WO2018117408A1 - 올레핀 중합체 및 이의 제조 방법 - Google Patents

올레핀 중합체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018117408A1
WO2018117408A1 PCT/KR2017/012508 KR2017012508W WO2018117408A1 WO 2018117408 A1 WO2018117408 A1 WO 2018117408A1 KR 2017012508 W KR2017012508 W KR 2017012508W WO 2018117408 A1 WO2018117408 A1 WO 2018117408A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
groups
olefin polymer
aryl
Prior art date
Application number
PCT/KR2017/012508
Other languages
English (en)
French (fr)
Inventor
조솔
이기수
권헌용
박성현
이명한
권오주
이승미
신은지
권현지
박성호
임슬기
이진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170025593A external-priority patent/KR102140260B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17884317.3A priority Critical patent/EP3476871B1/en
Priority to US16/313,640 priority patent/US10717793B2/en
Priority to CN201780048498.0A priority patent/CN109563204B/zh
Publication of WO2018117408A1 publication Critical patent/WO2018117408A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • Linear Low Density Polyethylene is produced by copolymerizing ethylene and alpha olefin at low pressure using a polymerization catalyst, which has a narrow molecular weight distribution, has a short length branch and a long chain branch. There is no resin.
  • LLDPE film has high tensile strength and elongation at break, as well as the characteristics of general polyethylene, and tear strength and fall impact strength.
  • stretch films, overlap films, and the like which are difficult to apply the existing low density polyethylene or high density polyethylene due to its superiority, is increasing.
  • LLDPE has a poor blown film (b l own f lm) processability compared to excellent mechanical properties.
  • the blown film is a film made by blowing air into molten plastic to inflate, also called an inflation film.
  • Bubble stability refers to a property that the film produced when the film is prepared by injecting air into the molten plastic to maintain the shape without tearing, which is related to the melt strength (MS).
  • Melt strength refers to the strength to maintain the shape to withstand molding and softening in the molten state, which is lower than that of LLDPE.
  • densi ty polyethylene! LDPE has a high melt strength. This is because in case of LDPE, branched chains are more entangled with each other than LLDPE, which is more advantageous to endure molding and processing. Therefore, in order to supplement the melt strength of the LLDPE, a method of preparing a film by blending low-density polyethylene (LDPE) has been proposed, but the mechanical properties of the conventional LLDPE is remarkably remarkable even when a very small amount of LDPE is added. It caused a problem of deterioration.
  • LDPE low-density polyethylene
  • Patent Document 1 Japanese Patent No. 5487089 (registered on February 28, 2014)
  • the present invention not only has excellent bubble stability and processing load characteristics, but also shows excellent processability in film production, and has improved mechanical properties.
  • Another object of the present invention is to provide an olefin polymer capable of improving transparency in manufacturing a film through controlling initial ' storage elasticity in the polymer.
  • the present invention is also intended to provide a process for producing the olefin polymer.
  • the present invention is also to provide a hybrid supported catalyst which is easy for the production of the olefin polymer described above.
  • the present invention is also to provide a film exhibiting high transparency, including the above-mentioned olefin polymers ⁇
  • an olepin polymer having a haze parameter of 11 or less, determined according to Equation 1 below:
  • D is the density of the olefin polymer measured according to ASTM D792,
  • the olefin polymer may have a storage modulus of 1500 dyn / cm 2 or less.
  • the olefin polymer may have a density of 0.910 g / cm 3 to 0.930 g / cm 3.
  • the olefin polymer may have a strength factor (SF) of 50 or more determined according to Equation 2 below:
  • Equation 2 Mw means a weight average molecular weight, and the rate of extensional viscosity increase is 170 ° using an elongation viscosity device attached to an ARES rheometer (A contro l led-rate shear rheometer) for the Elefin polymer. Henkie Strain in C 1
  • the highest elongation viscosity value measured by S "1 is divided by the value of the elongation viscosity of the extrapolation straight line at the time when the highest elongation viscosity value is obtained, where the extrapolation straight line increases in elongation and viscosity with time.
  • a straight line having an average slope of a section to be extended is a straight line extending to a section where the elongation viscosity increases rapidly while maintaining the average slope.
  • the olefin polymer may have a ratio of increase in capacitive viscosity of 2.0 or more.
  • the olefin polymer may have a melt index of 0.3 g / 10 m in or more and less than 4 g / 10 m in, measured under a load of 2.16 kg : temperature: 190 ° C., according to ASTM D1238 specification.
  • the olefin polymer may have a number average molecular weight of 20, 000 g / mol to 60,000 g / nx l.
  • the olefin polymer may have a weight average molecular weight of 90, 000 g / mol to 160, 000 g / mol.
  • the olefin polymer has a melt flow rate (MFR 2L 6 ) measured at a temperature of 190 ° C and a load of 21.6 kg according to ISO 1133 and a melt flow rate measured at a temperature of 190 0 C and a load of 16 kg according to ISO 1133 ( MFRR (21.6 / 2 divided by the MFR 2. 16). 16) may be less than 18 or 40.
  • the olefin polymer may have a melt strength of 50 mN to 100 mN.
  • the olefin polymer may be a copolymer of ethylene and an alpha olefin, and more specifically, may be an ethylene-1-nuxene copolymer.
  • a carrier, a first transition metal compound supported on the carrier and represented by the following Chemical Formula 1 and a second transition metal compound supported on the carrier and represented by the following Chemical Formula 2 include
  • a process for the preparation of said olefin polymer comprising the step of polymerizing an olefin monomer:
  • And 3 ⁇ 4 are the same as or different from each other, and each independently a halogen, a nitro group, an amido group, a phosphine group, a phosphide group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, Any one of a silyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a sulfonate group having 1 to 20 carbon atoms, and a sulfone group having 1 to 20 carbon atoms,
  • T is C, Si, Ge, Sn or Pb,
  • Qi and Q 2 are the same as or different from each other, and each independently hydrogen, halogen, alkyl group having 1 to 20 carbon atoms, heterocycloalkyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkoxyalkyl group having 2 to 20 carbon atoms, Carbon number 1 Any of carboxylate of 20 to 20, alkenyl group of 2 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, alkylaryl group of 7 to 20 carbon atoms, arylalkyl group of 7 to 20 carbon atoms, and heteroaryl group of 5 to 20 carbon atoms
  • alkyl group having 1 to 20 carbon atoms heterocycloalkyl group having 2 to 20 carbon atoms
  • alkoxy group having 1 to 20 carbon atoms alkoxyalkyl group having 2 to 20 carbon atoms
  • Carbon number 1 Any of carboxylate of 20 to 20, alkenyl group of 2 to 20 carbon atoms, aryl group
  • Ri to 3 ⁇ 4 are the same as or different from each other, and are each independently hydrogen, an alkyl group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an alkoxyalkyl group of 2 to 20 carbon atoms, an alkylsilyl group of 1 to 20 carbon atoms, or 1 to 20 carbon atoms Is a silylalkyl group, a silyloxyalkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms,
  • R 7 to R 14 are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms. Any one of 20 silylalkyl groups, silyloxyalkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms and aryl groups having 6 to 20 carbon atoms, or one or more substituents adjacent to each other among R 7 to R 14: Are linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring,
  • M 2 is Ti, Zr or Hf
  • 3 ⁇ 4 and X 4 are the same as or different from each other, and are each independently a halogenated nitro group.
  • T 2 is any one of T 3 (Q 3 ) (Q 4 ) and an alkylene group having 2 to 5 carbon atoms, wherein T 3 is C, Si. Ge, Sn or Pb,
  • Qs and Q 4 are the same as or different from each other, and are each independently hydrogen, a halogen, an alkyl group having 1 to 20 carbon atoms, a heterocycloalkyl group having 2 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Any one of an alkoxyalkyl group having 2 to 20 carbon atoms, a carboxylate having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a heteroaryl group having 5 to 20 carbon atoms; Or are linked to each other to form a substituted or unsubstituted aliphatic or aromatic hydrocarbon ring,
  • 3 ⁇ 41 to 4 are the same as or different from each other, and each independently hydrogen, an alkyl group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an alkoxyalkyl group of 2 to 20 carbon atoms, an alkylsilyl group of 1 to 20 carbon atoms, or 1 to 20 carbon atoms Any one of a silylalkyl group of 20, a silyloxyalkyl group of 1 to 20 carbon atoms, an alkenyl group of 2 to 20 carbon atoms and an aryl group of 20 to aryl groups of 6 to 20 carbon atoms,-
  • R 3 i to 8 are the same as each other: 'are the same or different, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms Or any one of a silylalkyl group having 1 to 20 carbon atoms, a silyloxyalkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms and an aryl group having 20 aryl groups having 6 to 20 carbon atoms, or adjacent to each other among ⁇ to R 38 .
  • One or more pairs of substituents are linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring.
  • 1 is Si
  • h and 3 ⁇ 4 are each independently an alkyl group of 1 to 20 carbon atoms, an aryl group of 6 to 20 carbon atoms, an alkylaryl group of 7 to 20 carbon atoms and aryl of 7 to 20 carbon atoms It may be any one of an alkyl group.
  • the first transition metal compound may be any one of compounds represented by the following formulas la and lb:
  • Rl5 to Ri 8 are the same as or different from each other, and are each independently hydrogen, carbon number 1 ; C20 alkyl group, C1-C20 alkoxy group, C2-C20 alkoxyalkyl group, C1-C20 alkylsilyl group, C1-C20 silylalkyl group, C1-C20 alkoxysilyl group, C1-C20 Any one of a silyloxyalkyl group of 20, an alkenyl group of 2 to 20 carbon atoms, an aryl group of 6 to 20 carbon atoms, an alkylaryl group of 7 to 20 carbon atoms, and an arylalkyl group of 7 to 20 carbon atoms,
  • 1 is an integer between 0 and 5
  • Ph is a phenyl group.
  • At least one of R 21 to R 24 is 2 to
  • T 2 is T 3 (Q 3 ) (Q 4 )
  • T 3 is C, 3 ⁇ 4 and Q 4 are the same as or different from each other, each independently having 1 to .
  • the second transition metal compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the carrier may be silica, alumina, magnesia, or a mixture thereof.
  • the first transition metal compound and the second transition metal compound may be included in a weight ratio of 50: 1 to 1: 1.
  • a carrier the first transition metal compound supported on the carrier and represented by the formula (1) and the second transition metal compound supported on the carrier and represented by the formula (2)
  • a hybrid supported catalyst is provided. ;
  • a blown film comprising the olefin polymer described above and having a haze of 10% or less as measured according to ISO 14782.
  • Ellefin polymer according to an embodiment of the present invention has excellent bubble stability and processing load. Properties, not only shows excellent processability in film production, but also has improved mechanical properties, and through the control of the initial storage modulus in the polymer Transparency can be improved during film production. Accordingly, it may be useful as a raw material of various products requiring excellent mechanical strength, high processability and transparency. In particular, the excellent processability of the olefin polymer may be useful as a product raw material manufactured by the melt blown process by enabling a stable film production in the film production by the melt blown process.
  • Example 1 is a graph illustrating the initial storage modulus of elasticity of the olefin co-polymers of Example 1 and Comparative Examples 1 and 2 according to the frequency.
  • LLDPE has poor blown film processability compared to excellent mechanical properties.
  • LDPE is mixed during film production to improve workability, but film properties such as tensile strength and impact strength are deteriorated.
  • mLLDPE metal locene learear-dens i ty polyethylene
  • D is the density of the additive olefin polymer measured according to ASTM D792,
  • G ' is the storage modulus measured at 5% strain and 0.05 rad / s strain in the dynamic strain sweep frequency mode using an ARES rheometer.
  • the olefin polymer according to the embodiment may have a haze parameter of 5 to 10, and more specifically 7 to 9.5, according to Equation 1 above. .
  • the haze parameter is a numerical value of the transparency of the olefin polymer by the initial storage elasticity of the olefin polymer and the density, and the value shows a tendency similar to the haze characteristic of the film.
  • the smaller the haze parameter of the olefin polymer the smaller the haze value of the film produced using the same.
  • the film may exhibit improved transparency.
  • the haze parameter is lower as the storage modulus and density are smaller.
  • the initial storage modulus of the olefin polymer (storage modul us (G ') is the energy stored without loss due to elasticity, is a material function independent of time and dependent on the frequency ( ⁇ ). It is controlled by molecular structure design through content control, and it is an important factor affecting the haze of the film. The smaller the storage elasticity, the less the surface irregularities during film production, and the lower the haze value of the film, the better transparency. Of the invention.
  • the olefin polymer according to one embodiment specifically has an initial storage modulus of 1500 dyn / cm 2 or less, more specifically 500 dyn / cni 2 to 1000 dyn / cm 2 , even more specifically 700 dyn / cm 2 to 900 dyn / cm 2 .
  • an initial storage modulus of 1500 dyn / cm 2 or less more specifically 500 dyn / cni 2 to 1000 dyn / cm 2 , even more specifically 700 dyn / cm 2 to 900 dyn / cm 2 .
  • the olefin polymer according to an embodiment of the present invention has a high strength factor (SF, strength factor) determined according to Equation 2 below 50, specifically 60 or more, more specifically 65 or more. and it can exhibit excellent bubble stability "name:
  • Equation 2 Mw means the weight average molecular weight
  • the rate of extensional viscosity increase was found at Henky's strain at 170 3 C using an extensional viscosity device attached to an ARES rheometer for the olepin polymer.
  • the highest extension viscosity value measured in 1 s- 1 is divided by the value of the extension viscosity of the extrapolation straight line at the time when the highest extension viscosity value is obtained, wherein the extrapolation straight line is such that the extension viscosity is constant with time. It is a straight line extended to the section where the elongation viscosity sharply increases, keeping the straight line which has an average group of an increasing section, and maintains the said average group.
  • the weight average molecular weight (Mw) of Equation 2 is a standard measured by gel permeation chromatography (GPC, gel permeat on chromatography, manufactured by Water) This is the converted value for polystyrene.
  • GPC gel permeation chromatography
  • the weight average molecular weight is not limited thereto, and may be measured by other methods known in the art.
  • the elongational viscosity increase rate of Equation 2 is the highest elongational viscosity value measured by Henky strain 1 at 170 ° 0 using an elongational viscosity device attached to a 5 ARES rheometer for the olefin polymer. It is the value divided by the value of the elongation viscosity of the extrapolated straight line at the time obtained. Specifically, when the elongational viscosity of the olefin polymer is measured using an elongational viscosity device attached to an ARES rheometer, a graph capable of confirming a change in elongational viscosity (unit: Pa.
  • the elongational viscosity tends to increase constantly with time, it does not show strain hardening in which the elongational viscosity increases rapidly.
  • an olefin according to one embodiment of the invention.
  • the extensional viscosity is gradually layered with time, and then the strain hardening shows a sharp increase in the extensional viscosity. The more severe this strain hardenability is, the more rapidly the elongation viscosity can increase.
  • the elongational viscosity increase ratio was determined based on the following criteria. Specifically, the extension viscosity increase ratio was calculated by dividing the highest measured extension viscosity value by the value of the extension viscosity of the extrapolated straight line at the time when the highest extension viscosity value was obtained.
  • the extrapolated straight line means a straight line having an average slope of a section in which the stretched viscosity increases constantly with time, and extending to a section in which the stretched viscosity increases rapidly while maintaining the average slope.
  • the section in which the elongational viscosity increases constantly with time means a section in which the X-axis (time) is from 0.01 second to 1 second, from 0.01 second to 0.5 second or from 0.01 second to 0.5 second,
  • the section in which the viscosity increases rapidly is a section after the section in which the elongation viscosity increases constantly over time, that is, It means the section where the X-axis (time) is more than 0.5 seconds or more than 1 second.
  • the extrapolated straight line is the X axis (time) 0.001 second to 1 second, 0.001 second to 0.5 seconds or 0.01 seconds, the straight line to 0.5 seconds interval, while maintaining the slope of the straight line that is 0.5 "second X-axis (time) Black means a straight line extending to a section exceeding 1 second.
  • extrapolated straight lines can be obtained using Extrapolate in the Originpro 8.6 program.
  • extrapolated straight lines can be obtained by extending the straight line (graph of the actual viscosity measured over time) by specifying the interval of X axis from 0 to 0.5 in the Extrapolate Manu to the section where the elongation viscosity rapidly increases.
  • Method uses B ⁇ Spline and Apprent interpolat ion in Extrapolate Manu.
  • the olefin polymer according to the embodiment of the present invention may exhibit improved processability while retaining excellent mechanical strength with a ratio of increasing sinus viscosity to 2.0 or more.
  • the upper limit of the stretching viscosity increase rate may be adjusted to 5 or less, more specifically 2.5 or less to maintain sufficient mechanical strength.
  • the SF calculated by Equation (2) above can secure excellent workability at the time of film formation, so that the upper limit of the SF is not particularly limited.
  • the SF may be adjusted to 200 or less, specifically 150 or less. Ol L
  • the olefin polymer according to one embodiment of the present invention may exhibit physical properties corresponding to LLDPE in order to maintain excellent mechanical properties of conventional and LLDPE.
  • the olefin polymer may have a density of about 0.910 g / cm 3 to about 0.930 g / cm 3 .
  • the olefin copolymer may have a number average molecular weight of 20,000 g / mol to 60,000 g / niol, and a weight average molecular weight of 90,000 g / mol to 160, 000 g / mo 1.
  • the olefin polymer may have a Melt Index (MI) of not less than 3 g / lOmin measured at a temperature of 190 ° C. and a load of 2.16 kg according to ASTM D1238.
  • the olefin polymer has a melt flow rate (MFR 21 .6 ) measured under a silver of 190 0 C and a load of 21.6 kg according to ISO 1133 and a temperature of 190 ° C according to ISO 1133 and 2.
  • the melt flow rate measured under a load of 16kg MFRR (21.6 / 2. 16 ) divided by (MFR 2. 16) is more than 20 can be less than 40.
  • the olefin polymer may have a melt strength (MS) measured at 190 0 C of 50 mN to 100 mN, more specifically 60 mN to 75 mN.
  • MS melt strength
  • the melt strength is an aspect ratio (length 30 mm / diameter 2 mm)
  • a strand is produced at a shear rate of 72 / s, and this can be measured by measuring the force (niN) until breaking while uniaxially stretching at an initial speed of 18 mm / s and an acceleration of 12 mm / s 2 with an acceleration wheel.
  • the measurement conditions are as follows.
  • the haze parameter calculated according to Equation 1 and SF calculated according to Equation 2 satisfy the above-mentioned range, the density, number average molecular weight, weight average molecular weight, melt index, MFRR, If it does not satisfy MS, etc., it may not be able to be applied to actual products even if it has excellent workability due to insufficient mechanical strength.
  • pin polymers Singh sulhan properties may have at least one of the properties of, Displaying the excellent mechanical strength: to have all the physical properties described above for can be.
  • the olefin polymer exhibiting such physical properties may be, for example, a copolymer of ethylene and an alpha olefin.
  • the alpha olefin is propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene. 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene and combinations thereof.
  • the leupin polymer may be a copolymer of ethylene and 1-nuxene.
  • the type of the leupin polymer according to the embodiment is not limited to the above-described kind, and may be provided to various kinds known in the art to which the present invention pertains if the above-described physical properties can be exhibited.
  • having the above-described physical properties A method for producing an olefin polymer is provided.
