받고 있다. Magnesium is one of the lightest metals in practical metals, so it can be applied as a structural material for portable electronic products such as smartphones, tablet PCs, and laptops, as well as for transportation of automobiles, trains, aircrafts, etc. Is spotlighted as an eco-friendly lightweight metal material.
마그네슘 합금은 주조성이 뛰어나기 때문에 주로 고압주조, 저압주조, 중력주조와 같은 금형주조법을 통해 제조되는 주조제품이 주로 실용제품에 적용되어 왔으며, 최근에는 압연이나 압출과 같은 가공공정을 통해 제조될 수 있는 전신재용 제품 개발 및 시장 확대도 추진되고 있다. Magnesium alloys are excellent in castability, so cast products manufactured through mold casting methods such as high pressure casting, low pressure casting and gravity casting have been mainly applied to practical products, and recently, they have been manufactured through processing processes such as rolling or extrusion. The development of products for the whole body materials and market expansion are also being promoted.
일반적으로 주조용 마그네슘 합금이나 전신재용 마그네슘 합금에 첨가되는 합금원소의 종류는 유사한 편이며, 가장 보편적으로 사용되고 있는 마그네슘 합금의 종류는 Al과 Zn가 첨가된 AZ계 합금이나 Al과 Mn이 첨가된 AM계 합금을 들 수 있다. 상기 두 종류의 합금은 공통적으로 Al을 함유하고 있으며, 이는 마그네슘의 주조성과 인장강도를 향상시키기 위함이다.In general, the alloying elements added to the casting magnesium alloy and the magnesium alloy for the whole material are similar, and the most commonly used magnesium alloys are AZ-based alloys containing Al and Zn or AM containing Al and Mn. A system alloy is mentioned. The two kinds of alloys commonly contain Al, in order to improve the castability and tensile strength of magnesium.
상용 마그네슘 합금의 대부분을 차지하고 있는 AZ, AM계 마그네슘 합금은 Al 첨가에 의한 용융금속의 유동성 향상으로 각종 금형주조 제품 제조에 적합하며, 또한 전신재용 빌렛주조나 판재주조에도 적합한 장점이 있다. 그러나, 항복강도나 인장강도는 경쟁소재인 알루미늄 합금에 비해 크게 낮아 제품의 두께를 늘리거나 제품형상을 수정해서 적용해야 하는 문제점이 있다. AZ and AM-based magnesium alloys, which occupy most of commercial magnesium alloys, are suitable for manufacturing various mold casting products by improving the flowability of molten metal by Al addition, and also have advantages in billet casting and sheet casting for whole body materials. However, yield strength or tensile strength is significantly lower than that of competing aluminum alloys, so there is a problem in that the thickness of the product or the product shape should be modified and applied.
또한 마그네슘 합금은 높은 산소친화력으로 인한 발화 가능성이 높기 때문에 사용조건이 제한되고 있는 문제점이 있다. In addition, magnesium alloy has a problem that the use conditions are limited because of the high possibility of ignition due to high oxygen affinity.
따라서 난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법에 대한 개발이 요구되고 있는 실정이다. Therefore, there is a demand for development of a high strength magnesium alloy having excellent flame retardancy and a method of manufacturing the same.
(선행기술문헌)(Prior art document)
(특허문헌 1) 한국 공개특허공보 제10-2015-0077494호(Patent Document 1) Korean Unexamined Patent Publication No. 10-2015-0077494
본 발명의 일 측면은 난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법을 제공하기 위함이다.One aspect of the present invention is to provide a high-strength magnesium alloy excellent in flame retardancy and a method of manufacturing the same.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.In addition, the subject of this invention is not limited to the content mentioned above. The problem of the present invention will be understood from the general contents of the present specification, those skilled in the art will have no difficulty understanding the additional problem of the present invention.
본 발명의 일 측면은 중량%로, Al: 2.0~13.0%, Mn: 0.1~0.5%, B: 0.0015~0.025%, Y: 0.1~1.0%, 나머지 Mg 및 불가피한 불순물을 포함하고, Mg-Al 금속간 화합물을 부피분율로 6.5% 이상 포함하며, 상기 Mg-Al 금속간화합물의 평균 입경은 20~500nm인 난연성이 우수한 고강도 마그네슘 합금에 관한 것이다.One aspect of the present invention by weight, Al: 2.0 ~ 13.0%, Mn: 0.1 ~ 0.5%, B: 0.0015 ~ 0.025%, Y: 0.1 ~ 1.0%, the remaining Mg and inevitable impurities, Mg-Al It contains at least 6.5% by volume fraction of the intermetallic compound, the average particle diameter of the Mg-Al intermetallic compound relates to a high-strength magnesium alloy excellent in flame retardancy of 20 ~ 500nm.
또한, 본 발명의 다른 일 측면은 중량%로, Al: 2.0~13.0%, Mn: 0.1~0.5%, B: 0.0015~0.025%, Y: 0.1~1.0%, 나머지 Mg 및 불가피한 불순물을 포함하는 용탕을 준비하는 단계; In addition, another aspect of the present invention is by weight, Al: 2.0-13.0%, Mn: 0.1-0.5%, B: 0.0015-0.025%, Y: 0.1-1.0%, molten metal containing the remaining Mg and unavoidable impurities Preparing a;
상기 용탕을 주조하여 마그네슘 합금 주조재를 얻는 단계; Casting the molten metal to obtain a magnesium alloy cast material;
상기 마그네슘 합금 주조재를 370~490℃의 온도범위에서 2~20시간 동안 용체화 처리하여 마그네슘 합금을 얻는 단계; Obtaining a magnesium alloy by solution treatment of the magnesium alloy casting material in a temperature range of 370 to 490 ° C. for 2 to 20 hours;
상기 마그네슘 합금을 100℃ 이하로 냉각하는 단계; 및 Cooling the magnesium alloy to 100 ° C. or less; And
상기 냉각된 마그네슘 합금을 150~250℃에서 2~48시간 동안 시효 처리하는 단계;를 포함하는 난연성이 우수한 고강도 마그네슘 합금의 제조방법에 관한 것이다.It relates to a method of producing a high-strength magnesium alloy having excellent flame retardancy comprising; aging treatment of the cooled magnesium alloy for 2 to 48 hours at 150 ~ 250 ℃.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.In addition, the solution of the said subject does not enumerate all the characteristics of this invention. Various features of the present invention and the advantages and effects thereof can be understood in more detail with reference to the following specific embodiments.
본 발명에 의하면, 난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법을 제공할 수 있는 효과가 있다.According to the present invention, there is an effect that can provide a high-strength magnesium alloy excellent in flame retardancy and a method for producing the same.
도 1은 비교재 1(a)과 발명재 7(b)의 마그네슘 합금 주조재의 미세조직을 촬영한 사진이다.1 is a photograph of the microstructure of the magnesium alloy cast material of Comparative Material 1 (a) and Inventive Material 7 (b).
도 2는 비교재 1의 용체화 처리 완료 후 미세조직 사진이다. Figure 2 is a microstructure photograph after completion of the solution treatment of Comparative Material 1.
도 3은 발명재 7의 용체화 처리 완료 후 미세조직 사진이다. Figure 3 is a microstructure photograph after the solution treatment of Inventive Material 7.
도 4는 200℃에서 비교재 1(a)와 발명재 7(b)에 대해 시효시간에 따른 경도값을 측정한 결과를 나타낸 그래프이다. Figure 4 is a graph showing the results of measuring the hardness value according to the aging time for Comparative Material 1 (a) and Inventive Material 7 (b) at 200 ℃.
도 5는 비교재 1(a), 발명재 7(b), 비교재 5(c)의 시효 처리 후의 마그네슘 합금의 미세조직을 관찰한 사진이다. 5 is a photograph observing the microstructure of the magnesium alloy after the aging treatment of Comparative Material 1 (a), Invention Material 7 (b), and Comparative Material 5 (c).
