WO2018110325A1 - エンジンの排気装置 - Google Patents

エンジンの排気装置 Download PDF

Info

Publication number
WO2018110325A1
WO2018110325A1 PCT/JP2017/043297 JP2017043297W WO2018110325A1 WO 2018110325 A1 WO2018110325 A1 WO 2018110325A1 JP 2017043297 W JP2017043297 W JP 2017043297W WO 2018110325 A1 WO2018110325 A1 WO 2018110325A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
opening
exhaust
gpf
Prior art date
Application number
PCT/JP2017/043297
Other languages
English (en)
French (fr)
Inventor
拓 倉増
啓史 北畠
保 高群
寿章 加茂
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201780077191.3A priority Critical patent/CN110073088A/zh
Priority to US16/469,899 priority patent/US10835865B2/en
Priority to EP17881214.5A priority patent/EP3550116B1/en
Priority to JP2018556574A priority patent/JP6729721B2/ja
Publication of WO2018110325A1 publication Critical patent/WO2018110325A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/18Dimensional characteristics of gas chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • This disclosure relates to an engine exhaust device.
  • a plurality of catalysts for purifying exhaust gas have been arranged in series upstream of an exhaust path having a high exhaust gas temperature of an automobile engine such as a diesel engine or a gasoline engine.
  • the first exhaust gas processing unit is formed such that the side surface of the second exhaust gas processing unit and at least 50% of the upstream end side of the first exhaust gas processing unit form an overlap.
  • a second exhaust gas processing unit are disposed in a substantially vertical direction.
  • an object of the present disclosure is to provide a compact exhaust system excellent in catalyst utilization efficiency, function / performance, and control device mountability in an engine exhaust system equipped with a plurality of catalysts.
  • the curved shape of the inner wall of a connection member that connects the first catalyst and the second catalyst is adjusted, and the first catalyst
  • the flow of exhaust gas flowing into the second catalyst is made uniform.
  • an engine exhaust apparatus is disposed on an exhaust path of the engine, and a first catalyst for purifying exhaust gas exhausted from the engine, and the first catalyst
  • a tubular connection member that connects the first opening portion on the upstream side in the exhaust gas flow direction, the second opening portion on the downstream side in the exhaust gas flow direction, the first opening portion, and the first opening portion.
  • a bent portion connecting the two openings, a downstream end surface side of the first catalyst is connected to the first opening, and an upstream end surface side of the second catalyst is the second opening.
  • the downstream end surface of the first catalyst, and the first catalyst The upstream end surface of the catalyst forms a dihedral angle of 60 degrees or more and 120 degrees or less with each other, and a part of the upstream end surface of the second catalyst is close to and faces a part of the side surface of the first catalyst.
  • the bent portion of the connecting member includes a first wall portion facing the downstream end surface of the first catalyst and a second wall portion facing the upstream end surface of the second catalyst.
  • a connector portion that connects the first wall portion and the second wall portion with a predetermined radius of curvature, and the first wall portion has a first shape when the second opening portion is viewed from the front.
  • a curved portion formed so as to bend with a curvature radius of one wall portion is provided, wherein the first wall curvature radius is larger than the predetermined curvature radius.
  • the first wall portion and the second wall portion have a first wall portion radius of curvature larger than a predetermined radius of curvature of the connector portion between the first wall portion and the second wall portion. Is formed. Thereby, the tendency for the exhaust gas that has passed through the first catalyst to flow along the wall surface of the first wall portion is higher than the wall surface of the connector portion between the first wall portion and the second wall portion.
  • the flow of the exhaust gas flowing into the second catalyst as it is is reduced, while reaching the first wall portion, along the curved wall surface of the first wall portion, the top portion of the connection member.
  • the secondary flow of the exhaust gas that is entrained in the space between the first catalyst and the second catalyst from at least one of the side and the bottom side increases, and the exhaust gas diffuses into the exhaust member.
  • the flow rate of the exhaust gas as a whole is reduced, the amount of inflow into the overlapped portion is increased, the flow of exhaust gas flowing into the second catalyst can be made uniform, and the exhaust device can be made more compact. As a result, it is possible to improve the utilization efficiency, function and performance of the catalyst, and the mountability of the control device.
  • the first catalyst is inserted into the connecting member from the downstream end face side through the first opening, and the second catalyst is inserted from the upstream end face side. It is inserted into the connection member through the second opening.
  • the second technique by inserting the first catalyst and the second catalyst into the connection member, compared to the case where the first catalyst and the second catalyst are connected to the upstream end and the downstream end of the connection member,
  • the flange portion for connection can be omitted, which can contribute to a compact exhaust device.
  • the position of the central axis of the first catalyst is below a plane including the central axis of the second catalyst and parallel to the central axis of the first catalyst.
  • the bending portion is formed on the bottom side of the connection member.
  • the exhaust gas that has passed through the first catalyst is caused to flow upwardly along the wall surface of the curved portion of the first wall portion formed on the bottom side of the connection member. Can do.
  • the exhaust gas can be diffused into the exhaust member to increase the amount of exhaust gas flowing into the overlapping portion, and the flow of the exhaust gas flowing into the second catalyst can be made uniform.
  • a fourth technique further includes an exhaust manifold arranged close to the upper side of the first catalyst in the third technique, and the bottom of the connection member and the second catalyst bottom of the second catalyst are connected to each other. It is formed in a straight line so that vehicle parts can be arranged close to each other below the bottom of the member and the bottom of the second catalyst.
  • the exhaust device can be effectively made compact by disposing the exhaust manifold above the first catalyst provided slightly below the central axis of the second catalyst. Further, by forming the bottom portion of the connecting member and the second catalyst bottom portion in a straight line, vehicle parts such as a power split device can be arranged close to each other below the connecting member and the second catalyst, so that a more compact vehicle Layout becomes possible.
  • a pedestal for attaching the detection means is provided on the top side of the connection member.
  • the exhaust gas that has passed through the first catalyst diffuses into the connecting member and flows into the second catalyst. At this time, the exhaust gas that has passed through the first catalyst hardly reaches the top of the connecting member directly, and the secondary flow of the exhaust gas that winds up along the wall surface of the curved portion of the first wall portion. As a result, exhaust gas diffuses. If it does so, the exhaust gas which is sufficient quantity for detecting the temperature of exhaust gas, a component concentration, a pressure, etc., and the flow velocity fell to the ceiling part side of a connection member will diffuse. According to the fifth technique, it is possible to ensure stable detection accuracy by providing the pedestal portion on the top side of the connection member and arranging the detection means.
  • a sixth technique is any one of the first to fifth techniques, wherein the connection member includes a first connection member provided with a part of the first opening and the second opening; A second connection member provided with another part of the second opening, and the first wall part and the second wall part are provided in the second connection member.
  • connection member having a complicated shape can be accurately formed by dividing the connection member into the first connection member and the second connection member. Further, by forming the first wall portion and the second wall portion for guiding the exhaust gas flow in the second connecting member, a smooth wall surface can be obtained without forming a divided portion in these wall portions, and the exhaust gas Flow disturbance can be suppressed. And since the part by the side of the 1st opening part in a 2nd opening part is connected via the curved part wall surface of the steep curve shape from a 1st opening part, it is easy to concentrate stress on the said curved part wall surface. . By forming the dividing positions of the first connecting member and the second connecting member so as to avoid such positions where stress is likely to concentrate, the durability of the connecting member can be ensured.
  • FIG. 1 is a side view schematically showing a state in which the exhaust emission control device according to the first embodiment is attached to an engine.
  • FIG. 2 is a schematic plan view of FIG.
  • FIG. 3 is a side view showing the exhaust emission control device of FIG. 1.
  • FIG. 4 is a plan view of a catalyst device portion in the exhaust purification device of FIG.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a diagram schematically showing the flow of exhaust gas in FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 1 is a side view schematically showing a state in which the exhaust emission control device according to the first embodiment is attached to an engine.
  • FIG. 2 is a schematic plan view of FIG.
  • FIG. 3 is a side view showing the
  • FIG. 10 is a view of the connecting pipe with the three-way catalyst inserted from the second opening side.
  • FIG. 11 is a diagram schematically showing the flow of exhaust gas in FIG.
  • FIG. 12 is a perspective view of the connecting pipe as viewed from the upper left front.
  • FIG. 13 is a view of the GPF downstream end portion as viewed from the front.
  • FIG. 14 is a perspective view showing a layout of the exhaust emission control apparatus according to the first embodiment.
  • 15 is a diagram schematically showing the flow of exhaust gas when the second wall curvature radius of the bent portion of the connecting pipe is increased in the arrangement of the three-way catalyst and GPF in FIG.
  • the engine E to which the exhaust emission control device 1 (engine exhaust device) according to the first embodiment is applied is an in-line four-cylinder gasoline engine mounted on an automobile.
  • the engine E is placed horizontally in front of the FF vehicle.
  • the engine to which the exhaust emission control device 1 according to the first embodiment is applied is not limited to a four-cylinder gasoline engine, but can be applied to other multi-cylinder engines and diesel engines. Further, the present invention is not limited to FF vehicles, and can be applied to vehicles adopting various layouts including motorcycles such as FR vehicles, MR vehicles, RR vehicles, 4WD vehicles, and the like.
  • the engine E includes a cylinder block E1 and a cylinder head E2.
  • the first to fourth cylinders constituted by the cylinder block E1 and the cylinder head E2 are sequentially arranged in series in a direction perpendicular to the paper surface of FIG.
  • a combustion chamber is formed for each cylinder by the cylinder bore of the cylinder block E1, the piston, and the cylinder head E2.
  • the cylinder head E2 has four exhaust ports (not shown) connected to the four combustion chambers. Exhaust gas generated in the combustion chamber is discharged out of the vehicle through an exhaust path including the exhaust port.
  • the exhaust purification apparatus 1 As shown in FIGS. 1 and 2, the exhaust purification apparatus 1 according to the present embodiment is connected to the exhaust port described above, and a downstream exhaust gas passage (not shown) extending to the outside of the vehicle further downstream. It is connected.
  • the exhaust path to which the exhaust purification device 1 is applied in this way is configured by the above-described exhaust port, the exhaust purification device 1, and the downstream side exhaust gas passage.
  • the exhaust purification device 1 includes an exhaust manifold M connected to four exhaust ports of the engine E, and a connection portion N connected to an outlet of the exhaust manifold M. And a catalytic device Q connected to the outlet of the connecting portion N.
  • the exhaust manifold M is for collecting exhaust gases discharged from the four combustion chambers through the exhaust ports, and independent exhaust pipes connected to the four exhaust ports are gathered on the right side. It has a configuration.
  • the exhaust gas collected in the exhaust manifold M is sent to the catalyst device Q via the connection portion N connected to the outlet of the exhaust manifold M.
  • the connecting portion N is a tubular member for guiding the exhaust gas sent from the exhaust manifold M disposed on the upper side of the catalyst device Q to the catalyst device Q.
  • the connection portion N is an L-shaped tubular member curved from the upper side to the left side.
  • the “vertical direction” and “front-rear direction” refer to the engine E as a reference
  • the cylinder head E2 side is the upper side
  • the cylinder block E1 side is the lower side
  • the engine E side as shown in FIG. Is the front side and the exhaust manifold M side is the rear side.
  • the “left-right direction” refers to the cylinder arrangement direction based on the engine E, in other words, perpendicular to the paper surface of FIG. 1, and the front side is the left side and the back side is the right side. It shall be the direction.
  • “upstream” and “downstream” are based on the flow direction of the exhaust gas discharged from the combustion chamber through the exhaust port.
  • the “front-rear direction” is parallel to the GPF central axis L3 of a gasoline particulate filter 3 (hereinafter referred to as “GPF3”) as a second catalyst, which will be described later, as shown in FIG. It has become.
  • GPF3 gasoline particulate filter 3
  • the catalyst device Q includes a three-way catalyst 2 as a first catalyst connected to the outlet of the connection portion N, a GPF 3 as a second catalyst arranged on the downstream side thereof, A connecting pipe 4 as a connecting member for connecting the three-way catalyst 2 and the GPF 3, a GPF downstream end 7 provided at the downstream end downstream of the GPF 3, and an exhaust provided at the tip of the GPF downstream end 7 A gas outlet 5 and an EGR outlet 6 are provided.
  • the three-way catalyst 2 is a catalyst for purifying hydrocarbon HC, carbon monoxide CO, and nitrogen oxide NOx in the exhaust gas. Although the detailed description is omitted, the three-way catalyst 2 is a catalyst formed by coating a honeycomb carrier with a catalyst component formed by supporting a noble metal such as Pt, Pd, Rh on a support material made of a metal oxide. Etc.
  • the three-way catalyst 2 is not particularly limited, and any known catalyst can be used.
  • the three-way catalyst 2 is a cylindrical catalyst having a three-way catalyst central axis L2, as shown in FIGS.
  • the shape of the three-way catalyst 2 is not particularly limited, but is preferably a cylindrical shape from the viewpoint of being easily disposed in the exhaust path and obtaining a uniform exhaust gas flow.
  • the shape of the cross section perpendicular to the three-way catalyst central axis L2 is not particularly limited, and any shape such as a perfect circle, an ellipse, a rectangle, or a polygon can be adopted, but a uniform exhaust gas From the viewpoint of obtaining a flow and reducing the manufacturing cost, it is preferably a perfect circle or ellipse.
  • the upstream end face of the three-way catalyst 2 is the three-way catalyst upstream end face 2A (upstream end face of the first catalyst), and the downstream end face is the three-way catalyst downstream end face 2B (first catalyst end face). Downstream end face).