  • the method for preparing the olefin polymer includes a carrier, a first transition metal compound supported on the carrier and represented by the following Chemical Formula 1 and a second transition metal compound supported on the carrier and represented by the following Chemical Formula 2
  • a hybrid supported catalyst it may comprise the step of polymerizing the olefin monomer.
  • Xi and 3 ⁇ 4 are the same as or different from each other, and each independently a halogen, nitro group, amido group, or phosphine group.
  • Phosphide groups alkyl groups of 1 to 20 carbon atoms, alkoxy groups of 1 to 20 carbon atoms, alkoxyalkyl groups of 2 to 20 carbon atoms, silyl groups of 1 to 20 carbon atoms, alkenyl groups of 2 to 20 carbon atoms, aryl groups of 6 to 20 carbon atoms . Any one of a sulfonate group having 1 to 20 carbon atoms and a sulfone group having 1 to 20 carbon atoms,
  • Qi and Q 2 are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, a heterocycloalkyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms , Carboxylate having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, having 6 to 20 carbon atoms An aryl group, an alkylaryl group having 7 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, or a heteroaryl group having 5 to 20 carbon atoms,
  • Ri to R 6 are the same as or different from each other, and each independently hydrogen and carbon number
  • C1-C20 alkyl group C1-C20 alkoxy group, C2-C20 alkoxyalkyl group, C1-C20 alkylsilyl group. Any one of a silylalkyl group having 1 to 20 carbon atoms, a silyloxyalkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms,
  • R 7 to R 14 are the same as or different from each other, and are each independently hydrogen, carbon number
  • Any one of 6 to 20 aryl groups, or one or more pairs of substituents adjacent to each other in R 7 to R 14 are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring,
  • ⁇ 2 is Ti, Zr or Hf
  • 3 ⁇ 4 and X 4 are the same as or different from each other, and each independently a halogen, a nitro group, an amido group, a phosphine group, a phosphide group, an alkyl group having 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 8 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a sulfonate group having 1 to 20 carbon atoms and a carbon number Any one of 1 to 20 sulfone groups,
  • T 2 is any one of T 3 (Q 3 ) (Q 4 ) and an alkylene group having 2 to 5 carbon atoms, wherein T 3 is C, Si, Ge, Sn, or Pb,
  • Qs and Q 4 are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, a heterocycloalkyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkokcock having 2 to 20 carbon atoms Any one of a alkyl group, a carboxylate having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a heteroaryl group having 5 to 20 carbon atoms; Or are linked to each other to form a substituted or unsubstituted aliphatic or aromatic hydrocarbon ring.
  • 3 ⁇ 4 ⁇ to 4 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, and 1 carbon atom each independently Any one of a silylalkyl group of 20 to 20, a silyloxyalkyl group of 1 to 20 carbon atoms, an alkenyl group of 2 to 20 carbon atoms, and an aryl group of 20 aryl groups of 6 to 20 carbon atoms ; -R 3 i to: '.R 38 are the same or shark, and each independently ⁇ : hydrogen, an alkyl group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an alkoxyalkyl group of 2 to 20 carbon atoms, 1 carbon Or any one of 20 to 20 alkylsilyl groups, C1 to
  • Halogen may be fluorine (F), chlorine (C1), bromine (Br) or iodine (I).
  • the alkyl group having 1 to 20 carbon atoms may be a straight chain, branched chain or cyclic alkyl group.
  • an alkyl group having 1 to 20 carbon atoms is a straight chain having 1 to 20 carbon atoms
  • the alkyl group having 1 to 20 carbon atoms is methyl group, ethyl group, n-propyl group, i so-propyl group, n-butyl group, isobutyl group, tert-butyl group, ⁇ -pentyl group, i so- pen It may be a tilyl group, a neo-pentyl group, a cyclonuclear group or the like.
  • Heterocycloalkyl groups having 2 to 20 carbon atoms may be cyclic alkyl groups containing atoms other than one or more carbons exemplified by oxygen, nitrogen or sulfur.
  • the heterocycloalkyl group having 2 to 20 carbon atoms may be a heterocycloalkyl group having 2 to 15 carbon atoms, a heterocycloalkyl group having 2 to 10 carbon atoms, or a heterocycloalkyl group having 4 to 7 carbon atoms.
  • the heterocycloalkyl group having 2 to 20 carbon atoms is an epoxy group, a tetrahydrofuranyl group, a tetrahydropyranyl0 ⁇ £ 11 ⁇ (1 ⁇ 1 1) group, a tetrahydrothiophenyl group. Or a tetrahydropyrrolyl group.
  • the alkoxy group having 1 to 20 carbon atoms may be a straight chain, branched chain or cyclic alkoxy group.
  • the alkoxy group having 1 to 20 carbon atoms is a linear alkoxy group having 1 to 20 carbon atoms; . C1-C10 linear alkoxy group; Linear alkoxy groups having 1 'to 5 carbon atoms; Branched or cyclic alkoxy groups having 3 to 20 carbon atoms; Branched or cyclic alkoxy groups having 3 to 15 carbon atoms; Or a branched or cyclic alkoxy group having 3 to 10 carbon atoms.
  • the alkoxy group having 1 to 20 carbon atoms is a methoxy group, a special group, n-propoxy group. i so-propoxy group, n-butoxy group, i so- subgroup, tert-butoxy group, n-phenoxy group, i so-phen black group, neo-phenoxy group or cyclonucleooxy group.
  • the alkoxyalkyl group having 2 to 20 carbon atoms may be a substituent in which at least one hydrogen of the alkyl group (_R a ) is substituted with an alkoxy group (-0-R b ) in a structure including ⁇ R a -0-R b .
  • the alkoxyalkyl group having 2 to 20 carbon atoms has a methoxymethyl group, mesoethylethyl group, ethoxymethyl group, i so-propoxymethyl group, i so-propoxyethyl group, i so-propoxynucleotyl group, tert-butoxymethyl group It may be a tert- butylethyl group or a tert- appendix nucleus group.
  • the silyl group having 1 to 20 carbon atoms may be a substituent in which at least one hydrogen of —SiH 3 is substituted with an alkyl group or an alkoxy group.
  • the silyl group having 1 to 20 carbon atoms is methylsilyl group, dimethylsilyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group, dimethylpropylsilyl group, methoxyoxysilyl group, dimeth And a methoxysilyl group, trimethoxysilyl group, dimethicoxy special silyl group, diethoxymethylsilyl group or dimethoxypropylsilyl group.
  • the silylalkyl group having 1 to 20 carbon atoms may be a substituent in which at least one hydrogen of the alkyl group is substituted with a silyl group.
  • the silylalkyl group having 1 to 20 carbon atoms may be a dimethipropylpropylsilylmethyl group or the like.
  • the silyloxyalkyl group having 1 to 20 carbon atoms may be a substituent in which at least one hydrogen of the alkyl group is substituted with a silyloxy group.
  • the silyloxyalkyl group having 1 to 20 carbon atoms may be a dimethipropylpropylsilyloxymethyl group or the like.
  • Alkenyl having 2 to 20 groups may be a straight chain alkenyl, branched chain or ring al. Specifically, an alkenyl group having 2 to 20 carbon atoms has a straight chain alkenyl group having 2 to 20 carbon atoms, a straight chain alkenyl group having 2 to 10 carbon atoms, a straight chain alkenyl group having 2 to 5 carbon atoms, a branched alkenyl group having 3 to 20 carbon atoms, and 3 carbon atoms to 15 fly branched alkenyl, it branched alkenyl having 3 to 10 carbon atoms, may be 5 to 20 carbon atoms and a cyclic alkenyl group or a carbon number of date 5-10 cyclic alkenyl ⁇ , and more particularly, 2 to 20 carbon atoms
  • the alkenyl group may be an ethenyl group, propenyl group, butenyl group, pentenyl group or cyclonucleenyl group.
  • the carbonyl carboxylate having 1 to 20 carbon atoms may have a -COOR ′′ ⁇ structure, and R c may be a hydrocarbyl group having 1 to 20 carbon atoms.
  • the hydrocarbyl group is a monovalent functional group in which a hydrogen atom is removed from a hydrocarbon.
  • an aryl group, etc. Specifically, the carboxylate having 1 to 20 carbon atoms may be pivalate.
  • An aryl group having 6 to 20 carbon atoms may mean monocyclic, bicyclic or tricyclic aromatic hydrocarbons.
  • the aryl group may be used in the sense including an aralkyl group (aralkyl groLip) in which one or more hydrogen of the alkyl group is substituted with an aryl group.
  • the aryl group having 6 to 20 carbon atoms may be a phenyl group, naphthyl group, anthracenyl group or benzyl group.
  • Heteroaryl groups having 5 to 20 carbon atoms may be cyclic aryl groups containing atoms other than one or more carbons exemplified by oxygen, nitrogen, sulfur, and the like.
  • the heteroaryl group having 5 to 20 carbon atoms may be a heteroaryl group having 5 to 15 carbon atoms or a heteroaryl group having 5 to 10 carbon atoms. More specifically, the heteroaryl group having 5 to 20 carbon atoms is a furanyl group, a pyranyl group,. Thiophenyl group or pyrrolyl group.
  • the sulfonate group having 1 to 20 carbon atoms has a structure of —0-SO 2 —R d , and R d may be a hydrocarbyl group having 1 to 20 carbon atoms. Specifically, the sulfonate group having 1 to 20 carbon atoms may be a methanesulfonate group or a phenylsulfonate group.
  • the sulfone group having 1 to 20 carbon atoms has a structure of -R e ' -S0 2 -R e " , wherein R e' and R e ′′ are the same as or different from each other, and may each independently be a hydrocarbyl group having 1 to 20 carbon atoms.
  • the sulfone group having 1 to 20 carbon atoms may be a methylsulfonylmethyl group, methylsulfonylpropyl group, methylsulfonylbutyl group, or phenylsulfonylpropyl group.
  • a pair of one or more substituents adjacent to each other are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring, two adjacent to each other ;
  • One or more pairs of substituents in the pair of substituents are connected to each other to form an aliphatic or aromatic ring, which means that the aliphatic or aromatic ring may be substituted by any substituent.
  • a pair of adjacent substituents R 36 and R 37 of Formula 2 may be linked to each other to form a substituted or unsubstituted aromatic ' ring, for example, a benzene ring, or a substituted or unsubstituted aliphatic It is also possible to form a ring, for example a cyclonucleic acid ring.
  • an ellefin polymer is prepared by introducing LCB into LLDPE by using a catalyst in which a first transition metal compound represented by Formula 1 and a second transition metal compound represented by Formula 2 are commonly supported.
  • the haze parameter calculated by Equation 1 described above may satisfy the above-described range, and as a result, excellent mechanical properties and processability. And transparency can be shown at the same time. Accordingly, according to another embodiment of the present invention, there is provided a common supported catalyst useful for preparing the olefin polymer described above.
  • the supported catalysts include the first and second transition metal compounds; And a carrier supporting the transition metal compound, optionally . It may further comprise a promoter.
  • the first transition metal compound represented by Chemical Formula 1 includes a cyclopentadienyl ligand and a tetrahydroindenyl ligand as different ligands, wherein the other ligands are crosslinked by -3 ⁇ 4) (3 ⁇ 4) 1 .
  • the cyclopentadienyl ligand in the structure of the first transition metal compound represented by Formula 1 may affect, for example, the polymerization activity of the olepin monomer and the physical properties of the olefin polymer.
  • Ri to 3 ⁇ 4 each independently represent any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms, more specifically, a methyl group, an ethyl group, a propyl group, etc.
  • the catalyst obtained from the transition metal compound of Chemical Formula 1 may exhibit very high activity in the elepin polymerization process and may provide a desired physical property olefin polymer.
  • the tetrahydroindenyl ligand in the structure of the first transition metal compound represented by Formula 1 for example, the molecular weight of the olefin polymer prepared by adjusting the degree of steric hindrance effect according to the type of the substituted functional group It can be adjusted easily.
  • R 5 and 3 ⁇ 4 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms, and R 7 to R 14 each independently represents hydrogen, an alkyl group having 1 to 20 carbon atoms, and having 1 to 20 carbon atoms.
  • R 5 and 3 ⁇ 4 in Formula 1 are each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and an alkenyl group having 2 to 4 carbon atoms, or R 7 to R 14 are each independently hydrogen , One or more alkyl groups of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms and an alkenyl group of 2 to 4 carbon atoms, or one or more pairs of substituents adjacent to each other of R 7 to R 14 are connected to each other substituted or unsubstituted
  • the common supported catalyst can provide an ilefin polymer having excellent processability.
  • the cyclopentadienyl ligand and the tetrahydroindenyl ligand may be crosslinked to exhibit excellent stability.
  • each of Q and Q 2 independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, and an arylalkyl group having 7 to 20 carbon atoms.
  • C and Q 2 are the same as each other and an alkyl group having 1 to 10 carbon atoms, such as methyl, ethyl, propyl, butyl group; C6-C12 aryl groups, such as a phenyl group; It may be any of an arylalkyl group having 7 to 13 carbon atoms such as an alkylaryl group having 7 to 13 carbon atoms and a benzyl group.
  • 1 is C or Si; Or Si.
  • () (3 ⁇ 4) exists between the crosslinked cyclopentadienyl ligand and tetrahydro ⁇ indenyl ligand, where () () is the storage of the metal complex. May affect stability.
  • 3 ⁇ 4 are each independently halogen, may be any one of an alkoxy group having 1 to 20 alkyl group and having 1 to 20 carbon atoms, more specifically, and 3 ⁇ 4 are each independently F, It may be CI, Br or I.
  • is Ti, Zr or Hf; Zr or Hf; Or Zr.
  • the 1 transition metal compound which can provide an ilefin polymer having improved processability a compound represented by the following formulas la and lb may be exemplified.
  • Rl5 to Ris are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 2 to C carbon atoms
  • 1 is an integer between 0 and 5
  • Ph is a phenyl group.
  • R 15 to R 18, which are substituents of the tetrahydroindenyl ligand, are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms to provide an ilefin polymer having better processability. Or any one of an alkenyl group having 2 to 10 carbon atoms and an aryl group having 6 to 12 carbon atoms; Or hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
  • the first transition metal compound represented by Chemical Formula 1 may be synthesized by using known reactions. Specifically, a tetrahydroindenyl derivative and a cyclopentadiene derivative are linked with a bridge compound to prepare a ligand compound, and then a metal.
  • the metal compound may be prepared by adding a precursor compound to perform metallization, but the present invention is not limited thereto. For detailed synthesis methods, see Examples.
  • the second transition metal compound represented by Formula 2 has an asymmetric structure including a cyclopentadienyl lagane and a fluorenyl ligand, and the cyclo3 ⁇ 4tadienyl ligand and the fluorenyl ligand are T It is bridge
  • the second transition metal compound having the specific structure # has a higher activity by being supported on the carrier together with the first transition metal compound represented by Chemical Formula 1, and improved haze with excellent processability by introducing LCB into LLDPE.
  • Illepin polymers having properties can be prepared.
  • Cyclopentadienyl ligands can affect, for example, the polymerization activity of olefin monomers and the physical properties of the olepin polymer.
  • R 21 to 3 ⁇ 4 4 are each independently one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms, it may exhibit better catalytic activity.
  • At least one of R 2 i to 4 in the cyclopentadienyl group may be an alkoxyalkyl group having 2 to 20 carbon atoms, and the remaining functional group may be hydrogen. More specifically, the cyclopentadienyl group is-(CH 2 ) n-0R (where R is a linear or branched alkyl group having 1 to 6 carbon atoms, n is an integer of 1 to 10, more specifically 1 to 6 And more specifically, an integer of 4 to 6. By introducing a substituent).
  • a polyolefin having a controlled copolymerization degree or a comonomer distribution can be prepared as compared to other cyclopentadienyl ligand catalysts not containing the substituent. 1
  • a transition metal compound When a transition metal compound is supported on a carrier, covalent bonds can be formed through intimate interaction with silanol groups on the surface of silica, in which a-(CH 2 ) n -0R group is used as a support, so that stable supported polymerization is possible. . More specifically, R 21 to.
  • At least one of R 24 is a methoxymethyl group, a methoxyethyl group ethoxymethyl group, i so-propoxymethyl group, i so-propoxyethyl group, i so—propoxynucleyl group, tert-butoxymethyl group, tert-butoxyethyl group , ⁇ and tert- appendix may be a nucleosil group, it may be a tert- hydroxy nucleosil group.
  • the fluorenyl ligand may be, for example, a molecular weight of the urepin polymer prepared by adjusting the degree of steric hindrance effect according to the type of the substituted functional group. It can be adjusted easily.
  • R 31 to R 38 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxyalkyl group having 2 to 10 carbon atoms, and 1 carbon atom.
  • R 31 to 8 are the same as or different from each other.
  • the common supported catalyst can provide an ilefin polymer having excellent processability.
  • the cyclopentadienyl ligand and fluorenyl ligand may be crosslinked by ⁇ 2 ⁇ to show excellent stability.
  • ⁇ 2 may be any one of T 3 (Q 3 ) (Q 4 ) and an alkylene group having 2 to 5 carbon atoms, wherein T 3 is C, Si, Ge, Sn, or Pb, and Q 3 and Q 4 are the same or different and each independently represents an alkyl group having 1 to 10 carbon atoms, each other, or an alkoxy group having 1 to 10 carbon atoms, any one of an aryl group, an alkoxy alkyl group having 2 to 10 carbon atoms, and having 6 to 12 carbon atoms, or together It may be linked to form a substituted or unsubstituted aliphatic hydrocarbon ring having 3 to 12 carbon atoms or an aromatic hydrocarbon ring having 6 to 12 carbon atoms.
  • T 3 is C, 3 ⁇ 4 and Q 4 are the same as or different from each other, each independently represent an alkyl group having 1 to 10 carbon atoms, or are linked to each other a cycloalkyl group having 3 to 12 carbon atoms, Or an aryl group having 6 to 12 carbon atoms, and in particular, 3 ⁇ 4 and 3 ⁇ 4 groups- are the same as each other, and may be any one of a mesal group, an ethyl group, an n-propyl group and an n-butyl group, or are connected to each other. It may be made of a cyclonuclear group.
  • M 2 (X 3 ) (X 4 ) is present between the crosslinked cyclopentadienyl ligand and fluorenal ligand, and M 2 (X 3 ) (X 4 ) affects the storage stability of the metal complex.
  • 3 ⁇ 4 and X 4 may be each independently halogen, an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms, and more specifically, 3 ⁇ 4 and 3 ⁇ 4 are each independently. It may be F, CI, Br or I.
  • M 2 is Ti, Zr or Hf; Zr or Hf; Or Zr.
  • the second transition metal compound which can provide an ilefin polymer having improved processability a compound represented by the following structural formula may be exemplified.
  • the second transition metal compound represented by Chemical Formula 2 may be synthesized by using known reactions, and a detailed synthesis method may be referred to Examples.
  • the first and second transition metal compound has the above-described structural characteristics can be stably supported on the carrier.
  • a carrier containing a hydroxyl group or a siloxane group may be used.
  • the carriers include, by by drying at high temperatures to remove water on the surface can be a carrier for anti-male-containing group big hydroxyl group or siloxane ': it specifically than eu, the carriers include silica, alumina, magnesia Or combinations thereof, and the like, of which silica may be more preferred.
