WO2018113105A1 - 生物辨识装置 - Google Patents

生物辨识装置 Download PDF

Info

Publication number
WO2018113105A1
WO2018113105A1 PCT/CN2017/076419 CN2017076419W WO2018113105A1 WO 2018113105 A1 WO2018113105 A1 WO 2018113105A1 CN 2017076419 W CN2017076419 W CN 2017076419W WO 2018113105 A1 WO2018113105 A1 WO 2018113105A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
component
biometric device
assembly
light beam
Prior art date
Application number
PCT/CN2017/076419
Other languages
English (en)
French (fr)
Inventor
王炯翰
Original Assignee
创智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创智能科技股份有限公司 filed Critical 创智能科技股份有限公司
Publication of WO2018113105A1 publication Critical patent/WO2018113105A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the invention relates to a biometric device.
  • the types of biometrics include face, sound, iris, retina, veins, and fingerprint recognition. Since each person's fingerprint is unique and the fingerprint is not easy to change with age or physical health, the fingerprint identification device has become the most popular biometric device. According to the different sensing methods, the fingerprint identification device can be divided into optical and capacitive. When the capacitive fingerprint identification device is assembled in an electronic product (for example, a mobile phone or a tablet computer), a capacitive fingerprint identification device is provided with a cover lens, and the sensing effect of the capacitive fingerprint recognition device is protected by the protection component. influences. Therefore, optical fingerprint recognition devices have also received much attention.
  • an electronic product for example, a mobile phone or a tablet computer
  • the optical fingerprint identification device comprises a light source, an image capturing component and a light transmitting component.
  • the light source is used to emit a light beam to illuminate a finger pressed against the light transmissive component.
  • Finger fingerprints are made up of a number of irregular ridges and indentations.
  • the beams reflected by the ridges and the indentations are formed as a fingerprint image of the light and dark interlaced on the receiving surface of the image capturing assembly.
  • the image capturing component can convert the fingerprint image into corresponding image information and input the image information into the processing unit.
  • the processing unit may use an algorithm to calculate image information corresponding to the fingerprint for identification of the user.
  • the light beam reflected by the fingerprint is easily transmitted to the image capturing component, which results in poor image quality and affects the identification result.
  • the present invention provides a biometric device.
  • the biometric device comprises a light guiding component, a plurality of optical microstructures, a light source, an image capturing component and a light control component.
  • the light guiding assembly has opposing first and second surfaces.
  • a plurality of optical microstructures are formed on the second surface of the light directing component.
  • Each optical microstructure has a reflective surface.
  • the light source is used to emit a light beam.
  • the image capture assembly is disposed relative to the second surface of the light guide assembly.
  • the light control component is disposed between the second surface of the light guide component and the image capturing component.
  • the light beam is reflected by the reflective surface of each optical microstructure and is transmitted obliquely and through the first surface of the light directing component to the object to be identified. Beam
  • the object to be recognized is reflected to the light control component, and the light control component refracts and reflects the light beam so that the light beam is collimated to the image capturing component.
  • the reflecting surface is inclined with respect to the first surface of the light guiding member.
  • the reflecting surface is a curved surface.
  • the light control assembly includes a plurality of microprisms.
  • Each microprism has a bottom surface and a plurality of sides.
  • the plurality of sides are inclined with respect to the first surface of the light guiding assembly, and the inclined directions of the plurality of sides are opposite.
  • the bottom surface is connected between the plurality of sides.
  • the light beam reflected by the object to be recognized is sequentially refracted by one of the plurality of sides, and is reflected by the other of the plurality of sides to be emitted from the bottom surface.
  • the image capturing assembly has a light receiving surface
  • the light beam emitted from the bottom surface of the microprism has an angle ⁇ with a reference axis perpendicular to the light receiving surface, and -15° ⁇ ⁇ ⁇ 15°.
  • the biometric device further includes an optical glue.
  • the light control component is connected to the light guide component through the optical glue.
  • the biometric device further includes a light transmissive component.
  • the light transmissive component is disposed on the first surface of the light guide assembly.
  • the light transmissive component has a pressing surface for pressing the object to be recognized.
  • the biometric device further includes a collimating component.
  • the collimating component is disposed between the light control component and the image capturing component.
  • the light guiding assembly further has an outer side wall.
  • the outer sidewall is coupled to the first surface and extends toward a side of the second surface.
  • the light beam enters the light guide assembly from the outer sidewall.
  • the light guiding assembly further has an outer side wall, an inner side wall, and a bottom surface.
  • the outer sidewall is coupled to the first surface and extends toward a side of the second surface.
  • the inner sidewall is coupled to the second surface and disposed opposite the outer sidewall.
  • the bottom surface is disposed opposite to the first surface and is coupled between the outer sidewall and the inner sidewall. The light beam enters the light guide assembly from the bottom surface of the light guide assembly.
  • the light beam includes visible light, invisible light, or a combination thereof.
  • the object to be recognized includes a fingerprint, a vein, a palm print, or a combination thereof.
  • the biometric device includes a light guiding component, a plurality of optical microstructures, a light source, an image capturing component, and a light control component.
  • the light guiding assembly has opposing first and second surfaces.
  • a plurality of optical microstructures are formed on the second surface of the light directing component.
  • Each optical microstructure has a reflective surface.
  • the light control component is disposed between the second surface of the light guide component and the image capturing component. With the reflective surface of the optical microstructure, the light beam emitted by the light source can be dispersed over a large range to allow the biometric device to have a sufficient working area.
  • the direction of travel of the beam transmitted obliquely toward the image capture assembly can be changed so that the beam can be collimated toward the image after passing through the light control assembly. Take the component pass.
  • the biometric device can have good image capturing quality under a sufficient working area, thereby increasing the recognition capability of the biometric device.
  • FIG. 1 is a cross-sectional view showing a biometric device according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing a biometric device according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a biometric device according to still another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a biometric device according to still another embodiment of the present invention.
  • 100, 100A, 100B, 100C biometric device
  • prism angle
  • the object recognition device 100 includes a light guiding component 110, a plurality of optical microstructures 120, a light source 130, an image capturing component 140, and a light control component 150.
  • the light guide assembly 110 has opposing first and second surfaces 112, 114.