  • the three-way catalyst upstream end surface 2A and the three-way catalyst downstream end surface 2B are circular with the same diameter.
  • the three-way catalyst 2 is a catalyst main body for purifying exhaust gas, and includes a front stage portion 21 disposed on the upstream side and a rear stage portion 22 disposed on the downstream side. Is a two-stage configuration.
  • the front stage 21 is a three-way catalyst excellent in low-temperature activity that purifies low-temperature exhaust gas during low-load operation of the engine E.
  • the rear stage 22 is a three-way catalyst excellent in high-temperature activity that purifies high-temperature exhaust gas during high-load operation or the like.
  • the three-way catalyst 2 has a two-stage configuration including the front stage portion 21 and the rear stage portion 22, but is not limited to this, and may have a single catalyst configuration, Further, it may be a multistage configuration divided into three or more.
  • H21 / H22 is about 1.
  • the length ratio H21 / H22 of the front stage portion 21 and the rear stage portion 22 can be changed according to the type of the engine E or the like. It is 50 or more and 2.0 or less, More preferably, it is 0.75 or more and 1.25 or less.
  • the front stage 21 is a catalyst suitable for exhaust gas purification when the exhaust gas temperature is low, the influence of heat damage due to exposure to high-temperature exhaust gas is increased.
  • the front stage portion 21 By projecting the front stage portion 21 from the connection pipe 4 to the outside, the high temperature exhaust gas diffused in the connection pipe 4 is not exposed even during high load operation or the like. Deterioration can be effectively prevented, and the risk of heat damage to the entire three-way catalyst 2 can be reduced.
  • the entire front stage 21 may protrude from the connection pipe 4 or only a part thereof. Further, the protrusion amount can be adjusted according to the length H21 of the front stage portion 21. From the viewpoint of preventing heat damage of the catalyst having excellent low-temperature activity, the amount of protrusion of the front part 21 is preferably 50% to 100%, more preferably 60% to 95%, particularly preferably the length H21 of the front part. Is 70% or more and 90% or less.
  • latter stage part 22 when providing the back
  • the entire rear stage portion 22 may be inserted into the connecting pipe 4 from the viewpoint of making the exhaust purification device 1 compact. preferable.
  • the three-way catalyst 2 includes a catalyst mat 23 that covers the entire outer periphery of the front stage portion 21 and the rear stage portion 22 as a catalyst body, and a catalyst case 24 that covers the entire outer periphery of the catalyst mat 23. It has.
  • the exhaust gas temperature is a low gas temperature of around 400 ° C. at a light load, while it becomes a high gas temperature of around 800 ° C. at a high load. Then, the three-way catalyst 2 itself is always exposed to the high-temperature exhaust gas that has passed through the three-way catalyst 2, which may cause the three-way catalyst 2 to deteriorate due to heat damage.
  • the catalyst mat 23 is for stably holding the front stage portion 21 and the rear stage portion 22 as the catalyst body even in an environment exposed to high-temperature exhaust gas.
  • the catalyst mat 23 has high heat resistance and heat retention such as ceramic. It is made of a material having properties.
  • the thickness depends on the size of the three-way catalyst 2, the material of the catalyst mat 23, and the like, and is not particularly limited. However, from the viewpoint of preventing heat damage of the three-way catalyst 2, for example, 2.0 mm or more. It can be set to 8.0 mm or less, preferably 3.0 mm to 5.0 mm, more preferably 3.6 mm to 4.0 mm. If it is thinner than 2.0 mm, it tends to be difficult to obtain sufficient holding performance, heat resistance, and heat retaining performance. If it is thicker than 8.0 mm, the manufacturing cost may increase, and a space for mounting a control device may be secured. May be difficult.
  • the catering case 24 is for holding the front-stage part 21 and the rear-stage part 22 of the three-way catalyst 2 and the catalyst mat 23, and is made of metal such as iron or stainless steel.
  • metal such as iron or stainless steel.
  • known ones may be used as the catalyst mat 23 and the catalyst case 24.
  • the GPF 3 is disposed on the downstream side of the three-way catalyst 2 and is a filter for trapping particulate matter (hereinafter referred to as “PM”) in the exhaust gas that has passed through the three-way catalyst 2.
  • PM particulate matter
  • a honeycomb carrier or the like is sealed and a filter function is added, and a catalyst coat is applied to promote combustion of PM deposited on the filter.
  • PM in the exhaust gas is adsorbed on the surface of the partition wall of GPF3, and when PM is deposited, for example, post injection for injecting fuel is performed after main injection to raise the PM combustion temperature, and PM deposited on GPF3 is incinerated and removed.
  • GPF3 is not particularly limited, and any known one can be used.
  • GPF3 is a cylindrical catalyst having a GPF central axis L3 as shown in FIGS.
  • the shape of the GPF 3 is not particularly limited, but is preferably cylindrical from the viewpoint of easy arrangement in the exhaust path and obtaining a uniform exhaust gas flow.
  • the shape of the cross section perpendicular to the GPF central axis L3 is not particularly limited, and any shape such as a perfect circle, an ellipse, a rectangle, or a polygon can be adopted. From the viewpoint of obtaining and reducing the manufacturing cost, it is preferably a perfect circle or ellipse.
  • the end face on the upstream side of GPF 3 is GPF upstream end face 3A (upstream end face of the second catalyst), and the end face on the downstream side is GPF downstream end face 3B (downstream end face of the second catalyst).
  • the GPF upstream end surface 3A and the GPF downstream end surface 3B are circular with the same diameter.
  • the GPF 3 includes a GPF catalyst body for exhaust gas purification, a GPF catalyst mat covering the entire outer periphery of the GPF catalyst body, and a GPF catalyst covering the entire outer periphery of the GPF catalyst mat. And a case.
  • the GPF catalyst mat and the GPF catalyst case are used for the same purpose as the above-described catalyst mat 23 and the catalyst case 24, and those having the same configuration can be used.
  • the connecting pipe 4 is a tubular member for connecting the three-way catalyst 2 and the GPF 3 and forms a part of the exhaust path.
  • the connecting pipe 4 includes an upstream first opening 4A, a downstream second opening 4B, and a bent portion that connects the first opening 4A and the second opening 4B. 4C.
  • the three-way catalyst 2 is inserted into the connecting pipe 4 from the three-way catalyst downstream end face 2B side through the first opening 4A.
  • the GPF 3 is inserted into the connecting pipe 4 from the GPF upstream end face 3A side through the second opening 4B. Inserting the three-way catalyst 2 and the GPF 3 into the connecting pipe 4 provides a connecting flange portion and the like at the upstream end and downstream end of the connecting pipe 4 as compared with the case where the three-way catalyst 2 and the GPF 3 are connected. Since it becomes unnecessary and a flange part etc. can be abbreviate
  • FIG. 9 is a view showing a cross section IX-IX in FIG. is there.
  • the section shown in FIG. 9 is hereinafter referred to as “IX-IX section” (longitudinal section).
  • a line indicated by reference sign PL32 in FIG. 9 indicates a plane including the GPF central axis L3 of the GPF 3 and parallel to the three-way catalyst central axis L2 of the three-way catalyst 2.
  • the position of the three-way catalyst central axis L2 of the three-way catalyst 2 is lower than the plane PL32, that is, the GPF central axis L3 of GPF3.
  • the exhaust manifold M can be disposed above the three-way catalyst 2, and the exhaust purification device 1 can be disposed compactly in the vehicle.
  • the three-way catalyst downstream end surface 2B of the three-way catalyst 2 and the GPF upstream end surface 3A of the GPF 3 are arranged so that the dihedral angle ⁇ is about 90 degrees in the bent portion 4C. ing.
  • the dihedral angle ⁇ is not limited to this angle, but from the viewpoint of sufficiently securing the exhaust gas flow from the three-way catalyst 2 to the GPF 3, it is preferably 60 degrees or more and 120 degrees or less, more preferably It is 70 degrees or more and 110 degrees or less, Most preferably, they are 80 degrees or more and 100 degrees or less.
  • the GPF upstream end surface 3A of the GPF 3 is partially covered with the side surface of the three-way catalyst 2 to form an overlapping portion 31.
  • the overlapping portion 31 is a part of the GPF upstream end face 3 ⁇ / b> A of the GPF 3 disposed so as to be close to and face a part of the side surface of the three-way catalyst 2.
  • FIG. 5 is a view showing a VV cross section in FIG. 3, and is a view of a cross section including the three-way catalyst central axis L2 of the three-way catalyst 2 and parallel to the GPF central axis L3 of the GPF 3 as viewed from above. .
  • the cross section shown in FIG. 5 is hereinafter referred to as “VV cross section” (cross section).
  • VV cross section cross section
  • the length H31 of the side surface of the three-way catalyst 2 forming the overlapping portion 31 on the VV cross section is the exhaust gas in the GPF 3 while the three-way catalyst 2 and the GPF 3 are arranged in a compact manner.
  • the total length H2 of the three-way catalyst 2 is preferably 10% or more and less than 50%.
  • the length H31 of the side surface of the three-way catalyst 2 is determined from the viewpoint of making the exhaust gas flow in the GPF 3 uniform while arranging the three-way catalyst 2 and the GPF 3 compactly in the VV cross section of FIG.
  • the width W3 is preferably 10% or more and less than 50%.
  • the exhaust gas purification is achieved by forming the overlapping portion 31 of the first catalyst and the GPF 3 while keeping the range below the above range.
  • the apparatus 1 can be made compact, and the utilization efficiency of the GPF 3, particularly the overlapping portion 31, can be improved.
  • connection pipe 4 is comprised by the 1st connection member 40 and the 2nd connection member 41, as shown in FIG.10 and FIG.12.
  • the first connecting member 40 and the second connecting member 41 have a first joint 40A and a second joint 41A in the vicinity of the three-way catalyst downstream end surface 2B of the three-way catalyst 2 of the connection pipe 4, respectively.
  • the connecting pipe 4 is formed by fitting the first joint 40A and the second joint 41A.
  • the first connecting member 40 is provided with a part of the first opening 4A and the second opening 4B, that is, the right half.
  • the second connecting member 41 is provided with the other part of the second opening 4B, that is, the remaining left half.
  • the connecting pipe 4 includes two members, the first connecting member 40 and the second connecting member 41, and the first opening 4A, a part of the second opening 4B, and a part of the bent part 4C are the first.
  • the connecting member 40 is provided.
  • the remaining portion of the second opening 4B and the remaining portion of the bent portion 4C are provided in the second connecting member 41.
  • the connecting tube 4 By dividing the connecting tube 4 into the first connecting member 40 and the second connecting member 41 and molding the connecting tube 4, the connecting tube 4 having a complicated shape can be accurately formed. Further, a part of the second opening 4B on the first opening 4A side is connected from the first opening 4A via the wall surface of the curved portion 4C having a small radius of curvature, so that the curved portion wall surface. Stress tends to concentrate. By forming the dividing positions of the first connecting member 40 and the second connecting member 41 so as to avoid such positions where stress is likely to concentrate, the durability of the connecting pipe 4 can be ensured.
  • the positions located at the uppermost part and the lowermost part of the connection pipe 4 are respectively the top parts 4D. And the bottom 4E.
  • the vicinity of the joint between the first connection member 40 and the second connection member 41 is provided.
  • the first connecting member 40 includes a support portion 45 for supporting the outer peripheral surface of the three-way catalyst 2.
  • the support portion 45 has an outer periphery of the three-way catalyst 2 from the first opening 4 ⁇ / b> A toward the three-way catalyst downstream end surface 2 ⁇ / b> B of the three-way catalyst 2.
  • a first opening side support portion 45A that supports the entire circumference, and an outer peripheral surface of the three way catalyst 2 that extends from the first opening side support portion 45A and is located on the opposite side of the GPF 3 with respect to the three way catalyst 2.
  • a three-way catalyst downstream end face side support portion 45B support face.
  • the boundary between the first opening side support portion 45A and the three-way catalyst downstream end face side support portion 45B is indicated by a dotted line for explanation.
  • the three-way catalyst downstream end face side support portion 45B has a three-way catalyst central axis L2 of the three-way catalyst 2 when the three-way catalyst 2 is viewed from the left side, that is, the three-way catalyst downstream end face 2B side.
  • the outer peripheral surface of the three-way catalyst 2 is surface-supported within a range where the surrounding angle ⁇ is about 190 degrees.
  • the angle ⁇ is not limited to the angle, but is preferable from the viewpoints of downsizing the exhaust purification device 1, improving the holding performance of the three-way catalyst 2 by the connecting pipe 4, and suppressing heat damage of the three-way catalyst 2. Is 180 degrees or more.
  • the outer peripheral surface of the three-way catalyst 2 is surface-supported by the three-way catalyst downstream end face side support portion 45B having a sufficient area formed in the connecting pipe 4 in this way.
  • the supportability of the three-way catalyst 2 can be improved, and the front-rear direction of the catalyst device Q can be made more compact.
  • the exhaust gas that has passed through the three-way catalyst 2 is supported on the outer peripheral surface supported by the three-way catalyst downstream end surface side support portion 45B. Does not touch. Then, the volume of the portion of the three-way catalyst 2 that is exposed to the exhaust gas after passing through the three-way catalyst 2 itself is reduced, and the heat damage caused by the constant exposure to the high-temperature exhaust gas can be reduced. .
  • the entire outer periphery of the three-way catalyst 2 is covered with the catalyst mat 23 and the catalyst case 24 as described above, the thermal expansion of the catalyst case 24 due to heat damage is suppressed, and consequently the surface pressure of the catalyst mat 23 is increased. The decrease can be suppressed. In addition, it is possible to prevent wind erosion of the catalyst mat 23 due to heat damage and holding deviation of the catalyst body of the three-way catalyst 2 from the catalyst mat 23 and the catalyst case 24.
  • the outer peripheral surface supported by the three-way catalyst downstream end face side support portion 45B is adjacent to the cylinder block E1 of the engine E, so that the exhaust gas that has passed through the three-way catalyst 2 is By not flowing into the cylinder block E1 side, heat damage to the outside of the catalyst device Q can be suppressed.
  • the second connecting member 41 includes a first wall portion 42 and a second wall portion for guiding the exhaust gas that has passed through the three-way catalyst 2 to the GPF 3. 43.
  • the first wall portion 42 faces the three-way catalyst downstream end surface 2B of the three-way catalyst 2
  • the second wall portion 43 faces the GPF upstream end surface 3A of the GPF 3.
  • connection pipe 4 is divided and formed into the first connection member 40 and the second connection member 41, the first wall portion 42 and the second wall portion 43 are formed on one second connection member 41.
  • a smooth wall surface can be obtained without forming a dividing position in the wall portion for guiding the exhaust gas. Thus, the disturbance of the exhaust gas flow can be suppressed.
