WO2018113106A1 - 生物特征辨识装置 - Google Patents

生物特征辨识装置 Download PDF

Info

Publication number
WO2018113106A1
WO2018113106A1 PCT/CN2017/076423 CN2017076423W WO2018113106A1 WO 2018113106 A1 WO2018113106 A1 WO 2018113106A1 CN 2017076423 W CN2017076423 W CN 2017076423W WO 2018113106 A1 WO2018113106 A1 WO 2018113106A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
component
collimator
assembly
biometric
Prior art date
Application number
PCT/CN2017/076423
Other languages
English (en)
French (fr)
Inventor
王炯翰
Original Assignee
创智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创智能科技股份有限公司 filed Critical 创智能科技股份有限公司
Publication of WO2018113106A1 publication Critical patent/WO2018113106A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators

Definitions

  • the invention relates to a biometric identification device.
  • the types of biometrics include face, sound, iris, retina, vein, fingerprint, and palmprint recognition. Since each person's fingerprint is unique and the fingerprint is not easy to change with age or physical health, the fingerprint identification device has become the most popular biometric identification device. According to the different sensing methods, the fingerprint identification device can be divided into optical and capacitive. When the capacitive fingerprint identification device is assembled in an electronic product (for example, a mobile phone or a tablet computer), a cover lens is disposed above the capacitive fingerprint identification device. In general, additional processing (eg, drilling or thinning) of the protective component is required to enable the capacitive fingerprinting device to sense a change in capacitance or electric field caused by a finger touch.
  • an electronic product for example, a mobile phone or a tablet computer
  • the optical fingerprint identification device captures light that easily penetrates the protection component for fingerprint recognition, and can eliminate the need for additional processing of the protection component, thereby facilitating the combination with the electronic product.
  • the optical fingerprint identification device generally includes a light source, an image capturing component, and a light transmitting component.
  • the light source is used to emit a light beam to illuminate a finger pressed against the light transmissive component.
  • Finger fingerprints are made up of a number of irregular ridges and indentations.
  • the beams reflected by the ridges and the indentations are formed as a fingerprint image of the light and dark interlaced on the receiving surface of the image capturing assembly.
  • the image capturing component can convert the fingerprint image into corresponding image information and input the image information into the processing unit.
  • the processing unit may use an algorithm to calculate image information corresponding to the fingerprint for identification of the user.
  • the light beam reflected by the fingerprint is easily transmitted to the image capturing component, which results in poor image quality and affects the identification result.
  • the invention provides a biometric identification device.
  • the biometric device includes a light source, a light guiding component, and an image ⁇ Take the component and the first collimator.
  • the light source is adapted to provide a light beam.
  • the light guiding component is located on the transmission path of the light beam.
  • the image capture component is located below the light guide component and has a plurality of pixel regions.
  • the first collimator is located between the light guiding component and the image capturing component, wherein the first collimator comprises a light transmitting component and a light absorbing layer.
  • the light transmissive component has a first surface and a second surface between the first surface and the image capture assembly.
  • the light absorbing layer is disposed on the first surface and the second surface and has a plurality of first openings exposing the first surface and a plurality of second openings exposing the second surface, wherein the first opening and the second opening overlap the pixel area And the first opening has the same aperture as the second opening.
  • the light guiding member has a light exiting portion and a light incident portion connected to the light exiting portion.
  • the light source and the image capturing component are located below the light exiting portion.
  • the light incident portion is located between the light source and the light exit portion.
  • the light source is located at a side of the light guiding assembly.
  • the light guiding member is formed with a plurality of microstructures facing the surface of the first collimator.
  • the microstructure is convex or concave on the surface.
  • the refractive index of the light transmissive component falls within the range of 1.3 to 1.7.
  • the height ratio of the aperture of each of the first openings to the light transmissive component falls within a range of 2 to 20.
  • the light transmissive member further has a side wall surface connecting the first surface and the second surface, and the light absorbing layer is further disposed on the side wall surface.
  • the biometric device further includes a cover plate, wherein the light guide assembly is located between the cover plate and the first collimator.
  • the biometric device further includes a second collimator.
  • the second collimator is located between the light guiding component and the first collimator.
  • the second collimator includes a plurality of prisms, and the vertex angles of the prisms respectively refer to the light guide components.
  • the biometric device of the embodiment of the present invention by modulating the apertures of the first opening and the second opening to absorb the large-angle beam that acts through the object to be recognized and passes through the light guiding component, the image is transmitted to the image.
  • the beam of the capture component is collimated to improve the image quality of the image capture component. Therefore, the biometric device can have good recognition capabilities.
  • FIG. 1 is a schematic cross-sectional view of a biometric device according to an embodiment of the present invention
  • Figure 2 is an enlarged view of the light guiding assembly of Figure 1;
  • Figure 3 is a schematic view of the first collimator of Figure 1;
  • FIG. 4 is a cross-sectional view of the first collimator, the image capturing assembly, and the circuit board of FIG. 1;
  • Figure 5 is an enlarged view of the light guiding assembly and the second collimator of Figure 1;
  • FIG. 6 is a cross-sectional view of a biometric device according to another embodiment of the present invention.
  • 100, 100A biometric identification device
  • 120, 120A light guiding component
  • B, B', B1', B2' light beam
  • PR pixel area
  • WO1, WO2 Aperture.
  • the biometric device 100 is, for example, a fingerprint identification device for identifying the fingerprint of the object 10 to be identified, but is not limited thereto. In another embodiment, the biometric device 100 can also be used to identify a combination of at least two of a vein, a palm print, or a fingerprint, a vein, and a palm print.
  • the biometric device 100 includes a light source 110, a light guiding component 120, an image capturing component 130, and a first collimator 140.
  • Light source 110 is adapted to provide beam B.
  • Light source 110 can be a non-visible light source or a visible light source. That is, the light beam B may be invisible light (eg, infrared light) or visible light (eg, red light, blue light, green light, or a combination thereof).
  • light source 110 can be a combination of a non-visible light source and a visible light source.
  • light source 110 can include a plurality of light emitting components 112.
  • Light emitting component 112 can be a light emitting diode or other suitable type of light emitting component.