  • the light guide assembly 110 further has an outer sidewall 116, an inner sidewall 118, and a bottom surface 119.
  • the outer sidewall 116 is coupled to the first surface 112 and extends toward the side of the second surface 114.
  • the inner sidewall 118 is coupled to the second surface 114 and disposed opposite the outer sidewall 116.
  • the bottom surface 119 is disposed opposite to the first surface 112 and is coupled between the outer sidewall 116 and the inner sidewall 118.
  • the inner side wall 118 and the second surface 114 may define the recess 113, but the invention is not limited thereto.
  • the material of the light guiding component 110 may be glass, polycarbonate (PC), polymethyl methacrylate (PMMA) or other suitable materials.
  • a plurality of optical microstructures 120 are formed on the second surface 114 of the light directing component 110.
  • the material of the optical microstructure 120 and the material of the light guiding component 110 can be the same.
  • the optical microstructure 120 and the light guiding component 110 can be integrally formed.
  • the present invention is not limited thereto.
  • the optical microstructure 120 and the light guiding component 110 may also be separately fabricated, and then the optical microstructure 120 may be disposed on the second surface 114 of the light guiding component 110. It is worth noting that each optical microstructure 120 has a reflective surface 122.
  • each optical microstructure 120 also has a connection surface 124.
  • the connecting surface 124 is connected between the two reflecting surfaces 122 of the adjacent two optical microstructures 120.
  • the connecting surface 124 can be inclined with respect to the first surface 112 of the light guiding component 110, and the connecting surface 124 and the reflecting surface 122 can be opposite to each other.
  • the connecting surface 124 can also be designed in other suitable configurations.
  • the light source 130 is used to emit the light beam L.
  • the light beam L is, for example, visible light (for example, red light, blue light, green light, or a combination thereof).
  • the light beam L may also be invisible light (for example, infrared light) or a combination of invisible light and visible light.
  • the light source 130 is, for example, a light emitting diode.
  • the present invention is not limited thereto.
  • the light source 130 may also be other suitable types of light emitting components.
  • FIG. 1 shows one light source 130 as an example, and the light source 130 is disposed on one side of the light guiding assembly 110.
  • the present invention is not limited thereto.
  • the number of the light sources 130 may also be multiple, and/or the light source 130 may also be disposed on both sides or three or more sides of the light guiding assembly 110.
  • the light beam L can enter the light guiding component 110 from the bottom surface 119 of the light guiding component 110.
  • the biometric device 100 can further include a circuit board 196.
  • the light source 130 can be disposed on the circuit board 196 and electrically connected to the circuit board 196.
  • the bottom surface 119 of the light guide assembly 110 can be secured to the circuit board 196.
  • the bottom surface 119 of the light guiding assembly 110 can have a recess 119a.
  • the light source 130 can be selectively disposed in the space surrounded by the recess 119a and the circuit board 196.
  • the light beam L can be incident on the light guiding assembly 110 from the recess 119a.
  • the present invention is not limited thereto.
  • the bottom surface 119 of the light guiding component 110 may have no recess 119a
  • the circuit board 196 may have a recess (not shown)
  • the light source 130 may be disposed on the recess of the circuit board 196.
  • the bottom surface 119 of the light guiding component 110 is disposed above the recess of the circuit board 196, and the light beam L can also enter the light guiding component 110 from the bottom surface 119 without the recess 119a.
  • the position of the light source 130 and the area where the light beam L is incident on the light guiding component 110 are only for exemplifying the invention and are not intended to limit the present invention.
  • the light source 130 may also be disposed at other suitable positions.
  • the light beam L can also be incident on the light guiding component 110 from other regions of the light guiding component 110.
  • the image capture assembly 140 is disposed relative to the second surface 114 of the light guide assembly 110.
  • the image capturing component 140 can be disposed on the circuit board 196 and electrically connected to the circuit board 196.
  • the second surface 114 and the inner sidewall 118 of the light guiding component 110 can define a recess 113, and the image capturing assembly 140 can be disposed in the recess 113 of the light guiding component 110.
  • the image capturing component 140 has a plurality of pixel regions 142 arranged in an array to receive the light beam L reflected by the object to be recognized 10, thereby obtaining an image of the object 10 to be identified.
  • the image capturing component 140 can be a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS), or other suitable type of image sensor array.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the biometric device 100 further includes a light transmissive component 160.
  • the light transmissive component 160 is disposed on the first surface 112 of the light guide assembly 110 .
  • the light transmissive component 160 has a pressing surface 162 that faces the light guide assembly 110.
  • the pressing surface 162 is pressed by the object to be recognized 10.
  • the object to be identified 10 may be a biological feature such as a fingerprint, a vein, a combination of a fingerprint and a vein, and the like.
  • the present invention is not limited thereto, and in the case of abnormal use, the object to be identified 10 may also be a forgery such as a fake finger.
  • the biometric device 100 further includes an optical glue 170.
  • the light transmissive component 160 is connectable to the first surface 112 of the light guide component 110 through the optical adhesive 170.
  • the refractive index of the light transmissive component 160, the optical adhesive 170, and the light guide component 110 may be the same or similar to reduce the boundary between the light beam L and the optical adhesive 170 and the optical adhesive 170.
  • the reflection of the boundary of the light guiding component 110 further enhances the light utilization efficiency and/or image quality of the biometric device 100.
  • the present invention is not limited thereto.
  • the refractive indices of the light transmissive component 160, the optical adhesive 170, and the light guiding component 110 may also be different.
  • the light control component 150 is disposed between the second surface 114 of the light guide component 110 and the image capturing component 140.
  • the biometric device 100 further includes an optical glue 192 that is selectively coupled to the second surface 114 of the light guide assembly 110 through the optical adhesive 192.
  • the present invention is not limited thereto.
  • the light control component 150 can also be fixed between the light guiding component 110 and the image capturing component 140 by other means.
  • the light control component 150 can also be fixed on the inner sidewall 118 of the light guide component 110 by using a fixing component (not shown), and is not necessarily directly attached to the second component of the light guide component 110. Surface 114.
  • the light control assembly 150 refracts and reflects the light beam L such that the light beam L is collimated to the image capture assembly 140.
  • the mechanism by which the light control assembly 150 refracts and reflects the light beam L is exemplified below using FIG.
  • the light control assembly 150 includes a plurality of microprisms 152.
  • Each microprism 152 has a bottom surface 152a and a plurality of side surfaces 152b, 152c.
  • the plurality of sides 152b, 152c are inclined relative to the first surface 112 of the light directing assembly 110.
  • the inclined directions of the plurality of side faces 152b, 152c are opposite.
  • the bottom surface 152a is connected between the plurality of side faces 152b, 152c.
