WO2018110594A1 - Liquid-crystal-display-device sealing agent, vertically conducting material, and liquid crystal display device - Google Patents

Liquid-crystal-display-device sealing agent, vertically conducting material, and liquid crystal display device Download PDF

Info

Publication number
WO2018110594A1
WO2018110594A1 PCT/JP2017/044692 JP2017044692W WO2018110594A1 WO 2018110594 A1 WO2018110594 A1 WO 2018110594A1 JP 2017044692 W JP2017044692 W JP 2017044692W WO 2018110594 A1 WO2018110594 A1 WO 2018110594A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
liquid crystal
crystal display
acrylate
formula
Prior art date
Application number
PCT/JP2017/044692
Other languages
French (fr)
Japanese (ja)
Inventor
祐美子 寺口
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2017566879A priority Critical patent/JP7127990B2/en
Priority to CN201780050677.8A priority patent/CN109643039A/en
Priority to KR1020187032367A priority patent/KR20190089721A/en
Publication of WO2018110594A1 publication Critical patent/WO2018110594A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for a liquid crystal display element that can achieve both adhesiveness and moisture permeation prevention properties of a cured product. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
  • a liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
  • a rectangular seal pattern is formed on one of the two substrates with electrodes by dispensing.
  • liquid crystal microdrops are dropped into the sealing frame of the substrate in a state where the sealing agent is uncured, the other substrate is superposed under vacuum, and the sealing portion is irradiated with light such as ultraviolet rays to perform temporary curing. Thereafter, heating is performed to perform main curing, and a liquid crystal display element is manufactured.
  • this dripping method has become the mainstream method for manufacturing liquid crystal display elements.
  • liquid crystal display elements are increasingly required to have moisture resistance reliability when driving in high-temperature and high-humidity environments, and the sealant prevents water from entering from the outside.
  • the sealant prevents water from entering from the outside.
  • the adhesion of the sealing agent to the substrate, etc. is improved, and the moisture permeability of the sealing agent is prevented. It is necessary to improve the performance.
  • a method for improving the moisture permeation preventive property of the sealing agent for example, a method of blending a filler such as talc can be considered.
  • a filler such as talc is added in this way, when a strict moisture resistance reliability test is performed, there is a problem that display unevenness occurs in the liquid crystal display element.
  • An object of this invention is to provide the sealing compound for liquid crystal display elements which can make adhesiveness and moisture permeability prevention property of hardened
  • cured material compatible. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
  • the present invention is a liquid crystal display element sealing agent containing a curable resin and a polymerization initiator and / or a thermosetting agent, and the curable resin contains a compound represented by the following formula (1). It is a sealing agent for liquid crystal display elements.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a group represented by the following formula (2-1), (2-2), or (2-3)
  • Ar represents an optionally substituted arylene group
  • X represents a ring-opened structure of a cyclic lactone
  • n represents 0 or more and 5 or less (average value)
  • Ep represents a structure derived from an epoxy compound.
  • * represents a bonding position.
  • a is an integer of 1 to 8
  • b is an integer of 1 to 8
  • c is an integer of 1 to 3
  • d is an integer of 1 to 8.
  • the present inventor has surprisingly obtained a sealing agent for a liquid crystal display element that can achieve both adhesiveness and moisture permeation preventing property of a cured product by using a compound having a specific structure as a curable resin. As a result, the present invention has been completed.
  • the reason why the adhesiveness and the moisture permeation preventive property of the cured product can be made compatible by containing the compound represented by the above formula (1) is considered as follows. Since the compound represented by the above formula (1) has a high proportion of aromatic rings in the molecule, it is considered that both the adhesion and the moisture permeation preventive property of the cured product are improved by the stacking effect. Moreover, since the side which has an epoxy group has a short distance from a center frame
  • the side having the (meth) acryloyl group is considered to contribute to the improvement of adhesion because the distance from the central skeleton to the reaction point is long.
  • the “(meth) acryloyl” means acryloyl or methacryloyl.
  • R 2 represents a group represented by the above formula (2-1), (2-2), or (2-3).
  • R 2 is preferably a group represented by the above formula (2-2).
  • 2-2 a group in which a is 2 (ethylene group) is more preferable.
  • the bond position on the methylene group side is the bond position with the (meth) acryloyloxy group in the above formula (1). It becomes.
  • Ar represents the arylene group which may be substituted.
  • the arylene group include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 1,8-naphthylene group, Examples include 2,6-naphthylene group and 2,7-naphthylene group. Of these, a 1,2-phenylene group and a 1,8-naphthylene group are preferable, and a 1,2-phenylene group is more preferable.
  • X represents a ring-opening structure of a cyclic lactone.
  • the cyclic lactone include ⁇ -undecalactone, ⁇ -caprolactone, ⁇ -decalactone, ⁇ -dodecalactone, ⁇ -nonalactone, ⁇ -nonanolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -butyrolactone, ⁇ -Butyrolactone, ⁇ -propiolactone, ⁇ -hexanolactone, 7-butyl-2-oxepanone and the like.
  • those in which the straight chain portion of the main skeleton has 5 to 7 carbon atoms when ring-opened are preferable.
  • Ep represents a structure derived from an epoxy compound.
  • the epoxy compound from which Ep is derived include, for example, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol E type epoxy compounds, bisphenol S type epoxy compounds, resorcinol type epoxy compounds, dicyclopentadiene type epoxy compounds, and naphthalene.
  • Ep is a structure derived from a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, or a bisphenol E type epoxy compound.
  • the compound represented by the above formula (1) has excellent adhesion due to a high stacking effect even when n is 0 and moisture permeation prevention property of the cured product, and when n is 1 or more and 5 or less, Since the distance from the central skeleton having the (meth) acryloyl group to the reaction point can be increased, the balance between flexibility and rigidity is better.
  • Examples of the method for producing the compound represented by the above formula (1) include the following methods. That is, a step of reacting hydroxyalkyl (meth) acrylate with an aromatic carboxylic acid anhydride by heating and stirring in the presence of a polymerization inhibitor, and adding an epoxy compound to the obtained reaction product and heating and stirring. And a step of reacting a part of the epoxy groups of the epoxy compound.
  • Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, and the like.
  • Examples of the aromatic carboxylic acid anhydride include phthalic anhydride and naphthalic anhydride.
  • polymerization inhibitor examples include hydroquinone and p-methoxyphenol.
  • the hydroxyalkyl (meth) acrylate may be partially reacted with ⁇ -caprolactone before reacting with the aromatic carboxylic acid anhydride.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the compound represented by the above formula (1) is obtained as a mixture of the compound represented by the following formula (3) and the raw material epoxy compound. That is, when using this mixture, in the sealing agent for liquid crystal display elements of the present invention, the curable resin contains a compound represented by the following formula (3).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a group represented by the following formula (4-1), (4-2), or (4-3)
  • Ar represents an optionally substituted arylene group
  • X represents a ring-opened structure of a cyclic lactone
  • m represents 0 or more and 5 or less (average value)
  • Ep represents a structure derived from an epoxy compound.
  • * represents a bonding position
  • a is an integer of 1 to 8
  • b is an integer of 1 to 8
  • c is an integer of 1 to 3
  • d is an integer of 1 to 8.
  • R 1 in the formula (3), R 2, Ar, X, and, Ep is, R 1, R 2, Ar in formula (1), X, and, Ep and the respective like Become. Also, in the above formulas (4-1) and (4-3), among the bond positions indicated by *, the bond position on the methylene group side is the bond position with the (meth) acryloyloxy group in formula (3). Become.
  • the preferable lower limit of the content of the compound represented by the formula (1) in 100 parts by weight of the curable resin is 1 part by weight, and the preferable upper limit is 35 parts by weight.
  • the content of the compound represented by the above formula (1) is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of achieving both adhesiveness and moisture permeation prevention.
  • the minimum with more preferable content of the compound represented by said Formula (1) is 5 weight part, and a more preferable upper limit is 25 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may further contain other polymerizable compounds as the curable resin as long as the object of the present invention is not impaired.
  • the other polymerizable compound is a polymerizable compound other than the compound represented by the above formula (1), the compound represented by the above (3), and the epoxy compound that is a raw material of the above formula (1), Examples thereof include an epoxy compound (hereinafter also referred to as “other epoxy compound”), a (meth) acrylic compound (hereinafter also referred to as “other (meth) acrylic compound”), and the like.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acryl compound” means a compound having a (meth) acryloyl group.
  • Examples of the other epoxy compounds include bisphenol A type epoxy resin, bisphenol S type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, and naphthalene.
  • Examples of commercially available bisphenol A type epoxy resins include jER828 and jER1001 (both manufactured by Mitsubishi Chemical Corporation). As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
  • Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (all Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
  • Examples of the other (meth) acrylic compounds include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable.
  • the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
  • the said "epoxy (meth) acrylate" represents the compound which made all the epoxy groups in an epoxy compound react with (meth) acrylic acid.
  • Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol pen
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of commercially available epoxy (meth) acrylates include, for example, an epoxy (meth) acrylate manufactured by Daicel Ornex, an epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., and an epoxy ( Examples include (meth) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
  • the epoxy (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182, KRM8076, and the like.
  • Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, epoxy ester 1600A, Epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA, and the like can be given.
  • Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
  • the urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
  • isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatophenyl) thiophosphate, tetramethylxylylene diene Isocyanate, 1,6,11-undecane triisocyanate and the like.
  • MDI diphenylmethane-4,4′-diisocyanate
  • XDI
  • isocyanate compound a chain-extended isocyanate compound obtained by a reaction between a polyol and an excess of an isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of divalent alcohol, mono (meth) acrylate or di (meth) acrylate of trivalent alcohol. And epoxy (meth) acrylate.
  • Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
  • Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • Examples of the trivalent alcohol include trimethylolethane, trimethylolpropane, and glycerin.
  • Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate.
  • urethane (meth) acrylates examples include, for example, urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like. Examples of the urethane (meth) acrylate manufactured by Toagosei include M-1100, M-1200, M-1210, and M-1600.
  • the urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
  • Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. It is done.
  • the preferable lower limit of the content of the other polymerizable compound in 100 parts by weight of the curable resin is 5 parts by weight, and the preferable upper limit is 95 parts by weight.
  • the content of the other polymerizable compound is within this range, the obtained sealing agent for a liquid crystal display element is excellent in low liquid crystal contamination while maintaining excellent adhesiveness.
  • the minimum with more preferable content of the said other polymeric compound is 10 weight part, and a more preferable upper limit is 90 weight part.
  • the sealing agent for liquid crystal display elements of this invention contains a polymerization initiator and / or a thermosetting agent.
  • the polymerization initiator include radical polymerization initiators and cationic polymerization initiators.