  • the first wall portion 42 includes a transition wall portion 42A, an inclined wall portion 42B, and a stepped wall portion 42C.
  • the transition wall portion 42A smoothly extends forward from the downstream end forming the second opening 4B.
  • the inclined wall portion 42B is smoothly connected to the transition wall portion 42A and is formed to extend toward the three-way catalyst 2 side.
  • the stepped wall portion 42C is smoothly connected to the inclined wall portion 42B on the rear side, and the front side is smoothly provided with a second wall portion curvature radius R3 (predetermined curvature radius) on the second wall portion 43 as shown in FIG. It is connected to the.
  • the transition wall portion 42 ⁇ / b> A is such that when the second opening 4 ⁇ / b> B is viewed from the front, that is, the connection tube 4 is arranged on the right side from the second opening 4 ⁇ / b> B side.
  • the transition wall portion curved portion (curved portion) formed to be curved with the transition wall radius of curvature R1 is provided on the bottom 4E side of the connecting tube 4.
  • the step wall portion 42C includes a step wall portion curved portion (curved portion) formed on the bottom 4E side of the connecting pipe 4 so as to be curved with a step wall radius of curvature R2.
  • the transition wall radius of curvature R1 and the step wall radius of curvature R2 are collectively referred to as a first wall radius of curvature R.
  • first wall curvature radius R shown in FIG. 10 is set to be larger than the second wall curvature radius R3 shown in FIG.
  • the bent portion 4C of the connecting tube 4 has a generally curved tube shape, that is, the second wall curvature radius R3 is larger than the first wall curvature radius R and is gently curved.
  • the second wall curvature radius R3 is larger than the first wall curvature radius R and is gently curved.
  • the first wall portion 42 and the second wall portion 43 of the bent portion 4C in the connecting pipe 4 are, as shown in FIGS. While making R3 small, as shown in FIG.10 and FIG.11, the 1st wall part curvature radius R is formed so that it may become larger than the 2nd wall part curvature radius R3.
  • the three-way catalyst central axis L2 of the three-way catalyst 3 is lower than the plane PL32 including the GPF central axis L3 of the GPF 3 and parallel to the three-way catalyst central axis L2 of the three-way catalyst 2. It is shifted to.
  • the exhaust gas flow changes. That is, the exhaust gas that has passed through the three-way catalyst 2 is more likely to flow along the wall surface of the first wall portion 42 than the wall surface of the connector portion between the first wall portion 42 and the second wall portion 43. Specifically, as shown by the broken line arrow in FIG. 6, the flow of exhaust gas similar to the flow shown in FIG. 15 decreases. On the other hand, as shown by the solid line arrow in FIG. 6, while reaching the first wall portion 42, it is curved with the transition wall portion curvature radius R1 and the step wall portion curvature radius R2 of the transition wall portion 42A and the step wall portion 42C in particular.
  • the flow of the exhaust gas flowing along the wall surfaces of the transition wall portion curved portion and the step wall portion curved portion formed in this manner increases. Further, as described above, as shown in FIG. 9, the three-way catalyst center axis L2 is shifted downward from the plane PL32 parallel to the three-way catalyst center axis L2. The flow of the exhaust gas that winds upward from below is increased along the wall curved portion. Thus, by using the secondary flow of the exhaust gas that reaches the first wall portion 42 and winds up in the space between the three-way catalyst 2 and the GPF 3, the flow velocity of the entire exhaust gas is reduced, The exhaust gas diffuses into the connection pipe 4.
  • the amount of exhaust gas flowing into the overlapping portion 31 of the GPF 3 can be increased, the ventilation resistance of the exhaust gas flowing into the GPF 3 can be reduced, the exhaust gas flow can be made uniform, and eventually the GPF 3
  • the utilization efficiency, function, and performance of can be improved.
  • the stepped wall portion 42C connected to the second wall portion 43 protrudes to the three-way catalyst 2 side from the transition wall portion 42A.
  • the exhaust gas that has passed through the three-way catalyst 2 and reached the step wall portion 42C is prevented from flowing intensively toward the end of the GPF 3 where the transition wall portion 42A exists.
  • the flow to the overlapping portion 31 can be promoted.
  • the transition wall portion radius of curvature R1 is set to be larger than the stepped wall portion radius of curvature R2.
  • the exhaust gas that has passed through the three-way catalyst 2 reaches the first wall portion 42, particularly the transition wall portion 42A and the step wall portion 42C. It is considered that the gas flows so as to roll up or down along the curved wall surface and diffuses into the bent portion 4C of the connecting pipe 4.
  • the transition wall portion radius of curvature R1 is larger than the step wall radius of curvature R2, that is, the transition wall portion 42A is curved more gently than the step wall portion 42C. Therefore, the exhaust gas flow speed can be further reduced in the vicinity of the GPF upstream end surface 3A of the GPF3.
  • a pedestal 44 is provided on the second connecting member 41 on the top 4D side of the connecting pipe 4, and for example, a NOx sensor 92 (detecting means) shown in FIG. Control devices such as various sensors can be installed.
  • NOx sensor 92 detecting means
  • Control devices such as various sensors can be installed.
  • FIG. 8 for the sake of simplicity, the illustration of the sensor body of the NOx sensor 92 is omitted, and only the NOx sensor mounting portion 92A for mounting the sensor body is shown.
  • the exhaust gas that has passed through the three-way catalyst 2 diffuses into the connecting pipe 4 and flows into the GPF 3 as described above. At this time, the exhaust gas that has passed through the three-way catalyst 2 hardly reaches the top portion 4D side of the connecting pipe 4 and the secondary flow of the exhaust gas that winds up along the wall surface of the first wall portion 42. As a result, the exhaust gas diffuses. Then, a sufficient amount of exhaust gas for diffusing the component concentration of the exhaust gas, for example, temperature, pressure, etc., diffuses to the top 4D side of the connecting pipe 4 with the flow rate lowered. Then, by arranging various sensors on the top portion 4D side of the connection pipe 4, stable detection accuracy can be ensured, and the mountability of control devices such as various sensors is improved.
  • pedestal portion 44 is formed flat as shown in FIG. 8, but the shape is not limited to this, and may be formed in a curved shape, for example. Control devices such as various sensors may be installed in a portion other than the pedestal portion 44.
  • a GPF downstream end portion 7 is connected to the downstream end side of the GPF 3.
  • the GPF downstream end 7 has an exhaust gas outlet introduction hole 71 for attaching an exhaust gas outlet 5 that is an outlet of exhaust gas that has passed through the GPF 3, and a part of the exhaust gas on the intake side.
  • an EGR inlet 72 for attaching the EGR outlet 6 to be supplied to the EGR.
  • the exhaust gas outlet 5 guides the exhaust gas that has passed through the GPF 3 to a downstream exhaust gas passage (not shown), and collects and removes moisture generated by the purification of the exhaust gas by the three-way catalyst 2 and the GPF 3. It is.
  • the line indicated by the symbol PRL31 is a projection line on the VV cross section of the GPF central axis L3.
  • a line indicated by a symbol L5 indicates the exhaust gas outlet central axis of the exhaust gas outlet 5.
  • a point indicated by reference sign P5 is a point on the exhaust gas outlet central axis L5, and is an intersection with a plane including an exhaust gas outlet introduction hole 71 described later shown in FIG. 13, that is, an exhaust gas outlet introduction hole.
  • the center of the exhaust gas outlet 5 is referred to as the center position P5 of the exhaust gas outlet 5 in the following description.
  • the center position P5 of the exhaust gas outlet 5 on the GPF downstream end face 3B side of the GPF3 is on the right side of the projection line PRL31 on the VV cross section of the GPF central axis L3 of the GPF3, that is, the three-way catalyst. Offset to 2 side.
  • the exhaust gas flowing into the GPF 3 flows toward the exhaust gas outlet 5. Then, the amount of exhaust gas flowing into the overlapping portion 31 increases along with the flow toward the exhaust gas outlet 5. Thus, the utilization efficiency of GPF 3 can be improved.
  • the offset amount of the exhaust gas outlet 5 is preferably VV from the viewpoint of securing a sufficient amount of exhaust gas flowing into the overlapping portion 31 and improving the utilization efficiency of the GPF 3.
  • the exhaust gas outlet right side surface 5A on the three-way catalyst 2 side of the exhaust gas outlet 5 is set to the right side of the GPF side surface 3C of the GPF 3 on the three-way catalyst 2 side, that is, on the three-way catalyst 2 side. can do.
  • the exhaust gas outlet left side surface 5B on the left side of the exhaust gas outlet 5 is connected to the GPF 3 on the three-way catalyst 2 side. It is preferable to set the offset amount of the exhaust gas outlet 5 to the left of the side surface 3C.
  • the exhaust gas outlet 5 is arranged below the plane PL32. In this way, by disposing the exhaust gas outlet 5 below the GPF 3, the water generated accompanying the purification of the exhaust gas by the three-way catalyst 2 and the GPF 3 can be effectively accumulated and removed at the exhaust gas outlet 5. Can do.
  • EGR outlet> As the configuration of the engine E, EGR that recirculates a part of the exhaust gas to the intake side can be employed for the purpose of preventing the occurrence of knocking and reducing the amount of nitrogen oxides NOx. In that case, an EGR outlet 6 for exhaust gas can be provided on the GPF downstream end surface 3B side of the GPF 3.
  • the EGR outlet 6 is arranged on the opposite side of the exhaust gas outlet 5 with respect to the projection line PRL31 of the GPF central axis L3 of the GPF 3 on the VV cross section.
  • an EGR exhaust gas guide path 72 ⁇ / b> A for guiding exhaust gas to the EGR inlet 72 is provided at the GPF downstream end portion 7 at a position separated from the exhaust gas outlet introduction hole 71. Is formed.
  • the exhaust emission control device 1 can be incorporated into a configuration of a vehicle layout Z as shown in FIG. 14, for example.
  • the three-way catalyst 2 is provided slightly below the GPF 3. Therefore, as shown in FIG. 14, by arranging the exhaust manifold M close to the top of the three-way catalyst 2, the exhaust purification device 1 can be made more compact, particularly in the front-rear direction.
  • the bottom 4E of the connecting pipe 4 and the GPF bottom 3D of the GPF 3 are formed linearly. Accordingly, as shown in FIG. 14, the power split device K (vehicle component) is disposed close to the lower side of the connection pipe 4 and the GPF 3. Thus, a more compact vehicle layout can be provided in the front-rear, left-right, up-down directions.
  • positioned under the connection pipe 4 and GPF3 is not restricted to the power split device K, Other vehicle components may be sufficient. Specifically, for example, when the drive shaft of the drive system or the exhaust emission control device 1 is applied to, for example, an FR vehicle, a mount-type engine mount or the like can be disposed in proximity.
  • the exhaust emission control device 1 of the first embodiment is applied to an FF vehicle, but the independent exhaust pipes of the exhaust manifold M connected to the four exhaust ports are assembled while extending rearward, and the center in the vehicle width direction at the rear end of the engine E It can also be applied to an FR vehicle by extending backward after directing to the side.
  • the first catalyst is a three-way catalyst 2 and the second catalyst is a GPF 3, but the catalyst is not limited to these, and various catalysts can be used. Specifically, for example, when the exhaust purification device 1 is applied to a diesel engine, a diesel particulate filter may be employed. Moreover, the structure which combined the oxidation catalyst and the catalyst for NOx purification
  • the three-way catalyst 2 is provided slightly below the GPF 3, and as shown in FIG. 10, the transition wall portion 42A and the step wall of the first wall portion 42 are provided.
  • the portion 42C was provided with a transition wall portion curved portion and a step wall portion curved portion formed so as to be curved with a transition wall portion radius of curvature R1 and a step wall radius of curvature R2 on the bottom 4E side of the connecting pipe 4, respectively.
  • the three-way catalyst 2 may be provided at the same height as the GPF 3 or at a position higher than the GPF 3.
  • the transition wall portion 42A and the step wall portion 42C of the first wall portion 42 are formed on the top portion 4D side of the connecting pipe 4 so as to be curved with a transition wall portion curvature radius R1 and a step wall curvature radius R2, respectively.
  • the transition wall portion curved portion and the step wall portion curved portion may be provided. Further, the transition wall portion curved portion and the step wall portion curved portion may be provided on both the top portion 4D side and the bottom portion 4E side of the connecting pipe 4. Further, instead of the curved shape, for example, a gentle slope such as a pedestal 44 may be provided, and in this case, a secondary flow of exhaust gas can be formed along the slope.
  • the detection means mounting position such as the sensor mounting base 44 is not limited to the top 4D side of the connection pipe 4, but the exhaust gas flow on the bottom 4E side, the first connection member 40, and the like. Can be appropriately provided at a position where the is uniformized.
  • the outlet of the exhaust manifold M is configured to be arranged on the right side of the cylinder arrangement, and the connection pipe 4 has a first opening 4A when viewed from the rear as shown in FIG. Was arranged on the right side.
  • the first opening 4A may be configured to be arranged in another direction, for example, the left side or the vertical direction.
  • the three-way catalyst 2 and the GPF 3 are inserted into the connection pipe 4.
  • the connection pipe 4 is connected to the upstream end and the downstream end of the connection pipe 4 via a connection flange portion or the like without being inserted. It is good also as a structure connected by.
  • one of the three-way catalyst 2 and the GPF 3 may be inserted into the connecting pipe 4 and the other may be connected to the end of the connecting pipe 4 via a connecting flange portion or the like.
  • the configuration of the first embodiment is preferable from the viewpoint of making the exhaust purification device 1 compact.
  • This disclosure is extremely useful because it can improve the utilization efficiency and function / performance of the catalyst and the mountability of the control device while realizing a compact engine exhaust system.
  • Exhaust purification device (engine exhaust device) 2 Three-way catalyst (first catalyst) 2A Three-way catalyst upstream end surface (upstream end surface of the first catalyst) 2B Three-way catalyst downstream end face (downstream end face of the first catalyst) 3 Gasoline particulate filter, GPF (second catalyst) 3A GPF upstream end face (upstream end face of the second catalyst) 3B GPF downstream end surface (downstream end surface of the second catalyst) 3C GPF side surface (side surface of the second catalyst on the first catalyst side) 3D GPF bottom (second catalyst bottom) 4 Connection pipe (connection member) 4A 1st opening part 4B 2nd opening part 4C Bending part 4D Top part 4E Bottom part 5 Exhaust gas outlet 5A Exhaust gas outlet right side surface 5B Exhaust gas outlet left side surface 6 EGR outlet 7 GPF downstream end part 21 Front stage part 22 Rear stage part 23 Catermat 24 Catering case 31 Overlapping portion 40 First connection member 40A First joint portion 41 Second connection member 42 First wall portion 42A Transition wall portion 42B Incline

