WO2018110260A1 - Radiation detection device - Google Patents

Radiation detection device Download PDF

Info

Publication number
WO2018110260A1
WO2018110260A1 PCT/JP2017/042409 JP2017042409W WO2018110260A1 WO 2018110260 A1 WO2018110260 A1 WO 2018110260A1 JP 2017042409 W JP2017042409 W JP 2017042409W WO 2018110260 A1 WO2018110260 A1 WO 2018110260A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
optical element
mirror
sample
ray
Prior art date
Application number
PCT/JP2017/042409
Other languages
French (fr)
Japanese (ja)
Inventor
好隆 夏目
友晴 長谷
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2018556535A priority Critical patent/JP6944952B2/en
Publication of WO2018110260A1 publication Critical patent/WO2018110260A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence

Definitions

  • the present invention relates to a radiation detection apparatus.
  • a radiation detector is used to analyze a sample.
  • the radiation detection apparatus irradiates a sample with radiation such as X-rays or electron beams, and the characteristic X-rays generated at that time are detected by a detector. From the spectral distribution of characteristic X-rays detected by the radiation detection device, it is possible to identify the element contained in the sample and calculate the concentration of this element.
  • a radiation detection apparatus there is an X-ray analysis apparatus provided with an imaging unit in order to confirm an X-ray irradiation position on a sample (see, for example, Patent Document 1).
  • a mirror is arranged above the sample with the reflecting surface facing the sample side, and the imaging unit acquires an image obtained by imaging the sample from above by the reflected light from the mirror. . Therefore, in the apparatus disclosed in Patent Document 1, the irradiation position of X-rays irradiated from above the sample can be confirmed by an optical image obtained by imaging the sample from above.
  • an X-ray guide member and a mirror for guiding X-rays to the sample are arranged at the same position above the sample. ing. Further, in order to arrange the X-ray guide member and the mirror at the same position, an insertion portion (for example, a notch portion) for inserting the X-ray guide member into the mirror is provided. Therefore, since the field of view by the mirror is limited at the place where the insertion portion is provided, the sample may not be sufficiently observed by the optical image acquired by the imaging unit. In this case, the X-ray irradiation position on the sample can be confirmed with high accuracy. There is a possibility that it cannot be done.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a radiation detection apparatus capable of accurately confirming a sample via a mirror.
  • a radiation detection apparatus includes a radiation optical element that narrows down radiation applied to a sample, a detection unit that detects radiation generated by irradiation of the sample with radiation, and a mirror disposed to face the sample And a holding unit that holds the radiation optical element and the mirror, the holding unit is moved in two intersecting directions within a plane that intersects the irradiation direction of the radiation applied to the sample.
  • the holding unit further includes a plurality of the radiation optical elements having different radiation emission diameters, and the mirror and the radiation optical element having the smallest emission diameter are arranged in one of the two directions. It is characterized by being held side by side in the direction.
  • the holding unit holds the radiation optical element having a small emission diameter at a position where the distance along the two directions from the mirror is short. .
  • a radiation detection apparatus includes a radiation optical element that narrows down radiation applied to a sample, a detection unit that detects radiation generated by irradiation of the sample with radiation, and a mirror disposed to face the sample And a holding unit that holds the radiation optical element and the mirror, the holding unit is moved in two intersecting directions within a plane that intersects the irradiation direction of the radiation applied to the sample.
  • a driving unit; and the holding unit holds a plurality of the radiation optical elements having different irradiation diameters of the radiation on the surface of the sample, the mirror and the radiation optical element having the smallest irradiation diameter. It is characterized by being held side by side in one of the two directions.
  • the radiation optical element is a cylinder, and has a shape in which an inner diameter of a central portion in an axial length direction is larger than inner diameters of both end portions, The radiation optical element having the smallest inner diameter at one end that emits radiation is arranged and held in one of the two directions together with the mirror.
  • the holding unit may be configured so that the radiation optical element having the minimum distance from the emission end that emits the radiation to the sample is in one of the two directions together with the mirror. It is characterized by being held side by side.
  • the holding unit holds the radiation optical element having a small irradiation diameter at a position where the distance from the mirror along the two directions is short. To do.
  • the radiation detection apparatus is characterized in that a plurality of the radiation optical elements are arranged side by side in each of the two directions.
  • the radiation optical element is a cylindrical body, and the holding unit holds the radiation optical element having a short axial length in a position close to the detection unit. It is characterized by being.
  • the radiation detection apparatus is characterized in that the mirror is disposed so as to guide an optical image of the sample to an observation unit disposed at a predetermined position.
  • the radiation optical element is a cylindrical body arranged with the radiation direction of the radiation as an axial length direction, and the holding portion is formed in a plate shape,
  • the holding portion has a plurality of long holes drilled in the thickness direction, and the long holes are provided side by side in the other direction, with one of the two directions as the long axis direction,
  • the holding part holds the radiation optical element inserted through the long hole, and the holding part has a mirror holding part extending in the axial length direction of the radiation optical element, and the mirror
  • the mirror is attached to the extended end portion of the holding portion in a state where the reflecting surface is parallel to the other direction and inclined with respect to the axial length direction of the radiation optical element.
  • the radiation optical element having a diameter or the radiation optical element having the smallest irradiation diameter is Characterized in that the serial mirror is disposed at a position closer to the one direction.
  • a plurality of radiation optical elements that emit radiation irradiated to a sample with different exit diameters are held by a holding unit together with a mirror that is disposed to face the sample.
  • the holding unit is movable in two intersecting directions within a plane intersecting the radiation irradiation direction. Since the mirror and the radiation optical element can be moved by the movement of the holding portion, it is not necessary to arrange the mirror and the radiation optical element at the same position, and it is not necessary to provide a notch in the mirror as in the prior art. Therefore, since the field of view by the mirror is not limited, the sample can be visually recognized through the mirror. Further, the alignment of the sample with respect to the mirror can be performed while confirming the sample through the mirror.
  • the holding portion can move in two directions, the radiation optical element can be easily and accurately aligned with the sample.
  • the mirror and the radiation optical element having the smallest emission diameter are held in the holding unit side by side in one of the two directions. Therefore, when aligning the radiation optical element having the smallest emission diameter with respect to the sample aligned with the mirror, the holding unit only needs to be moved in one direction, so that the alignment can be performed with higher accuracy. Is possible.
  • the radiation optical element having the smallest emission diameter is most susceptible to dimensional errors and assembly errors in the holding unit and the driving unit.
  • the configuration in which the radiation optical element with the smallest emission diameter can be aligned by moving the holding portion in one direction can reduce the influence of the dimensional error and the assembly error that the radiation optical element with the smallest emission diameter receives in one direction. It is possible to reduce only the error caused by movement.
  • a radiation optical element having a small emission diameter is disposed at a position where the distance from the mirror along the two directions is short.
  • the radiation optical element has a smaller emission diameter, the influence of dimensional errors and assembly errors in the holding unit and the driving unit cannot be ignored. Further, the influence of the dimensional error and the assembly error becomes larger as the moving distance at the time of alignment becomes longer. Therefore, by arranging the radiation optical element having a small emission diameter at a position where the distance to be moved at the time of alignment to a predetermined position is short, the movement distance at the time of alignment can be shortened, so that the alignment is performed with high accuracy. It becomes possible.