  • the carrier may be dried at high temperatures, which are typically oxides, carbonates, sulfates such as Na 2 O, K 2 CO 3 , BaSO 4 and Mg (N0 3 ) 2 . It may include a nitrate component.
  • the drying temperature of the support is the 200 ° C to 800 ° C, and preferably, 300 o C to 600 o C is more preferred, and most preferred 300 ° C to 400 ° C. If the drying temperature of the carrier is less than 200 ° C. water is too much and the surface of the carrier and the cocatalyst reacts, and if it exceeds 800 o C, the surface area decreases as the pores on the surface of the carrier are combined, and the surface is hydroxy. It is not preferable because there are not many groups and only siloxane groups are left to decrease the reaction site with the promoter.
  • the carrier the amount of hydroxyl groups on the surface. 0. 1 to 10 ⁇ ol / g are preferred, and more preferably when "0.5 to 5 mmo l / g day.
  • the amount of hydroxy group can be controlled by the method and conditions for preparing the carrier or by drying conditions such as silver, time, vacuum or spray drying.
  • the common supported catalyst according to an embodiment of the present invention may further include a promoter to activate a transition metal compound that is a catalyst precursor.
  • the cocatalyst is an organometallic compound containing a Group 13 metal. There is no particular limitation as long as it can be used when the olefin is added under a general metallocene catalyst.
  • the promoter may be at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 5.
  • R 41 , R 42 and R 43 are each independently hydrogen, halogen, a hydrocarbyl group having 1 to 20 carbon atoms and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen,
  • n is an integer of 2 or more
  • D is aluminum or boron
  • R 44 is each independently a halogen, a hydrocarbyl group having 1 to 20 carbon atoms, and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen, [Formula 5]
  • L is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a Group 13 element, and A is each independently of 1 to 20 carbon atoms.
  • Non-limiting examples of the compound represented by the formula (3) include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane or tert- butyl aluminoxane.
  • Non-limiting examples of the compound represented by the formula (4) include trimethylaluminum, triethylaluminum triisobutylaluminum, tripropylaluminum,.
  • non-limiting examples of the compound represented by the formula (5) include trimethylammonium tetrakis (pentafluorophenyl) borate, tri Ethylammonium tetrakis (pentafluorophenyl) borate ⁇ , ⁇ —dimethylanilinium tetrakis (pentafluorophenyl) borate ⁇ , ⁇ —dimethylanilinium ⁇ -butyltris (pentafluorophenyl) borate ⁇ , ⁇ -dimethylanilinium benzyltris (pentafluorophenyl) borate ⁇ , ⁇ -dimeth Anilinium tetrakis (4- (t-butyldimethylsilyl) -2,3,5,6-tetrafluorophenyl) borate, ⁇ , ⁇ -dimethylanilinium tetrakis (4- (triisopropylsilyl) -2 , 3, 5, 6-
  • the promoter may proceed with activating the transition metal compound sufficiently. It may be used in an appropriate amount so as to.
  • a common supported catalyst can be prepared by, for example, supporting a promoter on a carrier and supporting first and second transition metal compounds serving as catalyst precursors on the carrier.
  • the promoter is added to the carrier dried at a high temperature, it can be stirred at a temperature of about 20 ° C to 120 ° C to prepare a carrier supported carrier.
  • a transition metal compound is added to the promoter-supported carrier obtained in the step of supporting the promoter on the carrier, and then at a temperature of about 20 ° C. to 120 ° C.
  • the supported catalyst can be prepared by stirring.
  • the catalyst may be prepared by adding a transition metal compound to the promoter-supported carrier and further adding a promoter.
  • the content of the carrier, cocatalyst, cocatalyst supported carrier and transition metal compound used in the hybrid supported catalyst according to one embodiment of the present invention may be appropriately adjusted depending on the physical properties or effects of the supported catalyst to be observed. .
  • the mixing weight ratio of the first transition metal compound and the second transition metal compound is 50: 1 to 1: 1, more specifically 20: 1 to 1: 1. May be one.
  • the length and number can be adjusted to increase the melt strength without increasing the molecular weight distribution, making it easier for the production of urepin polymers with excellent bubble stability and blown film processability.
  • the weight ratio of the total transition metal compound to the carrier including the first and second transition metal compounds is in the range of 1:10 to 1: 1, 000, and more specifically, 1: 10 to 1: 500.
  • the carrier and the transition metal compound are included in the above-mentioned ratio of rain, the optimum shape can be exhibited.
  • the weight ratio of the promoter to the carrier may be 1: 1 to 1: 100, and more specifically, 1: 1 to 1:50. When including the promoter and the carrier in the weight ratio, it is possible to optimize the active and polymer microstructure.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or the like, or an aromatic solvent such as benzene or toluene may be used.
  • the preparation method of the supported catalyst is not limited to the contents described in the present specification, and the preparation method may further employ a step generally employed in the technical field to which the present invention belongs.
  • the step (s) of the manufacturing method can be modified by conventionally changeable step (s).
  • examples of the olefin monomer that can be polymerized with the common supported catalyst include ethylene, alpha-olefin, cyclic olefin, and the like, and diene olefin monomers or triene olefin monomers having two or more double bonds can also be polymerized. .
  • the monomer examples include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1kheltene, 1-octene, 1-decene, 1-undecene, 1- Dodecene, 1-tetradecene, 1 nucleodecene, 1-aitosen : norbornene, norbornadiene, erylidene norbornene, phenylnorbornene, vinyl norbornene, dicyclopentadiene, 1.4-butadiene, 1,5 -Pentadiene, 1, 6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethyl styrene, etc., These monomers may be mixed and copolymerized.
  • the comonomer is at least one comonomer selected from the group consisting of propylene, 1-butene, 1-nuxene, 4-methyl-1-pentene and 1-octene Is preferably.
  • polymerization reaction of the olefin monomers various polymerization processes known as polymerization reaction of olefin monomers, such as continuous solution polymerization process, bulk polymerization process, suspension polymerization process, slurry polymerization process or emulsion polymerization process, can be employed.
  • the polymerization reaction may be carried out under about 50 ° C to about 110 o C, or from about 60 o C to 100 The silver and about 1 to 100kgf / cm 2, or about 1 to 50 kgf / cm 2 pressure.
  • the common supported catalyst in the polymerization reaction, can be used dissolved or diluted in a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • the olefin polymer according to the embodiment having the above-described physical properties has increased melt strength without increasing the molecular weight distribution compared to the polyolefin polymerized using the conventional transition metal compound catalyst. It has a load characteristic and shows excellent processability in the manufacture of surgical films, as well as excellent mechanical properties.
  • by controlling the initial storage elasticity to meet the above-mentioned haze parameter conditions it is possible to minimize the surface irregularities during film production. As a result, it is possible to significantly improve the transparency of the film, i. Accordingly, it can be usefully applied to various fields requiring excellent mechanical properties, processability, and transparency. Especially .
  • the eulre pin polymer is excellent in bubble stability, stable blow-by melt blown process: itdi to form a cloud film.
  • the olepin polymer according to one embodiment of the present invention can stably provide a blown film even when B ow up rat io (BUR) is adjusted to 2.7 or more, as described in Test Examples described below.
  • the Haze value measured according to ISO 14782 is 10% or less, more specifically, 0% or more and 10% or less due to the transparency improving effect of the olefin polymerizer : more specifically, more than .0% and less than 9.51 It is possible to provide high transparency films with haze, in particular blown films.
  • the operation and effects of the invention will be described in more detail with reference to specific examples. However, this is presented as an example of the invention, whereby the scope of the invention is not limited in any sense.
  • TMCP-Li 1.3 g, 10 ⁇ l
  • CuCN 45 mg, 5 mol%
  • THF 10 mL
  • dichlorodiphenylsilane 2.5 g, 10 ⁇ ol
  • the temperature of the flask was then measured to below -20 ° C and then indene-lithiation solution (1.2 g,
  • diphenyl (indenyl) (tetramethylcyclopentadienyl) silane (4.2 g, 10 ⁇ l ol) synthesized above was dissolved in THF (15 mL). Then, the solution was stirred at -20 ° C or less, n-BuLi (2.5 M in hexane, 8.4 mL, 21 nimol) was slowly added dropwise to the solution, and the resulting solution was stirred for 6 hours at phase silver.
  • the resulting solution was dried under reduced pressure to remove the solvent from the solution. And, the "resultant was filtered to remove the LiCl which remains and the filtrate (filtrate) after dissolving the solid in dichloromethane (DCM) to remove DCM and vacuum-dried. Subsequently, the obtained solid was added to 30 mL of toluene, stirred for 16 hours, and then filtered to obtain diphenylsilylene (tetramethylcyclopentadienyl) (indenyl) zirconium in the form of a lemon solid.
  • DCM dichloromethane
  • reaction product was passed through a celite pad to remove solids from the reaction product and diphenylsilylene (tetramethylcyclopentadienyl) (tetrahydro Nile) zirconium dichloride (hereinafter referred to as 'metallocene catalyst precursor A') was obtained (0.65 g, 1.1 mmol, 65% yield).
  • 'metallocene catalyst precursor A' diphenylsilylene (tetramethylcyclopentadienyl) (tetrahydro Nile) zirconium dichloride
  • Tetramethylcyclopentadiene (TMCP. 6.0 niL, 40 ⁇ l ol) was dissolved in THF (60 mL) in a dried 250 niL schlenk flask and the solution was cooled to -78 ° C. Subsequently, n-BuLi (2.5 M, 17 mL, 42 ⁇ ol) was slowly added dropwise to the solution, and the resulting solution was stirred overnight at room temperature.
  • dichlorodimethylsi lane (4.8 mL, 40 ⁇ l) was dissolved in n-hexane, and the solution was immersed at -78 ° C. This solution was then slowly injected with the previously prepared TMCP-lithiation solution. The resulting solution was stirred overnight at room temperature.
  • the mini bombe contains platinum oxide (52.4 mg, 0.231 ⁇ ol) as a stock price, and the mini bombe is assembled, and an anhydrous THF (30 mL) is added to the mini bombe using a cannula ⁇ to a pressure of about 30 bar. Filled with hydrogen. Subsequently, the mixture contained in the mini bombe was stirred at about 60 0 C for about 1 day, and then the silver of the mini bombe was converted into phase silver. After cooling, the hydrogen was replaced with argon while slowly decreasing the pressure of the mini — bombe.
  • the metallocene compound of the above structural formula was prepared (Senier, Cas Number 12148-49-1). Preparation of Talocene Catalyst Precursor E)
  • bis (indenyl) zirconium dichloride (CAS Number: 12148-49-1, manufactured by Strem), which is the metallocene catalyst precursor D (2.0 g, 5.1'01), Pt0 2 (0.08 g) , DCM (40 mL) was injected into a 100 mL high pressure reactor and filled with hydrogen to a pressure of about 60 bar. The mixture contained in the high pressure reactor was then stirred for about 24 hours in phase silver.
  • the pressure was added to the reaction vessel, and the temperature was raised to 80 ° C. and stirred for 2 hours. After the reactor temperature was lowered to room temperature, the stirring was stopped, and the reaction solution was decant at ion after being settling for 30 minutes. 3.0 kg of nucleic acid was added to the reactor, the resulting slurry was transferred to a filter dryer, and the nucleic acid solution was filtered. After 10 minutes of purging with 1.5 bar argon, the catalyst was dried by vacuum drying at 40 0 C for 3 hours.
  • the polymerization reactor is a continuous polymerization reactor which is an isobutane slurry loop process.
  • the reaction volume was 140 L and operated at a reaction flow rate of about 7 m / s.
  • Gas flows (ethylene, hydrogen) and comonomer 1-hexene required for polymerization were continuously and continuously injected, and the individual flow rates were adjusted to the target. All of the gas stream and the comonomer is 1-hexene concentration was confirmed by on-l ine 'gas chromatography.
  • the supported catalyst was introduced into i sobutane s lurry, the reaction pressure was maintained at 40 bar and the polymerization temperature was performed at 84 ° C. In addition to. To perform the conditions described in Table 1 below to prepare an ethylene-1-nuxene copolymer.
  • Example 2 Preparation of Ethylene-1-Nexene Copolymer
  • Example 1 To exclude ⁇ conducted to the "content and the conditions described in Table 1 is described in Example 1 carried out in the same manner as in Compared to prepare a polymer eu Examples 1 and 2 Preparation of ethylene copolymer -1 haeksen
  • a polymer was prepared in the same manner as in Example 1, except that the contents were carried out in the contents and conditions shown in Table 1 below.
  • Slurry density is a measure of the density of polymers present in a continuous polymerization reactor, measured through a density indicator installed in a continuous polymerization reactor.
  • MI 2 . 16 and MFRR (21.6 / 2.16) Melt Index (. MI 2 16) is measured according to ASTM D1238 (condition E, 190 ° C, 2.16kg load) standard. Melt flow rate
  • Ratio (MFRR (21.6 / 2.16) has a MFR 2L6 MFR 2. Calculated by dividing by 16 , MFR 21 . 6 is measured according to ISO 1133 under a silver degree of 190 ° C and a lag of 21.6 kg, MFR 2 . 1 (r measured under a temperature of 190 ° C. and a load of 2.16 kg according to ISO 1133).
  • Density (g / cm 3 ) The bulk density of the leupine polymer is determined by using the IPT model 1132 to determine the weight (g) of the olefin polymer in the 100 mL container. It measured and calculated
  • Haze () A film of an equivalent polymer (BUR 2.3, film thickness 60) was produced using the film forming machine under the following conditions, and then Haze of the film was measured according to ISO 14782.
  • Haze parameter The haze parameter of the olefin polymer was calculated through the following equation.
  • Haze Parameter 0.0036 XG '+ 6.25 + 400x (D-0.920)
  • MS (Melt Strength) The melt strength of the leupine polymer was measured using Goettfert eotens 71.97 with a Model 3211 Instron capillary rheometer.
  • the olefin copolymer melt was discharged through a capillary die (planar die, 180 degree angle) with a ratio (L / D) of length (L: D) to diameter (D).
  • L / D length
  • D diameter
  • the piston was moved at a speed of 1 inch / minute (2.54 cm / minute). Standard test temperature was 190 ° C. Samples were pulled uniaxially with a set of acceleration nips located below die 100.
  • Elongational Viscosity Increase Rate First, the elongational viscosity of the elepin polymer was determined by using an elongational viscosity device (EW) attached to an ARES rheometer of TA Instruments (New Castle, Delaway, USA). Using a Hencky strain at 170 0 C with 1 s_
  • the elongational viscosity and the rate of increase are quantified based on the following criteria. Specifically, the highest elongation viscosity measured was divided by the value of the elongational viscosity of the extrapolated straight line at the time when the highest signing-viscosity value was obtained.
  • the extrapolated straight line was obtained by extending a straight line having an average slope of a section in which the stretched viscosity increased constantly with time to a section in which the stretched viscosity increased rapidly while maintaining the average slope.
  • the extrapolated straight line uses the extrapolate in the Or iginpro 8.6 program, and uses the extrapolate to draw a straight line (a graph of the elongated viscosity actually measured over time) by specifying the X-axis section from 0.01 to 0.5 in the extrapolated manu. Is extended to a sharply increasing interval.
  • BUR Blow up rat io

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명에서는 mLLDPE (Metallocene linear low-density polyethylene)에 LCB (long chain branch)를 도입하여 초기 저장탄성률을 조절함으로써, 우수한 버블안정성 및 가공부하 특성을 가져 필름 제조시 우수한 가공성을 나타낼 뿐만 아니라, 우수한 기계적 물성 및 투명성을 갖는 올레핀 중합체가 제공된다.

Description

【발명의 명칭】
올레핀 중합체 및 이의 제조 방법
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 12월 22일자 한국 특허 출원 제 10-2016-0177069호 및 2017년 2월 27일자 한국 특허 출원 제 10-2017-0025593호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 우수한 가공성과 함께 개선된 기계적 물성 및 투명성을 갖는 올레핀 중합체 및 이의 제조 방법에 관한 것이다.
【발명의 배경이 되는 기술】
선형 저밀도 폴리에틸렌 ( l inear low dens i ty po lyethyl ene ; LLDPE)은 중합 촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되는 것으로, 분자량 분포가 좁고, 일정한 길이의 단쇄 분지를 가지며, 장쇄 분지가 없는 .수지이다. LLDPE 필름은 일반 폴라에틸렌의 특성과 더불어 파단강도와 신율어 높고, 인열강도, 낙추충격강도 . 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다. 그러나, LLDPE는 우수한 기계적 물성에 비하여 블로운 필름 (b l own f i lm) 가공성이 좋지 않다ᅳ 블로운 필름이란, 용융 플라스틱에 공기를 불어넣어 부풀리는 방식으로 제조한 필름으로서, 인플레이션 필름이라고도 불린다.
블로운 필름 가공시 고려하여야 할 요소로는 버블안정성, 가공 부하 등을 고려하여야 하며, 특히 버블안정성이 중요하게 고려되어야 한다. 버블안정성이란, 용융 플라스틱에 공기를 주입하여 필름을 제조할 때 제조되는 필름이 찢어지지 않고 형상을 유지하는 특성을 의미하며, 이는 용융 강도 (Me l t Strength ; MS)와 관련이 있다.
용융 강도는, 연화 용융상태에 대한 성형, 가공에 견디는 형체를 유지하기 위한 강도를 의미하는데, LLDPE에 비하여 저밀도 폴리에틸렌 ( low densi ty polyethylene ! LDPE)의 용융 강도가 높다. 그 이유로 LDPE의 경우 LLDPE에 비하여 결가지 사슬이 서로 얽혀있어 성형, 가공에 견디는데 보다 유리하기 때문이다. 이에, LLDPE의 용융 강도를 보완하기 위하여, LDPE( low- dens i ty polyethylene)를 블렌딩하여 필름을 제조하는 방법이 제안되었으나, 상기 방법은 LDPE를 매우 소량 첨가하더라도 기존의 LLDPE의 기계적 물성을 현저하게 저하시키는 문제를 초래하였다.
【선행기술문헌】
【특허문헌】
(특허문헌 1) 일본등록특허 계 5487089호 (2014.02.28 등록)
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 우수한 버블안정성 및 가공부하 특성을 가져 필름 제조시 우수한 가공성을 나타낼 뿐만 아니라, 개선된 기계적 특성을 가지며. 또 중합체 내 초기'저장탄성를의 제어를 통해 필름 제조시 투명도를 향상시킬 수 있는 올레핀 중합체를 제공하기 위한 것이다.
본 발명은 또한 상기 올레핀 중합체의 제조 방법을 제공하기 위한 것아다 .
본 발명은 또한: 상기한 올레핀 중합체의 제조에 용이한 혼성 담지 촉매를 제공하기 위한 것이다.
본 발명은 또한 상기한 을레핀 중합체를 포함하여 고투명성을 나타내는 필름을 제공하기 위한 것이다ᅳ
【과제의 해결 수단】
발명의 일 구현예에 따르면, 하기 수학식 1에 따라 결정되는 해이즈 파라미터가 11 이하인 을레핀 중합체가 제공된다:
[수학식 1]
헤이즈 파라미터 =0.0036 X G ' + 6.25 + 400 X (D-0.920)
상기 수학식 1에서,
D는 ASTM D792에 따라 측정한 상기 올레핀 중합체의 밀도이고,
G '은 ARES 레오미터를 이용하여 동적 변형 스위프 주파수 모드로 변형율 (strain) 5% 및 0.05 rad/s의 조건에서 측정한 저장탄성률 ( storage modulus)이다.
