WO2018117052A1 - 組電池 - Google Patents

組電池 Download PDF

Info

Publication number
WO2018117052A1
WO2018117052A1 PCT/JP2017/045394 JP2017045394W WO2018117052A1 WO 2018117052 A1 WO2018117052 A1 WO 2018117052A1 JP 2017045394 W JP2017045394 W JP 2017045394W WO 2018117052 A1 WO2018117052 A1 WO 2018117052A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell
cell holder
terminal
bus bar
Prior art date
Application number
PCT/JP2017/045394
Other languages
English (en)
French (fr)
Inventor
信明 土屋
和孝 笹本
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to CN201780078904.8A priority Critical patent/CN110088936B/zh
Publication of WO2018117052A1 publication Critical patent/WO2018117052A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack.
  • Patent Document 1 discloses an assembled battery configured to store condensed water generated from a cooling unit for battery cooling and discharge the condensed water from the discharge hole to the outside.
  • Patent Document 1 does not take into consideration the dew condensation water generated around the battery cells constituting the assembled battery. If dew condensation water is generated around the battery cell and the dew condensation water is accumulated inside the housing of the assembled battery, a problem such as a short circuit may occur.
  • An object of the present invention made in view of such problems is to provide an assembled battery capable of efficiently discharging the dew condensation water generated around the battery cell to the outside.
  • the battery pack according to the first aspect is: Battery cell, A cell holder for holding the battery cell; An engagement case that engages with the cell holder and holds the battery cell with the cell holder; Equipped with At the lower end portion of the exposed surface of the cell holder where the electrode terminal of the battery cell is exposed, a first discharge hole for discharging condensation water generated inside is provided. A flow path for guiding the condensed water to the first discharge hole is provided on the inner side surface of the cell holder and the engagement case.
  • dew condensation water generated around the battery cells can be efficiently discharged to the outside.
  • FIG. 1 is an external perspective view of a battery pack according to an embodiment. It is a functional block diagram which shows the outline of the power supply system containing the assembled battery of FIG. It is a figure which shows arrangement
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 4; It is a figure which shows an example of the BB cross section of FIG. FIG. 5 is a view showing another example of the BB cross section of FIG. 4; FIG.
  • FIG. 5 is an enlarged cross-sectional view of a second side surface side of the battery pack in the CC cross section of FIG. 4; It is the front view which showed the cell holder single-piece
  • FIG. 11 is an enlarged cross-sectional view focusing on only one inter-cell bus bar in a cross section taken along line DD in FIG. 10; It is a figure which shows the assembled battery in which the BAT case and the accessory base 200 were attached. It is a figure which shows the assembled battery with which the relay, the MOS board
  • FIG. 1 is an external perspective view of a battery assembly 100 according to an embodiment.
  • the battery assembly 100 includes an upper case 300, a lower case 110 (engagement case), a cell holder 120, a BAT case 500, and a gas discharge pipe 600.
  • the battery assembly 100 has a substantially rectangular parallelepiped shape.
  • the surface facing in the positive direction of the X axis is also referred to as the first side surface of the battery assembly 100.
  • the surface facing in the negative direction of the X axis is also referred to as the second side surface of the battery assembly 100.
  • the surface facing in the positive direction of the Z axis is also referred to as the upper surface of the battery assembly 100.
  • the surface facing the negative direction of the Z axis corresponding to the opposite side of the upper surface is also referred to as the bottom surface of the battery assembly 100.
  • the surface facing the negative direction of the Y axis is also referred to as the front surface of the battery assembly 100.
  • the surface facing the positive direction of the Y axis corresponding to the opposite side of the front surface is also referred to as the back surface of the battery assembly 100.
  • the names of the surfaces of the battery assembly 100 can be applied as the names indicating the surfaces of the lower case 110, the cell holder 120, and the BAT case 500.
  • the lower case 110, the cell holder 120 and the BAT case 500 are engaged with each other on the side of the first side by the engagement member 180.
  • the lower case 110, the cell holder 120, and the BAT case 500 are also engaged with each other on the second side by the engagement member 180.
  • a member in which the lower case 110, the cell holder 120, and the BAT case 500 are engaged is also referred to as a battery case.
  • a battery case 150 (see FIG. 3) described later is accommodated in the battery case.
  • the lower case 110, the cell holder 120, and the BAT case 500 may be made of, for example, a resin such as PBT (Poly-Butylene Terephthalate).
  • the upper case 300 has a recess 301 and a recess 302 in part of the side where the upper surface and the first side surface are connected.
  • the upper case 300 has a recess 303 in part of the side where the front surface and the upper surface are connected.
  • the battery assembly 100 includes the SSG terminal 250, the LOAD terminal 260, and the GND terminal 270 in the recess 301, the recess 302, and the recess 303, respectively.
  • the upper case 300 has an opening 304 on the first side.
  • the battery assembly 100 includes a connector 310 at the opening 304.
  • the upper case 300 may be made of, for example, a resin such as PBT (Poly-Butylene Terephthalate).
  • the gas discharge pipe 600 passes the gas discharged from the battery cell 150 and discharges the gas to the outside of the battery case.
  • the gas discharge pipe 600 may be, for example, a metal tube.
  • the battery assembly 100 is mounted and used in a vehicle including an internal combustion engine or a hybrid vehicle capable of traveling by power of both the internal combustion engine and the electric motor.
  • the battery assembly 100 may be mounted, for example, under a seat of a vehicle.
  • the battery assembly 100 may be mounted on, for example, a center console of a vehicle.
  • the battery assembly 100 is not limited to vehicles, and may be used in other applications.
  • FIG. 2 is a functional block diagram schematically showing a power supply system 400 including the battery assembly 100 shown in FIG.
  • the power supply system 400 includes the battery assembly 100, an alternator 410, a starter 420, a second secondary battery 430, a load 440, a switch 450, and a control unit 460.
  • the battery assembly 100 includes a first secondary battery 130 housed in the lower case 110.
  • the first secondary battery 130, the alternator 410, the starter 420, the second secondary battery 430, and the load 440 are connected in parallel.
  • the battery assembly 100 includes a MOSFET 210 (Metal Oxide Semiconductor Field Effect Transistor), a relay 220, and a sensor 230.
  • the battery assembly 100 further includes a fusible link 240, a first secondary battery 130, and a BMS 140 (Battery Management System).
  • the BMS 140 is also referred to as a battery controller.
  • Battery assembly 100 further includes an SSG terminal 250, a LOAD terminal 260, and a GND terminal 270.
  • the relay 220, the first secondary battery 130, the fusible link 240, and the GND terminal 270 are connected in series in this order.
  • Relay 220 is electrically connected to MOSFET 210 and SSG terminal 250.
  • the SSG terminal 250 is electrically connected to the alternator 410.
  • MOSFET 210 is connected in series to second secondary battery 430 and load 440 via LOAD terminal 260.
  • the GND terminal 270 is grounded.
  • the sensor 230 is electrically connected to the first secondary battery 130.
  • the BMS 140 is communicably connected to the sensor 230.
  • the BMS 140 is communicably connected to the control unit 460 of the power supply system 400.
  • the BMS 140 is communicably connected to the MOSFET 210, the relay 220, and the sensor 230.
  • a circuit that performs the function of the sensor 230 is mounted on the sensor substrate 231 (see FIG. 10).
  • the relay 220 functions as a switching element that connects or disconnects the first secondary battery 130 in parallel with each component outside the battery pack 100 in the power supply system 400.
  • Each component of power supply system 400 outside assembled battery 100 is also referred to as an external circuit.
  • the sensor 230 has an appropriate structure and measures the current flowing to the circuit including the first secondary battery 130 or the voltage applied to the circuit including the first secondary battery 130 in an appropriate manner.
  • the fusible link 240 is composed of a fuse body, a housing made of an insulating resin that houses and holds the fuse body, and a cover made of an insulating resin that covers the housing, and melts when an overcurrent occurs.
  • the first secondary battery 130 is configured by an assembly of the battery cell 150 (see FIG. 3).
  • the battery cell 150 which comprises the 1st secondary battery 130 may be secondary batteries, such as a lithium ion battery or a nickel hydride battery, for example.
  • the first secondary battery 130 is electrically connected to the relay 220 on the positive electrode side.
  • the first secondary battery 130 is electrically connected to the fusible link 240 on the negative electrode side.
  • the fusible link 240 is grounded via the GND terminal 270.
  • MOSFET 210 functions as a switching element that connects or disconnects second secondary battery 430 and load 440 in parallel with other components in power supply system 400.
  • the battery assembly 100 may not include the MOSFET 210.
  • the MOSFET 210 is mounted on the MOS substrate 212 (see FIG. 13).
  • the BMS 140 obtains measurement results such as the current or voltage of the first secondary battery 130 from the sensor 230.
  • the BMS 140 estimates the state of the first secondary battery 130 based on the measurement result.
  • the BMS 140 estimates, for example, the charging rate of the first secondary battery 130 and the like.
  • the charging rate is also referred to as SOC (State Of Charge).
  • a circuit that performs the function of BMS 140 is mounted on BMS substrate 141 (see FIGS. 13 and 14).
  • the alternator 410 is a generator and is mechanically connected to the engine of the vehicle.
  • the alternator 410 generates power by driving the engine.
  • the power generated by the alternator 410 by the driving of the engine may be supplied to the first secondary battery 130, the second secondary battery 430 and the load 440 with the output voltage regulated by the regulator.
  • the alternator 410 can generate electric power by regeneration at the time of deceleration of the vehicle or the like.
  • the power regenerated by the alternator 410 may be used to charge the first secondary battery 130 and the second secondary battery 430.
  • the starter 420 can include, for example, a cell motor.
  • the starter 420 receives power supply from at least one of the first secondary battery 130 and the second secondary battery 430 to start the engine of the vehicle.
  • the second secondary battery 430 can be configured of, for example, a lead storage battery.
  • the second secondary battery 430 supplies power to the load 440.
  • the load 440 may include, for example, an audio provided in a vehicle, an air conditioner, a navigation system, and the like.
  • the load 440 operates by consuming the supplied power.
  • the load 440 operates by receiving power from the first secondary battery 130 while the engine drive is stopped, and operates by receiving power from the alternator 410 and the second secondary battery 430 during engine driving.
  • Switch 450 is connected in series with starter 420.
  • the switch 450 functions as a switching element that connects or disconnects the starter 420 in parallel with other components.
  • Control unit 460 controls the overall operation of power supply system 400.
  • Control unit 460 may be configured of, for example, an ECU (Electric Control Unit or Engine Control Unit) of a vehicle.
  • the control unit 460 is communicably connected to the switch 450 and the BMS 140.
  • the control unit 460 is communicably connected to the MOSFET 210 and the relay 220 via the BMS 140.
  • Control unit 460 controls the operation of switch 450, MOSFET 210, and relay 220, respectively.
  • Control unit 460 controls power supply by alternator 410, first secondary battery 130 and second secondary battery 430, and first secondary battery 130 and second secondary by controlling each component.
  • the battery 430 is charged.
  • FIG. 3 is a perspective view showing the arrangement of the battery cell 150 housed in the assembled battery 100.
  • the battery assembly 100 according to the present embodiment accommodates five battery cells 150-1 to 150-5.
  • the number of battery cells 150 accommodated in the assembled battery 100 is not limited to five.
  • the number of battery cells 150 accommodated in the assembled battery 100 can be appropriately determined according to the maximum output of the battery cells 150 and the power consumed by the driven device such as a vehicle.
  • Battery cell 150 has a substantially rectangular parallelepiped shape having six faces. Two of the six faces of the battery cell 150 have larger areas than the other four faces. Of the faces of the battery cell 150, two faces having a relatively large area are also referred to as flat faces. Battery cell 150 is arranged such that the flat surface faces in the positive direction and the negative direction of the Z axis. In other words, battery cell 150 is arranged such that the flat surface is substantially parallel to the top and bottom surfaces of battery assembly 100.
  • the battery cells 150 are stacked in the Z-axis direction in two stages and three stages.