  • radical polymerization initiator examples include a thermal radical polymerization initiator that generates radicals by heating, a photo radical polymerization initiator that generates radicals by light irradiation, and the like.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like.
  • the radical photopolymerization initiator by BASF As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
  • the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucillin TPO.
  • the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
  • the polymer azo compound means a compound having an azo group and generating a radical capable of curing a (meth) acryloyl group by heat and having a number average molecular weight of 300 or more.
  • the preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is a value calculated
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Specific examples of the polymer azo compound include, for example, a polycondensate of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group.
  • Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.). .
  • Examples of commercially available azo compounds that are not polymers include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • a photocationic polymerization initiator is preferably used as the cationic polymerization initiator.
  • the cationic photopolymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be of an ionic photoacid generation type or a nonionic photoacid generation type. It may be.
  • photocationic polymerization initiator examples include onium salts such as aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts, organometallic complexes such as iron-allene complexes, titanocene complexes, and arylsilanol-aluminum complexes. Is mentioned.
  • photocationic polymerization initiators examples include Adekaoptomer SP-150 and Adekaoptomer SP-170 (both manufactured by ADEKA).
  • the content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is within this range, the obtained sealing agent for liquid crystal display elements is excellent in storage stability and curability while suppressing liquid crystal contamination.
  • the minimum with more preferable content of the said polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • thermosetting agent examples include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among these, solid organic acid hydrazide is preferably used.
  • Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • Examples of commercially available solid organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Nippon Finechem Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine Techno Co., and the like. Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd.
  • Examples of the organic acid hydrazide manufactured by Nippon Finechem Co., Ltd. include MDH. Examples of the organic acid hydrazide manufactured by Ajinomoto Fine Techno Co. include Amicure VDH, Amicure VDH-J, Amicure UDH, and the like.
  • thermosetting agent As for content of the said thermosetting agent, a preferable minimum is 1 weight part and a preferable upper limit is 50 weight part with respect to 100 weight part of whole curable resin. When the content of the thermosetting agent is within this range, the obtained sealing agent for a liquid crystal display element is more excellent in curability while maintaining excellent coating properties and storage stability.
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving the viscosity, further improving the adhesion due to the stress dispersion effect, improving the linear expansion coefficient, improving the moisture resistance of the cured product, and the like. preferable.
  • an inorganic filler or an organic filler can be used as the filler.
  • the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • content of the said filler is this range, effects, such as an adhesive improvement, can be exhibited more, suppressing deterioration, such as applicability
  • the minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the sealing agent for liquid crystal display elements of the present invention preferably contains a silane coupling agent for the purpose of further improving the adhesiveness.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • the silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are preferably used.
  • the minimum with preferable content of the said silane coupling agent in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part.
  • a preferable upper limit is 10 weight part.
  • the minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent.
  • the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
  • Titanium black is a substance having higher transmittance for light in the vicinity of the ultraviolet region, particularly for light with a wavelength of 370 nm to 450 nm, compared to the average transmittance for light with a wavelength of 300 nm to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • the light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
  • Examples of commercially available titanium black include titanium black manufactured by Mitsubishi Materials Corporation and titanium black manufactured by Ako Kasei Co., Ltd. Examples of the titanium black manufactured by Mitsubishi Materials include 12S, 13M, 13M-C, 13R-N, and 14M-C. Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilac D.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 ⁇ m. When the primary particle diameter of the light-shielding agent is within this range, the viscosity and thixotropy of the obtained sealing agent for liquid crystal display elements are not greatly increased, and the coating property is excellent.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm
  • the more preferable upper limit is 200 nm
  • the still more preferable lower limit is 10 nm
  • the still more preferable upper limit is 100 nm.
  • the primary particle size of the light-shielding agent can be measured using a particle size distribution meter (for example, “NICOMP 380ZLS” manufactured by PARTICLE SIZING SYSTEMS).
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the content of the light-shielding agent is within this range, the effect of improving the light-shielding property is exhibited without lowering the adhesiveness, strength after curing, and drawing property of the obtained sealing agent for liquid crystal display elements. it can.
  • the more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
  • the sealing agent for liquid crystal display elements of the present invention is further added with a stress relaxation agent, reactive diluent, thixotropic agent, spacer, curing accelerator, antifoaming agent, leveling agent, polymerization inhibitor, etc., if necessary.
  • An agent may be contained.
  • a method for producing the sealing agent for liquid crystal display elements of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, a curable resin, and a polymerization
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, a curable resin, and a polymerization
  • examples thereof include a method of mixing an initiator and / or a thermosetting agent and an additive such as a silane coupling agent added as necessary.
  • a vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention.
  • the vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the sealing agent for liquid crystal display elements of this invention can be used suitably for manufacture of the liquid crystal display element by a liquid crystal dropping method.
  • Examples of the method for producing the liquid crystal display element of the present invention by the liquid crystal dropping method include the following methods. First, a step of forming a rectangular seal pattern on the substrate by screen printing, dispenser application, or the like with the sealing agent for liquid crystal display elements of the present invention is performed. Next, the liquid crystal display element sealant or the like of the present invention is applied in an uncured state by applying liquid crystal microdroplets onto the entire surface of the transparent substrate and immediately stacking another substrate.
  • a liquid crystal display element can be obtained by performing the method.
  • the sealing compound for liquid crystal display elements which can make adhesiveness and moisture permeability prevention property of hardened
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
  • the curable resin mixture A contains a compound represented by the above formula (1), a compound represented by the above formula (3), and bisphenol A diglycidyl ether, It was confirmed that the content ratio of the compound represented by the above formula (1) was 52% by weight. Further, the compound represented by the above formula (1) contained in the curable resin mixture A is a compound in which R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, and X is ⁇ -caprolactone. It was confirmed that the ring structure, n was 1.01 (average value), and Ep was a structure derived from bisphenol A diglycidyl ether.
  • the compound represented by the above formula (3) contained in the curable resin mixture A is a compound in which R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, and X is ⁇ -caprolactone. It was confirmed that the ring structure, m was 1.01 (average value), and Ep was a structure derived from bisphenol A diglycidyl ether.
  • the curable resin mixture B contains a compound represented by the above formula (1), a compound represented by the above formula (3), and bisphenol A diglycidyl ether, It was confirmed that the content ratio of the compound represented by the above formula (1) was 48% by weight.
  • the compound represented by the above formula (1) contained in the curable resin mixture B is as follows: R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, n is 0, and Ep is bisphenol. It was confirmed that the structure was derived from A diglycidyl ether.
  • the compound represented by the above formula (3) contained in the curable resin mixture B is as follows: R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, m is 0, and Ep is bisphenol. It was confirmed that the structure was derived from A diglycidyl ether.
  • the curable resin mixture C contains a compound represented by the above formula (1), a compound represented by the above formula (3), and bisphenol F diglycidyl ether, It was confirmed that the content ratio of the compound represented by the above formula (1) was 50% by weight. Further, the compound represented by the above formula (1) contained in the curable resin mixture C is a compound in which R 1 is a hydrogen atom, R 2 is an ethylene group, Ar is a 1,8-naphthylene group, and X is ⁇ -caprolactone. It was confirmed that the ring structure, n was 4.98 (average value), and Ep was a structure derived from bisphenol F diglycidyl ether.
  • the compound represented by the above formula (3) contained in the curable resin mixture C is a compound in which R 1 is a hydrogen atom, R 2 is an ethylene group, Ar is a 1,8-naphthylene group, and X is ⁇ -caprolactone. It was confirmed that the ring structure, m was 4.98 (average value), and Ep was a structure derived from bisphenol F diglycidyl ether.
  • the curable resin mixture D contains a compound represented by the above formula (1), a compound represented by the above formula (3), and bisphenol A diglycidyl ether, It was confirmed that the content ratio of the compound represented by the above formula (1) was 53% by weight.
  • R 1 is a hydrogen atom
  • R 2 is a group represented by the above formula (2-1)
  • Ar is 1,2- It was confirmed that the phenylene group
  • X was a ring-opened structure of ⁇ -caprolactone
  • n was 1.00 (average value)
  • Ep was a structure derived from bisphenol A diglycidyl ether.
  • R 1 is a hydrogen atom
  • R 2 is a group represented by the above formula (2-1)
  • Ar is 1,2- It was confirmed that the phenylene group, X was a ring-opened structure of ⁇ -caprolactone, m was 1.00 (average value), and Ep was a structure derived from bisphenol A diglycidyl ether.
  • TN liquid crystal manufactured by Chisso Corp., “JC-5001LA”
  • JC-5001LA fine droplets of TN liquid crystal
  • the two substrates were bonded together under a reduced pressure of 5 Pa.
  • the cell after pasting was irradiated with 3000 mJ / cm 2 ultraviolet rays with a metal halide lamp, and then the sealing agent was thermally cured by heating at 120 ° C. for 60 minutes, thereby producing a liquid crystal display element.
  • the obtained liquid crystal display element was stored for 72 hours in an environment of a temperature of 80 ° C.
  • the sealing compound for liquid crystal display elements which can make adhesiveness and moisture permeability prevention property of hardened
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The purpose of the present invention is to provide a liquid-crystal-display-device sealing agent with which it is possible to achieve adhesiveness as well as prevention of moisture permeation in a cured product. The other purpose of the present invention is to provide a vertically conducting material and a liquid crystal display device that are formed by using the liquid-crystal-display-device sealing agent. The present invention is a liquid-crystal-display-device sealing agent that contains a curable resin, a polymerization initiator, and/or a thermosetting agent, wherein the curable resin contains a compound represented by formula (1). In formula (1), R1 represents a hydrogen atom or a methyl group, R2 represents a group represented by formula (2-1), (2-2), or (2-3), Ar represents an arylene group that may be substituted, X represents an open ring structure of a cyclic lactone, n is 0-5 (average value), and Ep represents a structure of epoxy compound origin. In formulas (2-1) to (2-3), * represents bonding positions; in formula (2-2), a is an integer of 1-8; and, in formula (2-3), b is an integer of 1-8, c is an integer of 1-3, and d is an integer of 1-8.

