WO2018112913A1 - 头戴式显示设备及其屈光度显示方法 - Google Patents

头戴式显示设备及其屈光度显示方法 Download PDF

Info

Publication number
WO2018112913A1
WO2018112913A1 PCT/CN2016/111784 CN2016111784W WO2018112913A1 WO 2018112913 A1 WO2018112913 A1 WO 2018112913A1 CN 2016111784 W CN2016111784 W CN 2016111784W WO 2018112913 A1 WO2018112913 A1 WO 2018112913A1
Authority
WO
WIPO (PCT)
Prior art keywords
diopter
display device
optical module
image generating
distance
Prior art date
Application number
PCT/CN2016/111784
Other languages
English (en)
French (fr)
Inventor
王乐
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201680044919.8A priority Critical patent/CN108064353A/zh
Priority to PCT/CN2016/111784 priority patent/WO2018112913A1/zh
Publication of WO2018112913A1 publication Critical patent/WO2018112913A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the invention relates to a head-mounted display device with adjustable diopter and a diopter display method.
  • HMD Head Mounted Display
  • the working principle is to amplify the image on the ultra-micro display through a set of precise optical lenses, and project the image on the eye, so that the wearer can view the magnified virtual image, similar to taking a magnifying glass to see the object and presenting the magnified virtual object image.
  • HMD Head Mounted Display
  • the existing head-mounted display only allows the user to adjust the diopter, and does not inform the user of the adjusted diopter, so that the user cannot know the diopter of the setting.
  • Embodiments of the present invention provide a head mounted display device having a diopter-adjustable display device that is capable of displaying an adjusted diopter to inform a user when the user adjusts the diopter.
  • a head mounted display device includes two display devices with adjustable diopter, a controller electrically connected to the display device, and two detecting devices electrically connected to the controller.
  • the two detecting devices are configured to detect changes in the diopter of the two display devices when the user adjusts the diopter of the display device.
  • the controller acquires the adjusted diopter of the corresponding display device according to the detection result of the detecting device, and controls the display device to display the adjusted diopter.
  • the present invention also provides a diopter display method for a head mounted display device having two display devices of adjustable diopter.
  • the diopter display method includes:
  • the control display device displays the adjusted diopter.
  • the head-mounted display device and the diopter method allow the wearer to know the adjusted diopter by acquiring and displaying the adjusted diopter.
  • FIG. 1 is a schematic diagram of a head mounted display device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of functional modules of a head mounted display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a display device of the head mounted display device of FIG. 1.
  • FIG. 4 is a partially exploded perspective view of the display device of FIG. 3, wherein the optical module and image generating device of the display device of FIG. 3 are not shown in FIG.
  • Figure 5 is a schematic illustration of another angle of Figure 4.
  • FIG. 6 is a schematic diagram of a diopter calibration table provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a diopter calibration table provided by another embodiment of the present invention.
  • Fig. 8 is a flow chart showing a diopter display method in an embodiment of the present invention.
  • Figure 9 is a flow chart showing a diopter display method in another embodiment of the present invention.
  • connection between the two elements mentioned in the present invention does not necessarily mean a direct connection or an indirect connection by a third element.
  • FIG. 1 is a schematic diagram of a head mounted display device 100 according to an embodiment of the present invention.
  • Wearing The display device 100 can be a wearable video player, a wearable game device, a wearable navigation device, or the like.
  • the head mounted display device 100 includes an earphone 10 and a display device 11 rotatably coupled to the earphone 10 in this embodiment.
  • the display device 11 includes a housing 12 and two diopter-adjustable display devices 20, two detecting devices 26, and a controller 28 housed in the housing 12.
  • the head mounted display device 100 further includes related circuits, batteries, and the like (not shown) that implement the functions of the head mounted display device 100.
  • the two detecting devices 26 are configured to detect changes in the diopter of the two display devices 20 when the user adjusts the diopter of the display device 20, respectively.
  • the controller 28 acquires the adjusted diopter of the corresponding display device 20 according to the detection result of the detecting device 26, and controls the display device 20 to display the adjusted diopter, so that the wearer knows the adjusted diopter.
  • each display device 20 includes an optical module 30, an image generating device 40 movably coupled to the optical module 30, and a diopter adjusting mechanism 60 in this embodiment.
  • the image generated by the image generating device 40 is projected by the optical module 30 in a predetermined direction.
  • the image generating device 40 can slide relative to the optical module 30 in a first direction close to the optical module 30 or in a second direction away from the optical module 30 relative to the optical module 30.
  • the first direction is opposite to the second direction.
  • the display device 20 achieves adjustment of the diopter by changing the distance between the optical module 30 and the image generating device 40.
  • the diopter adjustment mechanism 60 is coupled to a corresponding image generation device 40 for receiving user operations to adjust the distance between the image generation device 40 and the corresponding optical module 30.
  • each display device 20 further includes a pitch adjustment mechanism 50 for adjusting the head mounted display device 100 in the present embodiment.
  • the pitch adjustment mechanism 50 is coupled to a corresponding optical module 30 for driving the corresponding optical module 30 to slide relative to the other optical module 30, thereby adjusting the distance between the two optical modules 30 to achieve the pitch adjustment.
  • the diopter adjustment mechanism 60 is disposed on the corresponding interpupillary adjustment mechanism 50 and is slidable with the interpupillary adjustment mechanism 50.
  • the interpupillary adjustment mechanism 50 and the second adjustment structure 60 are at least partially exposed to the housing 12 to facilitate user adjustment.
  • the display device 20 allows the user to adjust the interpupillary distance and diopter, which is suitable for more users.
  • the optical module 30 includes a lens barrel and at least one lens group disposed in the lens barrel.
  • the lens barrel has an entrance port (not shown) and an exit port 32.
  • the entrance port is located on a side facing the image generating device 40. Light entering the entrance port enters the lens group and is refracted and reflected, and finally is emitted from the exit port 32. .
  • the image generating device 40 includes a base 42 and a miniature display mounted on the base 42 Set 44.
  • the microdisplay device 44 has a microdisplay (not shown), such as an OLED microdisplay, and is disposed on the entrance. In this way, the light of the image displayed by the microdisplay will enter the entrance port and be projected by the lens group in a predetermined direction. After the light emitted from the exit port 32 is incident on the human eye, the human eye will be able to see the enlarged virtual image of the image displayed by the micro display. .
  • the display device 20 further includes two guide rails 21, and the optical module 30 and the image generating device 40 are both connected to the two guide rails 21 through the through holes formed therein to move in the direction defined by the guide rails 21.
  • the optical module 30 and the image generating device 40 may have respective guide rails.
