WO2018112995A1 - 一种耐热微晶玻璃器皿配方及其制造工艺 - Google Patents

一种耐热微晶玻璃器皿配方及其制造工艺 Download PDF

Info

Publication number
WO2018112995A1
WO2018112995A1 PCT/CN2016/112237 CN2016112237W WO2018112995A1 WO 2018112995 A1 WO2018112995 A1 WO 2018112995A1 CN 2016112237 W CN2016112237 W CN 2016112237W WO 2018112995 A1 WO2018112995 A1 WO 2018112995A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
glass
resistant glass
manufacturing process
product
Prior art date
Application number
PCT/CN2016/112237
Other languages
English (en)
French (fr)
Inventor
张小苏
江龙祥
Original Assignee
张小苏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张小苏 filed Critical 张小苏
Publication of WO2018112995A1 publication Critical patent/WO2018112995A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/04Other methods of shaping glass by centrifuging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags

Definitions

  • the invention relates to a glassware formula, in particular to a heat-resistant glass-ceramic vessel formula and a manufacturing process thereof; and belongs to the technical field of glass.
  • Glass-ceramics also known as microcrystalline jade or ceramic glass, is a new type of building material developed abroad.
  • the scientific name is glass crystal.
  • the atomic arrangement inside the ordinary glass is irregular, which is one of the reasons for the fragility of glass.
  • Microcrystalline glass, like ceramics, consists of crystals, that is, its atomic arrangement is regular. Therefore, glass-ceramics have higher brightness than ceramics, stronger than glass, high mechanical strength, and excellent insulation properties.
  • the dielectric loss is small, the dielectric constant is stable, the thermal expansion coefficient can be adjusted in a wide range, chemical corrosion resistance, wear resistance, thermal stability, high use temperature, etc., and has been enthusiastically sought after by the market.
  • the object of the present invention is to provide a formulation of an environment-friendly glass-ceramic vessel having high hardness and good heat resistance and a manufacturing process thereof.
  • the invention discloses a heat-resistant glass-ceramic ware formula, wherein the weight percentage composition of each powdery raw material is: 60-72% of quartz sand, 0.5-3.0% of fluorite, 3-9% of aluminum hydroxide, 2 ⁇ 5% of borax pentahydrate, 4 to 13% soda ash, 0.5 to 2% strontium carbonate, 0.5 to 3.0% calcium carbonate, 0-2.5% potassium chloride, 0.3 to 2.5% zinc oxide, 1 to 2.5% magnesium carbonate, and 2 to 6% sodium fluorosilicate .
  • the aforementioned formulation further comprises 0 to 25% by weight of cullet, which is better for waste utilization and reduced energy consumption.
  • the cullet is obtained by pulverizing glass and passing through a 40-120 mesh sieve.
  • the invention also discloses a process for manufacturing a heat-resistant glass-ceramic vessel by using full electric melting, comprising the following steps:
  • the raw material is pulverized and mixed: the composition of claim 1 or claim 2 is pulverized and passed through a 40-120 mesh sieve, and the raw materials are weighed according to the formula dosage and uniformly mixed into the mixing machine, and the uniformity should reach 96% or more;
  • step S2 the mixture obtained in step S1 is laid on the glass surface of the furnace, and the temperature of the furnace is controlled to melt, homogenize and clarify the mixture; the mixture is laid on the glass surface in the furnace by automatic rubber compounding.
  • the thus formed cold cake of the batch material is quite uniform in composition and is not easily delaminated. Adjust the thickness according to the condition of the cold layer to control the melting speed and reduce the volatile content of the volatile components, so that the volatile content of volatile components (such as fluoride) is reduced by more than 40% of the conventional gas melting process. Less than 2% of the new process not only saves a lot of raw material costs, but also effectively reduces pollutant emissions, and achieves green environmental protection production. At the same time, due to the reduction of volatilization loss, the surface glass is reduced in composition and deep glass below it. The difference is that the chemical composition of the glass is more uniform and the performance is more stable.
  • step S4' is further included between the foregoing step S4 and step S5: the product is polished to enhance the surface sensory effect of the product.
  • a preferred polishing treatment is mechanical abrasive polishing or flame polishing.
  • the furnace temperature of the furnace is 1360 to 1480 ° C; the entire batch is sufficiently melted, homogenized, and clarified to ensure uniform melting of the glass, and the obtained glass liquid has no bubbles.
  • the mold is preheated to 450 to 550 ° C in the aforementioned step S3.
  • the annealing temperature is 460 to 650 ° C, and the annealing time is 40 to 120 min.
  • the formula of the invention adopts recycled cullet and quartz sand as main raw materials, and obtains environmentally-friendly glassware through a special environmental protection and energy-saving production process, which is called heat-resistant milk white glass-ceramic.
  • the product is fully compliant with the 3R principles of cleaner production: the reduction principle, the reuse principle (Reuse) and the recycling principle (Recycle). This is because: First, the recycled glass used in production replaces a large amount of quartz sand and other depleted resources on the earth. The amount of white glass-ceramics used for traditional resource-based mineral raw materials is much less than that of ordinary porcelain products; The system has a short production cycle and can greatly save energy.