  • a plurality of radiation optical elements having different irradiation diameters on the sample surface of the radiation applied to the sample are held by the holding unit together with the mirror disposed opposite to the sample. Since the mirror and the radiation optical element can be moved by the movement of the holding portion, it is not necessary to arrange the mirror and the radiation optical element at the same position, and it is not necessary to provide a notch in the mirror as in the prior art. Therefore, since the field of view by the mirror is not limited, the sample can be visually recognized through the mirror. Further, the alignment of the sample with respect to the mirror can be performed while confirming the sample through the mirror. Furthermore, since the holding portion can move in two directions, the radiation optical element can be easily and accurately aligned with the sample.
  • the mirror and the radiation optical element having the smallest irradiation diameter on the sample surface are arranged in one of the two directions and are held by the holding unit. Therefore, when aligning the radiation optical element with the smallest irradiation diameter on the sample surface with respect to the sample aligned with the mirror, it is only necessary to move the holding part in one direction, so it is more accurate. It is possible to perform alignment well.
  • the radiation optical element with the smallest irradiation diameter is most susceptible to dimensional errors and assembly errors in the holding unit and the driving unit. Therefore, the configuration that can be aligned by moving the holding part in one direction reduces the effects of dimensional errors and assembly errors on the radiation optical element with the smallest irradiation diameter only to errors caused by movement in one direction. Is possible.
  • the radiation optical element is a cylindrical body having a shape in which the inner diameter of the central portion in the axial length direction is larger than the inner diameters of both end portions.
  • a radiation optical element having the smallest inner diameter at one end for emitting radiation is held side by side in one of the two directions together with the mirror. Therefore, when aligning the radiation optical element having the smallest inner diameter at the one end with respect to the sample aligned with the mirror, the holding unit only needs to be moved in one direction. It is possible to combine.
  • the radiation optical element having the minimum distance from the emission end that emits radiation to the sample is arranged and held in one of the two directions together with the mirror. Therefore, with respect to the sample aligned with the mirror, when aligning the radiation optical element having the minimum distance from the emission end to the sample, it is only necessary to move the holding unit in one direction. It is possible to perform alignment with high accuracy.
  • a radiation optical element having a small irradiation diameter on the sample surface is disposed at a position where the distance along the two directions from the mirror is short.
  • the radiation optical element As the irradiation diameter is smaller, the influence of dimensional errors and assembly errors in the holding unit and the driving unit cannot be ignored. Further, the influence of the dimensional error and the assembly error becomes larger as the moving distance at the time of alignment becomes longer. Therefore, by arranging the radiation optical element having a small irradiation diameter at a position where the distance to be moved at the time of alignment to a predetermined position is short, the movement distance at the time of alignment can be shortened, so that the alignment is performed with high accuracy. It becomes possible.
  • a plurality of radiation optical elements are arranged along two directions in which the holding unit can move. Therefore, it is possible to accurately and easily perform alignment for moving the holding unit and arranging the radiation optical element at a predetermined position.
  • the radiation optical element is a cylinder, and the radiation optical element having a short length in the axial direction is disposed at a position close to the detection unit. Therefore, even when the holding unit is moved, the radiation optical element can be arranged so as not to contact the detection unit.
  • the mirror guides the optical image of the sample to the observation unit arranged at a predetermined position. Therefore, since the sample can be observed from the position of the mirror, the sample can be observed with high accuracy.
  • a plurality of long holes are formed in the thickness direction in the plate-like holding portion, and the cylindrical radiation optical element is inserted into the long hole and held by the holding portion. Therefore, the radiation optical element can be attached to the holding portion by inserting the radiation optical element through the long hole of the holding portion.
  • the holding part has a mirror holding part extending in the axial length direction of the radiation optical element, and a mirror is attached to an extended end of the mirror holding part. The mirror is mounted in a state where the reflecting surface is parallel to the parallel arrangement direction of the long holes and tilted with respect to the axial length direction of the radiation optical element, and the optical image of the sample is appropriately applied to the observation part at a predetermined position It is possible to lead to.
  • the radiation optical element having the smallest emission diameter or the radiation optical element having the smallest irradiation diameter is arranged at a position close to the mirror, the radiation optical element having the smallest emission diameter or irradiation diameter is arranged at a predetermined position. Positioning can be performed easily and accurately.
  • the sample can be confirmed with high accuracy through a mirror.
  • the radiation optical element can be accurately aligned with the sample.
  • FIG. 2 is a schematic diagram illustrating a configuration of an optical element unit according to Embodiment 1.
  • FIG. 2 is a schematic diagram illustrating a configuration of an optical element unit according to Embodiment 1.
  • FIG. 2 is a schematic diagram illustrating a configuration of an optical element unit according to Embodiment 1.
  • FIG. It is a schematic diagram which shows the X-ray analyzer in operation. It is a schematic diagram which shows the X-ray analyzer in operation. It is a schematic diagram which shows the X-ray analyzer in operation. It is a schematic diagram which shows the X-ray analyzer in operation. It is a top view of an optical element unit when the X-ray analyzer is operating. 6 is a top view of an optical element unit according to Embodiment 2.
  • FIG. 2 is a schematic diagram illustrating a configuration of an optical element unit according to Embodiment 1.
  • FIG. 2 is a schematic diagram illustrating a configuration of an optical element unit according to Embodiment 1.
  • FIG. It
  • FIG. 6 is a perspective view of an optical element unit according to Embodiment 3.
  • FIG. It is sectional drawing of the X-ray optical element which concerns on Embodiment 3.
  • FIG. 5 is a schematic diagram of a part of the X-ray analyzer according to the third embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of an X-ray analyzer.
  • the X-ray analyzer is disposed between a sample box 2 in which a sample 20 to be analyzed is stored, an X-ray tube 3 that generates X-rays to be irradiated on the sample 20, and the X-ray tube 3 and the sample box 2.
  • a vacuum box 1 is provided.
  • the X-ray tube 3 is attached to the upper surface of the vacuum box 1 via the communication part 30.
  • the vacuum box 1 is attached to the upper surface of the sample box 2 through a communication portion provided with an X-ray transmission window 22 that allows X-rays to pass through satisfactorily.
  • the vacuum box 1 and the sample box 2 are made of metal such as copper or aluminum.
  • the X-ray transmission window 22 is made of a material that easily transmits X-rays and transmits light.
  • a sample stage 21 is installed at a predetermined position in the sample box 2, and the sample 20 is placed on the sample stage 21.
  • an optical element unit 10 as will be described later is arranged at a predetermined position.
  • X-rays generated by the X-ray tube 3 enter the vacuum box 1 through the communication portion 30, pass through the optical element unit 10 in the vacuum box 1, and further pass through the X-ray transmission window 22.
  • the light enters the sample box 2 and is irradiated onto the sample 20 on the sample stage 21.
  • the sample stage 21 is driven by the sample stage drive unit 66 in two directions orthogonal to each other within the plane orthogonal to the X-ray irradiation direction (vertical direction in FIG. 1) and the irradiation direction (for example, horizontal direction and depth in FIG. 1). Direction).
  • the sample stage drive unit 66 may be provided inside the sample box 2 or may be provided outside the sample box 2.
  • An X-ray detector 4 for detecting characteristic X-rays (fluorescent X-rays) generated from the sample 20 when the sample 20 is irradiated with X-rays as described above is attached to the vacuum box 1.
  • the X-ray detector 4 is attached to the vacuum box 1 with the fluorescent X-ray detection surface facing the X-ray transmission window 22.