상기 올레핀 중합체는 저장탄성률이 1500 dyn/cm2 이하일 수 있다. 상기 올레핀 중합체는 밀도가 0.910 g/cm3 내지 0.930 g/cm3일 수 있다 또, 상기 올레핀 중합체는 하기 수학식 2에 따라 결정되는 강도인자 (SF)가 50 이상일 수 있다:
[수학식 2]
SF = Mw/104 + 5/(Mw/105) x exp (신장 점도 증가 비율)
상기 수학식 2에서, Mw는 중량평균분자량을 의미하고, 신장 점도 증가 비율은 상기 을레핀 중합체에 대하여 ARES 레오미터 (A contro l led-rate shear rheometer ) 에 부착된 신장 점도 장치를 이용하여 170 °C에서 헨키 변형률 1
S"1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 .점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기울기를 유지하면서 , 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다.
상기 올레핀 중합체는 선장 점도 증가 비율이 2.0 이상일 수 있디- . 상기 올레핀 중합체는 ASTM D1238 규격에 따라: 190 °C의 온도 : 및 2. 16 kg의 하중 하에서 측정된 용융 지수가 0.3 g/ 10m in 이상 4 g/ 10m in 미만일 수 있다.
상기 올레핀 중합체는 수평균분자량이 20 , 000 g/mol 내지 60 , 000 g/nx l일 수 있다.
상기 올레핀 중합체는 중량평균분자량이 90 , 000 g/mol 내지 160 , 000 g/mol일 수 있다.
상기 올레핀 중합체는 ISO 1133에 따라 190 °C의 온도 및 21.6kg의 하중 하에서 측정된 용융 유동를 (MFR2L 6)을 ISO 1133에 따라 190 0C의 온도 및 2. 16kg의 하중 하에서 측정된 용융 유동률 (MFR2.16)로 나눈 MFRR(21.6/2. 16)이 18 이상 40 미만일 수 있다.
상기 올레핀 중합체는 용융 강도 (Mel t Strength)가 50 mN 내지 100 mN일 수 있다. 상기 올레핀 중합체는 에틸렌과 알파올레핀의 공중합체일 수 있으며, 보다 구체적으로는 에틸렌 -1-핵센 공중합체일 수 있다.
한편, 발명의 다른 일 구현예에 따르면, 담체, 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 제 1 전이 금속 화합물 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 제 2 전이 금속 화합물을 포함하는 흔성 담지 촉매 존재 하에, 올레핀 단량체를 중합 반웅시키는 단계를 포함하는 상기 올레핀 중합체의 제조 방법이 제공된다:
Figure imgf000006_0001
상기 화학식 1에서,
은 Ti, Zr 또는 Hf이고,
및 ¾는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
T은 C , Si , Ge , Sn또는 Pb이며,
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기 및 탄소수 5 내지 20의 해테로아릴기 중 어느 하나이고,
Ri 내지 ¾는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 R14는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 :중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며,
Figure imgf000007_0001
상기 화학식 2에서,
M2는 Ti , Zr 또는 Hf이고,
¾ 및 X4는 서로 동일하거나 상이하며 각각 독립적으로 할로겐ᅳ 니트로기. 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기. 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
T2는 T3(Q3) (Q4) 및 탄소수 2 내지 5의 알킬렌기 중 어느 하나이며 , 상기 T3은 C , Si . Ge , Sn 또는 Pb이고,
Qs 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기. 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이거나; 또는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족의 탄화수소 고리를 형성하며 ,
¾1 내지 4는 서로 동일하거나 상이하며 , 각각 독립적으로 수소 , 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 .20의 아릴기 20의 아릴기 중 어느 하나이고, -
R3i 내지 8은 서로: ' 동일하거나 상이하며 , 각각 독립적으로 수소 , 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 20의 아릴기 중 어느 하나이거나, 또는 ι 내지 R38 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
구체적으로, 상기 화학식 1에서, 1은 Si이고, h 및 ¾는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나일 수 있다.
보다 구체적으로, 상기 제 1 전이 금속 화합물은 하기 화학식 la 및 lb로 표시되는 화합물 중 어느 하나일 수 있다:
Figure imgf000009_0001
상기 화학식 la 및 lb에서,
; Rl5 내지 Ri8은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1.내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고,
1은 0 내지 5 사이의 정수이며,
Ph는 페닐기이다.
또, 상기 화학식 2에서, R21 내지 R24 중 적어도 하나는 탄소수 2 내지
20의 알콕시알킬기이고, 나머지 작용기는 수소일 수 있다. 또, 상기 화학식 2에서, T2는 T3(Q3) (Q4)이고, 상기 T3은 C이고, ¾ 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지. 20의 알킬기이거나, 또는 서로 연결되어 탄소수 3 내지 12의 사이클로알킬기, 또는 탄소수 6 내지 12의 아릴기를 형성한다.
보다 구체적으로, 상기 제 2 전이 금속 화합물은
Figure imgf000010_0001
상기 흔성 담지 촉매에서 상기 담체는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물일 수 있다.
상기 흔성 담자 촉매에서 상기 제 1 전이 금속 화합물과 상가 제 2 전이 금속 화합물은 50 : 1 내지 1 : 1의 중량비로 포함될 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 담체, 상기 담체에 담지되어 있으며 상기 화학식 1로 표시되는 제 1 전이 금속 화합물 및 상기 담체에 담지되어 있으며 상기 화학식 2로 표시되는 제 2 전이 금속 화합물을 포함하는 혼성 담지 촉매가 제공된다. ;
본 발명의 또 다른 일 구현예에 따르면 상기한 올레핀 중합체를 포함하며, ISO 14782에 따라 측정한 해이즈가 10% 이하인 블로운 필름이 제공된다.
【발명의 효과】
본 발명의 일 구현예에 따른 을레핀 중합체는, 우수한 버블안정성 및 가공부하 .특성을 가져 필름 제조시 우수한 가공성을 나타낼 뿐만 아니라, 개선된 기계적 특성을 가지며, 또 중합체 내 초기 저장탄성률의 제어를 통해 필름 제조시 투명도를 향상시킬 수 있다. 이에 따라 우수한 기계적 강도와 고가공성 및 투명성이 요구되는 다양한 제품의 원료로서 유용할 수 있다. 특히, 상기 올레핀 중합체의 우수한 가공성은 멜트 블로운 공법에 의한 필름 제조시 안정적인 필름 생성을 가능하도록 하여 멜트 블로운 공법에 의해 제조되는 제품 원료로 유용할 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1 및 비교예 1, 2의 올레핀계 공증합체의 진동수에 따른 초기 저장탄성률을 관찰한 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현올 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배:제하지 않는 것으로.이해되어야 한다. ..
발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 이하, 발명의 구체적인 구현예에 따른 올레핀 중합체 및 상기 올레핀 중합체의 제조 방법 등에 대해 설명하기로 한다.
종래 LLDPE는 우수한 기계적 물성에 비하여 블로운 필름 (blown f i lm) 가공성이 좋지 않다 . 이를 개선하기 위해 필름 제조시 LDPE를 흔합하여 가공성을 좋게 하지만, 인장강도, 충격강도등과 같은 필름 물성은 저하되는 문제가 있다. 이에 대해 본 발명에서는 mLLDPE (Metal locene l inear low-dens i ty polyethylene)에 LCB( long chain branch)를 도입함으로써 기계적 특성과 함께 버블안정성 및 가공부하 특성을 개선시키고, 더 나아가 초기 저장탄성률의 제어를 통해 필름 제조시 투명도를 향상시킬 수 있다. 즉, 발명의 일 구현예에 따르면 하기 수학식 1에 따라 결정되는 헤이즈 파라미터가 11 이하인 올레핀 중합체가 제공된다:
[수학식 1]
헤이즈 파라미터 =0.0036 X G ' + 6.25 + 400 (D-0.920)
상기 수학식 1에서,
D는 ASTM D792에 따라 측정한 상가 올레핀 중합체의 밀도이고,
G '은 ARES 레오미터를 이용하여 동적 변형 스위프 주파수 모드로 변형을 (strain) 5% 및 0.05 rad/s의 조건에서 측정한 저장탄성률 ( storage modulus)이다.
보다 구체적으로는 상기 일 구현예에 따른 올레핀 중합체는 상기 수학식 1에 따라 결정되는 헤이즈 파라미터가 5 내지 10, 보다 더 구체적으로는 7 내지 9.5인 것일 수 있다. .
본 발명에 있어서, 헤이즈 파라미터는 올레핀 중합체의 초기 저장탄성를과 밀도에 의해 올리핀 중합체의 투명도를 수치화한 것으로, 그 값은 필름의 헤이즈 특성와 유사한 경향을 나타낸다. 즉 올레핀 중합체의 헤이즈 파라미터가 작을수록 이를 이용하여 제조한 필름의 헤이즈 값이 작아지고, 그 결과로서 필름은 보다 개선된 투명도를 나타낼 수 있다. 상기 헤이즈 파라미터는 저장탄성율 및 밀도가 작을수록 낮아진다.
한편, 올레핀 중합체의 초기 저장탄성률 (storage modul us (G ' )은 탄성에 의한 손실없이 저장되는 에너지로서, 시간에 무관하며 주파수 ( ω )에 의존하는 물질함수이다. 저장탄성률은 고분자 tai l 또는 LCB 함량 조절을 통한 분자구조 설계에 의해 제어되는 것으로, 필름의 헤이즈에 영향을 미치는 중요 인자이다. 저장탄성를이 작을수록 필름 제조시 표면 요철이 감소하게 되고, 그 결과 필름의 헤이즈 값이 작아지며 우수한 투명성을 나타낼 수 있다. 발명의 일 구현예에 따른 올레핀 중합체는 구체적으로 초기 저장탄성률 (storage modulus)이 1500 dyn/cm2 이하, 보다 구체적으로는 500 dyn/cni2 내지 1000 dyn/cm2, 보다 더 구체적으로는 700 dyn/cm2 내지 900 dyn/cm2일 수 있다. 상기한 바와 같이 낮은 초기 저장탄성률을 가짐으로써 헤이즈 특성 개선효과가 우수하며, 그 결과 고투명성의 필름 제조가 가능하다.
또, 상기 발명의 일 구현예에 따른 올레핀 중합체는 하기 수학식 2에 따라 결정되는 강도인자 (SF , strength factor )가 50 이상, 구체적으로는 60 이상, 보다 구체적으로는 65 이상으로 높은 특징을 가져, 우수한 버블안정'성을 나타낼 수 있다:
[수학식 2]
SF = Mw/104 + 5/(Mw/105) x exp (신장 점도 증가 비율)
상기 수학식 2에서, Mw는 중량평균분자량을 의미하고ᅳ
신장 점도 증가 비율은 상기 을레핀 중합체에 대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170 3C에서 헨키 변형률 . 1 s— 1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 점도가 시간에 따라 일정.하게 증가하는 구간의 평균 기을기를 갖는 직선을, 상기 평균 기을기 * 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다.
상기 수학식 2에 올레핀 중합체의 중량평균분자량과 신장 점도 증가 비율을 대입하여 계산되는 SF를 통해 올레핀 증합체 내의 LCB 함량을 수치화할 수 있다. 올레핀 증합체의 물성 중 하나인 용융강도 (MS , me l t strength)도 올레핀 중합체 내의 LCB 함량에 따라 증가하는 경향을 보인다. 그러나, 용융강도는 올레핀 중합체의 분자량이 작을 경우 분자량이 큰 경우에 비해 LCB 함량 변화에 더 크게 영향을 받아 LCB 함량을 정확하게 예측하는데 한계가 있다. 이에 반해, 상기 수학식 2로 계산되는 SF는 수학식 2에 중량평균분자량 인자를 포함시켜 다양한 분자량을 가지는 올레핀 중합체의 LCB 함량을 객관적으로 예측할 수 있다.
상기 수학식 2의 중량평균분자량 (Mw)은 겔 투과 크로마토그래피 (GPC , gel permeat i on chromatography, Water사 제조)를 이용하여 측정한 표준 폴리스티렌에 대한 환산 수치이다. 그러나, 상기 중량평균분자량은 이에 한정되는 것은 아니며 본 발명이 속한 기술분야에 알려진 다른 방법으로 측정될 수 있다.
또 상기 수학식 2의 신장 점도 증가 비율은 올레핀 중합체에 대하여 5 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170 °0게서 헨키 변형률 1 로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이다. 구체적으로, ARES 레오미터에 부착된 신장 점도 장치를 이용하여 올레핀 중합체의 신장 점도를 측정하면 시간에 따른 신장 점도 (단위: Pa . s ) 변화를 확인할 수 있는 그래프를 얻을 수 있다.
종래 LLDPE의 경우에는 시간에 따라 신장 점도가 일정하게 증가하는 경향을 보이나, 신장 점도가 급격하게 증가하는 변형 경화성 ( strain hardening)을 보이지 않는다. 반면, 본 발명의 일 구현예에 따른 올레핀 . 중합체의 경우에는 시간에 따라 신장 점도가 일정하게 층가하다가 신장 점도가 급격히 증가하는 변형 경화성 ( strain hardening)을 보이게 된다. 이러한 변형 경화성이 심하게 나타날수록, 즉 신장 점도가 보다 급격히 증가할수톡, 올레핀
- : . 중합체 내의 LCB 함량이 많다고 예측할 수 었으며, 더 나아가 올레핀 증합체 * 이용하여 필름 형성 시에 보다 우수한 가공성을 나타낼 것으로 예측할 수 있다. 일반적으로, LCB가 많은 LDPE의 경우 변형 경화성이 더욱 심하게 나타나는 것이 확인된다.
상기 변형 경화성의 정도를 수치화하기 위해 다음과 같은 기준으로 신장 점도 증가 비율을 구하였다. 구체적으로, 상기 신장 점도 증가 비율은 측정된 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눠 구하였다. 여기서, 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기울기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선을 의미한다. 상기 신장 점도가 시간에 따라 일정하게 증가하는 구간은 X축 (시간)이 0. 001 초 내지 1 초, 0. 001 초 내지 0. 5 초 혹은 0.01 초 내지 0. 5초인 구간을 의미하고, 신장 점도가 급격히 증가하는 구간은 신장 점도가 시간에 따라 일정하게 증가하는 구간 이후의 구간, 즉 X축 (시간)이 0.5초를 초과하는 구간 혹은 1 초를 초과하는 구간을 의미한다. 따라서, 상기 외삽 직선은 X축 (시간)이 0.001 초 내지 1 초, 0.001 초 내지 0.5 초 혹은 0.01 초 내지 0.5초인 구간의 직선을 상기 직선의 기울기를 유지하면서 즉 X축 (시간)이 0.5 '초 흑은 1 초를 초과하는 구간까지 연장한 직선을 의미한다. 일 예로, 외삽 직선은 Originpro 8.6 프로그램 내에서 Extrapolate를 이용하여 얻을 수 있다. 구체적으로, Extrapolate Manu에서 X축의 구간을 0.이부터 0.5까지로 지정하여 얻은 직선 (시간에 따라 실제 측정된 신장 점도의 그래프)을 신장 점도가 급격히 증가하는 구간까지 연장하여 외삽된 직선을 얻올 수 있다ᅳ 이때, 외삽된 직선을 얻기 위해 Method는 B一 Spline을 사용하며 Apprent interpolat ion을 Extrapolate Manu 내에서 사용한다.
또, 상기 발명 일 구현예에 따른 올레핀 중합체는 신징- 점도 증가 비율이 2.0 이상으로 우수한 기계적 강도를 유자하면서 개선된 가공성을 나타낼 수 있다. 또 상기 신장 점도 증가 비율의 상한은 충분한 기계적 강도를 유지하기 위해 5 이하, 보다 구체적으로는 2.5 이하로 조절될 수 있다.
또, 상기.수학식 2로 계산되는 SF는 그 값이 높을수록 필름 형성 시의 - 우수한 가공성을 담보할 수 있어 상기 SF의 상한은 특별히 한정되지 않는다. : 비제한적인 예로, :상기 SF는 200 이하, 구체적으로는 150 이하.로 조절될 수 ol L
상기 발명의 일 구현예에 따른 올레핀 중합체는 기존와 LLDPE의 우수한 기계적 물성을 유지하기 위해 LLDPE에 준하는 물성을 나타낼 수 있다.
일 예로, 상기 올레핀 중합체는 밀도가 0.910 g/cm3 내지 0.930 g/cm3일 수 있다.
상기 올레핀 증합체는 수평균분자량이 20,000 g/mol 내지 60,000 g/niol이고, 중량평균분자량이 90,000 g/mol 내지 160, 000 g/mo 1일 수 있다. 상기 올레핀 중합체는 ASTM D1238 규격에 따라 190 °C의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수 (Melt Index; MI)가 0.5 g/ 10m in 이상 3 g/lOmin 미만일 수 있다.
또, 상기 올레핀 중합체는 ISO 1133에 따라 190 0C의 은도 및 21.6kg의 하중 하에서 측정된 용융 유동률 (MFR21.6)을 ISO 1133에 따라 190 °C의 온도 및 2. 16kg의 하중 하에서 측정된 용융 유동률 (MFR2.16)로 나눈 MFRR(21.6/2. 16)이 20 이상 40 미만일 수 있다.
또, 상기 올레핀 중합체는 190 0C에서 측정한 용융 강도 (MS)가 50 mN 내지 100 mN , 보다 구체적으로는 60 mN 내지 75 mN 인 것일 수 있다.
본 발명에 있어서, 상기 용융 강도는 종횡비 (길이 30 mm/직경 2 mm)가
15인 캐필러리 (cap i l l ary)가 장착된 레오미터에 용융된 저밀도 폴리에틸렌 공중합체를 채운 후. 전단속도 72/s로 하여 스트랜드를 제조하고, 이를 가속 휠로 초기 속도 18 mm/s , 가속도 12 mm/s2으로 일축 연신하면서 파단시까지의 힘 (niN)을 측정하는 방법으로 측정할 수 있다. 이때 측정 조건은 하기와 같다.
- 캐필러리 ( cap i l l ary) : 길이 30 mm ,. 직경 2 mm . 전단 속도 72/s
- 휠 (whee l ) : 초기 속도 18 mm/s , 가속도 12 mm/s2
만일 상기 수학식 1에 따라 계산되는 헤이즈 파라미터 및 수학식 2에 따라 계산되는 SF가 상술한 범위를 만족한다 하더라도, , LDPE와 같이 상술한 밀도, 수평균분자량, 중량평균분자량, 용융 지수, MFRR , MS , 등을 만족하지 못하면 충분한 기계적 강도를 나타내지 못해 가공성이 우수하다 하더라도 실제 제품에 적용하기 어려을 수 있다. 상기 일 구현예에 따른 을레핀 중합체는 싱술한 물성 중 적어도 어느 하나의 물성을 가질 수 있으며, 우수한 기계적 강도를 나타내기 :위해 상술할 물성 모두를 가질 수.있다. ' 이러한 물성을 나타내는 올레핀 중합체는 예를 들면, 에틸렌과 알파올레핀의 공중합체일 수 있다. 이때, 상기 알파올레핀은 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1—헵텐, 1-옥텐, 1-데센. 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센 및 이들의 흔합물을 포함하는 것일 수 있다. 이 증에서도 상기 을레핀 중합체로는 에틸렌과 1-핵센의 공중합체일 수 있다. 상기 일 구현예에 따른 을레핀 중합체가 상술한 공중합체인 경우 상술한 물성을 보다 용이하게 구현할 수 있다. 그러나, 상기 일 구현예에 따른 을레핀 중합체의 종류가 상술한 종류에 한정되는 것은 아니며, 상술한 물성을 나타낼 수 있다면 본 발명이 속한 기술분야에 알려진 다양한 종류의 것으로 제공될 수 있다. 한편, 발명의 다른 구현예에 따르면, 상기한 물성적 특징을 갖는 올레핀 중합체의 제조방법이 제공된다.