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

エンジンの排気経路上に配設され、該エンジンから排出される排気ガスを浄化するための第1触媒と、前記第1触媒の排気ガス流れ方向下流側に配置され、該第1触媒を通過した排気ガスを浄化するための第2触媒と、前記排気経路の一部を形成するとともに前記第1触媒と前記第2触媒とを接続する管状の接続部材とを備え、前記接続部材は、排気ガス流れ方向上流側の第1開口部と、排気ガス流れ方向下流側の第2開口部と、該第1開口部と該第2開口部とを接続する曲がり部とを備えており、前記第1触媒の下流端面側は、前記第1開口部と接続されており、前記第2触媒の上流端面側は、前記第2開口部と接続されており、前記第1触媒の前記下流端面と、前記第2触媒の前記上流端面とは、互いに60度以上120度以下の二面角をなしており、前記第2触媒の前記上流端面の一部は、前記第1触媒の側面の一部と近接且つ対向する重複部分を有しており、前記接続部材の前記曲がり部は、前記第1触媒の前記下流端面と対向する第1壁部と、前記第2触媒の前記上流端面と対向する第2壁部と、前記第1壁部と前記第2壁部とを所定曲率半径をもって接続するコネクタ部とを備えており、前記第1壁部は、前記第2開口部を正面から見たときに、第1壁部曲率半径をもって湾曲するように形成された湾曲部を備えており、前記第1壁部曲率半径は、前記所定曲率半径よりも大きいことを特徴とするエンジンの排気装置。