  • an observation unit 5 such as a CCD (Charge Coupled Device) camera or an optical microscope is attached to the vacuum box 1.
  • the optical element unit 10 in the vacuum box 1 has a mirror 12, and the observation unit 5 is arranged to face the mirror 12.
  • the observation unit 5 is provided to acquire an optical image of the sample 20 in the sample box 2 reflected by the mirror 12.
  • a light source (not shown) is provided at an appropriate location inside the vacuum box 1 or the sample box 2 to illuminate the sample 20.
  • the light source is, for example, an LED (light emitting diode), and can be provided, for example, on the inner surface (lower surface) of the upper wall of the sample box 2 or may be provided inside the vacuum box 1.
  • the observation part 5 can also be arrange
  • FIGS. 2A and 2B are schematic views showing the configuration of the optical element unit 10 according to Embodiment 1.
  • FIG. FIG. 2A is a perspective view of the optical element unit 10
  • FIG. 2B is a top view of the optical element unit 10.
  • the optical element unit 10 irradiates the sample 20 with X-rays generated by the X-ray tube 3 with a reduced beam diameter.
  • the optical element unit 10 is configured by mounting a plurality of X-ray optical elements 11a to 11d (hereinafter sometimes collectively referred to as X-ray optical elements 11) on an optical element switching stage 10a. In the configuration shown in FIGS. 2A and 2B, four X-ray optical elements 11 are mounted, but the configuration is not limited to this.
  • the X-ray optical element 11 converges the X-rays generated in the X-ray tube 3 and incident into the vacuum box 1.
  • the X-ray optical element 11 is an X-ray conduit (capillary) formed of glass, for example, in a cylindrical shape (tubular shape).
  • the X-ray optical element 11 guides an X-ray incident from one end while reflecting the X-ray on the inner surface, and emits it from the other end. .
  • Each of the X-ray optical elements 11a to 11d has, for example, the same outer diameter and different inner diameters. With this configuration, the diameter of the X-rays emitted from the X-ray optical elements 11a to 11d on the sample surface ( Spot diameters can be made different.
  • the inner diameter (X-ray emission diameter) of the X-ray optical element 11 can be selected as appropriate.
  • the inner diameters of the X-ray optical elements 11a to 11d are 10 ⁇ m, 100 ⁇ m, 500 ⁇ m, 1 .2 mm.
  • the X-ray optical element 11 shown in FIGS. 2A and 2B is formed of a so-called monocapillary, but a polycapillary formed by bundling a plurality of ultrafine X-ray conduits can also be used.
  • the optical element switching stage (holding part) 10a is formed in a rectangular plate shape, and an insertion hole 10b for inserting the X-ray optical element 11 is formed in the thickness direction.
  • two insertion holes 10b which are long holes having an elliptical cross section, are provided with the left-right direction (X direction in FIG. 2B) of the upper surface of the optical element switching stage 10a as the major axis direction.
  • the two insertion holes 10b are arranged side by side in a direction (Y direction in FIG. 2B) orthogonal to the left-right direction.
  • the insertion hole 10b is not limited to a configuration having an elliptical cross section, and may have a configuration having an oval cross section or a rectangular cross section.
  • the X-ray optical element 11 is inserted into the insertion hole 10b, and a hook (not shown) provided on one end side of the X-ray optical element 11 is provided on the optical element switching stage 10a (insertion hole 10b). It is attached to the optical element switching stage 10a by being locked to (not shown). With such a configuration, the optical element switching stage 10a holds the X-ray optical element 11 inserted through the insertion hole 10b.
  • the optical element switching stage 10a holds the X-ray optical element 11 inserted through the insertion hole 10b.
  • two X-ray optical elements 11 are inserted through each insertion hole 10b, but the number of X-ray optical elements 11 inserted through each insertion hole 10b is two. Not limited to. In the example shown in FIG.
  • the X-ray optical element 11a having the smallest inner diameter is inserted into the lower insertion hole 10b at the left position close to the mirror 12, and the inner diameter is the second position at the right position.
  • a small X-ray optical element 11b is inserted.
  • the X-ray optical element 11c having the third smallest inner diameter is inserted into the upper insertion hole 10b at a position on the left side near the mirror 12, and the X-ray optical element 11d with the largest inner diameter is inserted into the right position.
  • a mirror 12 is attached to the optical element switching stage 10a.
  • a mirror holder 12a is extended in the axial length direction of the X-ray optical element 11, and the mirror 12 is attached to the extended end of the mirror holder 12a.
  • the mirror holder 12a has an insertion hole at a position aligned with the insertion hole 10b to which the X-ray optical element 11a is attached along the left end side of the lower surface of the optical element switching stage 10a.
  • 10b extends from a region slightly longer than the width in the Y-axis direction.
  • the mirror 12 is, for example, a circular plate-like plane mirror, and has the same diameter as the length of the mirror holder 12a in the Y direction. That is, the mirror 12 has a slightly longer diameter than the width of the insertion hole 10b in the Y-axis direction (width in the short axis direction).
  • the reflection surface of the mirror 12 is parallel to the left end side (Y direction) of the lower surface of the optical element switching stage 10 a and is inclined by 45 degrees ⁇ several degrees with respect to the axial length direction of the X-ray optical element 11. It is attached in the state. As long as the mirror 12 can be held in such a state, the mirror holder 12a may have any shape.
  • the reflecting surface of the mirror 12 is preferably polished so that light can be efficiently reflected.
  • the optical element unit 10 having such a configuration has the optical element switching stage 10a on the upper side, the protruding end of the X-ray optical element 11 on the lower side, and the reflection surface of the mirror 12 facing the observation unit 5, Housed in a vacuum box 1.
  • the mirror 12 is disposed at a position close to the X-ray transmission window 22.
  • the observation unit 5 and the X-ray detector 4 are shown to face each other with the optical element unit 10 interposed therebetween. .
  • FIG. 1 shows that in practice, as shown in FIG.
  • each X-ray optical element 11 has an X-ray optical element 11 having a short axial length disposed at a position close to the X-ray detector 4.
  • the X-ray optical element 11 when the X-ray optical element 11 is formed longer as the inner diameter is smaller, the X-ray optical element 11 having a larger inner diameter and a shorter inner diameter is disposed at a position close to the X-ray detector 4. Thereby, even if it is a case where the optical element unit 10 is moved to the X-ray detector 4 side, it can avoid that each X-ray optical element 11 contacts the X-ray detector 4.
  • the mirror 12 reflects the optical image of the sample 20 by the light source to the observation unit 5 arranged to face the mirror 12.
  • the mirror 12 has a reflection surface of 45 degrees ⁇ several degrees with the optical axis of the observation unit 5, and the extending direction of the mirror holder 12 a (the axial length direction of the X-ray optical element 11). It is arranged in a state of 45 degrees ⁇ several degrees.
  • the configuration is not limited to this configuration as long as the observation unit 5 can acquire the optical image of the sample 20.
  • the optical element switching stage 10a (optical element unit 10) is switched by the switching stage driving unit 65 in two directions orthogonal to each other in a plane orthogonal to the X-ray irradiation direction (vertical direction in FIG. 1). It is comprised so that it can move to the X direction and Y direction in FIG. 2B.
  • the switching stage drive unit 65 is configured using, for example, a stepping motor. With the configuration described above, in the optical element unit 10 of Embodiment 1, one of the two directions in which the optical element switching stage 10a can be moved by the switching stage driving unit 65 (specifically, the X direction in FIG. 2B). , The X-ray optical element 11a having the smallest inner diameter and the mirror 12 are arranged side by side. That is, the X-ray optical element 11a having the smallest inner diameter and the mirror 12 are coaxial in the X direction.