  • the battery cells 150 stacked in two stages are disposed on the positive direction side of the X axis.
  • the battery cells 150 stacked in three stages are disposed on the negative side of the X axis.
  • the number of stacked battery cells 150 can be appropriately changed in accordance with the number of battery cells 150 stored in the assembled battery 100.
  • Insulating sheets 155 (see FIG. 15) for insulation between the battery cells 150 are disposed between the battery cells 150 to be stacked.
  • the surface of the battery cell 150 on the negative direction side of the Y axis is also referred to as a cap surface 151.
  • Battery cell 150 is arranged such that cap surface 151 faces the front side of battery assembly 100.
  • the battery cell 150 includes a positive electrode terminal 152, a negative electrode terminal 153, and a safety valve 154 on the cap surface 151.
  • the cap surface 151 has a substantially rectangular shape having a long side and a short side.
  • the positive electrode terminal 152 and the negative electrode terminal 153 are provided near both ends in the long side direction of the cap surface 151.
  • the positive electrode terminal 152 and the negative electrode terminal 153 are electrodes that output power from the battery cell 150.
  • the positive electrode terminal 152 and the negative electrode terminal 153 are collectively referred to as an electrode terminal.
  • the safety valve 154 is provided between the positive electrode terminal 152 and the negative electrode terminal 153.
  • the safety valve 154 is opened to discharge the gas to the outside when the pressure inside the battery cell 150 reaches a predetermined pressure or more by the gas generated inside the battery cell 150.
  • the pressure in the battery cell 150 can become equal to or higher than a predetermined pressure when the battery cell 150 is aged or thermally runaway.
  • the predetermined pressure may be appropriately determined in accordance with the specification of the battery cell 150.
  • FIG. 4 is a view showing a state in which battery cell 150 is accommodated in lower case 110 and cell holder 120.
  • the lower case 110 has an engagement hole 115 on the upper surface side.
  • the lower case 110 also has an engagement hole 115 on the side of the bottom not shown.
  • the cell holder 120 has an engagement claw 128 on the upper surface side.
  • the cell holder 120 also has an engagement claw 128 on the side of the bottom not shown.
  • the engagement holes 115 and the engagement claws 128 engage the lower case 110 and the cell holder 120 by fitting each other on the upper surface side and the bottom surface side, respectively.
  • the lower case 110 and the cell holder 120 are configured such that the engagement hole 115 is located outside the engagement claw 128.
  • the lower case 110 and the cell holder 120 may be configured such that the engagement hole 115 is located inside the engagement claw 128.
  • the engagement hole 115 and the engagement claw 128 may be exchanged. That is, the lower case 110 and the cell holder 120 may be configured such that the engagement hole 115 is provided in the cell holder 120 and the engagement claw 128 is provided in the lower case 110.
  • the battery assembly 100 includes an engagement member 180 on the side of the first side.
  • the battery assembly 100 also includes an engagement member 180 on the side of the second side not shown.
  • the lower case 110 and the cell holder 120 respectively have a convex portion 112 and a convex portion 122 on the side of the first side surface.
  • the lower case 110 and the cell holder 120 respectively have a convex portion 112 and a convex portion 122 on the side of the second side surface not shown.
  • the engagement member 180 engages the lower case 110 and the cell holder 120 by sandwiching the projection 112 and the projection 122.
  • the engagement member 180 may be, for example, an elastic member such as a clip.
  • the cell holder 120 has an engagement hole 125 on the side of the upper surface to be engaged with the BAT case 500.
  • the cell holder 120 also has an engagement hole 125 on the side of the bottom not shown.
  • the cell holder 120 has a plurality of accommodating portions 129 which are provided in a substantially cylindrical shape in a negative direction of the Y axis from the front surface.
  • the number of housing portions 129 is the same as the number of electrode terminals of the battery cell 150.
  • the battery assembly 100 includes inter-cell bus bars 160-1 to 160-4, a total plus terminal bus bar 164, and a total minus terminal bus bar 165 on the cell holder 120 side.
  • the intercell bus bars 160-1 to 4 are also collectively referred to as an intercell bus bar 160.
  • the inter-cell bus bar 160, the total plus terminal bus bar 164, and the total minus terminal bus bar 165 are collectively referred to as a bus bar.
  • the bus bar is electrically connected to the electrode terminal of the battery cell 150.
  • the bus bar may be welded to the electrode terminal of the battery cell 150.
  • the bus bar may be electrically connected to the electrode terminal of the battery cell 150 by other methods such as crimping.
  • the inter-cell bus bar 160 electrically connects the positive electrode terminal 152 of the battery cell 150 and the negative electrode terminal 153 of another battery cell 150.
  • the inter-cell bus bar 160-1 electrically connects the positive electrode terminal 152 of the battery cell 150-1 and the negative electrode terminal 153 of the battery cell 150-2.
  • Inter-cell bus bar 160-4 electrically connects positive electrode terminal 152 of battery cell 150-4 and negative electrode terminal 153 of battery cell 150-5.
  • the inter-cell bus bars 160-2 and 3 electrically connect the electrode terminals of the battery cell 150, similarly to the other inter-cell bus bars 160.
  • Total plus terminal bus bar 164 is electrically connected to positive terminal 152 of battery cell 150-5.
  • the total negative terminal bus bar 165 is electrically connected to the negative terminal 153 of the battery cell 150-1.
  • the bus bars connect the battery cells 150 in series between the total plus terminal bus bars 164 and the total minus terminal bus bars 165.
  • FIG. 5 shows the structure of inter-cell bus bar 160.
  • the inter-cell bus bar 160 includes a convex portion 161, a terminal connection portion 162, a sensor attachment terminal 163, and an arm portion 163b.
  • Inter-cell bus bar 160 may be made of, for example, a conductive metal such as copper or aluminum.
  • the convex portion 161 of the inter-cell bus bar 160 is provided to avoid contact with a structure such as a rib provided on the cell holder 120.
  • the terminal connection portion 162 is electrically connected to the electrode terminal of the battery cell 150.
  • the convex portion 161 is located between the two terminal connection portions 162. For example, in FIG. 4, when the inter-cell bus bar 160-1 is viewed from the positive direction of the X axis, the convex portion 161 protrudes in the negative direction of the Y axis more than the two terminal connection portions 162.
  • the terminal connection portion 162 has a welding opening 162a.
  • the terminal connection portion 162 is electrically connected to each electrode terminal of the battery cell 150, for example, by welding such as bead welding at the periphery of the welding opening 162a.
  • the sensor attachment terminal 163 is a terminal to which the sensor board 231 (circuit board, see FIG. 10) is attached.
  • the sensor attachment terminal 163 has a nut 163a (fixing mechanism).
  • the nut 163 a is press-fit into a through hole formed at the center of the sensor attachment terminal 163.
  • the sensor substrate 231 is attached to the sensor attachment terminal 163 by, for example, a bolt screwed to a nut 163a.
  • the sensor substrate 231 is electrically connected to the electrode terminal of each battery cell 150.
  • Arm portion 163 b extends in the direction away from battery cell 150, that is, in the negative direction of the Y axis in FIG. 4.
  • arm portion 163 b extends obliquely from the welding surface of battery cell 150 and inter-cell bus bar 160.
  • the arm portion 163 b has elasticity.
  • the total plus terminal bus bar 164 and the total minus terminal bus bar 165 have an external connection portion 166 and a terminal connection portion 162 similar to the inter-cell bus bar 160.
  • the total plus terminal bus bar 164 and the total minus terminal bus bar 165 may be made of a conductive metal such as copper or aluminum, as with the inter-cell bus bar 160.
  • the total plus terminal bus bar 164 and the total minus terminal bus bar 165 are electrically connected to the electrode terminals of the battery cell 150 by welding or the like at the periphery of the welding opening 162 a of the terminal connection portion 162.
  • the total plus terminal bus bar 164 and the total minus terminal bus bar 165 are electrically connected to the total plus copper bus bar 285 and the total minus copper bus bar 286 (see FIGS. 12 and 13) by the external connection section 166, respectively.
  • the total plus copper bus bars 285 and the total minus copper bus bars 286 are also referred to as copper bus bars.
  • the external connection portion 166 has a screw hole 166a.
  • the external connection portion 166 is electrically connected to the copper bus bar by a bolt inserted into the screw hole 166a.
  • the terminal connection portions 162 of the total plus terminal bus bars 164 and the total minus terminal bus bars 165 have sensor attachment terminals 163 in the same manner as the inter-cell bus bars 160.
  • the sensor substrate 231 is electrically connected to the total plus terminal bus bar 164 and the total minus terminal bus bar 165 via the sensor attachment terminal 163.
  • the battery assembly 100 includes a fastening portion 370 in the lower case 110.
  • the fastening portion 370 is used to attach the accessory pedestal 200 (see FIG. 12).
  • the battery assembly 100 includes safety valve covers 610 and 611 and a gas tube 620 on the front side.
  • the safety valve covers 610 and 611 may be made of, for example, a resin such as PBT.
  • the safety valve covers 610 and 611 are attached to the cap surface 151 so as to cover the safety valve 154 with the seal 630 (see FIG. 15) interposed between the safety valve cover 610 and the cap surface 151 of the battery cell 150.
  • the seal 630 may be made of, for example, rubber such as EPDM (Ethylene-Propylene-Diene Monomer).
  • the safety valve covers 610 and 611 may be attached to the cell holder 120 by screwing or the like.
  • the safety valve cover 610 is commonly attached to the safety valves 154 of the battery cells 150-1 to 150-3 stacked in three stages.
  • the safety valve cover 611 is commonly attached to the safety valves 154 of the battery cells 150-4 to 150-5 stacked in two stages.
  • the safety valve covers 610 and 611 can hold the gas exhausted from the safety valve 154 of the battery cell 150 inside.
  • the safety valve cover 610 has a gas duct 612 through which the gas exhausted from the safety valve 154 passes.
  • the gas duct 612 projects from the safety valve cover 610 to the front side of the battery assembly 100.
  • the safety valve cover 611 has gas ducts 613 and 614 for passing the gas exhausted from the safety valve 154.
  • the gas ducts 613 and 614 project from the safety valve cover 611 to the front side of the battery assembly 100.
  • the gas duct 612 of the safety valve cover 610 and the gas duct 613 of the safety valve cover 611 are connected by a gas tube 620 so that the gas does not leak.
  • the gas exhausted from the battery cells 150-1 to 150-3 to the safety valve cover 610 can move to the safety valve cover 611.
  • the gas duct 614 of the safety valve cover 611 is connected to the gas discharge pipe 600 so that the gas does not leak.
  • the gas moved from the safety valve cover 610 to the safety valve cover 611 and the gas discharged from the battery cells 150-4 to 5 to the safety valve cover 611 can be discharged to the gas discharge pipe 600.
  • the gas discharge pipe 600 discharges gas, for example, to the external space at the bottom of the vehicle body.
  • the gas is less likely to leak around the battery assembly 100.
  • the gas is discharged out of the vehicle and is less likely to leak into the vehicle.
  • the gas ducts 612 and 614 protruding to the front side of the battery assembly 100, the gas discharged from the battery cell 150 is easily guided to the gas ducts 612 and 614.
  • FIG. 6 is a cross-sectional view taken along the line AA of FIG. 7A is a view showing an example of a cross section taken along the line BB in FIG. 4, and FIG. 7B is a view showing another example of the cross section taken along the line BB in FIG.
  • FIG. 8 is an enlarged cross-sectional view of the second side surface side of the battery assembly 100 in the CC cross section of FIG.
  • FIG. 9 is a front view showing the cell holder 120 alone. In FIG. 6 and FIG. 7, the safety valve cover 610 and the bus bar are omitted.
  • the battery cells 150-1 to 150-3 are stacked in three stages with the insulating sheet 155 interposed therebetween, and are accommodated between the lower case 110 and the cell holder 120.
  • the lower case 110 is provided with a crushable zone 113 having a rib 114 on the positive direction side of the Y axis. In the crushable zone 113, the battery cell 150 is not accommodated.
  • the stiffness of the crushable zone 113 may be enhanced by the ribs 114.
  • the crushable zone 113 has a space in a portion other than the rib 114. By doing this, the crushable zone 113 is easily deformed so as to absorb an impact, for example, when the lower case 110 is impacted in the negative direction of the Y axis. As a result, the impact on the battery cell 150 can be mitigated.
  • the lower case 110 may be reduced in weight.
  • the cell holder 120 has the cell holder 120 and the lower case 110 (engagement at the front end, that is, the end (lower end) in the Z-axis negative direction of the exposed surface where the electrode terminal of the battery cell 150 is exposed). 1) has a first discharge hole 126a for discharging the dew condensation water generated inside the case.