  • the emission of carbon dioxide in production can be reduced by more than 70%, and the production cost is lower than 50% of other similar products. Therefore, it is in line with the principle of reduction.
  • the material performance is superior to ordinary porcelain vessels and crystalline borosilicate glass products. Its Mohs hardness can reach 6.8 or above, and the precipitation of heavy metal elements is much lower than that of traditional porcelain vessels, so it is cleaner and more environmentally friendly.
  • the problem of high precipitation of heavy metal elements in ordinary porcelain products; because of recycling, production costs are reduced.
  • a new process system is adopted and the energy consumption is low. Therefore, the use of this new material has a broad prospect.
  • the invention has the advantages that the raw material of the glass-ceramic formulation of the invention has low cost, and the performance indexes of the products obtained by the full electrofusion production process all meet the latest green environmental protection standards of the European Union, and the performance can be compared with Corning and bow and arrow.
  • the milky glassware is comparable, the product has a heat-resistant thixotropy >150 ° C, the Mohs hardness can reach 6.8, the whiteness orientation is 91-94, the water resistance reaches the I-class standard, and the harmful element precipitation amount As ⁇ 0.1 mg/L, Sb ⁇ 0.2mg/L, Pb ⁇ 0.05mg/L, is expected to replace traditional porcelain.
  • the formulation of the glass-ceramic vessel of this embodiment is shown in Table 1, and the manufacturing process is as follows:
  • All the raw materials were pulverized to 40 mesh, uniformly mixed, and then heated and melted in an electric heating furnace.
  • the highest melting temperature was 1360 ° C, and the components in the batch were fully reacted, melted, homogenized, and clarified to obtain a qualified molten glass.
  • the glass liquid is centrifuged or pressed in a mold preheated to 450 ° C, and the manipulator is taken out and sent to a continuous annealing furnace for annealing for 40 minutes.
  • the temperature in each temperature zone is 580 ° C, 550 ° C, 530 ° C, 490 ° C and 460 ° C.
  • the desired heat resistant opal white glass ceramics are obtained.
  • the formulation of the glass-ceramic vessel of this embodiment is shown in Table 1, and the manufacturing process is as follows:
  • All the raw materials were pulverized to 80 mesh, uniformly mixed, and then heated and melted in an electric heating furnace, and the melting temperature was 1420 ° C, so that the components in the batch were sufficiently reacted, melted, homogenized, and clarified to obtain a qualified glass liquid.
  • the glass liquid is centrifuged or pressed in a mold preheated to 500 ° C.
  • the manipulator is taken out and sent to a continuous annealing furnace for annealing for 80 min.
  • the temperature in each temperature zone is 630 ° C, 590 ° C, 560 ° C, 520 ° C, 490 ° C. And at 460 ° C, the desired heat-resistant opal white glass ceramics were obtained.
  • the formulation of the glass-ceramic vessel of this embodiment is shown in Table 1, and the manufacturing process is as follows:
  • All the raw materials were pulverized to 120 mesh, uniformly mixed, and then heated and melted in an electric heating furnace, and the melting temperature was 1480 ° C, so that the components in the batch were sufficiently reacted, melted, homogenized, and clarified to obtain a qualified molten glass.
  • the glass liquid is centrifuged or pressed in a mold preheated to 550 ° C, and the manipulator is taken out and sent to a continuous annealing furnace for annealing for 120 min.
  • the temperature in each temperature zone is 650 ° C, 620 ° C, 580 ° C, 530 ° C, 490 ° C and At 460 ° C, the desired heat-resistant opal white glass ceramics was obtained.
  • the formulation of the glass-ceramic vessel of this embodiment is shown in Table 1, and the manufacturing process is as follows:
  • All the raw materials were pulverized to 80 mesh, uniformly mixed, and then heated and melted in an electric heating furnace, and the melting temperature was 1420 ° C, so that the components in the batch were sufficiently reacted, melted, homogenized, and clarified to obtain a qualified glass liquid.
  • the glass liquid is centrifuged or pressed in a mold preheated to 500 ° C.
  • the robot is taken out and sent to a continuous annealing furnace for annealing for 80 min.
  • the temperature in each temperature zone is 630 ° C, 590 ° C, 560 ° C, 520 ° C, 490 ° C and
  • the product was polished at 460 ° C to obtain the desired heat-resistant opal white glass.
  • Example 2 The formulation of the glass-ceramic vessel of this comparative example is shown in Table 1. Compared with Example 2, sodium fluorosilicate was not added in Comparative Example 1, and the manufacturing process was the same as in Example 2.
  • Example 2 The formulation of the glass-ceramic vessel of this comparative example is shown in Table 1. Compared with Example 2, sodium fluorosilicate and potassium chloride were not added in Comparative Example 1, and the manufacturing process was the same as in Example 2.
  • the crystal phase composition in the opalescent glass-ceramic body of the invention is very complicated, mainly fluoride, calcium aluminum feldspar, ⁇ -wollastonite, cristobalite, which is a better one.
  • the size and number of microcrystal grains can be controlled: the more the amount, the proportion of the crystal phase increases, and the glass ratio is reduced, the texture of the stone is exhibited; Compared with the moderate, it shows the texture of jade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