  • the light beam L emitted by the light source 130 is reflected by the reflective surface 122 of the optical microstructure 120 and transmitted obliquely through the first surface 122 of the light guide assembly 110 to the object to be recognized 10.
  • the object to be recognized 10 reflects the light beam L, wherein the reflection includes diffuse reflection.
  • the light beam L reflected by the object to be recognized 10 passes through the pressing surface 162 of the light transmitting component 160 and the light guiding component 110, and then obliquely enters the side surface 152b of the light control component 150.
  • the light beam L is refracted by the side surface 152b of the microprism 152 and transmitted to The other side 152c of the microprism 152, the side surface 152c of the microprism 152 reflects the light beam L such that the light beam L exits from the bottom surface 152a and is transmitted to the image capturing assembly 140. It is worth mentioning that, by using the reflective surface 122 of the optical microstructure 120, the light beam L emitted by the light source 130 can be obliquely transmitted to the first surface 112 of the light guiding component 110, and then obliquely incident on the pressing surface 162 to be dispersed. In a larger range.
  • the biometric device 100 can have a good image capturing quality with a sufficient working area (ie, a range in which the light beam L is dispersed on the pressing surface), thereby increasing the recognition capability of the biometric device 100.
  • each microprism 152 of the light control assembly 150 has a prism angle ⁇ .
  • the prism angle ⁇ is an angle between the side surface 152b and the side surface 152c.
  • the microprism 152 has a refractive index n.
  • the image capturing component 140 has a light receiving surface 140a
  • the reference axis X is perpendicular to the light receiving surface 140a
  • the light beam L passes through the light guiding component 110 and does not enter the light control component 150 before and after reference.
  • the angle of the axis X is ⁇ '
  • the exit angle of the light beam L from the bottom surface 152a is ⁇ (for example, the angle between the light beam L emitted from the bottom surface 152a and the reference axis X).
  • the exit angle ⁇ and the included angle ⁇ ' satisfy the following relationship:
  • the size of the prism angle ⁇ can be appropriately designed, and the exit angle ⁇ of the light beam L emitted from the self-control light module 150 can be controlled within a certain range (for example, -15° ⁇ ⁇ ⁇ +15°, If the direction from the normal line of the bottom surface 152a to the direction of the light beam L is clockwise, the incident angle is a negative value. If the direction from the normal line of the bottom surface 152a to the direction of the light beam L is counterclockwise, the incident angle is Positive value). Thereby, the light beam L can be directly transmitted to the image capturing component 140, so that the image capturing component 140 obtains a good image of the object to be recognized 10, thereby improving the recognition capability of the biological identification device 100.
  • a certain range for example, -15° ⁇ ⁇ ⁇ +15°
  • the biometric device 100 may further include a collimating component 180 .
  • the collimating assembly 180 is disposed between the second surface 114 of the light guiding assembly 110 and the image capturing assembly 140.
  • the biometric device 100 further includes an optical adhesive 194, and the collimating assembly 180 can be coupled to the image capturing assembly 140 through the optical adhesive 194, but the invention is not limited thereto.
  • the collimating assembly 180 has a plurality of light transmissive regions 184.
  • the plurality of light transmissive regions 184 respectively correspond to the plurality of pixel regions 142 of the image capturing component 140.
  • the light beam L reflected by each of the objects to be identified 10 can be transmitted to the corresponding pixel region 142 through a corresponding one of the light transmitting regions 184, and is not easily transferred to the other pixel regions 142. Thereby, the image capturing quality of the biometric device 100 can be further improved.
  • the biometric device 100 may optionally not include collimation.
  • Component 180 is not limited thereto, and in other embodiments, the biometric device 100 may optionally not include collimation.
  • FIG. 3 is a cross-sectional view of a biometric device according to another embodiment of the present invention.
  • the biometric device 100A of FIG. 3 is similar to the biometric device 100 of FIG. 1 in that the position of the light source 130 of the biometric device 100A is different from the position of the light source 130 of the biometric device 100.
  • the light source 130 can be disposed beside the outer sidewall 116 of the light guide assembly 110, and the light beam L can enter the light guide assembly 110 from the outer sidewall 116.
  • the biometric device 100A has similar functions and advantages as the biometric device 100 and will not be repeated here.
  • the biometric device 100B of FIG. 4 is similar to the biometric device 100 of FIG. 1 in that the bottom surface 119 of the light guiding component 110 of the biometric device 100B may not be directly disposed on the circuit board 150.
  • the biometric device 100B also includes a support 198.
  • the support 198 may extend from the bottom surface 119 to the side where the light source 130 is located to maintain a gap between the bottom surface 119 and the light source 130.
  • the support 198 may be integrally formed with the light guiding component 110, the circuit board 196 or the light source 130, or be a member other than the light guiding component 110, the circuit board 196, and the light source 130.
  • the biometric device 100B can also include an optical glue 196.
  • the optical glue 196 fills the gap between the bottom surface 119 of the light guide assembly 110 and the light source 130 to reduce the loss of the light beam L before it enters the light guide assembly 110.
  • the biometric device 100B has similar functions and advantages as the biometric device 100 and will not be repeated here.
  • FIG. 5 is a cross-sectional view of a biometric device according to still another embodiment of the present invention.
  • the biometric device 100C of FIG. 5 is similar to the biometric device 100 of FIG. 1 in that the optical microstructure 120C of the biometric device 100C is different from the optical microstructure 120 of the biometric device 100.
  • at least one reflective surface of each optical microstructure 120C can be a curved surface 126.
  • the light beam L is reflected by the curved surface 126 and is transmitted obliquely and through the first surface 112 of the light guiding assembly 110 to the object to be recognized 10.
  • the light beam L reflected by the object to be recognized 10 passes through the pressing surface 162 of the light transmitting component 160 and the light guiding component 110, and then enters the light control component 150 obliquely.
  • the light control assembly 150 refracts and reflects the beam such that the beam L is collimated to the image capture assembly 140.
  • the biometric device 100C has similar functions and advantages as the biometric device 100 and will not be repeated here.
  • the biometric device includes a light guiding component, a plurality of optical microstructures, a light source, an image capturing component, and a light control component.
  • the light guiding assembly has opposing first and second surfaces.
  • a plurality of optical microstructures are formed on the second surface of the light directing component.
  • Each optical microstructure has a reflective surface.
  • the light control component is disposed between the second surface of the light guide component and the image capturing component.
  • the direction of travel of the beam transmitted obliquely toward the image capture assembly can be changed so that the beam can be collimated toward the image after passing through the light control assembly. Take the component pass.
  • the biometric device can have good image capturing quality under a sufficient working area, thereby increasing the recognition capability of the biometric device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