Description

エンジンの排気装置
 本開示は、エンジンの排気装置に関するものである。
 従来より、ディーゼルエンジンやガソリンエンジン等の自動車エンジンの排気ガス温度の高い排気経路の上流に、排気ガスを浄化するための複数の触媒を直列に配置することが行われている。
 その際、複数の触媒をコンパクトに収めるために、排気ガス流れ方向上流側の触媒を同下流側の触媒に対して横方向に配置することが知られている(例えば、特許文献1参照)。
 特許文献1では、ハウジング内において、第2の排気ガス処理ユニットの側面と第1の排気ガス処理ユニットの上流端側の少なくとも50%とが重なりを形成するように、第1の排気ガス処理ユニットと第2の排気ガス処理ユニットとをほぼ垂直方向に配置する技術が開示されている。
特表2012-529592号公報
 しかしながら、特許文献1のものでは、第2の排気ガス処理ユニットを通過した排気ガスが第1の排気ガス処理ユニットに流入するときに、重なり部分とそれ以外への排気ガスの流れを均一化することが困難となり、重なり部分における第1の排気ガス処理ユニットの利用効率が低下することが懸念される。また、重なり部分により、排気ガスの流れが不均一化することで、排気ガスの流速が高まる部分が生じ、通気抵抗が増大して出力が低下する虞がある。さらに、重なり部分が狭小となるため、第1及び第2の排気ガス処理ユニット間への各種センサなどの制御用デバイスの搭載性が低下する虞がある。
 そこで本開示では、複数の触媒を備えたエンジンの排気装置において、触媒の利用効率や機能・性能、制御用デバイスの搭載性に優れたコンパクトな排気装置を提供することを課題とする。
 上記の課題を解決するために、本開示では、複数の触媒を備えたエンジンの排気装置において、第1触媒と第2触媒とを接続する接続部材の内壁の湾曲形状を調整し、第1触媒を通過した排気ガスの二次流れを利用することで、第2触媒中に流入する排気ガスの流れを均一化するようにした。
 すなわち、ここに開示する第1の技術に係るエンジンの排気装置は、エンジンの排気経路上に配設され、該エンジンから排出される排気ガスを浄化するための第1触媒と、前記第1触媒の排気ガス流れ方向下流側に配置され、該第1触媒を通過した排気ガスを浄化するための第2触媒と、前記排気経路の一部を形成するとともに前記第1触媒と前記第2触媒とを接続する管状の接続部材とを備え、前記接続部材は、排気ガス流れ方向上流側の第1開口部と、排気ガス流れ方向下流側の第2開口部と、該第1開口部と該第2開口部とを接続する曲がり部とを備えており、前記第1触媒の下流端面側は、前記第1開口部と接続されており、前記第2触媒の上流端面側は、前記第2開口部と接続されており、前記第1触媒の前記下流端面と、前記第2触媒の前記上流端面とは、互いに60度以上120度以下の二面角をなしており、前記第2触媒の前記上流端面の一部は、前記第1触媒の側面の一部と近接且つ対向する重複部分を有しており、前記接続部材の前記曲がり部は、前記第1触媒の前記下流端面と対向する第1壁部と、前記第2触媒の前記上流端面と対向する第2壁部と、前記第1壁部と前記第2壁部とを所定曲率半径をもって接続するコネクタ部と
を備えており、前記第1壁部は、前記第2開口部を正面から見たときに、第1壁部曲率半径をもって湾曲するように形成された湾曲部を備えており、前記第1壁部曲率半径は、前記所定曲率半径よりも大きいことを特徴とする。
 排気ガスなどの流体は、曲率半径の大きな曲面に沿って流れる傾向があることが知られている。第1の技術によれば、第1壁部及び第2壁部は、第1壁部と第2壁部とのコネクタ部の所定曲率半径よりも、第1壁部曲率半径が大きくなるように形成されている。これにより、第1触媒を通過した排気ガスが、第1壁部と第2壁部とのコネクタ部の壁面よりも、第1壁部の壁面に沿って流れる傾向が高まる。そうすると、第1触媒を通過後、そのまま第2触媒に流れ込む排気ガスの流れが低減される一方、第1壁部に到達しつつ第1壁部の湾曲した壁面に沿って、接続部材の天部側及び底部側の少なくとも一方から第1触媒と第2触媒との間の空間に巻き込むような排気ガスの二次流れが増加し、排気部材内に排気ガスが拡散する。そうして、排気ガス全体の流速が低減され、重複部分への流入量が増加し、第2触媒に流入する排気ガスの流れを均一化させることができ、延いては、排気装置のコンパクト化を実現しつつ触媒の利用効率や機能・性能、制御用デバイスの搭載性を向上させることができる。
 第2の技術は、第1の技術において、前記第1触媒は、その下流端面側から前記第1開口部を通じて前記接続部材内に挿入されており、前記第2触媒は、その上流端面側から前記第2開口部を通じて前記接続部材内に挿入されていることを特徴とする。
 第2の技術によれば、接続部材内に第1触媒と第2触媒とを挿入することで、接続部材の上流端と下流端に第1触媒と第2触媒とを接続する場合と比べ、接続用のフランジ部を省略することができ、排気装置のコンパクト化に資することができる。
 第3の技術は、第2の技術において、前記第1触媒の中心軸の位置は、前記第2触媒の中心軸を含み且つ前記第1触媒の中心軸に平行な平面よりも下側にあり、前記湾曲部は、前記接続部材の底部側に形成されていることを特徴とする。
 第3の技術によれば、第1触媒を通過した排気ガスについて、接続部材の底部側に形成された第1壁部の湾曲部の壁面に沿って上方へ巻き上がるような流れを生じさせることができる。そうして、排気部材内に排気ガスを拡散させて、重複部分への排気ガス流入量を増加させ、第2触媒に流入する排気ガスの流れを均一化させることができる。
 第4の技術は、第3の技術において、前記第1触媒の上方に近接して配置された排気マニホールドをさらに備え、前記接続部材の底部と前記第2触媒の第2触媒底部は、該接続部材の底部及び該第2触媒底部の下方に車両部品を近接配置可能となるように、直線状に形成されている。
 第4の技術によれば、第2触媒の中心軸よりもやや下側に設けられた第1触媒の上方に排気マニホールドを配置させることで、排気装置を効果的にコンパクト化させることができる。また、接続部材の底部及び第2触媒底部を直線状に形成することにより、接続部材及び第2触媒の下方に、例えば動力分割装置等の車両部品を近接配置させることができ、よりコンパクトな車両レイアウトが可能となる。
 第5の技術は、第3又は第4の技術において、前記接続部材の天部側に、検出手段取付用の台座部が設けられている。
 第1触媒を通過した排気ガスは、接続部材内に拡散して第2触媒に流入していく。このとき、接続部材の天部側には、第1触媒を通過した排気ガスが直接到達することが少なく、第1壁部の湾曲部の壁面に沿って巻き上がるような排気ガスの二次流れにより排気ガスが拡散する。そうすると、接続部材の天部側には、排気ガスの温度や成分濃度、圧力等を検出するために十分な量であり且つ流速が低下した排気ガスが拡散する。第5の技術によれば、接続部材の天部側に台座部を設け、検出手段を配置させることにより、安定した検出精度を確保することができる。
 第6の技術は、第1~第5の技術のいずれか1つにおいて、前記接続部材は、前記第1開口部及び前記第2開口部の一部が設けられた第1接続部材と、前記第2開口部の他部が設けられた第2接続部材とを備え、前記第1壁部及び前記第2壁部は、前記第2接続部材に設けられている。
 第6の技術によれば、接続部材を第1接続部材と第2接続部材とに分割して成形することにより、複雑な形状を備えた接続部材を精度よく成形することができる。また、排気ガス流れを案内する第1壁部及び第2壁部を第2接続部材に形成することにより、これら壁部に分割部分を形成することなく滑らかな壁面を得ることができ、排気ガス流れの乱れを抑制することができる。そして、第2開口部における第1開口部側の一部は、第1開口部から、急峻な湾曲形状の曲がり部壁面を経て接続されているため、当該曲がり部壁面には応力が集中しやすい。第1接続部材と第2接続部材の分割位置を、このような応力が集中しやすい位置を避けて形成することにより、接続部材の耐久性を確保することができる。
 以上述べたように、本開示によると、エンジンの排気装置のコンパクト化を実現しつつ触媒の利用効率や機能・性能、制御用デバイスの搭載性を向上させることができる。
図1は、実施形態1に係る排気浄化装置がエンジンに取り付けられた状態を模式的に示す側面図である。 図2は、図1の模式的な平面図である。 図3は、図1の排気浄化装置を示す側面図である。 図4は、図1の排気浄化装置における触媒装置部分の平面図である。 図5は、図3のV-V線における断面図である。 図6は、図5において、排気ガスの流れを模式的に示した図である。 図7は、図3のVII-VII線における断面図である。 図8は、図3のVIII-VIII線における断面図である。 図9は、図4のIX-IX線における断面図である。 図10は、三元触媒を挿入した状態の接続管を第2開口部側から見た図である。 図11は、図10において、排気ガスの流れを模式的に示した図である。 図12は、接続管を左上前方から見た斜視図である。 図13は、GPF下流端部を前方から見た図である。 図14は、実施形態1に係る排気浄化装置のレイアウトを示す斜視図である。 図15は、図6の三元触媒及びGPFの配置において、接続管の曲がり部の第2壁部曲率半径を大きくした場合の排気ガスの流れを模式的に示した図である。
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。
 (実施形態1)
 <エンジン>
 実施形態1に係る排気浄化装置1(エンジンの排気装置)が適用されるエンジンEは、自動車に搭載された直列4気筒ガソリンエンジンである。エンジンEは、FF車両の前方に横置きされている。
 なお、本実施形態1に係る排気浄化装置1が適用されるエンジンは、4気筒ガソリンエンジンに限らず、その他の多気筒エンジンや、ディーゼルエンジンにも適用することができる。また、FF車両に限らず、例えばFR車両、MR車両、RR車両、4WD車両等、バイクも含め種々のレイアウトを採用する車両に適用可能である。
 図1に示すように、エンジンEは、シリンダブロックE1とシリンダヘッドE2とを備えている。詳細な図示は省略するが、これらシリンダブロックE1とシリンダヘッドE2とにより構成される第1気筒乃至第4気筒が順に図1の紙面に垂直な方向に直列に配置されている。そして、シリンダブロックE1のシリンダボアと、ピストンと、シリンダヘッドE2とにより、気筒毎に燃焼室が形成されている。
 シリンダヘッドE2には、4つの燃焼室にそれぞれ接続された4つの排気ポート(図示せず)が形成されている。燃焼室において発生した排気ガスは、この排気ポートを含む排気経路を通じて車外に排出される。
 <排気経路>
 上述の排気ポートには、図1及び図2に示すように、本実施形態に係る排気浄化装置1が接続され、さらにその下流側に車外にまで続く下流側排気ガス通路(図示せず)が接続されている。このように排気浄化装置1が適用される排気経路は、上述の排気ポートと、排気浄化装置1と、下流側排気ガス通路とにより構成されている。
 <排気浄化装置>
 本実施形態に係る排気浄化装置1は、図1及び図2に示すように、エンジンEの4つの排気ポートに接続された排気マニホールドMと、排気マニホールドMの出口に接続された接続部Nと、接続部Nの出口に接続された触媒装置Qとを備えている。
 <排気マニホールド>
 上記4つの排気ポートには、図1及び図2に示すように、排気マニホールドMが接続されている。
 排気マニホールドMは、図2に示すように、4つの燃焼室から排気ポートを通じて排出される排気ガスを集約するためのものであり、4つの排気ポートに接続された独立排気管が右側に集合した構成となっている。排気マニホールドM内で集約された排気ガスは、排気マニホールドMの出口に接続された接続部Nを介して触媒装置Qに送り込まれる。
 <接続部>
 接続部Nは、触媒装置Qの上側に配置された排気マニホールドMから送り込まれた排気ガスを触媒装置Qに案内するための管状の部材である。本実施形態では、接続部Nは上側から左側へ湾曲したL字状の管状部材となっている。
 <方向>
 本明細書の説明において、「上下方向」及び「前後方向」とは、図1に示すように、エンジンEを基準として、シリンダヘッドE2側を上側、シリンダブロックE1側を下側、エンジンE側を前側、排気マニホールドM側を後側とする方向をいうものとする。また、「左右方向」とは、図2に示すように、エンジンEを基準として気筒の配列方向、言い換えると、図1の紙面に垂直であって、手前側を左側、奥側を右側とする方向をいうものとする。さらに、「上流」や「下流」は、燃焼室から排気ポートを通じて排出される排気ガスの流れる方向を基準とする。
 なお、本実施形態において、「前後方向」は、図1に示すように、後述する第2触媒としてのガソリンパティキュレートフィルタ3(以下、「GPF3」と称する。)のGPF中心軸L3と平行になっている。
 <触媒装置>
 触媒装置Qは、図2~図4に示すように、接続部Nの出口に接続された第1触媒としての三元触媒2と、その下流側に配置された第2触媒としてのGPF3と、これら三元触媒2とGPF3とを接続する接続部材としての接続管4と、GPF3の下流側の下流端に設けられたGPF下流端部7と、GPF下流端部7の先に設けられた排気ガス出口5及びEGR用取出口6とを備えている。
 <三元触媒>
 三元触媒2は、排気ガス中の炭化水素HC、一酸化炭素CO、窒素酸化物NOxを浄化するための触媒である。三元触媒2は、詳細な説明は省略するが、例えばPt、Pd、Rh等の貴金属を金属酸化物からなるサポート材上に担持してなる触媒成分を、ハニカム担体上にコートしてなる触媒等が挙げられる。三元触媒2としては、特に限定されるものではなく、いかなる公知のものも用いることができる。
 三元触媒2は、図5及び図9に示すように、三元触媒中心軸L2を有する円筒状の触媒である。三元触媒2の形状は、特に限定されるものではないが、排気経路への配設が容易であり、均一な排気ガス流れを得る観点から、筒状であることが好ましい。三元触媒中心軸L2に垂直な断面の形状は、特に限定されるものではなく、真円状、楕円状、矩形状、多角形状等のいかなる形状を採用することができるが、均一な排気ガス流れを得るとともに製造コストを抑える観点から、好ましくは真円状、楕円状である。
 なお、図7に示すように、三元触媒2の上流側の端面を三元触媒上流端面2A(第1触媒の上流端面)、下流側の端面を三元触媒下流端面2B(第1触媒の下流端面)とする。三元触媒上流端面2A及び三元触媒下流端面2Bは、同一径の円形である。
 図5、図7及び図8に示すように、三元触媒2は、排気ガスを浄化するためのキャタリスト本体として、上流側に配置された前段部21と下流側に配置された後段部22とを備えた2段構成である。前段部21は、エンジンEの低負荷運転時の低温の排気ガスの浄化を行う低温活性に優れた三元触媒である。また後段部22は、高負荷運転時等の高温の排気ガスの浄化を行う高温活性に優れた三元触媒である。なお、本実施形態において、三元触媒2は、前段部21及び後段部22を備えた2段構成であるが、これに限られるものではなく、単一の触媒構成であってもよいし、さらに3つ以上に分割された多段構成であってもよい。