  • the lower end portion of the exposed surface of the cell holder 120 means, for example, a portion which comes in contact with the mounting surface as a bottom portion when the assembled battery 100 is mounted on a vehicle.
  • four first discharge holes 126 a are formed at the lower end of the front surface of the cell holder 120.
  • the present invention is not limited to this, and one or more first discharge holes 126a may be formed at the lower end portion of the front surface of the cell holder 120.
  • the cell holder 120 is provided on the front surface, that is, on the exposed surface where the electrode terminals of the battery cell 150 are exposed, above the first discharge hole 126a, and further includes a second discharge hole 126b communicating with the end of the first flow passage 127a described later.
  • a second discharge hole 126b communicating with the end of the first flow passage 127a described later.
  • six second discharge holes 126 b are formed on the front surface of the cell holder 120.
  • the present invention is not limited to this, and the second discharge holes 126 b may be formed in six or less on the front surface of the cell holder 120 or may not be formed in the first place.
  • the first discharge hole 126a is formed to have a larger hole diameter than the second discharge hole 126b as shown in FIG. 9, the present invention is not limited to this.
  • the second discharge hole 126b as shown in FIG. It may be formed in any size.
  • a flow passage 127 for guiding the condensed water to the first discharge hole 126a is provided on the inner side surface of the cell holder 120 and the lower case 110. More specifically, the flow path 127 is composed of a first flow path 127a and a second flow path 127b.
  • the first flow path 127a is provided in a groove shape along a lower side constituting a part of the inner side surface in a part of the inner side surface of the cell holder 120 and the lower case 110 facing the side surface of the battery cell 150.
  • the side surface of the battery cell 150 is a side surface formed in the X-axis negative direction.
  • a part of the inner surface of cell holder 120 and lower case 110 means an area formed in a substantially rectangular shape in accordance with the shape of the side surface of battery cell 150 on the inner surface arranged in the negative direction of the X-axis.
  • the present invention is not limited to this, and as shown in FIG. 7B, the first flow path 127a may be inclined obliquely downward toward the engagement portion between the cell holder 120 and the lower case 110. That is, the first flow path 127a may be formed in a substantially V shape in which the engagement portion between the cell holder 120 and the lower case 110 is the lowest point in a cross sectional view corresponding to FIG. 7B.
  • the second flow path 127 b is provided in a groove shape along the Z-axis direction (vertical direction) in a part of the inner side surface corresponding to the engagement portion between the cell holder 120 and the lower case 110.
  • the second flow passage 127 b extends substantially linearly from the engagement portion on the upper surface side to the engagement portion on the bottom surface side. That is, the second flow passage 127 b intersects the first flow passage 127 a substantially at right angles.
  • the cell holder 120 and the lower case 110 focus only on the inner side surface of the second side of the battery assembly 100, but the same configuration as that described above can be applied to other inner side surfaces.
  • a similar flow channel 127 may be further provided on the inner surface of the lower case 110 opposite to the front surface of the cell holder 120 (the back side of the back surface of the lower case 110). That is, of the end surfaces in the Y-axis direction of lower case 110, a flow path 127 having the same configuration may be further provided at the inner end surface.
  • the battery assembly 100 can efficiently discharge the dew condensation water generated around the battery cell 150 to the outside. That is, the dew condensation water generated around the battery cell 150 naturally moves downward due to vibration or the like during traveling of the vehicle, and as shown in FIG. 7 by the first flow path 127a and the second flow path 127b, the cell holder And move to the lowermost part of the inner surface of the lower case 110.
  • the substantially V-shaped first flow passage 127a as shown in FIG. 7B, the assembled battery 100 can collect condensed water in the engagement portion more efficiently. As shown in FIG.
  • the flow passage 127 is in the form of a groove, so that capillary phenomenon occurs and the condensed water can be efficiently flowed.
  • the battery assembly 100 can efficiently discharge the condensed water concentrated at the lowermost portion to the outside.
  • the second discharge holes 126b in addition to the first discharge holes 126a, the battery assembly 100 can directly discharge the condensed water flowing through the respective first flow paths 127a, so that the discharge efficiency can be improved. Improve more.
  • the second flow path 127b extending in the vertical direction is formed in the engagement portion of the cell holder 120 and the lower case 110, whereby various electric components such as the inter-cell bus bar 160 are arranged.
  • the amount of condensation water flowing to the front can be reduced.
  • the battery pack 100 can prevent a failure such as a short circuit, the reliability and safety as a product can be improved.
  • the flow path 127 is also provided on the back side of the rear surface of the lower case 110, so that the dew condensation water inside can be more efficiently flowed.
  • FIG. 10 is a front view of the battery assembly 100 to which the sensor substrate 231 is attached. The description of the configuration also shown in FIG. 4 is omitted.
  • the battery assembly 100 includes sensor substrates 231-1 and 2 and FPCs 232-1 and 2 (Flexible Print Circuit) on the front side.
  • the sensor substrates 231-1 and 2 are also referred to as a sensor substrate 231.
  • the FPCs 232-1 and 2 are also referred to as an FPC 232.
  • Sensor substrate 231-1 is a mounting member for sensor attachment terminals 163 of inter-cell bus bars 160-1 to 3 and total minus terminal bus bar 165 electrically connected to battery cells 150-1 to 3 stacked in three stages. Attached by 233. Sensor board 231-2 is electrically connected to sensor attachment terminals 163 of inter-cell bus bars 160-3 to 4 and total plus terminal bus bar 164 electrically connected to battery cells 150-4 to 5 stacked in two stages. It is attached by the attachment member 233 so that it may connect. The attachment member 233 may be, for example, a screw or a screw.
  • the FPC 232-1 electrically connects the sensor substrate 231-1 to the BMS substrate 141 (see FIGS. 13 and 14).
  • the BMS substrate 141 includes circuitry that performs the functions of the BMS 140 of FIG.
  • the FPC 232-2 electrically connects the sensor substrate 231-1 and the sensor substrate 231-2.
  • Sensor substrate 231 includes circuitry that performs the function of sensor 230 of FIG.
  • the sensor substrate 231 can measure at least one of the current flowing between the electrode terminals of each battery cell 150 and the voltage between the electrode terminals.
  • the sensor substrate 231 may measure current or voltage in response to a measurement instruction from the BMS substrate 141.
  • the sensor substrate 231 may output the measurement result to the BMS substrate 141.
  • the battery assembly 100 of the present embodiment compared to the case where one sensor substrate 231 is attached across the battery cell 150 stacked in three tiers and the battery cell 150 stacked two tiers, The stress applied to the sensor substrate 231 can be relaxed. According to the battery assembly 100 of the present embodiment, stress applied to the BMS substrate 141 can be alleviated as compared to the case where the BMS substrate 141 is directly attached to the battery cell 150.
  • FIG. 11 is an enlarged cross-sectional view focusing on only one inter-cell bus bar 160-4 in the cross section taken along the line DD in FIG.
  • One side of the inter-cell bus bar 160-4 is welded to the negative electrode terminal 153 of the battery cell 150-5 held in a state of being protruded from the front surface of the cell holder 120.
  • the arm portion 163b is inclined in the X axis direction while extending in the negative direction of the Y axis from the welding surface of the battery cell 150-5 and the inter-cell bus bar 160-4.
  • a sensor substrate 231-2 is mounted on a sensor attachment terminal 163 continuously formed at the tip of the arm portion 163 b.
  • the sensor substrate 231-2 is fixed to the sensor mounting terminal 163 by a mounting member 233 screwed to the nut 163a. More specifically, the inter-cell bus bar 160-4 fixes the sensor substrate 231-2 from the back surface side of the sensor attachment terminal 163 by the sensor attachment terminal 163 and the nut 163a. At this time, a part of the nut 163 a is accommodated in the inside of the accommodation portion 129 provided on the front surface of the cell holder 120. Although only the inter-cell bus bar 160-4 is illustrated here, the inter-cell bus bars 160-1 to 160-3 are attached to the sensor substrate 231 in the same manner, and a part of the nut 163a is a storage portion of the cell holder 120. It is housed inside of 129.
  • the cell holder 120 and the inter-cell bus bar 160 separate from each other. More specifically, the back surface of the sensor attachment terminal 163 and the edge portion 129 a of the housing portion 129 are separated. Similarly, the nut 163 a separates from the edge 129 a of the housing portion 129. That is, the cell holder 120 and the inter-cell bus bar 160 do not make direct contact with each other.
  • the battery assembly 100 enables the sensor substrate 231 to be fixed according to the dimensional tolerance of the inter-cell bus bar 160. That is, in the battery assembly 100, the intercell busbar 160 is completely separated from the cell holder 120 by providing the intercell busbar 160 with a fixing mechanism (nut 163a) for attaching the sensor substrate 231 to the intercell busbar 160. Do. Thus, a space is formed between the two, and the assembled battery 100 can tolerate the dimensional tolerance of the inter-cell bus bar 160. Since the cell holder 120 includes the accommodating portion 129, a space for accommodating the nut 163a of the inter-cell bus bar 160 is formed, so that the tolerance of the tolerance with respect to the size of the inter-cell bus bar 160 is larger by the assembled battery 100.
  • the arm portion 163b is inclined and the sensor attachment terminal 163 can be displaced in the X-axis direction and the Y-axis direction, the tolerance of the tolerance with respect to the size of the inter-cell bus bar 160 is further increased by the assembled battery 100. As described above, the battery assembly 100 facilitates the alignment of the sensor substrate 231.
  • the arm portion 163b has elasticity and is inclined, so that the arm portion 163b can easily absorb stress. This improves the resistance of inter-cell bus bar 160 to shocks.
  • excessive elastic deformation of the arm portion 163 b is restricted by the housing portion 129. That is, as shown in FIG. 11, when the arm portion 163 b is elastically deformed largely due to any cause, the sensor attachment terminal 163 contacts the edge portion 129 a of the housing portion 129. Thus, the battery assembly 100 prevents the arm portion 163b from being damaged. From the above two points, the reliability of the battery assembly 100 is improved.
  • the battery assembly 100 does not need to provide the fixing mechanism (nut 163a) on the cell holder 120 and does not require much strength of the cell holder 120, the thickness of the cell holder 120 can be reduced.
  • FIG. 12 is a view showing the battery assembly 100 to which the BAT case 500 and the accessory pedestal 200 are attached.
  • BAT case 500 is engaged with cell holder 120.
  • the cell holder 120 and the BAT case 500 each have a protrusion 122 and a protrusion 502 on the side of the first side.
  • the cell holder 120 and the BAT case 500 each have a protrusion 122 and a protrusion 502 also on the side of the second side not shown.
  • the engagement member 180 engages the cell holder 120 and the BAT case 500 by holding the convex portion 122 and the convex portion 502 on the first side surface and the second side surface.
  • the BAT case 500 has, on the side of the upper surface and the side of the bottom, claws fitted in the engagement holes 125 of the cell holder 120 shown in FIG.
  • the BAT case 500 and the cell holder 120 are also engaged by engagement of the engagement hole 125 of the cell holder 120 with the claw of the BAT case 500 on the top and bottom sides, respectively.
  • the engagement holes 125 of the cell holder 120 may be located outside or inside the claws of the BAT case 500.
  • the claws of the BAT case 500 and the engagement holes 125 of the cell holder 120 may be exchanged.
  • the BAT case 500 is engaged with the cell holder 120, whereby the configuration of the sensor substrate 231 and the like provided on the cap surface 151 side of the battery cell 150 is covered by the BAT case 500.
  • BAT case 500 can mitigate an impact applied to battery assembly 100 from the front side.
  • a module configured by engaging the lower case 110, the cell holder 120, and the BAT case 500 is also referred to as a battery module.
  • the battery module has a side in which battery cells 150 are stacked in three stages and a side in which battery cells 150 are stacked in two stages.
  • the side in which the battery cells 150 are stacked in three stages is also referred to as the three-stage side.
  • the side in which the battery cells 150 are stacked in two stages is also referred to as a two-stage side.
  • the battery module has two stages and three stages.
  • the lower case 110, the cell holder 120, and the BAT case 500, as well as the battery module have two stages and three stages.