Description

液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element that can achieve both adhesiveness and moisture permeation prevention properties of a cured product. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂と光重合開始剤と熱硬化剤とを含有する光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を基板のシール枠内に滴下し、真空下で他方の基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、加熱して本硬化を行い、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method of manufacturing a liquid crystal display element such as a liquid crystal display cell, a curable resin and a light as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
In the dropping method, first, a rectangular seal pattern is formed on one of the two substrates with electrodes by dispensing. Next, liquid crystal microdrops are dropped into the sealing frame of the substrate in a state where the sealing agent is uncured, the other substrate is superposed under vacuum, and the sealing portion is irradiated with light such as ultraviolet rays to perform temporary curing. Thereafter, heating is performed to perform main curing, and a liquid crystal display element is manufactured. At present, this dripping method has become the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。
このような狭額縁設計に伴い、液晶表示素子において、画素領域からシール剤までの距離が近くなっており、シール剤によって液晶が汚染されることによる表示むらが生じやすくなっている。
By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and portable game machines are widespread, downsizing of devices is the most demanded issue. As a technique for miniaturization, there is a narrow frame of the liquid crystal display unit, and for example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
With such a narrow frame design, in the liquid crystal display element, the distance from the pixel region to the sealing agent is close, and display unevenness due to contamination of the liquid crystal by the sealing agent is likely to occur.
また、タブレット端末や携帯端末の普及に伴い、液晶表示素子には高温高湿環境下での駆動等における耐湿信頼性がますます要求されており、シール剤には外部からの水の浸入を防止する性能が一層求められている。液晶表示素子の耐湿信頼性を向上させるためには、シール剤と基板等との界面からの水の浸入を防ぐためにシール剤の基板等に対する接着性を向上させ、かつ、シール剤の透湿防止性を向上させる必要がある。シール剤の透湿防止性を向上させる方法としては、例えば、タルク等のフィラーを配合する方法が考えられる。しかしながら、このようにタルク等のフィラーを配合しても、厳しい耐湿信頼性試験を行った場合、液晶表示素子に表示むらが発生する等の問題があった。 In addition, with the spread of tablet devices and mobile devices, liquid crystal display elements are increasingly required to have moisture resistance reliability when driving in high-temperature and high-humidity environments, and the sealant prevents water from entering from the outside. There is a further demand for performance. In order to improve the moisture resistance reliability of the liquid crystal display element, in order to prevent water from entering from the interface between the sealing agent and the substrate, the adhesion of the sealing agent to the substrate, etc. is improved, and the moisture permeability of the sealing agent is prevented. It is necessary to improve the performance. As a method for improving the moisture permeation preventive property of the sealing agent, for example, a method of blending a filler such as talc can be considered. However, even when a filler such as talc is added in this way, when a strict moisture resistance reliability test is performed, there is a problem that display unevenness occurs in the liquid crystal display element.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718
本発明は、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of this invention is to provide the sealing compound for liquid crystal display elements which can make adhesiveness and moisture permeability prevention property of hardened | cured material compatible. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
本発明は、硬化性樹脂と重合開始剤及び/又は熱硬化剤とを含有する液晶表示素子用シール剤であって、上記硬化性樹脂は、下記式(1)で表される化合物を含有する液晶表示素子用シール剤である。 The present invention is a liquid crystal display element sealing agent containing a curable resin and a polymerization initiator and / or a thermosetting agent, and the curable resin contains a compound represented by the following formula (1). It is a sealing agent for liquid crystal display elements.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(1)中、Rは、水素原子又はメチル基を表し、Rは、下記式(2-1)、(2-2)、又は、(2-3)で表される基を表し、Arは、置換されていてもよいアリーレン基を表し、Xは、環状ラクトンの開環構造を表し、nは、0以上5以下(平均値)であり、Epは、エポキシ化合物由来の構造を表す。 In the formula (1), R 1 represents a hydrogen atom or a methyl group, and R 2 represents a group represented by the following formula (2-1), (2-2), or (2-3) , Ar represents an optionally substituted arylene group, X represents a ring-opened structure of a cyclic lactone, n represents 0 or more and 5 or less (average value), and Ep represents a structure derived from an epoxy compound. To express.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(2-1)~(2-3)中、*は、結合位置を表し、式(2-2)中、aは、1以上8以下の整数であり、式(2-3)中、bは、1以上8以下の整数であり、cは、1以上3以下の整数であり、dは、1以上8以下の整数である。
以下に本発明を詳述する。
In the formulas (2-1) to (2-3), * represents a bonding position. In the formula (2-2), a is an integer of 1 to 8, and in the formula (2-3) b is an integer of 1 to 8, c is an integer of 1 to 3, and d is an integer of 1 to 8.
The present invention is described in detail below.
本発明者は、驚くべきことに、硬化性樹脂として特定の構造を有する化合物を用いることにより、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤が得られることを見出し、本発明を完成させるに至った。 The present inventor has surprisingly obtained a sealing agent for a liquid crystal display element that can achieve both adhesiveness and moisture permeation preventing property of a cured product by using a compound having a specific structure as a curable resin. As a result, the present invention has been completed.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、上記式(1)で表される化合物を含有する。上記式(1)で表される化合物を含有することにより、本発明の液晶表示素子用シール剤は、接着性と硬化物の透湿防止性とを両立させることができる。
The sealing agent for liquid crystal display elements of this invention contains curable resin.
The said curable resin contains the compound represented by the said Formula (1). By containing the compound represented by the above formula (1), the sealing agent for liquid crystal display elements of the present invention can achieve both adhesiveness and moisture permeation preventive property of the cured product.
上記式(1)で表される化合物を含有することによって接着性と硬化物の透湿防止性とを両立させることができる理由としては、以下のように考えられる。
上記式(1)で表される化合物は、分子中に占める芳香環の割合が高いため、スタッキング効果により接着性と硬化物の透湿防止性との両方が向上すると考えられる。また、エポキシ基を有する側は、中心骨格から反応点までの距離が短いため硬化物の透湿防止性向上に寄与する。中心骨格から反応点までの距離が短いことで低下しやすくなる接着性は、反応基がエポキシ基であることによって向上していると考えられる。更に、(メタ)アクリロイル基を有する側は、中心骨格から反応点までの距離が長いため接着性向上に寄与するものと考えられる。
なお、本明細書において、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
The reason why the adhesiveness and the moisture permeation preventive property of the cured product can be made compatible by containing the compound represented by the above formula (1) is considered as follows.
Since the compound represented by the above formula (1) has a high proportion of aromatic rings in the molecule, it is considered that both the adhesion and the moisture permeation preventive property of the cured product are improved by the stacking effect. Moreover, since the side which has an epoxy group has a short distance from a center frame | skeleton to a reaction point, it contributes to the moisture-permeable prevention improvement of hardened | cured material. It is considered that the adhesiveness that tends to decrease when the distance from the central skeleton to the reaction point is short is improved by the fact that the reactive group is an epoxy group. Furthermore, the side having the (meth) acryloyl group is considered to contribute to the improvement of adhesion because the distance from the central skeleton to the reaction point is long.
In the present specification, the “(meth) acryloyl” means acryloyl or methacryloyl.
上記式(1)中、Rは、上記式(2-1)、(2-2)、又は、(2-3)で表される基を表す。なかでも、得られる液晶表示素子用シール剤の接着性や硬化物の柔軟性の観点から、上記Rは、上記式(2-2)で表される基であることが好ましく、上記式(2-2)におけるaが2である基(エチレン基)であることがより好ましい。
なお、上記式(2-1)及び式(2-3)において、*で示した結合位置のうち、メチレン基側の結合位置が上記式(1)における(メタ)アクリロイルオキシ基との結合位置となる。
In the above formula (1), R 2 represents a group represented by the above formula (2-1), (2-2), or (2-3). Among these, from the viewpoint of the adhesiveness of the obtained sealing agent for liquid crystal display elements and the flexibility of the cured product, R 2 is preferably a group represented by the above formula (2-2). In 2-2), a group in which a is 2 (ethylene group) is more preferable.
In the above formulas (2-1) and (2-3), among the bond positions indicated by *, the bond position on the methylene group side is the bond position with the (meth) acryloyloxy group in the above formula (1). It becomes.
上記式(1)中、Arは、置換されていてもよいアリーレン基を表す。
上記アリーレン基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、1,8-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基等が挙げられる。なかでも、1,2-フェニレン基、1,8-ナフチレン基が好ましく、1,2-フェニレン基がより好ましい。
In said formula (1), Ar represents the arylene group which may be substituted.
Examples of the arylene group include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 1,8-naphthylene group, Examples include 2,6-naphthylene group and 2,7-naphthylene group. Of these, a 1,2-phenylene group and a 1,8-naphthylene group are preferable, and a 1,2-phenylene group is more preferable.
上記式(1)中、Xは、環状ラクトンの開環構造を表す。
上記環状ラクトンとしては、例えば、γ-ウンデカラクトン、ε-カプロラクトン、γ-デカラクトン、σ-ドデカラクトン、γ-ノナラクトン、γ-ノナノラクトン、γ-バレロラクトン、σ-バレロラクトン、β-ブチロラクトン、γ-ブチロラクトン、β-プロピオラクトン、σ-ヘキサノラクトン、7-ブチル-2-オキセパノン等が挙げられる。なかでも、開環したときに主骨格の直鎖部分の炭素数が5以上7以下となるものが好ましい。
In the above formula (1), X represents a ring-opening structure of a cyclic lactone.
Examples of the cyclic lactone include γ-undecalactone, ε-caprolactone, γ-decalactone, σ-dodecalactone, γ-nonalactone, γ-nonanolactone, γ-valerolactone, σ-valerolactone, β-butyrolactone, γ -Butyrolactone, β-propiolactone, σ-hexanolactone, 7-butyl-2-oxepanone and the like. Among them, those in which the straight chain portion of the main skeleton has 5 to 7 carbon atoms when ring-opened are preferable.
式(1)中、Epはエポキシ化合物由来の構造を表す。
上記Epの由来となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールS型エポキシ化合物、レゾルシノール型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。
なかでも、上記式(1)で表される化合物は、EpがビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、又は、ビスフェノールE型エポキシ化合物由来の構造であることが好ましい。
In formula (1), Ep represents a structure derived from an epoxy compound.
Examples of the epoxy compound from which Ep is derived include, for example, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol E type epoxy compounds, bisphenol S type epoxy compounds, resorcinol type epoxy compounds, dicyclopentadiene type epoxy compounds, and naphthalene. Type epoxy compounds, rubber-modified epoxy compounds, glycidyl ester compounds, and the like.
Especially, as for the compound represented by the said Formula (1), it is preferable that Ep is a structure derived from a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, or a bisphenol E type epoxy compound.
上記式(1)で表される化合物は、nが0であっても高いスタッキング効果により優れた接着性及び硬化物の透湿防止性を有し、nが1以上5以下である場合は、(メタ)アクリロイル基を有する側の中心骨格から反応点までの距離をより長くできるため、柔軟性と剛直性とのバランスがより良いものとなる。 The compound represented by the above formula (1) has excellent adhesion due to a high stacking effect even when n is 0 and moisture permeation prevention property of the cured product, and when n is 1 or more and 5 or less, Since the distance from the central skeleton having the (meth) acryloyl group to the reaction point can be increased, the balance between flexibility and rigidity is better.
上記式(1)で表される化合物を製造する方法としては、例えば、以下の方法等が挙げられる。即ち、ヒドロキシアルキル(メタ)アクリレートと、芳香族カルボン酸無水物とを、重合禁止剤の存在下で加熱撹拌すること等により反応させる工程と、得られた反応物にエポキシ化合物を加えて加熱撹拌すること等により該エポキシ化合物の一部のエポキシ基を反応させる工程とを有する方法等が挙げられる。
上記ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。
上記芳香族カルボン酸無水物としては、例えば、無水フタル酸、ナフタル酸無水物等が挙げられる。
上記重合禁止剤としては、例えば、ハイドロキノン、p-メトキシフェノール等が挙げられる。
上記ヒドロキシアルキル(メタ)アクリレートは、上記芳香族カルボン酸無水物と反応させる前に一部をε-カプロラクトンと反応させていてもよい。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
Examples of the method for producing the compound represented by the above formula (1) include the following methods. That is, a step of reacting hydroxyalkyl (meth) acrylate with an aromatic carboxylic acid anhydride by heating and stirring in the presence of a polymerization inhibitor, and adding an epoxy compound to the obtained reaction product and heating and stirring. And a step of reacting a part of the epoxy groups of the epoxy compound.
Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, and the like.
Examples of the aromatic carboxylic acid anhydride include phthalic anhydride and naphthalic anhydride.
Examples of the polymerization inhibitor include hydroquinone and p-methoxyphenol.
The hydroxyalkyl (meth) acrylate may be partially reacted with ε-caprolactone before reacting with the aromatic carboxylic acid anhydride.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate.