  • FIG. 1 schematically shows two lighting assemblies 112 with two lighting assemblies 112 on opposite sides of the image capturing assembly 130. However, the number and arrangement of the light-emitting components 112 can be changed as needed, and is not limited thereto.
  • the light guiding component 120 is located on the transmission path of the light beam B, and is adapted to direct the light beam B provided by the light source 110 to the object to be recognized 10.
  • the material of the light guiding component 110 can be glass, polycarbonate (PC), polymethyl methacrylate (PMMA) or other suitable materials.
  • the light source 110 and the image capturing component 130 are located on the same side of the light guiding component 120.
  • the biometric device 100 further includes a circuit board 150.
  • the light source 110 is disposed on the circuit board 150 and is electrically connected to the circuit board 150.
  • the light guiding component 120 has a light exiting portion 122 and at least one light incident portion 124 connected to the light exiting portion 122.
  • the light source 110 and the image capturing component 130 are located under the light exiting portion 122 , and the light source 110 is located beside the image capturing component 130 .
  • the light incident portion 124 is located between the light source 110 and the light exit portion 122.
  • the light incident portion 124 may be fixed to the circuit board 150, and the light incident portion 124 has a recess C.
  • the recess C and the circuit board 150 enclose a space in which the light source 110 is housed.
  • at least one of the light incident portion 124 and the circuit board 150 may have a recess (not shown) to accommodate the light source 110.
  • the light incident portion 124 and the circuit board 150 may be fixed together by a fixing mechanism (not shown) or an adhesive layer (not shown, for example, an optical glue).
  • the light incident portion 124 may be fixed on the light source 110 by an adhesive layer (not shown, for example, an optical glue), and the light incident portion 124 may not be in contact with the circuit board 150.
  • FIG. 1 schematically shows two light incident portions 124, and the two light incident portions 124 are located on opposite sides of the light exit portion 122. However, the number and arrangement of the light incident portions 124 can be changed as needed, and is not limited thereto.
  • FIG. 2 is an enlarged view of the light guiding assembly of FIG. 1.
  • the light beam B emitted from the light source 110 enters the light guide unit 120 from the light incident portion 124 , and the light beam B can be transmitted to the light exit portion 122 via the light incident portion 124 .
  • the surface S of the light guiding component 120 facing the first collimator 140 can be selectively formed with a plurality of microstructures M (not shown in FIG. 1 , please refer to FIG. 2 ).
  • the microstructure M is adapted to change the direction of transmission of the beam B such that the beam B reflected by the microstructure M is directed perpendicularly or nearly perpendicularly out of the exit portion 122. As shown in FIG.
  • the microstructure M may protrude from the surface S and may have a first reflective surface S1 and a second reflective surface S2.
  • the first reflective surface S1 and the second reflective surface S2 are connected to each other, wherein the first reflective surface S1 and the second reflective surface S2 are inclined with respect to the surface S, and the oblique directions of the first reflective surface S1 and the second reflective surface S2 are opposite.
  • the microstructure M, the light exit portion 122, and the light incident portion 124 may be integrally formed, but not limited thereto.
  • the microstructures M, the light exiting portion 122, and the light incident portion 124 can be separately fabricated and fixed together by a connecting mechanism or an adhesive layer (for example, an optical adhesive).
  • the microstructure M can also be recessed into the surface S.
  • the microstructure M may be a depression formed on the surface S.
  • the number of microstructures M and their distribution may vary according to different needs, and are not limited to the number and distribution shown in FIG.
  • the surface S' of the light-emitting portion 122 outputting the light beam B is opposed to the surface S on which the microstructure M is formed.
  • the surface S' may be a pressing surface for pressing the object to be recognized 10.
  • TIR total internal reflection
  • the biometric device 100 may further include a cover plate 160 for the object 10 to be pressed.
  • the cover plate 160 is located above the light guide assembly 120 , and the light guide assembly 120 is located between the cover plate 160 and the first collimator 140 .
  • the cover plate 160 may be a cover lens of an electronic product to be assembled (for example, a touch panel or a touch display panel), but is not limited thereto.
  • the cover plate 160 and the light guide assembly 120 may be fixed together by a connecting mechanism or an adhesive layer (for example, an optical adhesive), but not limited thereto.
  • the refractive index of the adhesive layer, the cover plate 160 and the light guiding component 120 may be the same or similar to reduce the interface reflection, thereby improving the light utilization of the biometric device 100. Efficiency and / or image quality.
  • the refractive indices of the adhesive layer, cover plate 160, and light directing component 120 can also be different. Under the structure in which the cover plate 160 is disposed, the light beam B from the light source 110 sequentially passes through the light entering portion 124, the light exit portion 122, and the cover plate 160, and total internal reflection occurs on the surface of the cover plate 160 where the object to be recognized 10 is pressed.
  • the light beam B' acting (e.g., diffused) by the object 10 to be identified passes through the cover plate 160 and the light exit portion 122 in sequence and is transmitted to the surface S.
  • a portion of the light beam B' transmitted to the surface S is reflected by the surface S, and is again transmitted toward the surface of the cover plate 160 where the object 10 is to be pressed.
  • another portion of the light beam B' delivered to the surface S will exit the light guide assembly 120 from the surface S.
  • the image capturing component 130 is located below the light guiding component 120 and has a plurality of pixel regions PR (shown in FIG. 4) arranged in an array to receive the light beam B′ acting through the object to be identified 10, thereby obtaining the to-be-identified Image of object 10.
  • the image capturing component 130 includes, for example, a plurality of Charge-Coupled Devices (CCDs) 132 (shown in FIG. 4).
  • the charge coupled assembly 132 is disposed on the circuit board 150 and is electrically coupled to the circuit board 150.
  • the area of the charge coupled component 132 is the pixel area PR of the image capture component 130.
  • the image capturing component 130 can include a plurality of complementary metal oxide semiconductors (CMOSs), and the region of the complementary metal oxide semiconductor is the pixel region PR of the image capturing component 130.
  • CMOSs complementary metal oxide semiconductors
  • the first collimator 140 is located between the light guiding component 120 and the image capturing component 130, and the first collimator 140 is located on the transmission path of the light beam B' after the object 10 is to be recognized.
  • the first collimator 140 can be disposed on the image capturing component 130, and the first collimator 140 and the image capturing component 130 can be fixed by a connecting mechanism or an adhesive layer (eg, optical glue). Together, but not limited to this.
  • the first collimator 140 includes a light transmissive component 142 and a light absorbing layer 144 .
  • the light transmissive component 142 has a first surface S1421, a second surface S1422 between the first surface S1421 and the image capturing assembly 130, and a sidewall surface S1423 connecting the first surface S1421 and the second surface S1422.