一种耐热微晶玻璃器皿,各粉末状原料的重量百分比组成为:石英砂60~72%、萤石0.5~3.0%、氢氧化铝3~9%、五水硼砂2~5%、纯碱4~13%、碳酸钡0.5~2%、碳酸钙0.5~3.0%、氯化钾0-2.5%、氧化锌0.3~2.5%、碳酸镁1~2.5%及氟硅酸钠2~6%。通过全电熔法生产工艺制得产品,产品的耐热急变性>150℃,莫氏硬度可达6.8,白度方位为91~94,耐水性达到Ⅰ级标准,有害元素析出量As≤0.1mg/L,Sb≤0.2mg/L,Pb≤0.05mg/L。

Description

一种耐热微晶玻璃器皿配方及其制造工艺 技术领域
本发明涉及一种玻璃器皿配方,具体涉及一种耐热微晶玻璃器皿配方及其制造工艺;属于玻璃技术领域。
背景技术
微晶玻璃(glass-ceramics)又称微晶玉石或陶瓷玻璃,是国外开发出的一种新型建筑材料,学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同,它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的,所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强,具有机械强度高、绝缘性能优良、介电损耗少、介电常数稳定、热膨胀系数可在很大范围调节、耐化学腐蚀、耐磨、热稳定性好、使用温度高等优点,受到了市场的热情追捧。
随着现代社会人们对自身健康的日益重视,重金属含量较高的的瓷器产品正在逐步被替代,仿瓷器或仿玉质感的环保型微晶玻璃器皿兴起,以期替代传统瓷器器皿等。但是,目前国内生产的微晶玻璃器皿普遍存在性能不佳,无法达到欧盟指定的绿色环保标准,还存在高投入、高成本、高价格等几大问题,在国际市场上缺乏竞争力。
鉴于上述原因,有必要对微晶玻璃器皿的配方和制造工艺进行改进。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种硬度高、耐热性能好的环保型微晶玻璃器皿的配方及其制造工艺。
为了实现上述目标,本发明采用如下的技术方案:
一种耐热微晶玻璃器皿配方,各粉末状原料的重量百分比组成为:石英砂60~72%、萤石0.5~3.0%、氢氧化铝3~9%、五水硼砂2~5%、纯碱4~13%、碳酸钡0.5~2%、碳酸钙0.5~3.0%、氯化钾0-2.5%、氧化锌0.3~2.5%、碳酸镁1~2.5%及氟硅酸钠2~6%。
优选地,前述配方还包括重量百分比为0~25%的碎玻璃,能够更好地实现废物利用并降低能耗。
再优选地,前述碎玻璃由玻璃粉碎后过40-120目筛制得。
本发明还公开了一种采用全电熔化制造耐热微晶玻璃器皿的工艺,包括如下步骤:
S1、原料粉碎并混合:将权利要求1或权利要求2的配方粉碎后过40-120目筛,按配方用量称取各原料并投入混料机中均匀混合,均匀度应达到96%以上;