도 6은 발명재 7의 시효시간에 대한 경도값 변화와 결정립 내부의 Mg-Al금속간화합물 크기의 변화를 나타낸 그래프이다. 6 is a graph showing the change in hardness value and the size of Mg-Al intermetallic compound in the grains with respect to the aging time of the invention material 7.
도 7은 발명재 7의 시효시간에 따른 Mg-Al 금속간화합물의 부피분율을 나타낸 그래프이다. 7 is a graph showing the volume fraction of the Mg-Al intermetallic compound according to the aging time of the invention material 7.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명자들은 마그네슘 합금의 발화특성 및 저강도의 문제점을 해결하기 위하여 깊이 연구한 결과, B 및 Y를 복합첨가하고 시효 처리를 행함으로써 다량의 금속간 화합물을 미세하게 분포시킬 수 있으며, 이에 따라 우수한 난연성 및 고강도를 확보할 수 있음을 확인하고 본 발명을 완성하기에 이르렀다. The present inventors have studied in depth to solve the problems of the ignition characteristics and low strength of magnesium alloys, it is possible to finely distribute a large amount of intermetallic compound by complex addition of B and Y and aging treatment, accordingly It was confirmed that the flame retardancy and high strength can be secured and came to complete the present invention.
난연성이 우수한 고강도 마그네슘 합금High strength magnesium alloy with excellent flame retardancy
이하, 본 발명의 일 측면에 따른 난연성이 우수한 고강도 마그네슘 합금에 대하여 상세히 설명한다.Hereinafter, a high strength magnesium alloy excellent in flame retardancy according to an aspect of the present invention will be described in detail.
본 발명의 일 측면에 따른 난연성이 우수한 고강도 마그네슘 합금은 중량%로, Al: 2.0~13.0%, Mn: 0.1~0.5%, B: 0.0015~0.025%, Y: 0.1~1.0%, 나머지 Mg 및 불가피한 불순물을 포함하고, Mg-Al 금속간 화합물을 부피분율로 6.5% 이상 포함하며, 상기 Mg-Al 금속간화합물의 평균 입경은 20~500nm이다. High-strength magnesium alloy having excellent flame retardancy according to an aspect of the present invention is by weight%, Al: 2.0 ~ 13.0%, Mn: 0.1 ~ 0.5%, B: 0.0015 ~ 0.025%, Y: 0.1 ~ 1.0%, the remaining Mg and inevitable Impurities, containing at least 6.5% Mg-Al intermetallic compound by volume fraction, the average particle diameter of the Mg-Al intermetallic compound is 20 ~ 500nm.
먼저, 본 발명의 합금조성에 대하여 상세히 설명한다. 이하 각 원소 함량의 단위는 특별한 언급이 없는 한 중량%를 의미한다. First, the alloy composition of the present invention will be described in detail. The unit of each element content hereafter means weight% unless there is particular notice.
Al: 2.0~13.0%Al: 2.0 ~ 13.0%
Al은 인장강도나 항복강도를 증가시키며, 합금 용탕의 유동성을 향상시켜 주조성을 향상시키는 역할을 하는 원소이다. Al is an element that increases tensile strength or yield strength and improves castability by improving flowability of the molten alloy.
Al 함량이 2.0% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Al 함량이 13.0% 초과인 경우에는 취성을 증가시켜 가공성 및 연성을 감소시킬 수 있다. 따라서 Al 함량은 2.0~13.0%인 것이 바람직하다. If the Al content is less than 2.0%, the above effects are insufficient. On the other hand, when the Al content is more than 13.0% can increase the brittleness can reduce the workability and ductility. Therefore, the Al content is preferably 2.0 to 13.0%.
또한, Al 함량의 보다 바람직한 하한은 2.5%일 수 있으며, 160MPa 이상의 인장강도를 확보하기 위해서 보다 더 바람직한 하한은 6.5%일 수 있다. Al 함량의 보다 바람직한 상한은 12.0%일 수 있으며, 보다 더 바람직한 상한은 11.0%일 수 있다. In addition, the lower limit of Al content may be 2.5%, and the lower limit may be 6.5% to secure a tensile strength of 160 MPa or more. A more preferable upper limit of the Al content may be 12.0%, and a more preferable upper limit may be 11.0%.
Mn: 0.1~0.5%Mn: 0.1 ~ 0.5%
Mn은 Al과 금속간 화합물을 형성함으로써 결정립을 미세하게 하여 인장강도 증가에 기여하는 원소이다. 또한, 금속간 화합물 형성을 통해 마그네슘 합금에 불필요한 대표적인 불순물 원소인 Fe를 낮추어 마그네슘의 부식속도를 낮춰주는 역할을 한다. Mn is an element that contributes to an increase in tensile strength by making grains fine by forming an intermetallic compound with Al. In addition, through the formation of intermetallic compounds it lowers the corrosion rate of magnesium by lowering the Fe, a representative impurity element unnecessary for magnesium alloy.
Mn 함량이 0.1% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Mn 함량이 0.5% 초과인 경우에는 침상형 금속간화합물의 과도한 형성으로 인한 취성이 유발될 수 있다. 따라서 Mn 함량은 0.1~0.5%인 것이 바람직하다. If the Mn content is less than 0.1%, the above effects are insufficient. On the other hand, when the Mn content is more than 0.5%, brittleness may be caused by excessive formation of acicular intermetallic compounds. Therefore, the Mn content is preferably 0.1 to 0.5%.
또한, Mn 함량의 보다 바람직한 하한은 0.11%일 수 있으며, 보다 바람직한 상한은 0.45%일 수 있다. In addition, the lower limit of the Mn content may be 0.11%, and the upper limit may be 0.45%.
B: 0.0015~0.025%B: 0.0015-0.025%
B(보론)은 융점도 매우 높을 뿐 아니라 마그네슘 고상이나 액상에서의 용해도가 거의 제로(zero)에 가깝기 때문에 일반적인 마그네슘 합금에서는 잘 사용하지 않는 원소로 알려져 있다. B (boron) is known to be a rare element in magnesium alloys because it has a very high melting point, and its solubility in a solid or liquid magnesium is almost zero.
그러나 본 발명에서는 난연성 및 고강도를 확보하기 위하여 첨가하고 있으며, 특히 마그네슘 합금에 B 및 Y를 복합 첨가하고 시효 처리를 행함으로써, Mg-Al 금속간 화합물을 다량 형성시키는데 기여하여 인장강도를 향상시킬 뿐만 아니라, B이 단독 첨가된 경우보다 난연성 및 강도를 더욱 향상시킬 수 있다. 또한, 용탕 산화 방지에 기여하여 용탕 산화 방지를 위해 사용되는 고가의 SF6 가스나 환경오염을 유발시킬 수 있는 SO2 가스의 사용량을 줄일 수 있으므로 생산비용 감소 및 환경보호에 기여할 수 있다. However, in the present invention, it is added to ensure flame retardancy and high strength, and in particular, by adding B and Y to a magnesium alloy and performing aging treatment, it contributes to the formation of a large amount of Mg-Al intermetallic compound to improve tensile strength. In addition, flame retardancy and strength can be further improved than when B is added alone. In addition, it can contribute to preventing the oxidation of the molten metal can reduce the use of expensive SF 6 gas or SO 2 gas that can cause environmental pollution can be reduced production costs and environmental protection.
B 함량이 0.0015% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 B 함량이 0.025% 초과인 경우에는 Al-B 화합물이 결정립계에 형성되어 연성을 감소시키는 문제점이 있다. 따라서, B 함량은 0.0015~0.025%인 것이 바람직하다. When the B content is less than 0.0015%, the above effects are insufficient. On the other hand, when the B content is greater than 0.025%, there is a problem in that the Al-B compound is formed at the grain boundary to reduce ductility. Therefore, it is preferable that B content is 0.0015 to 0.025%.
