WO2018112686A1 - 一种集成控制器的控制电路 - Google Patents

一种集成控制器的控制电路 Download PDF

Info

Publication number
WO2018112686A1
WO2018112686A1 PCT/CN2016/110700 CN2016110700W WO2018112686A1 WO 2018112686 A1 WO2018112686 A1 WO 2018112686A1 CN 2016110700 W CN2016110700 W CN 2016110700W WO 2018112686 A1 WO2018112686 A1 WO 2018112686A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
circuit
switch
capacitor
inductor
Prior art date
Application number
PCT/CN2016/110700
Other languages
English (en)
French (fr)
Inventor
李英
吴壬华
Original Assignee
上海欣锐电控技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海欣锐电控技术有限公司 filed Critical 上海欣锐电控技术有限公司
Priority to CN201680004045.3A priority Critical patent/CN107223093B/zh
Priority to PCT/CN2016/110700 priority patent/WO2018112686A1/zh
Publication of WO2018112686A1 publication Critical patent/WO2018112686A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to the field of circuit technologies, and in particular, to a control circuit of an integrated controller.
  • On-board chargers and DC converters are one of the three major components of new energy vehicles. Among them, on-board chargers are mainly used to charge vehicles, and DC converters are used to power vehicles during driving. On-board chargers and DC converters are being used by more and more car manufacturers because of their ease of integration.
  • the integration of the car charger + DC converter is only to achieve structural integration, this integration can save volume and reduce the intermediate connection, but use two sets of integrated circuits, and have the same circuit in the two sets of integrated circuits. , resulting in increased costs.
  • the control circuit of the integrated controller disclosed in the embodiment of the invention can realize the functions of two sets of integrated circuits by adding a switching circuit in a set of integrated circuits, thereby saving components and reducing costs.
  • an embodiment of the present invention discloses a control circuit of an integrated controller, including a power grid, a power battery, a switching circuit, and an on-board charging/DC converting circuit, wherein:
  • the switching circuit is respectively connected to the power grid, the power battery, and the on-board charging/DC converting circuit, and the switching circuit is configured to switch between a charging state and a driving state of the vehicle;
  • the power grid is configured to charge the vehicle during the charging state
  • the power battery is configured to supply power to the vehicle during the driving state.
  • the in-vehicle charger since the DC converter does not work when the in-vehicle charger is in operation, the in-vehicle charger does not work when the DC converter operates, and a set of circuits is shared by integrating the in-vehicle charger and the DC converter, and in the integrated circuit
  • the switching between the on-board charger and the DC converter can be realized to charge the vehicle and provide driving power, thereby saving components and reducing costs.
  • FIG. 1 is a schematic structural diagram of a control circuit of an integrated controller according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a switching circuit of a control circuit of an integrated controller according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a vehicle charging/DC conversion circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a PFC circuit + DC/DC circuit in a vehicle charging/DC conversion circuit according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a control circuit of an integrated controller according to an embodiment of the present invention.
  • the control circuit 1 may include: a power grid 10, a power battery 20, a switching circuit 30, and an in-vehicle charging/DC converting circuit 40, wherein the switching circuit 30 and the power grid respectively 10.
  • the power battery 20 and the in-vehicle charging/DC converting circuit 40 are connected, and the switching circuit is configured to switch between a charging state and a driving state of the vehicle, wherein the power grid is used in the charging state.
  • the vehicle is charged, the power battery being used to power the vehicle during the driving state.
  • the structure of the switching circuit is shown in FIG. 2.
  • the switching circuit includes a first switch K1, a second switch K2, and a first resistor R1.
  • the specific connection relationship is as follows:
  • the first end of the first switch K1 is connected to the first output port A1 of the power grid or the positive pole of the power battery, and the second end of the first switch K1 and the second output port of the power grid A2 or a negative pole of the power battery is connected, a third end of the first switch K1 is connected to one end of the second switch K2 and one end of the first resistor R1, and the first switch K1 is The fourth end is connected to the first port B1 of the in-vehicle charging/DC conversion circuit, the second port B2 of the in-vehicle charging/DC conversion circuit and the other end of the second switch K2 and the first resistor R1 The other end is connected.
  • the switching circuit 30 is connected to the power grid 10, that is, K1 is connected to the A1 and A2 nodes.
  • the first switch K1 is a double pole double throw switch
  • the second switch K2 is a single pole single throw switch.
  • the in-vehicle charger works normally, and the power grid 10 is used as the source of the in-vehicle charger 40, and the output load is charged by the in-vehicle charger 40, and the load may be a power battery, which is not limited.
  • the first switch K1 and the second switch K2 are both relays.
  • the in-vehicle charging/DC converting circuit 40 includes a power factor correction conversion PFC circuit 41 and a DC conversion DC/DC circuit 42.
  • the PFC circuit 41 includes a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and a fifth two.
  • a pole tube D5 a first capacitor C1, a second capacitor C2, a first field effect transistor Q1 and a first inductor L1, wherein:
  • An anode of the first diode D1 is connected to a cathode of the second diode D2 and another end of the second switch K2, and a cathode of the first diode D1 and the third a cathode of the pole tube D3, one end of the first capacitor C1, and one end of the first inductor L1 are connected, an anode of the third diode D3 and a cathode of the fourth diode D4, and the The fourth end of the first switch K1 is connected, the anode of the second diode D2 and the anode of the fourth diode D4, the other end of the first capacitor C1, and the first field effect transistor
  • the source of Q1 and one end of the second capacitor C2 are connected, and the other end of the first inductor L1 is connected to the drain of the first field effect transistor Q1 and the anode of the fifth diode D5.
  • the cathode of the fifth diode D5 is connected to the other end of the second capacitor C
  • the DC/DC circuit comprises at least one of a half bridge resonant circuit, a full bridge phase shifting circuit, a full bridge resonant circuit, and an active clamping circuit.
  • the DC/DC circuit 42 includes a second FET Q2, a third FET Q3, a second inductor L2, a third inductor L3, and a third capacitor C3. a fourth capacitor C4, a sixth diode D6, a seventh diode D7, and a transformer T1, wherein:
  • a drain of the second field effect transistor Q2 is connected to a cathode of the fifth diode D5, a source of the second field effect transistor Q2 and a drain of the third field effect transistor Q3
  • One end of the second inductor L2 is connected, the source of the third field effect transistor Q3 is connected to one end of the third capacitor C3 and grounded, and the other end of the third capacitor C3 is connected to the transformer T1.
  • One end of the primary coil is connected, and the other end of the primary coil of the transformer T1 is connected to the other end of the second inductor L2, and one end of the first secondary coil of the transformer T1 and the sixth diode
  • An anode of D6 is connected, and the other end of the first secondary coil of the transformer T1 is connected to one end of the second secondary coil of the transformer T1 and one end of the fourth capacitor C4, the fourth capacitor C4
  • the other end of the third inductor L3 is connected to the other end of the third inductor L3, and the sixth end of the third inductor L3
  • the cathode of the tube D6 and the cathode of the seventh diode D7 are connected, and the anode of the seventh diode D7 is connected to the other end of the second secondary coil of the transformer T1.
  • the in-vehicle charger since the DC converter does not work when the in-vehicle charger is in operation, the in-vehicle charger does not work when the DC converter operates, and a set of circuits is shared by integrating the in-vehicle charger and the DC converter, and in the integrated circuit
  • the switching between the on-board charger and the DC converter can be realized to charge the vehicle and provide driving power, thereby saving components and reducing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种集成控制器的控制电路,包括电网(10)、动力电池(20)、切换电路(30)以及车载充电/直流变换电路(40),其中:切换电路分别与电网、动力电池以及车载充电/直流变换电路相连接,切换电路用于在车辆的充电状态与行车状态之间进行切换;电网用于在充电状态时对车辆进行充电;动力电池用于在行车状态时对车辆进行供电。采用本控制电路可以节省元器件,降低成本。

