WO2018115735A1 - Objets solides pyrotechniques générateurs de gaz - Google Patents

Objets solides pyrotechniques générateurs de gaz Download PDF

Info

Publication number
WO2018115735A1
WO2018115735A1 PCT/FR2017/053727 FR2017053727W WO2018115735A1 WO 2018115735 A1 WO2018115735 A1 WO 2018115735A1 FR 2017053727 W FR2017053727 W FR 2017053727W WO 2018115735 A1 WO2018115735 A1 WO 2018115735A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxalate
inorganic
nitrate
composition
object according
Prior art date
Application number
PCT/FR2017/053727
Other languages
English (en)
Inventor
Stéphane L. BESOMBES
Aurélien R. DOILLON
Original Assignee
Arianegroup Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arianegroup Sas filed Critical Arianegroup Sas
Priority to KR1020197019861A priority Critical patent/KR20190101995A/ko
Priority to US16/472,297 priority patent/US20200002243A1/en
Priority to JP2019534212A priority patent/JP2020514218A/ja
Priority to EP17829259.5A priority patent/EP3558900B8/fr
Priority to CN201780087086.8A priority patent/CN110325492A/zh
Publication of WO2018115735A1 publication Critical patent/WO2018115735A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0066Shaping the mixture by granulation, e.g. flaking
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/001Fillers, gelling and thickening agents (e.g. fibres), absorbents for nitroglycerine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt

Definitions

  • the present invention relates to new pyrotechnic solid objects gas generators. Said new objects are particularly interesting with regard to their combustion temperature (low), their generation of combustion residues (in small quantities, in agglomerated form) and their obtaining (easy to implement by the dry route). They are suitable for use in gas generators whose architecture is optimized. This optimization is specified below.
  • Said pyrotechnic solid state gas generators are particularly suitable for use in motor vehicle occupant protection systems, more particularly for inflating the so-called “airbags” (frontal airbags).
  • airbags airbag cushioning systems
  • front airbags driver or passenger
  • side airbags curtain, chest protection
  • the front airbags differ from the side airbags mainly in the time required for deployment and placement of the airbag. Typically, this time is higher for a front airbag (of the order of 40-50 ms, against 10-20 ms for a side airbag).
  • the front airbags essentially use so-called fully pyrotechnic gas generators, including at least one pyrotechnic charge consisting of at least one pyrotechnic solid object.
  • This type of design requires in return that said at least one pyrotechnic solid object jointly satisfies numerous requirements. (relating to its gas yield, its surface flow rate of inflation, its ignitability, its temperature and rate of combustion, its pressure exponent, the non-toxicity of the gases generated by its combustion, the amount of solid particles generated by its combustion and pyrotechnic safety during its obtaining and its use).
  • US Pat. No. 6,361,630 discloses, in bases of the guanidine nitrate type (NG, 15 to 35% by weight, as reducing filler) + strontium nitrate (Sr (NO 3 ) 2 , 30 to 50% by weight, such as oxidizing charge), the use, in a relatively large amount (15 to 25% by weight) of an endothermic agent (cooling agent), chosen from alkali or alkaline earth metal formates, alkali metal or alkaline oxalates -terreux and their mixtures.
  • an endothermic agent chosen from alkali or alkaline earth metal formates, alkali metal or alkaline oxalates -terreux and their mixtures.
  • US Pat. No. 6,602,365 discloses obtaining, (at least partially) wet, pyrotechnic solid objects gas generators having a composition which contains:
  • an oxidant such as basic copper nitrate (BCN)
  • BCN basic copper nitrate
  • NG guanidine nitrate
  • pyrotechnic solid objects that seem to offer the best compromise in reference to the many requirements to be satisfied (see above) contain, in their composition, as main ingredients, guanidine nitrate (NG; reducing charge) and basic copper nitrate (BCN as an oxidizing charge). Their composition (NG / BCN type, therefore) is also likely to contain at least one additive, acting on the agglomeration of combustion residues and / or, advantageously, and on the rate of combustion.
  • NG guanidine nitrate
  • BCN basic copper nitrate
  • NG / BCN objects of this type containing, in their composition, at least one inorganic titanate whose melting temperature is greater than 2100 K.
  • Said at least one inorganic titanate, present at a low mass level ( ⁇ 5%), has a dual function:
  • said at least one inorganic titanate is a refractory compound whose melting point (see above) is significantly greater than the base combustion temperatures (NG / NCB) in which It is thus present that it retains its physical state as a powdery solid (it obviously intervenes in this form) at the combustion temperature, a characteristic necessary to obtain an agglomeration effect of liquid copper residues (at an increase the viscosity of the condensed phase consisting of liquid copper.)
  • the flltrabilite combustion residues thus facilitated, it is possible to reduce the filtration systems of gas generators); and, it has a positive effect on the rate of combustion (the articles containing the at least one inorganic titanate in their composition simultaneously have a high combustion rate (> 20 mm / s at 20 MPa) and a moderate combustion temperature ( ⁇ 2200 K) , with low pressure exponent and non-zero combustion and self-sustaining at atmospheric pressure).
  • the Applicant has in fact considered the technical problem of the size and mass (and therefore the cost) of gas generators operating with pyrotechnic solid loading gas generator. It wished to optimize the architecture of said generators by minimizing the volume and mass of the devices required, within the structure of said generators, for filtering and cooling the generated combustion gases. It can be indicated for illustration that the mass of the filtering device used, for a gas generating composition whose combustion temperature is 1900 K, is generally equivalent to the mass of the gas-generating charge. For all practical purposes, it can also be specified that the filtration device perse a cooling device (which combines its cooling effect with that of the cooling device).
  • the Applicant proposes new solid pyrotechnic gas-generating objects, having a composition of NG / BCN type, which can be obtained by the dry route, without the presence of a binder in their composition, and whose combustion temperature (less than 1800 K) is lower than that (less than 2200 K) of the objects described in the patent application WO 2012/153062.
  • Said combustion temperature is lowered by the presence, within the composition of the objects, of at least one specific cooling agent (see below); said presence of said at least one specific cooling agent in a relatively limited quantity ( ⁇ 18% by weight, in particular ⁇ 15% by weight mass, and even ⁇ 13% by mass), within a specific base (see its composition specified hereinafter), being effective (with regard to the lowering of the combustion temperature) while inducing that effects limited on other parameters such as the rate of combustion (the presence of an explosive ingredient is not required), the gas yield and the temperature stability of the objects involved.
  • the present invention thus relates to pyrotechnic solid objects generating gas.
  • the composition of said objects expressed in percentages by weight, contains:
  • NG guanidine nitrate
  • BCN basic copper nitrate
  • At least one inorganic oxalate selected from sodium oxalate (Na 2 C 2 04), tin oxalate (SnC 2 0 4), strontium oxalate (SRC 2 0 4 ), iron oxalate (FeC 2 O 4 ), copper oxalate (CUC 2 O 4 ) and mixtures thereof;
  • composition being, moreover, free of binder and explosive ingredient.
  • Said composition is therefore of NG type (reducing charge) / BCN (oxidizing charge).
  • Guanidine nitrate (NG) has been retained as reducing agent, among other things, for its ability to generate a lot of gas, for its rheoplastic behavior adapted to the implementation of the (direct) pelletization phase or compaction phases. and pelletization of a dry process (its presence allows in particular a good densification of the starting powdery pyrotechnic composition while limiting the compressive force to be applied: see below), and for reasons of pyrotechnic safety.
  • the composition of the pyrotechnic articles of the invention contains from 35 to 50% by weight of guanidine nitrate (NG), advantageously from 40 to 50% by weight of guanidine nitrate (NG).
  • Basic copper nitrate has been chosen as an oxidant, especially for its impact on the rate of combustion, its ductility and slaggant effect (presence of copper).
  • the said basic copper nitrate is present in a proportion of 35 to 50% by weight, generally in the proportion of 35 to 45% by weight.
  • Said composition therefore contains, in a base of NG / BCN type (as specified above, with particular reference to the desired oxygen balance value, close to -3%), a small amount (from 0.5 to 6%). %, often from 1 to 6%, advantageously from 3 to 5%, by weight) of at least one compound chosen from alumina (Al 2 O 3), inorganic titanates having a melting point greater than 2100 K and mixtures thereof .
  • alumina has a slaggant power greater than that of titanates
  • Said composition advantageously contains alumina (Al 2 O 3) or at least one titanate as specified above. It contains very advantageously alumina (Al2O3) or such a titanate.
  • Said composition of the objects of the invention contains, in a base of NG / BCN type as specified above, in addition to said at least one inorganic titanate and / or alumina, a relatively limited amount (from 5 to 18%, especially from 5 to 15%, advantageously from 5 to 13%, very advantageously from 7 to 13%, by weight) of at least one specific cooling agent, ie of at least one inorganic oxalate chosen from from sodium oxalate (Na2C20 4), tin oxalate (SnC 2 0 4), strontium oxalate (SRC 2 0 4), iron oxalate (FeC2 ⁇ 4) oxalate copper (CUC2O4) and mixtures thereof.
  • a relatively limited amount from 5 to 18%, especially from 5 to 15%, advantageously from 5 to 13%, very advantageously from 7 to 13%, by weight
  • at least one specific cooling agent ie of at least one inorganic oxalate chosen from from sodium
  • the presence, within the specified NG / NCB base (containing said at least one inorganic titanate and / or alumina), of at least one such oxalate, in said relatively limited amount indicated, was proved timely, with reference to the lowering of the combustion temperature of objects, without inducing significant effects on other parameters such as the burning rate (the presence of an explosive ingredient is not required), the gas yield (the oxalates were preferred to the formates) and the stabilities in the time (the selected oxalates being little hygroscopic) and in temperature (the melting temperature and / or decomposition of the retained oxalates is not lower than 200 ° C. (the those skilled in the art understood that said retained oxalates are in anhydrous form)) said objects.
  • the selected oxalates are otherwise non-toxic and of reasonable cost.
  • Said composition of the objects of the invention does not contain a binder.
  • NG guanidine nitrate
  • the rheoplastic behavior of guanidine nitrate (NG) entering in a significant amount in said composition, makes the presence of any binder superfluous (especially for obtaining, by dry route, formed pyrotechnic objects, granules, pellets and compressed monolith blocks (see below)).
  • NG guanidine nitrate
  • the person skilled in the art conceives the advantage of being able to obtain, by the dry route, the objects of the invention without the intervention of a binder (which would have a significant impact on the oxygen balance of the composition); the absence of any binder is also particularly appropriate with reference to the objective of low combustion temperature and high gas yield of said objects.
  • Said composition of the objects of the invention does not contain any explosive ingredient. It contains neither nitroguanidine nor hexogen (RDX), neither octogen (HMX) ... It is meant, currently and conventionally, by explosive ingredient, the ingredients classified in division of risk 1.1 according to standard NF T 70-502 (see also UN - Recommendations on Transport Dangerous Goods - Manual of Tests and Criteria, Fourth Revised Edition, ST / SG / AC.10 / ll / Rev.4, ISBN 92-1-239083-8ISSN 1014-7179 and STANAG 4488). For all intents and purposes, it is recalled that guanidine nitrate (NG) is not an ingredient in this risk division.
  • NG guanidine nitrate
  • the absence of any explosive ingredient within the composition of the objects of the invention is particularly appropriate with reference to the safety and the combustion temperature of said objects. It is recalled incidentally that a low combustion temperature is sought.
  • the at least one inorganic oxalate present in the composition of the subjects of the invention is advantageously chosen from sodium oxalate (Na 2 C 2 O 4 ), strontium oxalate (SrC 2 O 4 ) and oxalate of copper (CuC 2 O 4 ).
  • the at least one inorganic titanate whose melting temperature is greater than 2100 K, possibly present in the composition of the objects of the invention (it is recalled for all purposes that said composition contains from 0.5 to 6%, often from 1 to 6%, advantageously from 3 to 5%, of at least one compound chosen from alumina ( Al 2 O 3), inorganic titanates having a melting point greater than 2100 K and mixtures thereof), is advantageously chosen from metal titanates, alkaline earth titanates and mixtures thereof. It very advantageously consists of a metallic titanate or an alkaline earth titanate.
  • the composition of the objects of the invention which contains at least one titanate as specified, contains strontium titanate (SrTiO 3 ) and / or calcium titanate (CaTiO 3 ) and / or titanate. aluminum (AI2T1O5). In a particularly preferred manner, it contains strontium titanate (SrTiO 3), calcium titanate (CaTiOs) or aluminum titanate (Al 2 TiO 5 ).