  • the structure of the guide rail is not limited to the illustrated manner. For example, it may be a recess (not shown) formed on the outer casing 12. The optical module 30 and the image generating device 40 are accommodated in the recess and may be Wherein the movement in the direction defined by the groove, always, the guide rail can be guided.
  • each diopter adjustment mechanism 60 includes a first operating member 62 and a first movable member 64 that are movably coupled to each other, and the first operating member 62 is movably disposed on the interpupillary adjusting mechanism 50.
  • the first movable member 64 is movable under the driving of the first operating member 62.
  • the first movable member 64 is coupled to the image generating device 40.
  • Each of the interpupillary adjustment mechanisms 50 includes a base 52, a second movable member 54 movably coupled to the base 52, a cover member 56 fixedly coupled to the second movable member 54, and a second fixedly coupled to the second movable member 54.
  • the cover member 56 is coupled to the optical module 30. When the second operating member 58 moves, the second movable member 54 can be moved to move the optical module 30 along with the first movable member 54.
  • the susceptor 52 includes a substrate 52a having a first through hole 52b extending in a first direction.
  • the substrate 52a has a substantially square sheet shape, and the first direction is the longitudinal direction of the substrate 52a.
  • the second movable member 54 includes a bottom plate 54a.
  • the bottom plate 54a also has a substantially square shape in the embodiment, and a second through hole 54b extending in the first direction is opened.
  • the second operating member 58 includes an operating portion 58a extending in the opposite direction and a connecting portion 58b.
  • the operating portion 58a includes a groove extending along the width direction of the substrate 52a, and is disposed on opposite sides of the base 52 from the optical module 30, thereby facilitating insertion of the user's nail into the groove for operation; 58b is a protruding post with a screw hole, and the connecting portion 58b can pass through the first through hole 52b and can be engaged to the second through hole 54b.
  • the second movable member 54 is fixed to the second movable member 54 such that the second movable member 54 is synchronized with the second operating member 58.
  • the first through hole 52b may be provided to restrict the movement of the second operating member 58 in the first direction.
  • a protrusion extending outward from the second movable member 54 to the outside of the first through hole 52b may be provided, as indicated by the dotted line indicated by reference numeral 3 in FIG. It can also achieve the purpose of convenient user operation, and the second operating member 58 can be omitted.
  • the first operating member 62 is rotatably disposed on the second movable member 54.
  • the first movable member 64 is driven by the rotating first operating member 62 to perform translation in the first direction, thereby driving the image generation.
  • Device 40 moves.
  • the first operating member 62 includes a roller 62a and a rotating shaft 62b.
  • the rotating shaft 62b is disposed on the central axis of the roller 62a.
  • the rotating shaft 62b bears against the second movable member 54 and can rotate about the rotating shaft 62b.
  • the roller 62a is provided with a spiral accommodating hole 62c extending from the side closer to the rotating shaft 62b toward the outside of the roller 62a; the first movable member 64 includes a sliding shaft 64a provided along the width direction of the substrate 52a.
  • the opposite sides of the middle portion of the covering member 56 are provided with concave portions 56a extending in the first direction, and both sides of the covering member 56 are fixed to the second movable member 54 by screws, and the rotating shaft 62b is sandwiched between the covering members
  • the concave portion 56a between the 56 and the second movable member 54 is such that the first operating member 62 is not easily detached from the second movable member 54 while being slidable in the first direction.
  • a corresponding limiting member such as a broken line portion indicated by reference numeral 5 in FIG. 4, may be disposed on the second movable member 54, and the covering member 56 may be omitted.
  • the covering member 56 includes a third through hole 56b extending in the first direction, and the roller 62a portion extends outside the covering member 56 through the third through hole 56b, which is advantageous for improving space utilization.
  • the first movable member 64 is movably disposed on the cover member 56.
  • the sliding shaft 64a passes through the accommodating hole 62c so as to be slidable along the spiral set by the accommodating hole 62c.
  • the distance between the sliding shaft 64a and the rotating shaft 62b changes, so that the first movable member 64 is translated in the first manner, thereby driving the image generating device 40 to move.
  • the user can adjust the distance between the two optical modules 30 by sliding the second operating member 58, thereby adjusting the interpupillary distance.
  • the diopter adjusting mechanism 60 and the image generating device 40 is also moved synchronously with the pitch adjustment mechanism 50.
  • the user can adjust the distance between the image generating device 40 and the optical module 30 by rotating the roller 62a, thereby adjusting the diopter to adapt to the degree of myopia or far vision of the user.
  • the display device 20 of the above embodiment realizes the adjustment of the interpupillary distance and the diopter, and can be adapted to more User.
  • the first movable member 64 may also be disposed directly to the second movable member 54 instead of the cover member 56.
  • the diopter adjustment mechanism 60 realizes the translation by means of rotation, and is not limited to the above embodiment.
  • the first operation member may also be a screw provided with the first thread and disposed along the direction of the dotted line in FIG. 5, the first activity.
  • the second thread is matched with the second thread.
  • the first movable member is driven to rotate and the translation in the first direction occurs.
  • Two detecting devices 26 are respectively disposed on the two display devices 20.
  • the detecting device 26 detects a change in the diopter of the corresponding display device 20.
  • the detecting device 26 detects the distance between the corresponding image generating device 40 and the optical module 30.
  • the detecting device 26 is a distance sensor in this embodiment.
  • the head mounted display device 100 presets a diopter calibration table.
  • This diopter calibration table is the default setting in this embodiment.
  • the diopter calibration table records the correspondence between the distance between the image generating device 40 and the corresponding optical module 30 and the diopter.
  • M the maximum distance that can be adjusted between the image generating device 40 and the corresponding optical module 30
  • the minimum distance that can be adjusted is zero.
  • the head mounted display device 100 is applicable to both the nearsighted wearer and the farsighted wearer in this embodiment, and the M design is related to the focal length of the optical module 30 and the product design structure, and when the image is When the distance between the generating device 40 and the corresponding optical module 30 is M/2, the diopter is 0, that is, the vision is normal.
  • the image generated by the image generating device 40 is just imaged by the optical module 30 in the optical module 30.
  • M is 16 mm in this embodiment, so when the distance between the image generating device 40 and the corresponding optical module 30 is 8 mm, the diopter is 0, that is, the visual acuity is normal.
  • the diopter calibration table can be divided into 16 levels of M (16mm) as needed. When the distance between the image generating device 40 and the corresponding optical module 30 is gradually increased from 8 mm, this time is suitable for the far-sighted wearer, and the diopter gradually changes from +1.0 to +8.0 corresponding to the distance level.