구체적으로 , 상기 올레핀 중합체의 제조 방법은 담체 , 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 제 1 전이 금속 화합물 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 제 2 전이 금속 화합물을 포함하는 혼성 담지 촉매 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함할 수 있다.
Figure imgf000017_0001
상기 화학식 1에서,
^은 Ti , Zr 또는 Hf이고,
Xi 및 ¾는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기. 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기. 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
^은 C, S i , Ge , Sn 또는 Pb이며,
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 해테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고,
Ri 내지 R6는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수
1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기. 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 R14는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수
1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수
6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며,
Figure imgf000018_0001
상기 화학식 2에서,
Μ2는 Ti, Zr 또는 Hf이고,
¾ 및 X4는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기 , 탄소수 Ί 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
T2는 T3(Q3) (Q4) 및 탄소수 2 내지 5의 알킬렌기 중 어느 하나이며, 상기 T3은 C, Si , Ge , Sn 또는 Pb이고,
Qs 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알ᅳ콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이거나; 또는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족의 탄화수소 고리를 형성하며 .
¾ι 내지 4는 서로 동일하거나 상이하며., 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 20의 아릴기 중 어느 하나이고; - - R3i 내지: '.R38은 서로 동일하거나 상어하며, 각각 독립적으≤: 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 20의 아릴기 중 어느 하나이거나, 또는 R31 내지 R38 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
할로겐 (halogen)은 불소 (F) , 염소 (C1 ) , 브롬 (Br ) 또는 요오드 ( I )일 수 있다.
탄소수 1 내지 20의 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 1 내지 20의 알킬기는 탄소수 1 내지 20의 직쇄 알킬기; 탄소수 1 내지 10의 직쇄 알킬기; 탄소수 1 내지 5의 직쇄 알킬기; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬기; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬기; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알킬기는 메틸기, 에틸기, n- 프로필기, i so-프로필기, n-부틸기, i s으부틸기, tert-부틸기 , ή-펜틸기, i so- 펜틸기, neo-펜틸기 또는 사이클로핵실기 등일 수 있다.
탄소수 2 내지 20의 헤테로사이클로알킬기는 산소, 질소 또는 황 등으로 예시되는 하나 이상의 탄소 이외의 원자를 포함하는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 2 내지 20의 헤테로사이클로알킬기는 탄소수 2 내지 15의 헤테로사이클로알킬기, 탄소수 2 내지 10의 헤테로사이클로알킬기 또는 탄소수 4 내지 7의 헤테로사이클로알킬기일 수 있다. 보다 구체적으로, 탄소수 2 내지 20의 헤테로사이클로알킬기는 에폭시기, 테트라하이드로퓨라닐기, 테트라하이드로파이라닐0^ £11^(1 ^1 1 )기, 테트라하이드로싸이오페닐 ( tetrahydrothiophenyl )기 . 또는 테트라하이드로피를릴 ( tetrahydropyrrolyl )기 등일 수 있다.
탄소수 1 내지 20의 알콕시기는 직쇄, 분지쇄 또는 고리형 알콕시기일 수 있다. 구체적으로, :판소수 1 내지 20의 알콕시기는 탄소수 1 :내지 20의 직쇄 알콕시기; .탄소수 : 1 내지 10의 직쇄 알콕시기; 탄소수 1'내지 5의 직쇄 알콕시기; 탄소수 3 내지 20의 분지쇄 또는 고리형 알콕시기; 탄소수 3 내지 15의 분지쇄 또는 고리형 알콕시기; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알콕시기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알콕시기는 메톡시기, 에특시기, n-프로폭시기. i so-프로폭시기, n-부톡시기, i so- 부특시기, tert-부록시기, n-펜록시기, i so—펜흑시기, neo-펜록시기 또는 사이클로핵록시기 등일 수 있다.
탄소수 2 내지 20의 알콕시알킬기는 ᅳ Ra-0-Rb를 포함하는 구조로 알킬기 (_Ra)의 하나 이상의 수소가 알콕시기 (-0-Rb)로 치환된 치환가일 수 있다. 구체적으로, 탄소수 2 내지 20의 알콕시알킬기는 메록시메틸기, 메특시에틸기, 에톡시메틸기, i so-프로폭시메틸기, i so-프로폭시에틸기, i so- 프로폭시핵틸기, tert-부특시메틸기, tert-부록시에틸기 또는 tert- 부록시핵실기 등일 수 있다. 탄소수 1 내지 20의 실릴기는 -SiH3의 하나 이상의 수소가 알킬기 또는 알콕시가로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴기는 메틸실릴기, 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기, 다이메틸프로필실릴기, 메.록시실릴기, 다이메톡시실릴기, 트라이메톡시실릴기, 다이메특시에특시실릴기, 다이에톡시메틸실릴기 또는 다이메톡시프로필실릴기 등일 수 있다.
탄소수 1 내지 20의 실릴알킬기는 알킬기의 하나 이상의 수소가 실릴기로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴알킬기는 다이메특시프로필실릴메틸기 등일 수 있다.
탄소수 1 내지 20의 실릴옥시알킬기는 알킬기의 하나 이상의 수소가 실릴옥시기로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴옥시알킬기는 다이메특시프로필실릴옥시메틸기 등일 수 있다ᅳ
탄소수 2 내지 20의 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 '있다. 구체적으로, 탄소수 2 내지 20의 알케닐기는 탄소수 2 내지 20의 직쇄 알케닐기, 탄소수 2 내지 10의 직쇄 알케닐기, 탄소수 2 내지 5의 직쇄 알케닐기, 탄소수 3 내지 20의 분지쇄 알케닐기, 탄소수 3 내지 15의 분지쇄 알케닐기, 탄소수 3 내지 10의 분지쇄 알케날기, 탄소수 5 내지 20와 고리형 알케닐기 또는 탄소수 5 내지 10의 고리형 알케닐기일 수 있다, 보다 구체적으로, 탄소수 2 내지 20의 알케닐기는 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 또는 사이클로핵세닐기 등일 수 있다.
탄소수 1 내지 20의 카흑실레이트는 -COOR"^ 구조로 Rc는 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 상기 하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기 및 아릴기 등을 포함할 수 있다. 구체적으로, 탄소수 1 내지 20의 카복실레이트는 피발레이트 (pival ate) 등일 수 있다.
탄소수 6 내지 20의 아릴기는 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 또한, 상기 아릴기는 알킬기의 하나 이상의 수소가 아릴기로 치환된 아르알킬기 (aralkyl groLip)을 포함하는 의마로 사용될 수 있다. 구체적으로, 탄소수 6 내지 20의 아릴기는 페닐기, 나프틸기, 안트라세닐기 또는 벤질기 등일 수 있다. 탄소수 5 내지 20의 헤테로아릴기는 산소, 질소 및 황 등으로 예시되는 하나 이상의 탄소 이외의 원자를 포함하는 고리형 아릴기일 수 있다. 구체적으로, 탄소수 5 내지 20의 헤테로아릴기는 탄소수 5 내지 15의 헤테로아릴기 또는 탄소수 5 내지 10의 헤테로아릴기일 수 있다. 보다 구체적으로, 탄소수 5 내지 20의 헤테로아릴기는 퓨라닐 ( furanyl )기, 파이라닐 (pyranyl )기, . 싸이오페닐 ( thi ophenyl )기 또는 피를릴 (pyrrolyl )기 등일 수 있다.
탄소수 1 내지 20의 술포네이트기는 -0-S02-Rd의 구조로 Rd는 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 술포네이트기는 메탄설포네이트기 또는 페닐설포네이트기 등일 수 있다.
탄소수 1 내지 20의 술폰기는 -Re '-S02-Re"의 구조로 여기서 Re ' 및 Re"는 서로 동일하거나 상이하며 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 술폰기는 메틸설 Ϊ닐메틸기, 메틸설포닐프로필기, 메틸설포닐부틸기 또는 페닐설포닐프로필기 둥일 수 있다.
또한, 본 명세서에서 서로 인접하는 한 쌍 이상의 치환기가 서로 :연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성한다는 것은 서로 인접하는 2개의; 치환기의 쌍 중에서 한 쌍 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성하며, 상기 지방족 또는 방향족 고리는 임의의 치환기에 의하여 치환될 수 있음을 의미하는 것이다. 예를 들어, 화학식 2의 서로 인접하는 한 쌍의 치환기 R36 및 R37은 서로 연결되어 치환 또는 비치환된 방향족'고리 , 일례로 벤젠 고리를 형성할 수 있도 있고, 또는 치환 또는 비치환된 지방족 고리, 일례로 사이클로핵산 고리를 형성할 수 도 있다.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기, 할로겐, 알킬기, 해테로사이클로알킬기, 알콕시기, 알케닐기, 실릴기, 포스파인기, 포스파이드기, 술포네이트기, 술폰기, 아릴기 및 헤테로아릴기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다. 발명의 일 구현예에 따른 을레핀 중합체는 제조시 상기한 화학식 1로 표시되는 제 1 전이 금속 화합물과 화학식 2로 표시되는 제 2 전이 금속 화합물이 흔성 담지된 촉매를 이용함으로써, LLDPE에 LCB가 도입된 구조를 가질 수 있으며, 이에 따라 상술한 수학식 1로 계산되는 헤이즈 파라미터가 상술한 범위를 만족할 수 있으며, 그 결과 우수한 기계적 물성과 가공성. 그리고 투명성을 동시에 나타낼 수 있다. 이에 따라 본 발명의 또 다른 일 구현예에 따르면 상기한 올레핀 중합체 제조에 유용한 흔성 담지 촉매가 제공된다.
이하, 발명의 일 구현예에 따른 올레핀 중합체 제조에 사용가능한 흔성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법에 대해 보다 상세히 설명한다.
본 발명의 일 구현예에 따른 올레핀 중합체의 제조에 사용가능한 흔성.담지 촉매는 상기 제 1 및 제 2 전이 금속 화합물; 및 상기 전이금속 화합물을 담지하는 담체를 포함하며, 선택적으로.조촉매를 더 포함할 수 있다. 구체적으로. 상기 화학식 1로 표시되는 제 1 전이 금속 화합물은 서로 다른 리간드로 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드를 포함하며, 상기 서로 :다른 리간드는 - ¾) (¾)一에 의하여 가교되어 있고. 또 상기 서로 다른 리간드 사이에 MiOdXXs)가 존재하는 구조를 '가진 , 이러한 특정 구조를 가지는 저 U 전이 금속 화합물을 적절한 방법으로 활성화시켜 을레핀의 중합 반응에 촉매로 이용하면, 높은 활성을 나타내며, LLDPE에 LCB의 도입으로 우수한 가공성과 함께 개선된 헤이즈 특성을 갖는 올레핀 중합체를 제조할 수 있다.
또, 상기 화학식 1로 표시되는 제 1 전이 금속 화합물의 구조 내에서 사이클로펜타다이에닐 리간드는, 예를 들면, 을레핀 단량체의 중합 활성과 올레핀 중합체의 물성에 영향을 미칠 수 있다. 특히, Ri 내지 ¾가 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나일 경우, 보다 구체적으로 메틸기, 에틸기, 프로필기 등꾀 탄소수 1 내지 6의 알킬기인 경우 상기 화학식 1의 전이 금속 화합물로부터 얻어진 촉매는 을레핀 중합 공정에서 매우 높은 활성을 나타낼 수 있고 원하는 물성꾀 올레핀 중합체를 제공할 수 있다. 또한, 상기 화학식 1로 표시되는 제 1 전이 금속 화합물의 구조 내에서 테트라하이드로인데닐 리간드는, 예를 들면, 치환된 작용기의 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는 올레핀 중합체의 분자량을 용이하게 조절할 수 있다.
구체적으로, 상기 화학식 1에서 R5 및 ¾가 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나인 경우, 또 R7 내지 R14가 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의. 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성하는 경우, 보다 구체적으로, 상기 화학식 1에서 R5 및 ¾가 각각 독립적으로 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기 및 탄소수 2 내지 4의 알케닐기 중 어느 하나이거나, R7 내지 R14가 각각 독립적으로 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기 및 탄소수 2 내지 4의 알케닐기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성하는 경우, 상기 흔성 담지 촉메는 우수한 가공성을 가지는 을레핀 중합체를 제공할 수 있다.
상기 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드는 - 에 꾀하여 가교되어 우수한 안정성을 나타낼 수 있다.
이러한 효과를 더욱 효과적으로 담보하기 위하여 Q 및 Q2가 각각 독립적으로 탄소수 1 내지 20의 알킬기 , 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나일 수 있으며, 보다 구체적으로는 C 및 Q2가 서로 동일하며 메틸기, 에틸기, 프로필기, 부틸기 등의 탄소수 1 내지 10의 알킬기; 페닐기 등의 탄소수 6 내지 12의 아릴기 ; 탄소수 7 내지 13의 알킬아릴기 및 벤질기 등의 탄소수 7 내지 13의 아릴알킬기 중 어느 하나일 수 있다. 그리고, 1은 C 또는 Si이거나; 혹은 Si일 수 있다.
한편, 가교된 사이클로펜타다이에닐 리간드와 테트라하이^로인데닐 리간드 사이에는 ( ) (¾)이 존재하는데, ( ) ( )는 금속 착물의 보관 안정성에 영향을 미칠 수 있다.
이러한 효과를 더욱 효과적으로 담보하기 '위하여 및 ¾가 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나일 수 있으며, 보다 구체적으로, 및 ¾가 각각 독립적으로 F , CI , Br 또는 I일 수 있다. 그리고, ^은 Ti , Zr 또는 Hf이거나; Zr 또는 Hf이거나; 혹은 Zr일 수 있다.
하나의 예시로 보다 향상된 가공성을 가지는 을레핀 중합체를 제공할 수 있는 게 1 전이 금속 화합물로는 하기 화학식 la 및 lb로 표시되는 화합물을 예시할 수 있다.
Figure imgf000025_0001
상기 화학식 la 및 lb에서 ,
Rl5 내지 Ris은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기. 탄소수 1 내지 20의 실릴옥시알킬기. 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고,
1은 0 내지 5 사이의 정수이며,
Ph는 페닐기이다.
상기 화학식 la 및 lb에서 테트라하이드로인데닐 리간드의 치환기인 R15 내지 R18은 보다 우수한 가공성을 가지는 을레핀 중합체 제공을 위해 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기 및 탄소수 6 내지 12의 아릴기 중 어느 하나이거나; 혹은 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기, 탄소수 2 내지 4의 알케닐기 및 탄소수 6 내지 12의 아릴기 중 어느 하나일 수 있다.
상기 화학식 1로 표시되는 제 1 전이 금속 화합물은 공지의 반응들을 웅용하여 합성될 수 있다. 구체적으로는 테트라하이드로인데닐 유도체와 사이클로펜타디엔 유도체를 브릿지 화합물로 연결하여 리간드 화합물을 제조한 다음, 금속. 전구체 화합물을 투입하여 메탈레아션 (metal l at i on)을 수행함으로써 제조될 수 있으나 이에 한정되는 것은 아니며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다. 또, 상기 화학식 2로 표시되는 제 2 전이 금속 화합물은, 사이클로펜타다이에닐 라간드와 플루오레닐 리간드를 포함하는 비대칭적 구조를 가지며, 상기 사이클로¾타다이에닐 리간드와 플루오레닐 리간드는 T2에 의해 가교되어 있고, 또 상기 서로 다른 리간드 사이에 ^OdKX^가 존재하는 구조를 가진다. 이러한 특정 구조 # 가지는 제 2 전이 금속 화합물은 상기 화학식 1로 표시되는 제 1 전이 금속 화합물과 함께 담체에 담지되어 사용됨으로써, 보다 높은 활성을 나타내며, LLDPE에 LCB의 도입으로 우수한 가공성과 함께 개선된 헤이즈 특성을 갖는 을레핀 중합체를 제조할 수 있다. 또, 상기 화학식 2로 표시되는 제 2 전이 금속 화합물의 구조 내에서 사이클로펜타다이에닐 리간드는, 예를 들면, 올레핀 단량체의 중합 활성과 을레핀 중합체의 물성에 영향을 미칠 수 있다. 특히, R21 내지 ¾4가 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나일 경우 보다 우수한 촉매 활성을 나타낼 수 있다.
또, 상기 제 2 전이 금속 화합물은 상기 사이클로펜타다이에닐기에서의 R2i 내지 4 중 적어도 하나는 탄소수 2 내지 20의 알콕시알킬기이고, 나머지 작용기는 수소일 수 있다. 보다 구체적으로, 사이클로펜타다이에닐기에 - (CH2)n-0R (이때, R은 탄소수 1 내지 6의 직쇄 또는 분지쇄 알킬기이고, n은 1 내지 10의 정수, 보다 구체적으로는 1 내지 6의 정수, 보다 더 구체적으로는 4 내지 6의 정수이다. )의 치환기를 도입함으로써. 공단량체를 이용한 폴리올레핀 제조시 상기 치환기를 포함하지 않는 다른 사이클로펜타다이에닐 리간드계 촉매에 비하여 공중합도 또는 공단량체 분포가 조절된 플리올레핀을 제조할 수 있다 · , 또, 상기와 같은 구조의 제 1 전이 금속 화합물은 담체에 담지되었을 때, 치환기 중 -(CH2)n-0R기가 담지체로 사용되는 실리카 표면의 실라놀기와 밀접한 상호작용을 통해 공유결합을 형성할 수 있어 안정적인 담지 중합이 가능하다. 보다 구체적으로, .상기 R21 내지. R24 중 적어도 하나는 메톡시메틸기, 메톡시에틸기 에톡시메틸기, i so-프로폭시메틸기, i so-프로폭시에틸기, i so— 프로폭시핵실기, tert-부록시메틸기, tert-부록시에틸기, ᅵ 및 tert- 부록시핵실기일 수 있으며, tert-부록시핵실기일 수 있다.
또한, 상기 화학식 2로 표시되는 제 2 전이 금속 화합물의 구조 내에서 플루오레닐 리간드는, 예를 들면, 치환된 작용기의 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는 을레핀 중합체의 분자량을 용이하게 조절할 수 있다.
구체적으로, 상기 화학식 2에서 R31 내지 R38은 서로 동일하거나 상이하며, 각각 독립적으로 수소,、탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10와 알콕시기, 탄소수 2 내지 10의 알콕시알킬기, 탄소수 1 내지 10의 알킬실릴기. 탄소수 1 내지 10의 실릴알킬기, 탄소수 1 내지 10의 실릴옥시알킬기, 탄소수 2 내지 10의 알케닐기 및 탄소수 6 내지 12의 아릴기 · 중 어느 하나이거나, 또는 R31 내지 R38 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 S는 방향족 고리를 형성하는 경우, 보다 구체적으로 R31 내지 8은 서로 동일하거나 상이하며. 각각 독립적으로 수소이거나, 메틸기. 에틸기, 프로필기, t -부틸기 등의 탄소수 1 내지 4의 알킬기인 경우 상기 흔성 담지 촉매는 우수한 가공성을 가지는 을레핀 중합체를 제공할 수 있다.