또한, B 함량의 보다 바람직한 하한은 0.002%일 수 있으며, 보다 바람직한 상한은 0.02%일 수 있다. In addition, the lower limit of the B content may be more preferably 0.002%, and more preferably 0.02%.
Y: 0.1~1.0%Y: 0.1-1.0%
Y는 Al과 결합하여 석출물을 형성함으로써 강도향상에 기여하며, 산소친화력이 높아 용탕 표면의 보호막을 견고하게 하여 용탕의 산화를 억제시킬 뿐만 아니라, 응고 후에도 난연성을 향상시켜주는 역할을 하는 원소이다. Y is an element that combines with Al to form a precipitate and contributes to the improvement of strength, and has a high oxygen affinity to strengthen the protective film on the surface of the molten metal to inhibit oxidation of the molten metal and to improve flame retardancy even after solidification.
또한, 상술한 바와 같이 B와 복합 첨가하고 시효 처리를 행함으로써, Mg-Al 금속간 화합물을 다량 형성시키는데 기여하여 인장강도를 향상시킬 뿐만 아니라, 단독 첨가된 경우보다 난연성을 더욱 향상시킬 수 있다.In addition, by complex addition with B as described above and aging treatment, not only contributes to the formation of a large amount of Mg-Al intermetallic compound to improve the tensile strength, but also further improve the flame retardancy than when added alone.
Y 함량이 0.1% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Y 함량이 1.0% 초과인 경우에는 조대한 Al-Y 화합물 형성으로 연성이 감소될 우려가 있다. 따라서 Y 함량은 0.1~1.0%인 것이 바람직하다. If the Y content is less than 0.1%, the above effects are insufficient. On the other hand, when the Y content is more than 1.0%, there is a fear that ductility is reduced due to coarse Al-Y compound formation. Therefore, the Y content is preferably 0.1 to 1.0%.
또한, Y 함량의 보다 바람직한 하한은 0.11%일 수 있으며, 보다 바람직한 상한은 0.95%일 수 있다. Also, the lower limit of the Y content may be 0.11%, and the upper limit may be 0.95%.
본 발명의 나머지 성분은 마그네슘(Mg)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다. 예를 들어, Fe, Cu, Ni, Ca, Na, Ba, F, S, N 등이 있을 수 있다. The remaining component of the present invention is magnesium (Mg). However, in the conventional manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification. For example, there may be Fe, Cu, Ni, Ca, Na, Ba, F, S, N and the like.
이때, 상술한 합금조성 외에 중량%로, Zn: 0.3~3.0%를 추가로 포함할 수 있다. In this case, in addition to the alloy composition described above, Zn: 0.3 to 3.0% by weight% may be further included.
Zn: 0.3~3.0%Zn: 0.3 ~ 3.0%
Zn은 고용강화원소이며, Mg17Al12상의 형성을 촉진시키거나 Mg2Zn 등의 Zn이 포함된 별도의 금속간화합물을 형성하여 인장강도를 향상시키는 원소이다. Zn is a solid solution strengthening element, and promotes the formation of Mg 17 Al 12 phase, or is an element to improve the tensile strength by forming a separate intermetallic compound containing Zn, such as Mg 2 Zn.
Zn 함량이 0.3% 미만인 경우에는 상술한 효과가 불충분하다. 반면에, Zn 함량이 3.0% 초과인 경우에는 Mg2Zn 등의 Zn이 포함된 별도의 금속간화합물을 다량 형성하여 취성을 증가시키므로 연성이나 인성의 감소를 초래할 수 있다. If the Zn content is less than 0.3%, the above effects are insufficient. On the other hand, when the Zn content is more than 3.0%, a large amount of separate intermetallic compounds containing Zn such as Mg 2 Zn may be formed to increase brittleness, which may result in a decrease in ductility or toughness.
따라서, Zn 함량은 0.3~3.0%인 것이 바람직하다. 강도의 향상과 취성의 저감 측면을 고려할 때, 보다 바람직한 범위는 0.5 내지 1.5중량% 범위이다.Therefore, it is preferable that Zn content is 0.3 to 3.0%. In consideration of the improvement of strength and the reduction of brittleness, a more preferable range is 0.5 to 1.5% by weight.
본 발명의 일 측면에 따른 난연성이 우수한 고강도 마그네슘 합금은 상술한 합금조성을 만족할 뿐만 아니라, Mg-Al 금속간 화합물을 부피분율로 6.5% 이상 포함하며, 상기 Mg-Al 금속간화합물의 평균 입경은 20~500nm이다. The high-strength magnesium alloy excellent in flame retardancy according to an aspect of the present invention not only satisfies the alloy composition described above, but also contains Mg-Al intermetallic compound in a volume fraction of 6.5% or more, and the average particle diameter of the Mg-Al intermetallic compound is 20 ˜500 nm.
마그네슘에 첨가된 주요합금원소가 Al인 경우 Mg-Al 금속간 화합물이 형성될 수 있으며, 대표적인 Mg-Al 금속간화합물은 Mg17Al12 상이다. Mg-Al 금속간 화합물은 고강도를 확보하는 역할을 한다. Mg-Al intermetallic compound may be formed when the main alloying element added to magnesium is Al, and a representative Mg-Al intermetallic compound is Mg 17 Al 12 phase. Mg-Al intermetallic compound plays a role of ensuring high strength.
마그네슘 합금에 첨가되는 Al이나 기타 합금원소의 최대 첨가량이 Mg에 대한 각 합금원소의 최대 고용량 보다 작으므로 결정립내 금속간화합물 형성을 유발시키기 보다는 대부분의 Al이 Mg 기지 내에 고용되기 때문에 Mg-Al 금속간화합물이 형성되는 것은 일반적인 현상으로 볼 수 없으며, Mg-Al 금속간화합물이 다량 형성되기는 어렵다. 본 발명에서는 B 및 Y를 복합첨가하고 시효 처리를 행함으로써 Mg-Al 금속간화합물을 다량 확보할 수 있었다. Since the maximum amount of Al or other alloying elements added to the magnesium alloy is less than the maximum high capacity of each alloying element with respect to Mg, Mg-Al metal is used because most Al is dissolved in the Mg matrix rather than causing the formation of intermetallic compounds in the grains. The formation of the liver compound is not a general phenomenon, and it is difficult to form a large amount of Mg-Al intermetallic compound. In the present invention, a large amount of Mg-Al intermetallic compound can be secured by complex addition of B and Y and aging treatment.
Mg-Al 금속간 화합물의 부피분율이 6.5% 미만인 경우에는 고강도를 확보하기 어려운 문제점이 있다. 따라서, Mg-Al 금속간 화합물의 부피분율은 6.5% 이상인 것이 바람직하며, 보다 바람직하게는 7.0% 이상, 보다 더 바람직하게는 7.5% 이상일 수 있다. If the volume fraction of the Mg-Al intermetallic compound is less than 6.5%, it is difficult to secure high strength. Therefore, the volume fraction of the Mg-Al intermetallic compound is preferably at least 6.5%, more preferably at least 7.0%, even more preferably at least 7.5%.
Mg-Al 금속간 화합물의 부피분율의 상한은 특별히 한정할 필요는 없으나, 30% 초과인 경우에는 Mg-Al 금속간 화합물의 입경이 조대해질 수 있으며 취성이 증가할 수 있으므로 Mg-Al 금속간 화합물의 부피분율은 30% 이하일 수 있으며, 보다 바람직하게는 25% 이하일 수 있다. The upper limit of the volume fraction of the Mg-Al intermetallic compound does not need to be particularly limited. However, when the Mg-Al intermetallic compound is more than 30%, the Mg-Al intermetallic compound may have a coarse particle size and may increase brittleness. The volume fraction of may be 30% or less, more preferably 25% or less.