  • the optical element switching stage 10a By moving the optical element switching stage 10a by the switching stage driving unit 65, the position of each X-ray optical element 11 and the mirror 12 is switched, and the X-ray is transmitted via the X-ray optical element 11 arranged at a predetermined position. X-rays generated in the tube 3 are delivered to the sample 20.
  • X-rays generated in the tube 3 are delivered to the sample 20.
  • the distance from the X-ray transmission window 22 to the surface of the sample 20 is the same due to the different inner diameters (outgoing diameters) of the X-ray optical elements 11a to 11d, X-rays having a beam diameter corresponding to the inner diameter are applied to the sample. 20 can be irradiated.
  • X-rays emitted from the X-ray optical element 11 arranged at a predetermined position pass through the X-ray transmission window 22 and are irradiated on the upper surface of the sample 20, and X-ray irradiation generates fluorescent X-rays from the sample 20. .
  • X-ray fluorescence generated from the sample 20 reaches the X-ray detector 4 through the X-ray transmission window 22 and is detected by the X-ray detector 4.
  • the X-ray detector 4 is a device that detects fluorescent X-rays generated by irradiating the sample 20 with X-rays, and outputs a signal proportional to the energy of the detected fluorescent X-rays.
  • the X-ray detector 4 is connected to a signal processing unit 62 that processes a signal output from the X-ray detector 4.
  • the signal processing unit 62 counts each value signal output from the X-ray detector 4 and performs a process of generating the relationship between the fluorescent X-ray energy and the count number, that is, the fluorescent X-ray spectrum.
  • An analysis unit 63 is connected to the signal processing unit 62.
  • the signal processing unit 62 outputs data indicating the generated spectrum to the analysis unit 63.
  • the analysis unit 63 includes a calculation unit that performs calculation and a memory that stores data.
  • the analysis unit 63 performs qualitative analysis or quantitative analysis of the elements contained in the sample 20 based on the spectrum indicated by the data input from the signal processing unit 62.
  • the observation unit 5 can acquire an optical image obtained by viewing the sample 20 from above by acquiring a reflected light image of the sample 20 by the mirror 12.
  • a display unit 64 such as a liquid crystal display is connected to the observation unit 5.
  • the display unit 64 displays the image of the sample 20 acquired by the observation unit 5.
  • the user can observe the sample 20 by visually recognizing the image of the sample 20 displayed on the display unit 64.
  • the observation part 5 is an optical microscope
  • a user can also observe the sample 20 except for the eyepiece of an optical microscope.
  • the X-ray tube 3, the signal processing unit 62, the analysis unit 63, the display unit 64, the switching stage driving unit 65 and the sample stage driving unit 66 are connected to the control unit 61.
  • the control unit 61 is composed of a computer including a calculation unit and a memory.
  • the control unit 61 controls operations of the X-ray tube 3, the signal processing unit 62, the analysis unit 63, the display unit 64, the switching stage driving unit 65 and the sample stage driving unit 66.
  • the control unit 61 may be configured to receive an instruction from the user and control the operation of each unit of the X-ray analyzer according to the received instruction.
  • the display unit 64 may display the spectrum generated by the signal processing unit 62 or the analysis result by the analysis unit 63.
  • the control part 61 and the analysis part 63 may be comprised with the same computer.
  • FIGS. 3A to 4B are schematic views showing the X-ray analyzer in operation.
  • 3A and 3B show an X-ray analyzer when the observation portion 20a on the upper surface of the sample 20 is observed by the observation unit 5 via the mirror 12.
  • FIG. FIG. 3A is a schematic diagram of the X-ray analyzer
  • FIG. 3B is a top view of the optical element unit 10 and the sample 20.
  • FIG. 4A and 4B show an X-ray analyzer in the case where an X-ray optical element 11a is used to irradiate the observation spot 20a on the upper surface of the sample 20 with X-rays.
  • FIG. 4A is a schematic diagram of the X-ray analyzer
  • FIG. 4B is a top view of the optical element unit 10 and the sample 20.
  • the user After the user places the sample 20 on the sample stage 21 in the sample box 2, the user switches the optical element switching stage 10a (optical element unit) by the switching stage driving unit 65 so that the mirror 12 is placed at a predetermined reference position. 10) is moved.
  • the predetermined reference position is a position above the X-ray irradiation position generated by the X-ray tube 3 and applied to the sample 20 via the X-ray optical element 11. This is the position where the optical image of the sample 20 to be observed is in focus.
  • the user After placing the mirror 12 at the reference position, the user starts to acquire an image by the observation unit 5. The user aligns the observation location 20 a with respect to the mirror 12 while viewing the image acquired by the observation unit 5.
  • the user moves the sample stage 21 by the sample stage driving unit 66 so that the observation location 20a of the sample 20 is arranged at a predetermined position of the visual field by the mirror 12 (for example, the center of the visual field).
  • the optical image of the sample 20 that reaches the observation unit 5 by the mirror 12 is indicated by a dashed arrow.
  • standard position can be performed, seeing the image acquired by the observation part 5.
  • the user moves the optical element unit 10 by the switching stage drive unit 65, thereby placing the X-ray optical element 11 desired to be used above the observation point 20a.
  • the switching stage driving unit 65 moves the optical element unit 10 in the state shown in FIG. 3B to the left side in the X direction to obtain the state shown in FIG. 4B.
  • the switching stage driving unit 65 may move the optical element unit 10 to the left in the X direction until the X-ray optical element 11b is disposed above the observation location 20a.
  • the switching stage driving unit 65 moves the optical element unit 10 until the X-ray optical element 11a is arranged above the observation location 20a.
  • the distance to be moved specifically, the number of movements (number of pulses) performed by the stepping motor constituting the switching stage driving unit 65 is known in advance. Therefore, the movement of the optical element unit 10 in the X direction by the switching stage driving unit 65 can be automatically performed.
  • the user After disposing the X-ray optical element 11a used for X-ray analysis above the observation location 20a, the user starts X-ray analysis for the observation location 20a. Specifically, X-rays are generated by the X-ray tube 3, the generated X-rays are irradiated onto the sample 20 via the X-ray optical element 11a, and the X-ray detector 4 converts the fluorescent X-rays generated from the sample 20 into the X-ray detector 4. To detect. In FIG. 4A, X-rays irradiated from the X-ray tube 3 to the sample 20 and fluorescent X-rays reaching the X-ray detector 4 from the sample 20 are indicated by arrows.
  • the X-ray analyzer includes an exhaust unit (not shown) that evacuates the vacuum box 1.
  • the exhaust unit may be configured so that the inside of the sample box 2 can be evacuated together with the vacuum box 1.
  • the mirror 12 and the X-ray optical element 11 are movable, and therefore it is not necessary to arrange the mirror 12 and the X-ray optical element 11 on the same axis above the sample 20. Therefore, in Embodiment 1, since it is not necessary to provide a notch in the mirror 12 as in the prior art, the field of view through the mirror 12 is not limited, and the sample 20 can be accurately confirmed through the mirror 12. Further, since the optical element unit 10 can move along two directions of the X direction and the Y direction, the position of the X-ray optical element 11 with respect to the sample 20 and the position of the X-ray optical element 11 with respect to the X-ray tube 3 can be adjusted. It is easy and can be performed with high accuracy. Since the X-ray optical element 11 can be arranged at an optimal position with respect to the sample 20 and the X-ray tube 3, the accuracy in X-ray analysis is also improved.