  • the BAT case 500 includes a fusible link 240 on the upper surface on the third stage side. At one end, fusible link 240 is electrically connected to negative terminal 153 of battery cell 150-1 via total minus copper bus bar 286 and total minus terminal bus bar 165. The fusible link 240 is electrically connected to the GND terminal 270 through the GND copper bus bar 280 at the other end.
  • the lower case 110 has a nut hole 146 for attaching the BMS substrate 141 and a pin 147 for fitting the fitting hole 144 (see FIG. 14) provided in the BMS substrate 141 on the upper surface of the battery module on the third stage side. And The lower case 110 is provided with a rib 114 on the back side of the battery assembly 100. Lower case 110 is provided with fixing portion 116 on the back side of battery assembly 100. The battery assembly 100 can be fixed to a vehicle body or the like by fixing the fixing portion 116 with a bolt or the like.
  • the lower case 110 includes a pillar 117 extending from the fixing portion 116 to the upper surface side. The pillars 117 may be thicker and have higher rigidity than other portions of the lower case 110. The lower case 110 is less likely to be deformed by an external force applied to the fixing portion 116 because the pillar 117 has high rigidity.
  • Auxiliary machine base 200 is fastened to fastening portion 370 with a bolt 340.
  • the fastening portions 370 are provided at four places on the upper surface on the second stage side of the battery module. In the assembled battery 100, the dimension in the Z-axis direction can be reduced as compared with the case where the fastening portion 370 is provided on the upper surface of the third stage of the battery module.
  • the location where the fastening portion 370 of the accessory pedestal 200 is provided is not limited to four, and may be three or less, or five or more.
  • the accessory pedestal 200 can be more stably attached to the battery module by being fastened to the battery module at at least three fastening portions 370.
  • the accessory pedestal 200 illustrated in FIG. 12 is a bolt 340 for the fastening portion 370 provided on the upper surface on the second stage side of the BAT case 500 and the fastening portion 370 provided on the upper surface on the second stage side of the lower case 110. It is concluded. In other words, the accessory pedestal 200 illustrated in FIG. 12 is fastened across the entire battery module. When the accessory pedestal 200 is fastened across the entire battery module, the rigidity of the battery module may be enhanced as compared with, for example, the case where the accessory pedestal 200 is fastened only to the lower case 110.
  • the rigidity of the battery module may be enhanced by restricting relative displacement between the lower case 110, the cell holder 120 and the BAT case 500.
  • accessory base 200 When accessory base 200 is fastened across the entire battery module, relative displacement between lower case 110, cell holder 120 and BAT case 500 may be restricted.
  • the accessory base 200 is fastened not only across the entire battery module, but also is fastened to the battery module so that relative displacement between the lower case 110, the cell holder 120 and the BAT case 500 is restricted.
  • the accessory pedestal 200 may be fastened, for example, to at least one location of the upper case 300. When the upper case 300 is assembled to the outside of the battery module, the relative displacement of each component of the battery module can be restricted by fastening at least one place of the accessory pedestal 200 and the upper case 300.
  • Auxiliary machine base 200 is provided with a relay fastening portion 360 for mounting relay 220.
  • the number of relay fastening portions 360 is not limited to three as illustrated in FIG. 12 and may be two or less or four or more.
  • the thickness of the portion provided with the relay fastening portion 360 of the accessory pedestal 200 may be thicker than the thickness of the other portion of the accessory pedestal 200. By doing this, the rigidity of the portion to which the relay 220 is attached can be enhanced. Vibration due to the operation of the relay 220 is less likely to propagate to the surroundings.
  • FIG. 13 is a view showing the battery assembly 100 to which the relay 220, the MOS substrate 212 and the BMS substrate 141 are attached. The description of the configuration also shown in FIG. 12 is omitted.
  • the MOS substrate 212 mounts the MOSFET 210. MOS substrate 212 is attached to accessory pedestal 200. The MOS substrate 212 is electrically connected to the LOAD terminal 260 via the LOAD copper bus bar 282.
  • Relay 220 is fastened with a bolt 350 to a relay fastening portion 360 (see FIG. 12) provided on accessory pedestal 200.
  • the places where the relay 220 is fastened are not limited to three places, but may be two places or less, or four places or more.
  • the relay 220 can be more stably attached to the accessory pedestal 200 when the relay 220 is fastened to the accessory pedestal 200 at at least three places.
  • Relay 220 is electrically connected at one end to positive terminal 152 of battery cell 150-5 via total plus copper bus bar 285 and total plus terminal bus bar 164.
  • the relay 220 is electrically connected to the SSG terminal 250 and the MOS substrate 212 via the SSG copper bus bar 281 at the other end.
  • FIG. 14 is a diagram showing the configuration of the BMS substrate 141.
  • the BMS substrate 141 includes a circuit component 142, a mounting hole 143, and a fitting hole 144. At least a portion of the circuit component 142 corresponds to a circuit that performs the function of the BMS 140.
  • a nut hole 146 and a pin 147 are provided on the upper surface on the third stage side of the lower case 110.
  • the BMS substrate 141 is attached to the nut hole 146 by the attachment member 145 so that the pin 147 and the fitting hole 144 are fitted.
  • the mounting member 145 may be, for example, a screw or a screw.
  • the BMS substrate 141 is communicably connected to the sensor substrate 231 by the FPC 232-1.
  • the BMS substrate 141 is communicably connected to the MOS substrate 212 by the MOS cable 312.
  • the BMS substrate 141 is communicably connected to the connector 310 by a connector cable 314.
  • the BMS substrate 141 may be communicably connected to the control unit 460 of the power supply system 400 via the connector 310.
  • the BMS substrate 141 is not limited to the control unit 460, and may be communicably connected to another device.
  • a module configured of the accessory pedestal 200, the relay 220, the MOS substrate 212, and the BMS substrate 141 is also referred to as an accessory module.
  • FIG. 15 is an exploded perspective view of the battery assembly 100 shown in FIG.
  • the battery module may be assembled as follows.
  • the battery cells 150 are stacked in three and two steps sandwiching the insulating sheet 155, and are accommodated between the lower case 110 and the cell holder 120.
  • the lower case 110 and the cell holder 120 are engaged by the engagement member 180.
  • a bus bar is attached to the electrode terminal of the battery cell 150.
  • the safety valve covers 610 and 611 are attached to the side of the cap surface 151 of the battery cell 150 with the seal 630 interposed therebetween.
  • the safety valve covers 610 and 611 are connected by a gas tube 620.
  • the sensor substrate 231 is attached to the sensor attachment terminal 163 of the bus bar.
  • the cell holder 120 is engaged by the engagement member 180 such that the BAT case 500 covers the side of the cap surface 151 of the battery cell 150.
  • a gas exhaust pipe 600 is attached to the gas duct 614 of the safety valve cover 611.
  • a GND copper bus bar 280, a total minus copper bus bar 286 and a fusible link 240 are attached to the top of the BAT case 500.
  • the accessory module may be assembled as follows. Auxiliary machine base 200 is attached to the upper surface on the second stage side of the battery module with a bolt 340. On accessory pedestal 200, SSG copper bus bar 281, LOAD copper bus bar 282, total plus copper bus bar 285, and MOS substrate 212 are attached. The relay 220 is attached to the accessory pedestal 200 with a bolt 350. The BMS substrate 141 is attached to the upper surface on the third stage side of the battery module. The accessory pedestal 200 may be attached to the battery module after the relay 220 and the like are attached. If the relay 220 or the MOS substrate 212 is attached to the accessory pedestal 200 before the accessory pedestal 200 is attached to the battery module, assembly of the assembled battery 100 may be easier.
  • Upper case 300 is attached so as to cover the whole after the battery module and the accessory module are combined.
  • the upper case 300 may be engaged with the battery case by, for example, fitting a claw and a hole.
  • the battery assembly 100 can be assembled according to the procedure described above.
  • the battery cell 150 may be adhered to the cell holder 120 by an adhesive.
  • the adhesive may be any adhesive that can bond the battery cell 150 and the cell holder 120.
  • the adhesive may be, for example, an acrylic adhesive or an epoxy adhesive.
  • An adhesive may be applied to the cell holder 120.
  • the adhesive may be applied to a portion of the cell holder 120 facing the cap surface 151 of the battery cell 150.
  • the battery cell 150 may be inserted into the cell holder 120 after the adhesive is applied to the cell holder 120.
  • a bus bar may be welded to the electrode terminal of the battery cell 150.
  • the positional relationship between the electrode terminals and the bus bar may require high accuracy.
  • welding the electrode terminal and the bus bar can be facilitated by enhancing the accuracy of the application position of the adhesive for bonding the battery cell 150 and the cell holder 120.
  • the battery module and the accessory module can be assembled separately. By doing this, the productivity of the battery module and the accessory module, and the assembled battery 100 can be improved.
  • the battery assembly 100 includes the SSG terminal 250 and the LOAD terminal 260 on the side of the first side, and the GND terminal 270 on the front side.
  • the GND terminal 270 can be easily identified by being disposed on a surface different from the surface on which the SSG terminal 250 and the LOAD terminal 260 are disposed.
  • the battery assembly 100 includes a connector 310 on the side of the first side.
  • the GND terminal 270 can be easily identified by being disposed on the side different from the connector 310. By doing so, erroneous wiring can be easily prevented when the battery assembly 100 is mounted on a vehicle.
  • the length of the cable electrically connected to the GND terminal 270 may be configured to be different from the length of the cable electrically connected to the SSG terminal 250 and the LOAD terminal 260. By doing so, erroneous wiring can be further prevented when mounting the battery assembly 100 in a vehicle.
  • FIG. 16 is a view of the battery assembly 100 shown in FIG. 12 as viewed from the side of the first side.
  • the battery assembly 100 includes the accessory pedestal 200 on the second stage side of the battery module including the lower case 110, the cell holder 120, and the BAT case 500.
  • the second stage side of the battery module corresponds to the positive direction side of the X axis.
  • Auxiliary machine pedestal 200 is fastened to fastening portion 370.
  • the fastening portion 370 is shown by a broken line because it can not be seen by the accessory pedestal 200.
  • the fastening portions 370 are provided at four positions corresponding to the bolts 340 shown in FIG. The number of places where the fastening portion 370 is provided may be three or less, or five or more.
  • the fastening portion 370 may be provided on the third stage side of the battery module or may be provided on another part.
  • Battery cells 150-4 and 150-5 are accommodated in lower case 110.
  • battery cells 150-4 and 150-5 are shown by broken lines because they are not visible in lower case 110.
  • Lower case 110 has cell back plate 118 on the back side of the part in which battery cell 150 is accommodated.
  • the cell back plate 118 is shown by a broken line because it is not visible on the side of the lower case 110.
  • the lower case 110 has a rib 114 of the crushable zone 113 on the back side of the cell back plate 118.
  • the fastening portion 370 is provided on the rib 114.
  • the fastening portion 370 may be provided on the intersection point 114 a of the rib 114 and the cell back plate 118.
  • Fastening portion 370 provided on intersection point 114a can fasten accessory pedestal 200 with higher rigidity than fastening portion 370 provided at a point moved in the positive direction of the Y-axis from intersection point 114a.
  • the fastening portion 370 may be provided in the vicinity of the intersection point 114a. As the position where the fastening portion 370 is provided is closer to the intersection point 114 a, the fastening portion 370 may fasten the accessory pedestal 200 with higher rigidity.
  • Relay 220 is mounted on accessory pedestal 200. Relay 220 may be mounted on accessory pedestal 200 closer to BAT case 500 than lower case 110. Relay 220 is separated from battery cell 150 by being placed on the side close to BAT case 500. By doing this, the vibration generated by the operation of the relay 220 is less likely to propagate to the battery cell 150.
  • FIG. 17 is a view of the battery assembly 100 shown in FIG. 12 as viewed from the rear side.
  • the fastening portion 370 is provided on the rib 114.
  • the fastening portion 370 may be provided on the intersection point 114 b of the rib 114 and the rib 114.
  • Fastening portion 370 provided on intersection point 114b can fasten accessory pedestal 200 with higher rigidity than fastening portion 370 provided at a point moved in the positive or negative direction of the X axis from intersection point 114b. .
  • the fastening portion 370 may be provided in the vicinity of the intersection point 114b. As the position where the fastening portion 370 is provided is closer to the intersection point 114 b, the fastening portion 370 may fasten the accessory pedestal 200 with higher rigidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