S2、将步骤S1得到的混合料平铺在熔炉内的玻璃液面上,控制炉温使混合料熔化、均化、澄清;混合料以自动胶料方式平铺在熔炉内的玻璃液面上,由此而形成的配合料冷料毯在组成上相当均匀,而且不易分层。根据冷料层的状况调整其厚度,以控制其熔化的速度和降低易挥发组分的挥发量,这样易挥发组分(如氟化物等)的挥发量由传统燃气熔化工艺的40%以上降低到新工艺的2%以下,不仅大量节约了原料成本,而且有效减少了污染物的排放,实现了绿色环保生产,同时,由于挥发损失的降低,减少了表层玻璃在成分上与其下面的深层玻璃的差异,玻璃的化学成分更均匀,性能更稳定。
S3、熔化得到的澄清玻璃液,通过压制和离心成型工艺,配合模具制成一定形状的产品;
S4、对产品进行退火,消除产品的内应力;
S5、检验,合格品包装后存放至仓库。
优选地,前述步骤S4和步骤S5之间还包括步骤S4’:对产品进行抛光处理,增强产品的表面感官效果。优选的抛光处理方式为机械研磨抛光或火焰抛光。
再优选地,前述步骤S2中,熔炉的炉温为1360~1480℃;使整个配合料充分进行熔化、均化、澄清,以确保玻璃熔化均匀一致,所得的玻璃液中无气泡。
更优选地,前述步骤S3中模具预热处理至450~550℃。
进一步优选地,前述步骤S4中,退火温度为460~650℃,退火时间为40~120min。
本发明的配方以回收的碎玻璃和石英砂为主要原料,经过特殊的环保节能生产工艺制得环保型玻璃器皿,称之为耐热乳白微晶玻璃。产品完全符合清洁生产的3R原则:即减量化原则(Reduce)、再使用原则(Reuse)和再循环原则(Recycle)。这是因为:第一,生产中使用的回收玻璃替代了大量石英砂等地球上不断枯竭的资源,乳白微晶玻璃对传统资源型矿物原料的用量比普通瓷器产品少得多;由于采用新型工艺制度,生产周期短,可大大节约能耗,生产中二氧化碳等废气排放量可减少70%以上,生产成本低于其他同类产品50%,因此符合减量化原则。第二,材料性能优于普通瓷器器皿和结晶高硼硅玻璃制品,它的莫氏硬度可达6.8以上,重金属元素析出量远低于传统瓷器器皿,因而更清洁环保,较好地解决了困扰普通瓷器产品重金属元素高析出量的难题;因为循环利用,生产成本降低。同时采用了新型工艺制度,能耗低,因此,这种新型材料使用前景很广。第三,随着国家“十三五”规划的稳步推进,对生产性企业节能减排的指标要求越来越高,通过配方与工艺的改进降低能源消耗和废弃物排放迫在眉睫,而该工艺能够使产品的单位能耗大幅降低50%,有效缓解了 节能降耗减排的压力;其次,废旧的乳白微晶玻璃本身也可以回收再循环利用,而瓷器等其他材料则没有这种可回收性。
本发明的有益之处在于:本发明的微晶玻璃配方原料成本低,通过全电熔法生产工艺制得的产品各项性能指标均达到欧盟最新制定的绿色环保标准,性能可与康宁和弓箭的乳白玻璃器皿媲美,产品的耐热急变性>150℃,莫氏硬度可达6.8,白度方位为91~94,耐水性达到Ⅰ级标准,有害元素析出量As≤0.1mg/L,Sb≤0.2mg/L,Pb≤0.05mg/L,有望替代传统瓷器。
具体实施方式
以下结合具体实施例对本发明作具体的介绍。
本发明中无特殊说明,所有原料均为市购。
实施例1
本实施例的微晶玻璃器皿配方见表1,制造过程如下:
将所有原料粉碎到40目,均匀混合,然后投入电热熔炉加热熔化,最高熔化温度为1360℃,使配合料中的各组分充分反应、熔化、均化、澄清得到合格的玻璃液。玻璃液在预热到450℃的模具中经离心或压制成型,机械手取出后送入连续式退火炉中退火40min,各温区温度为580℃、550℃、530℃、490℃及460℃,获得所需的耐热乳白微晶玻璃。
实施例2
本实施例的微晶玻璃器皿配方见表1,制造过程如下:
将所有原料粉碎到80目,均匀混合,然后投入电热熔炉加热熔化,熔化温度为1420℃,使配合料中的各组分充分反应、熔化、均化、澄清得到合格的玻璃液。玻璃液在预热到500℃的模具中经离心或压制成型,机械手取出后送入连续式退火炉中退火80min,各温区温度为630℃、590℃、560℃、520℃、490℃ 及460℃,获得所需的耐热乳白微晶玻璃。
实施例3
本实施例的微晶玻璃器皿配方见表1,制造过程如下:
将所有原料粉碎到120目,均匀混合,然后投入电热熔炉加热熔化,熔化温度为1480℃,使配合料中的各组分充分反应、熔化、均化、澄清得到合格的玻璃液。玻璃液在预热到550℃的模具中经离心或压制成型,机械手取出后送入连续式退火炉中退火120min,各温区温度为650℃、620℃、580℃、530℃、490℃及460℃,获得所需的耐热乳白微晶玻璃。
实施例4
本实施例的微晶玻璃器皿配方见表1,制造过程如下:
将所有原料粉碎到80目,均匀混合,然后投入电热熔炉加热熔化,熔化温度为1420℃,使配合料中的各组分充分反应、熔化、均化、澄清得到合格的玻璃液。玻璃液在预热到500℃的模具中经离心或压制成型,机械手取出后送入连续式退火炉中退火80min,各温区温度为630℃、590℃、560℃、520℃、490℃及460℃,再对产品进行抛光处理,获得所需的耐热乳白微晶玻璃。
对比例1
本对比例的微晶玻璃器皿配方见表1,相较于实施例2,对比例1中未添加氟硅酸钠,制造过程同实施例2。
对比例2
本对比例的微晶玻璃器皿配方见表1,相较于实施例2,对比例1中未添加氟硅酸钠和氯化钾,制造过程同实施例2。
性能检测结果见下表1:
Figure PCTCN2016112237-appb-000001
表1实施例1-4及对比例1-2的配方及性能检测
根据对制品的X-射线衍射分析的研究,本发明的乳白微晶玻璃体中的结晶相组成十分复杂,主要有氟化物、钙铝黄长石、α-硅灰石、方石英,是一种较好的微晶玻璃。在本发明中,通过调整氟硅酸钠的用量,能够控制微晶粒的尺寸和数量:用量越多,结晶相所占比例增多,玻璃相比例减少,则呈现石材的质感;相反,如果玻璃相比例适中,则呈现玉石的质感。更重要的是,研究表明,氟硅酸钠的加入能够对产品的耐热急变性和莫氏硬度产生显著提高,氯化钾则对产品的性能提高则起到协同作用。综上,实施例1-4的配方中同时加入氯 化钾和氟硅酸钠,采用全电熔法制得的微晶玻璃器皿的莫氏硬度可达6.8,白度方位为91~94,耐热急变性>150℃,耐水性达到Ⅰ级标准,有害元素析出量As≤0.1mg/L,Sb≤0.2mg/L,Pb≤0.05mg/L,各项性能指标均优于传统瓷器器具。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