  • FIG. 5 is a top view of the optical element unit when the X-ray analyzer is in operation.
  • the switching stage driving unit 65 moves the optical element unit 10 in the state shown in FIG. 3B to the left side in the X direction to the state shown in FIG. It moves to the lower side in the Y direction in 4B to obtain the state shown in FIG.
  • the distance by which the switching stage driving unit 65 moves the optical element unit 10 in the Y direction is known in advance, the distance by which the switching stage driving unit 65 moves the optical element unit 10 in the Y direction, specifically The number of movements (number of pulses) performed by the stepping motor constituting the switching stage drive unit 65 is known in advance. Therefore, the movement of the optical element unit 10 in the Y direction by the switching stage driving unit 65 can also be automatically performed.
  • an X-ray optical element 11 a is disposed at a position close to the mirror 12, and an X-ray optical element 10 d is disposed at a position far from the mirror 12.
  • An X-ray optical element 11 having a smaller beam diameter is more susceptible to dimensional errors and assembly errors in the optical element unit 10. Further, the shorter the moving distance for alignment, the smaller the influence of dimensional errors and assembly errors in the optical element unit 10. Therefore, the X-ray optical element 11 having a smaller beam diameter is preferably arranged at a position closer to the mirror 12 in order to shorten the moving distance when aligning the sample 20 and the X-ray tube 3. Specifically, the X-ray optical element 11 having a small beam diameter is disposed at a position where the distance to which the optical element unit 10 is moved when the X-ray optical element 11 is aligned with the observation location 20a.
  • the X-ray optical element 11 may be configured by a collimator in addition to the X-ray conduit.
  • the X-ray analyzer that detects fluorescent X-rays generated from the sample 20 by irradiating the sample 20 with X-rays has been described.
  • the radiation detection apparatus according to the present invention is not limited to such an X-ray analysis apparatus.
  • transmitted X-rays, scattered X-rays generated from the sample 20 by irradiating the sample 20 with radiation such as X-rays or electron beams
  • the present invention can also be applied to an apparatus that detects radiation such as secondary electrons and reflected electrons.
  • FIG. 6 is a top view of the optical element unit according to the second embodiment.
  • three X-ray optical elements 11a, 11b, and 11c are arranged side by side in the Y direction.
  • the mirror 12 has a diameter slightly larger than the outer diameter of the X-ray optical element 11, and when viewed from above, along the left end side of the optical element switching stage 10a.
  • the X-ray optical element 11a is arranged side by side in the X direction. That is, the mirror 12 and the X-ray optical element 11a are coaxial in the X direction.
  • Other configurations of the optical element unit 10 and the configuration of the X-ray analyzer are the same as those in the first embodiment.
  • the X-ray optical element 11a having the smallest beam diameter is arranged side by side with the mirror 12 in the X direction. Therefore, when the X-ray optical element 11a is aligned with the observation location 20a after the observation location 20a of the sample 20 is aligned with the mirror 12, the optical element unit 10 is moved only in the X direction. Good. Therefore, it is possible to easily and accurately align the observation location 20a and the X-ray optical element 11a.
  • the X-ray optical element 11c having the maximum beam diameter is arranged at a position far from the mirror 12, but the optical element unit 10 can be moved in two directions, so that the X-ray optical element 11c is aligned with the observation location 20a. Can be easily and accurately performed.
  • the same effect as that of the first embodiment can be obtained.
  • the sample 20 can be accurately observed through the mirror 12.
  • the position of the X-ray optical element 11 with respect to the sample 20 and the position of the X-ray optical element 11 with respect to the X-ray tube 3 can be easily adjusted with high accuracy. Since the X-ray optical element 11 can be arranged at an optimal position with respect to the sample 20 and the X-ray tube 3, the accuracy in X-ray analysis is also improved.
  • the X-ray optical element 11 may be configured by a collimator.
  • two X-ray optical elements 11 may be arranged side by side in each of the X direction and the Y direction, or one X direction Y, as shown in FIG. Three may be arranged side by side in the direction.
  • three X-ray optical elements 11 in the X direction and two X-ray optical elements 11 in the Y direction may be arranged side by side, or two X-ray optical elements 11 in the X direction and three X-ray optical elements 11 in the Y direction may be arranged. It is good also as a structure arrange
  • the X-ray optical element 11a and the mirror 12 having the smallest inner diameter may be arranged side by side in the X direction when viewed from above.
  • the X-ray optical element 11a having the smallest inner diameter and the mirror 12 are arranged on the same axis in the X direction when viewed from above.
  • the position of the mirror 12 and the position of the X-ray optical element 11a are not necessarily on the same axis, and the position of the observation position of the sample 20 observed by the observation unit 5 via the mirror 12 (via the mirror 12).
  • the position of the field of view of the observation unit 5) and the X-ray spot position emitted from the X-ray optical element 11a to the sample 20 may be on the same axis.
  • FIG. 7 is a perspective view of the optical element unit 10 according to the third embodiment.
  • the X-ray analyzer according to Embodiment 3 has the same configuration as that of Embodiment 1 except that the shapes of the X-ray optical elements 14a to 14d of the optical element unit 10 are different from those of the X-ray optical elements 11a to 11d of Embodiment 1.
  • a plurality of X-ray optical elements 14a to 14d are mounted on the optical element switching stage 10a.
  • the number of X-ray optical elements 14 to be mounted is not limited to four shown in FIG.
  • the X-ray optical element 14 converges the X-rays generated in the X-ray tube 3 and entered into the vacuum box 1 to irradiate the sample 20.
  • FIG. 8 is a cross-sectional view of the X-ray optical element 14 according to the third embodiment.
  • the irradiation direction of the X-rays irradiated from the X-ray tube 3 is indicated by arrows, and an incident end where X-rays are incident and an emission end (one end) that emits X-rays are respectively shown.
  • the X-ray optical element 14 is shown in the vertical direction.
  • FIG. 9 is a schematic diagram of a part of the X-ray analysis apparatus according to the third embodiment, and shows the positional relationship of the X-ray optical element 14 with respect to the sample 20 placed on the sample stage 21.
  • the X-ray optical element 14 of Embodiment 3 is an X-ray conduit (capillary) formed of, for example, glass in a tubular shape (tubular).
  • the X-ray optical element 14 of Embodiment 3 is a cylindrical body having a shape in which the inner diameter d2 at the center in the axial length direction is larger than the inner diameters d1 and d3 at both ends.
  • the inner diameters d1 and d3 at both ends of the X-ray optical element 14 may be the same length or different lengths.
  • Each of the X-ray optical elements 14a to 14d is formed in a shape having a different degree of curvature of the peripheral surface and a length in the axial length direction, and has an inner diameter d3 at the incident end (upper end in FIG. 8) where the X-rays enter, The inner diameter d2 of the portion differs from the inner diameter d1 of the emitting end (lower end in FIG. 8) for emitting X-rays. Further, the X-ray optical elements 14a to 14d are formed such that the smaller the inner diameter d1 of the emission end, the longer the length in the axial direction.
  • the irradiation diameter (spot diameter) of the X-rays emitted from each of the X-ray optical elements 14a to 14d on the sample surface is different.