  • the distance between the image generating device 40 and the corresponding optical module 30 gradually decreases from 8 mm, it is suitable for the myopia wearer at this time, and the diopter gradually changes from -1.0 to -8.0 corresponding to the distance level. Understandably, in order to improve the calibration accuracy, the distance and diopter can be divided into more levels, thereby achieving more accurate diopter adjustment.
  • the head mounted display device 100 in the present embodiment can be simultaneously applied to the near by adjusting the diopter Depending on the wearer and the farsighted wearer.
  • the head mounted display device 100 can also provide a type of product that is limited to use by the nearsighted wearer, or the farsighted wearer, by defining the distance traveled by the image generation device 40 relative to the optical module 30.
  • the controller 28 detects the distance between the image generating device 40 and the optical module 30 according to the detecting device 26, and searches for a diopter calibration table to obtain the adjusted diopter.
  • the controller 28 further controls the image generating device 40 to display the adjusted diopter so that the wearer can know the adjusted diopter.
  • the detecting device 26 is an angle sensor and is disposed corresponding to the first operating member 62 for detecting the rotation angle of the first operating member 62.
  • the detecting device 26 is a magnetic sensor.
  • the controller 28 calculates the distance between the image generating device 40 and the corresponding optical module 30 according to the rotation angle detected by the detecting device 26, and obtains the adjusted diopter according to the calculated distance finding diopter calibration table. It can be understood that when the detecting device 26 is an angle sensor, the preset diopter calibration table of the head mounted display device 100 can also directly record the correspondence between the rotation angle and the diopter (as shown in FIG. 7).
  • the first operating member 62 has a rotation range of 0 to 360 degrees in the embodiment, and when the rotation angle of the second operating member 62 is 0, between the image generating device 40 and the corresponding optical module 30 The distance between them is 0.
  • the first operating member 62 is rotated clockwise (or counterclockwise) from 0 degrees to 180, or rotated 360 degrees counterclockwise (or clockwise) from 360 degrees, the diopter of the display device 20 is 0 at this time, that is, the vision is normal.
  • the image generated by the image generating device 40 is just imaged by the optical module 30 at the focus of the optical module 30.
  • the controller 28 directly finds the diopter calibration table according to the rotation angle detected by the detecting device 26 to obtain the adjusted diopter, and controls the image display 40 to display the adjusted diopter.
  • the head mounted display device 100 further includes an input unit 27 and a prompting unit 29 that are electrically coupled to the controller 28.
  • the input unit 27 is for receiving an operation of the user inputting the diopter.
  • the prompting unit 29 is configured to generate prompt information.
  • the prompt information is at least one of light, sound, and vibration.
  • the controller 28 is further configured to set a preset diopter in response to a user operation, and to control the prompting unit 29 to generate prompt information when the diopter adjusted by the user reaches the preset refracting power.
  • FIG. 8 is a flow chart showing a diopter display method including a specific execution process of the head mounted display device described above with reference to FIGS. 1 to 5.
  • the head-mounted display device described herein is implemented based on the head-mounted display device shown in FIG. 1 to FIG. 5, it should be noted that the specific operating environment of the control method disclosed in the embodiment of the present invention is not limited to the above-mentioned headset. Display device.
  • the diopter display method disclosed in the first embodiment of the method of the present invention specifically includes the following steps:
  • step S801 when the user adjusts the diopter of the display device 20 by the diopter adjustment mechanism 60, the detecting device 26 detects the change in the diopter of the corresponding display device 20, respectively.
  • step S802 the controller 28 acquires the adjusted diopter of the corresponding display device 20 according to the change of the diopter detected by the display device 20.
  • step S803 the controller 28 controls the display device 20 to display the adjusted diopter. In this way, the wearer can know the adjusted diopter.
  • step S800 is included before step S801, and step S804 and step S805 are further included after step S803:
  • step S800 the controller 28 sets the preset diopter in response to the wearer's operation.
  • step S804 the controller 28 determines whether the adjusted diopter reaches the preset diopter, and if so, the flow goes to step S805; if not, the flow goes to step S804.
  • Step S805 The controller 28 controls the prompting unit 29 to generate prompt information to prompt the wearer that the diopter has been adjusted to a preset value. At this time, the wearer can wear the head mounted display 8 for further fine adjustment. Thus, the diopter adjustment can be achieved when the wearer does not need to wear it while adjusting the diopter.
  • FIG. 9 is a flow chart showing a diopter display method including the above-described specific execution process of the head mounted display device of FIGS. 1 to 5 in the second embodiment of the present invention.
  • the head-mounted display device described herein is implemented based on the head-mounted display device shown in FIG. 1 to FIG. 5, it should be noted that the specific operating environment of the control method disclosed in the embodiment of the present invention is not limited to the above-mentioned headset. Display device.
  • the diopter display method disclosed in the second embodiment of the method of the present invention specifically includes the following steps:
  • Step 901 The head mounted display device 8 presets a diopter calibration table.
  • the diopter calibration table record There is a correspondence between the distance between the image generating device 40 and the corresponding optical module 30 and the diopter.
  • Step S902 The detecting device 26 detects the distance between the corresponding image generating device 40 and the optical module 30.
  • the detecting device 26 is a distance sensor in this embodiment.
  • the detecting device 26 can calculate the distance between the image generating device 40 and the corresponding optical module 30 by detecting the rotation angle of the first operating member 62.
  • the detecting device 26 is an angle sensor.
  • the detecting device 26 is a magnetic sensor.
  • Step S903 The controller 28 searches the diopter calibration table to obtain the adjusted diopter of the corresponding display device 20 according to the detected distance between the corresponding image generating device 40 and the optical module 30.
  • step S904 the controller 28 controls the display device 20 to display the adjusted diopter. In this way, the wearer can know the adjusted diopter.
  • step S900 is further included before step S902, and step S905 and step S906 are further included after step S904:
  • step S900 the controller 28 sets the preset diopter in response to the wearer's operation.
  • step S905 the controller 28 determines whether the adjusted diopter reaches the preset refracting power, and if so, the flow proceeds to step S906; if not, the flow returns to step S904.
  • Step S906 The controller 28 controls the prompting unit 29 to generate prompt information to prompt the wearer that the diopter has been adjusted to a preset value. At this time, the wearer can wear the head mounted display 100 for further fine adjustment. Thus, the diopter adjustment can be achieved when the wearer does not need to wear it while adjusting the diopter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种头戴式显示设备(100)包括两个屈光度可调的显示装置(20)、电连接于显示装置的控制器(28)、以及电连接于控制器的两个侦测装置(26)。两个侦测装置,用于当用户调节显示装置的屈光度时分别侦测两个显示装置的屈光度的变化;控制器根据侦测装置的侦测结果获取相应显示装置调整后的屈光度,并控制显示装置显示调整后的屈光度,从而当调节屈光度时可让佩戴者知晓调节后的屈光度。还公开了一种屈光度显示方法。