  1. 一种耐热微晶玻璃器皿配方,其特征在于,各粉末状原料的重量百分比组成为:石英砂60~72%、萤石0.5~3.0%、氢氧化铝3~9%、五水硼砂2~5%、纯碱4~13%、碳酸钡0.5~2%、碳酸钙0.5~3.0%、氯化钾0-2.5%、氧化锌0.3~2.5%、碳酸镁1~2.5%及氟硅酸钠2~6%。
  2. 根据权利要求1所述的一种耐热微晶玻璃器皿配方,其特征在于,还包括重量百分比为0~25%的碎玻璃。
  3. 根据权利要求2所述的一种耐热微晶玻璃器皿配方,其特征在于,所述碎玻璃由玻璃粉碎后过40-120目筛制得。
  4. 一种耐热微晶玻璃器皿的制造工艺,其特征在于,包括如下步骤:
    S1、原料粉碎并混合:将权利要求1或权利要求2的配方粉碎后过40-120目筛,按配方用量称取各原料并投入混料机中均匀混合;
    S2、将步骤S1得到的混合料平铺在熔炉内的玻璃液面上,控制炉温使混合料熔化、均化、澄清;
    S3、熔化得到的澄清玻璃液,通过压制和离心成型工艺,配合模具制成一定形状的产品;
    S4、在连续式退火炉中对产品进行退火,消除产品的内应力;
    S5、检验,合格品包装后存放至仓库。
  5. 根据权利要求4所述的一种耐热微晶玻璃器皿的制造工艺,其特征在于,所述步骤S4和步骤S5之间还包括步骤S4’:对产品进行抛光处理。
  6. 根据权利要求5所述的一种耐热微晶玻璃器皿的制造工艺,其特征在于,所述抛光处理为机械研磨抛光或火焰抛光。
  7. 根据权利要求4所述的一种耐热微晶玻璃器皿的制造工艺,其特征在于,所述步骤S2中,熔炉的炉温为1360~1480℃。
  8. 根据权利要求4所述的一种耐热微晶玻璃器皿的制造工艺,其特征在于,所述步骤S3中模具预热处理至450~550℃。
  9. 根据权利要求4所述的一种耐热微晶玻璃器皿的制造工艺,其特征在于,所述步骤S4中,各温区退火温度为460~650℃,退火时间为40~120min。
  10. 根据权利要求4-9任一项所述的一种耐热微晶玻璃器皿的制造工艺,其特征在于,得到的玻璃器皿耐热急变性>150℃。
PCT/CN2016/112237 2016-12-22 2016-12-27 一种耐热微晶玻璃器皿配方及其制造工艺 WO2018112995A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611194991.7A CN106630647A (zh) 2016-12-22 2016-12-22 一种耐热微晶玻璃器皿配方及其制造工艺
CN201611194991.7 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018112995A1 true WO2018112995A1 (zh) 2018-06-28