 図7に示すように、三元触媒2の長手方向、すなわち三元触媒中心軸L2に平行な方向の全長をH2とすると、後段部22の長さH22に対する前段部21の長さH21の比H21/H22は約1である。前段部21と後段部22の長さの比H21/H22は、エンジンEの種類等に応じて変化させることができるが、三元触媒2の優れた触媒性能を得る観点から、好ましくは0.50以上2.0以下、より好ましくは0.75以上1.25以下である。
 なお、図7に示すように、三元触媒2の三元触媒上流端面2Aを含む先端部分、すなわち前段部21の先端部分は、接続管4から突出している。
 前段部21は、排気ガス温度が低い場合の排気ガス浄化に適した触媒であるため、高温の排気ガスに曝されることによる熱害の影響が高くなる。前段部21を接続管4内から外側に突出させることにより、高負荷運転時等においても接続管4内に拡散した高温の排気ガスに曝されることがなくなるため、前段部21の熱害による劣化を効果的に防止することができ、三元触媒2全体に対する熱害のリスクを低減させることができる。
 前段部21は、全体を接続管4から突出させてもよいし、一部だけ突出させてもよい。また、前段部21の長さH21に応じて突出量を調整することができる。前段部21の突出量は、低温活性に優れた触媒の熱害を防ぐ観点から、前段部の長さH21の好ましくは50%以上100%以下、より好ましくは60%以上95%以下、特に好ましくは70%以上90%以下である。
 なお、高温活性に優れた三元触媒を用いた後段部22を設ける場合は、後段部22も接続管4から突出させてもよいし、突出させなくてもよい。後段部22は、高温の排気ガスに対して優れた浄化性能を示すことを考慮すると、排気浄化装置1のコンパクト化の観点から、後段部22全体を接続管4内に挿入しておくことが好ましい。
 さらに、図5に示すように、三元触媒2は、キャタリスト本体としての前段部21及び後段部22の外周全体を覆うキャタマット23と、そのキャタマット23の外周全体を覆うキャタケース24とを備えている。
 排気ガス温度は、軽負荷では400℃前後の低ガス温である一方、高負荷では800℃前後の高ガス温となる。そうすると、三元触媒2を通過した後の高温の排気ガスに、三元触媒2自身が常に曝されることで、三元触媒2が熱害により劣化する虞が生じる。
 キャタマット23は、高温の排気ガスに曝される環境下においても安定してキャタリスト本体としての前段部21及び後段部22を保持するためのものであり、例えばセラミックなどの高耐熱性、保温性を有する材料で形成されている。厚さは、三元触媒2の大きさやキャタマット23の材料等に依存するものであり、特に限定されるものではないが、三元触媒2の熱害防止の観点から、例えば2.0mm以上8.0mm以下、好ましくは3.0mm以上5.0mm以下、より好ましくは3.6mm以上4.0mm以下とすることができる。2.0mmより薄いと十分な保持性能・耐熱性能・保温性能を得ることが困難となる傾向があり、8.0mmより厚いと製造コストの増加を招く虞や、制御用デバイス搭載用のスペース確保を困難とする虞がある。
 キャタケース24は、三元触媒2の前段部21及び後段部22並びにキャタマット23を保持するためのものであり、例えば鉄、ステンレス鋼等の金属製である。なお、キャタマット23及びキャタケース24としては、公知のものを使用してもよい。
 <GPF>
 GPF3は、三元触媒2の下流側に配設されており、三元触媒2を通過した排気ガス中のパティキュレートマター(以下、「PM」と称する。)をトラップするためのフィルタである。GPF3は、詳細な説明は省略するが、例えばハニカム担体等に目封じを施し、フィルタ機能を追加したものであり、フィルタに堆積したPMの燃焼を促進するため触媒コートを施したものが挙げられる。排気ガス中のPMはGPF3の隔壁表面に吸着され、PMが堆積したところで、例えばPM燃焼温度に高めるためメイン噴射の後に燃料を噴射するポスト噴射を行い、GPF3に堆積したPMを焼却除去する。GPF3としては、特に限定されるものではなく、いかなる公知のものも用いることができる。
 GPF3は、図1及び図2に示すように、GPF中心軸L3を有する円筒状の触媒である。GPF3の形状は、特に限定されるものではないが、排気経路への配設が容易であり、均一な排気ガス流れを得る観点から、筒状であることが好ましい。GPF中心軸L3に垂直な断面の形状は、特に限定されるものではなく、真円状、楕円状、矩形状、多角形状等のいかなる形状を採用することができるが、均一な排気ガス流れを得るとともに製造コストを抑える観点から、好ましくは真円状、楕円状である。
 図9に示すように、GPF3の上流側の端面をGPF上流端面3A(第2触媒の上流端面)、下流側の端面をGPF下流端面3B(第2触媒の下流端面)とする。GPF上流端面3A及びGPF下流端面3Bは、同一径の円形である。
 なお、GPF3は、三元触媒2と同様に、排気ガス浄化用のGPFキャタリスト本体と、そのGPFキャタリスト本体の外周全体を覆うGPFキャタマットと、そのGPFキャタマットの外周全体を覆うGPFキャタケースとを備えている。GPFキャタマット及びGPFキャタケースは、上述のキャタマット23及びキャタケース24と同様の目的で用いられ、これらと同様の構成のものを用いることができる。
 <接続管>
 接続管4は、三元触媒2とGPF3とを接続するための管状部材であり、排気経路の一部を形成している。
 図10に示すように、接続管4は、上流側の第1開口部4Aと、下流側の第2開口部4Bと、これら第1開口部4Aと第2開口部4Bとを接続する曲がり部4Cとを備えている。
 図10に示すように、三元触媒2は、三元触媒下流端面2B側から第1開口部4Aを通じて接続管4内に挿入されている。一方、図5等に示すように、GPF3は、GPF上流端面3A側から第2開口部4Bを通じて接続管4内に挿入されている。接続管4内に三元触媒2とGPF3とを挿入することで、接続管4の上流端と下流端に三元触媒2とGPF3とを接続する場合と比べ、接続用のフランジ部等を設ける必要がなくなり、フランジ部等を省略することができるので、排気浄化装置1のコンパクト化に資することができる。
 -三元触媒とGPFの相対配置-
 図9は、図4におけるIX-IX断面を示す図であるが、三元触媒2の三元触媒中心軸L2に垂直であり且つGPF3及び排気ガス出口5を通る断面を左側から見た図である。図9に記載された断面を以下「IX-IX断面」(縦断面)と称する。図9における符号PL32で示す線は、GPF3のGPF中心軸L3を含み且つ三元触媒2の三元触媒中心軸L2に平行な平面を示している。
 図9に示すように、IX-IX断面上で、三元触媒2の三元触媒中心軸L2の位置は、平面PL32、すなわちGPF3のGPF中心軸L3よりも下側にある。これにより、後述のごとく、排気マニホールドMを三元触媒2の上方に配置させることができ、排気浄化装置1を車両内にコンパクトに配置させることができる。
 そして、図5に示すように、三元触媒2の三元触媒下流端面2BとGPF3のGPF上流端面3Aとは、曲がり部4C内で、二面角αが約90度となるように配置されている。この二面角αは、この角度に限定されるものではないが、三元触媒2からGPF3への排気ガス流れを十分に確保する観点から、互いに好ましくは60度以上120度以下、より好ましくは70度以上110度以下、特に好ましくは80度以上100度以下である。
 加えて、GPF3のGPF上流端面3Aには、三元触媒2の側面によりその一部が覆われて重複部分31が形成されている。換言すると、重複部分31は、三元触媒2の側面の一部と近接且つ対向するように配置されたGPF3のGPF上流端面3Aの一部である。
 図5は、図3におけるV-V断面を示す図であるが、三元触媒2の三元触媒中心軸L2を含み且つGPF3のGPF中心軸L3と平行な断面を上側から見た図である。図5に記載された断面を以下「V-V断面」(断面)と称する。図5に示すように、V-V断面上で、重複部分31を形成する三元触媒2の側面の長さH31は、三元触媒2及びGPF3をコンパクトに配置させつつ、GPF3内の排気ガス流れを均一にする観点から、三元触媒2の全長H2の好ましくは10%以上50%未満である。
 また、三元触媒2の側面の長さH31は、図5のV-V断面において、三元触媒2及びGPF3をコンパクトに配置させつつ、GPF3内の排気ガス流れを均一にする観点から、GPFの幅W3の好ましくは10%以上50%未満である。
 このように、三元触媒2とGPF3とを互いに横方向に配置するときに、第1触媒及びGPF3の重複部分31を形成しつつも、その範囲を上述の範囲未満に抑えることにより、排気浄化装置1のコンパクト化を実現させるとともに、GPF3の、特に重複部分31の利用効率を向上させることができる。
 -第1接続部材及び第2接続部材-
 また、接続管4は、図10及び図12に示すように、第1接続部材40と、第2接続部材41とにより構成されている。
 図12に示すように、第1接続部材40及び第2接続部材41には、接続管4の三元触媒2の三元触媒下流端面2B近傍にそれぞれ第1接合部40Aと第2接合部41Aとが設けられており、これら第1接合部40Aと第2接合部41Aとが嵌合されることにより接続管4が形成される。
 図10に示すように、第1接続部材40には、第1開口部4A及び第2開口部4Bの一部、すなわち右側半分が設けられている。また、第2接続部材41には、第2開口部4Bの他部、すなわち残りの左側半分が設けられている。
 換言すると、接続管4は、2つの部材、第1接続部材40及び第2接続部材41からなり、第1開口部4A、第2開口部4Bの一部及び曲がり部4Cの一部が第1接続部材40に設けられている。そして、第2開口部4Bの残部及び曲がり部4Cの残部が第2接続部材41に設けられている。
 接続管4を、第1接続部材40と第2接続部材41とに分割して成形することにより、複雑な形状を備えた接続管4を精度よく成形することができる。また、第2開口部4Bにおける第1開口部4A側の一部は、第1開口部4Aから、曲率半径の小さな湾曲形状の曲がり部4Cの壁面を経て接続されているため、当該曲がり部壁面には応力が集中しやすい。第1接続部材40と第2接続部材41の分割位置を、このような応力が集中しやすい位置を避けて形成することにより、接続管4の耐久性を確保することができる。
 また、本明細書において、図10に示すように、接続管4を含む排気浄化装置1をエンジンEに組み付けた状態で、接続管4の最上部及び最下部に位置する個所をそれぞれ天部4D及び底部4Eというものとする。なお、本実施形態においては、第1接続部材40と第2接続部材41の接合部近傍となっている。
 -支持部-
 図10及び図12に示すように、第1接続部材40は、三元触媒2の外周面を面支持するための支持部45を備えている。
 支持部45は、図5、図9、図10、図11及び図12に示すように、第1開口部4Aから三元触媒2の三元触媒下流端面2Bに向かって三元触媒2の外周全周を面支持する第1開口部側支持部45Aと、この第1開口部側支持部45Aから延びるとともに、三元触媒2に対し、GPF3と反対側に位置する三元触媒2の外周面を面支持する三元触媒下流端面側支持部45B(支持面)とにより構成されている。なお、図12には、説明のため、第1開口部側支持部45A及び三元触媒下流端面側支持部45Bの境界を点線で示している。
 図9に示すように、三元触媒下流端面側支持部45Bは、三元触媒2を左側、すなわち三元触媒下流端面2B側から見たときに、三元触媒2の三元触媒中心軸L2周りの角度θが約190度となる範囲で、三元触媒2の外周面を面支持している。角度θは、当該角度に限定されるものではないが、排気浄化装置1のコンパクト化、接続管4による三元触媒2の保持性能向上、及び三元触媒2の熱害抑制の観点から、好ましくは180度以上である。
 三元触媒2の外周面は、このように接続管4に形成された十分な面積の三元触媒下流端面側支持部45Bによって面支持される。そうして、三元触媒2の支持性を向上させるとともに、触媒装置Qの前後方向をさらにコンパクト化させることができる。
 また、三元触媒下流端面側支持部45Bにより三元触媒2を支持させることで、三元触媒2を通過した排気ガスは、三元触媒下流端面側支持部45Bにより支持されている外周面には接触しない。そうすると、三元触媒2のうち、三元触媒2自身を通過後の排気ガスに曝される部分の体積が減少し、高温の排気ガスに常に曝されることによる熱害を低減させることができる。特に、三元触媒2の外周全体は、上述のごとくキャタマット23及びキャタケース24で覆われているため、熱害によるキャタケース24の熱伸びを抑制し、延いてはキャタマット23の面圧低下を抑制することができる。また、熱害によるキャタマット23の風食、三元触媒2のキャタリスト本体のキャタマット23及びキャタケース24からの保持ずれを防止することができる。
 さらに、図1に示すように、三元触媒下流端面側支持部45Bにより支持されている外周面は、エンジンEのシリンダブロックE1に隣接しているから、三元触媒2を通過した排気ガスがシリンダブロックE1側に流入しないことにより、触媒装置Qの外側への熱害を抑制することもできる。
 -第1壁部及び第2壁部-
 第2接続部材41は、図5、図6、図10及び図12に示すように、三元触媒2を通過した排気ガスをGPF3へと案内するための第1壁部42及び第2壁部43を備えている。図5に示すように、第1壁部42は、三元触媒2の三元触媒下流端面2Bと対向しており、第2壁部43は、GPF3のGPF上流端面3Aと対向している。
 なお、接続管4を第1接続部材40及び第2接続部材41に分割して成形するときに、第1壁部42及び第2壁部43を一方の第2接続部材41に形成することにより、排気ガスを案内する壁部に分割位置を形成することなく滑らかな壁面を得ることができる。そうして、排気ガス流れの乱れを抑制することができる。
 第1壁部42は、図10及び図12に示すように、移行壁部42Aと、傾斜壁部42Bと、段差壁部42Cとを備えている。移行壁部42Aは、第2開口部4Bを形成する下流端から滑らかに前方へ延びている。傾斜壁部42Bは、移行壁部42Aに滑らかに接続されるとともに、三元触媒2側に向かって延びるように形成されている。段差壁部42Cは、後方は傾斜壁部42Bに滑らかに接続されるとともに、前方は、図5に示すように、第2壁部43に第2壁部曲率半径R3(所定曲率半径)をもって滑らかに接続されている。
 移行壁部42Aは、図10に示すように、第2開口部4Bを正面から見たとき、すなわち、接続管4を第2開口部4B側から第1開口部4Aが右側に配置されるように見たときに、接続管4の底部4E側に、移行壁部曲率半径R1をもって湾曲するように形成された移行壁部湾曲部(湾曲部)を備えている。同様に、段差壁部42Cは、接続管4の底部4E側に、段差壁部曲率半径R2をもって湾曲するように形成された段差壁部湾曲部(湾曲部)を備えている。なお、図10に示すように、移行壁部曲率半径R1及び段差壁部曲率半径R2を併せて第1壁部曲率半径Rという。