  • titanates respectively have melting temperatures of 2353 K, 2248 K and 2133 K, ie melting temperatures significantly higher than the combustion temperature of the NG / BCN base (the combustion temperature of any NG / BCN base being in fact always less than 1950 K), which in addition contains the at least one inorganic oxalate.
  • the present invention relates to the subfamily of gas-generating pyrotechnic solid objects whose composition, expressed in percentages by weight, contains:
  • NG guanidine nitrate
  • BCN basic copper nitrate
  • BCN basic copper nitrate
  • composition being, moreover, free of binder and explosive ingredient.
  • the at least one inorganic oxalate advantageously consists of sodium oxalate.
  • the ingredients of the above four types (guanidine nitrate (NG), basic copper nitrate (BCN), inorganic alumina and / or titanate (s) with a melting point higher than 2100 K, and oxalate ( s) inorganic (s), as specified) (ingredients constituting the objects of the invention in general and subfamily above in particular) generally represent at least 98% by weight of the composition pyrotechnic objects of the invention.
  • the ingredients of the four types above may well represent at least 99.5% by weight, or even 100% by weight of the total mass of the objects of the invention.
  • At least one "other" additive alumina and / or the at least one inorganic titanate as well as the at least one inorganic oxalate that can quite be assimilated to additives
  • at least one "other" additive alumina and / or the at least one inorganic titanate as well as the at least one inorganic oxalate that can quite be assimilated to additives
  • auxiliaries calcium stearate, graphite, silica in particular
  • the constituent (main) ingredients of the objects of the invention guanidine nitrate + basic copper nitrate + alumina and / or at least one inorganic titanate as specified + at least one oxalate inorganic as specified - are known products. They are in the form of powders whose particle size distribution is narrowed (around their median diameter (d 5 o)) - Throughout this text (including in the examples), the median diameters indicated are median diameters in volume.
  • Said constitutive ingredients (main) of the objects of the invention advantageously have, particularly with reference to the obtaining of said objects by the dry route and the combustion rate of said objects, a fine particle size, or very thin. They generally have median diameter values (d 5 o) of less than or equal to 20 ⁇ m.
  • the median diameter of one of said guanidine nitrate (NG) and basic copper nitrate (BCN) is substantially higher than the median diameter of the other of said guanidine nitrate (NG) and basic copper nitrate (BCN), said substantially higher (significantly) median diameter remaining generally less than or equal to 20 pm (see above).
  • substantially higher is meant “at least 1.8 times higher”, advantageously “at least twice as much”, very advantageously “at least 5 times higher”, or even “at least 10 times higher”.
  • the median diameter of one of said basic ammonium nitrate and guanidine nitrate is less than or equal to 1 ⁇ m while the median diameter of the other of said nitrate of copper is guanidine and basic nitrate of copper, for example, that of said guanidine nitrate, is at least 5 pm, advantageously at least 10 pm (while remaining generally less than or equal to 20 pm (see above)).
  • alumina also occurring in the pulverulent state
  • it is advantageously at a fine or very fine particle size; it then has a high specific surface, or very high.
  • median diameter values of less than or equal to 20 ⁇ m have been mentioned.
  • median diameter values generally less than or equal to 10 ⁇ m, advantageously less than or equal to 5 ⁇ m, very advantageously less than or equal to 1 ⁇ m, or even as low as 100 nm, and even 10 nm.
  • At least one inorganic titanate (also involved in the pulverulent state) is present, it is also advantageously at a smallest possible particle size.
  • said at least one inorganic titanate present is in a fine powder form, of micrometric size, or even of nanometric dimension, ie with a median diameter (d 5 o) of less than 6 pm, or even less than 1 pm (generally in the context of this advantageous variant, there is: 0.5 pm d d 5 ⁇ 6 ⁇ m).
  • Said at least one inorganic titanate present advantageously has a specific surface area greater than 1 m 2 / g (very advantageously greater than 5 m 2 / g or more).
  • the particle size of the at least one inorganic oxalate it is also opportunely the finest possible.
  • good results have been obtained with commercial products "large particle size", especially with sodium oxalate having a median diameter greater than 40 prn (60 pm in particular). No doubt that the good results obtained would be even better with (at least) an oxalate of the invention, thinner (having in particular a median diameter less than 20 pm (see above)).
  • the objects of the invention are in particular likely to exist in the form of pyrotechnic objects formed, granules, pellets or monolithic (compressed) blocks (see below).
  • the pyrotechnic solid objects of the invention can be manufactured (dry) by simply pelletizing (pressing) the powder mixtures obtained by mixing their constituent ingredients (it is understood that said ingredients are used in powder form, with particle size more or less fine, appropriately the finest possible (see above), and it is essentially, if not exclusively, NG, BCN, alumina and / or inorganic titanate (s) such (s) ) as specified, and oxalate (s) as specified).
  • the pyrotechnic objects of the invention may also be manufactured (dry) in a process that may include up to four main steps. Such a method is familiar to those skilled in the art. It has in particular been described in patent application WO 2006/134311. Alumina or (and) the at least one inorganic titanate (whose melting temperature is greater than 2100 K) and the at least one inorganic oxalate (selected from sodium oxalate, tin oxalate, strontium oxalate, iron oxalate, copper oxalate and mixtures thereof) are advantageously involved with the other constituent ingredients, mainly NG + BCN, or even NG + BCN, at the beginning of the manufacturing process.
  • Alumina or (and) the at least one inorganic titanate (whose melting temperature is greater than 2100 K) and the at least one inorganic oxalate selected from sodium oxalate, tin oxalate, strontium oxalate, iron oxalate,
  • said at least one inorganic titanate and at least one inorganic oxalate selected from sodium oxalate, tin oxalate, strontium oxalate, iron oxalate, copper oxalate and mixtures thereof, in particular said at least one inorganic oxalate, added (s), further downstream, in the method of manufacturing the objects of the invention.
  • the preferred dry method of manufacture (preparation) of the pyrotechnic objects of the invention includes a dry compaction step of a mixture of the constituent powder ingredients of said objects (except, optionally, said at least one inorganic oxalate which may be added later). Dry compaction is generally carried out, in a manner known per se, in a roller compactor, at a compacting pressure (p) of between 10 8 and 6.10 8 Pa (10 8 Pa ⁇ p ⁇ 6.10 8 Pa). It can be implemented according to different variants (with a "simple" compacting characteristic step followed by at least one complementary step or with a compacting characteristic step coupled to a shaping step). Thus, the pyrotechnic solid objects of the invention are likely to exist in different forms (in particular over the manufacturing process leading to final objects):
  • pellets or monolithic blocks are obtained.
  • the objects of the invention - pyrotechnic objects formed, granules, pellets and monolithic blocks - obtained at the end of one or the other of the steps specified above, it being understood that pellets can also be obtained. by direct pelleting (see above).
  • the pyrotechnic solid objects of the invention can also be obtained by a wet process.
  • a wet process includes 1) an aqueous solution stage of all or (usually rather) of some of the main ingredients (said aqueous solution stage generally comprises the dissolution of at least one of the main ingredients (and more particularly that of guanidine nitrate (NG))), 2) the obtaining of a powder by spray drying, 3) the addition to the powder obtained of the ingredient or ingredients which have not not 4) the shaping (in the form of objects) of the powder mixture obtained by the usual dry process methods.
  • NG guanidine nitrate
  • the objects of the invention advantageously exist in the form of granules, pellets or monolithic blocks.
  • the granules of the invention generally have a median diameter (d 50 ) of between 200 and 1000 ⁇ m (and an apparent density of between 0.8 and 1.2 g / cm 3 ); and
  • pellets of the invention generally have a thickness of between 1 and 6 mm for a diameter of 3 to 15 mm.
  • Said granules and pellets are perfectly suitable for the main intended application (that of the front airbags, in the field of automotive safety).
  • the pyrotechnic objects formed and monolithic blocks are intended for other uses.
  • the present invention relates to a pulverulent composition (mixture of powders), a precursor of an object of the invention, the composition of which corresponds to that of an object of the invention (see above ).
  • the present invention relates to gas generators containing a pyrotechnic solid charge gas generator; said load containing at least one pyrotechnic solid object of the invention.
  • Said generators, in particular loaded pellets of the invention, are ideal for airbags, including frontal (see above).
  • Pellets (pellets of diameter 11 mm and thickness 3 mm) were made from the following ingredients: - NG (marketed by AlzChem AG (DE), grade 10 - 14 pm), (d 50 "12 pm)
  • AI2O3 (marketed by Evonik Industries AG (DE), grade 10-100 nm), (specific surface area: 100 m 2 / g),
  • Table 1 below shows five examples (Ex.l, Ex.2, Ex.3, Ex.4 and Ex.5) of object composition (pellets) of the present invention, as well as the characteristics (calculated performances or measured) of said objects (pellets) compared with those of an object (pellet) of the prior art (Ref.l, according to the patent application WO 2012/153062); said objects (pellets) of the invention and the prior art having been manufactured from the above ingredients as indicated above.
  • Table 1 below also shows two other examples (eg A and Ref 2) of pellet composition as well as the performance of said pellets (similarly obtained). These examples highlight the advantage of using NCB of very fine particle size (with NG of substantially greater particle size).
  • pellets were evaluated by means of thermodynamic calculations and from physical measurements carried out on the lozenges.
  • the combustion rates and pressure exponents of said pellets were obtained following several shots in a manometric chamber (volume 40 cm 3 ). The values indicated are therefore average values.
  • the reference pellets of the prior art contained, in their composition, guanidine nitrate (NG), basic copper nitrate (BCN) and strontium titanate (SrTiOs), in the indicated mass percentages. .
  • the pellets of Examples 1 to 5 contained, in their composition, in addition to the three constituents guanidine nitrate (NG), basic nitrate of copper (BCN) and strontium titanate (SrTiOa) for Examples 1 and 2, alumina for Examples 3, 4 and 5, a lowering agent for the combustion temperature according to the present invention: sodium oxalate (Na 2 C 2 O 4 ) for Examples 1 to 3, strontium oxalate (SrC 2 O 4 ) for Example 4 and copper oxalate (CuC 2 O 4 ) for Example 5.
  • the four components were present in the compositions in the percentages indicated.
  • compositions (objects) of Examples 1 and 2 showed that the addition, at a variable rate (mass content of 7.5 and 10% respectively), of sodium oxalate (Na 2 C 2 0 4 ), in a composition of the type of reference 1 (Ref.1), led to a lowering of the significant combustion temperature (respectively -144 and -190 ° C). The value of the pressure exponent remained acceptable for the intended application (front airbags).
  • the characteristics (performance) of the composition (of the object) of Example 3 showed that the presence of alumina contributed to obtaining good performance (lowering of the combustion temperature (of -155 ° C. relative to in the example of Ref.l) with increase of the value of the combustion rate to 20 MPa by compared to Example 2, and parallel increase in the agglomeration quality of the combustion residues compared to Example 2).
  • Example 5 (object) of Example 5 have shown that the joint addition of alumina and copper oxalate (CUC2O4) in a composition of the type of reference 1 (Ref.1), has led to a lowering of the significant combustion temperature (-146 ° C).
  • CRC2O4 alumina and copper oxalate
  • BCN fine-grade copper basic nitrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Air Bags (AREA)