Description

头戴式显示设备及其屈光度显示方法 技术领域
本发明涉及一种屈光度可调的头戴式显示设备及屈光度显示方法。
背景技术
目前,头戴式显示器(Head Mounted Display,HMD)等近眼显示装置正变得越来越流行。其工作原理是通过一组精密的光学透镜放大超微显示屏上的图像,并将图像投射于眼睛,进而使佩戴者能观看到放大的虚像,类似拿放大镜看物体呈现出放大的虚拟物体图像。为了适应不同的佩戴者的瞳距,目前市面上的HMD大部分具有瞳距调节功能,此外,还出现了具有能够适应近视或远视佩戴者的屈光度调节功能。然而,现有的头戴式显示器仅允许用户调节屈光度,不能将用户调节后的屈光度告知用户,从而导致用户无法知晓其设置的屈光度。
发明内容
本发明的实施方式提供了一种具有屈光度可调的显示装置的头戴式显示设备,能够在用户调节屈光度时显示调节后的屈光度以告知用户。
一种头戴式显示设备包括两个屈光度可调的显示装置、电连接于显示装置的控制器、以及电连接于控制器的两个侦测装置。该两个侦测装置,用于当用户调节显示装置的屈光度时分别侦测该两个显示装置的屈光度的变化。该控制器根据该侦测装置的侦测结果获取相应显示装置调整后的屈光度,并控制显示装置显示调整后的屈光度。
本发明还提供一种屈光度显示方法,应用于一种具有两个可调屈光度的显示装置的头戴式显示设备。该屈光度显示方法包括:
当用户调节显示装置的屈光度时分别侦测所述两个显示装置的屈光度的变化;
根据侦测到所述两个显示装置的屈光度的变化获取显示装置调节后的屈 光度;
控制显示装置显示调整后的屈光度。
本发明中头戴显示装置及屈光度方法,通过获取并显示调节后的屈光度,可让佩戴者知晓调节后的屈光度。
附图说明
下列附图用于结合具体实施方式详细说明本发明的各个实施方式。应当理解,附图中示意出的各元件并不代表实际的大小及比例关系,仅是为了清楚说明而示意出来的示意图,不应理解成对本发明的限制。
图1是本发明的一个实施方式提供的头戴式显示设备的示意图。
图2是本发明的一个实施方式的头戴式显示设备的功能模块的示意图。
图3是图1的头戴式显示设备的显示装置的示意图。
图4是图3的显示装置的部分分解示意图,其中,图3的显示装置的光学模组及图像产生装置未在图4中示出。
图5是图4另一个角度的示意图。
图6是本发明的一个实施方式提供的屈光度校准表的示意图。
图7是本发明的另一个实施方式提供的屈光度校准表的示意图。
图8是本发明一实施例中的屈光度显示方法的流程图。
图9是本发明另一实施例中的屈光度显示方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合多个实施方式及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。必须指出的是,本发明中所提到的两个元件之间的“连接”不一定指是直接连接,也可以是通过第三个元件实现的间接连接。
图1为是本发明一个实施方式提供的头戴式显示设备100的示意图。头戴 式显示设备100可以是一个穿戴式的视频播放器、穿戴式的游戏装置或者穿戴式的导航装置等。头戴式显示设备100在本实施例中包括耳机10以及一个可转动地连接至耳机10的显示装置11。请一并参考图2,显示装置11包括一个外壳12以及容置于外壳12内的两个屈光度可调的显示装置20、两个侦测装置26、控制器28。此外,头戴式显示设备100还包括实现头戴式显示设备100功能的相关电路、电池等(图中未示出)。该两个侦测装置26用于当用户调节显示装置20的屈光度时分别侦测该两个显示装置20的屈光度的变化。该控制器28根据该侦测装置26的侦测结果获取相应显示装置20调整后的屈光度,并控制显示装置20显示调整后的屈光度,从而使佩戴者知晓调节后的屈光度。
请一并参考图3,每一显示装置20在本实施例中均包括一个光学模组30、一个可活动连接至光学模组30的图像产生装置40、以及一屈光度调节机构60。图像产生装置40所产生的图像由光学模组30向预定的方向投射。图像产生装置40可相对光学模组30沿靠近光学模组30的第一方向或可相对光学模组30沿远离光学模组30的第二方向滑动。第一方向与第二方向相反的。该显示装置20通过改变光学模组30和图像产生装置40之间的距离来实现屈光度的调节。屈光度调节机构60连接至对应的图像产生装置40,用于接收用户操作以调节图像产生装置40与对应的光学模组30之间的距离。
优选地,每一个显示装置20在本实施例中还包括一个用于调节头戴式显示设备100的瞳距调节机构50。该瞳距调节机构50连接至对应一个光学模组30,用于驱动对应的光学模组30相对另一个光学模组30滑动,从而调节两个光学模组30之间的距离以实现瞳距调节。屈光度调节机构60设置于对应的瞳距调节机构50上并可随瞳距调节机构50滑动。瞳距调节机构50及第二调节结构60至少部分显露于壳体12,从而便于用户调节。如此,显示装置20允许用户调节瞳距及屈光度,可适合更多的用户使用。
光学模组30包括一个镜筒以及至少一个设置于该镜筒内的镜片组。该镜筒具有一个入射口(图未示)及一个出射口32,入射口位于面向图像产生装置40的一侧,进入入射口的光线进入镜片组并发生折射及反射,最终从出射口32射出。
图像产生装置40包括一个基座42及一个设置于基座42上的微型显示装 置44。微型显示装置44具有一个微型显示器(图未示),比如OLED微型显示器,并设置在入射口上。如此,微型显示器显示的图像的光线将进入入射口,并由镜片组向预定的方向投射,从出射口32射出的光线入射人眼后,人眼将能看到微型显示器显示的图像的放大虚像。