 ここに、図10に示す第1壁部曲率半径Rは、図5に示す第2壁部曲率半径R3よりも大きくなるように設定されている。
 排気ガスなどの流体は、曲率半径の大きな曲面に沿って流れる傾向があることが知られている。例えば、図15に示すように、接続管4の曲がり部4Cについて、一般的な湾曲した管形状、すなわち、第2壁部曲率半径R3が第1壁部曲率半径Rよりも大きく緩やかに湾曲した形状を採用した場合を考える。この場合、図15中破線矢印で示すように、三元触媒2を通過した排気ガスは、その大部分が、第2壁部曲率半径R3で緩やかに湾曲した壁面に沿って、そのままGPF3へ流入すると考えられる。そうすると、GPF3の重複部分31近傍に流入する排気ガス量が低下し、GPF3の利用効率が低下し得る。また、排気ガス量が多くなる部分では、排気ガスの流速が高まるため、通気抵抗が増大して出力が低下し得る。
 一方、本実施形態に係る排気浄化装置1では、接続管4における曲がり部4Cの第1壁部42及び第2壁部43は、図5及び図6に示すように、第2壁部曲率半径R3を小さくするとともに、図10及び図11に示すように、第1壁部曲率半径Rは、第2壁部曲率半径R3よりも大きくなるように形成されている。そして、図9に示すように、三元触媒3の三元触媒中心軸L2は、GPF3のGPF中心軸L3を含み且つ三元触媒2の三元触媒中心軸L2に平行な平面PL32から下側にずれている。
 そうすると、図6に示すように、排気ガスの流れに変化が生じる。すなわち、三元触媒2を通過した排気ガスについて、第1壁部42と第2壁部43とのコネクタ部の壁面よりも、第1壁部42の壁面に沿って流れる傾向が高まる。具体的には、図6中破線矢印で示すように、図15に示す流れと同様の排気ガスの流れが減少する。一方で、図6中実線矢印で示すように、第1壁部42に到達しつつ、特に移行壁部42Aや段差壁部42Cの移行壁部曲率半径R1や段差壁部曲率半径R2をもって湾曲して形成された移行壁部湾曲部や段差壁部湾曲部の壁面に沿って流れる排気ガスの流れが増加する。また、上述のごとく、図9に示すように、三元触媒中心軸L2は、三元触媒中心軸L2に平行な平面PL32から下側にずれているから、上記移行壁部湾曲部や上記段差壁部湾曲部に沿いつつ、下方から上方へ巻き上がるような排気ガスの流れが増加する。このように、第1壁部42に到達しつつ三元触媒2とGPF3との間の空間に巻き上がるような排気ガスの二次流れを利用することにより、排気ガス全体の流速が低減され、接続管4内に排気ガスが拡散する。そうして、GPF3の重複部分31に流れ込む排気ガス量を増加させることができるとともに、GPF3へ流入する排気ガスの通気抵抗を低下させ、排気ガス流れを均一化させることができ、延いてはGPF3の利用効率・機能・性能を向上させることができる。
 また、第1壁部42のうち、第2壁部43と連なる段差壁部42Cは、移行壁部42Aよりも三元触媒2側に突出している。これにより、図6に示すように、三元触媒2を通過して段差壁部42Cに到達した排気ガスが、移行壁部42Aが存在するGPF3の端に向かって集中的に流れることを抑制するとともに、重複部分31への流れを促進させることができる。
 さらに、図10に示すように、移行壁部曲率半径R1は、段差壁部曲率半径R2よりも大きくなるように設定されている。
 図7、図8及び図11中の実線矢印で示すように、三元触媒2を通過した排気ガスは、第1壁部42の、特に移行壁部42Aや、段差壁部42Cに到達しつつその湾曲した壁面に沿って巻き上がる、又は、巻き下がるように流れ、接続管4の曲がり部4C内に拡散すると考えられる。このとき、図7及び図8に示すように、移行壁部曲率半径R1が段差壁部曲率半径R2よりも大きくなるように、すなわち移行壁部42Aが段差壁部42Cよりも緩やかに湾曲するように形成されていることから、GPF3のGPF上流端面3A近傍において、排気ガス流れの速度をさらに低下させることができる。そうして、接続管4内からGPF3に流入する排気ガスの通気抵抗をさらに低下させて、排気ガスの流れを均一化させることができ、延いてはGPF3の利用効率・機能・性能をさらに向上させることができる。
 また、図8に示すように、接続管4の天部4D側であり且つ第2接続部材41に、台座部44が設けられており、例えば図4に示すNOxセンサ92(検出手段)などの各種センサ等の制御用デバイスを設置することができる。なお、図8では、簡単のため、NOxセンサ92のセンサ本体の図示を省略し、このセンサ本体を取り付けるためのNOxセンサ取付部92Aのみを示している。
 三元触媒2を通過した排気ガスは、上述のごとく、接続管4内に拡散してGPF3に流入していく。このとき、接続管4の天部4D側は、三元触媒2を通過した排気ガスが直接到達することが少なく、第1壁部42の壁面に沿って巻き上がるような排気ガスの二次流れにより排気ガスが拡散する。そうすると、接続管4の天部4D側には、排気ガスの成分濃度を始め、例えば温度や圧力等を検出するために十分な量の排気ガスが、流速が低下した状態で拡散する。そうして、接続管4の天部4D側に各種センサを配置させることにより、安定した検出精度を確保することができ、各種センサなどの制御用デバイスの搭載性が向上する。
 なお、台座部44は、図8に示すように、平坦に形成されているが、形状はこれに限られず、例えば曲面状等に形成されていてもよい。また、各種センサ等の制御用デバイスは、台座部44以外の部分に設置されてもよい。
 <GPF下流端部>
 図3に示すように、GPF3の下流端側には、GPF下流端部7が接続されている。このGPF下流端部7には、図13に示すように、GPF3を通過した排気ガスの出口である排気ガス出口5を取り付けるための排気ガス出口導入孔71と、排気ガスの一部を吸気側に供給するEGR用取出口6を取り付けるためのEGR用導入口72とが設けられている。
 <排気ガス出口>
 排気ガス出口5は、GPF3を通過した排気ガスを図外の下流側排気ガス通路へ案内するとともに、三元触媒2及びGPF3による排気ガスの浄化に伴い発生した水分を溜めて除去するためのものである。
 図5に示す、符号PRL31で示す線は、GPF中心軸L3のV-V断面上への投影線である。また、符号L5で示す線は、排気ガス出口5の排気ガス出口中心軸を示している。そして、符号P5で示す点は、当該排気ガス出口中心軸L5上の点であって、図13に示す、後述する排気ガス出口導入孔71を含む平面との交点、すなわち、排気ガス出口導入孔71の中心を示しており、以下の説明において、排気ガス出口5の中心位置P5と称する。
 図5に示すように、GPF3のGPF下流端面3B側の排気ガス出口5の中心位置P5は、GPF3のGPF中心軸L3のV-V断面上への投影線PRL31よりも右側、すなわち三元触媒2側へオフセットされている。
 本構成によれば、図6及び図13に示すように、GPF3に流入した排気ガスについて、排気ガス出口5に向かう流れが生じる。そうすると、排気ガス出口5に向かう流れにつられて、重複部分31に流れ込む排気ガス量が増加する。そうして、GPF3の利用効率を向上させることができる。
 なお、図5に示すように、排気ガス出口5のオフセット量は、重複部分31に流入する排気ガス量を十分に確保して、GPF3の利用効率を向上させる観点から、好ましくは、V-V断面上で、排気ガス出口5の三元触媒2側の排気ガス出口右側面5Aが、GPF3の三元触媒2側のGPF側面3Cよりも右側、すなわち三元触媒2側に位置する程度に設定することができる。このとき、排気ガス出口5付近の通気抵抗の増加を抑制する観点から、V-V断面上で、排気ガス出口5の左側の排気ガス出口左側面5Bが、GPF3の三元触媒2側のGPF側面3Cよりも左側に位置する程度に、排気ガス出口5のオフセット量を設定することが好ましい。
 また、図9に示すように、排気ガス出口5は、平面PL32から下側に配置されている。このように、排気ガス出口5をGPF3に対して下方に配置することにより、三元触媒2及びGPF3による排気ガスの浄化に伴い発生した水分を排気ガス出口5において効果的に溜めて除去することができる。
 <EGR用取出口>
 エンジンEの構成として、ノッキングの発生防止や窒素酸化物NOx量の低減を目的として、排気ガスの一部を吸気側に再循環させるEGRを採用することができる。その場合、GPF3のGPF下流端面3B側に排気ガスのEGR用取出口6を設けることができる。
 図5に示すように、EGR用取出口6は、V-V断面上で、GPF3のGPF中心軸L3の投影線PRL31に対して、排気ガス出口5と反対側に配置されている。そして、図13に示すように、GPF下流端部7には、排気ガス出口導入孔71と離間した位置に、EGR用導入口72に排気ガスを案内するためのEGR用排気ガス案内路72Aが形成されている。
 本構成によれば、EGR用に十分な量の排気ガスを確保できるとともに、GPF3内の排気ガスの流れを排気ガス出口5側とEGR用取出口6側とに分散させて均一化させることができる。そうして、GPF3の利用効率・機能・性能をさらに向上させることができる。
 <車体内の配置>
 本実施形態に係る排気浄化装置1は、例えば、図14に示すような車両レイアウトZの構成に組み込むことができる。
 すなわち、図9に示すように、三元触媒2は、GPF3よりもやや下方に設けられている。従って、図14に示すように、排気マニホールドMを三元触媒2の上方に近接して配置することにより、排気浄化装置1を、特に前後方向において、よりコンパクト化させることができる。
 また、図1及び図3に示すように、接続管4の底部4EとGPF3のGPF底部3Dは、直線状に形成されている。これにより、図14に示すように、接続管4及びGPF3の下方に、動力分割装置K(車両部品)が近接して配置されている。こうして、前後左右上下方向において、よりコンパクトな車両レイアウトをもたらすことができる。
 なお、接続管4及びGPF3の下方に配置される車両部品は、動力分割装置Kに限られるものではなく、その他の車両部品であってもよい。具体的には例えば、駆動系のドライブシャフトや、排気浄化装置1が例えばFR車両等に適用される場合には、マウント系のエンジンマウント等を近接配置させることができる。
 (その他の実施形態)
 以下、本開示に係る他の実施形態について詳述する。なお、これらの実施形態の説明において、実施形態1と同じ部分については同じ符号を付して詳細な説明を省略する。
 実施形態1の排気浄化装置1はFF車両に適用されていたが、4つの排気ポートに接続された排気マニホールドMの独立排気管を後方に延ばしつつ集合させ、エンジンE後端で車幅方向中央側に指向させた後に後方に延ばすようにすることでFR車両にも適用することができる。
 実施形態1において、第1触媒は三元触媒2、第2触媒はGPF3という構成であったが、触媒はこれらに限られるものではなく、種々の触媒を用いることができる。具体的には例えば、排気浄化装置1をディーゼルエンジンに適用する場合には、ディーゼルパティキュレートフィルタを採用してよい。また、第1触媒及び第2触媒として、酸化触媒及びNOx浄化用触媒とを組み合わせた構成であってもよい。
 実施形態1において、図9に示すように、三元触媒2はGPF3よりもやや下方に設けられており、また、図10に示すように、第1壁部42の移行壁部42A及び段差壁部42Cは、接続管4の底部4E側に、それぞれ移行壁部曲率半径R1及び段差壁部曲率半径R2をもって湾曲するように形成された移行壁部湾曲部及び段差壁部湾曲部を備えていた。この点、三元触媒2はGPF3と同程度の高さ又はGPF3よりも高い位置に設けられてもよい。また、第1壁部42の移行壁部42A及び段差壁部42Cは、接続管4の天部4D側に、それぞれ移行壁部曲率半径R1及び段差壁部曲率半径R2をもって湾曲するように形成された移行壁部湾曲部及び段差壁部湾曲部を備えていてもよい。また、移行壁部湾曲部及び段差壁部湾曲部は、接続管4の天部4D側及び底部4E側の両方に設けられていてもよい。また湾曲形状の代わりに、例えば台座部44のような緩やかな傾斜を設ける構成としてもよく、この場合、当該傾斜に沿って排気ガスの二次流れが形成され得る。なお、どのような場合においても、センサ取付用の台座部44等の検出手段取付位置は、接続管4の天部4D側に限らず、底部4E側や第1接続部材40等の排気ガス流れが均一化される位置に適宜設けることができる。
 実施形態1では、排気マニホールドMの出口が気筒の配列の右側に配置されるように構成されており、接続管4は、図10に示すように後方から見たときに、第1開口部4Aが右側に配置されるように構成されていた。この点、車両レイアウトに応じて、第1開口部4Aがその他の方向、例えば左側や上下方向に配置されるように構成されていてもよい。
 実施形態1では、接続管4内に三元触媒2とGPF3とが挿入された構成であったが、挿入させることなく、接続管4の上流端及び下流端に接続用のフランジ部等を介して接続された構成としてもよい。また、三元触媒2及びGPF3の一方が接続管4内に挿入された構成で、他方が接続管4の端部に接続用のフランジ部等を介して接続された構成としてもよい。なお、排気浄化装置1のコンパクト化の観点からは、実施形態1の構成が好ましい。
 本開示は、エンジンの排気装置のコンパクト化を実現しつつ触媒の利用効率や機能・性能、制御用デバイスの搭載性を向上させることができるので、極めて有用である。
1 排気浄化装置(エンジンの排気装置)
2 三元触媒(第1触媒)
2A 三元触媒上流端面(第1触媒の上流端面)
2B 三元触媒下流端面(第1触媒の下流端面)
3 ガソリンパティキュレートフィルタ、GPF(第2触媒)
3A GPF上流端面(第2触媒の上流端面)
3B GPF下流端面(第2触媒の下流端面)
3C GPF側面(第2触媒の第1触媒側の側面)
3D GPF底部(第2触媒底部)
4 接続管(接続部材)
4A 第1開口部
4B 第2開口部
4C 曲がり部
4D 天部
4E 底部
5 排気ガス出口
5A 排気ガス出口右側面
5B 排気ガス出口左側面
6 EGR用取出口
7 GPF下流端部
21 前段部
22 後段部
23 キャタマット
24 キャタケース
31 重複部分
40 第1接続部材
40A 第1接合部
41 第2接続部材
42 第1壁部
42A 移行壁部
42B 傾斜壁部
42C 段差壁部
43 第2壁部
44 台座部
45 支持部
45A 第1開口部側支持部
45B 三元触媒下流端面側支持部(支持面)
71 排気ガス出口導入孔
72 EGR用導入口
72A EGR用排気ガス案内路
92 NOxセンサ(検出手段)
92A NOxセンサ取付部
E エンジン
K 動力分割装置(車両部品)
L2 三元触媒中心軸(第1触媒の中心軸)
L3 GPF中心軸(第2触媒の中心軸)
L5 排気ガス出口中心軸(排気ガス出口の中心軸)
M 排気マニホールド
N 接続部
P5 中心位置
PRL31 投影線
PL32 平面
Q 触媒装置
R 第1壁部曲率半径
R1 移行壁部曲率半径
R2 段差壁部曲率半径
R3 第2壁部曲率半径(所定曲率半径)
α 二面角
θ 角度