Abstract

La présente invention concerne des objets solides pyrotechniques générateurs de gaz, dont la composition, exempte de liant et d'ingrédient explosif, exprimée en pourcentages massiques, renferme : de 35 à 50 %, avantageusement de 40 à 50 %, de nitrate de guanidine, de 35 à 50 % de nitrate basique de cuivre, de 0,5 à 6 % d'au moins un composé choisi parmi l'alumine et les titanates inorganiques dont la température de fusion est supérieure à 2100 K, et de 5 à 18 %, d'au moins un oxalate inorganique choisi parmi l'oxalate de sodium, l'oxalate d'étain, l'oxalate de strontium, l'oxalate de fer, l'oxalate de cuivre et leurs mélanges. Lesdits objets conviennent parfaitement pour utilisation dans les airbags frontaux.

Description

OBJETS SOLIDES PYROTECHNIQUES GENERATEURS DE GAZ
La présente invention concerne de nouveaux objets solides pyrotechniques générateurs de gaz. Lesdits nouveaux objets sont particulièrement intéressants au regard de leur température de combustion (basse), de leur génération de résidus de combustion (en faible quantité, sous forme agglomérés) et de leur obtention (de mise en œuvre aisée par voie sèche). Ils conviennent pour utilisation dans des générateurs de gaz dont l'architecture est optimisée. Cette optimisation est précisée ci-après.
Lesdits objets solides pyrotechniques générateurs de gaz conviennent particulièrement pour une utilisation dans des systèmes de protection d'occupants de véhicules automobiles, plus spécialement pour le gonflage des coussins amortissants (dits "airbags") frontaux.
Le domaine technique relatif à la protection des occupants de véhicules automobiles a connu un essor très important durant les vingt dernières années. Les véhicules intègrent au sein de leur habitacle plusieurs systèmes de sécurité de type coussin gonflable amortissant (dits "airbags"). Parmi les systèmes de sécurité de type coussin gonflable amortissant, on distingue les airbags frontaux (conducteur ou passager) et les airbags latéraux (rideau, protection thorax). Les airbags frontaux se différencient des airbags latéraux essentiellement par le temps requis pour le déploiement et la mise en place du coussin gonflable. Typiquement, ce temps est plus élevé pour un airbag frontal (de l'ordre de 40-50 ms, contre 10-20 ms pour un airbag latéral).
Les airbags frontaux font pour l'essentiel appel à des générateurs de gaz dits entièrement pyrotechniques, incluant au moins un chargement pyrotechnique constitué d'au moins un objet solide pyrotechnique. Ce type de conception impose en retour que ledit au moins un objet solide pyrotechnique satisfasse conjointement à de nombreuses exigences (relatives à son rendement gazeux, à son débit surfacique de gonflage, à son allumabilité, à ses température et vitesse de combustion, à son exposant de pression, à la non toxicité des gaz générés par sa combustion, à la quantité de particules solides générées par sa combustion et à la sécurité pyrotechnique lors de son obtention et de son utilisation).
Divers types de compositions pyrotechniques, pour des objets solides pyrotechniques générateurs de gaz convenant particulièrement pour une utilisation dans des systèmes de protection d'occupants de véhicules automobiles, ont déjà été proposés à ce jour.
Le brevet US 6 361 630 décrit, dans des bases de type nitrate de guanidine (NG, 15 à 35 % en masse, comme charge réductrice) + nitrate de strontium (Sr(N03)2, 30 à 50% en masse, comme charge oxydante), l'utilisation, en quantité relativement importante (15 à 25 % en masse) d'un agent endotherme (agent de refroidissement), choisi parmi les formiates de métal alcalin ou alcalino-terreux, les oxalates de métal alcalin ou alcalino-terreux et leurs mélanges. Ce document n'illustre en fait que l'utilisation du formiate de calcium dans une base qui, outre lesdits nitrate de guanidine (NG) et nitrate de strontium (S NC ), renferme un ingrédient explosif (de type HMX) afin d'accroître la vitesse de combustion et un liant (de type copolymère bloc polyéthylène/butylène-polystyrène). Les objets décrits sont obtenus par voie sèche.
Le brevet US 6 602 365 décrit l'obtention, (au moins en partie) par voie humide, d'objets solides pyrotechniques générateurs de gaz présentant une composition qui renferme :
- un complexe de nitrate de guanyl urée avec un métal (Cu, Zn, Mn, par exemple), tel celui de formule CuGuN,
- un oxydant (tel le nitrate basique de cuivre (BCN)), et
- un autre réducteur (tel le nitrate de guanidine (NG)). Lesdits objets ont une température de combustion basse, de par la présence dudit complexe de faible enthalpie de formation dans leur composition.
Actuellement, pour les airbags frontaux, les objet solides pyrotechniques qui semblent offrir le meilleur compromis en référence aux nombreuses exigences à satisfaire (voir ci-dessus) contiennent, dans leur composition, comme ingrédients principaux, du nitrate de guanidine (NG ; en tant que charge réductrice) et du nitrate basique de cuivre (BCN ; en tant que charge oxydante). Leur composition (de type NG/BCN, donc) est par ailleurs susceptible de renfermer au moins un additif, agissant sur l'agglomération des résidus de combustion et/ou, avantageusement et, sur la vitesse de combustion.
La Demanderesse a plus particulièrement décrit, dans la demande de brevet WO 2012/153062, des objets de ce type (NG/BCN), renfermant, dans leur composition, au moins un titanate inorganique dont la température de fusion est supérieure à 2100 K. Ledit au moins un titanate inorganique, présent à un faible taux massique (< 5 %), assure une double fonction :
- il agit comme agent « slaggant » ou agent agglomérant (ledit au moins un titanate inorganique est un composé réfractaire, dont la température de fusion (voir ci-dessus) est significativement supérieure aux températures de combustion des bases (NG/BCN) dans lesquelles il est présent. Ainsi, il conserve son état physique de solide pulvérulent (il intervient évidemment sous cette forme) à la température de combustion, caractéristique nécessaire à l'obtention d'un effet d'agglomération des résidus liquides de cuivre (à une augmentation de la viscosité de la phase condensée constituée de cuivre liquide). La flltrabilite des résidus de combustion ainsi facilitée, il est possible de réduire les systèmes de filtration des générateurs de gaz) ; et, - il agit positivement sur la vitesse de combustion (les objets renfermant ledit au moins un titanate inorganique dans leur composition présentent simultanément une vitesse de combustion élevée (> 20 mm/s à 20 MPa) et une température de combustion modérée (< 2200 K), avec exposant de pression faible et combustion non nulle et auto-entretenue à pression atmosphérique).
La Demanderesse a en fait considéré le problème technique de l'encombrement et de la masse (et donc du coût) des générateurs de gaz fonctionnant avec chargement solide pyrotechnique générateur de gaz. Elle a souhaité optimiser l'architecture desdits générateurs en minimisant le volume et la masse des dispositifs requis, au sein de la structure desdits générateurs, pour la filtration et le refroidissement des gaz de combustion générés. On peut indiquer, pour illustration, que la masse du dispositif de filtration employé, pour une composition génératrice de gaz dont la température de combustion est de 1900 K, est généralement équivalente à la masse du chargement générateur de gaz. A toutes fins utiles, on peut aussi préciser que le dispositif de filtration constitue perse un dispositif de refroidissement (qui cumule son effet de refroidissement avec celui du dispositif de refroidissement).
Dans cette optique d'optimisation de l'architecture desdits générateurs, la Demanderesse propose de nouveaux objets solides pyrotechniques générateurs de gaz, présentant une composition de type NG/BCN, pouvant être obtenus par voie sèche, sans présence de liant dans leur composition, et dont la température de combustion (inférieure à 1800 K) est plus faible que celle (inférieure à 2200 K) des objets décrits dans la demande de brevet WO 2012/153062. Ladite température de combustion est abaissée par la présence, au sein de la composition des objets, d'au moins un agent de refroidissement spécifique (voir ci-après) ; ladite présence dudit au moins un agent de refroidissement spécifique, en quantité relativement limitée (< 18 % en masse, notamment < 15 % en masse, et même < 13 % en masse), au sein d'une base spécifique (voir sa composition précisée ci-après), étant efficace (au regard donc de l'abaissement de la température de combustion) tout en induisant que des effets limités sur les autres paramètres tels la vitesse de combustion (la présence d'un ingrédient explosif n'étant pas requise), le rendement gazeux et la stabilité en température des objets en cause.
Selon son premier objet, la présente invention concerne donc des objets solides pyrotechniques générateurs de gaz. De façon caractéristique, la composition desdits objets, exprimée en pourcentages massiques, renferme :
de 35 à 50 %, avantageusement de 40 à 50 %, de nitrate de guanidine (NG),