또. 상기 사이클로펜타다이에닐 리간드와 플루오레닐 리간드는 τ2-에 의하여 가교되어 우수한 안정성을 나타낼 수 있다.
상기 Τ2는 T3(Q3) (Q4) 및 탄소수 2 내지 5의 알킬렌기 중 어느 하나일 수 있으며, 이때, 상기 T3은 C , Si , Ge , Sn 또는 Pb이고, Q3 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 알킬기,-탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알콕시알킬기, 및 탄소수 6 내지 12의 아릴기 중 어느 하나이거나, 또는 서로 연결되어 치환 또는 비치환된 탄소수 3 내지 12의 지방족 탄화수소 고리 또는 탄소수 6 내지 12의 방향족의 탄화수소 고리를 형성할 수 있다. 또 이러한 효과를 더욱 효과적으로 담보하기 위하여 상기 T3은 C이고, ¾ 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 알킬기이거나, 또는 서로 연결되어 탄소수 3 내지 12의 사이클로알킬기, 또는 탄소수 6 내지 12의 아릴기를' ' 형성할 수 있으며, 보타 구체적으로는 ¾ 및 ¾기- 서로 동일하며 메될기, 에틸기, n- 프로필기 및 n-부틸기 중 어느 하나이거나, 또는 서로 연결되어 이루어진 사이클로핵실기일 수 있다.
한편, 가교된 사이클로펜타다이에닐 리간드와 플루오레날 리간드 사이에는 M2(X3) (X4)이 존재하는데, M2(X3) (X4)는 금속 착물의 보관 안정성에 영향을 미칠 수 있다.
이러한 효과를 더욱 효과적으로 담보하기 위하여 ¾ 및 X4가 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나일 수 있으며, 보다 구체적으로, ¾ 및 ¾가 각각 독립적으로 F , CI , Br 또는 I일 수 있다. 그리고, M2은 Ti, Zr 또는 Hf이거나; Zr 또는 Hf이거나; 혹은 Zr일 수 있다.
하나의 예시로 보다 향상된 가공성을 가지는 을레핀 중합체를 제공할 수 있는 제 2 전이 금속 화합물로는 하기 구조식으로 표시되는 화합물을 예시할
Figure imgf000029_0001
상기 화학식 2로 표시되는 제 2 전이 금속 화합물은 공지의 반웅들을 웅용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다. 한편, 상기 제 1 및 제 2 전이 금속 화합물은 상술한 구조적 특징을 가져 담체에 안정적으로 담지될 수 있다.
상기 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반웅성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수': 있다ᅳ 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물 등을 사용할 수 있으며, 이중에서도 실리카가 보다 바람직할 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 이들은 통상적으로 Na20 , K2C03 , BaS04 및 Mg(N03)2 등의 산화물, 탄산염, 황산염 . 질산염 성분을 포함할 수 있다.
상기 담체의 건조 온도는 200°C 내지 800°C가 바람직하고, 300oC 내지 600oC가 더욱 바람직하며 , 300°C 내지 400°C가 가장 바람직하다. 상기 담체의 건조 온도가 200°C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반웅하게 되고, 800oC를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 담체 —표면의 하이드록시기 양은. 0. 1 내지 10 隱 o l /g이 바람직하며 0.5 내지 5 mmo l /g일 '때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 은도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 0. 1 画 ol /g 미만이면 조촉매와의 반웅자리가 적고, 10 隱 ol /g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것알 가능성이 있기 때문에 바람직하지 않다. 또, 발명의 일 구현예에 따른 상기 흔성 담지 촉매는 촉매 전구체인 전이 금속 화합물을 활성화시키기 위하여 조촉매를 추가로 포함할 수 있다. 상기 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서. 일반적인 메탈로센 촉매 하에 올레핀을 증합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. 구체적으로, 상기 조촉매은 하기 화학식 3 내지 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
[화학식 3]
R41- [Al (R42)-0]n— ¾3
상기 화학식 3에서,
R41 , R42 및 R43은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나아고,
n은 2 이상의 정수이며,
[화학식 4]
D(R44)3
상기 화학식 4에서,
D는 알루미늄 또는 보론이고,
R44는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 하이드로카빌기, 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며, [화학식 5]
[L-H] + [Z(A)4]_ 또는 [L] + [Z(A)4r
상기 화학식 5에서,
L은 중성 또는 양이온성 루이스 염기이고, H는 수소 원자이며,
Z는 13족 원소이며, A는 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기; 탄소수 1 내지 20의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌옥시기 및 탄소수 1 내지 20의 하이드로카빌실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
상기에서 화학식 3으로 표시되는 화합물의 비제한적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 tert- 부틸알루미녹산 등을 들 수 있다. 그리고, 화학식 4로 표시되는 화합물의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄 트리이소부틸알루미늄, 트리프로필알루미늄, . 트리부틸알루미늄 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -sec—부틸알루미늄 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄 메틸디에틸알루미늄, 트리페닐알루미늄 , 트리 -P-를릴알루미늄 디메틸알루미늄메록시드 또는 디메틸알루미늄에록시드 등을 들 수 있다 마지막으로, 화학식 5로 표시되는 화합물의 비제한적인 예로는 트리메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스 (펜타폴루오로페닐)보레어트 Ν,Ν—디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 Ν,Ν—디메될아닐리늄 η- 부틸트리스 (펜타플루오로페닐)보레이트 Ν,Ν-디메틸아닐리늄 벤질트리스 (펜타플루오로페닐)보레이트 Ν,Ν-디메틸아닐리늄 테트라키스 (4-(t- 부틸디메틸실릴) -2,3,5,6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 테트라키스 (4- (트리이소프로필실릴) -2, 3, 5, 6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 펜타플루오로페녹시트리스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸 -2,4,6-트리메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν- 디'메틸아닐리늄 테트라키스 (2 , 3 , 4, 6-테트라플루오로페닐)보레이트, 핵사데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, Ν—메틸 도데실아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 또는 메틸디 (도데실)암모늄 테트라키스 (펜타플루오로페닐)보레이트 등을 들 수 있다. 상기 조촉매는 상기 전이 금속 화합물의 활성화가 층분히 진행될 수 있도록 적절한 함량으로 사용될 수 있다. 이러한 흔성 담지 촉매는, 예를 들면, 담체에 조촉매를 담지시키는 단계 및 조촉매 담지 담체에 촉매 전구체인 제 1 및 제 2 전이 금속 화합물을 담지시키는 단계로 제조될 수 있다.
구체적으로, 담체에 조촉매를 담지시키는 단계에서는, 고온에서 건조된 담체에 조촉매를 첨가하고, 이를 약 20oC 내지 120oC의 온도에서 교반하여 조촉매 담지 담체를 제조할 수 있다.
그리고, 조촉매 담지 담체에 촉매 전구체를 담지시키는 단계에서는 상기 담체에 조촉매를 담지시키는 단계에서 얻어진 조촉매 담지 담체에 전이 금속 화합물을 첨가하고, 다시 이를 약 20oC 내지 120°C의 온도에서 교반하여 담지 촉매를 제조할 수 있다.
상기 조촉매 담지 담체에 촉매 전구체를 담지시키는 단계에서는 조촉매 담지 담체에 전이 금속 화합물을 첨가하여 반한 후, 조촉매를 추가로 첨가하여 담지 촉매를 제조할 수 있다.
발명의 일 구현에에 따른 상기 혼성 담지 촉매에 있어서 사용되는 담체, 조촉매, 조촉매 ᅵ담지 담체 및 전이 금속 화합물의 함량은 :목작하는 담지 촉매의 물성 또는효과에 따라 적절하게 조절될 수 있다..
구체적으로, 발명 일 구현예에 따른 상기 흔성 담지 촉매에 있어서, 상기 제 1 전이 금속 화합물과 제 2전이 금속 화합물의 흔합 중량비는 50 : 1 내지 1 : 1, 보다 구체적으로는 20 : 1 내지 1 : 1일 수 있다. 상기한 흔합 중량비로 상기 제 1및 제 2 전이 금속 화합물을 포함함으로써, 장쇄 분지의. 길이와 개수가 조절되어, 분자량 분포의 증가 없이 용융강도를 증가시켜 우수한 버블안정성 및 블로운 필름 가공성을 갖는 을레핀 중합체의 제조에 보다 용이할 수 있다.
또, 발명 일 구현예에 따른 상기 흔성 담지 촉매에 있어서, 상기 제 1 및 제 2 전이 금속 화합물을 포함하는 전체 전이 금속 화합물 대 담체의 중량비는 1 : 10 내지 1 : 1 , 000, 보다 구체적으로는 1 : 10 내지 1 : 500일 수 있다. 상기한 범위의 중랑비로 담체 및 전이 금속 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또, 상기 흔성 담지 촉매가 조촉매를 더 포함할 경우, 조촉매 대 담체의 중량비는 1 : 1 내지 1 : 100, 보다 구체적으로는 1 : 1 내지 1 : 50일 수 있다. 상기 중량비로 조촉매 및 담체를 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.
상기 흔성 담지 촉매 제조시에 반응 용매로는 펜탄, 핵산, 헵탄 등과 같은 탄화수소 용매, 또는 벤젠, 를루엔 등과 같은 방향족 용매가 사용될 수 있다.
상기 담지 촉매의 구체적인 제조 방법은 후술하는 실시예를 참고할 수 있다. 그러나, 담지 촉매의 제조 방법이 본 명세서에 기술한 내용에 한정되는 것은 아니며, 상기 제조 방법은 본 발명이 속한 기술분야에서 통상적으로 채용하는 단계를 추가로 채용할 수 있고. 상기 제조 방법의 단계 (들)는 통상적으로 변경 가능한 단계 (들)에 의하여 변경될 수 있다.
한편, 상기 흔성 담지 촉매로 중합 가능한 올레핀 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 을레핀 등아 었으며, 이중 결합을 2개 이상 가지고 있는 다이엔 올레핀계 단량체 또는 트라이엔 올레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1- 펜텐 , 4-메틸 -1-펜텐, 1-핵센, 1ᅳ헬텐., 1-옥텐, 1-데센, 1-운데센 , 1-도데센, 1-테트라데센, 1 핵사데센, 1-아이토센: 노보넨, 노보나디엔, 에릴리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1.4-부타디엔, 1,5-펜타디엔, 1 , 6—핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3—클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 혼합하여 공중합할 수도 있다. 상기 올레핀 중합체가 에틸렌과 다른 공단량체의 공증합체인 경우에, 상기 공단량체는 프로필렌, 1—부텐, 1-핵센, 4—메틸 -1-펜텐 및 1—옥텐으로 이루어진 군에서 선택된 하나 이상의 공단량체인 것이 바람직하다.
상기 올레핀 단량체의 중합 반웅을 위하여 , 연속식 용액 중합 공정 , 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 증합 공정 등 올레핀 단량체의 중합 반웅으로 알려진 다양한 중합 공정을 채용할 수 있다. 구체적으로, 상기 중합 반응은 약 50°C 내지 110oC , 또는 약 60oC 내지 100의 은도와 약 1 내지 100kgf/cm2 또는 약 1 내지 50 kgf/cm2 압력 하에서 수행될 수 있다. 또한, 상기 중합 반웅에서, 상기 흔성 담지 촉매는 펜탄, 핵산, 헵탄, 노난, 데칸, 를루엔, 벤젠, 디클로로메탄, 클로로벤젠 등과 같은 용매에 용해 또는 희석된 상태로 이용될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할 수 있다. 상기한 제조방법에 의해, 상기한 물성적 특성을 갖는 발명의 일 구현예에 따른 올레핀 중합체가 제조될 수 있다.
상기한 물성적 특성을 갖는 발명의 일 구현예에 따른 올레핀 중합체는 기존의 전이 금속 화합물 촉매를 이용하여 중합되는 폴리올레핀과 비교하여 분자량 분포가 증가하지 않으면서도 용융 강도가 증가되어ᅳ우수한 버블안정성 및 가공부하 특성을 가지며외과 필름 제조시 우수한 가공성을 나타낼 뿐만 아니라, 우수한 기계적 물성을 갖는다. 또 초기 저장탄성을의 제어를 통해 상술한 해이즈 파라미터 조건을 충족함으로써 필름 제조시 표면 요철을 최소화할 수 있고. 그 결과 필름의 투명성을 크게 향상시킬 수 있다 . 이에 따라, 우수한 기계적 물성 및 가공성, 그리고 투명성이 요구되는 다양한 분야에 유용하게 적용될 수 있다. 특히 . 상기 을레핀 중합체는 버블안정성이 우수하여멜트 블로운 공법 등에 의해 안정적으로 블로:운 필름을 형성할 수 있디- . 구체적으로, 상기 발명의 일 구현예에 따른 을레핀 중합체는 후술하는 시험예에 기재된 바와 같이 B l ow up rat i o (BUR)를 2.7 이상으로 조절하였을 때에도 안정적으로 블로운 필름을 제공할 수 있다.
또, 상기 올레핀 증합체의 투명성 개선 효과로 인해 ISO 14782에 의거하여 측정한 Haze 값이 10% 이하, 보다 구체적으로는 0%초과 10% 이하이며 : 보다 더 구체적으로는 .0% 초과 9.51 이하의 헤이즈를 갖는 고투명성 필름, 특히 블로운 필름을 제공할 수 있다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 합성예 1: 전이 금속 화합물 (메탈로센 촉매 전구체 A)의 제조
건조된 250 mL schlenk flask에 TMCP—Li (1.3 g, 10 隱 ol), CuCN (45 mg, 5 mol%), THF (10 mL)를 투입하였다. 이어서, 상기 플라스크의 온도를 - 20 °C 이하로 넁각한 다음 dichlorodiphenylsilane (2.5 g, 10 隱 ol)을 적가하고, 얻어지는 흔합물을 상온에서 16 시간 교반하였다. 그리고, 상기 플라스크의 온도를 —20 °C 이하로 넁각한 다음 인덴 -lithiation 용액 (1.2 g,
10 mmol in THF 10 mL)올 적가하고 얻어지는 흔합물을 상온에서 24 시간 교반하였다. 이후, 얻어지는 용액을 감압 건조하여 상기 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 핵산에 용해시켜 여과하여 남아 있는 LiCl을 제거하고 진공 건조하여 여액 (filtrate)에서 핵산을 제거함으로써 디페닐 (인데닐) (테트라메틸사이클로펜타디에닐)실란을 얻었다.
100 mL schlenk flask에서 앞서 합성한 디페닐 (인데닐) (테트라메틸사이클로펜타디에닐)실란 (4.2 g, 10 隱 ol)을 THF (15 mL)에 녹였다. 그리고, 이 용액을 -20 °C 이하로 넁각한 다음, 상기 용액에 n— BuLi (2.5 M in hexane, 8.4 mL, 21 nimol)을 천천히 적가한 후, 얻어지는 용액을 상은에서 6 시간 교반하였다.
한편, 별도로 준비된 250 mL schlenk flask에서 2rCl4(THF)2 (3.8 g, 10 画이)를 를루엔 (15 mL)에 분산시킨 후, 얻어지는 혼합물을 -20 0O에서 교반하였다. 이어서, 상기 흔합물에 앞서 제조한 lithiation된 리간드 용액을 천천히 주입하였다. 그리고, 얻어지는 흔합물을 상온에서 48 시간 동안 교반하였다.
이후, 얻어지는 용액을 감압 건조하여 용액으로부터 용매를 제거하였다. 그리고,' 얻어지는 고체를 다이클로로메탄 (DCM)에 용해시킨 후 여과하여 남아 있는 LiCl을 제거하고 여액 (filtrate)을 진공 건조하여 DCM을 제거하였다. 이어서, 얻어지는 고체를 를루엔 30 mL에 넣어 16 시간 동안 교반한 후 여과하여 레몬색 고체 형상의 디페닐실릴렌 (테트라메될사이클로펜타디에닐) (인데닐)지르코늄
디클로라이드 (2.1 g, 3.6 mmol)를 얻었다 (361 yield) .
¾ NMR (500 MHz, CDC13): 8.08-8.12 (2H, m) , 7.98-8.05 (2H, m), 7.77 (1H, d), 7.47-7.53 (3H, m), 7.42-7.46 (3H, m) , 7.37-7.41 (2H, m), 6.94 (1H, t), 6.23 (1H, (1), 1.98'(3H, s), 1.95 (3H, s), 1.68 (3H. s), 1.52 (3H s). 앞서 합성한 디페닐실릴렌 (테트라메틸사이클로펜타디에닐) (인데닐)지르코늄 디클로라이드 (1.0 g, 1.7 画 ol), Pd/C (5 mol%), DCM (30 mL)를 100 mL의 고압 반응기에 주입하고, 약 20 bar의 압력까지 수소를 채웠다. 이어서, 상기 고압 반웅기에 담긴 흔합물을 약 35 °C에서 약 24 시간 동안 교반하였다. 반응이 종료되면, 반웅 생성물을 celite pad에 통과시켜 반응 생성물로부터 고체를 제거하고 디페닐실릴렌 (테트라메틸사이클로펜타디에닐 ) (테트라하이드로인데닐)지르코늄 디클로라이드 (이하, '메탈로센 촉매 전구체 A'라 함)를 얻었다 (0.65 g, 1.1 mmol, 65% yield) .
Figure imgf000036_0001
(A)
Έ NMR (CDCls, 7.26 ρρηι): 7.94 (4H, d) , 7.42-7.38 (6H, m) , 6.79 (1H d), 5.70 (1H, d), 3.11 (1H, m) , 2.80 (1H, m), 2.56 (1H, m) , 2.12 (3H, s),. 2.06 (1H, m), 2.03 (3H, m), 1.99 (1H, m) , 1.76 (3H, s), 1.72 (1H, m) , 1.58 (2H, m), 1.48 (3H, s) 합성예 2: 전이 금속 화합물 (메탈로센 촉매 전구체 B)의 제조
건조된 250 mL Schlenk flask에 2-(6—터트-부특시핵실)사이클로펜타- 1,3-디엔 (2— (6-tert-butoxyhexyl)cyclopenta-l,3— diene) 10.78 g (48.5 mmol)을 넣고 메탄올 50 mL와 아세톤 7.1 mL을 넣은 후 0 0C까지 넁각시켰다. 여기에 물 50 mL와 아세트산을 적가한 다음, 30분 동안 교반하고, 에테르로 work-up 하였다. 그중 유기층을 분리하여 MgS04로 건조시켰다. 그 결과, 2— (6- 터트-부톡시핵실 )-5- (프로판 -2-일리덴)사이클로펜타 -1, 3-디엔 (2-(6-ter t— bu t oxyhexy 1 ) -5- ( r opaan-2-y l.i dene ) eye 1 opent a- 1 , 3-d i ene ) 8.2 g (31.25 mmol 64.4 %)7 생성되었다. 건조된 250 mL Schlenk flask에 플루오렌 ( f luorene) 1.6621 g (10 mmol)을 준비하고, 에테르 40 mL에 용해시켰다. 결과의 용액의 0 °C로 냉각한 후 2.5M n-BuLi 핵산 용액 4.8 mL(12 隱 ol)을 적가하고, 상온으로 승은시킨 후 하루 동안 교반하였다. 결과로 수득된 lithiated f luorene 흔합물에, 앞서 제조한 2-(6-터트-부특시핵실) -5- (프로판 -2-일리덴)사이클로펜타 -1, 3-디엔 2.6243 g(10 瞧 ol)을 THF에 용해시켜 제조한 용액을 적가하고, 하루 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 유기층을 분리하여 MgS04로 건조하여 리간드 화합물 4.3 g(10.02 mmol, 100.2 ¾ 을 수득하였다.