  • the X-ray optical elements 14a to 14d have different distances from the emission end to the focal point where the emitted X-rays converge. It is desirable that the X-rays emitted from the X-ray optical element 14 are applied to the observation location 20a of the sample 20 at the focal position. Therefore, since the sample 20 is arranged so that the observation point 20a is arranged at the focal position of each X-ray optical element 14a to 14d, each X-ray optical element 14a to 14d is connected to the observation point 20a from the emission end.
  • the distance WD (Working Distance) is different.
  • the inner diameter, the degree of curvature, and the length in the axial length direction of each of the entrance and exit ends of the X-ray optical elements 14a to 14d can be appropriately selected.
  • the X-ray optical element 14 is inserted into the insertion hole 10b provided in the optical element switching stage 10a and attached to the optical element switching stage 10a.
  • the right (front) insertion hole 10 b has an X-ray optical element 14 a having a minimum inner diameter d 1 at the exit end and a longest length in the axial direction at a position on the left side near the mirror 12. Is inserted, and the X-ray optical element 14b having the second smallest inner diameter d1 at the emission end and the second longest is inserted at the right position.
  • the X-ray optical element 14c having the third smallest inner diameter d1 at the emission end and the third longest X-ray optical element 14c is inserted into the left side (back side) insertion hole 10b at a position on the left side close to the mirror 12.
  • the X-ray optical element 14d having the shortest inner diameter d1 at the emission end is inserted.
  • the X-ray optical elements 14a to 14d are arranged at positions closer to the mirror 12 in ascending order of the inner diameter d1 of the emission end.
  • the X-ray optical elements 14a to 14d are arranged at positions closer to the mirror 12 in order of increasing distance WD.
  • the optical element unit 10 of the third embodiment having such a configuration is housed in the vacuum box 1 in the same state as that of the first embodiment. Further, the X-ray analyzer in which the optical element unit 10 of Embodiment 3 is housed in the vacuum box 1 irradiates the sample 20 with X-rays by the same procedure and processing as in Embodiment 1, and generates fluorescence X generated from the sample 20. Detect lines. Therefore, also in Embodiment 3, the same effect as in Embodiment 1 can be obtained. For example, in the optical element unit 10 of Embodiment 3, the optical element switching stage 10a can be moved by the switching stage driving unit 65 along one direction (specifically, the X direction in FIG. 2B).
  • the X-ray optical elements 14a and 14b having a small inner diameter d1 at the emission end are arranged side by side with the mirror 12. Therefore, after aligning the observation portion 20a of the sample 20 with respect to the mirror 12, the X-ray optical elements 14a and 14b are aligned with respect to the observation portion 20a by moving the optical element unit 10 only in the X direction. be able to. Further, since the optical element unit 10 can move in two directions, the alignment of the X-ray optical elements 14c and 14d with respect to the observation location 20a can be easily and accurately performed.
  • each X-ray optical element 14 is arranged with X-ray optical elements 14 c and 14 d having a short length in the axial length direction at a position close to the X-ray detector 4.
  • the X-ray optical element 14 of Embodiment 3 can also be applied to the optical element unit 10 of the X-ray analyzer of Embodiment 2 described above. As shown in FIG. 6, one X-ray optical element 14 may be arranged side by side in the X direction and three in the Y direction. When the X-ray optical element 14 is viewed from above, the X-ray optical element 14a and the mirror 12 having the shortest inner diameter d1 at the emission end and the shortest distance WD to the spot position (the observation position 20a of the sample 20) are viewed from above. Need only be arranged side by side in the X direction.
  • Optical element unit 12 Mirror 20 Sample 65 Switching stage drive part 10a Optical element switching stage (holding part) 11a to 11d X-ray optical element (radiation optical element) 12a Mirror holder (mirror holding part) 14a to 14d X-ray optical element (radiation optical element)

Abstract

Provided is a radiation detection device whereby a sample can be confirmed with good precision via mirror. A radiation detection device is provided with radiation optical elements (11a-11d) for throttling radiation radiated to a sample, a detection part for detecting radiation generated by irradiation of the sample by radiation, a mirror (12) disposed facing the sample, and a retaining part (10a) for retaining the radiation optical elements (11a-11d) and the mirror (12). The retaining part (10a) can move in two intersecting directions in a plane intersecting with the irradiation direction of radiation radiated to the sample. The retaining part (10a) also retains a plurality of radiation optical elements (11a, 11d) having different emission diameters of radiation, and retains the mirror (12) and the radiation optical element (11a) having the smallest emission diameter so as to be aligned in one of the two directions in which movement is possible.

Description

放射線検出装置Radiation detector
 本発明は、放射線検出装置に関する。 The present invention relates to a radiation detection apparatus.
 試料の分析を行うために放射線検出装置が利用されている。放射線検出装置は、試料に対してX線又は電子線等の放射線を照射し、その際に生じる特性X線を検出器にて検出する。放射線検出装置が検出した特性X線のスペクトル分布等から、試料に含まれる元素の特定及びこの元素の濃度の算出等を行うことができる。
 放射線検出装置には、試料に対するX線の照射位置を確認するために撮像ユニットが設けられたX線分析装置がある(例えば、特許文献1参照)。特許文献1に開示された装置では、試料の上方に、反射面を試料側に向けてミラーが配置されており、撮像ユニットは、ミラーによる反射光によって、試料を上方から撮像した画像を取得する。よって、特許文献1に開示された装置では、試料の上方から照射されるX線の照射位置を、試料を上方から撮像した光学画像で確認できる。
A radiation detector is used to analyze a sample. The radiation detection apparatus irradiates a sample with radiation such as X-rays or electron beams, and the characteristic X-rays generated at that time are detected by a detector. From the spectral distribution of characteristic X-rays detected by the radiation detection device, it is possible to identify the element contained in the sample and calculate the concentration of this element.
As a radiation detection apparatus, there is an X-ray analysis apparatus provided with an imaging unit in order to confirm an X-ray irradiation position on a sample (see, for example, Patent Document 1). In the apparatus disclosed in Patent Document 1, a mirror is arranged above the sample with the reflecting surface facing the sample side, and the imaging unit acquires an image obtained by imaging the sample from above by the reflected light from the mirror. . Therefore, in the apparatus disclosed in Patent Document 1, the irradiation position of X-rays irradiated from above the sample can be confirmed by an optical image obtained by imaging the sample from above.
特許第3996821号公報Japanese Patent No. 3,996,821
 特許文献1に開示された装置では、X線の照射軸と同軸の光学画像を取得するために、X線を試料までガイドするX線ガイド部材とミラーとが試料の上方の同じ位置に配置されている。また、X線ガイド部材とミラーとを同じ位置に配置するために、ミラーに、X線ガイド部材を挿通させるための挿通部(例えば切欠き部)が設けられている。従って、挿通部が設けられた箇所ではミラーによる視野が制限されるので、撮像ユニットで取得した光学画像によって試料を十分観察できない場合が生じ、この場合、試料に対するX線の照射位置を精度良く確認できない虞がある。 In the apparatus disclosed in Patent Document 1, in order to obtain an optical image coaxial with the X-ray irradiation axis, an X-ray guide member and a mirror for guiding X-rays to the sample are arranged at the same position above the sample. ing. Further, in order to arrange the X-ray guide member and the mirror at the same position, an insertion portion (for example, a notch portion) for inserting the X-ray guide member into the mirror is provided. Therefore, since the field of view by the mirror is limited at the place where the insertion portion is provided, the sample may not be sufficiently observed by the optical image acquired by the imaging unit. In this case, the X-ray irradiation position on the sample can be confirmed with high accuracy. There is a possibility that it cannot be done.