Description

一种集成控制器的控制电路 技术领域
本发明涉及电路技术领域,尤其涉及一种集成控制器的控制电路。
背景技术
新能源汽车这几年发展迅猛,成为目前发展速度最快的产业之一。车载充电机和直流变换器是新能源汽车的三大件之一,其中,车载充电机主要用于给车辆充电,直流变换器则用于车辆行驶途中为车辆提供动力。车载充电机和直流变换器因为其集成的易实现性而被越来越多的车厂所使用。
目前车载充电机+直流变换器的集成大都只是实现了结构上的集成,这种集成方式可以节省体积,减少中间连线,但使用两套集成电路,且在两套集成电路中有相同的电路,从而导致成本增加。
发明内容
本发明实施例公开的一种集成控制器的控制电路,通过在一套集成电路中加入切换电路就可实现两套集成电路的功能,节省了元器件,降低了成本。
为解决上述技术问题,本发明实施例公开了一种集成控制器的控制电路,包括电网、动力电池、切换电路以及车载充电/直流变换电路,其中:
所述切换电路分别与所述电网、所述动力电池以及所述车载充电/直流变换电路相连接,所述切换电路用于在车辆的充电状态与行车状态之间进行切换;
所述电网用于在所述充电状态时对所述车辆进行充电;
所述动力电池用于在所述行车状态时对所述车辆进行供电。
在本发明中,由于在车载充电机工作时直流变换器不工作,直流变换器工作时车载充电机不工作,通过集成车载充电机和直流变换器后共用一套电路,且在该集成电路中加入切换电路就可实现车载充电机和直流变换器的切换以为车辆充电和提供行车动力,节省了元器件,降低了成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种集成控制器的控制电路的结构示意图;
图2是本发明实施例提供的一种集成控制器的控制电路的切换电路的结构示意图;
图3是本发明实施例提供的一种车载充电/直流变换电路的结构示意图;
图4是本发明实施例提供的一种车载充电/直流变换电路中PFC电路+DC/DC电路的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合附图1-附图4,对本发明实施例提供的集成控制器的控制电路进行详细介绍。
请参见图1,为本发明实施例提供的一种集成控制器的控制电路的结构示意图。如图1所示,本发明实施例所述的控制电路1可以包括:电网10、动力电池20、切换电路30以及车载充电/直流变换电路40,其中,所述切换电路30分别与所述电网10、所述动力电池20以及所述车载充电/直流变换电路40相连接,所述切换电路用于在车辆的充电状态与行车状态之间进行切换,所述电网用于在所述充电状态时对所述车辆进行充电,所述动力电池用于在所述行车状态时对所述车辆进行供电。
其中,所述切换电路的结构请参见图2,所述切换电路包括第一开关K1、第二开关K2以及第一电阻R1,具体连接关系如下:
所述第一开关K1的第一端与所述电网的第一输出端口A1或者所述动力电池的正极相连接,所述第一开关K1的第二端与所述电网的第二输出端口 A2或者所述动力电池的负极相连接,所述第一开关K1的第三端与所述第二开关K2的一端以及所述第一电阻R1的一端相连接,所述第一开关K1的第四端与所述车载充电/直流变换电路的第一端口B1相连接,所述车载充电/直流变换电路的第二端口B2与所述第二开关K2的另一端以及所述第一电阻R1的另一端相连接。
具体的,从新能源汽车的使用状态来看,只有两个稳定状态,其一为充电状态,其二为行车状态。由于在汽车整个工作过程中电流非常大,若直接采用开关(继电器)在两个状态之间进行切换,则会有大电流冲击,从而损坏器件,因此需要一个预充过程来减少两种状态切换时的大电流冲击,可先卸负载,然后再预充电,最后完成切换,具体包括四个状态:插枪预充、充电过程、拔枪预充以及行车过程。