  • the light absorbing layer 144 is disposed on the first surface S1421 and the second surface S1422 and has a plurality of first openings O1 exposing the first surface S1421 and a plurality of second openings O2 exposing the second surface S1422, wherein the first opening O1
  • the second opening O2 overlaps the area pixel PR, and the aperture WO1 of the first opening O1 is the same as the aperture WO2 of the second opening O2.
  • the first opening O1 and the second opening O2 have the same or substantially the same shape and size. The so-called substantially identical shape and size are errors in consideration of the manufacturing process.
  • the first opening O1 and the second opening O2 are aligned with the pixel region PR, so that the light beams sequentially passing through the first opening O1 and the second opening O2 can be transmitted to the image capturing assembly 130 (as shown in the beam B2 of FIG. 4). display).
  • the size of the pixel region PR may be slightly larger than the aperture WO1 of the first opening O1 and the aperture WO2 of the second opening O2, but not limited thereto.
  • the light absorbing layer 144 may be further disposed on the sidewall surface S1423 of the light transmissive component 142 to prevent the light beam transmitted in the light transmissive component 142 from being emitted from the sidewall surface S1423.
  • the light absorbing layer 144 may not be disposed on the sidewall surface S1423 of the light transmissive component 142.
  • the refractive index of the light transmitting medium for example, air or optical glue
  • the refractive index of the light transmitting medium for example, air or optical glue
  • the light beam B' of the incident light transmitting component 142 may enter the light transmitting component 142 via the first surface S1421 of the light transmitting component 142 via refraction. Accordingly, the arrangement of the light transmissive component 142 helps to converge the angle of the beam B' into the first collimator 140, thereby allowing more of the beam B' to be transmitted to the image capture assembly 130.
  • the material of the light transmissive component 142 can be made of glass, polycarbonate (PC) or polymethyl methacrylate. (PMMA) or other suitable material.
  • the material of the light absorbing layer 144 may be, for example, a silica gel-based or acryl-based material containing a light absorbing material (for example, carbon). In this way, even if the light beam B1' of the large-angle incident light transmitting component 142 and the light beam B2' of the small-angle incident light transmitting component 142 enter the light transmitting component 142 through the first opening O1, the second surface S1422 can be utilized.
  • the light absorbing layer 144 absorbs the light beam B1 ′ of the large angle incident light transmitting component 142 , and only passes the light beam B2 ′ of the small angle incident light transmitting component 142 and transmits it to the image capturing component 130 .
  • Whether the light beam entering the first collimator 140 is absorbed by the light absorbing layer 144 on the second surface S1422 may depend on the aperture WO1 of the first opening O1 and the aperture WO2 of the second opening O2, the height H of the light transmitting component 142, and the light beam.
  • B' is the angle of refraction at the first surface S1421 of the light transmissive member 142 (determined by the incident angle of the beam B' and the refractive index of the light transmissive member 142).
  • the height H of the light transmitting member 142 is constant, the larger the aperture WO1 of the first opening O1 and the aperture WO2 of the second opening O2, the larger the angular range of the light beam B' received by the image capturing assembly 130.
  • the larger the angle of refraction of the beam B' that is, the larger the incident angle
  • the light-transmitting member 142 has a refractive index greater than 1, and falls, for example, in the range of 1.3 to 1.7.
  • the aperture WO1 of each of the first openings O1 (also the aperture WO2 of the second opening O2) and the height H of the light-transmitting member 142 fall within a range of 2 to 20.
  • the refractive index of the light transmissive component 142 and the height H of the first opening O1 and the height H of the light transmissive component 142 may vary according to different design requirements (eg, the pitch of the image capturing component 130). Not limited to the above.
  • the light absorbing layer 144 By using the light absorbing layer 144 to absorb the large-angle light beam (for example, the light beam B1') that acts through the light-receiving object 10 and passes through the light guiding component 120, the light beam of only a certain angle (the light beam incident at a small angle, for example, the light beam B2') can be transmitted.
  • the beam B' passing through the first collimator 140 can be incident on the image capturing assembly 130 at an angle of 0 degrees or close to 0 degrees. .
  • the first collimator 140 facilitates collimating the beam that is transmitted to the image capture assembly 130.
  • FIG. 3 schematically shows that the shape of the first opening O1 and the second opening O2 is circular, but not limited thereto. In other embodiments, the shape of the first opening O1 and the second opening O2 may also be a triangle, a quadrangle, a pentagon or other polygons.
  • Biometric device 100 may also include other components depending on various needs.
  • biometric device 100 can also include a second collimator 170.
  • the second collimator 170 is located between the light guiding component 120 and the first collimator 140, and the second collimator 170 is located on the transmission path of the light beam B' after the object 10 is to be recognized.
  • the second collimator 170 can be disposed on the surface S, and the light guiding component 120 and the second collimator 170 can be fixed together by a connecting mechanism or an adhesive layer (eg, optical glue), but not This is limited to this.
  • the second collimator 170 is adapted to pre-align the beam B' before the beam B' passes through the first collimator 140 to converge the divergence angle of the beam B'. As such, the probability of subsequent passage of beam B' through first collimator 140 can be increased.
  • FIG. 5 is an enlarged view of the light guiding assembly and the second collimator of FIG. 1.
  • the second collimator 170 may include a plurality of prisms 172 , and the vertex angles TA of the prisms 172 refer to the light guide components 120 , respectively.
  • the angles of the two bottom corners BA of the respective prisms 172 are the same.
  • the apex angle TA and the bottom angle BA of the prism 172 may vary according to different needs, and are not limited thereto.
  • FIG. 6 is a cross-sectional view of a biometric device according to another embodiment of the present invention.
  • the biometric device 100A of FIG. 6 is similar to the biometric device 100 of FIG. 1, and the biometric device 100A has similar functions and advantages as the biometric device 100, and will not be repeated here.
  • the difference between the biometric device 100A of FIG. 6 and the biometric device 100 of FIG. 1 is that the position of the light source 110 is different.
  • the light source 110 is located on the side of the light guide assembly 120A.
  • the light guiding component 120A is, for example, a plate shape, and the light guiding component 120A can omit the light incident portion 124 of the light guiding component 120 of FIG. 1 .
  • the biometric device of the embodiment of the present invention by modulating the apertures of the first opening and the second opening to absorb the large-angle beam that acts through the object to be recognized and passes through the light guiding component, The beam is collimated to the image capturing component to improve the image quality of the image capturing component. Therefore, the biometric device can have good recognition capabilities.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