上述した製造方法で製造した場合、上記式(1)で表される化合物は、下記式(3)で表されている化合物と原料のエポキシ化合物との混合物として得られる。即ち、該混合物を用いる場合、本発明の液晶表示素子用シール剤において、上記硬化性樹脂は、下記式(3)で表される化合物を含有する。 When manufactured by the above-described manufacturing method, the compound represented by the above formula (1) is obtained as a mixture of the compound represented by the following formula (3) and the raw material epoxy compound. That is, when using this mixture, in the sealing agent for liquid crystal display elements of the present invention, the curable resin contains a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(3)中、Rは、水素原子又はメチル基を表し、Rは、下記式(4-1)、(4-2)、又は、(4-3)で表される基を表し、Arは、置換されていてもよいアリーレン基を表し、Xは、環状ラクトンの開環構造を表し、mは、0以上5以下(平均値)であり、Epは、エポキシ化合物由来の構造を表す。 In the formula (3), R 1 represents a hydrogen atom or a methyl group, and R 2 represents a group represented by the following formula (4-1), (4-2), or (4-3) , Ar represents an optionally substituted arylene group, X represents a ring-opened structure of a cyclic lactone, m represents 0 or more and 5 or less (average value), and Ep represents a structure derived from an epoxy compound. To express.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(4-1)~(4-3)中、*は、結合位置を表し、式(4-2)中、aは、1以上8以下の整数であり、式(4-3)中、bは、1以上8以下の整数であり、cは、1以上3以下の整数であり、dは、1以上8以下の整数である。 In the formulas (4-1) to (4-3), * represents a bonding position, and in the formula (4-2), a is an integer of 1 to 8, and in the formula (4-3), b is an integer of 1 to 8, c is an integer of 1 to 3, and d is an integer of 1 to 8.
なお、上記式(3)中のR、R、Ar、X、及び、Epは、上記式(1)中のR、R、Ar、X、及び、Epとそれぞれ同様のものとなる。
また、上記式(4-1)及び式(4-3)において、*で示した結合位置のうち、メチレン基側の結合位置が式(3)における(メタ)アクリロイルオキシ基との結合位置となる。
Incidentally, R 1 in the formula (3), R 2, Ar, X, and, Ep is, R 1, R 2, Ar in formula (1), X, and, Ep and the respective like Become.
Also, in the above formulas (4-1) and (4-3), among the bond positions indicated by *, the bond position on the methylene group side is the bond position with the (meth) acryloyloxy group in formula (3). Become.
上記硬化性樹脂100重量部中における上記式(1)で表される化合物の含有量の好ましい下限は1重量部、好ましい上限は35重量部である。上記式(1)で表される化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が接着性と透湿防止性とを両立する効果により優れるものとなる。上記式(1)で表される化合物の含有量のより好ましい下限は5重量部、より好ましい上限は25重量部である。 The preferable lower limit of the content of the compound represented by the formula (1) in 100 parts by weight of the curable resin is 1 part by weight, and the preferable upper limit is 35 parts by weight. When the content of the compound represented by the above formula (1) is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of achieving both adhesiveness and moisture permeation prevention. The minimum with more preferable content of the compound represented by said Formula (1) is 5 weight part, and a more preferable upper limit is 25 weight part.
本発明の液晶表示素子用シール剤は、本発明の目的を阻害しない範囲において、上記硬化性樹脂として、更に、その他の重合性化合物を含有してもよい。
上記その他の重合性化合物は、上記式(1)で表される化合物、上記(3)で表される化合物、及び、上記式(1)の原料となるエポキシ化合物以外の重合性化合物であり、例えば、エポキシ化合物(以下、「その他のエポキシ化合物」ともいう)、(メタ)アクリル化合物(以下、「その他の(メタ)アクリル化合物」ともいう)等が挙げられる。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味する。
The sealing agent for liquid crystal display elements of the present invention may further contain other polymerizable compounds as the curable resin as long as the object of the present invention is not impaired.
The other polymerizable compound is a polymerizable compound other than the compound represented by the above formula (1), the compound represented by the above (3), and the epoxy compound that is a raw material of the above formula (1), Examples thereof include an epoxy compound (hereinafter also referred to as “other epoxy compound”), a (meth) acrylic compound (hereinafter also referred to as “other (meth) acrylic compound”), and the like.
In the present specification, the “(meth) acryl” means acryl or methacryl, and the “(meth) acryl compound” means a compound having a (meth) acryloyl group.
上記その他のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the other epoxy compounds include bisphenol A type epoxy resin, bisphenol S type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, and naphthalene. Type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, Examples include rubber-modified epoxy resins and glycidyl ester compounds.
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828、jER1001(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy resins include jER828 and jER1001 (both manufactured by Mitsubishi Chemical Corporation).
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (all Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
また、上記硬化性樹脂は、上記その他のエポキシ化合物として部分(メタ)アクリル変性エポキシ樹脂を含有してもよい。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中に1つ以上のエポキシ基と1つ以上の(メタ)アクリロイル基とを有する化合物を意味し、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
Moreover, the said curable resin may contain a partial (meth) acryl modified epoxy resin as said other epoxy compound.
In the present specification, the partial (meth) acryl-modified epoxy resin means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in one molecule. It can be obtained by reacting an epoxy group of a part of an epoxy compound having two or more epoxy groups therein with (meth) acrylic acid.
上記その他の(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から、1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Examples of the other (meth) acrylic compounds include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable. The (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule from the viewpoint of reactivity.
In addition, in this specification, the said "epoxy (meth) acrylate" represents the compound which made all the epoxy groups in an epoxy compound react with (meth) acrylic acid.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxy Til (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2 -Butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofur Furyl (meth) acrylate, ethyl carbitol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) ) Acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, 2- (meth) acrylic Examples include leuoxyethyl phosphate and glycidyl (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, poly Lopylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol Dicyclopentadienyl di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol Di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol (Meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Further, among the above (meth) acrylic acid ester compounds, those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、上述したその他のエポキシ化合物と同様のものを用いることができる。 As an epoxy compound used as a raw material for synthesize | combining the said epoxy (meth) acrylate, the thing similar to the other epoxy compound mentioned above can be used.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182、KRM8076等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Examples of commercially available epoxy (meth) acrylates include, for example, an epoxy (meth) acrylate manufactured by Daicel Ornex, an epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., and an epoxy ( Examples include (meth) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation.
The epoxy (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182, KRM8076, and the like.
Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 and the like.
Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, epoxy ester 1600A, Epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA, and the like can be given.
Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
上記ウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
上記イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatophenyl) thiophosphate, tetramethylxylylene diene Isocyanate, 1,6,11-undecane triisocyanate and the like.
また、上記イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
As the isocyanate compound, a chain-extended isocyanate compound obtained by a reaction between a polyol and an excess of an isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of divalent alcohol, mono (meth) acrylate or di (meth) acrylate of trivalent alcohol. And epoxy (meth) acrylate.
Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
Examples of the trivalent alcohol include trimethylolethane, trimethylolpropane, and glycerin.
Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Examples of commercially available urethane (meth) acrylates include, for example, urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
Examples of the urethane (meth) acrylate manufactured by Toagosei include M-1100, M-1200, M-1210, and M-1600.
The urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
Examples of the urethane (meth) acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN- 7100, Art Resin UN-9000A, Art Resin UN-9000H, and the like.
Examples of the urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A, and the like.
Examples of the urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, and UA-306T. It is done.
上記その他の(メタ)アクリル化合物は、液晶汚染を抑制する観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The other (meth) acrylic compounds preferably have a hydrogen bonding unit such as —OH group, —NH— group, —NH 2 group, etc. from the viewpoint of suppressing liquid crystal contamination.
上記硬化性樹脂100重量部中における上記その他の重合性化合物の含有量の好ましい下限は5重量部、好ましい上限は95重量部である。上記その他の重合性化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が、優れた接着性を維持しつつ、低液晶汚染性により優れるものとなる。上記その他の重合性化合物の含有量のより好ましい下限は10重量部、より好ましい上限は90重量部である。 The preferable lower limit of the content of the other polymerizable compound in 100 parts by weight of the curable resin is 5 parts by weight, and the preferable upper limit is 95 parts by weight. When the content of the other polymerizable compound is within this range, the obtained sealing agent for a liquid crystal display element is excellent in low liquid crystal contamination while maintaining excellent adhesiveness. The minimum with more preferable content of the said other polymeric compound is 10 weight part, and a more preferable upper limit is 90 weight part.
本発明の液晶表示素子用シール剤は、重合開始剤及び/又は熱硬化剤を含有する。
上記重合開始剤としては、例えば、ラジカル重合開始剤やカチオン重合開始剤等が挙げられる。
The sealing agent for liquid crystal display elements of this invention contains a polymerization initiator and / or a thermosetting agent.
Examples of the polymerization initiator include radical polymerization initiators and cationic polymerization initiators.
上記ラジカル重合開始剤としては、加熱によりラジカルを発生する熱ラジカル重合開始剤、光照射によりラジカルを発生する光ラジカル重合開始剤等が挙げられる。 Examples of the radical polymerization initiator include a thermal radical polymerization initiator that generates radicals by heating, a photo radical polymerization initiator that generates radicals by light irradiation, and the like.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。 Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、BASF社製の光ラジカル重合開始剤、東京化成工業社製の光ラジカル重合開始剤等が挙げられる。
上記BASF社製の光ラジカル重合開始剤としては、例えば、IRGACURE 184、IRGACURE 369、IRGACURE 379、IRGACURE 651、IRGACURE 819、IRGACURE 907、IRGACURE 2959、IRGACURE OXE01、ルシリンTPO等が挙げられる。
上記東京化成工業社製の光ラジカル重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
Examples of the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucillin TPO.
Examples of the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ化合物とは、アゾ基を有し、熱によって(メタ)アクリロイル基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example. Among these, an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymer azo compound means a compound having an azo group and generating a radical capable of curing a (meth) acryloyl group by heat and having a number average molecular weight of 300 or more.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo compound is within this range, it can be easily mixed with a curable resin while suppressing liquid crystal contamination. The more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物として市販されているものとしては、例えば、V-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable.
Specific examples of the polymer azo compound include, for example, a polycondensate of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group.
Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.). .
Examples of commercially available azo compounds that are not polymers include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記カチオン重合開始剤としては、光カチオン重合開始剤が好適に用いられる。
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生タイプのものであってもよいし、非イオン性光酸発生タイプであってもよい。
As the cationic polymerization initiator, a photocationic polymerization initiator is preferably used.
The cationic photopolymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be of an ionic photoacid generation type or a nonionic photoacid generation type. It may be.