一种生物辨识装置(100),包括导光组件(110)、多个光学微结构(120)、光源(130)、影像撷取组件(140)及控光组件(150),其中:导光组件(110)具有相对的第一表面(112)与第二表面(114);多个光学微结构(120)形成于导光组件(110)的第二表面(114);控光组件(150)配置于导光组件(110)的第二表面(114)与影像撷取组件(140)之间,并使光束(L)准直地向影像撷取组件(140)传递。该生物辨识装置(100)具有充分的工作面积以及良好的取像质量,进而增加生物辨识装置的辨识能力。

Description

生物辨识装置 技术领域
本发明涉及一种生物辨识装置。
背景技术
生物辨识的种类包括脸部、声音、虹膜、视网膜、静脉和指纹辨识等。由于每个人的指纹都是独一无二的,且指纹不易随着年龄或身体健康状况而变化,因此指纹辨识装置已成为目前最普及的一种生物辨识装置。依照感测方式的不同,指纹辨识装置可分为光学式与电容式。电容式指纹辨识装置组装于电子产品(例如:手机、平板计算机)时,电容式指纹辨识装置上方多设有保护组件(cover lens),而电容式指纹辨识装置的感测效果会受到保护组件的影响。因此,光学式指纹辨识装置也倍受重视。
光学式指纹辨识装置包括光源、影像撷取组件及透光组件。光源用以发出光束,以照射按压在透光组件上的手指。手指的指纹是由多条不规则的凸纹与凹纹所组成。被凸纹与凹纹反射的光束会在影像撷取组件的接收面上形成为明暗交错的指纹影像。影像撷取组件可将指纹影像转换为对应的影像信息,并将影像信息输入至处理单元。处理单元可利用算法计算对应于指纹的影像信息,以进行用户的身份辨识。然而,在上述的取像过程中,被指纹反射的光束易散乱地传递至影像撷取组件,而造成取像质量不佳,影响辨识结果。
发明内容
本发明是提供一种生物辨识装置。
根据本发明的实施例,生物辨识装置包括导光组件、多个光学微结构、光源、影像撷取组件及控光组件。导光组件具有相对的第一表面与第二表面。多个光学微结构形成于导光组件的第二表面。每一光学微结构具有反射面。光源用以发出光束。影像撷取组件相对于导光组件的第二表面设置。控光组件配置于导光组件的第二表面与影像撷取组件之间。光束被每一光学微结构的反射面反射,以斜向地传递且通过导光组件的第一表面至待辨识物。光束 被待辨识物反射至控光组件,控光组件折射与反射光束,以使光束准直地向影像撷取组件传递。
在根据本发明的实施例的生物辨识装置中,反射面相对于导光组件的第一表面倾斜。
在根据本发明的实施例的生物辨识装置中,反射面为曲面。
在根据本发明的实施例的生物辨识装置中,控光组件包括多个微棱镜。每一微棱镜具有底面及多个侧面。多个侧面相对于导光组件的第一表面倾斜,且多个侧面的倾斜方向相反。底面连接于多个侧面之间。被待辨识物反射的光束依序被多个侧面的一个折射、被多个侧面的另一个反射而由底面出射。
在根据本发明的实施例的生物辨识装置中,影像撷取组件具有光接收面,由微棱镜的底面出射的光束与垂直于光接收面的参考轴夹有角度θ,而-15°≤θ≤15°。
在根据本发明的实施例的生物辨识装置中,生物辨识装置还包括光学胶。控光组件透过光学胶与导光组件连接。
在根据本发明的实施例的生物辨识装置中,生物辨识装置还包括透光组件。透光组件配置于导光组件的第一表面上。透光组件具有按压面,以供待辨识物按压。
在根据本发明的实施例的生物辨识装置中,生物辨识装置还包括准直组件。准直组件配置于控光组件与影像撷取组件之间。
在根据本发明的实施例的生物辨识装置中,导光组件还具有外侧壁。外侧壁与第一表面连接且向第二表面所在侧延伸。光束自外侧壁进入导光组件中。
在根据本发明的实施例的生物辨识装置中,导光组件还具有外侧壁、内侧壁以及底面。外侧壁与第一表面连接且向第二表面所在侧延伸。内侧壁与第二表面连接且设置于外侧壁的对向。底面设置于第一表面的对向且连接于外侧壁与内侧壁之间。光束自导光组件的底面进入导光组件中。
在根据本发明的实施例的生物辨识装置中,光束包括可见光、不可见光或其组合。
在根据本发明的实施例的生物辨识装置中,待辨识物包括指纹、静脉、掌纹或其组合。
基于上述,本发明一实施例的生物辨识装置包括导光组件、多个光学微结构、光源、影像撷取组件及控光组件。导光组件具有相对的第一表面与第二表面。多个光学微结构形成于导光组件的第二表面。每一光学微结构具有反射面。控光组件配置于导光组件的第二表面与影像撷取组件之间。利用光学微结构的反射面,光源发出的光束可被分散在较大的范围,以使生物辨识装置具有充分的工作面积。更重要地是,利用控光组件的折射与反射作用,斜向地朝影像撷取组件传递的光束的行进方向可被改变,而使光束在穿过控光组件后可准直地向影像撷取组件传递。借此,生物辨识装置可在具有充分工作面积下,兼具良好的取像质量,进而增加生物辨识装置的辨识能力。
附图说明
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1为本发明一实施例的生物辨识装置的剖面示意图;
图2示出本发明一实施例的控光组件以及被待辨识物反射的光束在导光组件及控光组件中传递进而入射影像撷取组件的过程;
图3为本发明另一实施例的生物辨识装置的剖面示意图;
图4为本发明又一实施例的生物辨识装置的剖面示意图;
图5为本发明再一实施例的生物辨识装置的剖面示意图。
附图标号说明:
10:待辨识物;
100、100A、100B、100C:生物辨识装置;
110:导光组件;
112:第一表面;
113:凹槽;
114:第二表面;
116:外侧壁;
118:内侧壁;
119:底面;
119a:凹陷;
120、120C:光学微结构;