電池セルの周囲において発生した結露水を効率良く外部へと排出できる組電池を提供する。 本発明の一実施形態に係る組電池(100)は、電池セル(150)と、電池セル(150)を保持するセルホルダ(120)と、セルホルダ(120)と係合して、電池セル(150)をセルホルダ(120)と共に保持する係合ケース(110)と、を備え、電池セル(150)の電極端子が露出するセルホルダ(120)の露出面の下端部において、内部で発生した結露水を排出する第1排出孔(126a)が設けられ、セルホルダ(120)及び係合ケース(110)の内側面には、第1排出孔(126a)まで結露水を導く流路(127)が設けられる。

Description

組電池 関連出願の相互参照
 本出願は、2016年12月19日に日本国に特許出願された特願2016-245710の優先権を主張するものであり、この出願の開示全体をここに参照のために取り込む。
 本発明は、組電池に関する。
 従来、複数の電池を筐体等の部材に収容した組電池が知られている。例えば、特許文献1には、電池冷却用の冷却ユニットから生じた結露水を貯留して、排出孔から外部に排出するように構成した組電池が開示されている。
特開2014-080189号公報
 しかしながら、特許文献1では、組電池を構成する電池セルの周囲において発生する結露水については考慮されていない。電池セルの周囲において結露水が発生し、組電池の筐体内部に結露水が溜まると、短絡等の不具合が生じる恐れがある。
 このような問題点に鑑みてなされた本発明の目的は、電池セルの周囲において発生した結露水を効率良く外部へと排出できる組電池を提供することにある。
 上記課題を解決するために、第1の観点に係る組電池は、
 電池セルと、
 前記電池セルを保持するセルホルダと、
 前記セルホルダと係合して、前記電池セルを前記セルホルダと共に保持する係合ケースと、
 を備え、
 前記電池セルの電極端子が露出する前記セルホルダの露出面の下端部において、内部で発生した結露水を排出する第1排出孔が設けられ、
 前記セルホルダ及び前記係合ケースの内側面には、前記第1排出孔まで前記結露水を導く流路が設けられる。
 本発明の一実施形態に係る組電池によれば、電池セルの周囲において発生した結露水を効率良く外部へと排出できる。
一実施形態に係る組電池の外観斜視図である。 図1の組電池を含む電源システムの概略を示す機能ブロック図である。 図1の組電池に収容される電池セルの配置を示す図である。 図3の電池セルが下部ケース及びセルホルダに収容された状態を示す図である。 セル間バスバの構造を示す図である。 図4のA-A断面図である。 図4のB-B断面の一例を示す図である。 図4のB-B断面の他の例を示す図である。 図4のC-C断面において、組電池の第2側面側を拡大した拡大断面図である。 セルホルダ単体を示した正面図である。 センサ基板が取り付けられた組電池の正面図である。 図10のD-D矢線に沿った断面において1つのセル間バスバのみに着目した拡大断面図である。 BATケースと補機台座200とが取り付けられた組電池を示す図である。 リレーとMOS基板とBMS基板とが取り付けられた組電池を示す図である。 BMS基板の構造を示す図である。 図1の組電池の分解斜視図である。 図12の組電池を第1側面の側から見た図である。 図12の組電池を背面の側から見た図である。
 以下、本開示に係る一実施形態について、図面を参照して説明する。図面は、模式的なものである。図面上の寸法又は比率等は、現実のものとは必ずしも一致していない。各図面における各構成部の描写は、部分的に簡略化されることがある。
 図1は、一実施形態に係る組電池100の外観斜視図である。組電池100は、上部ケース300と、下部ケース110(係合ケース)と、セルホルダ120と、BATケース500と、ガス排出管600とを備える。組電池100は、略直方体形状である。X軸の正の方向に向く面は、組電池100の第1側面ともいう。X軸の負の方向に向く面は、組電池100の第2側面ともいう。Z軸の正の方向に向く面は、組電池100の上面ともいう。上面の反対側に対応するZ軸の負の方向に向く面は、組電池100の底面ともいう。Y軸の負の方向を向く面は、組電池100の前面ともいう。前面の反対側に対応するY軸の正の方向を向く面は、組電池100の背面ともいう。組電池100の各面の名称は、下部ケース110、セルホルダ120及びBATケース500の各面を示す名称として適用されうる。
 下部ケース110と、セルホルダ120と、BATケース500とは、係合部材180によって、第1側面の側で互いに係合される。下部ケース110と、セルホルダ120と、BATケース500とは、係合部材180によって、第2側面の側でも互いに係合される。下部ケース110と、セルホルダ120と、BATケース500とが係合された部材は、電池ケースともいう。電池ケースには、後述する電池セル150(図3参照)が収容される。
 下部ケース110と、セルホルダ120と、BATケース500とは、例えば、PBT(Poly-Butylene Terephthalate)等の樹脂により構成されてよい。
 上部ケース300は、上面と第1側面とが接続する辺の一部に、凹部301及び凹部302を有する。上部ケース300は、前面と上面とが接続する辺の一部に、凹部303を有する。組電池100は、凹部301、凹部302及び凹部303に、それぞれSSG端子250、LOAD端子260及びGND端子270を備える。
 上部ケース300は、第1側面に開口304を有する。組電池100は、開口304に、コネクタ310を備える。
 上部ケース300は、例えば、PBT(Poly-Butylene Terephthalate)等の樹脂により構成されてよい。
 ガス排出管600は、電池セル150から排出されるガスを通過させて、ガスを電池ケースの外部に排出する。ガス排出管600は、例えば、金属製のチューブであってよい。
 本実施形態において、組電池100は、内燃機関を備えた車両、又は内燃機関と電動機との双方の動力で走行可能なハイブリッド車両等の車両に搭載されて使用されると仮定する。組電池100は、例えば、車両の座席の下に搭載されてよい。組電池100は、例えば、車両のセンターコンソールに搭載されてよい。組電池100は、車両用に限られず、他の用途で用いられてよい。
 図2は、図1に示す組電池100を含む電源システム400の概略を示す機能ブロック図である。電源システム400は、組電池100と、オルタネータ410と、スタータ420と、第2の二次電池430と、負荷440と、スイッチ450と、制御部460とを備える。組電池100は、下部ケース110に収容される第1の二次電池130を含む。第1の二次電池130、オルタネータ410、スタータ420、第2の二次電池430及び負荷440は、並列に接続される。
 組電池100は、MOSFET210(Metal Oxide Semiconductor Field Effect Transistor)と、リレー220と、センサ230とを備える。組電池100は、ヒュージブルリンク240と、第1の二次電池130と、BMS140(Battery Management System)とをさらに備える。BMS140は、バッテリコントローラともいう。組電池100は、SSG端子250と、LOAD端子260と、GND端子270とをさらに備える。
 リレー220と、第1の二次電池130と、ヒュージブルリンク240と、GND端子270とは、この順で直列に接続される。リレー220は、MOSFET210とSSG端子250とに電気的に接続される。SSG端子250は、オルタネータ410に電気的に接続される。MOSFET210は、LOAD端子260を介して、第2の二次電池430及び負荷440に直列に接続される。GND端子270は、接地される。
 センサ230は、第1の二次電池130に電気的に接続される。BMS140は、センサ230に通信可能に接続される。BMS140は、電源システム400の制御部460に、通信可能に接続される。BMS140は、MOSFET210と、リレー220と、センサ230とに、通信可能に接続される。センサ230の機能を実行する回路は、センサ基板231(図10参照)に実装される。
 リレー220は、第1の二次電池130を、電源システム400における組電池100外の各構成要素と並列に接続する、又は、各構成要素から切断するスイッチング素子として機能する。組電池100外の電源システム400の各構成要素は、外部回路ともいう。
 センサ230は、適宜な構造を有し、適宜な方式で第1の二次電池130を含む回路に流れる電流、又は、第1の二次電池130を含む回路に印加される電圧を測定する。
 ヒュージブルリンク240は、ヒューズ本体と、ヒューズ本体を収容保持する絶縁樹脂製のハウジングと、ハウジングを覆う絶縁樹脂製のカバーとにより構成され、過電流が生じた場合に溶断する。
 第1の二次電池130は、電池セル150(図3参照)のアセンブリにより構成される。第1の二次電池130を構成する電池セル150は、例えばリチウムイオン電池又はニッケル水素電池等の二次電池であってよい。第1の二次電池130は、正極側でリレー220に電気的に接続される。第1の二次電池130は、負極側でヒュージブルリンク240に電気的に接続される。ヒュージブルリンク240は、GND端子270を介して接地される。
 MOSFET210は、第2の二次電池430及び負荷440を、電源システム400における他の構成要素と並列に接続する、又は、他の構成要素から切断するスイッチング素子として機能する。組電池100は、MOSFET210を備えないこともある。MOSFET210は、MOS基板212(図13参照)に実装される。
 BMS140は、センサ230から、第1の二次電池130の電流又は電圧等の測定結果を取得する。BMS140は、測定結果に基づいて、第1の二次電池130の状態を推定する。BMS140は、例えば第1の二次電池130の充電率等を推定する。充電率は、SOC(State Of Charge)ともいう。BMS140の機能を実行する回路は、BMS基板141(図13及び図14参照)に実装される。
 オルタネータ410は、発電機であって、車両のエンジンに機械的に接続される。オルタネータ410は、エンジンの駆動によって発電を行う。オルタネータ410がエンジンの駆動によって発電した電力は、レギュレータで出力電圧を調整されて、第1の二次電池130、第2の二次電池430及び負荷440に供給され得る。オルタネータ410は、車両の減速時等に回生によって発電可能である。オルタネータ410が回生発電した電力は、第1の二次電池130及び第2の二次電池430の充電に使用されうる。
 スタータ420は、例えばセルモータを含んで構成されうる。スタータ420は、第1の二次電池130及び第2の二次電池430の少なくとも一方からの電力供給を受けて、車両のエンジンを始動させる。
 第2の二次電池430は、例えば鉛蓄電池により構成されうる。第2の二次電池430は、負荷440に電力を供給する。
 負荷440は、例えば車両に備えられたオーディオ、エアコンディショナ、及びナビゲーションシステム等を含みうる。負荷440は、供給された電力を消費して動作する。負荷440は、エンジン駆動の停止中に第1の二次電池130から電力供給を受けて動作し、エンジン駆動中にオルタネータ410及び第2の二次電池430から電力供給を受けて動作する。
 スイッチ450は、スタータ420と直列に接続される。スイッチ450は、スタータ420を他の構成要素と並列に接続する、又は、他の構成要素から切断するスイッチング素子として機能する。
 制御部460は、電源システム400の全体の動作を制御する。制御部460は、例えば車両のECU(Electric Control Unit又はEngine Control Unit)により構成されてよい。制御部460は、スイッチ450及びBMS140に、通信可能に接続される。制御部460は、BMS140を介して、MOSFET210及びリレー220に、通信可能に接続される。制御部460は、スイッチ450、MOSFET210及びリレー220の動作をそれぞれ制御する。制御部460は、各構成要素を制御することによって、オルタネータ410、第1の二次電池130及び第2の二次電池430による電力供給、並びに第1の二次電池130及び第2の二次電池430の充電を行う。
 図3は、組電池100に収容される電池セル150の配置を示す斜視図である。本実施形態に係る組電池100は、5個の電池セル150-1~5を収容する。組電池100に収容される電池セル150の数量は、5つに限られない。組電池100に収容される電池セル150の数量は、電池セル150の最大出力及び車両等の被駆動機器が消費する電力等に応じて、適宜決定されうる。
 電池セル150は、6つの面を有する略直方体形状である。電池セル150の6つの面のうち2つの面は、他の4つの面よりも大きい面積を有する。電池セル150の面のうち比較的面積の大きい2つの面は、扁平面ともいう。電池セル150は、扁平面がZ軸の正の方向及び負の方向に向くように配置される。言い換えれば、電池セル150は、扁平面が組電池100の上面及び底面に略平行となるように配置される。
 本実施形態に係る組電池100において、電池セル150は、2段と3段とに分けてZ軸方向に積層される。2段に積層された電池セル150は、X軸の正の方向の側に配置される。3段に積層された電池セル150は、X軸の負の方向の側に配置される。電池セル150が積層される数量は、組電池100に収容される電池セル150の数量に応じて、適宜変更されうる。積層される電池セル150の間には、電池セル150間の絶縁をとるための絶縁シート155(図15参照)が配置される。
 電池セル150のY軸の負の方向の側の面は、キャップ面151ともいう。電池セル150は、キャップ面151が組電池100の前面の側に向くように配置される。電池セル150は、キャップ面151に、正極端子152と、負極端子153と、安全弁154とを備える。キャップ面151は、長辺と短辺とを有する略長方形状である。正極端子152及び負極端子153は、キャップ面151の長辺方向の両端付近に設けられる。正極端子152及び負極端子153は、電池セル150から電力を出力する電極である。正極端子152及び負極端子153をまとめて電極端子ともいう。
 安全弁154は、正極端子152と負極端子153との間に設けられる。安全弁154は、電池セル150内部で発生するガスによって、電池セル150内部の圧力が所定圧力以上になった場合にガスを外部に排出するために開く。電池セル150内部の圧力は、電池セル150が経年劣化した場合又は熱暴走した場合等に、所定圧力以上になりうる。所定圧力は、電池セル150の仕様に応じて、適宜定められうる。
 図4は、電池セル150が下部ケース110及びセルホルダ120に収容された状態を示す図である。下部ケース110は、上面の側に、係合孔115を有する。下部ケース110は、図示されていない底面の側にも、係合孔115を有する。セルホルダ120は、上面の側に、係合爪128を有する。セルホルダ120は、図示されていない底面の側にも、係合爪128を有する。係合孔115及び係合爪128とは、上面の側及び底面の側それぞれで互いに嵌合することによって、下部ケース110及びセルホルダ120を係合する。
 図4において、下部ケース110及びセルホルダ120は、係合孔115が係合爪128の外側に位置するように構成される。下部ケース110及びセルホルダ120は、係合孔115が係合爪128の内側に位置するように、構成されてよい。係合孔115と係合爪128とは、交換されてよい。つまり、下部ケース110及びセルホルダ120は、係合孔115がセルホルダ120に設けられ、且つ、係合爪128が下部ケース110に設けられるように構成されてもよい。
 組電池100は、第1側面の側に、係合部材180を備える。組電池100は、図示されていない第2側面の側にも、係合部材180を備える。下部ケース110及びセルホルダ120はそれぞれ、第1側面の側に凸部112及び凸部122を有する。下部ケース110及びセルホルダ120はそれぞれ、図示されていない第2側面の側にも、凸部112及び凸部122を有する。係合部材180は、凸部112と、凸部122とを挟持することによって、下部ケース110とセルホルダ120とを係合する。係合部材180は、例えばクリップ等の弾性部材であってよい。
 セルホルダ120は、上面の側に、BATケース500と係合されるための係合孔125を有する。セルホルダ120は、図示されていない底面の側にも、係合孔125を有する。セルホルダ120は、前面からY軸の負の方向へ略円筒状に突設された複数の収容部129を有する。収容部129の数は、電池セル150の電極端子の数と同一である。
 組電池100は、セルホルダ120の側に、セル間バスバ160-1~4と、総プラス端子バスバ164と、総マイナス端子バスバ165とを備える。セル間バスバ160-1~4は、まとめてセル間バスバ160ともいう。セル間バスバ160と、総プラス端子バスバ164と、総マイナス端子バスバ165とは、まとめてバスバともいう。バスバは、電池セル150の電極端子に電気的に接続される。バスバは、電池セル150の電極端子に溶接されてよい。バスバは、電池セル150の電極端子に、圧着等の他の方法で電気的に接続されてもよい。
 セル間バスバ160は、電池セル150の正極端子152と、他の電池セル150の負極端子153とを電気的に接続する。例えば、セル間バスバ160-1は、電池セル150-1の正極端子152と、電池セル150-2の負極端子153とを電気的に接続する。セル間バスバ160-4は、電池セル150-4の正極端子152と、電池セル150-5の負極端子153とを電気的に接続する。セル間バスバ160-2及び3は、他のセル間バスバ160と同様に、電池セル150の電極端子を電気的に接続する。総プラス端子バスバ164は、電池セル150-5の正極端子152に、電気的に接続される。総マイナス端子バスバ165は、電池セル150-1の負極端子153に、電気的に接続される。バスバは、総プラス端子バスバ164と総マイナス端子バスバ165との間で、電池セル150を直列に接続する。