在本实施方式中,显示装置20还包括两个导轨21,光学模组30及图像产生装置40都通过其上开设的通孔连接至两个导轨21,从而沿导轨21限定的方向移动。然而可以理解,为了实现导向功能,也可以是光学模组30及图像产生装置40具有各自的导轨。另外,导轨的结构也不限于图示的方式,比如也可以是开设在外壳12上的凹槽(图未示),光学模组30及图像产生装置40容置在该凹槽内并可在其中沿凹槽定义的方向移动,总在,导轨只要能起导向作用便可。
请结合图3至5,各屈光度调节机构60包括相互可动连接的第一操作件62及第一活动件64,第一操作件62可动地设置于瞳距调节机构50。第一活动件64可在第一操作件62的驱动下移动。第一活动件64连接至图像产生装置40,当第一操作件62作动而驱动第一活动件64移动时,图像产生装置40便发生移动,并且屈光度调节机构60及图像产生装置40都可随着瞳距调节机构50的移动而同步移动。
各瞳距调节机构50包括基座52、可活动地连接至基座52的第二活动件54、固定连接至第二活动件54的包覆件56以及固定连接至第二活动件54的第二操作件58。包覆件56连接至光学模组30,第二操作件58移动时便可带动第二活动件54移动,从而使光学模组30随第一活动件54移动。
基座52包括基板52a,其上开设有沿一个第一方向延伸的第一通孔52b。在本实施方式中,基板52a大致呈方形片状,该第一方向为基板52a的长度方向。第二活动件54包括底板54a,底板54a在本实施方式中也大致呈方形片状,其上开设有沿该第一方向延伸的第二通孔54b。第二操作件58包括往相反方向延伸的操作部58a以及连接部58b。本实施方式中操作部58a包括沿基板52a的宽度方向延伸的凹槽,并且与光学模组30分别位于基座52相背的两侧,从而便于用户的指甲插入该凹槽进行操作;连接部58b为一个开设有螺孔的凸柱,连接部58b可通过穿过第一通孔52b后可以卡合至第二通孔54b的方 式固定至第二活动件54,从而使得第二活动件54与第二操作件58同步作动。移动过程中,可设置第一通孔52b起到限制第二操作件58沿第一方向移动的作用。应当理解,为了实现对第二活动件54的调节,也可设置一个自第二活动件54向外延伸至第一通孔52b之外的凸块,如图5的标号3所指的虚线部分,其也可实现方便用户操作的目的,此时第二操作件58便可省略。
在本实施方式中,第一操作件62可转动地设置于第二活动件54,第一活动件64在转动的第一操作件62的驱动下发生第一方向上的平移,从而带动图像产生装置40移动。具体地,第一操作件62包括滚轮62a以及转轴62b,转轴62b设置于滚轮62a的中轴线上,转轴62b承靠于第二活动件54并可以转轴62b为轴而旋转。滚轮62a开设有自靠近转轴62b一侧向滚轮62a外侧延伸的螺旋形容置孔62c;第一活动件64包括沿基板52a的宽度方向设置的滑轴64a。
包覆件56中间部位的相对两侧开设有沿第一方向延伸的凹入部56a,包覆件56的两侧通过螺钉固定至第二活动件54,并将转轴62b夹设在位于包覆件56与第二活动件54之间的凹入部56a中,从而使得第一操作件62不易脱离第二活动件54,同时又可沿第一方向滑动。当然,为了达到该目的,也可以在第二活动件54上设置相应的限位件,比如图4的标号5所指的虚线部分,此时包覆件56便可省略。在本实施方式中,包覆件56包括沿第一方向开设第三通孔56b,滚轮62a部分通过第三通孔56b延伸至包覆件56之外,有利于提高空间利用率。
第一活动件64可活动地设置于包覆件56上。同时滑轴64a穿过容置孔62c,从而可沿容置孔62c设定的螺旋形滑动。如此,滚轮62a转动时,滑轴64a与转轴62b之间的距离便会发生变化,从而使得第一活动件64在第一方式上平移,进而带动图像产生装置40移动。基于上述实施方式,操作过程中,用户通过滑动第二操作件58,便可调节两个光学模组30之间的距离,从而调节瞳距,在此过程中,屈光度调节机构60及图像产生装置40也随之瞳距调节机构50同步移动。另外,用户通过旋转滚轮62a,便可调节图像产生装置40与光学模组30之间的距离,从而调节屈光度,以适应用户近视或远视的度数。如此,上述实施方式的显示装置20实现了瞳距与屈光度的调节,可适合更多 的用户。
应当理解,在其它实施方式中,第一活动件64也可直接设置于第二活动件54而非包覆件56。另外,屈光度调节机构60利用旋转的方式实现平移也不限于上述实施方式,比如,第一操作件也可以是一个开设有第一螺纹并且沿图5中的装配虚线方向设置的螺杆,第一活动件上开设有与其匹配的第二螺纹,第一活动件被驱动旋转时发生第一方向上的平移,本领域技术人员熟知具体螺纹的设置方式,本说明书不做具体描述。
两个侦测装置26分别设置于两个显示装置20。当用户操作屈光度调节机构60的第一操作件62调节显示装置20的屈光度时,侦测装置26侦测相对应的显示装置20的屈光度的变化。具体的,侦测装置26侦测相对应的图像产生装置40与光学模组30之间的距离。侦测装置26在本实施例中为距离传感器。
头戴式显示设备100预设一屈光度校准表。该屈光度校准表在本实施例中为默认设置。该屈光度校准表记录有所述图像产生装置40与对应的光学模组30之间的距离与屈光度的对应关系。例如,图像产生装置40与对应的光学模组30之间可允许调节的最大距离为M,可允许调节的最小距离为0。如图6所示,为便于说明,头戴式显示设备100在本实施例中同时适用于近视佩戴者和远视佩戴者,M设计由光学模组30的焦距及产品设计结构相关,并且当图像产生装置40与对应的光学模组30之间的距离为M/2时屈光度为0即视力正常的情况,此时图像产生装置40产生的图像经光学模组30刚好成像在光学模组30的焦点上。为了便于说明,M在本实施例中为16mm,因此当图像产生装置40与对应的光学模组30之间的距离为8mm时屈光度为0即视力正常的情况。屈光度校准表可根据需要将M(16mm)分成16等级。当图像产生装置40与对应的光学模组30之间的距离由8mm逐渐增大时,此时适用于远视眼佩戴者,与距离等级相对应,屈光度由+1.0逐渐变为+8.0。当图像产生装置40与对应的光学模组30之间的距离由8mm逐渐变小时,此时适用于近视佩戴者,与距离等级相对应,屈光度由-1.0逐渐变为-8.0。可以理解地,为了提高校准精度,距离及屈光度可划分为更多的等级,从而实现更为准确的屈光度调节。