122:反射面;
124:连接面;
126:曲面;
130:光源;
140:影像撷取组件;
140a:光接收面;
142:像素区;
150:控光组件;
152:微棱镜
152a:底面
152b、152c:侧面
160:透光组件;
162:按压面;
170、192、194、196:光学胶;
180:准直组件;
184:透光区;
196:电路板;
198:支撑物;
L:光束;
X:参考轴
α:棱镜角;
θ:出射角;
θ’:夹角。
具体实施方式
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同组件符号在附图和描述中用来表示相同或相似部分。
图1为本发明一实施例的生物辨识装置的剖面示意图。请参照图1,生 物辨识装置100包括导光组件110、多个光学微结构120、光源130、影像撷取组件140及控光组件150。导光组件110具有相对的第一表面112与第二表面114。在本实施例中,导光组件110还具有外侧壁116、内侧壁118及底面119。外侧壁116与第一表面112连接且向第二表面114所在侧延伸。内侧壁118与第二表面114连接且设置于外侧壁116对向。底面119设置于第一表面112的对向且连接于外侧壁116与内侧壁118之间。在本实施例中,内侧壁118与第二表面114可定义出凹槽113,但本发明不以此为限。在本实施例中,导光组件110的材质可为玻璃、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)或其他适当材料。
多个光学微结构120形成于导光组件110的第二表面114。在本实施例中,光学微结构120的材质与导光组件110的材质可相同。换言之,光学微结构120与导光组件110可为一体成型。然而,本发明不限于此,在其他实施例中,光学微结构120与导光组件110也可分别制作,然后,再将光学微结构120配置于导光组件110的第二表面114上。值得注意的是,每一光学微结构120具有反射面122。在本实施例,反射面122可为相对于导光组件110的第一表面112倾斜的平面,但本发明不以此为限。更进一步地说,在本实施例中,每一光学微结构120还具有连接面124。连接面124连接于相邻两个光学微结构120的两个反射面122之间。在本实施例中,连接面124可相对于导光组件110的第一表面112倾斜,且连接面124与反射面122的倾斜方向可相反。然而,本发明不限于此,在其他实施例中,连接面124也可设计为其他适当样态。
光源130用以发出光束L。在本实施例中,光束L例如是可见光(例如:红光、蓝光、绿光或其组合)。但本发明不限于此,在其他实施例中,光束L也可以是不可见光(例如:红外光)或不可见光与可见光的组合。在本实施例中,光源130例如为发光二极管。但本发明不限于此,在其他实施例中,光源130也可为其他适当种类的发光组件。图1示出一个光源130为示例,且光源130设置在导光组件110的单侧。但本发明不限于此,在其他实施例中,光源130的数量也可为多个,和/或光源130也可设置在导光组件110的双侧或三个以上的侧边。
在本实施例中,光束L可自导光组件110的底面119进入导光组件110 中。详言之,生物辨识装置100可进一步包括电路板196。光源130可配置于电路板196上且与电路板196电性连接。导光组件110的底面119可固定在电路板196上。导光组件110的底面119可具有凹陷119a。光源130可选择性地配置于凹陷119a与电路板196围出的空间中。光束L可自凹陷119a入射导光组件110。然而,本发明不限于此,在另一实施例中,导光组件110的底面119可不具凹陷119a,电路板196可具有凹陷(未显示),光源130可配置于电路板196的所述凹陷中,导光组件110的底面119配置于电路板196的所述凹陷上方,而光束L也可自不具凹陷119a的底面119进入导光组件110中。需说明的是,上述光源130的位置及光束L入射导光组件110的区域仅是用以举例说明本发明而非用以限制本发明,其他实施例中,光源130也可配置于其他适当位置,光束L也可自导光组件110的其他区域入射导光组件110。
影像撷取组件140相对于于导光组件110的第二表面114设置。详言之,在本实施例中,影像撷取组件140可配置于电路板196上且与电路板196电性连接。更进一步地说,在本实施例中,导光组件110的第二表面114与内侧壁118可定义出凹槽113,而影像撷取组件140可配置在导光组件110的凹槽113中,但本发明不以此为限。影像撷取组件140具有数组排列的多个像素(pixel)区142,以接收被待辨识物10反射的光束L,进而取得待辨识物10的影像。在本实施例中,影像撷取组件140可为电荷耦合组件(charge-coupled device;CCD)、互补金属氧化物半导体(complementary metal oxide semiconductor;CMOS)或其他适当种类的图像传感器数组。
在本实施例中,生物辨识装置100还包括透光组件160。透光组件160配置于导光组件110的第一表面112上。透光组件160具有背向导光组件110的按压面162。按压面162供待辨识物10按压。在本实施例中,于正常的使用情况下,待辨识物10可为生物特征,例如:指纹、静脉、指纹与静脉的组合等。然而,本发明不限于此,于不正常的使用情况下,待辨识物10也可能是伪造物,例如:假手指。在本实施例中,生物辨识装置100还包括光学胶170。透光组件160可透过光学胶170与导光组件110的第一表面112连接。在本实施例中,透光组件160、光学胶170及导光组件110的折射率可相同或相近,以减少光束L在透光组件160与光学胶170的交界及光学胶170与 导光组件110的交界的反射,进而提升生物辨识装置100的光利用效率和/或取像质量。然而,本发明不限于此,在其他实施例中,透光组件160、光学胶170及导光组件110的折射率也可相异。