Mg-Al 금속간화합물의 평균 입경이 20nm 미만인 경우에는 Mg-Al 금속간화합물의 분율이 낮아져 고강도를 확보하기 어려운 문제점이 있으며, 500nm 초과인 경우에는 취성이 증가하는 문제점이 있다. When the average particle diameter of the Mg-Al intermetallic compound is less than 20 nm, the fraction of the Mg-Al intermetallic compound is low, making it difficult to secure high strength, and when it exceeds 500 nm, brittleness is increased.
이때, Al-Mn 금속간화합물, Al-Y 금속간화합물 중 1 이상을 추가로 포함하며, 그 합계는 부피분율로 5% 이하일 수 있다. 5% 초과인 경우에는 Mn 및 Y 함량이 과다하여 취성이 증가할 수 있다. At this time, the Al-Mn intermetallic compound, Al-Y intermetallic compound further comprises one or more, the total may be 5% or less in volume fraction. If it is more than 5%, the Mn and Y content may be excessive and brittleness may increase.
이때, 본 발명의 마그네슙 합금은 발화온도가 700℃ 이상일 수 있다. At this time, the magnet alloy of the present invention may have a ignition temperature of 700 ℃ or more.
또한, 본 발명의 마그네슙 합금은 경도가 70Hv 이상일 수 있다. In addition, the magnetic alloy of the present invention may have a hardness of 70Hv or more.
또한, 본 발명의 마그네슙 합금은 인장강도가 130MPa 이상이고, 연신율이 3% 이상일 수 있다. 또한, Al 함량 등을 제어함으로써 160MPa 이상의 인장강도를 확보할 수 있다. In addition, the magnet alloy of the present invention may have a tensile strength of 130 MPa or more and an elongation of 3% or more. In addition, it is possible to secure the tensile strength of 160MPa or more by controlling the Al content and the like.
난연성이 우수한 고강도 마그네슘 합금의 제조방법Manufacturing method of high strength magnesium alloy with excellent flame retardancy
이하, 본 발명의 다른 일 측면인 난연성이 우수한 고강도 마그네슘 합금의 제조방법에 대하여 상세히 설명한다. Hereinafter, another aspect of the present invention will be described in detail a method for producing a high strength magnesium alloy excellent in flame retardancy.
본 발명의 다른 일 측면인 난연성이 우수한 고강도 마그네슘 합금의 제조방법은 상술한 합금조성을 만족하는 용탕을 준비하는 단계; 상기 용탕을 주조하여 마그네슘 합금 주조재를 얻는 단계; 상기 마그네슘 합금 주조재를 370~490℃의 온도범위에서 2~20시간 동안 용체화 처리하여 마그네슘 합금을 얻는 단계; 상기 마그네슘 합금을 100℃ 이하로 냉각하는 단계; 및 상기 냉각된 마그네슘 합금을 150~250℃에서 2~48시간 동안 시효 처리하는 단계;를 포함한다. Another aspect of the present invention is a method for producing a high-strength magnesium alloy having excellent flame retardancy, comprising: preparing a melt that satisfies the alloy composition described above; Casting the molten metal to obtain a magnesium alloy cast material; Obtaining a magnesium alloy by solution treatment of the magnesium alloy casting material in a temperature range of 370 to 490 ° C. for 2 to 20 hours; Cooling the magnesium alloy to 100 ° C. or less; And aging the cooled magnesium alloy for 2 to 48 hours at 150 to 250 ° C.
용탕 준비 단계Melt Preparation Steps
상술한 합금조성을 만족하는 용탕을 준비한다. 특별히 한정할 필요는 없으며, 일반적인 마그네슘 합금용 용탕 준비에 따르면 된다. A molten metal that satisfies the alloy composition described above is prepared. It does not need to specifically limit, According to the general preparation of the molten metal for magnesium alloys.
예를 들어, 상술한 합금원소들을 제시된 조성범위에 맞추어 준비한 다음, 이를 용해용 도가니에 장입한 후 용해 작업을 실시한다. 마그네슘 합금의 융점은 비교적 낮은 편이므로 가스로, 전기로, 유도용해로 등 어떠한 방식을 적용하더라도 무방하다. For example, the above-described alloying elements are prepared in accordance with the proposed composition range, and then charged into a melting crucible and then dissolved. Since the melting point of the magnesium alloy is relatively low, any method such as gas, electric furnace, induction melting furnace, etc. may be applied.
합금원소를 준비함에 있어서 각 합금원소를 순수한 형태로 준비할 수도 있지만, Mn, B 및 Y가 Mg 또는 Al과 혼합되어 있는 모합금 형태로 도가니에 장입할 수 있다. B, Y, Mn은 융점이 높기 때문에 Mg 또는 Al과 혼합되어 있는 모합금 형태로 도가니에 장입하는 것이 용해에 유리하기 때문이다. In preparing the alloying elements, each alloying element may be prepared in a pure form, but may be charged to the crucible in the form of a mother alloy in which Mn, B, and Y are mixed with Mg or Al. Since B, Y, and Mn have a high melting point, it is advantageous to dissolve it in the crucible in the form of a mother alloy mixed with Mg or Al.
또한, 준비된 용해재료를 도가니에 장입할 때 융점이 낮은 원소부터 차례대로 도가니에 장입하여 행하는 것이 용해작업을 유리하게 할 수 있다. In addition, when the prepared melting material is charged into the crucible, charging and carrying out the melting process in order from the element having the lowest melting point in turn may be advantageous.
주조 단계Casting steps
상기 용탕을 주조하여 마그네슘 합금 주조재를 얻는다. 주조 단계도 상기 용탕 준비 단계와 마찬가지로 특별히 한정할 필요는 없다. The molten metal is cast to obtain a magnesium alloy cast material. The casting step need not be particularly limited as in the molten metal preparation step.
예를 들어, 이동형 금형 이용하는 방법과 고정형 금형을 이용하는 방법을 사용할 수 있다. 이동형 금형을 이용하는 방법으로 대표적인 것은 트윈 롤이나 트윈 벨트와 같은 이동형 금형을 이용하는 트윈롤주조나 벨트주조를 들 수 있다. 또한, 고정형 금형을 이용하는 방법으로 대표적인 것은 빌렛주조와 같은 연속주조 혹은 반연속주조를 들 수 있으며, 또한 고압주조, 저압주조, 중력주조와 같은 금형주조를 들 수 있다. For example, the method of using a movable mold and the method of using a fixed mold can be used. Representative methods of using a movable mold include twin roll casting and belt casting using a movable mold such as twin roll or twin belt. In addition, a typical method using a stationary mold may be continuous casting or semi-continuous casting such as billet casting, and may also include mold casting such as high pressure casting, low pressure casting, and gravity casting.
주조공정으로서 상기의 여러가지 방법을 이용할 수 있지만, 마그네슘에 대한 고용도가 낮은 붕소나 이트륨 등을 알루미늄과 함께 첨가하기 때문에 냉각속도를 높일 수 있는 주조공법이 적용되는 것이 유리하다. 이를 위해서는 금형이 냉각수로 냉각되어야 하며, 냉각수를 적용할 시에는 주조 전에는 먼저 금형표면의 응축수가 제거될 수 있도록 상온 이상으로 유지하다가 응축수가 제거된 후에는 금형표면이 상온 이하로 유지되어야 한다.Although the above various methods can be used as the casting process, it is advantageous to apply a casting method that can increase the cooling rate because boron or yttrium having a low solubility in magnesium is added together with aluminum. To this end, the mold must be cooled with cooling water, and when cooling water is applied, the mold surface must be kept above room temperature so that condensate can be removed from the mold surface before casting, and then the mold surface should be kept below room temperature after condensate is removed.