生物特征辨识装置(100, 100A),其包括光源(110)、导光组件(120, 120A)、影像撷取组件(130)以及第一准直器(140),导光组件(120, 120A)位于光束(B)的传递路径上,影像撷取组件(130)位于导光组件(120, 120A)下方且具有多个像素区(PR),第一准直器(140)位于导光组件(120, 120A)与影像撷取组件(130)之间,其中第一准直器(140)包括透光组件(142)以及吸光层(144),透光组件(142)具有第一表面(S1421)以及第二表面(S1422),吸光层(144)配置在第一表面(S1421)以及第二表面(S1422)上且具有暴露出第一表面(S1421)的多个第一开口(O1)以及暴露出第二表面(S1422)的多个第二开口(O2)。利用吸光层(144)吸收大角度光束(B 1 '),以将传递至影像撷取组件(130)的光束(B ')准直化,使影像撷取组件(130)的取像质量提升。

Description

生物特征辨识装置 技术领域
本发明涉及一种生物特征辨识装置。
背景技术
生物特征辨识的种类包括脸部、声音、虹膜、视网膜、静脉、指纹和掌纹辨识等。由于每个人的指纹都是独一无二的,且指纹不易随着年龄或身体健康状况而变化,因此指纹辨识装置已成为目前最普及的一种生物特征辨识装置。依照感测方式的不同,指纹辨识装置可分为光学式与电容式。电容式指纹辨识装置组装于电子产品(例如:手机、平板计算机)时,电容式指纹辨识装置上方多设有保护组件(cover lens)。一般而言,需额外加工(例如钻孔或薄化)保护组件,以使电容式指纹辨识装置能够感测到手指触碰所造成的容值或电场变化。
相较于电容式指纹辨识装置,光学式指纹辨识装置撷取容易穿透保护组件的光进行指纹辨识,而可以不用额外加工保护组件,因此在与电子产品的结合上较为便利。
光学式指纹辨识装置通常包括光源、影像撷取组件及透光组件。光源用以发出光束,以照射按压在透光组件上的手指。手指的指纹是由多条不规则的凸纹与凹纹所组成。被凸纹与凹纹反射的光束会在影像撷取组件的接收面上形成为明暗交错的指纹影像。影像撷取组件可将指纹影像转换为对应的影像信息,并将影像信息输入至处理单元。处理单元可利用算法计算对应于指纹的影像信息,以进行用户的身份辨识。然而,在上述的取像过程中,被指纹反射的光束易散乱地传递至影像撷取组件,而造成取像质量不佳,影响辨识结果。
发明内容
本发明提供一种生物特征辨识装置。
根据本发明的实施例,生物特征辨识装置包括光源、导光组件、影像撷 取组件以及第一准直器。光源适于提供光束。导光组件位于光束的传递路径上。影像撷取组件位于导光组件下方且具有多个像素区。第一准直器位于导光组件与影像撷取组件之间,其中第一准直器包括透光组件以及吸光层。透光组件具有第一表面以及位于第一表面与影像撷取组件之间的第二表面。吸光层配置在第一表面以及第二表面上且具有暴露出第一表面的多个第一开口以及暴露出第二表面的多个第二开口,其中第一开口与第二开口重叠于像素区,且第一开口与第二开口的孔径相同。
在根据本发明的实施例的生物特征辨识装置中,导光组件具有出光部以及连接于出光部的入光部。光源与影像撷取组件共同位于出光部下方。入光部位于光源与出光部之间。
在根据本发明的实施例的生物特征辨识装置中,光源位于导光组件的侧面。
在根据本发明的实施例的生物特征辨识装置中,导光组件面向第一准直器的表面形成有多个微结构。微结构凸出或凹入于表面。
在根据本发明的实施例的生物特征辨识装置中,透光组件的折射率落在1.3至1.7的范围内。
在根据本发明的实施例的生物特征辨识装置中,各第一开口的孔径与透光组件的高度比落在2至20的范围内。
在根据本发明的实施例的生物特征辨识装置中,透光组件还具有连接第一表面与第二表面的侧壁面,且吸光层还配置在侧壁面上。
在根据本发明的实施例的生物特征辨识装置中,生物特征辨识装置还包括盖板,其中导光组件位于盖板与第一准直器之间。
在根据本发明的实施例的生物特征辨识装置中,生物特征辨识装置还包括第二准直器。第二准直器位于导光组件与第一准直器之间。
在根据本发明的实施例的生物特征辨识装置中,第二准直器包括多个棱镜,且棱镜的顶角分别指向导光组件。
基于上述,在本发明的实施例的生物特征辨识装置中,通过调变第一开口与第二开口的孔径来吸收经待辨识物作用且通过导光组件的大角度光束,以将传递至影像撷取组件的光束准直化,使影像撷取组件的取像质量提升。因此,生物特征辨识装置可具有良好的辨识能力。
附图说明
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1为本发明一实施例的生物特征辨识装置的剖面示意图;
图2为图1中导光组件的一种放大图;
图3为图1中第一准直器的一种示意图;
图4为图1中第一准直器、影像撷取组件以及电路板的一种剖面示意图;
图5为图1中导光组件以及第二准直器的一种放大图;
图6为本发明另一实施例的生物特征辨识装置的剖面示意图。
附图标号说明
10:待辨识物;
100、100A:生物特征辨识装置;
110:光源;
112:发光组件;
120、120A:导光组件;
122:出光部;
124:入光部;
130:影像撷取组件;
132:电荷耦合组件;
140:第一准直器;
142:透光组件;
144:吸光层;
150:电路板;
160:盖板;
170:第二准直器;
172:棱镜;
B、B’、B1’、B2’:光束;