控光组件150配置于导光组件110的第二表面114与影像撷取组件140之间。在本实施例中,生物辨识装置100还包括光学胶192,控光组件150可选择性地透过光学胶192与导光组件110的第二表面114连接。然而,本发明不限于此,在其他实施例中,控光组件150也可利用其他方式固定于导光组件110与影像撷取组件140之间。举例而言,在另一实施例中,控光组件150也可利用固定组件(未显示)固定在导光组件110的内侧壁118上,而不一定要直接贴在导光组件110的第二表面114。
值得注意是,光源130发出光束L后,光束L会被光学微结构120的反射面122反射,以斜向地传递至导光组件110的第一表面112,光束L通过导光组件110的第一表面112后会被待辨识物10反射至控光组件150。特别是,控光组件150会折射与反射光束L,以使光束L准直地向影像撷取组件140传递。以下利用图2举例说明控光组件150折射及反射光束L的机制。
图2示出本发明一实施例的控光组件150以及被待辨识物10反射的光束L在导光组件110及控光组件150中传递进而入射影像撷取组件140的过程。请参照图1及图2,控光组件150包括多个微棱镜152。每一微棱镜152具有底面152a及多个侧面152b、152c。多个侧面152b、152c相对于导光组件110的第一表面112倾斜。多个侧面152b、152c的倾斜方向相反。底面152a连接于多个侧面152b、152c之间。光源130发出的光束L被光学微结构120的反射面122反射后会斜向地传递且通过导光组件110的第一表面122至待辨识物10。待辨识物10反射光束L,其中所述反射包括漫射(diffuse reflection)。被待辨识物10反射的光束L通过透光组件160的按压面162及导光组件110后会斜向地入射控光组件150的侧面152b,光束L被微棱镜152的侧面152b折射而传递至微棱镜152的另一侧面152c,微棱镜152的侧面152c反射光束L,以使光束L由底面152a出射且向影像撷取组件140传递。值得一提的是,利用光学微结构120的反射面122,光源130发出的光束L可斜向地传递至导光组件110的第一表面112,进而斜向地入射按压面162,以被分散在较大的范围中。由于光束L斜向地入射按压面162,因此被待辨识物10反射的大 部分光束L在进入控光组件150前会斜向地朝影像撷取组件140传递。但利用控光组件150的折射与反射作用,光束L的传递方向可被改变,而光束L在穿过控光组件150后可准直地向影像撷取组件140传递。借此,生物辨识装置100可在具有充分的工作面积(即光束L分散在按压面上的范围)下,兼具良好的取像质量,进而增加生物辨识装置100的辨识能力。
请参照图2,在本实施例中,控光组件150的每一微棱镜152具有棱镜角α。棱镜角α为侧面152b与侧面152c的夹角。微棱镜152具有折射率n。在本实施例中,详言之,影像撷取组件140具有光接收面140a,参考轴X垂直于光接收面140a,光束L在通过导光组件110后且未进入控光组件150前与参考轴X的夹角为θ’,光束L自底面152a出射的出射角为θ(例如:自底面152a出射的光束L与参考轴X的夹角)。出射角θ与夹角θ’满足下列关系式:
Figure PCTCN2017076419-appb-000001
利用上述关系式,能适当地设计棱镜角α的大小,进而使自控光组件150出射的光束L的出射角θ可被控制在一定的范围内(例如:-15°≤θ≤+15°,其中若由底面152a的法线到光束L的方向为顺时针方向,则所述入射角为负值,若由底面152a的法线到光束L的方向为逆时针方向,则所述入射角为正值)。借此,光束L可准直地向影像撷取组件140传递,进而使影像撷取组件140取得良好的待辨识物10影像,提高生物辨识装置100的辨识能力。
请参照图1,在本实施例中,生物辨识装置100还可包括准直组件180。准直组件180配置于导光组件110的第二表面114与影像撷取组件140之间。举例而言,在本实施例中,生物辨识装置100还包括光学胶194,而准直组件180可透过光学胶194与影像撷取组件140连接,但本发明不以此为限。值得注意的是,准直组件180具有多个透光区184。多个透光区184分别对应影像撷取组件140的多个像素区142。被待辨识物10的每一处反射的光束L可通过对应的一个透光区184传递至对应的像素区142,而不易传递至其他像素区142。借此,生物辨识装置100的取像质量能进一步地提升。但本发明不限于此,在其他实施例中,生物辨识装置100也可选择性地不包括准直 组件180。
图3为本发明另一实施例的生物辨识装置的剖面示意图。图3的生物辨识装置100A与图1的生物辨识装置100类似,两者的差异在于,生物辨识装置100A的光源130位置与生物辨识装置100的光源130位置不同。详言之,在图3的实施例中,光源130可配置于导光组件110的外侧壁116旁,而光束L可自外侧壁116进入导光组件110中。生物辨识装置100A具有与生物辨识装置100类似的功效与优点,于此便不再重述。