上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホニウム塩等のオニウム塩類、鉄-アレン錯体、チタノセン錯体、アリールシラノール-アルミニウム錯体等の有機金属錯体類等が挙げられる。 Examples of the photocationic polymerization initiator include onium salts such as aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts, organometallic complexes such as iron-allene complexes, titanocene complexes, and arylsilanol-aluminum complexes. Is mentioned.
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトマーSP-150、アデカオプトマーSP-170(いずれもADEKA社製)等が挙げられる。 Examples of commercially available photocationic polymerization initiators include Adekaoptomer SP-150 and Adekaoptomer SP-170 (both manufactured by ADEKA).
上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や硬化性により優れるものとなる。上記重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is within this range, the obtained sealing agent for liquid crystal display elements is excellent in storage stability and curability while suppressing liquid crystal contamination. The minimum with more preferable content of the said polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。 Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among these, solid organic acid hydrazide is preferably used.
上記固形の有機酸ヒドラジドとしては、例えば、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記固形の有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、日本ファインケム社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記日本ファインケム社製の有機酸ヒドラジドとしては、例えば、MDH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH-J、アミキュアUDH等が挙げられる。
Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
Examples of commercially available solid organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Nippon Finechem Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine Techno Co., and the like.
Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
Examples of the organic acid hydrazide manufactured by Nippon Finechem Co., Ltd. include MDH.
Examples of the organic acid hydrazide manufactured by Ajinomoto Fine Techno Co. include Amicure VDH, Amicure VDH-J, Amicure UDH, and the like.
上記熱硬化剤の含有量は、硬化性樹脂全体100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が優れた塗布性や保存安定性を維持したまま、硬化性により優れるものとなる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 As for content of the said thermosetting agent, a preferable minimum is 1 weight part and a preferable upper limit is 50 weight part with respect to 100 weight part of whole curable resin. When the content of the thermosetting agent is within this range, the obtained sealing agent for a liquid crystal display element is more excellent in curability while maintaining excellent coating properties and storage stability. The upper limit with more preferable content of the said thermosetting agent is 30 weight part.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による更なる接着性の向上、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有することが好ましい。 The sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving the viscosity, further improving the adhesion due to the stress dispersion effect, improving the linear expansion coefficient, improving the moisture resistance of the cured product, and the like. preferable.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
As the filler, an inorganic filler or an organic filler can be used.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles.
本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等の悪化を抑制しつつ、接着性の向上等の効果をより発揮することができる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When content of the said filler is this range, effects, such as an adhesive improvement, can be exhibited more, suppressing deterioration, such as applicability | paintability. The minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
本発明の液晶表示素子用シール剤は、接着性を更に向上させることを目的として、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等が好適に用いられる。
The sealing agent for liquid crystal display elements of the present invention preferably contains a silane coupling agent for the purpose of further improving the adhesiveness. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are preferably used.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果をより発揮することができる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The minimum with preferable content of the said silane coupling agent in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness can be further exhibited while suppressing the occurrence of liquid crystal contamination. The minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent. By containing the said light shielding agent, the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
上記チタンブラックは、波長300nm以上800nm以下の光に対する平均透過率と比較して、紫外線領域付近、特に波長370nm以上450nm以下の光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。 Titanium black is a substance having higher transmittance for light in the vicinity of the ultraviolet region, particularly for light with a wavelength of 370 nm to 450 nm, compared to the average transmittance for light with a wavelength of 300 nm to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. A shading agent. The light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、三菱マテリアル社製のチタンブラック、赤穂化成社製のチタンブラック等が挙げられる。
上記三菱マテリアル社製のチタンブラックとしては、例えば、12S、13M、13M-C、13R-N、14M-C等が挙げられる。
上記赤穂化成社製のチタンブラックとしては、例えば、ティラックD等が挙げられる。
Examples of commercially available titanium black include titanium black manufactured by Mitsubishi Materials Corporation and titanium black manufactured by Ako Kasei Co., Ltd.
Examples of the titanium black manufactured by Mitsubishi Materials include 12S, 13M, 13M-C, 13R-N, and 14M-C.
Examples of the titanium black manufactured by Ako Kasei Co., Ltd. include Tilac D.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferred lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferred lower limit is 1 Ω · cm, and the more preferred upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の粘度やチクソトロピーが大きく増大することなく、塗布性により優れるものとなる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、粒度分布計(例えば、PARTICLE SIZING SYSTEMS社製、「NICOMP 380ZLS」)を用いて測定することができる。
The primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 μm. When the primary particle diameter of the light-shielding agent is within this range, the viscosity and thixotropy of the obtained sealing agent for liquid crystal display elements are not greatly increased, and the coating property is excellent. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
The primary particle size of the light-shielding agent can be measured using a particle size distribution meter (for example, “NICOMP 380ZLS” manufactured by PARTICLE SIZING SYSTEMS).
本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の接着性、硬化後の強度、及び、描画性が低下することなく、遮光性を向上させる効果をより発揮できる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, the effect of improving the light-shielding property is exhibited without lowering the adhesiveness, strength after curing, and drawing property of the obtained sealing agent for liquid crystal display elements. it can. The more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention is further added with a stress relaxation agent, reactive diluent, thixotropic agent, spacer, curing accelerator, antifoaming agent, leveling agent, polymerization inhibitor, etc., if necessary. An agent may be contained.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealing agent for liquid crystal display elements of the present invention, for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, a curable resin, and a polymerization Examples thereof include a method of mixing an initiator and / or a thermosetting agent and an additive such as a silane coupling agent added as necessary.
本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention. The vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。 The liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
本発明の液晶表示素子用シール剤は、液晶滴下工法による液晶表示素子の製造に好適に用いることができる。
液晶滴下工法によって本発明の液晶表示素子を製造する方法としては、例えば、以下の方法等が挙げられる。
まず、基板に本発明の液晶表示素子用シール剤等をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤等が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに別の基板を重ね合わせる工程を行う。その後、本発明の液晶表示素子用シール剤等のシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を行う方法により、液晶表示素子を得ることができる。
The sealing agent for liquid crystal display elements of this invention can be used suitably for manufacture of the liquid crystal display element by a liquid crystal dropping method.
Examples of the method for producing the liquid crystal display element of the present invention by the liquid crystal dropping method include the following methods.
First, a step of forming a rectangular seal pattern on the substrate by screen printing, dispenser application, or the like with the sealing agent for liquid crystal display elements of the present invention is performed. Next, the liquid crystal display element sealant or the like of the present invention is applied in an uncured state by applying liquid crystal microdroplets onto the entire surface of the transparent substrate and immediately stacking another substrate. Thereafter, a step of irradiating the seal pattern portion of the sealant for the liquid crystal display element of the present invention with light such as ultraviolet rays to temporarily cure the sealant, and a step of heating and temporarily curing the temporarily cured sealant A liquid crystal display element can be obtained by performing the method.
本発明によれば、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which can make adhesiveness and moisture permeability prevention property of hardened | cured material compatible can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(硬化性樹脂混合物Aの作製)
反応フラスコに、2-ヒドロキシエチルメタクリレート59重量部と、ε-カプロラクトン57重量部と、重合禁止剤としてハイドロキノン0.2重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した後、無水フタル酸74重量部を加えて更に5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂混合物Aを得た。
H-NMR及び13C-NMRにより、硬化性樹脂混合物Aは、上記式(1)で表される化合物、上記式(3)で表される化合物、及び、ビスフェノールAジグリシジルエーテルを含み、上記式(1)で表される化合物の含有割合が52重量%であることを確認した。また、硬化性樹脂混合物Aに含まれる上記式(1)で表される化合物は、Rがメチル基、Rがエチレン基、Arが1,2-フェニレン基、Xがε-カプロラクトンの開環構造、nが1.01(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。更に、硬化性樹脂混合物Aに含まれる上記式(3)で表される化合物は、Rがメチル基、Rがエチレン基、Arが1,2-フェニレン基、Xがε-カプロラクトンの開環構造、mが1.01(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。
(Preparation of curable resin mixture A)
To the reaction flask, 59 parts by weight of 2-hydroxyethyl methacrylate, 57 parts by weight of ε-caprolactone and 0.2 parts by weight of hydroquinone as a polymerization inhibitor were added and stirred at 90 ° C. for 5 hours using a mantle heater. 74 parts by weight of phthalic anhydride was added and further stirred for 5 hours. Next, 170 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin mixture A.
By 1 H-NMR and 13 C-NMR, the curable resin mixture A contains a compound represented by the above formula (1), a compound represented by the above formula (3), and bisphenol A diglycidyl ether, It was confirmed that the content ratio of the compound represented by the above formula (1) was 52% by weight. Further, the compound represented by the above formula (1) contained in the curable resin mixture A is a compound in which R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, and X is ε-caprolactone. It was confirmed that the ring structure, n was 1.01 (average value), and Ep was a structure derived from bisphenol A diglycidyl ether. Further, the compound represented by the above formula (3) contained in the curable resin mixture A is a compound in which R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, and X is ε-caprolactone. It was confirmed that the ring structure, m was 1.01 (average value), and Ep was a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂混合物Bの作製)
反応フラスコに、2-ヒドロキシエチルメタクリレート59重量部と、無水フタル酸74重量部と、重合禁止剤としてp-メトキシフェノール0.2重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂混合物Bを得た。
H-NMR及び13C-NMRにより、硬化性樹脂混合物Bは、上記式(1)で表される化合物、上記式(3)で表される化合物、及び、ビスフェノールAジグリシジルエーテルを含み、上記式(1)で表される化合物の含有割合が48重量%であることを確認した。また、硬化性樹脂混合物Bに含まれる上記式(1)で表される化合物は、Rがメチル基、Rがエチレン基、Arが1,2-フェニレン基、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。更に、硬化性樹脂混合物Bに含まれる上記式(3)で表される化合物は、Rがメチル基、Rがエチレン基、Arが1,2-フェニレン基、mが0、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。
(Preparation of curable resin mixture B)
In a reaction flask, 59 parts by weight of 2-hydroxyethyl methacrylate, 74 parts by weight of phthalic anhydride, and 0.2 parts by weight of p-methoxyphenol as a polymerization inhibitor are added, and stirred at 90 ° C. for 5 hours using a mantle heater. did. Next, 170 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin mixture B.