BA:底角;
C:凹陷;
H:高度;
M:微结构;
O1:第一开口;
O2:第二开口;
PR:像素区;
S、S’:表面;
S1:第一反射面;
S2:第二反射面;
S1421:第一表面;
S1422:第二表面;
S1423:侧壁面;
TA:顶角;
WO1、WO2:孔径。
具体实施方式
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同组件符号在附图和描述中用来表示相同或相似部分。
图1为本发明一实施例的生物特征辨识装置的剖面示意图。请参照图1,生物特征辨识装置100例如为指纹辨识装置,用以辨识待辨识物10的指纹,但不以此为限。在另一实施例中,生物特征辨识装置100也可用以辨识静脉、掌纹或是指纹、静脉以及掌纹的其中至少两个的组合。
生物特征辨识装置100包括光源110、导光组件120、影像撷取组件130以及第一准直器140。
光源110适于提供光束B。光源110可以是非可见光光源或可见光光源。也就是说,光束B可以是不可见光(例如:红外光)或可见光(例如:红光、蓝光、绿光或其组合)。或者,光源110可以是非可见光光源与可见光光源的组合。举例而言,光源110可包括多个发光组件112。发光组件112可为发光二极管或其他适当种类的发光组件。图1示意地显示出两个发光组件112,且两个发光组件112位于影像撷取组件130的相对侧。然而,发光组件112的数量以及配置方式可依需求改变,而不以此为限。
导光组件120位于光束B的传递路径上,其适于将光源110提供的光束B导向待辨识物10。举例而言,导光组件110的材质可为玻璃、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)或其他适当材料。在本实施例中,光源110与影像撷取组件130位于导光组件120的同一侧。生物特征辨识装置100进一步包括电路板150。光源110配置在电路板150上且与电路板150电连接。导光组件120具有出光部122以及连接于出光部122的至少一入光部124。光源110与影像撷取组件130共同位于出光部122下方,且光源110位于影像撷取组件130旁。入光部124位于光源110与出光部122之间。详细而言,入光部124可固定在电路板150上,且入光部124具有凹陷C。凹陷C与电路板150围出容纳光源110的空间。在另一实施例中,入光部124与电路板150的其中至少一个可具有凹陷(未示出),以容纳光源110。在又一实施例中,入光部124与电路板150可藉由固定机构(未示出)或黏着层(未示出,例如:光学胶)固定在一起。在再一实施例中,入光部124可藉由黏着层(未示出,例如:光学胶)而固定在光源110上,且入光部124可不与电路板150接触。图1示意地显示出两个入光部124,且两个入光部124位在出光部122的相对侧。然而,入光部124的数量以及配置方式可依需求改变,而不以此为限。
图2为图1中导光组件的一种放大图。请参照图1及图2,光源110射出的光束B自入光部124进入导光组件120,且光束B可经由入光部124传递至出光部122。导光组件120面向第一准直器140的表面S可选择性地形成有多个微结构M(图1未示出,请参照图2)。微结构M适于改变光束B的传递方向,使得被微结构M反射的光束B垂直或接近垂地直射出出光部122。如图2所示,微结构M可凸出于表面S且可具有第一反射面S1以及第二反射面S2。第一反射面S1与第二反射面S2彼此相连,其中第一反射面S1与第二反射面S2相对于表面S倾斜,且第一反射面S1与第二反射面S2的倾斜方向相反。在一实施例中,微结构M、出光部122以及入光部124可一体成型,但不以此为限。在另一实施例中,微结构M、出光部122以及入光部124可分别制作,再藉由连接机构或黏着层(例如:光学胶)固定在一起。或者,微结构M也可凹入于表面S。具体地,微结构M可以是形成在表面S上的凹陷。另外,微结构M的数量及其分布可依据不同的需求改变,而不限于图2所显示的数量及分布。
出光部122输出光束B的表面S’与形成有微结构M的表面S相对。在一实施例中,表面S’可以是供待辨识物10按压的按压面。在表面S’为按压面的架构下,如图2所示,来自光源110的光束B依序通过入光部124以及出光部122,并在表面S’发生全内反射(Total Internal Reflection,TIR),接着依序被第二反射面S2以及第一反射面S1反射,并垂直或接近垂直地射出表面S’。
或者,如图1所示,生物特征辨识装置100可进一步包括盖板160以供待辨识物10按压。盖板160位于导光组件120上方,且导光组件120位于盖板160与第一准直器140之间。盖板160可以是所欲组装的电子产品(例如:触控面板或触控显示面板)的保护组件(cover lens),但不以此为限。在一实施例中,盖板160与导光组件120可藉由连接机构或黏着层(例如:光学胶)而固定在一起,但不以此为限。以黏着层固定盖板160与导光组件120的情况下,黏着层、盖板160与导光组件120的折射率可相同或相近,以减少接口反射,进而提升生物特征辨识装置100的光利用效率和/或取像质量。然而,在其他实施例中,黏着层、盖板160与导光组件120的折射率也可相异。在设置盖板160的架构下,来自光源110的光束B依序通过入光部124、出光部122以及盖板160,并在盖板160供待辨识物10按压的表面发生全内反射。经待辨识物10作用(例如:漫射)的光束B’依序通过盖板160以及出光部122并传递至表面S。传递至表面S的光束B’的一部分会被表面S反射,而再次朝盖板160供待辨识物10按压的表面传递。另一方面,传递至表面S的光束B’的另一部分会自表面S射出导光组件120。