在本实施例中的头戴式显示设备100可通过调节屈光度以同时适用于近 视佩戴者和远视佩戴者。在其它实施例中,头戴式显示设备100也可以通过限定图像产生装置40相对光学模组30的移动距离,以提供仅限于近视佩戴者、或远视佩戴者使用的产品类型。
所述控制器28根据所述侦测装置26侦测到图像产生装置40与光学模组30之间的距离,查找屈光度校准表以获取调节后的屈光度。控制器28进一步控制图像产生装置40显示调节后的屈光度,如此,佩戴者可知晓调节后的屈光度。
在其它实施方式中,侦测装置26为角度传感器,并与第一操作件62对应设置,用于侦测第一操作件62的旋转角度。优选地,侦测装置26为磁力传感器。控制器28根据侦测装置26侦测到的转动角度来计算图像产生装置40相对对应的光学模组30之间的距离,并根据计算得到距离查找屈光度校准表来获取调整后的屈光度。可以理解的,当侦测装置26为角度传感器时,头戴式显示设备100预设的屈光度校准表也可以为直接记录旋转角度与屈光度的对应关系(如图7所示)。为便于说明,第一操作件62在本实施例中的转动范围为0~360度,并且当第二操作件62的转动角度为0时,图像产生装置40与对应的光学模组之间30之间的距离为0。当第一操作件62从0度顺时针(或逆时针)转动至180、或从360度逆时针(或顺时针)转动180时,此时显示装置20的屈光度为0即视力正常的情况,此时图像产生装置40产生的图像经光学模组30刚好成像在光学模组30的焦点上。当第一操作件62的转动角度从180度增加至360度时,此时适用于远视眼佩戴者,与转动角度相对应屈光度由+1.0逐渐变为+8.0。当第一操作件62的转动角度从180度减少至0度时,此时适用于近视佩戴者,与转动角度相对应,屈光度由-1.0逐渐变为-8.0。如此,控制器28直接根据侦测装置26侦测到的转动角度查找屈光度校准表以获取调节后的屈光度,并控制图像显示器40显示调节后的屈光度。
在其它实施方式中,如图2所示,头戴式显示设备100还包括电连接于控制器28的输入单元27和提示单元29。输入单元27用于接收用户输入屈光度的操作。提示单元29用于产生提示信息。该提示信息为光、声音、振动中的至少一种输出。所述控制器28还用于响应用户操作设定预设屈光度,以及用于当用户调节的屈光度达到预设屈光度时控制提示单元29产生提示信息。如 此,当佩戴者可根据自身视力情况设定预设值,无需在调节屈光度的过程中一直佩戴,即可实现屈光度调节,从而提升用户体验。
图8是包括上述图1~图5描述的头戴显示装置的具体执行过程的屈光度显示方法的流程示意图。尽管这里描述的头戴式显示设备是基于图1~图5所示的头戴式显示设备来执行,但需要注意的是,本发明实施例公开的控制方法的具体运行环境不仅限于上述头戴式显示设备。
如图8所示,本发明方法第一实施例公开的屈光度显示方法具体包括以下步骤:
步骤S801,当用户通过屈光度调节机构60调节显示装置20的屈光度时,侦测装置26分别侦测相对应的显示装置20的屈光度的变化。
步骤S802,控制器28根据侦测到所述显示装置20的屈光度的变化获取相应显示装置20调节后的屈光度。
步骤S803,控制器28控制显示装置20显示调整后的屈光度。如此,可让佩戴者知晓调节后的屈光度。
为了使佩戴者根据自身视力情况调节屈光度,可选地,在上述步骤S801之前还包括步骤S800,以及步骤S803之后还包括步骤S804及步骤S805:
步骤S800,控制器28响应佩戴者操作设定预设屈光度。
步骤S804,控制器28判断调节后的屈光度是否达到预设屈光度,若是,流程转至步骤S805;若否,流程转至步骤S804.
步骤S805:控制器28控制提示单元29产生提示信息,以提示佩戴者屈光度已调节至预设值,此时,佩戴者可佩戴头戴式显示器8后作进一步微调。如此,当佩戴者无需在调节屈光度的过程中一直佩戴,即可实现屈光度调节。
图9是本发明第二实施例中包括上述描述图1~图5的头戴显示装置的具体执行过程的屈光度显示方法的流程示意图。尽管这里描述的头戴式显示设备是基于图1~图5所示的头戴式显示设备来执行,但需要注意的是,本发明实施例公开的控制方法的具体运行环境不仅限于上述头戴式显示设备。
如图9所示,本发明方法第二实施例公开的屈光度显示方法具体包括以下步骤:
步骤901:头戴式显示设备8预设一屈光度校准表。该屈光度校准表记录 有所述图像产生装置40与对应的光学模组30之间的距离与屈光度的对应关系。
步骤S902:侦测装置26侦测相对应的图像产生装置40与光学模组30之间的距离。侦测装置26在本实施例中为距离传感器。
可选地,侦测装置26可通过侦测第一操作件62的旋转角度来计算所述图像产生装置40与对应的光学模组30之间的距离。侦测装置26为角度传感器。优选地,侦测装置26为磁力传感器。
步骤S903:控制器28根据侦测到的相对应的图像产生装置40与光学模组30之间的距离,查找屈光度校准表以获取相应显示装置20调节后的屈光度。
步骤S904,控制器28控制显示装置20显示调整后的屈光度。如此,可让佩戴者知晓调节后的屈光度。
为了使佩戴者根据自身视力情况调节屈光度,可选地,在上述步骤S902之前还包括步骤S900,以及步骤S904之后还包括步骤S905及步骤S906:
步骤S900,控制器28响应佩戴者操作设定预设屈光度。
步骤S905,控制器28判断调节后的屈光度是否达到预设屈光度,若是,流程转至步骤S906;若否,流程返回至步骤S904。