According to 1 H-NMR and 13 C-NMR, the curable resin mixture B contains a compound represented by the above formula (1), a compound represented by the above formula (3), and bisphenol A diglycidyl ether, It was confirmed that the content ratio of the compound represented by the above formula (1) was 48% by weight. In addition, the compound represented by the above formula (1) contained in the curable resin mixture B is as follows: R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, n is 0, and Ep is bisphenol. It was confirmed that the structure was derived from A diglycidyl ether. Further, the compound represented by the above formula (3) contained in the curable resin mixture B is as follows: R 1 is a methyl group, R 2 is an ethylene group, Ar is a 1,2-phenylene group, m is 0, and Ep is bisphenol. It was confirmed that the structure was derived from A diglycidyl ether.
(硬化性樹脂混合物Cの作製)
反応フラスコに、2-ヒドロキシエチルアクリレート59重量部と、ε-カプロラクトン285重量部と、重合禁止剤としてp-メトキシフェノール0.3重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した後、ナフタル酸無水物99重量部を加えて更に5時間撹拌した。次いで、得られた反応物にビスフェノールFジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂混合物Cを得た。
H-NMR及び13C-NMRにより、硬化性樹脂混合物Cは、上記式(1)で表される化合物、上記式(3)で表される化合物、及び、ビスフェノールFジグリシジルエーテルを含み、上記式(1)で表される化合物の含有割合が50重量%であることを確認した。また、硬化性樹脂混合物Cに含まれる上記式(1)で表される化合物は、Rが水素原子、Rがエチレン基、Arが1,8-ナフチレン基、Xがε-カプロラクトンの開環構造、nが4.98(平均値)、EpがビスフェノールFジグリシジルエーテル由来の構造であることを確認した。更に、硬化性樹脂混合物Cに含まれる上記式(3)で表される化合物は、Rが水素原子、Rがエチレン基、Arが1,8-ナフチレン基、Xがε-カプロラクトンの開環構造、mが4.98(平均値)、EpがビスフェノールFジグリシジルエーテル由来の構造であることを確認した。
(Preparation of curable resin mixture C)
To the reaction flask, 59 parts by weight of 2-hydroxyethyl acrylate, 285 parts by weight of ε-caprolactone and 0.3 parts by weight of p-methoxyphenol as a polymerization inhibitor were added, and the mixture was stirred at 90 ° C. for 5 hours using a mantle heater. After that, 99 parts by weight of naphthalic anhydride was added and further stirred for 5 hours. Next, 170 parts by weight of bisphenol F diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin mixture C.
By 1 H-NMR and 13 C-NMR, the curable resin mixture C contains a compound represented by the above formula (1), a compound represented by the above formula (3), and bisphenol F diglycidyl ether, It was confirmed that the content ratio of the compound represented by the above formula (1) was 50% by weight. Further, the compound represented by the above formula (1) contained in the curable resin mixture C is a compound in which R 1 is a hydrogen atom, R 2 is an ethylene group, Ar is a 1,8-naphthylene group, and X is ε-caprolactone. It was confirmed that the ring structure, n was 4.98 (average value), and Ep was a structure derived from bisphenol F diglycidyl ether. Further, the compound represented by the above formula (3) contained in the curable resin mixture C is a compound in which R 1 is a hydrogen atom, R 2 is an ethylene group, Ar is a 1,8-naphthylene group, and X is ε-caprolactone. It was confirmed that the ring structure, m was 4.98 (average value), and Ep was a structure derived from bisphenol F diglycidyl ether.
(硬化性樹脂混合物Dの作製)
反応フラスコに、2-ヒドロキシ-3-フェノキシプロピルアクリレート101重量部と、ε-カプロラクトン57重量部と、重合禁止剤としてハイドロキノン0.2重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した後、無水フタル酸74重量部を加えて更に5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル170重量部を加え、90℃で5時間撹拌することにより、硬化性樹脂混合物Dを得た。
H-NMR及び13C-NMRにより、硬化性樹脂混合物Dは、上記式(1)で表される化合物、上記式(3)で表される化合物、及び、ビスフェノールAジグリシジルエーテルを含み、上記式(1)で表される化合物の含有割合が53重量%であることを確認した。また、硬化性樹脂混合物Dに含まれる上記式(1)で表される化合物は、Rが水素原子、Rが上記式(2-1)で表される基、Arが1,2-フェニレン基、Xがε-カプロラクトンの開環構造、nが1.00(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。更に、硬化性樹脂混合物Dに含まれる上記式(3)で表される化合物は、Rが水素原子、Rが上記式(2-1)で表される基、Arが1,2-フェニレン基、Xがε-カプロラクトンの開環構造、mが1.00(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。
(Preparation of curable resin mixture D)
To the reaction flask, 101 parts by weight of 2-hydroxy-3-phenoxypropyl acrylate, 57 parts by weight of ε-caprolactone and 0.2 parts by weight of hydroquinone as a polymerization inhibitor were added, and the mixture was heated at 90 ° C. for 5 hours using a mantle heater. After stirring, 74 parts by weight of phthalic anhydride was added and further stirred for 5 hours. Next, 170 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, and the mixture was stirred at 90 ° C. for 5 hours to obtain a curable resin mixture D.
According to 1 H-NMR and 13 C-NMR, the curable resin mixture D contains a compound represented by the above formula (1), a compound represented by the above formula (3), and bisphenol A diglycidyl ether, It was confirmed that the content ratio of the compound represented by the above formula (1) was 53% by weight. Further, in the compound represented by the above formula (1) contained in the curable resin mixture D, R 1 is a hydrogen atom, R 2 is a group represented by the above formula (2-1), Ar is 1,2- It was confirmed that the phenylene group, X was a ring-opened structure of ε-caprolactone, n was 1.00 (average value), and Ep was a structure derived from bisphenol A diglycidyl ether. Further, in the compound represented by the above formula (3) contained in the curable resin mixture D, R 1 is a hydrogen atom, R 2 is a group represented by the above formula (2-1), Ar is 1,2- It was confirmed that the phenylene group, X was a ring-opened structure of ε-caprolactone, m was 1.00 (average value), and Ep was a structure derived from bisphenol A diglycidyl ether.
(プロポキシ化部分アクリル変性ビスフェノールA型エポキシ樹脂の作製)
反応フラスコに、2-ヒドロキシエチルアクリレート58重量部と、プロピレンオキサイド変性ビスフェノールAジグリシジルエーテル380重量部と、重合禁止剤としてハイドロキノン0.2重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌し、プロポキシ化部分アクリル変性ビスフェノールA型エポキシ樹脂を得た。
H-NMR及び13C-NMRにより、得られたプロポキシ化部分アクリル変性ビスフェノールA型エポキシ樹脂は、エポキシ当量が385であることを確認した。
(Production of propoxylated partially acrylic-modified bisphenol A type epoxy resin)
To the reaction flask, 58 parts by weight of 2-hydroxyethyl acrylate, 380 parts by weight of propylene oxide-modified bisphenol A diglycidyl ether, and 0.2 parts by weight of hydroquinone as a polymerization inhibitor were added, and the mixture was heated at 90 ° C. using a mantle heater. The mixture was stirred for a time to obtain a propoxylated partially acrylic modified bisphenol A type epoxy resin.
It was confirmed by 1 H-NMR and 13 C-NMR that the obtained propoxylated partially acrylic-modified bisphenol A type epoxy resin had an epoxy equivalent of 385.
(実施例1~7、比較例1、2)
表1に記載された配合比に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて撹拌した後、セラミック3本ロールにて均一に混合して実施例1~7、比較例1、2の液晶表示素子用シール剤を得た。
(Examples 1 to 7, Comparative Examples 1 and 2)
In accordance with the blending ratio described in Table 1, each material was stirred with a planetary stirrer (“Shinky Co., Ltd.,“ Awatori Netaro ”), and then uniformly mixed with a ceramic three roll. To 7, Comparative Example 1 and 2 sealing agents for liquid crystal display elements were obtained.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Table 1.
(接着性)
実施例及び比較例で得られた各液晶表示素子用シール剤に、シリカスペーサー(積水化学工業社製、「SI-H055」)を1重量%配合し、2枚のITO薄膜付きガラス基板(25×45mm)のうちの一方に微小滴下した。これにもう一方のITO薄膜付きガラス基板を十字状に貼り合わせ、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって接着性試験片を得た。作製した接着試験片における基板の端部を半径5mmの金属円柱を使って5mm/minの速度で押し込んだときに、パネル剥がれが起こる際の強度を測定した。得られた測定値(kgf)をシール直径(cm)で除した値が、3.0kgf/cm以上であった場合を「◎」、2.5kgf/cm以上3.0kgf/cm未満であった場合を「○」、2.5kgf/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
1% by weight of a silica spacer (“SI-H055” manufactured by Sekisui Chemical Co., Ltd.) was added to each of the sealing agents for liquid crystal display elements obtained in Examples and Comparative Examples, and two glass substrates with an ITO thin film (25 × 45 mm) was finely dropped. The other glass substrate with an ITO thin film was bonded to this in a cross shape, irradiated with 3000 mJ / cm 2 ultraviolet rays with a metal halide lamp, and then heated at 120 ° C. for 60 minutes to obtain an adhesive test piece. When the edge part of the board | substrate in the produced adhesion test piece was pushed in at a speed | rate of 5 mm / min using the metal cylinder with a radius of 5 mm, the intensity | strength in case panel peeling occurred was measured. The value obtained by dividing the obtained measured value (kgf) by the seal diameter (cm) was 3.0 kgf / cm or more, “◎”, 2.5 kgf / cm or more and less than 3.0 kgf / cm The case was evaluated as “◯” and the case where it was less than 2.5 kgf / cm was evaluated as “×”.
(透湿防止性)
実施例及び比較例で得られた各液晶表示素子用シール剤を、平滑な離型フィルム上にコーターを用いて厚さ200μm以上300μm以下となるように塗布した。次いで、メタルハライドランプを用いて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって透湿度測定用フィルムを得た。JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準じた方法で透湿度試験用カップを作製し、得られた透湿度測定用フィルムを取り付け、温度80℃湿度90%RHの恒温恒湿オーブンに投入して透湿度を測定した。得られた透湿度の値が、50g/m・24hr未満であった場合を「◎」、50g/m・24hr以上60g/m・24hr未満であった場合を「○」、60g/m・24hr以上70g/m・24hr未満であった場合を「△」、70g/m・24hr以上であった場合を「×」として透湿防止性を評価した。
(Moisture permeability prevention)
Each sealing agent for liquid crystal display elements obtained in Examples and Comparative Examples was applied on a smooth release film so as to have a thickness of 200 μm or more and 300 μm or less using a coater. Subsequently, after irradiating 3000 mJ / cm < 2 > of ultraviolet-rays using a metal halide lamp, the film for moisture permeability measurement was obtained by heating at 120 degreeC for 60 minutes. A moisture permeability test cup was prepared by a method according to JIS Z 0208 for moisture-proof packaging materials (cup method), the obtained moisture permeability measurement film was attached, and the temperature was 80 ° C. and humidity was 90% RH. The moisture permeability was measured by putting in a constant humidity oven. The case where the obtained moisture permeability value is less than 50 g / m 2 · 24 hr is “◎”, and the case where it is 50 g / m 2 · 24 hr or more and less than 60 g / m 2 · 24 hr is “◯”, 60 g / m m 2 · 24 hr or more 70 g / m where the a was less than 2 · 24 hr or "△", was evaluated anti-moisture permeability as "×" the case was 70g / m 2 · 24hr or more.
(液晶表示素子の表示性能)
実施例及び比較例で得られた各液晶表示素子用シール剤に、シリカスペーサー(積水化学工業社製、「SI-H055」)を1重量%配合し、脱泡処理をしてシール剤中の泡を取り除いた後、ディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、再び脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いて、2枚のITO薄膜付きガラス基板のうちの一方に枠を描く様にシール剤を塗布した。続いて、TN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にてシール剤の枠内に滴下塗布し、他方のITO薄膜付きガラス基板を重ね、真空貼り合わせ装置にて5Paの減圧下にて2枚の基板を貼り合わせた。貼り合わせた後のセルにメタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによってシール剤を熱硬化させ、液晶表示素子を作製した。得られた液晶表示素子を温度80℃、湿度90%RHの環境下にて72時間保管した後、AC3.5Vの電圧駆動をさせ、表示むら(色むら)の有無を目視で観察した。液晶表示素子の周辺部に表示むらが全く見られなかった場合を「◎」、少し薄い表示むらが見えた場合を「○」、はっきりとした濃い表示むらがあった場合を「△」、はっきりとした濃い表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として液晶表示素子の表示性能を評価した。
なお、評価が「◎」、「○」の液晶表示素子は実用に全く問題のないレベルである。
(Display performance of liquid crystal display elements)
In each of the sealing agents for liquid crystal display elements obtained in Examples and Comparative Examples, 1% by weight of a silica spacer (“SI-H055” manufactured by Sekisui Chemical Co., Ltd.) is blended, defoamed, After removing the foam, it was filled into a syringe for dispensing (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.), and defoamed again. Next, using a dispenser (“SHOTMASTER 300” manufactured by Musashi Engineering Co., Ltd.), a sealing agent was applied so as to draw a frame on one of the two glass substrates with an ITO thin film. Subsequently, fine droplets of TN liquid crystal (manufactured by Chisso Corp., “JC-5001LA”) are dropped onto the sealant frame using a liquid crystal dropping device, and the other glass substrate with an ITO thin film is stacked on the vacuum bonding device. The two substrates were bonded together under a reduced pressure of 5 Pa. The cell after pasting was irradiated with 3000 mJ / cm 2 ultraviolet rays with a metal halide lamp, and then the sealing agent was thermally cured by heating at 120 ° C. for 60 minutes, thereby producing a liquid crystal display element. The obtained liquid crystal display element was stored for 72 hours in an environment of a temperature of 80 ° C. and a humidity of 90% RH, and then driven with a voltage of AC 3.5 V, and the presence or absence of display unevenness (color unevenness) was visually observed. “◎” indicates that no display unevenness is observed at the periphery of the liquid crystal display element, “○” indicates that display is slightly thin, and “△” indicates that there is clear dark display unevenness. The display performance of the liquid crystal display element was evaluated as “x” when the dark display unevenness was extended not only to the peripheral part but also to the central part.
Note that the liquid crystal display elements with the evaluations “◎” and “で” are at a level that causes no problem in practical use.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
本発明によれば、接着性と硬化物の透湿防止性とを両立させることができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which can make adhesiveness and moisture permeability prevention property of hardened | cured material compatible can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Claims (6)