용체화 처리 단계Solvent Treatment Step
상기 마그네슘 합금 주조재를 370~490℃의 온도범위에서 2~20시간 동안 용체화 처리하여 마그네슘 합금을 얻는다. 마그네슘 합금 주조재에도 Mg-Al 금속간화합물이 형성되나, 조대한 형태(Coarse Mg-Al) 또는 Mg 기지조직과 혼합된 형태 (Lamellar Mg-Al)로 형성되기 때문에 이러한 부정형의 Mg-Al 금속간화합물을 고용시키기 위함이다. The magnesium alloy casting material is subjected to a solution treatment for 2 to 20 hours at a temperature range of 370 to 490 ° C. to obtain a magnesium alloy. Mg-Al intermetallic compounds are also formed in magnesium alloy castings, but due to their coarse form (Coarse Mg-Al) or mixed with Mg matrix (Lamellar Mg-Al) To solute the compound.
용체화 온도가 370℃ 미만이거나 유지시간이 2시간 미만인 경우에는 Mg-Al 금속간화합물이 전량 고용되기 어려우며, 용체화 온도가 490℃ 초과이거나 유지시간이 20시간 초과인 경우에는 생산비용이 증가하고 생산성이 떨어질 수 있으며, 또한 B, Y이 첨가되기 전에는 산화에 의한 발화현상이 나타날 수도 있다. 따라서 보다 바람직하게는 400~460℃의 온도범위에서 2~20시간 동안 행할 수 있다. If the solution temperature is less than 370 ℃ or the holding time is less than 2 hours, the total amount of Mg-Al intermetallic compound is difficult to be employed. If the solution temperature is higher than 490 ℃ or holding time is more than 20 hours, the production cost increases Productivity may drop, and oxidation may occur before B and Y are added. Therefore, more preferably, it can be carried out for 2 to 20 hours in the temperature range of 400 ~ 460 ℃.
냉각 단계Cooling stage
상기 마그네슘 합금을 100℃ 이하로 냉각한다. 시효 처리 전에 나타날 수 있는 자연 시효 현상을 최소화하기 위함이다. The magnesium alloy is cooled to 100 ° C. or less. This is to minimize the natural aging phenomenon that may appear before aging treatment.
이때, 냉각속도는 1~100℃/초 일 수 있다. 냉각되는 동안 발생할 수 있는 자연 시효 현상을 최소화하고, 고용된 Al 원소가 임의로 석출되지 않도록 하기 위함이다. 예를 들어, 강제송풍, 수냉, 유냉 등의 방법으로 신속하게 냉각하는 것이 바람직하다. At this time, the cooling rate may be 1 ~ 100 ℃ / sec. This is to minimize the natural aging phenomenon that can occur during cooling and to prevent the precipitated Al element from randomly precipitation. For example, it is preferable to cool rapidly by methods such as forced air blowing, water cooling, oil cooling, and the like.
시효 처리 단계Aging Process Steps
상기 냉각된 마그네슘 합금을 150~250℃에서 2~48시간 동안 시효 처리한다. 용체화 처리 후 냉각된 마그네슘 합금의 미세조직에서는 합금원소로 첨가된 대부분의 Al 원소가 Mg 기지조직에 고용된 체로 별도의 금속간화합물을 형성하지 않고 있기 때문에 소재의 강도를 효율적으로 높일 수 없으므로, 본 발명에서는 시효 처리를 통하여 Mg-Al 금속간화합물을 다량 석출시켜 강도를 높이고, 우수한 난연성을 확보하고자 한다. 단, B 및 Y가 본 발명에서 제시한 범위로 복합첨가된 경우에 상술한 시효 처리를 통하여 Mg-Al 금속간화합물을 다량 석출시킬 수 있다. The cooled magnesium alloy is aged at 150 to 250 ° C. for 2 to 48 hours. In the microstructure of the magnesium alloy cooled after the solution treatment, since most Al elements added as alloy elements do not form a separate intermetallic compound in a solid solution of Mg matrix, the strength of the material cannot be efficiently increased. In the present invention, by aging treatment to precipitate a large amount of Mg-Al intermetallic compound to increase the strength, to ensure excellent flame retardancy. However, when B and Y are added in the range set forth in the present invention, a large amount of Mg-Al intermetallic compound can be precipitated through the above-described aging treatment.
또한, 시효 처리에 의한 석출은 고상에서 진행되는 고상반응이기 때문에, 강도 및 난연성 향상에 유리한 입자형태, 평균 입경, 부피분율 등을 갖는 Mg-Al 금속간화합물을 형성시킬 수 있다. In addition, since the precipitation by the aging treatment is a solid phase reaction proceeding in a solid phase, it is possible to form an Mg-Al intermetallic compound having a particle shape, an average particle diameter, a volume fraction, etc., which is advantageous for improving strength and flame retardancy.
시효 처리 온도가 150℃ 미만이거나 유지시간이 2시간 미만인 경우에는 Mg-Al 금속간화합물을 충분히 확보하기 어렵다. 반면에, 시효 처리 온도가 250℃ 초과이거나 유지시간이 48시간 초과인 경우에는 Mg-Al 금속간화합물이 고용될 수 있으며, 생산비용이 증가하고 생산성이 떨어질 수 있다. 따라서 150~250℃에서 2~48시간 동안 시효 처리하는 것이 바람직하다. 보다 바람직하게는 Al 첨가량에 따라 상기 온도 및 유지시간 내에서 온도 및 유지시간을 증가시킬 수 있다. If the aging treatment temperature is less than 150 ° C. or the holding time is less than 2 hours, it is difficult to sufficiently secure the Mg-Al intermetallic compound. On the other hand, when the aging treatment temperature is greater than 250 ° C. or the retention time is more than 48 hours, Mg-Al intermetallic compounds may be employed, and the production cost may increase and productivity may decrease. Therefore, it is preferable to aging for 2 to 48 hours at 150 ~ 250 ℃. More preferably, the temperature and the holding time may be increased within the temperature and the holding time according to the amount of Al added.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, it is necessary to note that the following examples are only for illustrating the present invention in more detail, and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예 1)(Example 1)
하기 표 1에 나타낸 성분조성을 갖는 용탕을 주조하여 10mm 두께의 마그네슘 합금 주조재를 주조하였다. 상기 마그네슘 합금 주조재를 420 ℃에서 4시간 동안 용체화 처리한 후 20℃로 냉각하고, 200℃에서 12시간 동안 시효 처리하여 마그네슘 합금을 제조하였다. The molten metal having the component composition shown in Table 1 was cast to cast a magnesium alloy casting material having a thickness of 10 mm. The magnesium alloy casting material was solution treated at 420 ° C. for 4 hours, cooled to 20 ° C., and aged at 200 ° C. for 12 hours to prepare a magnesium alloy.
마그네슘 합금의 Mg-Al 금속간화합물, 기계적 물성을 측정하여 하기 표 1에 기재하였다. Mg-Al 금속간화합물의 크기는 원상당 직경으로 측정한 평균 크기를 측정하였다. The Mg-Al intermetallic compound and mechanical properties of the magnesium alloy were measured and listed in Table 1 below. The size of the Mg-Al intermetallic compound measured the average size measured by the equivalent circular diameter.
표 1에 기재된 합금 원소 외에는 마그네슘이었으며, Mg-Al은 Mg-Al 금속간화합물을 의미한다. Except for the alloying elements listed in Table 1, it was magnesium, and Mg-Al means Mg-Al intermetallic compound.
발화온도 측정은 대기 분위기의 노내에 10g의 시료를 칩(chip) 형태로 놓아둔 채, 노체 내부의 온도를 상승시키면서 발화가 일어나는 온도로 확인하였다.The ignition temperature measurement was confirmed as the temperature at which ignition occurred while raising the temperature inside the furnace body while leaving a sample of 10 g in the form of a chip in the furnace in an atmospheric atmosphere.