影像撷取组件130位于导光组件120下方且具有例如呈数组排列的多个像素(pixel)区PR(显示于图4),以接收经待辨识物10作用的光束B’,进而取得待辨识物10的影像。在本实施例中,影像撷取组件130例如包括多个电荷耦合组件(Charge-Coupled Device,CCD)132(显示于图4)。电荷耦合组件132配置于电路板150上并与电路板150电连接。电荷耦合组件132的所在区域为影像撷取组件130的像素区PR。在另一实施例中,影像撷取组件130可包括多个互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS),且互补金属氧化物半导体的所在区域为影像撷取组件130的像素区PR。
第一准直器140位于导光组件120与影像撷取组件130之间,且第一准直器140位于待辨识物10作用后的光束B’的传递路径上。举例而言,第一准直器140可配置在影像撷取组件130上,且第一准直器140与影像撷取组件130可藉由连接机构或黏着层(例如:光学胶)而固定在一起,但不以此为限。
图3为图1中第一准直器的一种示意图,显示出第一准直器的正面及背面。图4为图1中第一准直器、影像撷取组件以及电路板的一种剖面示意图。请参照图1、图3及图4,第一准直器140包括透光组件142以及吸光层144。透光组件142具有第一表面S1421、位于第一表面S1421与影像撷取组件130之间的第二表面S1422以及连接第一表面S1421与第二表面S1422的侧壁面S1423。吸光层144配置在第一表面S1421以及第二表面S1422上且具有暴露出第一表面S1421的多个第一开口O1以及暴露出第二表面S1422的多个第二开口O2,其中第一开口O1与第二开口O2重叠于区像素PR,且第一开口O1的孔径WO1与第二开口O2的孔径WO2相同。进一步而言,第一开口O1与第二开口O2具有相同或实质上相同的形状以及尺寸。所谓实质上相同的形状以及尺寸是考虑到制作工艺所造成的误差。此外,第一开口O1与第二开口O2对齐于像素区PR,以使依序通过第一开口O1与第二开口O2的光束能够传递至影像撷取组件130(如图4的光束B2’所显示)。在本实施例中,像素区PR的尺寸可略大于第一开口O1的孔径WO1与第二开口O2的孔径WO2,但不以此为限。此外,吸光层144可进一步配置在透光组件142的侧壁面S1423上,以避免传递于透光组件142中的光束自侧壁面S1423射出。然而,在另一实施例中,吸光层144可以不配置在透光组件142的侧壁面S1423上。
当导光组件120与第一准直器140之间的光传递介质(例如:空气或光学胶)的折射率不同于透光组件142的折射率时,入射透光组件142的光束B’(包括大角度入射透光组件142的光束B1’以及小角度入射透光组件142的光束B2’)会在透光组件142的第一表面S1421经由折射而进入透光组件142。因此,透光组件142的设置有助于收敛光束B’进入第一准直器140的角度,进而让更多的光束B’能够传递至影像撷取组件130。
透光组件142的材质可采用玻璃、聚碳酸酯(PC)、聚甲基丙烯酸甲酯 (PMMA)或其他适当材料。吸光层144的材质例如可采用含有吸光材料(例如:碳)的硅胶系或压克力系材料。如此一来,即使大角度入射透光组件142的光束B1’以及小角度入射透光组件142的光束B2’皆通过第一开口O1而进入透光组件142,仍可利用位于第二表面S1422上的吸光层144吸收大角度入射透光组件142的光束B1’,而仅让小角度入射透光组件142的光束B2’通过并传递至影像撷取组件130。
进入第一准直器140的光束是否被位于第二表面S1422上的吸光层144吸收可取决于第一开口O1的孔径WO1以及第二开口O2的孔径WO2、透光组件142的高度H以及光束B’在透光组件142的第一表面S1421的折射角(由光束B’的入射角以及透光组件142的折射率决定)等。在透光组件142的高度H为定值的情况下,第一开口O1的孔径WO1以及第二开口O2的孔径WO2越大,影像撷取组件130接收到的光束B’的角度范围越大。在第一开口O1的孔径WO1以及第二开口O2的孔径WO2为定值的情况下,透光组件142的高度H越大,影像撷取组件130接收到的光束B’的角度范围越小。在第一开口O1的孔径WO1、第二开口O2的孔径WO2以及透光组件142的高度H为定值的情况下,光束B’的折射角越大(也就是入射角越大),越有可能被吸光层144吸收。在本实施例中,透光组件142的折射率大于1,且例如落在1.3至1.7的范围内。此外,各第一开口O1的孔径WO1(也是第二开口O2的孔径WO2)与透光组件142的高度H比落在2至20的范围内。然而,透光组件142的折射率以及各第一开口O1的孔径WO1与透光组件142的高度H比可依据不同的设计需求(例如:影像撷取组件130的节距(pitch))改变,而不限于上述。