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、ミラーを介して試料を精度良く確認することが可能な放射線検出装置を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a radiation detection apparatus capable of accurately confirming a sample via a mirror.
 本発明の一態様に係る放射線検出装置は、試料に照射される放射線を絞る放射線光学素子と、前記試料への放射線の照射によって生じる放射線を検出する検出部と、前記試料に対向配置されたミラーと、前記放射線光学素子及びミラーを保持する保持部とを備える放射線検出装置において、前記保持部を、前記試料に照射される放射線の照射方向に交差する面内で、交差する二方向に移動させる駆動部を更に備え、前記保持部は、前記放射線の出射径が異なる複数の前記放射線光学素子を保持しており、前記ミラー及び最小の出射径の前記放射線光学素子を前記二方向のうちの一方向に並べて保持していることを特徴とする。 A radiation detection apparatus according to an aspect of the present invention includes a radiation optical element that narrows down radiation applied to a sample, a detection unit that detects radiation generated by irradiation of the sample with radiation, and a mirror disposed to face the sample And a holding unit that holds the radiation optical element and the mirror, the holding unit is moved in two intersecting directions within a plane that intersects the irradiation direction of the radiation applied to the sample. The holding unit further includes a plurality of the radiation optical elements having different radiation emission diameters, and the mirror and the radiation optical element having the smallest emission diameter are arranged in one of the two directions. It is characterized by being held side by side in the direction.
 本発明の一態様に係る放射線検出装置は、前記保持部は、出射径が小さい前記放射線光学素子を、前記ミラーから前記二方向に沿った距離が短い位置で保持していることを特徴とする。 In the radiation detection apparatus according to one aspect of the present invention, the holding unit holds the radiation optical element having a small emission diameter at a position where the distance along the two directions from the mirror is short. .
 本発明の一態様に係る放射線検出装置は、試料に照射される放射線を絞る放射線光学素子と、前記試料への放射線の照射によって生じる放射線を検出する検出部と、前記試料に対向配置されたミラーと、前記放射線光学素子及びミラーを保持する保持部とを備える放射線検出装置において、前記保持部を、前記試料に照射される放射線の照射方向に交差する面内で、交差する二方向に移動させる駆動部を更に備え、前記保持部は、前記試料の表面での前記放射線の照射径が異なる複数の前記放射線光学素子を保持しており、前記ミラー及び前記照射径が最小の前記放射線光学素子を前記二方向のうちの一方向に並べて保持していることを特徴とする。 A radiation detection apparatus according to an aspect of the present invention includes a radiation optical element that narrows down radiation applied to a sample, a detection unit that detects radiation generated by irradiation of the sample with radiation, and a mirror disposed to face the sample And a holding unit that holds the radiation optical element and the mirror, the holding unit is moved in two intersecting directions within a plane that intersects the irradiation direction of the radiation applied to the sample. A driving unit; and the holding unit holds a plurality of the radiation optical elements having different irradiation diameters of the radiation on the surface of the sample, the mirror and the radiation optical element having the smallest irradiation diameter. It is characterized by being held side by side in one of the two directions.
 本発明の一態様に係る放射線検出装置は、前記放射線光学素子は、筒体であり、軸長方向の中央部の内径が両端部の内径よりも大きい形状を有し、前記保持部は、前記放射線を出射する一端部の内径が最小の前記放射線光学素子を前記ミラーと共に前記二方向のうちの一方向に並べて保持していることを特徴とする。 In the radiation detection apparatus according to one aspect of the present invention, the radiation optical element is a cylinder, and has a shape in which an inner diameter of a central portion in an axial length direction is larger than inner diameters of both end portions, The radiation optical element having the smallest inner diameter at one end that emits radiation is arranged and held in one of the two directions together with the mirror.
 本発明の一態様に係る放射線検出装置は、前記保持部は、前記放射線を出射する出射端から前記試料までの距離が最小の前記放射線光学素子を前記ミラーと共に前記二方向のうちの一方向に並べて保持していることを特徴とする。 In the radiation detection apparatus according to an aspect of the present invention, the holding unit may be configured so that the radiation optical element having the minimum distance from the emission end that emits the radiation to the sample is in one of the two directions together with the mirror. It is characterized by being held side by side.
 本発明の一態様に係る放射線検出装置は、前記保持部は、前記照射径が小さい前記放射線光学素子を、前記ミラーから前記二方向に沿った距離が短い位置で保持していることを特徴とする。 In the radiation detection apparatus according to an aspect of the present invention, the holding unit holds the radiation optical element having a small irradiation diameter at a position where the distance from the mirror along the two directions is short. To do.
 本発明の一態様に係る放射線検出装置は、前記放射線光学素子は、前記二方向のそれぞれに複数ずつ並んで配置されていることを特徴とする。 The radiation detection apparatus according to an aspect of the present invention is characterized in that a plurality of the radiation optical elements are arranged side by side in each of the two directions.
 本発明の一態様に係る放射線検出装置は、前記放射線光学素子は筒体であり、前記保持部は、軸長方向の長さが短い前記放射線光学素子を前記検出部に近い位置で保持していることを特徴とする。 In the radiation detection apparatus according to one aspect of the present invention, the radiation optical element is a cylindrical body, and the holding unit holds the radiation optical element having a short axial length in a position close to the detection unit. It is characterized by being.
 本発明の一態様に係る放射線検出装置は、前記ミラーは、前記試料の光像を、所定位置に配置された観察部へ導くように配置されていることを特徴とする。 The radiation detection apparatus according to an aspect of the present invention is characterized in that the mirror is disposed so as to guide an optical image of the sample to an observation unit disposed at a predetermined position.
 本発明の一態様に係る放射線検出装置は、前記放射線光学素子は、前記放射線の照射方向を軸長方向として配置された筒体であり、前記保持部は、板状に形成されており、前記保持部は、厚み方向に穿設された複数の長孔を有しており、前記長孔は、前記二方向のうちの一方向を長軸方向として、他方向に並べて設けられており、前記保持部は、前記長孔に挿通された前記放射線光学素子を保持しており、前記保持部は、前記放射線光学素子の軸長方向に延設されたミラー保持部を有しており、前記ミラー保持部の延設端部には、前記ミラーが、反射面を前記他方向に平行で、かつ、前記放射線光学素子の軸長方向に対して傾いた状態で取り付けられており、前記最小の出射径の放射線光学素子又は前記照射径が最小の放射線光学素子は、前記ミラーから前記一方向に近い位置に配置されていることを特徴とする。 In the radiation detection apparatus according to one aspect of the present invention, the radiation optical element is a cylindrical body arranged with the radiation direction of the radiation as an axial length direction, and the holding portion is formed in a plate shape, The holding portion has a plurality of long holes drilled in the thickness direction, and the long holes are provided side by side in the other direction, with one of the two directions as the long axis direction, The holding part holds the radiation optical element inserted through the long hole, and the holding part has a mirror holding part extending in the axial length direction of the radiation optical element, and the mirror The mirror is attached to the extended end portion of the holding portion in a state where the reflecting surface is parallel to the other direction and inclined with respect to the axial length direction of the radiation optical element. The radiation optical element having a diameter or the radiation optical element having the smallest irradiation diameter is Characterized in that the serial mirror is disposed at a position closer to the one direction.