Claims (6)

  1.  エンジンの排気経路上に配設され、該エンジンから排出される排気ガスを浄化するための第1触媒と、
     前記第1触媒の排気ガス流れ方向下流側に配置され、該第1触媒を通過した排気ガスを浄化するための第2触媒と、
     前記排気経路の一部を形成するとともに前記第1触媒と前記第2触媒とを接続する管状の接続部材と
    を備え、
     前記接続部材は、排気ガス流れ方向上流側の第1開口部と、排気ガス流れ方向下流側の第2開口部と、該第1開口部と該第2開口部とを接続する曲がり部とを備えており、
     前記第1触媒の下流端面側は、前記第1開口部と接続されており、
     前記第2触媒の上流端面側は、前記第2開口部と接続されており、
     前記第1触媒の前記下流端面と、前記第2触媒の前記上流端面とは、互いに60度以上120度以下の二面角をなしており、
     前記第2触媒の前記上流端面の一部は、前記第1触媒の側面の一部と近接且つ対向する重複部分を有しており、
     前記接続部材の前記曲がり部は、
     前記第1触媒の前記下流端面と対向する第1壁部と、
     前記第2触媒の前記上流端面と対向する第2壁部と、
     前記第1壁部と前記第2壁部とを所定曲率半径をもって接続するコネクタ部と
    を備えており、
     前記第1壁部は、前記第2開口部を正面から見たときに、第1壁部曲率半径をもって湾曲するように形成された湾曲部を備えており、
     前記第1壁部曲率半径は、前記所定曲率半径よりも大きい
    ことを特徴とするエンジンの排気装置。
  2.  請求項1において、
     前記第1触媒は、その下流端面側から前記第1開口部を通じて前記接続部材内に挿入されており、
     前記第2触媒は、その上流端面側から前記第2開口部を通じて前記接続部材内に挿入されている
    ことを特徴とするエンジンの排気装置。
  3.  請求項2において、
     前記第1触媒の中心軸の位置は、前記第2触媒の中心軸を含み且つ前記第1触媒の中心軸に平行な平面よりも下側にあり、
     前記湾曲部は、前記接続部材の底部側に形成されている
    ことを特徴とするエンジンの排気装置。
  4.  請求項3において、
     前記第1触媒の上方に近接して配置された排気マニホールドをさらに備え、
     前記接続部材の底部と前記第2触媒の第2触媒底部は、該接続部材の底部及び該第2触媒底部の下方に車両部品を近接配置可能となるように、直線状に形成されている
    ことを特徴とするエンジンの排気装置。
  5.  請求項3又は請求項4において、
     前記接続部材の天部側に、検出手段取付用の台座部が設けられている
    ことを特徴とするエンジンの排気装置。
  6.  請求項1乃至請求項5のいずれか一において、
     前記接続部材は、
     前記第1開口部及び前記第2開口部の一部が設けられた第1接続部材と、
     前記第2開口部の他部が設けられた第2接続部材と
    を備え、
     前記第1壁部及び前記第2壁部は、前記第2接続部材に設けられている
    ことを特徴とするエンジンの排気装置。
PCT/JP2017/043297 2016-12-16 2017-12-01 エンジンの排気装置 WO2018110325A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780077191.3A CN110073088A (zh) 2016-12-16 2017-12-01 发动机的排气装置
US16/469,899 US10835865B2 (en) 2016-12-16 2017-12-01 Engine exhaust device
EP17881214.5A EP3550116B1 (en) 2016-12-16 2017-12-01 Engine exhaust device
JP2018556574A JP6729721B2 (ja) 2016-12-16 2017-12-01 エンジンの排気装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-244419 2016-12-16
JP2016244419 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110325A1 true WO2018110325A1 (ja) 2018-06-21

Family

ID=62558683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043297 WO2018110325A1 (ja) 2016-12-16 2017-12-01 エンジンの排気装置

Country Status (5)

Country Link
US (1) US10835865B2 (ja)
EP (1) EP3550116B1 (ja)
JP (1) JP6729721B2 (ja)
CN (1) CN110073088A (ja)
WO (1) WO2018110325A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6521005B2 (ja) * 2017-08-24 2019-05-29 マツダ株式会社 自動車

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117409A (ja) * 2009-12-07 2011-06-16 Ngk Insulators Ltd 排ガス処理装置
JP2012529592A (ja) 2009-06-12 2012-11-22 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング エンジンに近接して使用するための排気ガス処理装置
WO2013069115A1 (ja) * 2011-11-09 2013-05-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2016148259A (ja) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 排気浄化装置
JP2016188599A (ja) * 2015-03-30 2016-11-04 トヨタ自動車株式会社 排気管の構造

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883198B2 (ja) * 2003-09-11 2007-02-21 三井金属鉱業株式会社 尿素溶液の尿素濃度識別装置
JP4941543B2 (ja) * 2009-12-02 2012-05-30 マツダ株式会社 横置きエンジンの排気装置
DE102014206907A1 (de) 2014-04-10 2015-10-29 Bayerische Motoren Werke Aktiengesellschaft Abgasreinigungsanlage für Dieselmotoren
US9551266B2 (en) 2014-05-15 2017-01-24 GM Global Technology Operations LLC External exhaust guiding flow chambers for multiple catalyst architecture
JP6420158B2 (ja) 2015-01-08 2018-11-07 フタバ産業株式会社 排気浄化装置
CN205277558U (zh) * 2016-01-08 2016-06-01 安徽江淮汽车股份有限公司 一种后处理总成

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529592A (ja) 2009-06-12 2012-11-22 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング エンジンに近接して使用するための排気ガス処理装置
JP2011117409A (ja) * 2009-12-07 2011-06-16 Ngk Insulators Ltd 排ガス処理装置
WO2013069115A1 (ja) * 2011-11-09 2013-05-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2016148259A (ja) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 排気浄化装置
JP2016188599A (ja) * 2015-03-30 2016-11-04 トヨタ自動車株式会社 排気管の構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550116A4

Also Published As

Publication number Publication date
EP3550116A1 (en) 2019-10-09
JPWO2018110325A1 (ja) 2019-10-24
US10835865B2 (en) 2020-11-17
JP6729721B2 (ja) 2020-07-22
CN110073088A (zh) 2019-07-30
EP3550116A4 (en) 2019-10-23
US20190366268A1 (en) 2019-12-05
EP3550116B1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP6299856B1 (ja) エンジンの排気装置
CN108571368B (zh) 发动机的排气装置
US10626781B2 (en) Exhaust device of engine
US10557398B2 (en) Exhaust pipe structure for internal combustion engine
WO2018110324A1 (ja) エンジンの排気装置
US10550750B2 (en) Exhaust device of engine
WO2018110325A1 (ja) エンジンの排気装置
JP6319412B1 (ja) エンジンの排気装置
US10557443B2 (en) Exhaust device of engine
CN113906199B (zh) 催化转化器
JP6436217B2 (ja) エンジンの排気装置
JP6500967B2 (ja) エンジンの排気装置
JP6460212B2 (ja) エンジンの排気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017881214

Country of ref document: EP

Effective date: 20190703