步骤S906:控制器28控制提示单元29产生提示信息,以提示佩戴者屈光度已调节至预设值,此时,佩戴者可佩戴头戴式显示器100后作进一步微调。如此,当佩戴者无需在调节屈光度的过程中一直佩戴,即可实现屈光度调节。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种头戴式显示设备,包括两个屈光度可调的显示装置,其特征在于:该头戴式显示设备还包括电连接于显示装置的控制器以及电连接于控制器的两个侦测装置;该两个侦测装置,用于当用户调节显示装置的屈光度时分别侦测所述两个显示装置的屈光度的变化,所述控制器根据所述侦测装置的侦测结果获取相应显示装置调整后的屈光度,并控制显示装置显示调整后的屈光度。
  2. 如权利要求1所述的头戴式显示设备,其特征在于,每一显示装置包括一个光学模组、及可动地连接至该光学模组的一个图像产生装置,所述调节显示装置的屈光度通过调节该图像产生装置与对应的光学模组之间的距离来现实。
  3. 如权利要求2所述的头戴式显示设备,其特征在于,头戴式显示设备还预设一屈光度校准表,该屈光度校准表记录有所述图像产生装置与对应的光学模组之间的距离与屈光度的对应关系,所述侦测装置侦测图像产生装置与对应的光学模组之间的距离,所述控制器根据所述侦测装置侦测到的距离以及该屈光度校准表来获取显示装置调整后的屈光度。
  4. 如权利要求2-3任意一项所述的头戴式显示设备,其特征在于,还包括两个屈光度调节机构,该两个屈光度调节机构用于接收用户操作并用于分别调节所述两个显示装置屈光度。
  5. 如权利要求4所述的头戴式显示设备,所述头戴式显示设备还包括用于固定显示装置和屈光度调节机构的壳体,每一屈光度调节机构还包括转动设置于壳体的第一操作件,第一操作件用于当转动时驱动所述图像产生装置相对对应的光学模组滑动从而调节所述图像产生装置相对对应的光学模组之间的距离。
  6. 如权利要求5所述的头戴式显示设备,其特征在于,所述侦测装置侦测第一操作件的转动角度,所述控制器根据侦测装置侦测到的转动角度来计算图像产生装置相对对应的光学模组之间的距离变化,并根据计算得到的图像产生装置相对对应的光学模组之间的距离变化查找屈光度校准表来获取调整后的屈光度。
  7. 如权利要求1-3任意一项所述的头戴式显示设备,其特征在于,所述头戴式显示设备还包括电连接于控制器的输入单元和提示单元,输入单元用于接收用户输入预定屈光度的操作,提示单元用于产生提示信息,所述控制器还用于响应用户操作设定预设屈光度,以及用于当用户调节的屈光度达到预设屈光度时控制提示单元产生提示信息。
  8. 如权利要求7所述的头戴式显示设备,其特征在于,所述提示信息为光、声音、振动中的至少一种输出。
  9. 一种屈光度显示方法,应用于一种具有两个可调屈光度的显示装置的头戴式显示设备,该屈光度显示方法包括:
    当用户调节显示装置的屈光度时分别侦测所述两个显示装置的屈光度的变化;
    根据侦测到所述两个显示装置的屈光度的变化获取相应显示装置调节后的屈光度;
    控制显示装置显示调整后的屈光度。
  10. 如权利要求9所述的屈光度显示方法,其特征在于,每一显示装置包括一个光学模组、及可动地连接至该光学模组的一个图像产生装置,所述显示装置的屈光度通过调节该图像产生装置与对应的光学模组之间的距离来现实。
  11. 如权利要求10所述的屈光度显示方法,还包括步骤:
    预设一屈光度校准表,该屈光度校准表记录所述图像产生装置与对应的光学模组之间的距离变化值与屈光度的对应关系;
    侦测图像产生装置与对应的光学模组之间的距离变化值;以及
    根据侦测到的距离变化值以及该屈光度校准表来获取显示装置调整后的屈光度。
  12. 如权利要求10-11任意一项所述的屈光度显示方法,其特征在于,所述头戴式显示设备还包括两个屈光度调节机构,该两个屈光度调节机构用于接收用户操作并用于分别调节所述两个显示装置屈光度。
  13. 如权利要求12所述的屈光度显示方法,所述头戴式显示设备还包括用于固定显示装置和屈光度调节机构的壳体,每一屈光度调节机构还包括转动设置于壳体的第一操作件,第一操作件用于当转动时驱动所述图像产生装置相 对对应的光学模组滑动从而调节所述图像产生装置相对对应的光学模组之间的距离。
  14. 如权利要求13所述的屈光度显示方法,其特征在于,所述侦测图像产生装置与对应的光学模组之间的距离变化值的步骤包括:
    侦测第一操作件的转动角度;
    根据第一操作件的转动角度来计算图像产生装置相对对应的光学模组之间的距离变化;以及
    根据计算得到的图像产生装置相对对应的光学模组之间的距离变化查找屈光度校准表来获取调整后的屈光度。
  15. 如权利要求9-11任意一项所述的屈光度显示方法,还包括步骤:
    响应用户操作设定预设屈光度;以及
    当用户调节的屈光度达到预设屈光度时产生提示信息。
  16. 如权利要求15所述的头戴式显示设备,其特征在于,所述提示信息为光、声音、振动中的至少一种输出。
PCT/CN2016/111784 2016-12-23 2016-12-23 头戴式显示设备及其屈光度显示方法 WO2018112913A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680044919.8A CN108064353A (zh) 2016-12-23 2016-12-23 头戴式显示设备及其屈光度显示方法
PCT/CN2016/111784 WO2018112913A1 (zh) 2016-12-23 2016-12-23 头戴式显示设备及其屈光度显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/111784 WO2018112913A1 (zh) 2016-12-23 2016-12-23 头戴式显示设备及其屈光度显示方法