구분division 합금조성(중량%)Alloy composition (% by weight) Mg-AlMg-Al 기계적 물성Mechanical properties 발화온도(oC)Ignition temperature ( o C)
AlAl MnMn BB YY 크기(nm)Size (nm) 분율(vol%)Fraction (vol%) TS(MPa)TS (MPa) El(%)El (%) 경도(Hv)Hardness (Hv)
비교재 1Comparative material 1 99 0.340.34 -- -- 193193 2.62.6 113113 5.25.2 5959 530530
비교재 2Comparative material 2 33 0.050.05 0.0130.013 1.231.23 178178 1.71.7 113113 5.25.2 4848 624624
비교재 3Comparative material 3 66 0.210.21 0.0010.001 0.410.41 205205 2.12.1 121121 4.24.2 5353 590590
비교재 4Comparative material 4 99 0.450.45 0.4120.412 0.050.05 232232 3.83.8 124124 3.13.1 6363 647647
비교재 5Comparative material 5 33 0.740.74 -- 0.720.72 184184 1.41.4 114114 4.34.3 5050 634634
비교재 6Comparative Material 6 66 0.120.12 0.0030.003 1.211.21 212212 2.42.4 123123 3.43.4 5656 660660
비교재 7Comparative material 7 99 0.330.33 -- 0.210.21 228228 3.13.1 125125 3.23.2 6161 612612
발명재 1Invention 1 2.82.8 0.120.12 0.0180.018 0.920.92 134134 7.57.5 135135 5.85.8 7171 721721
발명재 2Invention Material 2 2.72.7 0.320.32 0.0120.012 0.630.63 128128 8.18.1 138138 6.26.2 7272 712712
발명재 3Invention 3 3.13.1 0.440.44 0.0060.006 0.310.31 133133 8.78.7 142142 6.16.1 7474 718718
발명재 4Invention 4 3.43.4 0.420.42 0.0030.003 0.130.13 129129 9.89.8 144144 5.75.7 7878 715715
발명재 5Invention 5 5.65.6 0.120.12 0.0170.017 0.120.12 153153 13.313.3 151151 4.64.6 8484 747747
발명재 6Invention Material 6 6.26.2 0.30.3 0.0120.012 0.540.54 161161 14.414.4 155155 5.85.8 8787 733733
발명재 7Invention Material 7 6.26.2 0.40.4 0.0060.006 0.810.81 154154 14.714.7 158158 4.74.7 8888 742742
발명재 8Invention Material 8 5.85.8 0.420.42 0.0020.002 0.880.88 139139 13.813.8 152152 4.44.4 8585 739739
발명재 9Invention Material 9 8.58.5 0.120.12 0.0130.013 0.140.14 176176 19.119.1 164164 3.53.5 103103 783783
발명재10Invention 10 10.610.6 0.30.3 0.0030.003 0.510.51 184184 21.621.6 167167 4.64.6 107107 776776
발명재11Invention 11 9.89.8 0.40.4 0.0090.009 0.940.94 179179 20.320.3 172172 4.24.2 106106 782782
발명재12Invention Material12 8.78.7 0.420.42 0.0190.019 0.450.45 172172 19.419.4 168168 3.73.7 104104 785785
본 발명에서 제시한 합금조성 및 제조조건을 만족하는 발명재들은 Mg-Al 금속간화합물을 부피분율로 6.5% 이상 포함하며, 상기 Mg-Al 금속간화합물의 평균 입경이 20~500nm을 만족하는 것을 확인할 수 있다. 또한, 발화온도가 700℃ 이상으로 난연성이 우수하고, 기계적 물성도 비교재들에 비해 우수한 것을 확인할 수 있다. Inventive materials satisfying the alloy composition and manufacturing conditions presented in the present invention include Mg-Al intermetallic compound by more than 6.5% by volume fraction, and the average particle diameter of the Mg-Al intermetallic compound satisfies 20 ~ 500nm You can check it. In addition, the ignition temperature is more than 700 ℃ excellent flame retardancy, it can be seen that the mechanical properties are also superior to the comparative materials.
반면에 비교재들은 본 발명에서 제시한 제조조건은 만족하였으나 합금조성을 만족하지 못하여 Mg-Al 금속간화합물을 충분히 확보하지 못한 것을 확인할 수 있다. 또한, 난연성이 열위하고, 기계적 물성도 발명재들에 비해 열위한 것을 확인할 수 있다. On the other hand, the comparative materials satisfy the manufacturing conditions presented in the present invention, but did not satisfy the alloy composition, it could be confirmed that the Mg-Al intermetallic compound was not sufficiently secured. In addition, the flame retardancy is inferior, and the mechanical properties can be confirmed that the heat is inferior to the invention materials.
(실시예 2)(Example 2)
상기 표 1의 비교재 1과 발명재 7의 제조단계 과정에서의 변화를 보다 면밀히 관찰하였다. The change in manufacturing process of Comparative Material 1 and Inventive Material 7 of Table 1 was observed more closely.
도 1은 비교재 1(a)과 발명재 7(b)의 마그네슘 합금 주조재의 미세조직을 촬영한 사진이다. 비교재1의 주조조직은 Mg 기지조직과 조대한 Mg-Al 금속간화합물(Coarse Mg-Al), Mg 기지조직+Mg-Al 금속간화합물 혼합조직(Lamellar Mg-Al), Al-Mn 금속간화합물(Al-Mn)으로 구성되어 있으며, 이트륨 및 붕소가 첨가된 발명재 7의 주조조직은 상기 조직 외에도 Al-Y 금속간화합물(Al-Y)이 관찰되었으며, 붕소 함유 금속간화합물은 별도로 관찰되지 않았다. 1 is a photograph of the microstructure of the magnesium alloy cast material of Comparative Material 1 (a) and Inventive Material 7 (b). The casting structure of Comparative Material 1 was composed of Mg matrix and coarse Mg-Al intermetallic compound (Coarse Mg-Al), Mg matrix and Mg-Al intermetallic compound mixed structure (Lamellar Mg-Al), and Al-Mn intermetallic. In addition to the above structure, Al-Y intermetallic compound (Al-Y) was observed in the cast structure of Inventive Material 7, which is composed of a compound (Al-Mn), and yttrium and boron were added, and a boron-containing intermetallic compound was separately observed. It wasn't.
이러한 주조조직을 갖는 비교재와 발명재를 용체화 처리하면, 도2와 도3과 같이 Al-Mn이나 Al-Y금속간화합물을 제외한 대부분의 Mg-Al 금속간화합물은 기지조직으로 고용되기 때문에 관찰되지 않게 된다. 이상의 주조조직과 용체화 처리재의 광학조직은 Al-Y 금속간화합물의 유무 이외에는 거의 유사하지만 시효처리재에서는 큰 차이를 나타낸다.When the comparative material and the invention material having such a cast structure are solution treated, most Mg-Al intermetallic compounds except Al-Mn or Al-Y intermetallic compounds are employed as the matrix structure as shown in Figs. Will not be observed. The cast structure and the optical structure of the solution treatment material are almost similar except for the presence or absence of Al-Y intermetallic compound, but the aging treatment material shows a big difference.
이러한 차이점은 시효시간에 따른 경도측정 결과에서 먼저 확인할 수 있다. 도4과 같이 200℃에서 비교재 1(a)와 발명재 7(b)에 대해 시효시간에 따른 경도값을 측정한 결과, 발명재의 경도가 월등히 높다는 것을 확인할 수 있으며, 또한 비교재 1의 경도값은 시효시간에 따라 거의 변화가 없지만, 발명재의 경도값은 시효시간이 1시간을 초과하는 경우 크게 증가하는 것을 확인할 수 있다. 특히 3시간 경과 후에는 Peak aging에 해당하는 최대 경도값을 보여주고 있으며, 이 때의 경도값은 1시간 이하로 시효처리된 주조재의 평균 경도값에 비해 60% 이상 상승한97~107Hv 값을 보여주고 있다. 또한 발명재 7의 최대 경도값은 비교재 최대 경도값의 2배 가까운 수치를 보여주고 있다.This difference can be seen first in the hardness measurement results according to the aging time. As a result of measuring the hardness value according to the aging time for Comparative Material 1 (a) and Inventive Material 7 (b) at 200 ℃ as shown in Figure 4, it can be confirmed that the hardness of the invention material is significantly higher, and also the hardness of Comparative Material 1 Although the value is almost unchanged according to the aging time, it can be seen that the hardness value of the invention material increases greatly when the aging time exceeds 1 hour. In particular, after 3 hours, the maximum hardness value corresponding to peak aging is shown, and the hardness value shows 97 ~ 107Hv value which is 60% higher than the average hardness value of the cast material aged less than 1 hour. have. In addition, the maximum hardness value of the invention material 7 shows a value nearly twice the maximum hardness value of the comparative material.