de 35 à 50 % de nitrate basique de cuivre (BCN), - de 0,5 à 6 % d'au moins un composé choisi parmi l'alumine
(AI2O3), les titanates inorganiques dont la température de fusion est supérieure à 2100 K et leurs mélanges, et
de 5 à 18 % d'au moins un oxalate inorganique choisi parmi l'oxalate de sodium (Na2C204), l'oxalate d'étain (SnC204), l'oxalate de strontium (SrC204), l'oxalate de fer (FeC204), l'oxalate de cuivre (CUC2O4) et leurs mélanges ;
ladite composition étant, par ailleurs, exempte de liant et d'ingrédient explosif.
Ladite composition est donc de type NG (charge réductrice)/BCN (charge oxydante).
Le nitrate de guanidine (NG) a été retenu comme réducteur, entre autre, pour sa capacité à générer beaucoup de gaz, pour son comportement rhéo-plastique adapté à la mise en œuvre de la phase de pastillage (direct) ou des phases de compactage et de pastillage d'un procédé voie sèche (sa présence permet notamment une bonne densification de la composition pyrotechnique pulvérulente de départ tout en limitant l'effort de compression à appliquer : voir ci-après), et pour des raisons de sécurité pyrotechnique. La composition des objets pyrotechniques de l'invention renferme de 35 à 50 % en masse de nitrate de guanidine (NG), avantageusement de 40 à 50 % en masse de nitrate de guanidine (NG).
Le nitrate basique de cuivre (BCN) a été retenu comme oxydant, et ce, tout particulièrement, pour son impact sur la vitesse de combustion, pour sa ductibilité et son effet « slaggant » (présence du cuivre). Ledit nitrate basique de cuivre est présent à raison de 35 à 50 % en masse, généralement à raison de 35 à 45 % en masse.
Ladite composition renferme donc, dans une base de type NG/BCN (telle que précisée ci-dessus, en référence notamment à la valeur de balance en oxygène souhaitée, proche de -3 %), une faible quantité (de 0,5 à 6 %, souvent de 1 à 6 %, avantageusement de 3 à 5 %, en masse) d'au moins un composé choisi parmi l'alumine (AI2O3), les titanates inorganiques dont la température de fusion est supérieure à 2100 K et leurs mélanges. La présence dudit au moins un composé est opportune au regard de l'agglomération des résidus de combustion (à toutes fins utiles, on peut noter ici que l'alumine a un pouvoir « slaggant » supérieur à celui des titanates) et de la vitesse de combustion. Ladite composition renferme avantageusement de l'alumine (AI2O3) ou au moins un titanate tel que précisé ci-dessus. Elle renferme très avantageusement de l'alumine (AI2O3) ou un tel titanate.
Ladite composition des objets de l'invention renferme, dans une base de type NG/BCN telle que précisée ci-dessus, en sus dudit au moins un titanate inorganique et/ou alumine, une quantité relativement limitée (de 5 à 18 %, notamment de 5 à 15 %, avantageusement de 5 à 13 %, très avantageusement de 7 à 13 %, en masse) d'au moins un agent de refroidissement spécifique, i.e. d'au moins un oxalate inorganique choisi parmi l'oxalate de sodium (Na2C204), l'oxalate d'étain (SnC204), l'oxalate de strontium (SrC204), l'oxalate de fer (FeC2Û4), l'oxalate de cuivre (CUC2O4) et leurs mélanges. Comme indiqué ci-dessus, la présence, au sein de la base NG/BCN spécifiée (renfermant ledit au moins un titanate inorganique et/ou alumine), d'au moins un tel oxalate, en ladite quantité relativement limitée indiquée, s'est révélée opportune, en référence à l'abaissement de la température de combustion des objets, sans induire d'effets significatifs sur les autres paramètres tels la vitesse de combustion (la présence d'un ingrédient explosif n'est pas requise), le rendement gazeux (les oxalates ont été préférés aux formiates) et les stabilités dans le temps (les oxalates sélectionnés étant peu hygroscopiques) et en température (la température de fusion et/ou décomposition des oxalates retenus n'est pas inférieure à 200 °C (l'homme du métier a compris que lesdits oxalates retenus sont sous forme anhydre)) desdits objets. Les oxalates sélectionnés sont par ailleurs non toxiques et de coûts raisonnables.
Ladite composition des objets de l'invention ne renferme pas de liant. En effet, le comportement rhéo-plastique du nitrate de guanidine (NG), entrant en quantité significative dans ladite composition, rend la présence d'un quelconque liant superflu (notamment pour l'obtention, par voie sèche, d'objets pyrotechniques formés, de granulés, de pastilles et de blocs monolithes comprimés (voir ci-après)). L'homme du métier conçoit l'intérêt de pouvoir obtenir, par voie sèche, les objets de l'invention et ce, sans intervention d'un liant (qui aurait un impact significatif sur l'oxygène balance de la composition) ; l'absence d'un quelconque liant étant par ailleurs particulièrement opportune en référence à l'objectif visé de température de combustion basse et de rendement gazeux élevé desdits objets.
Ladite composition des objets de l'invention ne renferme pas d'ingrédient explosif. Elle ne renferme ainsi, ni nitroguanidine, ni hexogène (RDX), ni octogène (HMX)... On entend, présentement et de façon conventionnelle, par ingrédient explosif, les ingrédients classés en division de risque 1.1 selon la norme NF T 70-502 (voir aussi ONU - Recommandations relatives au Transport des marchandises dangereuses - manuel d'épreuves et de critères, Quatrième édition révisée, ST/SG/AC.10/ll/Rev.4, ISBN 92-1-239083-8ISSN 1014-7179 et STANAG 4488). A toutes fins utiles, on rappelle que le nitrate de guanidine (NG) n'est pas un ingrédient classé dans cette division de risque. L'absence d'un quelconque ingrédient explosif au sein de la composition des objets de l'invention est particulièrement opportune en référence à la sécurité et à la température de combustion desdits objets. On rappelle incidemment qu'une basse température de combustion est recherchée.
Les objets de l'invention, présentant la composition telle que précisée ci-dessus, se sont donc révélés particulièrement intéressants au regard :
1) de leur température de combustion (basse : inférieure à 1800 K ; température de combustion basse qui reste associée à une vitesse de combustion de plus de 15 mm/s à 20 MPa (en référence à ladite vitesse de combustion, on peut d'ores et déjà indiquer ici qu'elle est opportunément augmentée en utilisant les ingrédients sous des granulométries fines, adaptées (voir ci-après)),
2) de leur génération de résidus de combustion (en faible quantité, sous forme agglomérés), et
3) de leur obtention (de mise en œuvre aisée par voie sèche).
Le au moins un oxalate inorganique présent dans la composition des objets de l'invention est avantageusement choisi parmi l'oxalate de sodium (Na2C2O4), l'oxalate de strontium (SrC2O4) et l'oxalate de cuivre (CuC2O4).
Le au moins un titanate inorganique, dont la température de fusion est supérieure à 2100 K, éventuellement présent dans la composition des objets de l'invention (on rappelle à toutes fins utiles que ladite composition renferme de 0,5 à 6 %, souvent de 1 à 6 %, avantageusement de 3 à 5 %, d'au moins un composé choisi parmi l'alumine (AI2O3), les titanates inorganiques dont la température de fusion est supérieure à 2100 K et leurs mélanges), est avantageusement choisi parmi les titanates métalliques, les titanates d'alcalino-terreux et leurs mélanges. Il consiste très avantageusement en un titanate métallique ou un titanate d'alcalino-terreux. De façon préférée, la composition des objets de l'invention, qui renferme au moins un titanate tel que précisé, renferme du titanate de strontium (SrTi03) et/ou du titanate de calcium (CaTi03) et/ou du titanate d'aluminium (AI2T1O5). De façon particulièrement préférée, elle renferme du titanate de strontium (SrTiÛ3), du titanate de calcium (CaTiOs) ou du titanate d'aluminium (AI2Ti05). Ces titanates présentent respectivement des températures de fusion de 2353 K, 2248 K et 2133 K, i.e. des températures de fusion significativement supérieure à la température de combustion de la base NG/BCN (la température de combustion d'une quelconque base NG/BCN étant en effet toujours inférieure à 1950 K), qui, de surcroit renferme le au moins un oxalate inorganique.
Dans le cadre de son premier objet, la présente invention concerne la sous-famille des objets solides pyrotechniques générateurs de gaz, dont la composition, exprimée en pourcentages massiques, renferme :
de 35 à 50 %, avantageusement de 40 à 50 %, de nitrate de guanidine (NG),
de 35 à 45 % de nitrate basique de cuivre (BCN), de 1 à 6 %, avantageusement de 3 à 5 %, d'au moins un composé choisi parmi l'alumine (Al203), les titanates inorganiques dont la température de fusion est supérieure à 2100 K et leurs mélanges, et de 5 à 15 %, avantageusement de 5 à 13 %, très avantageusement de 7 à 13 %, d'au moins un oxalate inorganique choisi parmi l'oxalate de sodium (1x1820204), l'oxalate d'étain (SnC2O4) et leurs mélanges ;
ladite composition étant, par ailleurs, exempte de liant et d'ingrédient explosif.
Dans la composition des objets de cette sous-famille, le au moins un oxalate inorganique consiste avantageusement en l'oxalate de sodium.
A propos des objets de ladite sous-famille, on peut reprendre ce qui a été dit ci-dessus et qui bien évidemment s'y applique.