其中,所述插枪预充为:在给电动车等车辆插枪充电时,为避免电流冲击,需要预充电,而在预充前,所有开关(继电器)均为断开的状态,即K1=K2=0。插枪后,切换电路30与电网10相连接,即K1与A1和A2节点相连接,此时由于限流电阻R1的存在,限制了导通时的电流不会过大,实现预充电过程。预充完成后,K2吸合,即K2=1,此时充电机/变换器电路40和电网10相连接,构成车载充电机。其中,所述第一开关K1为双刀双掷开关,第二开关K2为单刀单掷开关。
充电过程:预充完成后,车载充电机正常工作,电网10作为车载充电机40的源,通过车载充电机40对输出负载进行充电,所述负载可以为动力电池,具体不限定。
拔枪预充为:在电动车等车辆充电完成后,需要把充电枪拔出,拔枪前,K2=1,K1与节点A1和A2相连接;拔枪后,首先将K2断开,即K2=0,然后将K1与节点A3和A4吸合,此时,切换电路30与动力电池20相连接,由于限流电阻R1的存在,限制了导通时的电流不会过大,实现预充电过程。预充完成后,K2吸合,即K2=1,此时,车载充电/直流变换电路40和动力电池20相连接,构成直流变换器。
行车过程:拔枪预充完成后,直流变换器正常工作,此时,动力电池作为直流变换器的源,为输出负载进行供电,整车进入行车状态。
可选的,所述第一开关K1、第二开关K2均为继电器。
请参见图3,所述车载充电/直流变换电路40包括功率因数修正转换PFC电路41和直流转换DC/DC电路42。
在一个实施例中,请参见图4所示,所述PFC电路41包括第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第五二极管D5、第一电容C1、第二电容C2、第一场效应管Q1和第一电感L1,其中:
所述第一二极管D1的阳极与所述第二二极管D2的阴极以及所述第二开关K2的另一端相连接,所述第一二极管D1的阴极与所述第三二极管D3的阴极、所述第一电容C1的一端以及所述第一电感L1的一端相连接,所述第三二极管D3的阳极与所述第四二极管D4的阴极以及所述第一开关K1的第四端相连接,所述第二二极管D2的阳极与所述第四二极管D4的阳极、所述第一电容C1的另一端、所述第一场效应管Q1的源极以及所述第二电容C2的一端相连接,所述第一电感L1的另一端与所述第一场效应管Q1的漏极以及所述第五二极管D5的阳极相连接,所述第五二极管D5的阴极与所述第二电容C2的另一端相连接。
可选的,所述DC/DC电路包括半桥谐振电路、全桥移相电路、全桥谐振电路和有源钳位电路中的至少一种。
在一个实施例中,请参见图4所示,所述DC/DC电路42包括第二场效应管Q2、第三场效应管Q3、第二电感L2、第三电感L3、第三电容C3、第四电容C4、第六二极管D6、第七二极管D7以及变压器T1,其中:
所述第二场效应管Q2的漏极与所述第五二极管D5的阴极相连接,所述第二场效应管Q2的源极与所述第三场效应管Q3的漏极以及所述第二电感L2的一端相连接,所述第三场效应管Q3的源极与所述第三电容C3的一端相连接并接地,所述第三电容C3的另一端与所述变压器T1的初级线圈的一端相连接,所述变压器T1的初级线圈的另一端与所述第二电感L2的另一端相连接,所述变压器T1的第一次级线圈的一端与所述第六二极管D6的阳极相连接,所述变压器T1的第一次级线圈的另一端与所述变压器T1的第二次级线圈的一端以及所述第四电容C4的一端相连接,所述第四电容C4的另一端与所述第三电感L3的一端相连接,所述第三电感L3的另一端与所述第六二极 管D6的阴极以及所述第七二极管D7的阴极相连接,所述第七二极管D7的阳极与所述变压器T1的第二次级线圈的另一端相连接。
在本发明中,由于在车载充电机工作时直流变换器不工作,直流变换器工作时车载充电机不工作,通过集成车载充电机和直流变换器后共用一套电路,且在该集成电路中加入切换电路就可实现车载充电机和直流变换器的切换以为车辆充电和提供行车动力,节省了元器件,降低了成本。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于实用新型所涵盖的范围。