图4为本发明又一实施例的生物辨识装置的剖面示意图。图4的生物辨识装置100B与图1的生物辨识装置100类似,两者的差异在于,生物辨识装置100B的导光组件110的底面119可不直接配置于电路板150上。生物辨识装置100B还包括支撑物198。支撑物198可由底面119向光源130所在侧延伸,以维持底面119与光源130之间的间隙。在本实施例中,支撑物198可与导光组件110、电路板196或光源130一体成型,或为导光组件110、电路板196及光源130以外的构件。生物辨识装置100B还可包括光学胶196。光学胶196填入导光组件110的底面119与光源130之间的间隙,以减少光束L在入射导光组件110前的损失。生物辨识装置100B具有与生物辨识装置100类似的功效与优点,于此便不再重述。
图5为本发明再一实施例的生物辨识装置的剖面示意图。图5的生物辨识装置100C与图1的生物辨识装置100类似,两者的差异在于,生物辨识装置100C的光学微结构120C与生物辨识装置100的光学微结构120不同。详言之,在图4的实施例中,每一光学微结构120C的至少一反射面可为曲面126。光束L被曲面126反射,以斜向地传递且通过导光组件110的第一表面112至待辨识物10。被待辨识物10反射的光束L通过透光组件160的按压面162及导光组件110后会斜向地入射控光组件150。控光组件150折射与反射所述光束,以使光束L准直地向影像撷取组件140传递。生物辨识装置100C具有与生物辨识装置100类似的功效与优点,于此便不再重述。
综上所述,本发明一实施例的生物辨识装置包括导光组件、多个光学微结构、光源、影像撷取组件及控光组件。导光组件具有相对的第一表面与第二表面。多个光学微结构形成于导光组件的第二表面。每一光学微结构具有反射面。控光组件配置于导光组件的第二表面与影像撷取组件之间。利用光 学微结构的反射面,光源发出的光束可被分散在较大的范围,以使生物辨识装置具有充分的工作面积。更重要地是,利用控光组件的折射与反射作用,斜向地朝影像撷取组件传递的光束的行进方向可被改变,而使光束在穿过控光组件后可准直地向影像撷取组件传递。借此,生物辨识装置可在具有充分工作面积下,兼具良好的取像质量,进而增加生物辨识装置的辨识能力。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种生物辨识装置,其特征在于,包括:
    导光组件,具有相对的第一表面与第二表面;
    多个光学微结构,形成于所述导光组件的所述第二表面,其中每一光学微结构具有反射面;
    光源,用以发出光束;
    影像撷取组件,相对于所述导光组件的所述第二表面设置;以及
    控光组件,配置于所述导光组件的所述第二表面与所述影像撷取组件之间,其中所述光束被所述每一光学微结构的所述反射面反射,以斜向地传递且通过所述导光组件的所述第一表面至待辨识物,所述光束被待辨识物反射至所述控光组件,所述控光组件折射与反射所述光束,以使所述光束准直地向所述影像撷取组件传递。
  2. 根据权利要求1所述的生物辨识装置,其特征在于,所述反射面相对于所述导光组件的所述第一表面倾斜。
  3. 根据权利要求1所述的生物辨识装置,其特征在于,所述反射面为曲面。
  4. 根据权利要求1所述的生物辨识装置,其特征在于,所述控光组件包括:
    多个微棱镜,每一微棱镜具有底面及多个侧面,所述多个侧面相对于所述导光组件的所述第一表面倾斜,所述多个侧面的倾斜方向相反,所述底面连接于所述多个侧面之间,其中被所述待辨识物反射的所述光束依序被所述多个侧面的一个折射、被所述多个侧面的另一个反射而由所述底面出射。
  5. 根据权利要求4所述的生物辨识装置,其特征在于,所述影像撷取组件具有光接收面,由所述每一微棱镜的所述底面出射的所述光束与垂直于所述光接收面的参考轴夹有角度θ,而-15°≤θ≤15°。
  6. 根据权利要求1所述的生物辨识装置,其特征在于,所述生物辨识装置还包括:
    光学胶,其中所述控光组件透过所述光学胶与所述导光组件连接。
  7. 根据权利要求1所述的生物辨识装置,其特征在于,所述生物辨识装置还包括:
    透光组件,配置于所述导光组件的所述第一表面上,其中所述透光组件具有按压面,以供所述待辨识物按压。
  8. 根据权利要求1所述的生物辨识装置,其特征在于,所述生物辨识装置还包括:
    准直组件,配置于所述控光组件与所述影像撷取组件之间。
  9. 根据权利要求1所述的生物辨识装置,其特征在于,所述导光组件还具有:
    外侧壁,与所述第一表面连接且向所述第二表面所在侧延伸,其中所述光束自所述外侧壁进入所述导光组件中。
  10. 根据权利要求1所述的生物辨识装置,其特征在于,所述导光组件还具有:
    外侧壁,与所述第一表面连接且向所述第二表面所在侧延伸;
    内侧壁,与所述第二表面连接且设置于所述外侧壁的对向;以及
    底面,设置于所述第一表面的对向且连接于所述外侧壁与所述内侧壁之间,其中所述光束自所述导光组件的所述底面进入所述导光组件中。
  11. 根据权利要求1所述的生物辨识装置,其特征在于,所述光束包括可见光、不可见光或其组合。
  12. 根据权利要求1所述的生物辨识装置,其特征在于,所述待辨识物包括指纹、静脉、掌纹或其组合。
PCT/CN2017/076419 2016-12-23 2017-03-13 生物辨识装置 WO2018113105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611213613.9 2016-12-23
CN201611213613.9A CN108241839A (zh) 2016-12-23 2016-12-23 生物辨识装置