Les ingrédients des quatre types ci-dessus (nitrate de guanidine (NG), nitrate basique de cuivre (BCN), alumine et/ou titanate(s) inorganique(s) dont la température de fusion est supérieure à 2100 K, et oxalate(s) inorganique(s), tel(s) que précisé(s)) (ingrédients constitutifs des objets de l'invention en général et de la sous famille ci-dessus en particulier) représentent généralement au moins 98 % en masse de la composition des objets pyrotechniques de l'invention. Les ingrédients des quatre types ci-dessus peuvent tout à fait représenter au moins 99,5 % en masse, voire même 100 % en masse de la masse totale des objets de l'invention. L'éventuelle présence d'au moins un « autre » additif (l'alumine et/ou le au moins un titanate inorganique ainsi que le au moins un oxalate inorganique pouvant tout à fait être assimilés à des additifs), choisi, par exemple, parmi les auxiliaires de fabrication (stéarate de calcium, graphite, silice notamment), est expressément prévue, à un taux inférieur ou égal à 2 % en masse. On a compris, au vu des propos ci-dessus, qu'un tel au moins un « autre » additif ne saurait en aucune façon consister en un liant ou en un ingrédient explosif.
Les ingrédients constitutifs (principaux) des objets de l'invention - nitrate de guanidine + nitrate basique de cuivre + alumine et/ou au moins un titanate inorganique tel que précisé + au moins un oxalate inorganique tel que précisé - sont des produits connus. Ils se présentent sous la forme de poudres dont la distribution granulométrique est resserrée (autour de leur diamètre médian (d5o))- Tout au long du présent texte (y compris dans les exemples), les diamètres médians indiqués sont des diamètres médians en volume.
Lesdits ingrédients constitutifs (principaux) des objets de l'invention présentent avantageusement, tout particulièrement en référence à l'obtention desdits objets par voie sèche et à la vitesse de combustion desdits objets, une granulométrie fine, voire très fine. Ils présentent généralement des valeurs de diamètre médian (d5o) inférieures ou égales à 20 pm.
Pour un parfait mélange des poudres de la base NG/BCN (ingrédients constitutifs principaux des objets de l'invention, intervenant conventionnellement à l'état pulvérulent), on préconise que le diamètre médian de l'un desdits nitrate de guanidine (NG) et nitrate basique de cuivre (BCN) soit substantiellement plus élevé que le diamètre médian de l'autre desdits nitrate de guanidine (NG) et nitrate basique de cuivre (BCN), ledit diamètre médian substantiellement (significativement) plus élevé demeurant généralement inférieur ou égal à 20 pm (voir ci-dessus). Par « substantiellement plus élevé », on entend « au moins 1,8 fois plus élevé », avantageusement « au moins le double de », très avantageusement « au moins 5 fois plus élevé », voire « au moins 10 fois plus élevé ». Des résultats très intéressants ont notamment été obtenus avec des poudres de NG présentant un diamètre médian de 12 pm et des poudres de BCN présentant un diamètre médian inférieur à 6 pm. Selon une variante avantageuse, le diamètre médian de l'un desdits nitrate de guanidine et nitrate basique de cuivre, par exemple celui dudit nitrate basique de cuivre, est inférieur ou égal à 1 pm tandis que le diamètre médian de l'autre desdits nitrate de guanidine et nitrate basique de cuivre, par exemple donc celui dudit nitrate de guanidine, est d'au moins 5 pm, avantageusement d'au moins 10 pm (tout en demeurant généralement inférieur ou égal à 20 pm (voir ci-dessus)). Des résultats très intéressants ont notamment été obtenus avec des poudres de NG présentant un diamètre médian entre 10 et 14 pm et des poudres de BCN présentant un diamètre médian de 1 pm. L'intervention d'une poudre très fine (dso ≤ 1 pm) et d'une poudre « substantiellement plus grosse », est préconisée tout particulièrement en vue de la réalisation d'un parfait mélange et de l'obtention d'une vitesse de combustion élevée. Cet effet (positif) de la granulométrie sur la vitesse de combustion est opportunément mis à profit pour compenser l'effet limité de la présence de l'oxalate sur ladite vitesse de combustion.
Lorsque de l'alumine (intervenant elle aussi à l'état pulvérulent) est présente, elle l'est avantageusement à une granulométrie fine, voire très fine ; elle présente alors une surface spécifique élevée, voire très élevée. On a mentionné pour tous les ingrédients constitutifs des valeurs de diamètre médian généralement inférieures ou égales à 20 pm. Pour l'alumine, on peut mentionner des valeurs de diamètre médian généralement inférieures ou égales à 10 pm, avantageusement inférieures ou égales à 5 pm, très avantageusement inférieures ou égales à 1 pm, voire aussi faibles que 100 nm, et même 10 nm.
Lorsqu'au moins un titanate inorganique (intervenant lui-aussi à l'état pulvérulent) est présent, il l'est aussi avantageusement à une granulométrie la plus faible possible. Ainsi, de façon avantageuse, ledit au moins un titanate inorganique présent l'est sous une forme pulvérulente fine, de dimension micrométrique, voire de dimension nanométrique, i.e. avec un diamètre médian (d5o) inférieur à 6 pm, voire inférieur à 1 pm (généralement dans le cadre de cette variante avantageuse, on a : 0,5 pm≤ d5o≤ 6 pm). Ledit au moins un titanate inorganique présent a avantageusement une surface spécifique supérieure à 1 m2/g (très avantageusement supérieure à 5 m2/g ou plus). Pour ce qui concerne la granulométrie du au moins un oxalate inorganique, elle est elle aussi opportunément la plus fine possible. Toutefois, de bons résultats ont été obtenus avec des produits commerciaux « de grosse granulométrie », notamment avec de l'oxalate de sodium présentant un diamètre médian supérieur à 40 prn (de 60 pm notamment). Nul doute que les bons résultats obtenus seraient encore meilleurs avec (au moins) un oxalate de l'invention, plus fin (présentant notamment un diamètre médian inférieur à 20 pm (voir ci-dessus)).
Les objets de l'invention sont notamment susceptibles d'exister sous la forme d'objets pyrotechniques formés, de granulés, de pastilles ou de blocs (comprimés) monolithes (voir ci-après).
On en vient maintenant à la fabrication des objets solides pyrotechniques de l'invention. Les procédés de fabrication en cause sont des procédés par analogie, voie sèche ou voie humide, avantageusement voie sèche.
. Voie sèche
Les objets solides pyrotechniques de l'invention peuvent être fabriqués (par voie sèche) par simple pastillage (compression) des mélanges de poudres obtenus par mélange de leurs ingrédients constitutifs (on a compris que lesdits ingrédients sont utilisés à l'état pulvérulent, avec une granulométrie plus ou moins fine, opportunément la plus fine possible (voir ci-dessus), et qu'il s'agit essentiellement, voire exclusivement, de NG, BCN, alumine et/ou titanate(s) inorganique(s) tel(s) que précisé(s), et oxalate(s) tel(s) que précisé(s)).
Les objets pyrotechniques de l'invention peuvent aussi être fabriqués (par voie sèche) selon un procédé susceptible de comprendre jusqu'à quatre étapes principales. Un tel procédé est familier à l'homme de l'art. Il a notamment été décrit dans la demande de brevet WO 2006/134311. L'alumine ou(et) le au moins un titanate inorganique (dont la température de fusion est supérieure à 2100 K) et le au moins un oxalate inorganique (choisi parmi l'oxalate de sodium, l'oxalate d'étain, l'oxalate de strontium, l'oxalate de fer, l'oxalate de cuivre et leurs mélanges) interviennent avantageusement avec les autres ingrédients constitutifs, NG + BCN principalement, voire NG + BCN exclusivement, au début du procédé de fabrication. Il est toutefois possible que ledit alumine ou(et) ledit au moins un titanate inorganique (dont la température de fusion est supérieure à 2100 K) ou(et) ledit au moins un oxalate inorganique (choisi parmi l'oxalate de sodium, l'oxalate d'étain, l'oxalate de strontium, l'oxalate de fer, l'oxalate de cuivre et leurs mélanges), tout particulièrement ledit au moins un oxalate inorganique, soi(en)t ajouté(s), plus en aval, dans le procédé de fabrication des objets de l'invention. On comprend que plusieurs alternatives existent. On peut incidemment noter qu'il n'est pas exclu de faire intervenir l'un et/ou l'autre desdits alumine, au moins un titanate inorganique et au moins un oxalate inorganique en plusieurs fois au cours dudit procédé.
Le procédé de fabrication (préparation) voie sèche préférentiel des objets pyrotechniques de l'invention inclut une étape de compactage à sec d'un mélange des ingrédients constitutifs en poudre desdits objets (excepté, éventuellement, ledit au moins un oxalate inorganique qui peut être ajouté plus tard). Le compactage à sec est généralement mis en œuvre, de façon connue per se, dans un compacteur à cylindres, à une pression de compactage (p) comprise entre 108 et 6.108 Pa (108 Pa < p < 6.108 Pa). Il peut être mis en œuvre selon différentes variantes (avec une étape caractéristique de compactage "simple" suivie d'au moins une étape complémentaire ou avec une étape caractéristique de compactage couplée à une étape de mise en forme). Ainsi, les objets solides pyrotechniques de l'invention sont susceptibles d'exister sous différentes formes (notamment au fil du procédé de fabrication conduisant à des objets finaux) :