도 5는 비교재 1(a), 발명재 7(b), 비교재 5(c)의 시효 처리 후의 마그네슘 합금의 미세조직을 관찰한 사진이다. 발명재 7은 수십 nm 크기의 Mg-Al 금속간화합물이 대량으로 석출되어 있는 것을 확인할 수 있으며, 이로 인해 발명재의 경도값이 크게 증가되고 있음을 알 수 있다. 5 is a photograph observing the microstructure of the magnesium alloy after the aging treatment of Comparative Material 1 (a), Invention Material 7 (b), and Comparative Material 5 (c). Inventive material 7 can confirm that a large amount of Mg-Al intermetallic compound having a size of several tens of nm is precipitated, and thus the hardness value of the inventive material is greatly increased.
도6은 발명재 7의 시효시간에 대한 경도값(마름모) 변화와 결정립 내부의 Mg-Al금속간화합물 크기(네모)의 변화를 보여주고 있으며, 도7은 시효시간에 따른 Mg-Al 금속간화합물의 부피분율을 보여주고 있다. 도6과 도7에서 보여주는 바와 같이 발명재 7을 3시간 이상 시효처리하면 Mg-Al금속간화합물의 평균 크기 및 부피분율이 각각 20nm 이상 및 10vol% 이상으로 성장하였음을 알 수 있다. FIG. 6 shows the change in hardness value (rhombus) and the size of Mg-Al intermetallic compound (square) in grains with respect to the aging time of Inventive Material 7, and FIG. 7 shows the Mg-Al intermetallic according to the aging time. The volume fraction of the compound is shown. As shown in FIGS. 6 and 7, when the inventive material 7 was aged for 3 hours or more, the average size and volume fraction of the Mg-Al intermetallic compound were grown to 20 nm or more and 10 vol% or more, respectively.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although described with reference to the embodiments above, those skilled in the art will understand that the present invention can be variously modified and changed without departing from the spirit and scope of the invention as set forth in the claims below. Could be.

Claims (11)

  1. 중량%로, Al: 2.0~13.0%, Mn: 0.1~0.5%, B: 0.0015~0.025%, Y: 0.1~1.0%, 나머지 Mg 및 불가피한 불순물을 포함하고, By weight, Al: 2.0-13.0%, Mn: 0.1-0.5%, B: 0.0015-0.025%, Y: 0.1-1.0%, remaining Mg and inevitable impurities,
    Mg-Al 금속간화합물을 부피분율로 6.5% 이상 포함하며, Mg-Al intermetallic compound containing at least 6.5% by volume,
    상기 Mg-Al 금속간화합물의 평균 입경은 20~500nm인 난연성이 우수한 고강도 마그네슘 합금. The high-strength magnesium alloy having excellent flame retardancy of the average particle diameter of the Mg-Al intermetallic compound is 20 ~ 500nm.
  2. 제1항에 있어서, The method of claim 1,
    상기 마그네슘 합금은 중량%로, Zn: 0.5~1.5%를 추가로 포함하는 난연성이 우수한 고강도 마그네슘 합금. The magnesium alloy is a weight percent, Zn: high strength magnesium alloy having excellent flame retardancy further comprises 0.5 to 1.5%.
  3. 제1항에 있어서, The method of claim 1,
    상기 마그네슘 합금은 Al-Mn 금속간화합물, Al-Y 금속간화합물 중 1 이상을 추가로 포함하며, 그 합계는 부피분율로 5% 이하인 난연성이 우수한 고강도 마그네슘 합금. The magnesium alloy further comprises at least one of Al-Mn intermetallic compound and Al-Y intermetallic compound, the sum of which is 5% or less by volume fraction, high strength magnesium alloy having excellent flame retardancy.
  4. 제1항에 있어서, The method of claim 1,
    상기 마그네슘 합금은 발화온도가 700℃ 이상인 난연성이 우수한 고강도 마그네슘 합금.The magnesium alloy is a high-strength magnesium alloy excellent in flame retardancy of the ignition temperature 700 ℃ or more.
  5. 제1항에 있어서, The method of claim 1,
    상기 마그네슘 합금은 경도가 70Hv 이상인 난연성이 우수한 고강도 마그네슘 합금.The magnesium alloy is a high strength magnesium alloy excellent in flame retardancy of 70Hv or more hardness.
  6. 제1항에 있어서, The method of claim 1,
    상기 마그네슘 합금은 인장강도가 130MPa 이상이고, 연신율이 3% 이상인 난연성이 우수한 고강도 마그네슘 합금.The magnesium alloy is a high strength magnesium alloy excellent in flame retardancy of 130MPa or more tensile strength, 3% or more elongation.
  7. 중량%로, Al: 2.0~13.0%, Mn: 0.1~0.5%, B: 0.0015~0.025%, Y: 0.1~1.0%, 나머지 Mg 및 불가피한 불순물을 포함하는 용탕을 준비하는 단계; Preparing a molten metal including Al: 2.0 to 13.0%, Mn: 0.1 to 0.5%, B: 0.0015 to 0.025%, Y: 0.1 to 1.0%, remaining Mg, and unavoidable impurities;
    상기 용탕을 주조하여 마그네슘 합금 주조재를 얻는 단계; Casting the molten metal to obtain a magnesium alloy cast material;
    상기 마그네슘 합금 주조재를 370~490℃의 온도범위에서 2~20시간 동안 용체화 처리하여 마그네슘 합금을 얻는 단계; Obtaining a magnesium alloy by solution treatment of the magnesium alloy casting material in a temperature range of 370 to 490 ° C. for 2 to 20 hours;
    상기 마그네슘 합금을 100℃ 이하로 냉각하는 단계; 및 Cooling the magnesium alloy to 100 ° C. or less; And
    상기 냉각된 마그네슘 합금을 150~250℃에서 2~48시간 동안 시효 처리하는 단계;를 포함하는 난연성이 우수한 고강도 마그네슘 합금의 제조방법. Aging the cooled magnesium alloy for 2 to 48 hours at 150 ~ 250 ℃; manufacturing method of high strength magnesium alloy having excellent flame resistance.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 용탕은 중량%로, Zn: 0.5~1.5%를 추가로 포함하는 난연성이 우수한 고강도 마그네슘 합금의 제조방법. The molten metal by weight, Zn: a method of producing a high-strength magnesium alloy excellent flame retardancy further comprises 0.5 to 1.5%.
  9. 제7항에 있어서, The method of claim 7, wherein
    상기 용탕을 준비하는 단계는 Mn, B 및 Y가 Mg 또는 Al과 혼합되어 있는 모합금 형태로 도가니에 장입하여 행하는 것을 특징으로 하는 난연성이 우수한 고강도 마그네슘 합금의 제조방법. The preparing of the molten metal is performed by charging a crucible in the form of a mother alloy in which Mn, B, and Y are mixed with Mg or Al.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 용탕을 준비하는 단계는 융점이 낮은 원소부터 차례대로 도가니에 장입하여 행하는 것을 특징으로 하는 난연성이 우수한 고강도 마그네슘 합금의 제조방법. The step of preparing the molten metal is a method of producing a high-strength magnesium alloy having excellent flame retardancy, characterized in that the charging is carried out in the crucible in order from the element having a low melting point.