Claims (7)

  1. 一种集成控制器的控制电路,其特征在于,包括电网、动力电池、切换电路以及车载充电/直流变换电路,其中:
    所述切换电路分别与所述电网、所述动力电池以及所述车载充电/直流变换电路相连接,所述切换电路用于在车辆的充电状态与行车状态之间进行切换;
    所述电网用于在所述充电状态时对所述车辆进行充电;
    所述动力电池用于在所述行车状态时对所述车辆进行供电。
  2. 如权利要求1所述的控制电路,其特征在于,所述切换电路包括第一开关、第二开关以及第一电阻,其中:
    所述第一开关的第一端与所述电网的第一输出端口或者所述动力电池的正极相连接,所述第一开关的第二端与所述电网的第二输出端口或者所述动力电池的负极相连接,所述第一开关的第三端与所述第二开关的一端以及所述第一电阻的一端相连接,所述第一开关的第四端与所述车载充电/直流变换电路的第一端口相连接,所述车载充电/直流变换电路的第二端口与所述第二开关的另一端以及所述第一电阻的另一端相连接。
  3. 如权利要求1所述的控制电路,其特征在于,所述车载充电/直流变换电路包括功率因数修正转换PFC电路和直流转换DC/DC电路。
  4. 如权利要求3所述的控制电路,其特征在于,所述PFC电路包括第一二极管、第二二极管、第三二极管、第四二极管、第五二极管、第一电容、第二电容、第一场效应管和第一电感,其中:
    所述第一二极管的阳极与所述第二二极管的阴极以及所述第二开关的另一端相连接,所述第一二极管的阴极与所述第三二极管的阴极、所述第一电容的一端以及所述第一电感的一端相连接,所述第三二极管的阳极与所述第四二极管的阴极以及所述第一开关的第四端相连接,所述第二二极管的阳极与所述第四二极管的阳极、所述第一电容的另一端、所述第一场效应管的源极以及所 述第二电容的一端相连接,所述第一电感的另一端与所述第一场效应管的漏极以及所述第五二极管的阳极相连接,所述第五二极管的阴极与所述第二电容的另一端相连接。
  5. 如权利要求4所述的控制电路,其特征在于,所述DC/DC电路包括第二场效应管、第三场效应管、第二电感、第三电感、第三电容、第四电容、第六二极管、第七二极管以及变压器,其中:
    所述第二场效应管的漏极与所述第五二极管的阴极相连接,所述第二场效应管的源极与所述第三场效应管的漏极以及所述第二电感的一端相连接,所述第三场效应管的源极与所述第三电容的一端相连接并接地,所述第三电容的另一端与所述变压器的初级线圈的一端相连接,所述变压器的初级线圈的另一端与所述第二电感的另一端相连接,所述变压器的第一次级线圈的一端与所述第六二极管的阳极相连接,所述变压器的第一次级线圈的另一端与所述变压器的第二次级线圈的一端以及所述第四电容的一端相连接,所述第四电容的另一端与所述第三电感的一端相连接,所述第三电感的另一端与所述第六二极管的阴极以及所述第七二极管的阴极相连接,所述第七二极管的阳极与所述变压器的第二次级线圈的另一端相连接。
  6. 如权利要求3所述的控制电路,其特征在于,所述DC/DC电路包括半桥谐振电路、全桥移相电路、全桥谐振电路和有源钳位电路中的至少一种。
  7. 如权利要求1所述的控制电路,其特征在于,所述第一开关以及所述第二开关均为继电器。
PCT/CN2016/110700 2016-12-19 2016-12-19 一种集成控制器的控制电路 WO2018112686A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680004045.3A CN107223093B (zh) 2016-12-19 2016-12-19 一种集成控制器的控制电路
PCT/CN2016/110700 WO2018112686A1 (zh) 2016-12-19 2016-12-19 一种集成控制器的控制电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110700 WO2018112686A1 (zh) 2016-12-19 2016-12-19 一种集成控制器的控制电路

Publications (1)

Publication Number Publication Date
WO2018112686A1 true WO2018112686A1 (zh) 2018-06-28

Family

ID=59927631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110700 WO2018112686A1 (zh) 2016-12-19 2016-12-19 一种集成控制器的控制电路

Country Status (2)