NMR 기준 purity (wt%)=100 , Mw=428.65
¾ NMR (500 MHz, CDC13): 0.98 (6H, m) , 1.14 (9H, s), 1.39 (5H, m),
1.54 (5H, m). 2.93, 3.03 (1H, s), 3.29 (2H, m), 4.07 (1H, m) , 5.67, 5.98, 6.08, 6.51 (total 3H, s), 7.10 (3H. m) ; 7.31 (3H, m) , 7,78 (2H, d). 오븐에 건조한 250 mL Schlenk flask에, 상기에서 합성한 리간드 화합물을 넣고 MTBE 4 당량과 함께 틀루엔에 용해시킨 후, 2.1 당량의 n-BuLi 핵산 용액을 가하고 24시간 동안 lithiation 시켰다. Glove box 내에서 2.1 당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 에테르를 넣어 서스펜션 (suspension)을 준비하였다. 상기 두 개의 플라스크 모두 -78 0C까지 넁각시킨 다음, ligand anion을 천천히 Zr 서스펜션에 가하였다. 주입이 완료된 후, 결과의 반웅 흔합물을 천천히 상은으로 승온시키고 하루 동안 교반한 다음, 결과의 반웅물을 진공 감압하여 4 당량의 MTBE를 제거하였다. 이후 틀루엔 용액을 아르곤 하에 여과하고, 여과된 ': i체 filter cake인 LiCl을 제거하였다. 이후 filtrate로 남은 를루엔을 진공 감압을 통해 제거하고, 이전 용매 정도 부피의 핵산을 가하였다. 이후 아르곤 하에서 filter 하고, 여과로 수득한 고체를 진공 감압하에서 증발시켰다. 앞서 남은 filter cake와 fi Iterate 를 각각 NMR을 통하여 촉매 합성 여부 * 확인하고, glove box 내에서 계량하고 sampling 하여 수율 및 순도를 확인하였다. 그 결과, filter cake 3.45 g (5.86 mmol, 58.6% yield)의 분홍색 고체 촉매 (이하 '메탈로센 촉매 전
Figure imgf000038_0001
NMR 기준 purity (wt )=100%, Mw: 588.86
¾ NMR (500 MHz, CDC13): 0,17 (9H, s), 1.26 C5H, m) , 1.45 (5H. m), 2.35 (3H, s),. 2.37 (3H, s), 3.27 (2H, m), 5.43 (1H, m), 5.67 (1H, m), 6.00 (1H, m), 7.26 (2H, ni), 7.54 (2H, q) , 7.99-7.85 (2H, dd) , 8.15 (2H, ni) ' 합성예 3: 전이 금속 화합물 (메탈로센 촉매 전구체 .C)의 제조
건조된 250 niL schlenk flask에서 테트라메틸사이클로펜타디엔 (TMCP. 6.0 niL, 40 隱 ol)을 THF (60 mL)에 녹인 후 이 용액을 -78 °C로 냉각하였다. 이어서, 상기 용액에 n-BuLi (2.5 M, 17 mL, 42 隱 ol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다.
한편, 별도의 250 mL schlenk flask에서 dichlorodimethylsi lane (4.8 mL, 40 睡 ol)을 n— hexane에 녹인 후, 이 용액을 -78 °C로 넁각하였다. 이어서, 이 용액에 앞서 제조한 TMCP-lithiation 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다.
이후, 얻어지는 용액을 감압하여 상기 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 를루엔에 용해시키고, 여과하여 남아있는 LiCl를 제거하여 중간체를 얻었다 (yellow liquid, 7.0 g, 33 mmol, 83% yield).
¾ NMR (500 MHz, CDCI3): 0.24 (6H, s), 1.82 (6H, s) , 1.98 (6H, s), 3.08 (1H, s). 건조된 250mL schlenk flask에서 indene (0.93 mL, 8.0 mmol)을 THF (30 mL)에 녹인 후, 이 용액을 —78 °C로 냉각하였다. 이어서, 상기 용액에 n-
BuLi (2.5 M, 3.4 mL, 8.4 mmol)을 천천히 적가한 후, 얻어지는 용액을 상은에서 약 5 시간 동안 교반하였다.
한편, 별도의 250 mL schlenk flask에서 앞서 합성한 중간체 (1.7 g,
8.0 醒 ol)를 THF에 녹이고. 이 용액을 -78 °C로 넁각하였다. 어어서, 이 용액에 앞서 제조한 indene-lithiation 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상온에서 하룻밤 동안 교반하여 자주색 용액을 얻었다.
이후, 반웅기에 물을 부어 반웅을 종료하고 (quenching), 상기 흔합물로부터 ether로 유기층을 추출하였다. 상기 유기층에는 디메틸 (인데닐) (테트라메틸사이클로펜타디에닐)실란과 다른 종의 유기 화합물이 포함되어 있음을 ¾ NMR을 통하여 확안하였다. 상기 유기층은 정제 없이 농축되어 metalation에 그대로 어용되었다. 250 mL schlenk flask에서 앞서 합성한 디메틸 (인데닐) (테트라메틸사이클로펜타디에닐)실란 (1.7 g, 5.7 mmol)을 를루엔 (30 mL) 및 MTBE (3.0 ᅵ nL)에 녹였다. 그리고, 이 용액을 —78 0C로 넁각한 다음, 상기 용액에 n-BuLi (2.5 M, 4.8 mL, 12 隱 ol)을 천천히 적가한 후, 얻어자는 용액을 상온에서 하룻밤 동안 교반하였다. 그러나, 상기 용액 내에 노란색 고체가 생성되어 균일하게 교반되지 않아 MTBE (50 mL) 및 THF (38 mL)를 추가로 투입하였다.
한편, 별도로 준비된 250 mL schlenk flask에서 ZrCl4(THF)2를 를루엔에 분산시킨 후, 얻어지는 흔합물을 -78 0C로 냉각하였다. 이어서. 상기 흔합물에 앞서 제조한 lithiation된 리간드 용액을 천천히 주입하였다. 그리고, 얻어지는 흔합물을 하룻밤 동안 교반하였다. 이후, 반응 생성물을 여과하여 노란색 고체 형상의 디메틸실릴렌 (테트라메틸사이클로펜타디에닐) (인데닐)지르코늄
디클로라이드 (1.3 g, LiCl (0.48 g) 포함, 1.8 麵 ol)를 얻었고, 여액에서 용매를 제거한 후, n-hexane으로 세척하여 노란색 고체 (320 mg, 0.70 mmol)를 추가로 얻었다 (total 44% yield).
¾ NMR (500 MHz, CDC13): 0.96 (3H. s), 1.16 (3H, s) ' 1.91 (3H, s) , 1.93 (3H, s), 1.96 (3H, s), 1.97 (3H, s), 5.98 (1H, d), 7.07 (1H, t), 7.23 (1H, d), 7.35 (1H, t), 7.49 (1H, d), 7.70 (1H, d). 앞서 합성한 디메틸실릴렌 (테트라메틸사이클로펜타디에닐) (인데닐 )지르코늄 디클로라이드 (1.049 g, 2.3 國 ol)를 글러브 박스에서 mini bombe에 담았다. 그리고, 상기 mini bombe에 platinum oxide (52.4 mg, 0.231 隱 ol)을 주가로 담고, mini bombe를 조립한 푸, mini bombe에 anhydrous THF (30 mL)를 cannula를 이용하여 넣고ᅳ 약 30 bar의 압력까지 수소를 채웠다. 이어서, mini bombe에 담긴 흔합물을 약 60 0C에서 약 1 일간 교반한 후, mini bombe의 은도를 상은으로 . 냉각시키고, mini — bombe의 압력을 서서히 낮추면서 수소를 아르곤으로 치환하였다.
한편, 약 120 °C의 오븐에서 약 2시간 정도 건조한 celite를 schlenk filter에 깔고, 이를 이용하여 상기 mini bombe의 반웅 생성물을 아르곤 하에서 여과하였다. 상기 celite에 의하여 반응 생성물로부터 Pto2 촉매가 제거되었다. 이어서, 촉매를 제거한 반웅 생성물을 감압하여 용매를 제거하고, 연노란색 고체인 디메틸실릴렌 (테트라메틸사이클로펜타디에닐 ) (테트라하이드로인데닐)지르코늄 디클로라이드 (이하 '메탈로센 촉매 전구체 C'라 함)을 얻었다 (0.601 g, 1.31 瞧 01, Mw: 458.65 g/mo 1 ) .
Figure imgf000041_0001
¾ NMR (500 MHz, CDC13): 0.82 (3H, s), 0.88 (3H, s), 1.92 (6H, s) 1.99 (3H, s), 2.05 (3H, s), 2.34 (2H, m), 2.54 (2H, m), 2.68 (2H, m) 3.03 (2H, m), 5.45 (1H, s), 6.67 (1H, s). 탈로센 촉매 전구체 D)의 제조
Figure imgf000041_0002
상기 구조식의 메탈로센 화합물을 준비하였다 (Streni사 구입, Cas Number 12148-49-1). 탈로센 촉매 전구체 E)의 제조
Figure imgf000041_0003
Angew. Chem. Int. Ed (2008), 7, 6073을 참조하여 제조하였다.
상세하게는, 상기 메탈로센 촉매 전구체 D인 비스 (인데닐)지르코늄 다이클로라이드 (CAS Number: 12148-49-1, St rem 사 제조) (2.0g, 5.1隱01), Pt02 (0.08g), DCM (40mL)를 lOOmL의 고압 반웅기에 주입하고, 약 60 bar의 압력까지 수소를 채웠다. 이어서, 상기 고압 반응기에 담긴 혼합물을 상은에서 약 24 시간 동안 교반하였다. 반웅이 종료되면, 반웅 생성물을 celite pad에 통과시켜 반응 생성물로부터 고체를 제거하고 비스 (테트라하이드로인데닐)지르코늄 다이클로라이드 (이하, '메탈로센 촉매 전구체 E'라 함)를 얻었다 (1.4g, 3.5mmol , 69% yield). 구체 F)의 제조
Figure imgf000042_0001
아르곤 하에서 건조된 250ml schlenk flask에 fluorine 1.66 g(10 mmol)과 THF 30nil를 넣었다. 결과의 용액을 0 °C까지 넁각한 후. 여기에 4.8ml(12mniol)의 2.5M n-BuLi hexane 용액을 첨가하였다. 결과의 반웅 흔합물 온도를 천천히 상온으로 승은시킨 후 24시간 교반하였다. 별도의 250ml schlenk flask에 3-(6_터트-부록시핵실)사이클로펜타 -2,4-디에닐리덴 사이클로핵산 ( 3- ( 6- 1 er t -bu t oxyhexy 1 ) eye 1 opent a-2 , 4- dienyli dene) eye lohexane 3.025 g (10瞧 ol)을 준비하여 THF에 용해시킨 후 이 흔합물을 Lithiation 된 fluorene에 적가한 후 하루동안 상은에서 교반하였다. Flask 내에 50 i 의 물을 넣어 ¾칭하고 ether로 work-up하여 유기층을 분리한 후, MgS04로 drying 하였다. 결과로서 4.68g의 리간드 화합물을 수득하였다 (10 隱 ol in quantitative yield) .
¾ NMR (500 MHz, CDC13): 1.17-1.20 (9H, m), 1.31-1.55 (12H, ' m) , 1.84 (2H, m), 2.37 (2H, m), 3.34 (2H, m) , 3.75 (1H, m) , 3.93 (1H, s) , 5.63 (1H, s), 5.63-5.92 (total 1H, s), 6.09 (1H, s), 7.13-7.16 (2H, m) ; 7.29-7.38 (4H, m) , 7.62 (1H, m) , 7.80 (1H, tn). 오본에 건조한 250 mL Schlenk flask에 상기에서 합성한 리간드 화합물 4.68g을 넣고 40ml의 에테르에 용해시킨 다음, 결과의 용액에 2.5 당량의 n-BuLi 핵산 용액을 가하고 24시간 동안 Π thiat ion 시켰다. Glove box. 내에서 1.0 당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 에테르를 넣어 서스펜션 (suspension)을 준비하였다. 상기 두 개의 플라스크 모두 ― 78 0C까지 넁각시킨 다음, ligand anion을 천천히 Zr 서스펜션에 가하였디.. 주입이 완료된 후, 결과의 반웅 흔합물을 천천히 상온으로 승온시키고 24시간 동안 교반한 다음, 결과의 반웅물을 여과하고, 여과된 고체 filter cake인
LiCl을 제거하였다. 이후 filtrate로 남은 용매를 진공 감압을 통해 제거하고 . 이전: 용매 정도 부피의 핵산을 가하여 재결정하여 두번째 filter cake를 수득하였다. 이를 진공 감압하에서 완전히 건조시킨 후 NMR을 통하여 촉매 합성 여부를 확인하고, glove box 내에서 계량하고 sampling 하여 수율 및 순도를 확인하였다. 그 결과, 3.24 g (5.1 画 ol, 51% yield)의 빨간색 고체 촉매 (어하 '메탈로센 촉매 ¾구체 F'라 함)가 얻어졌다.
匪 R (500 MHz, CDCls): 1.08 (9H, s), 1.19-1.21 (4H, 111), 1.37-1.40
(4H, m), 1.59-1.64 (1H, m), 1.75—1.77 (1H, m) , 1.86-1.91 (4H, m) , 2.23- 2.27 (2H, m). 2.28-2.32 (2H, m), 3.18-3.19 (2H. ni), 3.20 (2H, m) , 5.34
(1H, s), 5.59 (1H, s), 5.93 (1H, s), 7.18— 7.22(2H, m) , 7.45-7.50(2H, 111),
7.64-7.71(2H,d), 8.09-8.10 (2H, m). 제초예 1: 담지 촉매의 제조
20 L 고압 반웅기에 를루엔 3.0 kg 및 실리카 (Grace Davison, SP952 , 250 °C 소성) 900 g을 투입한 후, 반응기 온도를 40 0C로 을리면서 교반하였다. 상기 반응기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemarle 사 제조) 2.6 kg을 투입하고, 온도를 80 0C로 올린 후 약 200 rpm으로 약 12 시간 교반하였다. 이후 반응기 온도를 40 0C로 낮춘 후 교반을 중지하고, 30분 동안 settling 한 후 반응 용액을 (lecantation 하였다. 상기 반웅기에 를루엔 3.0 kg을 투입하고, 상기 합성예 1에서 제조한 촉매 전구체 A 50 g과 상기 합성예 2에서 제조한 촉매 전구체 B 6.0 g을 를루엔 1.0 kg에 녹여 반응기에 투입하고, 200 rpm으로 90분간 교반하였다. 반웅기 온도를 상온으로 낮춘 후 교반을 중지하고, 30분간 settling 시킨 후, 반웅용액을 decantat ion하였다. 반응기에 핵산 3.0 kg을 투입한 후, 결과의 슬러리를 20L 고압용 filer dryer로 건조하고, 핵산 용액을 filteration 하였다. 50 0C에서 4 시간동안 감압 하에 건조하 담지 촉매 1310 g을 수득하였다.
Figure imgf000044_0001
(A) (B) 제조예 2: 담지 촉매의 제조
10 L 고압 반응기에 를루엔 4.0 kg 및 실리카 (Grace Davison, SP2410) 800 g을 투입한 후, 반웅기 온도를 40 °C로 올리면서 교반하였다. 상기 반웅기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemarle 사 제조) 1.5 kg을 투입하고, 온도를 80 0C로 을린 후 약 200 rpm으로 약 12 시간 교반하였다. 2L Schleck flask에 상기 합성예 1에서 제조한 촉매 전구체 A 60 g, 상기 합성예 5에서 제조한 촉매 전구체 D 3.9 g 를루엔 1 Lᅳ 트리이소부틸알루미늄 25 g을 40 0C에서 60분간 반응시킨 후, 상기 고압 반웅기에 투입하고, 온도를 80 °C로 상승시켜 2시간 동안 교반하였다. 반응기 온도를 상온으로 낮춘 후 교반을 중지하고, 30분 동안 settling 한 후 반웅 용액을 decant at ion 하였다. 상기 반응기에 핵산 3.0 kg을 투입하고, 결과의 슬러리를 filter dryer에 이송한 후, 핵산 용액을 filteration 하였다. 1.5bar 아르곤으로 10분간 purging 한 후, 40 0C에서 3 시간동안 진공 건조하여 담지 촉매를
Figure imgf000045_0001
제조예 3: 담지 촉메의 제조
10 L 고압 반응기에 를루엔 4.0 kg 및 실리카 (Grace Davison, SP2410) 800 g을 투입한 후, 반응기 온도를 40 0C로 올리면서 교반하였다. 상기 반웅기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemarle 사 제조) 1.5 kg을 투입하고, 온도를 80 °C로 을린 후 약 200 rpm으로 약 12 시간 교반하였다.
2L Schleck flask에 상기 합성예 3에서 제조한 촉매 전구체 C 68 g, 상기 합성예 6에서 제조한 촉매 전구체 E 5.1 g, 를루엔 1 L, 트리이소부틸알루미늄 25 g을 40 0C에서 60분간 반웅시킨 후, 상기 고압 반응기에 투입하고, 온도를 80 °C로 상승시켜 2시간 동안 교반하였다. 반응기 온도를 상온으로 낮춘 후 교반을 중지하고, 30분 동안 settling 한 후 반웅 용액을 decantation 하였다. 상기 반응기에 핵산 3.0 kg을 투입하고, 결과의 슬러리를 filter dryer에 이송한 후, 핵산 용액을 fi lteration 하였다 . 1.5bar
Figure imgf000046_0001
제조예 4: 담지 촉매의 제조
상기 제조예 1에서, 합성예 1에서 제조한 촉매 전구체 A를 65 g으로 사용하고, 그리고 합성예 2에서 제조한 촉매 전구체 B 대신에 합성예 7에서 제조한 촉매 전구체 F 5.5 g을 각각 사용하는 것을 제외하고는 상기 제조예 1에서와
Figure imgf000046_0002
(A) (F) 실시예 1: 에틸렌 -1-핵센 공중합체의 제조
중합 반응기는 isobutane slurry loop process인 연속 중합반웅기로, 반웅기 부피는 140 L이며, 반응유속 약 7 m/s로 운전하였다. 중합에 필요한 가스류 (에틸렌, 수소) 및 공단량체인 1-hexene은 일정하게 연속적으로 투입되며, 개별적인 유량은 target에 맞춰 조절하였다. 모든 가스류 및 공단량체인 1-hexene 농도는 on-l ine ' gas chromatography로 확인하였다. 담지 촉매는 i sobutane s lurry로 투입되며, 반웅기 압력은 40 bar로 유지되며 중합온도는 84 °C에서 수행되었다. 이외 . 하기 표 1에 기재된 조건으로 수행하여 에틸렌 -1-핵센 공중합체를 제조하였다. 실시예 2 : 에틸렌 -1핵센 공중합체의 제조
하기 표 1에 기재된 '함량 및 조건으로 실시하는 ^을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 중합체를 제조하였다ᅳ 비교예 1 및 2 : 에틸렌 -1핵센 공중합체의 제조
하기 표 1에 기재된 함량 및 조건으로 실시하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 중합체를 제조하였다.