利用吸光层144吸收经待辨识物10作用且通过导光组件120的大角度光束(例如:光束B1’),可以使仅特定角度的光束(小角度入射的光束,例如:光束B2’)传递至影像撷取组件130。经由适当的调变第一开口O1的孔径WO1以及第二开口O2的孔径WO2,可以使通过第一准直器140的光束B’能够以0度或接近0度的角度入射影像撷取组件130。换句话说,第一准直器140有助于将传递至影像撷取组件130的光束准直化。如此,不但有助于滤除杂散光,还有助于避免从不同第二开口O2输出的光束B’相互干扰的问题,使影像撷取组件130的取像质量提升。因此,生物特征辨识装置100可 具有良好的辨识能力。图3示意性地显示第一开口O1以及第二开口O2的形状为圆形,但不以此为限。在其他实施例中,第一开口O1以及第二开口O2的形状也可以是三角形、四边形、五边形或其他多边形。
依据不同需求,生物特征辨识装置100还可包括其他组件。举例而言,生物特征辨识装置100还可包括第二准直器170。第二准直器170位于导光组件120与第一准直器140之间,且第二准直器170位于待辨识物10作用后的光束B’的传递路径上。举例而言,第二准直器170可配置在表面S上,且导光组件120与第二准直器170可藉由连接机构或黏着层(例如:光学胶)而固定在一起,但不以此为限。
第二准直器170适于在光束B’通过第一准直器140之前,预先将光束B’准直化,以收敛光束B’的发散角。如此,可增加光束B’后续通过第一准直器140的机率。图5为图1中导光组件以及第二准直器的一种放大图。请参照图1及图5,第二准直器170可包括多个棱镜172,且棱镜172的顶角TA分别指向导光组件120。在本实施例中,各棱镜172的两个底角BA的角度相同。然而,棱镜172的顶角TA及底角BA可依据不同的需求改变,而不限于此。
图6为本发明另一实施例的生物特征辨识装置的剖面示意图。图6的生物特征辨识装置100A与图1的生物特征辨识装置100相似,且生物特征辨识装置100A具有与生物特征辨识装置100相似的功效与优点,于此便不再重述。图6的生物特征辨识装置100A与图1的生物特征辨识装置100的差异在于光源110的位置不同。详细而言,在图6的实施例中,光源110位于导光组件120A的侧面。在此架构下,导光组件120A例如为板状,且导光组件120A可以省略图1中导光组件120的入光部124。
综上所述,在本发明的实施例的生物特征辨识装置中,通过调变第一开口与第二开口的孔径来吸收经待辨识物作用且通过导光组件的大角度光束,以将传递至影像撷取组件的光束准直化,使影像撷取组件的取像质量提升。因此,生物特征辨识装置可具有良好的辨识能力。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种生物特征辨识装置,其特征在于,包括:
    光源,适于提供光束;
    导光组件,位于所述光束的传递路径上;
    影像撷取组件,位于所述导光组件下方且具有多个像素区;以及
    第一准直器,位于所述导光组件与所述影像撷取组件之间,其中所述第一准直器包括:
    透光组件,具有第一表面以及位于所述第一表面与所述影像撷取组件之间的第二表面;以及
    吸光层,配置在所述第一表面以及所述第二表面上,且所述吸光层具有暴露出所述第一表面的多个第一开口以及暴露出所述第二表面的多个第二开口,其中所述多个第一开口与所述多个第二开口重叠于所述像素区,且所述多个第一开口与所述多个第二开口的孔径相同。
  2. 根据权利要求1所述的生物特征辨识装置,其特征在于,所述导光组件具有出光部以及连接于所述出光部的入光部,所述光源与所述影像撷取组件共同位于所述出光部下方,所述入光部位于所述光源与所述出光部之间。
  3. 根据权利要求1所述的生物特征辨识装置,其特征在于,所述光源位于所述导光组件的侧面。
  4. 根据权利要求1所述的生物特征辨识装置,其特征在于,所述导光组件面向所述第一准直器的表面形成有多个微结构,所述多个微结构凸出或凹入于所述表面。
  5. 根据权利要求1所述的生物特征辨识装置,其特征在于,所述透光组件的折射率落在1.3至1.7的范围内。
  6. 根据权利要求1所述的生物特征辨识装置,其特征在于,各所述多个第一开口的孔径与所述透光组件的高度比落在2至20的范围内。
  7. 根据权利要求1所述的生物特征辨识装置,其特征在于,所述透光组件还具有连接所述第一表面与所述第二表面的侧壁面,且所述吸光层还配置在所述侧壁面上。
  8. 根据权利要求1所述的生物特征辨识装置,其特征在于,还包括:
    盖板,其中所述导光组件位于所述盖板与所述第一准直器之间。
  9. 根据权利要求1所述的生物特征辨识装置,其特征在于,还包括:
    第二准直器,位于所述导光组件与所述第一准直器之间。
  10. 根据权利要求9所述的生物特征辨识装置,其特征在于,所述第二准直器包括多个棱镜,且所述多个棱镜的顶角分别指向所述导光组件。
PCT/CN2017/076423 2016-12-23 2017-03-13 生物特征辨识装置 WO2018113106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611208416.8A CN108241830A (zh) 2016-12-23 2016-12-23 生物特征辨识装置
CN201611208416.8 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018113106A1 true WO2018113106A1 (zh) 2018-06-28