Country Link
CN (1) CN107223093B (zh)
WO (1) WO2018112686A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141048A (zh) * 2021-04-01 2021-07-20 联合汽车电子有限公司 车载充电机电路、车载充电器和电动汽车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016759A1 (de) * 2009-04-07 2010-10-21 Austriamicrosystems Ag Ladungsausgleichsschaltung für einen Energiespeicherblock und Verfahren zum Ladungsausgleich
KR20120069859A (ko) * 2010-12-21 2012-06-29 (주)시그넷시스템 모바일 충전 시스템
CN102935812A (zh) * 2012-09-18 2013-02-20 北京理工大学 一种具有220vac/380vac充电功能的电机驱动-充电一体化装置
CN103219764A (zh) * 2013-04-03 2013-07-24 湖南大学 一种电动汽车车载充电系统及其充电控制方法
CN203774850U (zh) * 2014-03-03 2014-08-13 同济大学 具有模式切换功能的多功能一体化电动汽车车载充电机
US8860359B2 (en) * 2009-10-09 2014-10-14 Illinois Institute Of Technology Hybrid energy storage system
CN104410126A (zh) * 2014-11-25 2015-03-11 金华职业技术学院 电动汽车车载充电机及车载dc/dc一体化集成系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580030A (zh) * 2009-06-23 2009-11-18 李岳 电动车电池供电系统
JP2014017917A (ja) * 2012-07-06 2014-01-30 Toyota Industries Corp 車載用電源装置および該装置における突入電流抑制方法
CN206520573U (zh) * 2016-12-19 2017-09-26 上海欣锐电控技术有限公司 一种集成控制器的控制电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016759A1 (de) * 2009-04-07 2010-10-21 Austriamicrosystems Ag Ladungsausgleichsschaltung für einen Energiespeicherblock und Verfahren zum Ladungsausgleich
US8860359B2 (en) * 2009-10-09 2014-10-14 Illinois Institute Of Technology Hybrid energy storage system
KR20120069859A (ko) * 2010-12-21 2012-06-29 (주)시그넷시스템 모바일 충전 시스템
CN102935812A (zh) * 2012-09-18 2013-02-20 北京理工大学 一种具有220vac/380vac充电功能的电机驱动-充电一体化装置
CN103219764A (zh) * 2013-04-03 2013-07-24 湖南大学 一种电动汽车车载充电系统及其充电控制方法
CN203774850U (zh) * 2014-03-03 2014-08-13 同济大学 具有模式切换功能的多功能一体化电动汽车车载充电机
CN104410126A (zh) * 2014-11-25 2015-03-11 金华职业技术学院 电动汽车车载充电机及车载dc/dc一体化集成系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141048A (zh) * 2021-04-01 2021-07-20 联合汽车电子有限公司 车载充电机电路、车载充电器和电动汽车
CN113141048B (zh) * 2021-04-01 2024-04-26 联合汽车电子有限公司 车载充电机电路、车载充电器和电动汽车

Also Published As

Publication number Publication date
CN107223093B (zh) 2019-12-03
CN107223093A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
TWI634721B (zh) 一種雙向車載充放電系統及其方法
TWI556995B (zh) 一種電動車行車控制系統
TWI551486B (zh) 一種電動車行車控制系統
US10847991B2 (en) Multiple bidirectional converters for charging and discharging of energy storage units
WO2021143263A1 (zh) 一种能量均衡控制装置、电池系统及其能量均衡控制方法
WO2021223321A1 (zh) 可反向预充电的三端口车载充电机
JP2016019463A (ja) パルス幅変調共振コンバータおよびこれを利用した車両用充電器
CN102306849A (zh) 一种电池的加热电路
US9954454B2 (en) DC/DC converter and electrical storage system
CN105939107A (zh) 一种混合型准开关升压dc-dc变换器
CN212463070U (zh) Dcdc变换器、车载充电装置、系统及交通工具
WO2018112686A1 (zh) 一种集成控制器的控制电路
US20170203658A1 (en) Charging control system for electric vehicle
CN116633156A (zh) Pfc侧转换电路的母线电压控制方法、系统、车辆及介质
CN212447154U (zh) 可反向预充电的三端口车载充电机
CN213007662U (zh) 充放电装置和电动车辆
CN209823488U (zh) 电动车蓄电池充电装置
CN206272294U (zh) 一种集成控制器的控制电路
CN206313485U (zh) 一种集成控制器的控制电路
CN206520573U (zh) 一种集成控制器的控制电路
CN206481071U (zh) 一种集成控制器的控制电路
CN207853765U (zh) 一种隔离式双向dc-dc电路结构
CN110635674A (zh) Dc/dc电路软启动控制方法及其电路、控制器及车载设备
US11569754B2 (en) Single-phase and three-phase compatible AC-DC conversion circuit and method of controlling charge and discharge thereof
KR102464445B1 (ko) 회로 구동의 안정성이 개선된 배터리 충전 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16924679

Country of ref document: EP

Kind code of ref document: A1