【표 1】 증합조건 실시예 1 실시예 2 비교예 1 비교예 2 담지촉매 제조예 1 제조예 4 제조예 2 제조예 3 에틸렌 load 25 25 25 24
(kg/hr )
수소 투입량 12 9 6 8
(ppm)
핵센 10.5 10.0 8.8, 9.0 투입량 (wt%)
(연속 중합
반응기에
공급된 에틸렌
전체 중량
기준)
Slurry 560 562 552 556 densi ty* (g/L)
촉매 활성 ** 3.7 3. 1 4.7 4. 1
(kg PE/kg
catalyst /hr ) Bulk density 0.44 0.43 0.42 0.40 (g/ml)
Sett 1 ing 55 54 55 53 efficiency (%)
상기' 표 1에서,
* Slurry density는 연속 중합 반응기 내에 존재하는 중합체의 말도로서 연속 중합 반웅기에 설치되어 있는 밀도 표시기 (density indicator)를 통해 측정되는 수치이다.
** 촉매활성 (kgPE/gCat): 상기 실시예 및 비교예의 합성 반웅에 이용된 촉매의 질량과 상기 반웅으로부터 산출된 고분자의 질량을 측정하여 각 실시예 및 비교예들에서 사용한 촉매의 활성 (activity)을 산출하였다. 시험예: 을레핀 중합체의 울성 평가
상기 실시예 1, 2 및 비교예 1, 2에서 제조한 올레핀 증합체의 물성을 하기 기재된 방법으로 측정하여 표 1에 나타내었다.
그리고, 상기 실시예에서 제조한 을레핀 중합체의 물성을 시판 제품의 물성과 비교하기 위해 비교예 3으로 ExxonMobil사의 enable 2010 제품을 준비하고 이들의 물성을 하기 기재된 방법으로 측정하여 표 2에 나타내었다.
(1) 분자량 측정 : 겔 투과 크로마토그래피 (GPC, gel permeation chromatography, Water사 제조)를 이용하여 상기 올레핀 중합체의 중량평균분자량 (Mw)과 수평균 분자량 (Mn)을 측정하였다. 분석 온도는 160 0C로 하였고, 용매는 트리클로로벤젠을 사용하였으며, 폴리스티렌으로 표준화하여 분자량을 구하였다.
(2) MI2.16 및 MFRR (21.6/2.16): Melt Index (MI2.16)는 ASTM D1238 (조건 E, 190 °C, 2.16kg 하중) 규격에 따라 측정하였다. Melt Flow Rate
Ratio (MFRR (21.6/2.16))는 MFR2L6을 MFR2.16으로 나누어 계산하였으며, MFR21.6은 ISO 1133에 따라 190 °C의 은도 및 21.6kg의 하증 하에서 측정하고, MFR2.1(r ISO 1133에 따라 190 °C의 온도 및 2.16kg의 하중 하에서 측정하였다.
(3) 밀도 (g/cm3): 을레핀 중합체의 벌크밀도 (bulky density)는 IPT model 1132를 이용하여 100 mL 용기에 들어가는 올레핀 중합체의 무게 (g)를 측정하여 구하였다. 올레핀 중합체의 밀도는 ASTM D792 규격에 따라 측정하였다
(4) 저장탄성률 (Dyn/cm2): 올레핀 중합체의 초기 저장탄성를을 TA 인스트러먼츠 (TA Instruments) (미국 델라웨이주, 뉴 캐슬)의 . ARES 레오미터를 이용하여 측정하였다. 측정용 샘플은 190 °C에서 직경 25. Omm의 평행판 (parallel plates)를 이용하여 갭 (gap)이 2.0誦가 되도록 하며, 측정은 dynamic strain frequency sweep 모드로 stain은 5%, frequency는 0.05 rad/s에서 500 rad/sRkwl , 각 decade에 10 point씩 총 41 point 를 측정하였으며, 그 중 0.05 rad/s의 저장탄성률 값을 측정하였다. 이때 power law 피팅은 측정 프로그램인 TA Orchestrator을 이용하여 피팅하였다.
(5) 헤이즈 ( ): film 제막기를 이용하여 하기와 같은 조건에서 상가 중합체의 필름 (BUR 2.3, 필름 두께 60 을 제조한 후, ISO 14782에 의거하^ 필름의 Haze를 측정하였다.
[제막 조건]
Screw rpm : 35 rpm
가공 온도 : 170 °C
Die gap : 3 隱
Dies : 100 隱
(6) 해이즈 파라미터 : 올레핀 중합체의 헤이즈 파라미터는 하기 수학식 1를 통해 구하였다.
[수학식 1]
헤이즈 파라미터 =0.0036 XG' + 6.25 + 400x (D-0.920)
(7) MS(Melt Strength): 을레핀 증합체의 용융강보는 모델 3211 인스트론 capillary 레오미터가 부착된 고에트페르트 레오텐 (Goettfert eotens) 71.97을 이용하여 측정하였다. 올레핀 공중합체 용융물은 직경 (diameter: D)에 대한 길이 (length: L)의 비율 (L/D)이 15인 capillary 다이 (평면 다이 , 180도 각도)를 통해 배출되었다. 10 분 동안 190 °C에서 샘플을 평형화시킨후, 피스톤을 1 인치 /분 (2.54 cm/분)의 속도로 움직였다. 표준 시험 온도는 190 °C이었다. 샘플을 1.2 隱 /s2의 가속으로 다이 100. 麵 아래 위치한 가속 닙 (nip)의 세트로 단축으로 잡아당겼다. 장력은 닙 를의 잡아당김 속도의 함수로서 기록되었다. 용융강도는 스트랜드가 파단되기 전 플라토 힘 (mN)으로서 규정되었다. 용융강도 측정에 하기 조건들이 이용되었다. 플렁거 속도: 0.423 画 /s
Capi 1 lary di e L/D : 15
전단속도: 72 /s
휠 초기 속도: 18 mm/s
휠 가속도: 12 mm/s2
배렐 직경: 9.52mm
Shear rate : 100-150 평균값
(8) 강도인자 (SF) : SF는 하기 수학식 2를 통해 구하였다.
[수학식 2]
SF = Mw/104 + 5/(Mw/105) x exp (신장 점도 증가 비율)
(9) 신장 점도 증가 비율: 우선, 을레핀 중합체의 신장 점도를 TA 인스트러먼츠 (TA Instr飄 ents) (미국 델라웨이주, 뉴 캐슬)의 ARES 레오미터에 부착된 신장 점도 장치 (EW)를 이용하여 170 0C에서 헨키 (Hencky) 변형률 1 s_
1로 측정하였다. 신장 점도가 시간에 따라 일정하게 증가하다가 급격히 증가하는: 경우 신장 점도 ,증가 비율을 다음과 같은 기준으로 수치화하였다. 구체적으로, 측정된 가장 높은 신장 점도 값을, 가장 높은 신징- 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눠 구하였다. 여기서, 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을 상기 평균 기울기를 유지하면서 신장 점도가 급격히 증가하는 구간까지 연장하여 얻었다. 구체적으로, 외삽 직선은 Or iginpro 8.6 프로그램 내에서 Extrapol ate를 이용하여, Extrapol ate Manu에서 X축의 구간을 0.01부터 0.5까지로 지정하여 얻은 직선 (시간에 따라 실제 측정된 신장 점도의 그래프)을 신장 점도가 급격히 증가하는 구간까지 연장하여 얻었다. 이때, 외삽된 직선을 얻기 위해 Method는 B— Spl ine올 사용하였으며 Apprent interpol at ion을 Extrapol ate Manu 내에서 사용하였다.
( 10) Blow up rat i o (BUR) : 다음의 제막 조건에서 BUR을 2. 7 이상으로 조절하였을 때 안정적으로 필름이 제조되면 ' 0 '로 표시하고, BUR을 2.6 이하로 조절하였을 때 안정적으로 필름이 제조되면 ' '로 표시하였다. Screw rpm: 35 rpm
가공온도 : 170 ,°C
Die gap: 3 隱
Dies'- 100 mm
필름 두께 : 60 μη\
【표 2】
Figure imgf000051_0001
또, 실시예 1 및 비교예 1, 2의 을레핀계 공중합체의 진동수에 따른 초기 저장탄성률의 변화를 관찰하고, 그 결과를 도 1에 나타내었다.
실험결과, 실시예 1에 따라 제조된 올레핀 중합체의 경우 비교예 1 및 2의 올레핀 중합체와 비교하여 동등 수준의 밀도를 갖지만, 보다 낮은 초기 저장탄성률을 나타냄으로써 11 이하, 구체적으로는 9.4의 헤이즈 파라미터를 나타내었다. 그 결과 비교예 1 및 2에 비해 개선된 투명성을 갖는 필름의 제조가 가능하였다ᅳ 또 비교예 3과 비교하여 개선된 투명성을 나타내면서도 높은 SF값을 가져 보다 우수한 버블안정성을 나타내는 것이 확인되었다.

Claims

【청구범위】 【청구항 1】 하기 수학식 1에 따라 결정되는 헤이즈 파라미터가 11 이하인 올레핀 중합체:
[수학식 1]
헤이즈 파라미터 =0.0036 xG ' + 6.25 + 400 (D-0.920)
상기 수학식 1에서,
D는 ASTM D792에 따라,측정한 상기 올레핀 중합체의 밀도이고,
G '은 ARES 레오미터를 이용하여 동적 변형 스위프 주파수 모드로 변형율 5% 및 0.05 rad/s의 조건에서 측정한 저장탄성률이다.
【청구항 2]
제 1항에 있어서, 상기 저장탄성를이 1500 dyn/cm2 이하인 을레핀 중합체:
【청구항 3】
. ^테 1항에 있어서,. 상기,밀도가 0.910 g/em3 내지 0.930 g/cm3인 올레휜 중합체
【청구항 4】
제 1항에 있어서,
하기 수학식 2에 하라 결정되는 강도인자가 50 이상인 올레핀 중합체: [수학식 2]
강도인자 (SF) = Mw/104 + 5/(Mw/105) x exp (신장 점도 증가 비율) 상기 수학식 2에서, Mw는 상기 올레핀 중합체의 중량평균분자량이고, 신장 점도 증가 비율은 상가 올레핀 중합체에 대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170 °C에서 헨키 변형를 1 s— 1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기울기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다.
【청구항 5]
제 4 항에 있어서, 상기 신징ᅳ 점도 증가 비율이 2.0 이상인 을레핀 중합체 .
【청구항 6]
^fl 1 항에 있어서, ASTM D1238 규격에 따라 190 0C의 온도 및 2. 16 kg의 하중 하에서 측정된 용융 지수가 0.3 g/10min 이상 4 g/ 10m in 미만인 올레핀 중합체.
【청구항 7]
제 1 항에 있어서, 수평균분자량이 20 , 000 g/mol 이상 60.000 g/mol 미만이고, 중량평균분자량이 90 , 000 g/mol 내지 160 , 000 g/mol인 올레핀 중합체 .
【청구항 8】
제 1 항에 있어서, ISO 1133에 따라 〕90 0C의 온도 및 21.6kg의 하중 하에서 측정된 용융 유동를 (MFR21.6)을 ISO 1133에 따라 190 °C의 은도 및 2. 16kg의 하중 하에서 측정된 용융 유동률 (MFR2.16)로 나눈 MFRR(21.6/2. 16)이 18 이상 40 미만인 을레핀 중합체.
【청구항 9】
제 1 항에 있어서, 용융 강도가 50 niN 내지 100 niN인 올레핀 중합체.
[청구항 10】
제 1 항에 있어서, 에틸렌과 알파을레핀의 공중합체인 을레핀 중합체.
【청구항 11】 제 1 항에 있어서, 에틸렌과 1-핵센의 공중합체인 올레핀 중합체.
【청구항 12】
담체, 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 제 1 전이 금속 화합물 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 제 2 전이 금속 화합물을 포함하는 흔성 담지 촉매 존재 하에, 올레핀 단량체를 중합 반웅시키는 단계를 포함하는 제 1 항에 따른 올레핀 중합체의 제조 방법 :
Figure imgf000055_0001
상기 화학식 1에서,
Mr& Ti , Zr 또는 Hf이고,
Xi 및 ¾는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기 , 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기 , 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
!^은 C , Si, Ge , Sn 또는 Pb이며,
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고,
Ri 내지 R6는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 R14는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며,
Figure imgf000056_0001
상기 화학식 2에세
M2는 Ti , Zr 또는 Hf이고,
¾ 및 ¾는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
T2는 T3(Q3) (Q4) 및 탄소수 2 내지 5의 알킬렌기 중 어느 하나이며, 상기 T3은 (:, Si , Ge , Sn 또는 Pb이고,
Q3 및 Q4는 서로 동일하.거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이거나; 또는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족의 탄화수소 고리를 형성하며 .
R21 내지 4는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기. 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 .내지 20의 .아릴기 20의 아릴기 중 어느 하나이고:〉 '
R3i 내지 ¾8은 서로 동일하거나 상어하며, 각각 독립적으로 ^ 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 20의 아릴기 중 어느 하나이거나, 또는 R31 내지 R38 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
【청구항 13]
제 12 항에 있어서, 상기 화학식 1에서, Tr Si이고, Qi 및 Q2는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나인, 올레핀 중합체의 제조 방법 .
【청구항 14】
제 12 항에 있어서, 상기 제 1 전이 금속 화합물은 하기 화학식
lb로 표시되는 화합물 중 어느 하나인 올레핀 중합체의 제조 방법:
Figure imgf000058_0001
상기 화학식 la 및 lb에서,
Rl5 내지 8은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고ᅳ 1은 0 내지 5 사이의 정수이며,
Ph는 페닐기이다.
【청구항 15]
제 12 항에 있어서, 상기 화학식 2에서, R21 내지 R24 중 적어도 하나는 탄소수 2 내지 20의 알콕시알킬기이고, 나머지 작용기는 수소이고,
T2는 T3(Q3) (Q4)이고, 상기 T3은 C이고, ¾ 및 Q4는 서로 동일하거나 상이하고, 각각 득립적으로 탄소수 1 내지 20의 알킬기이거나, 또는 서로 연결되어 탄소수 3 내지 12의 사이클로알킬기, 또는 탄소수 6 내지 12의 아릴기를 형성하는, 올레핀 중합체의 제조 방법.
【청구항 16】
제 12 항에 있어서, 상기 제 2 전이 금속 화합물은 하기 구조식으로
Figure imgf000059_0001
【청구항 17]
거 1 12 항에 있어서, 상기 담체는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물인 올레핀 중합체의 제조 방법.
【청구항 18】
제 12 항에 있어서, 상기 흔성 담지 촉매에 상기 제 1 전이 금속 화합물과 상기 제 2 전이 금속' 화합물이 50 : 1 내지 1 : 1의 중량비로 포함되는 올레핀 중합체의 제조 방법.
【청구항 19】
제 1 항의 올레핀 중합체를 포함하고,
ISO 14782에 따라 측정한 헤이즈가 10% 이하인 블로운 필름.
【청구항 20】
담체,
상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 제 1 전이 금속 화합물 및
상기 담체어ᅵ―담지되어 있으며 하가화학식 2로 표시되는 제 2 전이 금속 화합물을 포함하는 혼성 담지 촉매 :
Figure imgf000060_0001
상기 화학식 1에 ,
^은 Ti , Zr 또는 Hf이고,
Xi 및 ¾는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,. Tr (:, Si , Ge , Sn 또는 Pb이며,
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 해테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기. 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고,
Ri 내지 ¾는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 Ri4는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기. 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 증 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는- 방향족 고리를 형성하는 것이며,
[화학식 2]
Figure imgf000062_0001
상기 화학식 2에서,
M2는 Ti , Zr 또는 Hf이고
X3 및 X4는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기. 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 · 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄스수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
Τ2는 T3(Q3) (Q4) 및 탄소수 2 내지 5의 알킬렌기 중 어느하나이며 , 상기 T3은 C , Si , Ge , Sn 또는 Pb이고,
Q3 및 Ck는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 . 20의 해테로아릴기 중 어느 하나이거나; 또는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족의 탄화수소 고리를 형성하며,
R2i 내지 R24는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 20의 아릴기 중 어느 하나이고,
R3i 내지 8은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 20의 아릴기 중 어느 하나이거나, 또는. R31 내지 R38 증 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
PCT/KR2017/012508 2016-12-22 2017-11-07 올레핀 중합체 및 이의 제조 방법 WO2018117408A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17884317.3A EP3476871B1 (en) 2016-12-22 2017-11-07 Preparation method for an olefin polymer
US16/313,640 US10717793B2 (en) 2016-12-22 2017-11-07 Olefin polymer and method for preparing same
CN201780048498.0A CN109563204B (zh) 2016-12-22 2017-11-07 烯烃聚合物及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160177069 2016-12-22
KR10-2016-0177069 2016-12-22
KR1020170025593A KR102140260B1 (ko) 2016-12-22 2017-02-27 올레핀 중합체 및 이의 제조 방법
KR10-2017-0025593 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018117408A1 true WO2018117408A1 (ko) 2018-06-28

Family

ID=62627363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012508 WO2018117408A1 (ko) 2016-12-22 2017-11-07 올레핀 중합체 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2018117408A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153549A (en) * 1996-10-31 2000-11-28 Targor Gmbh Metallocenes
US20110217537A1 (en) * 2008-09-25 2011-09-08 Basell Polyolefine Gmbh Impact Resistant LLDPE Composition and Films Made Thereof
JP2013227271A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
KR20150045368A (ko) * 2013-10-18 2015-04-28 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR20150063885A (ko) * 2013-12-02 2015-06-10 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153549A (en) * 1996-10-31 2000-11-28 Targor Gmbh Metallocenes
US20110217537A1 (en) * 2008-09-25 2011-09-08 Basell Polyolefine Gmbh Impact Resistant LLDPE Composition and Films Made Thereof
JP2013227271A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
KR20150045368A (ko) * 2013-10-18 2015-04-28 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR20150063885A (ko) * 2013-12-02 2015-06-10 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476871A4 *

Similar Documents

Publication Publication Date Title
US11746168B2 (en) Olefin polymer and preparation method thereof
US10717793B2 (en) Olefin polymer and method for preparing same
KR101950462B1 (ko) 올레핀 중합체 및 이의 제조 방법
WO2016167601A1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR20190074963A (ko) 폴리에틸렌 공중합체 및 이의 제조 방법
JP7134553B2 (ja) 長期物性および加工性に優れたエチレン/1-ヘキセン共重合体
KR20160084181A (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
CN109563193B (zh) 基于聚烯烃的膜
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
WO2017111552A1 (ko) 필름 가공성 및 투명도가 우수한 저밀도 폴리에틸렌 공중합체
WO2017131490A2 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
US20200123357A1 (en) Olefin Polymer And Method For Preparing Same
KR102074510B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
WO2018117408A1 (ko) 올레핀 중합체 및 이의 제조 방법
KR102174389B1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
JP2020524285A (ja) プラスチック樹脂の射出物性評価方法および射出成形用ポリエチレン樹脂
KR102724460B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2018117403A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR20180066677A (ko) 올레핀 중합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017884317

Country of ref document: EP

Effective date: 20190123

NENP Non-entry into the national phase

Ref country code: DE