Family

ID=62624240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076423 WO2018113106A1 (zh) 2016-12-23 2017-03-13 生物特征辨识装置

Country Status (3)

Country Link
CN (1) CN108241830A (zh)
TW (1) TWI637326B (zh)
WO (1) WO2018113106A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070799A (zh) * 2019-03-23 2019-07-30 深圳阜时科技有限公司 一种显示装置及电子设备
CN109977852A (zh) * 2019-03-23 2019-07-05 深圳阜时科技有限公司 一种传感模组、显示装置及电子设备
CN109979326A (zh) * 2019-03-23 2019-07-05 深圳阜时科技有限公司 一种显示装置及电子设备
CN109948558A (zh) * 2019-03-23 2019-06-28 深圳阜时科技有限公司 一种基座及传感模组
CN110032950B (zh) * 2019-03-23 2024-03-29 深圳阜时科技有限公司 一种基座及传感模组
CN110164307B (zh) * 2019-05-23 2021-01-26 厦门天马微电子有限公司 一种内置有指纹识别感应器的显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711676A (zh) * 2008-09-30 2010-05-26 索尼株式会社 手指静脉认证装置和手指静脉认证方法
CN101789074A (zh) * 2009-01-23 2010-07-28 金佶科技有限公司 光学指纹辨识系统的导光模组
CN104182727A (zh) * 2014-05-16 2014-12-03 深圳印象认知技术有限公司 超薄型指纹、掌纹采集装置及指纹、掌纹图像采集方法
CN105844212A (zh) * 2015-02-02 2016-08-10 辛纳普蒂克斯公司 采用准直器的光学传感器
US20160283773A1 (en) * 2013-07-31 2016-09-29 Milan Momcilo Popovich Method and apparatus for contact image sensing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238356B2 (ja) * 2002-10-03 2009-03-18 独立行政法人産業技術総合研究所 認証システム、光放射装置、認証装置および認証方法
CN101169824B (zh) * 2006-10-25 2011-04-20 原相科技股份有限公司 指纹辨识装置及方法
TWI444904B (zh) * 2011-06-24 2014-07-11 Gingy Technology Inc 指紋辨識裝置
TWI486844B (zh) * 2012-09-25 2015-06-01 Au Optronics Corp 光學觸控掃描裝置
CN103729093A (zh) * 2012-10-16 2014-04-16 原相科技股份有限公司 影像撷取装置以及光学位移估测装置
CN104866813A (zh) * 2015-04-17 2015-08-26 麦克思股份有限公司 指纹识别装置
KR101942141B1 (ko) * 2015-05-12 2019-01-24 앰코테크놀로지코리아(주) 지문센서 패키지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711676A (zh) * 2008-09-30 2010-05-26 索尼株式会社 手指静脉认证装置和手指静脉认证方法
CN101789074A (zh) * 2009-01-23 2010-07-28 金佶科技有限公司 光学指纹辨识系统的导光模组
US20160283773A1 (en) * 2013-07-31 2016-09-29 Milan Momcilo Popovich Method and apparatus for contact image sensing
CN104182727A (zh) * 2014-05-16 2014-12-03 深圳印象认知技术有限公司 超薄型指纹、掌纹采集装置及指纹、掌纹图像采集方法
CN105844212A (zh) * 2015-02-02 2016-08-10 辛纳普蒂克斯公司 采用准直器的光学传感器

Also Published As

Publication number Publication date
TWI637326B (zh) 2018-10-01
TW201824073A (zh) 2018-07-01
CN108241830A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
TWM553019U (zh) 生物特徵辨識裝置
WO2018113106A1 (zh) 生物特征辨识装置
TWI637327B (zh) 生物特徵辨識裝置
WO2018113105A1 (zh) 生物辨识装置
TWM553018U (zh) 生物特徵辨識裝置
TWM553015U (zh) 生物特徵辨識裝置
WO2018113103A1 (zh) 生物特征辨识装置
TWM553454U (zh) 生物辨識裝置
TWM552620U (zh) 生物辨識裝置
WO2018113102A1 (zh) 生物特征辨识装置
TWM553016U (zh) 生物特徵辨識裝置
TWM553017U (zh) 生物特徵辨識裝置
TWM555505U (zh) 生物辨識裝置
CN108629243B (zh) 生物特征识别装置
CN108629245B (zh) 生物辨识装置
WO2018113122A1 (zh) 生物辨识装置
WO2018113124A1 (zh) 生物特征辨识装置
TWM552618U (zh) 生物辨識裝置
TWM553003U (zh) 生物特徵辨識裝置
CN108629244B (zh) 生物识别装置
TWI631935B (zh) 生物辨識裝置
WO2018113100A1 (zh) 生物特征辨识装置
TWI648677B (zh) 生物特徵辨識裝置
TWM553004U (zh) 生物特徵辨識裝置
WO2018113121A1 (zh) 生物辨识装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883560

Country of ref document: EP

Kind code of ref document: A1