- à l'issue d'un compactage à sec couplé à une mise en forme (par utilisation d'au moins un cylindre de compactage, dont la surface externe présente des alvéoles), on obtient des plaques avec motifs en relief que l'on peut casser pour l'obtention directe d'objets pyrotechniques formés ;
- à l'issue d'un compactage à sec (compactage "simple" qui génère une plaque plane) suivi d'une granulation, on obtient des granulés ;
- à l'issue d'un compactage à sec (compactage "simple" qui génère une plaque plane) suivi d'une granulation puis d'un pastillage (compression à sec), on obtient des pastilles ou des blocs monolithiques (comprimés).
Sont particulièrement préférés les objets de l'invention - objets pyrotechniques formés, granulés, pastilles et blocs monolithiques - obtenus à l'issue de l'une ou l'autre des étapes précisées ci-dessus, étant entendu que des pastilles peuvent aussi être obtenues par un pastillage direct (voir ci-dessus).
. Voie humide
Les objets solides pyrotechniques de l'invention peuvent aussi être obtenus par un procédé voie humide. Un tel procédé inclut 1) une étape de mise en solution aqueuse de tous les ou (généralement plutôt) de certains des ingrédients principaux (ladite étape de mise en solution aqueuse comprend généralement la dissolution d'au moins l'un des ingrédients principaux (et plus particulièrement celle du nitrate de guanidine (NG))), 2) l'obtention d'une poudre par séchage par atomisation, 3) l'ajout à la poudre obtenue du ou des ingrédients qui n'ont pas été mis en solution, puis 4) la mise en forme (sous la forme d'objets) du mélange pulvérulent obtenu par les procédés usuels voie sèche.
Les objets de l'invention existent avantageusement sous la forme de granulés, de pastilles ou de blocs monolithes.
De façon nullement limitative, on peut indiquer ici :
- que les granulés de l'invention présentent généralement un diamètre médian (d50) compris entre 200 et 1000 pm (ainsi qu'une masse volumique apparente comprise entre 0,8 et 1,2 g/cm3) ; et
- que les pastilles de l'invention présentent généralement une épaisseur comprise entre 1 et 6 mm pour un diamètre de 3 à 15 mm.
Lesdits granulés et pastilles conviennent parfaitement pour la principale application visée (celle des airbags frontaux, dans le domaine de la sécurité automobile). Les objets pyrotechniques formés et blocs monolithiques sont destinés à d'autres utilisations.
Selon un autre de ses objets, la présente invention concerne une composition pulvérulente (mélange de poudres), précurseur d'un objet de l'invention, dont la composition correspond donc à celle d'un objet de l'invention (voir ci-dessus).
Selon un autre de ses objets, la présente invention concerne les générateurs de gaz renfermant un chargement solide pyrotechnique générateur de gaz ; ledit chargement contenant au moins un objet solide pyrotechnique de l'invention. Lesdits générateurs, chargés notamment en pastilles de l'invention, conviennent parfaitement pour les airbags, notamment frontaux (voir ci-dessus).
On se propose maintenant d'illustrer, de façon nullement limitative, l'invention.
Des pastilles (pastilles de diamètre 11 mm et d'épaisseur 3 mm) ont été réalisées à partir des ingrédients ci-après : - NG (commercialisé par la société Alzchem AG (DE), de grade 10 - 14 pm), (d50 « 12 pm),
- BCN (commercialisé par la société Shepherd Chemical Company (US), de grade 4 - 6 pm), (dso « 5 pm),
- BCN (d5o « 1 pm),
- SrTi03 (commercialisé par la société Thermograde Process Technology Ltd (US), de grade 4 - 6 pm), (d50 « 5,5 pm),
- AI2O3 (commercialisé par la société Evonik Industries AG (DE), de grade 10 - 100 nm), (de surface spécifique : 100 m2/g),
- a2C204 (commercialisé par la société Alfa Aesar (US) de grade 40 - 70 pm, (dso « 55 pm),
- SrC204 (commercialisé par la société Isaltis (FR), (d5o « 4 pm)
- CuC204 (commercialisé par la société Bernardy (FR), (d5o ~ 5 pm), via un procédé, voie sèche, de compression directe (= simple pastillage mis en œuvre avec une pression de 45. 106 Pa (450 bar)).
Le tableau 1 ci-après présente cinq exemples (Ex.l, Ex.2, Ex.3, Ex.4 et Ex.5) de composition d'objets (pastilles) de la présente invention, ainsi que les caractéristiques (performances calculées ou mesurées) desdits objets (pastilles) comparées à celles d'un objet (pastille) de l'art antérieur (Réf.l, selon la demande de brevet WO 2012/153062) ; lesdits objets (pastilles) de l'invention et de l'art antérieur ayant été fabriqué(e)s, à partir des ingrédients ci-dessus, comme indiqué ci-dessus.
Le tableau 1 ci-après présente aussi deux autres exemples (Ex. A et Réf. 2) de composition de pastilles ainsi que les performances desdites pastilles (obtenues de façon similaire). Ces exemples font ressortir l'intérêt d'utiliser du BCN de granulométrie très fine (avec du NG de granulométrie substantiellement plus élevée).
Les objets (pastilles) ont été évalué(e)s au moyen de calculs thermodynamiques et à partir de mesures physiques menées donc sur les pastilles. Les vitesses de combustion et exposants de pression desdites pastilles ont été obtenus à la suite de plusieurs tirs en enceinte manométrique (volume 40 cm3). Les valeurs indiquées sont donc des valeurs moyennes.
Les pastilles de référence de l'art antérieur (Réf.l) renfermaient, dans leur composition, du nitrate de guanidine (NG), du nitrate basique de cuivre (BCN) ainsi du titanate de strontium (SrTiOs), en les pourcentages massiques indiqués.
Les pastilles des exemples 1 à 5 (Ex.l, Ex.2, Ex.3, Ex.4 et Ex.5) renfermaient, dans leur composition, en sus des trois constituants nitrate de guanidine (NG), nitrate basique de cuivre (BCN) et titanate de strontium (SrTiOa) pour les exemples 1 et 2, alumine pour les exemples 3, 4 et 5, un agent d'abaissement de la température de combustion selon la présente invention : l'oxalate de sodium (Na2C204) pour les exemples 1 à 3, l'oxalate de strontium (SrC204) pour l'exemple 4 et l'oxalate de cuivre (CuC204) pour l'exemple 5. Les quatre constituants étaient présents dans les compositions en les pourcentages massiques indiqués.
Les caractéristiques (performances) des compositions (objets) des exemples 1 et 2 ont montré que l'ajout, à un taux variable (teneur massique de, respectivement 7,5 et 10 %), d'oxalate de sodium (Na2C204), dans une composition du type de celle de la référence 1 (Réf. 1), a conduit à un abaissement de la température de combustion significatif (de respectivement -144 et -190 °C). La valeur de l'exposant de pression est demeurée acceptable pour l'application visée (airbags frontaux).
Les caractéristiques (performances) de la composition (de l'objet) de l'exemple 3 ont montré que la présence d'alumine contribuait à l'obtention de bonnes performances (abaissement de la température de combustion (de -155 °C par rapport à l'exemple de Réf.l) avec accroissement de la valeur de la vitesse de combustion à 20 MPa par rapport à l'exemple 2, et augmentation parallèle de la qualité d'agglomération des résidus de combustion par rapport à l'exemple 2).
Les caractéristiques (performances) de la composition (objet) de l'exemple 4 ont montré que l'ajout conjoint d'alumine et d'oxalate de strontium (SrC204) dans une composition du type de celle de la référence 1 (Réf. 1), a conduit à un abaissement de la température de combustion significatif (de -156 °C). La valeur de l'exposant de pression est demeurée acceptable pour l'application visée (airbags frontaux). La très bonne qualité d'agglomération des résidus de combustion est à souligner.
Les caractéristiques (performances) indiquées pour la composition
(objet) de l'exemple 5 ont montré que l'ajout conjoint d'alumine et d'oxalate de cuivre (CUC2O4) dans une composition du type de celle de la référence 1 (Réf. 1), a conduit à un abaissement de la température de combustion significatif (de -146 °C).
L'exemple A, à considérer donc en parallèle avec l'exemple de référence 2 (Réf. 2), illustre l'intervention de nitrate basique de cuivre (BCN) de grade fin (d5o = 1 um) dans une composition de type NG (de granulométrie substantiellement plus élevée) + BCN + Al203 (2,7 %), en absence d'oxalate (plus particulièrement d'oxalate de sodium, d'oxalate de strontium et d'oxalate de cuivre). L'impact sur la vitesse de combustion est significative : augmentation de plus de 20 % (en comparaison avec la vitesse de combustion des pastilles de l'exemple de référence 2 (Réf. 2)). Ainsi se confirme-t-il qu'il est possible, dans le cadre de la présente invention, d'abaisser la température de combustion tout en optimisant la vitesse de combustion par la faible granulométrie du BCN présent (en fait par la faible granulométrie de l'un des constituants NG ou BCN, l'autre desdits constituants ayant alors une granulométrie substantiellement plus élevée). Tableau 1
Figure imgf000021_0001