Family

ID=58834651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112237 WO2018112995A1 (zh) 2016-12-22 2016-12-27 一种耐热微晶玻璃器皿配方及其制造工艺

Country Status (2)

Country Link
CN (1) CN106630647A (zh)
WO (1) WO2018112995A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118373591A (zh) * 2024-06-20 2024-07-23 山东龙光天旭太阳能有限公司 一种抗热震型透明高硼硅玻璃及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107434356A (zh) * 2017-07-26 2017-12-05 江苏杰龙晶瓷科技有限公司 一种分相乳浊仿玉玻璃的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066837A (zh) * 2007-05-24 2007-11-07 江苏奥博晶瓷科技有限公司 一种环保高耐热乳白晶瓷玻璃及其制备工艺
US20100056353A1 (en) * 2008-08-28 2010-03-04 Angel Sanjurjo Method and system for producing fluoride gas and fluorine-doped glass or ceramics
CN101717191A (zh) * 2009-11-13 2010-06-02 中国家用电器研究院 一种适合全电熔化成型的乳白玻璃配方及其制备工艺
CN105731795A (zh) * 2016-05-11 2016-07-06 陈子睿 一种高强度玻璃配方及制备工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531397B (zh) * 2012-01-11 2014-12-17 温州市汇顺达工贸有限公司 适合全电熔化的乳白玻璃陶瓷及其制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066837A (zh) * 2007-05-24 2007-11-07 江苏奥博晶瓷科技有限公司 一种环保高耐热乳白晶瓷玻璃及其制备工艺
US20100056353A1 (en) * 2008-08-28 2010-03-04 Angel Sanjurjo Method and system for producing fluoride gas and fluorine-doped glass or ceramics
CN101717191A (zh) * 2009-11-13 2010-06-02 中国家用电器研究院 一种适合全电熔化成型的乳白玻璃配方及其制备工艺
CN105731795A (zh) * 2016-05-11 2016-07-06 陈子睿 一种高强度玻璃配方及制备工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118373591A (zh) * 2024-06-20 2024-07-23 山东龙光天旭太阳能有限公司 一种抗热震型透明高硼硅玻璃及其制备方法

Also Published As

Publication number Publication date
CN106630647A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN101066837B (zh) 一种环保高耐热乳白晶瓷玻璃及其制备工艺
CN102531397B (zh) 适合全电熔化的乳白玻璃陶瓷及其制备工艺
TWI417265B (zh) 以無鹼鋁硼矽酸鹽類顯示碎玻璃為原料的太陽能電池用低鐵平板玻璃配料
CN101717191A (zh) 一种适合全电熔化成型的乳白玻璃配方及其制备工艺
CN106810079B (zh) 利用花岗岩废渣制备云母微晶玻璃的方法
CN105060682A (zh) 熔融法制备微晶玻璃的工艺
CN103482870A (zh) 一种瓷白玻璃及其生产工艺
WO2018112995A1 (zh) 一种耐热微晶玻璃器皿配方及其制造工艺
CN105271764B (zh) 一种低能耗铁尾矿建筑微晶玻璃及其制备方法
CN103663967A (zh) 一种玉石状微晶玻璃的制备方法
CN103641301A (zh) 一种红色微晶玻璃色剂及红色微晶玻璃
CN103539352A (zh) 一种玻璃碗的生产方法
CN101549947A (zh) 一种整体法微晶陶瓷复合板材生产方法
CN102849944B (zh) 一种白玉玻璃餐具
CN103449707A (zh) 一种茶色钠钙喷砂玻璃的生产方法
CN112939470A (zh) 一种铅锌矿尾渣微晶玻璃及其制备方法
CN104030565A (zh) 一种高热稳定的暖瓶瓶坯材料
CN103449705A (zh) 一种硼硅酸盐平板玻璃的生产方法
CN112745027A (zh) 一种仿玉微晶玻璃及其制备方法
CN103663966A (zh) 一种玉石状微晶玻璃
WO2020173425A1 (zh) 一种微晶玻璃及其生产方法与专用设备
CN118047535A (zh) 用于制备微晶玻璃的原料组合物、微晶玻璃及其制备方法
CN103420563A (zh) 一种变色钾钙平板玻璃的生产方法
CN109912197A (zh) 一种环保型无盖玻璃盒的制作方法
CN110627354A (zh) 一种低膨胀微晶玻璃餐具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924885

Country of ref document: EP

Kind code of ref document: A1