 図5は、セル間バスバ160の構造を示す図である。セル間バスバ160は、凸部161と、端子接続部162と、センサ取付端子163と、アーム部163bとを備える。セル間バスバ160は、例えば銅又はアルミニウム等の導電性の金属で構成されてよい。
 セル間バスバ160の凸部161は、セルホルダ120に設けられるリブ等の構造との接触を回避するために設けられる。端子接続部162は、電池セル150の電極端子に電気的に接続される。凸部161は、2つの端子接続部162の間に位置する。例えば図4において、セル間バスバ160-1をX軸の正の方向から見た場合、凸部161は、2つの端子接続部162よりもY軸の負の方向に突出している。
 端子接続部162は、溶接用開口162aを有する。端子接続部162は、溶接用開口162aの周縁部において、例えばビード溶接等の溶接によって、電池セル150の各電極端子に電気的に接続される。
 センサ取付端子163は、センサ基板231(回路基板、図10参照)が取り付けられる端子である。センサ取付端子163は、ナット163a(固定機構)を有する。ナット163aは、センサ取付端子163の中央部に穿設された貫通孔に対して圧入される。センサ基板231は、例えばナット163aに螺合するボルト等によって、センサ取付端子163に取り付けられる。センサ基板231は、各電池セル150の電極端子に電気的に接続される。
 アーム部163bは、電池セル150から離間する方向、すなわち、図4においてY軸の負の方向に延伸する。特に、アーム部163bは、電池セル150とセル間バスバ160との溶接面から傾斜して延伸する。アーム部163bは、弾性を有する。
 図4に示すように、総プラス端子バスバ164及び総マイナス端子バスバ165は、外部接続部166と、セル間バスバ160と同様の端子接続部162とを有する。総プラス端子バスバ164及び総マイナス端子バスバ165は、セル間バスバ160と同様に、例えば銅又はアルミニウム等の導電性の金属で構成されてよい。総プラス端子バスバ164及び総マイナス端子バスバ165は、端子接続部162の溶接用開口162aの周縁部において、溶接等によって、電池セル150の電極端子に電気的に接続される。
 総プラス端子バスバ164及び総マイナス端子バスバ165は、外部接続部166によって、総プラス銅バスバ285及び総マイナス銅バスバ286(図12及び図13参照)にそれぞれ電気的に接続される。総プラス銅バスバ285及び総マイナス銅バスバ286は、銅バスバともいう。外部接続部166は、ねじ穴166aを有する。外部接続部166は、ねじ穴166aに挿入したボルト等によって、銅バスバに電気的に接続される。総プラス端子バスバ164及び総マイナス端子バスバ165の端子接続部162は、セル間バスバ160と同等に、センサ取付端子163を有する。センサ基板231は、センサ取付端子163を介して、総プラス端子バスバ164及び総マイナス端子バスバ165に電気的に接続される。
 図4に示すように、組電池100は、下部ケース110に締結部370を備える。締結部370は、補機台座200(図12参照)を取り付けるために用いられる。
 図4に示すように、組電池100は、前面側に、安全弁カバー610及び611と、ガスチューブ620とを備える。安全弁カバー610及び611は、例えばPBT等の樹脂で構成されてよい。安全弁カバー610及び611は、電池セル150のキャップ面151との間にシール630(図15参照)を挟んで、安全弁154を覆うようにキャップ面151に取り付けられる。シール630は、例えば、EPDM(Ethylene-Propylene-Diene Monomer)等のゴムで構成されてよい。安全弁カバー610及び611は、ねじ止め等によって、セルホルダ120に取り付けられてよい。
 安全弁カバー610は、3段に積層された電池セル150-1~3の安全弁154に共通して取り付けられる。安全弁カバー611は、2段に積層された電池セル150-4~5の安全弁154に共通して取り付けられる。安全弁カバー610及び611は、電池セル150の安全弁154から排出されるガスを内部に保持しうる。
 安全弁カバー610は、安全弁154から排出されるガスを通過させるガスダクト612を有する。ガスダクト612は、安全弁カバー610から、組電池100の前面の側に突出する。安全弁カバー611は、安全弁154から排出されるガスを通過させるガスダクト613及び614を有する。ガスダクト613及び614は、安全弁カバー611から、組電池100の前面の側に突出する。
 安全弁カバー610のガスダクト612と、安全弁カバー611のガスダクト613とは、ガスが漏洩しないようにガスチューブ620で接続される。この場合、電池セル150-1~3から安全弁カバー610に排出されたガスは、安全弁カバー611に移動しうる。
 安全弁カバー611のガスダクト614は、ガスが漏洩しないようにガス排出管600に接続される。この場合、安全弁カバー610から安全弁カバー611に移動したガスと、電池セル150-4~5から安全弁カバー611に排出されたガスとは、ガス排出管600に排出されうる。組電池100が車両に搭載される場合、ガス排出管600は、例えば車体の下部の外部空間にガスを排出する。
 安全弁カバー610及び611からガス排出管600まで、ガスが漏えいしないように接続されることによって、ガスが組電池100の周囲に漏洩しにくくなる。組電池100が車両に搭載される場合、ガスが車外に排出され、車内に漏洩しにくくなる。ガスダクト612及び614が組電池100の前面の側に突出することで、電池セル150から排出されたガスは、ガスダクト612及び614の方へ誘導されやすくなる。
 図6は、図4のA-A断面図である。図7Aは、図4のB-B断面の一例を示す図であり、図7Bは、図4のB-B断面の他の例を示す図である。以下では、図7A及び図7Bをまとめて説明する際は、「図7」と記載する。図8は、図4のC-C断面において、組電池100の第2側面側を拡大した拡大断面図である。図9は、セルホルダ120単体を示した正面図である。図6及び図7において、安全弁カバー610及びバスバは、省略されている。電池セル150-1~3は、絶縁シート155を挟んで、3段に積層され、下部ケース110とセルホルダ120との間に収容される。下部ケース110は、Y軸の正の方向の側に、リブ114を有するクラッシャブルゾーン113を備える。クラッシャブルゾーン113には、電池セル150が収容されていない。クラッシャブルゾーン113の剛性は、リブ114によって高められうる。クラッシャブルゾーン113は、リブ114以外の部分に空間を有する。このようにすることで、クラッシャブルゾーン113は、例えば、下部ケース110に対してY軸の負の方向に衝撃が与えられた場合に衝撃を吸収するように変形しやすくなる。結果として、電池セル150に対する衝撃が緩和されうる。下部ケース110が軽量化されうる。
 図7及び図9に示すとおり、セルホルダ120は、前面、すなわち電池セル150の電極端子が露出する露出面のZ軸負の方向の端部(下端部)において、セルホルダ120及び下部ケース110(係合ケース)の内部で発生した結露水を排出するための第1排出孔126aを有する。セルホルダ120の露出面の下端部とは、例えば組電池100を車両に搭載した際に、底部として搭載面と接触する部分を意味する。図9では、一例として、4つの第1排出孔126aがセルホルダ120の前面の下端部において形成される。しかしながら、これに限定されず、第1排出孔126aは、セルホルダ120の前面の下端部において1つ以上形成されていればよい。
 セルホルダ120は、前面、すなわち電池セル150の電極端子が露出する露出面において第1排出孔126aよりも上方に設けられ、後述する第1流路127aの終端と連通する第2排出孔126bをさらに有する。図9では、一例として、6つの第2排出孔126bがセルホルダ120の前面において形成される。しかしながら、これに限定されず、第2排出孔126bは、セルホルダ120の前面において6つ以下に形成されてもよいし、そもそも形成されていなくてもよい。
 第1排出孔126aは、図9に示すとおり、第2排出孔126bよりも孔径が大きくなるように形成されるのが好適であるが、これに限定されず、第2排出孔126bに対して任意の大きさで形成されてもよい。
 図7に示すとおり、セルホルダ120及び下部ケース110の内側面において、第1排出孔126aまで結露水を導くための流路127が設けられる。より具体的には、流路127は、第1流路127a及び第2流路127bから構成される。
 第1流路127aは、電池セル150の側面と対向するセルホルダ120及び下部ケース110の内側面の一部において、当該内側面の一部を構成する下辺に沿って溝状に設けられる。図7では、電池セル150の側面は、X軸負の方向に形成される側面である。セルホルダ120及び下部ケース110の内側面の一部は、X軸負の方向に配置される内側面において、電池セル150の側面の形状に合わせて略矩形状に形成される領域を意味する。図7Aに示すとおり、第1流路127aは、Y軸に沿って略水平に設けられるのが好適である。しかしながら、これに限定されず、第1流路127aは、図7Bに示すとおり、セルホルダ120と下部ケース110との係合部分に向かうに従って斜め下方に傾斜してもよい。すなわち、第1流路127aは、図7Bに対応する断面視において、セルホルダ120と下部ケース110との係合部分を最下点とする略V字状となるように形成されてもよい。
 第2流路127bは、セルホルダ120と下部ケース110との係合部分に対応する内側面の一部において、Z軸方向(上下方向)に沿って溝状に設けられる。図7では、第2流路127bは、上面側の係合部分から底面側の係合部分まで略直線状に延在する。すなわち、第2流路127bは、第1流路127aと略直角に交わる。
 図7及び図8では、セルホルダ120及び下部ケース110について、組電池100の第2側面側の内側面のみに着目したが、上述した構成と同様の構成が、他の内側面にも適用される。さらに、同様の構成の流路127が、セルホルダ120の前面に対向する下部ケース110の内面(下部ケース110の背面の裏側)においてさらに設けられてもよい。すなわち、同様の構成の流路127が、下部ケース110のY軸方向の端面のうち、内側の端面においてさらに設けられてもよい。
 以上のような構成により、本実施形態に係る組電池100は、電池セル150の周囲において発生した結露水を効率良く外部へと排出できる。すなわち、電池セル150の周囲において発生した結露水は、車両の走行中の振動等により自然と下方へと移動し、第1流路127a及び第2流路127bによって、図7に示すとおり、セルホルダ120及び下部ケース110内面の最下部にまで移動する。図7Bに示すような略V字状の第1流路127aを形成することで、組電池100は、より効率良く係合部分に結露水を集約することができる。図8に示すとおり、電池セル150の上面又は底面において発生した結露水は、絶縁シート155、又は、セルホルダ120及び下部ケース110内部の上面若しくは底面を流れて、流路127に導かれる。さらに、組電池100は、流路127が溝状となっていることで、毛細管現象が生じ、結露水を効率良く流すことができる。組電池100は、第1排出孔126aを大きく形成することで、最下部に集約される結露水を、効率良く外部へと排出できる。一方で、組電池100は、第1排出孔126aに加えて、第2排出孔126bを形成することで、それぞれの第1流路127aを流れる結露水を直接排出することができ、排出効率をより向上させる。
 組電池100は、上下方向に延在する第2流路127bをセルホルダ120及び下部ケース110の係合部分に形成することで、セル間バスバ160等の様々な電気部品が配置されるセルホルダ120の前面に流れる結露水の量を低減できる。これにより、組電池100は、短絡等の不具合を防止できるので、製品としての信頼性及び安全性を向上できる。
 さらに、組電池100は、流路127が下部ケース110の背面の裏側にも設けられることで、内部の結露水をより効率良く流すことができる。
 図10は、センサ基板231が取り付けられた組電池100の正面図である。図4にも示されている構成についての説明は、省略する。組電池100は、前面の側に、センサ基板231-1~2と、FPC232-1~2(Flexible Print Circuit)とを備える。センサ基板231-1~2は、センサ基板231ともいう。FPC232-1~2は、FPC232ともいう。
 センサ基板231-1は、3段に積層された電池セル150-1~3に電気的に接続されるセル間バスバ160-1~3及び総マイナス端子バスバ165のセンサ取付端子163に、取付部材233によって取り付けられる。センサ基板231-2は、2段に積層された電池セル150-4~5に電気的に接続されるセル間バスバ160-3~4及び総プラス端子バスバ164のセンサ取付端子163に電気的に接続するように、取付部材233によって取り付けられる。取付部材233は、例えば、ねじ又はビス等であってよい。FPC232-1は、センサ基板231-1と、BMS基板141(図13及び図14参照)とを電気的に接続する。BMS基板141は、図2のBMS140の機能を実行する回路を含む。FPC232-2は、センサ基板231-1と、センサ基板231-2とを電気的に接続する。
 センサ基板231は、図2のセンサ230の機能を実行する回路を含む。センサ基板231は、各電池セル150の電極端子間に流れる電流、及び、電極端子間の電圧の少なくとも一方を測定しうる。センサ基板231は、BMS基板141からの測定指示に応じて、電流又は電圧を測定してよい。センサ基板231は、BMS基板141に測定結果を出力してよい。
 本実施形態に係る組電池100によれば、1枚のセンサ基板231が3段に積層された電池セル150と2段に積層された電池セル150とにまたがって取り付けられる場合と比較して、センサ基板231にかかる応力が緩和されうる。本実施形態に係る組電池100によれば、BMS基板141が電池セル150に直接取り付けられる場合と比較して、BMS基板141にかかる応力が緩和されうる。
 図11は、図10のD-D矢線に沿った断面において1つのセル間バスバ160-4のみに着目した拡大断面図である。セル間バスバ160-4の片側は、セルホルダ120の前面から突出させた状態で保持されている電池セル150-5の負極端子153に溶接されている。上述したとおり、アーム部163bは、電池セル150-5とセル間バスバ160-4との溶接面からY軸の負の方向に延伸しつつ、X軸方向に傾斜する。アーム部163bの先端に連続して形成されるセンサ取付端子163には、センサ基板231-2が載置されている。センサ基板231-2は、ナット163aに螺合する取付部材233によって、センサ取付端子163に固定されている。より具体的には、セル間バスバ160-4は、センサ取付端子163とナット163aとにより、センサ取付端子163の裏面側からセンサ基板231-2を固定する。この時、ナット163aの一部は、セルホルダ120の前面に突設された収容部129の内部に収容される。ここではセル間バスバ160-4のみを図示しているが、セル間バスバ160-1~160-3についても同様の態様でセンサ基板231に取り付けられ、ナット163aの一部がセルホルダ120の収容部129の内部に収容される。
 このような状態で、セルホルダ120とセル間バスバ160とは、離間する。より具体的には、センサ取付端子163の裏面と収容部129の縁部129aとが離間する。同様に、ナット163aは、収容部129の縁部129aと離間する。すなわち、セルホルダ120とセル間バスバ160とは、直接接触しない。
 本実施形態において、組電池100は、セル間バスバ160の寸法の公差に応じてセンサ基板231の固定を可能にする。すなわち、組電池100において、センサ基板231をセル間バスバ160に取り付けるための固定機構(ナット163a)がセル間バスバ160自体に設けられたことで、セル間バスバ160は、セルホルダ120と完全に離間する。これにより、両者の間に空間が形成され、組電池100は、セル間バスバ160の寸法の公差を許容できる。セルホルダ120が収容部129を有することによって、セル間バスバ160のナット163aが収容される空間が形成されるので、セル間バスバ160の寸法に対する公差の組電池100による許容度はより大きくなる。さらに、アーム部163bが傾斜し、センサ取付端子163がX軸方向及びY軸方向へと変位可能になるので、セル間バスバ160の寸法に対する公差の組電池100による許容度はさらに大きくなる。以上により、組電池100は、センサ基板231の位置合わせを容易にする。
 アーム部163bが弾性を有し、かつ、傾斜することで、アーム部163bは、応力を吸収しやすくなる。これにより、衝撃に対するセル間バスバ160の耐性が向上する。一方で、収容部129によって、アーム部163bの過度の弾性変形が規制される。すなわち、図11に示すとおり、アーム部163bが何らかの原因により大きく弾性変形すると、センサ取付端子163が収容部129の縁部129aと接触する。これにより、組電池100は、アーム部163bの破損を防止する。以上の2つの点から、組電池100の信頼性が向上する。