Claims

REVENDICATIONS
1. Objet solide pyrotechnique générateur de gaz, dont la composition, exprimée en pourcentages massiques, renferme :
- de 35 à 50 %, avantageusement de 40 à 50 %, de nitrate de guanidine,
de 35 à 50 % de nitrate basique de cuivre,
de 0,5 à 6 % d'au moins un composé choisi parmi l'alumine et les titanates inorganiques dont la température de fusion est supérieure à 2100 K, et
de 5 à 18 % d'au moins un oxalate inorganique choisi parmi l'oxalate de sodium, l'oxalate d'étain, l'oxalate de strontium, l'oxalate de fer, l'oxalate de cuivre et leurs mélanges ;
ladite composition étant exempte de liant et d'ingrédient explosif.
2. Objet selon la revendication 1, caractérisé en ce que ledit au moins un oxalate inorganique consiste en l'oxalate de sodium, l'oxalate de strontium ou l'oxalate de cuivre.
3. Objet selon la revendication 1 ou 2, dont la composition, exprimée en pourcentages massiques, renferme :
de 35 à 50 %, avantageusement de 40 à 50 %, de nitrate de guanidine,
de 35 à 45 % de nitrate basique de cuivre,
- de 1 à 6 %, avantageusement 3 à 5 %, d'au moins un composé choisi parmi l'alumine et les titanates inorganiques dont la température de fusion est supérieure à 2100 K, et de 5 à 15 %, avantageusement de 5 à 13 %, très avantageusement de 7 à 13 %, d'au moins un oxalate inorganique choisi parmi l'oxalate de sodium, l'oxalate d'étain et leurs mélanges.
4. Objet selon l'une quelconque des revendications 1 à 3, caractérisé en ce que sa composition renferme au moins un titanate inorganique choisi parmi le titanate de strontium, le titanate de calcium, le titanate d'aluminium et leurs mélanges. 5. Objet selon l'une quelconque des revendications 1 à 4, caractérisé en ce que sa composition est constituée pour au moins 98 % en masse, voire au moins 99,
5 % en masse, voire même 100 % en masse, desdits nitrate de guanidine, nitrate basique de cuivre, alumine et/ou titanate(s) inorganique(s), et oxalate(s) inorganique(s).
6. Objet selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits nitrate de guanidine, nitrate basique de cuivre, alumine et/ou titanate(s) inorganique(s), et oxalate(s) inorganique(s) présentent des diamètres médians inférieurs ou égaux à 20 pm.
7. Objet selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le diamètre médian de l'un desdits nitrate de guanidine et nitrate basique de cuivre est substantiellement plus élevé que le diamètre médian de l'autre desdits nitrate de guanidine et nitrate basique de cuivre.
8. Objet selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le diamètre médian de l'un desdits nitrate de guanidine et nitrate basique de cuivre est inférieur ou égal à 1 μιη tandis que le diamètre médian de l'autre desdits nitrate de guanidine et nitrate basique de cuivre est d'au moins 5 pm, avantageusement d'au moins 10 pm.
9. Objet selon l'une quelconque des revendications 1 à 8, caractérisé en ce que sa composition renferme de l'alumine dont le diamètre médian est inférieur ou égal à 5 pm.
10. Objet selon l'une quelconque des revendications 1 à 9, caractérisé en ce que sa composition renferme au moins un titanate inorganique dont le diamètre médian est inférieur à 6 pm, avantageusement inférieur à 1 pm.
11. Objet selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il est obtenu par un procédé voie sèche, qui comprend une étape de compactage d'un mélange pulvérulent renfermant les ingrédients constitutifs en poudre dudit objet, éventuellement suivie d'une étape de granulation, elle-même suivie, éventuellement, d'une étape de mise en forme par pastillage.
12. Objet selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il se présente sous la forme de granulés, de pastilles ou de blocs monolithes.
13. Composition pulvérulente, précurseur d'un objet selon l'une quelconque des revendications 1 à 12, dont la composition correspond à celle d'un objet selon l'une quelconque des revendications 1 à 10.
14. Générateur de gaz, renfermant un chargement solide pyrotechnique générateur de gaz, caractérisé en ce que ledit chargement contient au moins un objet selon l'une quelconque des revendications 1 à 12.
PCT/FR2017/053727 2016-12-22 2017-12-20 Objets solides pyrotechniques générateurs de gaz WO2018115735A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197019861A KR20190101995A (ko) 2016-12-22 2017-12-20 가스-발생 발화성 고체 대상체
US16/472,297 US20200002243A1 (en) 2016-12-22 2017-12-20 Gas-generating pyrotechnic solid objects
JP2019534212A JP2020514218A (ja) 2016-12-22 2017-12-20 ガス発生火工品固体物体
EP17829259.5A EP3558900B8 (fr) 2016-12-22 2017-12-20 Objets solides pyrotechniques générateurs de gaz
CN201780087086.8A CN110325492A (zh) 2016-12-22 2017-12-20 产生气体的烟火固体物体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1663229A FR3061174B1 (fr) 2016-12-22 2016-12-22 Objets solides pyrotechniques generateurs de gaz
FR1663229 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018115735A1 true WO2018115735A1 (fr) 2018-06-28

Family

ID=59296880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053727 WO2018115735A1 (fr) 2016-12-22 2017-12-20 Objets solides pyrotechniques générateurs de gaz

Country Status (7)

Country Link
US (1) US20200002243A1 (fr)
EP (1) EP3558900B8 (fr)
JP (1) JP2020514218A (fr)
KR (1) KR20190101995A (fr)
CN (1) CN110325492A (fr)
FR (1) FR3061174B1 (fr)
WO (1) WO2018115735A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978136A (zh) * 2020-09-01 2020-11-24 湖北航天化学技术研究所 一种改进的气体发生剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230115291A (ko) * 2020-10-01 2023-08-02 주식회사 다이셀 가스 발생제 조성물

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361630B2 (en) 1999-08-17 2002-03-26 Trw Inc. Cool burning gas generating composition
US20030094225A1 (en) * 2001-03-02 2003-05-22 Knowlton Gregory D. Low solids gas generant having a low flame temperature
US6602365B1 (en) 2000-11-17 2003-08-05 Autoliv Asp, Inc. Gas generation via metal complexes of guanylurea nitrate
FR2866022A1 (fr) * 2004-02-10 2005-08-12 Snpe Materiaux Energetiques Composition pyrotechnique generatrice de gaz destinee a la securite automobile
WO2006134311A2 (fr) 2005-06-15 2006-12-21 Snpe Materiaux Energetiques Fabrication par voie seche d'objets pyrotechniques, objets pyrotechniques
WO2012153062A2 (fr) 2011-05-09 2012-11-15 Sme Composes pyrotechniques generateurs de gaz.
CN104744185A (zh) * 2013-12-30 2015-07-01 比亚迪股份有限公司 一种气体发生剂组合物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331827C (zh) * 2004-12-16 2007-08-15 中国航天科技集团公司第四研究院第四十二研究所 非叠氮气体发生剂及制造工艺
JP5275862B2 (ja) * 2008-04-11 2013-08-28 株式会社ダイセル ガス発生剤組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361630B2 (en) 1999-08-17 2002-03-26 Trw Inc. Cool burning gas generating composition
US6602365B1 (en) 2000-11-17 2003-08-05 Autoliv Asp, Inc. Gas generation via metal complexes of guanylurea nitrate
US20030094225A1 (en) * 2001-03-02 2003-05-22 Knowlton Gregory D. Low solids gas generant having a low flame temperature
FR2866022A1 (fr) * 2004-02-10 2005-08-12 Snpe Materiaux Energetiques Composition pyrotechnique generatrice de gaz destinee a la securite automobile
WO2006134311A2 (fr) 2005-06-15 2006-12-21 Snpe Materiaux Energetiques Fabrication par voie seche d'objets pyrotechniques, objets pyrotechniques
WO2012153062A2 (fr) 2011-05-09 2012-11-15 Sme Composes pyrotechniques generateurs de gaz.
CN104744185A (zh) * 2013-12-30 2015-07-01 比亚迪股份有限公司 一种气体发生剂组合物及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978136A (zh) * 2020-09-01 2020-11-24 湖北航天化学技术研究所 一种改进的气体发生剂及其制备方法

Also Published As

Publication number Publication date
FR3061174B1 (fr) 2019-05-31
FR3061174A1 (fr) 2018-06-29
EP3558900A1 (fr) 2019-10-30
JP2020514218A (ja) 2020-05-21
CN110325492A (zh) 2019-10-11
KR20190101995A (ko) 2019-09-02
EP3558900B8 (fr) 2021-12-29
US20200002243A1 (en) 2020-01-02
EP3558900B1 (fr) 2021-11-17

Similar Documents

Publication Publication Date Title
EP2707345B1 (fr) Composes pyrotechniques generateurs de gaz.
EP2616413B1 (fr) Composes pyrotechniques générateurs de gaz
WO2007042735A2 (fr) Composition pyrotechnique generatrice de gaz rapide et procede d&#39;obtention
EP2346797B1 (fr) Compositions de génération de gaz comportant des fibres de verre
EP3558900B1 (fr) Objets solides pyrotechniques générateurs de gaz
WO2005077862A2 (fr) Compositions pyrotechniques generatrices de gaz et composes pyrotechniques, notamment destines a la securite automobile
WO2009095578A2 (fr) Composition generatrice de gaz azote, comprenant de l&#39;azodicarbonamide et procede de generation de gaz azote par decomposition de ladite composition
FR2949778A1 (fr) Composes pyrotechniques generateurs de gaz
EP3160922B1 (fr) Blocs monolithiques pyrotechniques générateurs de gaz
FR2950624A1 (fr) Compose pyrotechnique generateur de gaz
EP1976811A1 (fr) Compositions pyrotechniques generatrices de gaz, comprenant du nitrate d&#39;ammonium stabilise ; composes pyrotechniques correspondants
EP1496036A2 (fr) Composition pyrotechnique génératrice de gaz destinée à la sécurité automobile et brûlant à des températures de combustion inférieurs à 2200 degrés K
FR2870845A1 (fr) Composition de production de gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17829259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534212

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019861

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017829259

Country of ref document: EP

Effective date: 20190722