  1. 硬化性樹脂と重合開始剤及び/又は熱硬化剤とを含有する液晶表示素子用シール剤であって、
    前記硬化性樹脂は、下記式(1)で表される化合物を含有する
    ことを特徴とする液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、Rは、水素原子又はメチル基を表し、Rは、下記式(2-1)、(2-2)、又は、(2-3)で表される基を表し、Arは、置換されていてもよいアリーレン基を表し、Xは、環状ラクトンの開環構造を表し、nは、0以上5以下(平均値)であり、Epは、エポキシ化合物由来の構造を表す。
    Figure JPOXMLDOC01-appb-C000002
    式(2-1)~(2-3)中、*は、結合位置を表し、式(2-2)中、aは、1以上8以下の整数であり、式(2-3)中、bは、1以上8以下の整数であり、cは、1以上3以下の整数であり、dは、1以上8以下の整数である。
    A sealing agent for a liquid crystal display element comprising a curable resin and a polymerization initiator and / or a thermosetting agent,
    The said curable resin contains the compound represented by following formula (1), The sealing compound for liquid crystal display elements characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R 1 represents a hydrogen atom or a methyl group, and R 2 represents a group represented by the following formula (2-1), (2-2), or (2-3) , Ar represents an optionally substituted arylene group, X represents a ring-opened structure of a cyclic lactone, n represents 0 or more and 5 or less (average value), and Ep represents a structure derived from an epoxy compound. To express.
    Figure JPOXMLDOC01-appb-C000002
    In the formulas (2-1) to (2-3), * represents a bonding position. In the formula (2-2), a is an integer of 1 to 8, and in the formula (2-3) b is an integer of 1 to 8, c is an integer of 1 to 3, and d is an integer of 1 to 8.
  2. 硬化性樹脂100重量部中に式(1)で表される化合物を1重量部以上35重量部以下含有することを特徴とする請求項1記載の液晶表示素子用シール剤。 The sealing compound for liquid crystal display elements according to claim 1, wherein the compound represented by the formula (1) is contained in an amount of 1 to 35 parts by weight in 100 parts by weight of the curable resin.
  3. 硬化性樹脂は、下記式(3)で表される化合物を含有することを特徴とする請求項1又は2記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000003
    式(3)中、Rは、水素原子又はメチル基を表し、Rは、下記式(4-1)、(4-2)、又は、(4-3)で表される基を表し、Arは、置換されていてもよいアリーレン基を表し、Xは、環状ラクトンの開環構造を表し、mは、0以上5以下(平均値)であり、Epは、エポキシ化合物由来の構造を表す。
    Figure JPOXMLDOC01-appb-C000004
    式(4-1)~(4-3)中、*は、結合位置を表し、式(4-2)中、aは、1以上8以下の整数であり、式(4-3)中、bは、1以上8以下の整数であり、cは、1以上3以下の整数であり、dは、1以上8以下の整数である。
    The sealing agent for liquid crystal display elements according to claim 1 or 2, wherein the curable resin contains a compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    In the formula (3), R 1 represents a hydrogen atom or a methyl group, and R 2 represents a group represented by the following formula (4-1), (4-2), or (4-3) , Ar represents an optionally substituted arylene group, X represents a ring-opened structure of a cyclic lactone, m represents 0 or more and 5 or less (average value), and Ep represents a structure derived from an epoxy compound. To express.
    Figure JPOXMLDOC01-appb-C000004
    In the formulas (4-1) to (4-3), * represents a bonding position, and in the formula (4-2), a is an integer of 1 to 8, and in the formula (4-3), b is an integer of 1 to 8, c is an integer of 1 to 3, and d is an integer of 1 to 8.
  4. 遮光剤を含有することを特徴とする請求項1、2又は3記載の液晶表示素子用シール剤。 The sealing agent for liquid crystal display elements according to claim 1, 2 or 3, further comprising a light shielding agent.
  5. 請求項1、2、3又は4記載の液晶表示素子用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the sealing agent for liquid crystal display elements according to claim 1, and conductive fine particles.
  6. 請求項1、2、3若しくは4記載の液晶表示素子用シール剤又は請求項5記載の上下導通材料を用いてなることを特徴とする液晶表示素子。 A liquid crystal display element comprising the sealant for a liquid crystal display element according to claim 1, 2, 3, or 4, or the vertical conduction material according to claim 5.
PCT/JP2017/044692 2016-12-15 2017-12-13 Liquid-crystal-display-device sealing agent, vertically conducting material, and liquid crystal display device WO2018110594A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017566879A JP7127990B2 (en) 2016-12-15 2017-12-13 Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
CN201780050677.8A CN109643039A (en) 2016-12-15 2017-12-13 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element
KR1020187032367A KR20190089721A (en) 2016-12-15 2017-12-13 A sealing agent for a liquid crystal display element, an upper and lower conductive material, and a liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-243428 2016-12-15
JP2016243428 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110594A1 true WO2018110594A1 (en) 2018-06-21