  11. 제7항에 있어서, The method of claim 7, wherein
    상기 냉각하는 단계는 1~100℃/초의 냉각속도로 행하는 것을 특징으로 하는 난연성이 우수한 고강도 마그네슘 합금의 제조방법. The cooling step of producing a high-strength magnesium alloy having excellent flame retardancy, characterized in that performed at a cooling rate of 1 ~ 100 ℃ / second.
PCT/KR2017/015291 2016-12-21 2017-12-21 High strength magnesium alloy with excellent flame retardancy, and method for producing same WO2018117713A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/471,939 US20200087757A1 (en) 2016-12-21 2017-12-21 High strength magnesium alloy with excellent flame retardancy, and method for producing same
JP2019533182A JP2020509196A (en) 2016-12-21 2017-12-21 High strength magnesium alloy excellent in flame retardancy and method for producing the same
CN201780079314.7A CN110114485A (en) 2016-12-21 2017-12-21 The excellent high-strength magnesium alloy of flame resistance and its manufacturing method
EP17883943.7A EP3561097A4 (en) 2016-12-21 2017-12-21 High strength magnesium alloy with excellent flame retardancy, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0176119 2016-12-21
KR1020160176119A KR101858856B1 (en) 2016-12-21 2016-12-21 High strength magnesium alloy having excellent fire-retardant, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018117713A1 true WO2018117713A1 (en) 2018-06-28

Family

ID=62485913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015291 WO2018117713A1 (en) 2016-12-21 2017-12-21 High strength magnesium alloy with excellent flame retardancy, and method for producing same

Country Status (6)

Country Link
US (1) US20200087757A1 (en)
EP (1) EP3561097A4 (en)
JP (1) JP2020509196A (en)
KR (1) KR101858856B1 (en)
CN (1) CN110114485A (en)
WO (1) WO2018117713A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825429A4 (en) * 2018-07-18 2021-10-27 Posco Magnesium alloy sheet and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070030243A (en) * 2004-06-30 2007-03-15 스미토모덴키고교가부시키가이샤 Method for producing magnesium alloy product
KR20090083701A (en) * 2008-01-30 2009-08-04 포항공과대학교 산학협력단 Magnesium alloy panel having high strength and manufacturing method thereof
JP2012143811A (en) * 2010-12-24 2012-08-02 Sumitomo Electric Ind Ltd Magnesium alloy material
KR20130012662A (en) * 2011-07-26 2013-02-05 한국기계연구원 High-strength high-ductility ignition-proof magnesium alloy
JP2014237896A (en) * 2014-08-07 2014-12-18 住友電気工業株式会社 Magnesium alloy sheet
KR20150077494A (en) 2013-12-27 2015-07-08 재단법인 포항산업과학연구원 Magnesium alloy, extruded magnesium alloy, rolled magnesium alloy and casted magnesium alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3107267B2 (en) * 1992-12-04 2000-11-06 トヨタ自動車株式会社 Heat resistant magnesium alloy
JP3229954B2 (en) * 1996-02-27 2001-11-19 本田技研工業株式会社 Heat resistant magnesium alloy
EP2641986B1 (en) * 2010-11-16 2019-01-23 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet and process for producing same
CN102618757B (en) * 2012-04-13 2014-10-29 江汉大学 Heat-resistant magnesium alloy
US10138535B2 (en) * 2013-10-23 2018-11-27 National University Corporation Kumamoto University Magnesium alloy and method of manufacturing same
CN103695747B (en) * 2014-01-16 2015-11-04 陆明军 A kind of high-strength heat-resistant magnesium alloy and preparation method thereof
CN104233027B (en) * 2014-06-06 2017-03-22 河南科技大学 Flame-retardant high-strength magnesium alloy and preparation method thereof
CN105039816B (en) * 2015-07-20 2017-05-31 河南科技大学 A kind of high strength and low cost heat resistance magnesium alloy and preparation method thereof
CN105543603B (en) * 2016-02-05 2017-04-19 重庆大学 Low-rare-earth high-strength deforming magnesium alloy and preparation method thereof
CN106041015B (en) * 2016-06-29 2017-12-12 宁波胜景传动科技有限公司 A kind of reducer gear case end cap and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070030243A (en) * 2004-06-30 2007-03-15 스미토모덴키고교가부시키가이샤 Method for producing magnesium alloy product
KR20090083701A (en) * 2008-01-30 2009-08-04 포항공과대학교 산학협력단 Magnesium alloy panel having high strength and manufacturing method thereof
JP2012143811A (en) * 2010-12-24 2012-08-02 Sumitomo Electric Ind Ltd Magnesium alloy material
KR20130012662A (en) * 2011-07-26 2013-02-05 한국기계연구원 High-strength high-ductility ignition-proof magnesium alloy
KR20150077494A (en) 2013-12-27 2015-07-08 재단법인 포항산업과학연구원 Magnesium alloy, extruded magnesium alloy, rolled magnesium alloy and casted magnesium alloy
JP2014237896A (en) * 2014-08-07 2014-12-18 住友電気工業株式会社 Magnesium alloy sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561097A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825429A4 (en) * 2018-07-18 2021-10-27 Posco Magnesium alloy sheet and manufacturing method therefor
US11542577B2 (en) 2018-07-18 2023-01-03 Posco Holdings Inc. Magnesium alloy sheet and manufacturing method thereof

Also Published As

Publication number Publication date
EP3561097A1 (en) 2019-10-30
CN110114485A (en) 2019-08-09
JP2020509196A (en) 2020-03-26
US20200087757A1 (en) 2020-03-19
EP3561097A4 (en) 2019-10-30
KR101858856B1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2016137211A1 (en) Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method
WO2011122785A2 (en) Magnesium-based alloy for high temperature and manufacturing method thereof
WO2012070870A2 (en) Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same
WO2021215666A1 (en) High-quality magnesium alloy processed material and manufacturing method therefor
WO2020122472A2 (en) Magnesium alloy material and method for producing same
WO2011062448A2 (en) Aluminum alloy and manufacturing method thereof
WO2011152617A2 (en) Aluminum alloy, and aluminum alloy casting
WO2016137210A1 (en) Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor
WO2014030915A1 (en) Al-zn alloy for die casting, simultaneously showing high strength and high thermal conductivity
WO2020209485A1 (en) Cu-co-si-fe-p-based copper alloy having excellent bending workability and method for preparing same
WO2012161484A2 (en) Magnesium-based alloy produced using a silicon compound and method for producing same
WO2012161460A2 (en) Aluminium alloy and manufacturing method for same
WO2015126054A1 (en) Magnesium alloy board and preparation method therefor
CN110983128A (en) High-strength heat-resistant wrought aluminum alloy and preparation method thereof
WO2020067704A1 (en) Magnesium alloy sheet and manufacturing method therefor
WO2018117713A1 (en) High strength magnesium alloy with excellent flame retardancy, and method for producing same
WO2012053813A2 (en) Aluminum alloy having improved oxidation resistance, corrosion resistance, or fatigue resistance, and die-cast material and extruded material produced from the aluminum alloy
WO2013055074A2 (en) High heat conductivity al-mg-fe-si alloy for die casting
WO2018079945A1 (en) Method for producing hot-stamped aluminum case and hot-stamped aluminum case produced by method
WO2018117632A1 (en) Magnesium alloy having excellent corrosion resistance and method for manufacturing same
WO2022102807A1 (en) Al-mg-si-based aluminum alloy and method for manufacturing same
WO2013055075A2 (en) High heat conductivity al-si-fe-zn alloy for die casting
WO2019124837A1 (en) Highly electrically conductive and high strength copper alloy and manufacturing method thereof
WO2016117768A1 (en) Method for manufacturing magnesium alloy billet for plastic processing and high-strength wrought magnesium alloy manufacturing method including the same
WO2018117762A1 (en) Magnesium alloy plate material with excellent corrosion resistance, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017883943

Country of ref document: EP

Effective date: 20190722