Publications (1)

Publication Number Publication Date
WO2018113105A1 true WO2018113105A1 (zh) 2018-06-28

Family

ID=62624349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076419 WO2018113105A1 (zh) 2016-12-23 2017-03-13 生物辨识装置

Country Status (3)

Country Link
CN (1) CN108241839A (zh)
TW (1) TWI646473B (zh)
WO (1) WO2018113105A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381398B (zh) * 2018-12-29 2023-05-30 北京小米移动软件有限公司 显示模组及电子设备
WO2020133479A1 (zh) * 2018-12-29 2020-07-02 深圳市汇顶科技股份有限公司 光学指纹识别模组及电子设备
CN109637376B (zh) * 2019-01-31 2022-02-18 厦门天马微电子有限公司 显示装置
CN110376780B (zh) * 2019-07-20 2024-04-02 深圳阜时科技有限公司 屏下检测系统、液晶显示装置和背光模组
CN111095287B (zh) * 2019-08-08 2023-09-12 深圳市汇顶科技股份有限公司 光学指纹装置和电子设备
CN111108509B (zh) * 2019-08-08 2023-09-08 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038043A (en) * 1995-07-07 2000-03-14 Advanced Precision Technology Inc Method for recording a holographic optical element
CN1320847A (zh) * 2001-05-18 2001-11-07 清华大学 基于波导全息技术的指纹图像传感器及其采集指纹图像的方法
CN101276406A (zh) * 2007-03-29 2008-10-01 鸿富锦精密工业(深圳)有限公司 指纹识别装置及便携式电子装置
CN102682280A (zh) * 2009-02-25 2012-09-19 金佶科技股份有限公司 光学指纹识别系统
CN105550664A (zh) * 2016-01-08 2016-05-04 上海箩箕技术有限公司 光学指纹传感器模组
CN105844212A (zh) * 2015-02-02 2016-08-10 辛纳普蒂克斯公司 采用准直器的光学传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004461B (zh) * 2007-01-22 2010-10-06 长兴光学材料(苏州)有限公司 抗刮薄膜及液晶显示器
TWI444904B (zh) * 2011-06-24 2014-07-11 Gingy Technology Inc 指紋辨識裝置
TWI486844B (zh) * 2012-09-25 2015-06-01 Au Optronics Corp 光學觸控掃描裝置
CN104035620B (zh) * 2014-06-20 2018-09-07 深圳印象认知技术有限公司 光学感应键、触摸屏、指纹采集设备、电子设备
CN204463158U (zh) * 2015-01-29 2015-07-08 张明方 蜂窝结构的指纹掌纹图像采集器及终端设备
CN206489579U (zh) * 2016-12-23 2017-09-12 敦捷光电股份有限公司 生物辨识装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038043A (en) * 1995-07-07 2000-03-14 Advanced Precision Technology Inc Method for recording a holographic optical element
CN1320847A (zh) * 2001-05-18 2001-11-07 清华大学 基于波导全息技术的指纹图像传感器及其采集指纹图像的方法
CN101276406A (zh) * 2007-03-29 2008-10-01 鸿富锦精密工业(深圳)有限公司 指纹识别装置及便携式电子装置
CN102682280A (zh) * 2009-02-25 2012-09-19 金佶科技股份有限公司 光学指纹识别系统
CN105844212A (zh) * 2015-02-02 2016-08-10 辛纳普蒂克斯公司 采用准直器的光学传感器
CN105550664A (zh) * 2016-01-08 2016-05-04 上海箩箕技术有限公司 光学指纹传感器模组

Also Published As

Publication number Publication date
CN108241839A (zh) 2018-07-03
TWI646473B (zh) 2019-01-01
TW201824077A (zh) 2018-07-01

Similar Documents

Publication Publication Date Title
WO2018113105A1 (zh) 生物辨识装置
TWM553019U (zh) 生物特徵辨識裝置
TWI637326B (zh) 生物特徵辨識裝置
TWI637327B (zh) 生物特徵辨識裝置
TWM553454U (zh) 生物辨識裝置
TW201805849A (zh) 取像裝置
TWM553015U (zh) 生物特徵辨識裝置
TWM553018U (zh) 生物特徵辨識裝置
TWM552620U (zh) 生物辨識裝置
TWM555505U (zh) 生物辨識裝置
WO2018113103A1 (zh) 生物特征辨识装置
WO2018113122A1 (zh) 生物辨识装置
CN108629243B (zh) 生物特征识别装置
WO2018113102A1 (zh) 生物特征辨识装置
CN108629245B (zh) 生物辨识装置
TWM553017U (zh) 生物特徵辨識裝置
TWM553016U (zh) 生物特徵辨識裝置
TWM552618U (zh) 生物辨識裝置
TWI631935B (zh) 生物辨識裝置
WO2018113124A1 (zh) 生物特征辨识装置
TWM553003U (zh) 生物特徵辨識裝置
CN108664857B (zh) 生物识别装置
WO2018113121A1 (zh) 生物辨识装置
WO2018113100A1 (zh) 生物特征辨识装置
WO2018113125A1 (zh) 生物辨识装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882820

Country of ref document: EP

Kind code of ref document: A1