 さらに、組電池100は、固定機構(ナット163a)をセルホルダ120に設ける必要がなく、セルホルダ120の強度をさほど必要としないので、セルホルダ120の厚みを薄くすることもできる。
 図12は、BATケース500と補機台座200とが取り付けられた組電池100を示す図である。BATケース500は、セルホルダ120に係合される。セルホルダ120及びBATケース500はそれぞれ、第1側面の側に凸部122及び凸部502を有する。セルホルダ120及びBATケース500はそれぞれ、図示されていない第2側面の側にも、凸部122及び凸部502を有する。係合部材180は、第1側面及び第2側面で凸部122と凸部502とを挟持することによって、セルホルダ120とBATケース500とを係合する。
 BATケース500は、上面の側及び底面の側に、図4に示すセルホルダ120の係合孔125に嵌合する爪を有する。BATケース500とセルホルダ120とは、上面及び底面の側それぞれで、セルホルダ120の係合孔125と、BATケース500の爪とが嵌合することによっても係合される。セルホルダ120の係合孔125は、BATケース500の爪の外側に位置してよいし、内側に位置してよい。BATケース500の爪とセルホルダ120の係合孔125とは、交換されてよい。
 BATケース500がセルホルダ120に係合されることによって、電池セル150のキャップ面151の側に設けられるセンサ基板231等の構成がBATケース500によってカバーされる。BATケース500は、組電池100に正面側から加わる衝撃を緩和しうる。
 下部ケース110とセルホルダ120とBATケース500とが係合して構成されるモジュールは、電池モジュールともいう。電池モジュールは、電池セル150が3段に積層されている側と、電池セル150が2段に積層されている側とを有する。電池セル150が3段に積層されている側は、3段側ともいう。電池セル150が2段に積層されている側は、2段側ともいう。言い換えれば、電池モジュールは、2段側と3段側とを有する。下部ケース110、セルホルダ120及びBATケース500は、電池モジュールと同様に、2段側と3段側とを有する。
 BATケース500は、3段側の上面に、ヒュージブルリンク240を備える。ヒュージブルリンク240は、一端において、総マイナス銅バスバ286及び総マイナス端子バスバ165を介して、電池セル150-1の負極端子153に電気的に接続される。ヒュージブルリンク240は、他端において、GND銅バスバ280を介して、GND端子270に電気的に接続される。
 下部ケース110は、電池モジュールの3段側の上面に、BMS基板141を取り付けるためのナット穴146と、BMS基板141に設けられる嵌合孔144(図14参照)に嵌合するためのピン147とを備える。下部ケース110は、組電池100の背面の側に、リブ114を備える。下部ケース110は、組電池100の背面の側に、固定部116を備える。組電池100は、固定部116をボルト等で固定することで、車体等に固定されうる。下部ケース110は、固定部116から上面側に延在するピラー117を備える。ピラー117は、下部ケース110の他の部分より厚く、高い剛性を有しうる。下部ケース110は、ピラー117が高い剛性を有することによって、固定部116に加わる外力によって変形しにくくなる。
 補機台座200は、締結部370にボルト340で締結される。締結部370は、電池モジュールの2段側の上面の4箇所に設けられる。組電池100は、締結部370が電池モジュールの3段側の上面に設けられる場合と比較して、Z軸方向の寸法を小さくされうる。補機台座200の締結部370が設けられる箇所は、4箇所に限られず、3箇所以下であってよいし、5箇所以上であってもよい。補機台座200は、少なくとも3箇所の締結部370で電池モジュールに締結されることによって、電池モジュールに対して、より安定して取り付けられうる。
 図12に例示される補機台座200は、BATケース500の2段側の上面に設けられる締結部370と、下部ケース110の2段側の上面に設けられる締結部370とに、ボルト340で締結される。言い換えれば、図12に例示される補機台座200は、電池モジュール全体にまたがって締結される。補機台座200が電池モジュール全体にまたがって締結される場合、例えば補機台座200が下部ケース110だけに締結される場合と比較して、電池モジュールの剛性が高められうる。
 電池モジュールの剛性は、下部ケース110とセルホルダ120とBATケース500との間の相対的な変位が規制されることによって高められうる。補機台座200が電池モジュール全体にまたがって締結される場合、下部ケース110とセルホルダ120とBATケース500との間の相対的な変位は規制されうる。補機台座200は、電池モジュール全体にまたがって締結されるだけでなく、下部ケース110とセルホルダ120とBATケース500との間の相対的な変位が規制されるように、電池モジュールに締結されてよい。補機台座200は、例えば上部ケース300の少なくとも1箇所と締結されてよい。上部ケース300が電池モジュールの外側に組み付けられる場合、補機台座200と上部ケース300の少なくとも1箇所が締結されることで、電池モジュールの各構成部の相対的な変位が規制されうる。
 補機台座200は、リレー220を取り付けるためのリレー締結部360を備える。リレー締結部360は、図12に例示される3個に限られず、2個以下であってよいし、4個以上であってもよい。補機台座200のリレー締結部360を備える部分の厚みは、補機台座200の他の部分の厚みよりも、厚くされてよい。このようにすることで、リレー220が取り付けられる部分の剛性が高められうる。リレー220の動作による振動が、周囲に伝搬しにくくなる。
 図13は、リレー220とMOS基板212とBMS基板141とが取り付けられた組電池100を示す図である。図12にも示されている構成についての説明は、省略する。
 MOS基板212は、MOSFET210を実装する。MOS基板212は、補機台座200に取り付けられる。MOS基板212は、LOAD銅バスバ282を介して、LOAD端子260に電気的に接続される。
 リレー220は、補機台座200に設けられたリレー締結部360(図12参照)にボルト350で締結される。リレー220が締結される箇所は、3箇所に限られず、2箇所以下であってよいし、4箇所以上であってもよい。リレー220は、少なくとも3箇所で補機台座200に締結される場合、補機台座200に対して、より安定して取り付けられうる。
 リレー220は、一端において、総プラス銅バスバ285及び総プラス端子バスバ164を介して、電池セル150-5の正極端子152に電気的に接続される。リレー220は、他端において、SSG銅バスバ281を介して、SSG端子250と、MOS基板212とに電気的に接続される。
 図14は、BMS基板141の構成を示す図である。BMS基板141は、回路部品142と、取付孔143と、嵌合孔144とを備える。回路部品142の少なくとも一部は、BMS140の機能を実行する回路に対応する。下部ケース110の3段側の上面には、ナット穴146とピン147とが設けられる。BMS基板141は、ピン147と嵌合孔144とが嵌合するように、ナット穴146に取付部材145によって取り付けられる。取付部材145は、例えば、ねじ又はビス等であってよい。ピン147と嵌合孔144とが嵌合することによって、電池モジュールへのBMS基板141の取り付けの精度が向上しうる。電池モジュールへのBMS基板141の取り付けが容易になりうる。
 BMS基板141は、FPC232-1によって、センサ基板231に通信可能に接続される。BMS基板141は、MOSケーブル312によって、MOS基板212に通信可能に接続される。BMS基板141は、コネクタケーブル314によって、コネクタ310に通信可能に接続される。BMS基板141は、コネクタ310を介して、電源システム400の制御部460に通信可能に接続されうる。BMS基板141は、制御部460に限られず、他の装置に通信可能に接続されてもよい。
 補機台座200と、リレー220と、MOS基板212と、BMS基板141とで構成されるモジュールは、補機モジュールともいう。
 図15は、図1に示す組電池100の分解斜視図である。電池モジュールは、以下のように組み立てられてよい。電池セル150は、絶縁シート155を挟んで3段と2段とに積層され、下部ケース110とセルホルダ120との間に収容される。下部ケース110とセルホルダ120とは、係合部材180によって係合される。電池セル150の電極端子に、バスバが取り付けられる。電池セル150のキャップ面151の側にシール630を挟んで安全弁カバー610及び611が取り付けられる。安全弁カバー610及び611は、ガスチューブ620で接続される。バスバのセンサ取付端子163に、センサ基板231が取り付けられる。BATケース500が電池セル150のキャップ面151の側をカバーするように、セルホルダ120に、係合部材180によって係合される。安全弁カバー611のガスダクト614に、ガス排出管600が取り付けられる。BATケース500の上面に、GND銅バスバ280と、総マイナス銅バスバ286と、ヒュージブルリンク240とが取り付けられる。
 補機モジュールは、以下のように組み立てられてよい。補機台座200は、電池モジュールの2段側の上面にボルト340で取り付けられる。補機台座200の上に、SSG銅バスバ281と、LOAD銅バスバ282と、総プラス銅バスバ285と、MOS基板212とが取り付けられる。リレー220は、補機台座200に、ボルト350で取り付けられる。BMS基板141は、電池モジュールの3段側の上面に取り付けられる。補機台座200は、リレー220等が取り付けられた後に、電池モジュールに取り付けられてよい。補機台座200が電池モジュールに取り付けられる前に、補機台座200にリレー220又はMOS基板212等が取り付けられる場合、組電池100の組み立てがより容易になりうる。
 上部ケース300は、電池モジュールと補機モジュールとが組み合わされた後、全体をカバーするように取り付けられる。上部ケース300は、例えば、爪と穴との嵌合によって電池ケースに係合されてよい。組電池100は、以上説明してきた手順例によって、組み立てられうる。
 電池モジュールの組み立てにおいて、電池セル150は、接着剤によってセルホルダ120に接着されてよい。接着剤は、電池セル150とセルホルダ120とを接着可能な任意の接着剤であってよい。接着剤は、例えばアクリル系接着剤又はエポキシ系接着剤等であってよい。接着剤は、セルホルダ120に塗布されてよい。接着剤は、セルホルダ120の、電池セル150のキャップ面151に対向する部分に塗布されてよい。電池セル150は、セルホルダ120に接着剤が塗布された後に、セルホルダ120に挿入されてよい。
 電池セル150とセルホルダ120とが接着された後、電池セル150の電極端子には、バスバが溶接されてよい。電極端子とバスバとが溶接される際、電極端子とバスバとの位置関係には、高い精度が要求されることがある。この場合、電池セル150とセルホルダ120とを接着する接着剤の塗布位置の精度を高めることによって、電極端子とバスバとの溶接が容易になりうる。電池セル150にバスバが溶接される前に電池セル150とセルホルダ120とが接着されることによって、電池モジュールの生産性が向上しうる。
 本実施形態において、電池モジュール及び補機モジュールは、それぞれ別に組み立てられうる。このようにすることで、電池モジュール及び補機モジュール、並びに、組電池100の生産性が向上しうる。
 本実施形態において、組電池100は、第1側面の側にSSG端子250及びLOAD端子260を備え、前面の側にGND端子270を備える。GND端子270は、SSG端子250及びLOAD端子260が配置される面と異なる面に配置されることによって、識別されやすくなる。組電池100は、第1側面の側に、コネクタ310を備える。GND端子270は、コネクタ310と異なる側に配置されることによって、識別されやすくなる。このようにすることで、組電池100を車両に搭載する際における誤配線が防止されやすくなる。
 GND端子270に電気的に接続されるケーブルの長さは、SSG端子250及びLOAD端子260に電気的に接続されるケーブルの長さと異なるように構成されてよい。このようにすることで、組電池100を車両に搭載する際における誤配線がさらに防止されやすくなる。
 図16は、図12に示す組電池100を第1側面の側から見た図である。組電池100は、下部ケース110とセルホルダ120とBATケース500とを含む電池モジュールの2段側に、補機台座200を備える。電池モジュールの2段側は、X軸の正の方向の側に対応する。補機台座200は、締結部370に締結される。図16において、締結部370は、補機台座200で見えないため、破線で示される。締結部370は、図12に示すボルト340に対応する位置に4箇所設けられる。締結部370が設けられる箇所は、3箇所以下であってよいし、5箇所以上であってもよい。締結部370は、電池モジュールの3段側に設けられてよいし、他の部分に設けられてもよい。
 電池セル150-4及び150-5は、下部ケース110に収容される。図16において、電池セル150-4及び150-5は、下部ケース110で見えないため、破線で示される。
 下部ケース110は、電池セル150が収容されている部分の背面側に、セル背面板118を有する。セル背面板118は、下部ケース110の側面で見えないため、破線で示される。下部ケース110は、セル背面板118よりも背面側に、クラッシャブルゾーン113のリブ114を有する。
 図16において、締結部370は、リブ114の上に設けられる。締結部370は、リブ114とセル背面板118との交点114aの上に設けられてよい。交点114aの上に設けられる締結部370は、交点114aからY軸の正方向に移動した点に設けられる締結部370と比較して、より高い剛性で補機台座200を締結しうる。締結部370は、交点114aの近傍に設けられてよい。締結部370が設けられる位置が交点114aに近いほど、締結部370は、より高い剛性で補機台座200を締結しうる。
 リレー220は、補機台座200に載置される。リレー220は、補機台座200の上の、下部ケース110よりもBATケース500に近い側に載置されてよい。リレー220は、BATケース500に近い側に載置されることによって、電池セル150から遠ざけられる。このようにすることで、リレー220の動作によって発生する振動が、電池セル150に伝搬しにくくなる。
 図17は、図12に示す組電池100を背面の側から見た図である。締結部370は、リブ114の上に設けられる。締結部370は、リブ114とリブ114との交点114bの上に設けられてよい。交点114bの上に設けられる締結部370は、交点114bからX軸の正又は負の方向に移動した点に設けられる締結部370と比較して、より高い剛性で補機台座200を締結しうる。締結部370は、交点114bの近傍に設けられてよい。締結部370が設けられる位置が交点114bに近いほど、締結部370は、より高い剛性で補機台座200を締結しうる。
 本開示に係る一実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各手段に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段等を1つに組み合わせたり、あるいは分割したりすることが可能である。
 100 組電池
 110 下部ケース(係合ケース)
 112 凸部
 113 クラッシャブルゾーン
 114 リブ
 114a、114b 交点
 115 係合孔
 116 固定部
 117 ピラー
 118 セル背面板
 120 セルホルダ
 122 凸部
 125 係合孔
 126a 第1排出孔
 126b 第2排出孔
 127 流路
 127a 第1流路
 127b 第2流路
 128 係合爪
 129 収容部
 129a 縁部
 130 第1の二次電池
 140 BMS(バッテリコントローラ)
 141 BMS基板
 142 回路部品
 143 取付穴
 144 嵌合孔
 145 取付部材
 146 ナット穴
 147 ピン
 150 電池セル
 151 キャップ面
 152 正極端子
 153 負極端子
 154 安全弁
 155 絶縁シート
 160 セル間バスバ
 161 凸部
 162 端子接続部
 162a 溶接用開口
 163 センサ取付端子
 163a ナット(固定機構)
 163b アーム部
 164 総プラス端子バスバ
 165 総マイナス端子バスバ
 166 外部接続部
 180 係合部材
 200 補機台座
 210 MOSFET
 212 MOS基板
 220 リレー
 230 センサ
 231 センサ基板(回路基板)
 232 FPC
 233 取付部材
 240 ヒュージブルリンク
 250 SSG端子
 260 LOAD端子
 270 GND端子
 280 GND銅バスバ
 281 SSG銅バスバ
 282 LOAD銅バスバ
 285 総プラス銅バスバ
 286 総マイナス銅バスバ
 300 上部ケース
 301、302、303 凹部
 310 コネクタ
 312 MOSケーブル
 314 コネクタケーブル
 340、350 ボルト
 360 リレー締結部
 370 締結部(補機台座)
 400 電源システム
 410 オルタネータ
 420 スタータ
 430 第2の二次電池
 440 負荷
 450 スイッチ
 460 制御部
 500 BATケース
 502 凸部
 600 ガス排出管
 610、611 安全弁カバー
 612、613、614 ガスダクト
 620 ガスチューブ
 630 シール