Publications (1)

Publication Number Publication Date
WO2018112913A1 true WO2018112913A1 (zh) 2018-06-28

Family

ID=62137057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111784 WO2018112913A1 (zh) 2016-12-23 2016-12-23 头戴式显示设备及其屈光度显示方法

Country Status (2)

Country Link
CN (1) CN108064353A (zh)
WO (1) WO2018112913A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200678A (zh) * 2021-12-24 2022-03-18 深圳纳德光学有限公司 一种瞳距屈光度按压锁定旋转调节机构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919497B (zh) * 2018-08-10 2024-03-26 深圳纳德光学有限公司 一种头戴显示器屈光度调节数显机构
CN108681078A (zh) * 2018-08-10 2018-10-19 深圳纳德光学有限公司 一种头戴显示器屈光度调节数显装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068255A1 (en) * 2003-09-30 2005-03-31 Takashi Urakawa Image displaying apparatus
CN104914575A (zh) * 2014-09-29 2015-09-16 北京蚁视科技有限公司 带有屈光度检测装置的微透镜阵列式近眼显示器
CN204945491U (zh) * 2015-08-03 2016-01-06 众景视界(北京)科技有限公司 头戴式全息智能眼镜
CN205485069U (zh) * 2016-02-25 2016-08-17 北京耐德佳显示技术有限公司 具有视度显示的近眼显示设备
CN106199967A (zh) * 2016-08-13 2016-12-07 华勤通讯技术有限公司 图像重现装置及头戴显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068255A1 (en) * 2003-09-30 2005-03-31 Takashi Urakawa Image displaying apparatus
CN104914575A (zh) * 2014-09-29 2015-09-16 北京蚁视科技有限公司 带有屈光度检测装置的微透镜阵列式近眼显示器
CN204945491U (zh) * 2015-08-03 2016-01-06 众景视界(北京)科技有限公司 头戴式全息智能眼镜
CN205485069U (zh) * 2016-02-25 2016-08-17 北京耐德佳显示技术有限公司 具有视度显示的近眼显示设备
CN106199967A (zh) * 2016-08-13 2016-12-07 华勤通讯技术有限公司 图像重现装置及头戴显示器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200678A (zh) * 2021-12-24 2022-03-18 深圳纳德光学有限公司 一种瞳距屈光度按压锁定旋转调节机构

Also Published As

Publication number Publication date
CN108064353A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
US20240103301A1 (en) Head-Mounted Display Device With Vision Correction
US11607607B1 (en) Actuation for a focus adjusting head mounted display
JP6406252B2 (ja) 表示装置
US10492676B2 (en) Phoropter, and method for measuring refraction using a phoroptor of said type
US5714967A (en) Head-mounted or face-mounted image display apparatus with an increased exit pupil
EP3306371A1 (en) Display module and electronic device having display module
JP6311714B2 (ja) 表示装置
US11642020B2 (en) Refraction devices
KR101635892B1 (ko) 헤드마운트 디스플레이 장치
CN108700745B (zh) 一种位置调整方法及终端
TW201812385A (zh) 可調整顯示模組之可調式虛擬實境裝置
KR102388278B1 (ko) 교정용 안경 및 상기 안경의 착용자에 의한 자각식 굴절 방법
WO2018112913A1 (zh) 头戴式显示设备及其屈光度显示方法
US20170212361A1 (en) Optimal Focusing Design for High Field of View Head Mount Displays
JPH0836143A (ja) ヘッドマウントディスプレイ装置
JP6556133B2 (ja) 自覚屈折力を測定する装置及び方法
WO2017113189A1 (zh) 头戴式显示装置
EP4055435A1 (en) Optical system for head-mounted display device
KR20170044296A (ko) 헤드마운트 디스플레이 장치
WO2002096345A1 (fr) Systeme pour l'elimination de la fatigue oculaire
US20180045911A1 (en) Electronic device and display component thereof
US11782279B2 (en) High efficiency pancake lens
JPH08152576A (ja) 頭部装着型表示装置
CN115053167A (zh) 使用空间变化偏振器的可变光学校正
JP2001320651A (ja) 電子眼鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16924791

Country of ref document: EP

Kind code of ref document: A1