Family

ID=62558908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044692 WO2018110594A1 (en) 2016-12-15 2017-12-13 Liquid-crystal-display-device sealing agent, vertically conducting material, and liquid crystal display device

Country Status (5)

Country Link
JP (1) JP7127990B2 (en)
KR (1) KR20190089721A (en)
CN (1) CN109643039A (en)
TW (1) TWI832810B (en)
WO (1) WO2018110594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087774A (en) * 2018-11-28 2020-06-04 東洋インキScホールディングス株式会社 display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120998A1 (en) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
WO2016017026A1 (en) * 2014-08-01 2016-02-04 Dic株式会社 Liquid crystal display device
WO2016190398A1 (en) * 2015-05-28 2016-12-01 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
WO2002092718A1 (en) 2001-05-16 2002-11-21 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays
JP2005025156A (en) * 2003-06-10 2005-01-27 Sekisui Chem Co Ltd Hardening resin composition for liquid crystal display device, sealing agent for liquid crystal display device, end-sealing agent for liquid crystal display device, vertical conducting material for liquid crystal display device, and liquid crystal display device
KR101049998B1 (en) * 2006-09-07 2011-07-19 미쓰이 가가쿠 가부시키가이샤 Liquid crystal sealing agent, method for manufacturing liquid crystal display panel using the liquid crystal sealing agent, and liquid crystal display panel
CN101864244B (en) * 2010-06-29 2013-02-13 张家港顺昌化工有限公司 Electron beam curing polyurethane coating for pre-coating coiled material and preparation process thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120998A1 (en) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
WO2016017026A1 (en) * 2014-08-01 2016-02-04 Dic株式会社 Liquid crystal display device
WO2016190398A1 (en) * 2015-05-28 2016-12-01 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087774A (en) * 2018-11-28 2020-06-04 東洋インキScホールディングス株式会社 display

Also Published As

Publication number Publication date
CN109643039A (en) 2019-04-16
TW201835138A (en) 2018-10-01
JP7127990B2 (en) 2022-08-30
JPWO2018110594A1 (en) 2019-10-24
TWI832810B (en) 2024-02-21
KR20190089721A (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP5827752B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JPWO2017119406A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6263317B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6978314B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6097454B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7160907B2 (en) Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element
WO2018062166A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP7127990B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JP6078698B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6928177B2 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
TWI846852B (en) Curable resin composition, sealant for liquid crystal display element, upper and lower conductive material and liquid crystal display element
JP2019184730A (en) Liquid crystal display element sealant, epoxy compound, method of manufacturing epoxy compound, vertical conduction material, and liquid crystal display element
JP2016218447A (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2018128158A1 (en) Sealant for liquid crystal display element, vertically conductive material, and liquid crystal display element
JPWO2018230655A1 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JPWO2017119407A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2018116928A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017566879

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032367

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879794

Country of ref document: EP

Kind code of ref document: A1