Claims (7)

  1.  電池セルと、
     前記電池セルを保持するセルホルダと、
     前記セルホルダと係合して、前記電池セルを前記セルホルダと共に保持する係合ケースと、
     を備え、
     前記電池セルの電極端子が露出する前記セルホルダの露出面の下端部において、内部で発生した結露水を排出する第1排出孔が設けられ、
     前記セルホルダ及び前記係合ケースの内側面には、前記第1排出孔まで前記結露水を導く流路が設けられる、
     組電池。
  2.  前記流路は、前記電池セルの側面と対向する前記セルホルダ及び前記係合ケースの内側面の一部において、前記内側面の一部を構成する下辺に沿って溝状に設けられる第1流路を有する、
     請求項1に記載の組電池。
  3.  前記下辺に沿って溝状に設けられる前記第1流路は、前記セルホルダと前記係合ケースとの係合部分に向かうに従って斜め下方に傾斜する、
     請求項2に記載の組電池。
  4.  前記セルホルダの前記露出面において前記第1排出孔よりも上方に設けられ、前記下辺に沿って溝状に設けられる前記第1流路の終端と連通する第2排出孔をさらに有する、
     請求項2又は3に記載の組電池。
  5.  前記第1排出孔は、前記第2排出孔よりも孔径が大きい、
     請求項4に記載の組電池。
  6.  前記流路は、前記セルホルダと前記係合ケースとの係合部分に対応する内側面の一部において、上下方向に沿って溝状に設けられる第2流路をさらに有する、
     請求項2又は3に記載の組電池。
  7.  前記流路は、前記セルホルダの前記露出面に対向する前記係合ケースの内面においてさらに設けられる、
     請求項2又は3に記載の組電池。
PCT/JP2017/045394 2016-12-19 2017-12-18 組電池 WO2018117052A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780078904.8A CN110088936B (zh) 2016-12-19 2017-12-18 电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016245710A JP6333350B1 (ja) 2016-12-19 2016-12-19 組電池
JP2016-245710 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018117052A1 true WO2018117052A1 (ja) 2018-06-28

Family

ID=62236397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045394 WO2018117052A1 (ja) 2016-12-19 2017-12-18 組電池

Country Status (3)

Country Link
JP (1) JP6333350B1 (ja)
CN (1) CN110088936B (ja)
WO (1) WO2018117052A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199535A1 (ja) * 2020-03-31 2021-10-07 三洋電機株式会社 電源装置及びこれを備える車両並びに蓄電装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291533A (ja) * 2000-04-10 2001-10-19 Japan Storage Battery Co Ltd 組電池
JP2012256467A (ja) * 2011-06-08 2012-12-27 Honda Motor Co Ltd バッテリモジュール
JP2013110041A (ja) * 2011-11-23 2013-06-06 Denso Corp 電池ユニット
JP2013110040A (ja) * 2011-11-23 2013-06-06 Denso Corp 電池ユニット
JP2013196981A (ja) * 2012-03-21 2013-09-30 Lithium Energy Japan:Kk 電源装置
JP2014103051A (ja) * 2012-11-21 2014-06-05 Mitsubishi Heavy Ind Ltd 電池モジュール
JP2015210895A (ja) * 2014-04-24 2015-11-24 株式会社東芝 組電池モジュール
JP2016081762A (ja) * 2014-10-17 2016-05-16 住友電気工業株式会社 蓄電デバイスモジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092657B2 (ja) * 2007-09-28 2012-12-05 三菱自動車工業株式会社 バッテリユニット
US8449333B2 (en) * 2009-10-06 2013-05-28 Yazaki Corporation Battery connecting structure
JP5592194B2 (ja) * 2010-08-20 2014-09-17 三洋電機株式会社 電池パック
US9172115B2 (en) * 2012-06-12 2015-10-27 Milwaukee Electric Tool Corporation Battery pack with multiple water discharge pathways
JP5561703B1 (ja) * 2013-10-15 2014-07-30 サーチウェア株式会社 組電池およびこれを搭載した移動体ならびに組電池の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291533A (ja) * 2000-04-10 2001-10-19 Japan Storage Battery Co Ltd 組電池
JP2012256467A (ja) * 2011-06-08 2012-12-27 Honda Motor Co Ltd バッテリモジュール
JP2013110041A (ja) * 2011-11-23 2013-06-06 Denso Corp 電池ユニット
JP2013110040A (ja) * 2011-11-23 2013-06-06 Denso Corp 電池ユニット
JP2013196981A (ja) * 2012-03-21 2013-09-30 Lithium Energy Japan:Kk 電源装置
JP2014103051A (ja) * 2012-11-21 2014-06-05 Mitsubishi Heavy Ind Ltd 電池モジュール
JP2015210895A (ja) * 2014-04-24 2015-11-24 株式会社東芝 組電池モジュール
JP2016081762A (ja) * 2014-10-17 2016-05-16 住友電気工業株式会社 蓄電デバイスモジュール

Also Published As

Publication number Publication date
JP2018101500A (ja) 2018-06-28
CN110088936A (zh) 2019-08-02
CN110088936B (zh) 2022-05-13
JP6333350B1 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2016208183A1 (ja) 組電池及び電源装置
JP6302580B1 (ja) 組電池
CN108475741B (zh) 电池组的制造方法
WO2018008478A1 (ja) 組電池及び電源装置
JP6808283B2 (ja) 組電池
JP2013110039A (ja) 組電池
WO2018008532A1 (ja) セルホルダ及び組電池
US20190259995A1 (en) Assembled Battery
WO2018143079A1 (ja) 組電池
JP6307144B1 (ja) 組電池
CN108604652B (zh) 电池组
JP6884570B2 (ja) 組電池
JP6285003B1 (ja) 組電池
WO2017126271A1 (ja) 組電池
WO2018117052A1 (ja) 組電池
JP2018101496A (ja) 組電池
WO2018117049A1 (ja) 組電池
JP2017130282A (ja) 組電池及び電源装置
JP2018125251A (ja) 組電池
JP2018101492A (ja) 組電池
WO2016208184A1 (ja) 組電池及び電源装置
JP6952717B2 (ja) 組電池
JP2018101499A (ja) 組電池
WO2017126272A1 (ja) 組電池
JP2018101495A (ja) 組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885417

Country of ref document: EP

Kind code of ref document: A1