 本発明の一態様においては、試料に照射される放射線を異なる出射径で出射する複数の放射線光学素子が、試料に対向配置されたミラーと共に保持部にて保持されている。保持部は、放射線の照射方向に交差する面内で、交差する二方向に移動可能である。保持部の移動によってミラー及び放射線光学素子を移動させることができるので、ミラー及び放射線光学素子を同じ位置に配置する必要がなく、従来のようにミラーに切欠きを設ける必要がない。よって、ミラーによる視野が制限されないので、ミラーを介して試料を精度良く視認できる。また、ミラーに対する試料の位置合せを、ミラーを介して試料を確認しながら行うことができる。更に、保持部が二方向に移動できることにより、試料に対する放射線光学素子の位置合せを容易にかつ精度良く行うことができる。また、ミラーと最小の出射径の放射線光学素子とが、前記二方向のうちの一方向に並べて保持部に保持されている。よって、ミラーに対して位置合せされた試料に対して、最小の出射径の放射線光学素子を位置合せする際には一方向にのみ保持部を移動させればよいので、より精度良く位置合わせを行うことが可能である。最小の出射径の放射線光学素子は、保持部及び駆動部における寸法誤差及び組立誤差の影響を最も受け易い。従って、一方向に保持部を移動させることによって最小の出射径の放射線光学素子を位置合せできる構成により、最小の出射径の放射線光学素子が受ける寸法誤差及び組立誤差の影響を、一方向への移動で生じる誤差のみに軽減することが可能となる。 In one aspect of the present invention, a plurality of radiation optical elements that emit radiation irradiated to a sample with different exit diameters are held by a holding unit together with a mirror that is disposed to face the sample. The holding unit is movable in two intersecting directions within a plane intersecting the radiation irradiation direction. Since the mirror and the radiation optical element can be moved by the movement of the holding portion, it is not necessary to arrange the mirror and the radiation optical element at the same position, and it is not necessary to provide a notch in the mirror as in the prior art. Therefore, since the field of view by the mirror is not limited, the sample can be visually recognized through the mirror. Further, the alignment of the sample with respect to the mirror can be performed while confirming the sample through the mirror. Furthermore, since the holding portion can move in two directions, the radiation optical element can be easily and accurately aligned with the sample. In addition, the mirror and the radiation optical element having the smallest emission diameter are held in the holding unit side by side in one of the two directions. Therefore, when aligning the radiation optical element having the smallest emission diameter with respect to the sample aligned with the mirror, the holding unit only needs to be moved in one direction, so that the alignment can be performed with higher accuracy. Is possible. The radiation optical element having the smallest emission diameter is most susceptible to dimensional errors and assembly errors in the holding unit and the driving unit. Accordingly, the configuration in which the radiation optical element with the smallest emission diameter can be aligned by moving the holding portion in one direction can reduce the influence of the dimensional error and the assembly error that the radiation optical element with the smallest emission diameter receives in one direction. It is possible to reduce only the error caused by movement.
 本発明の一態様においては、ミラーから前記二方向に沿った距離が短い位置に、出射径が小さい放射線光学素子が配置される。放射線光学素子は、出射径が小さいほど、保持部及び駆動部における寸法誤差及び組立誤差の影響を無視できない。また、寸法誤差及び組立誤差の影響は、位置合せの際の移動距離が長いほど大きくなる。よって、出射径が小さい放射線光学素子を、所定位置への位置合せの際に移動させる距離が短い位置に配置することにより、位置合せの際の移動距離を短くできるので、位置合せを精度良く行うことが可能となる。 In one aspect of the present invention, a radiation optical element having a small emission diameter is disposed at a position where the distance from the mirror along the two directions is short. As the radiation optical element has a smaller emission diameter, the influence of dimensional errors and assembly errors in the holding unit and the driving unit cannot be ignored. Further, the influence of the dimensional error and the assembly error becomes larger as the moving distance at the time of alignment becomes longer. Therefore, by arranging the radiation optical element having a small emission diameter at a position where the distance to be moved at the time of alignment to a predetermined position is short, the movement distance at the time of alignment can be shortened, so that the alignment is performed with high accuracy. It becomes possible.
 本発明の一態様においては、試料に照射される放射線の試料表面での照射径が異なる複数の放射線光学素子が、試料に対向配置されたミラーと共に保持部にて保持されている。保持部の移動によってミラー及び放射線光学素子を移動させることができるので、ミラー及び放射線光学素子を同じ位置に配置する必要がなく、従来のようにミラーに切欠きを設ける必要がない。よって、ミラーによる視野が制限されないので、ミラーを介して試料を精度良く視認できる。また、ミラーに対する試料の位置合せを、ミラーを介して試料を確認しながら行うことができる。更に、保持部が二方向に移動できることにより、試料に対する放射線光学素子の位置合せを容易にかつ精度良く行うことができる。また、ミラーと試料表面での照射径が最小の放射線光学素子とが、前記二方向のうちの一方向に並べて保持部に保持されている。よって、ミラーに対して位置合せされた試料に対して、試料表面での照射径が最小の放射線光学素子を位置合せする際には一方向にのみ保持部を移動させればよいので、より精度良く位置合わせを行うことが可能である。照射径が最小の放射線光学素子は、保持部及び駆動部における寸法誤差及び組立誤差の影響を最も受け易い。従って、一方向に保持部を移動させることによって位置合せできる構成により、照射径が最小の放射線光学素子が受ける寸法誤差及び組立誤差の影響を、一方向への移動で生じる誤差のみに軽減することが可能となる。 In one aspect of the present invention, a plurality of radiation optical elements having different irradiation diameters on the sample surface of the radiation applied to the sample are held by the holding unit together with the mirror disposed opposite to the sample. Since the mirror and the radiation optical element can be moved by the movement of the holding portion, it is not necessary to arrange the mirror and the radiation optical element at the same position, and it is not necessary to provide a notch in the mirror as in the prior art. Therefore, since the field of view by the mirror is not limited, the sample can be visually recognized through the mirror. Further, the alignment of the sample with respect to the mirror can be performed while confirming the sample through the mirror. Furthermore, since the holding portion can move in two directions, the radiation optical element can be easily and accurately aligned with the sample. Further, the mirror and the radiation optical element having the smallest irradiation diameter on the sample surface are arranged in one of the two directions and are held by the holding unit. Therefore, when aligning the radiation optical element with the smallest irradiation diameter on the sample surface with respect to the sample aligned with the mirror, it is only necessary to move the holding part in one direction, so it is more accurate. It is possible to perform alignment well. The radiation optical element with the smallest irradiation diameter is most susceptible to dimensional errors and assembly errors in the holding unit and the driving unit. Therefore, the configuration that can be aligned by moving the holding part in one direction reduces the effects of dimensional errors and assembly errors on the radiation optical element with the smallest irradiation diameter only to errors caused by movement in one direction. Is possible.
 本発明の一態様においては、放射線光学素子は、軸長方向の中央部の内径が両端部の内径よりも大きい形状の筒体である。放射線を出射する一端部の内径が最小の放射線光学素子がミラーと共に前記二方向のうちの一方向に並べて保持されている。よって、ミラーに対して位置合せされた試料に対して、前記一端部の内径が最小の放射線光学素子を位置合せする際には一方向にのみ保持部を移動させればよいので、精度良く位置合わせを行うことが可能である。 In one aspect of the present invention, the radiation optical element is a cylindrical body having a shape in which the inner diameter of the central portion in the axial length direction is larger than the inner diameters of both end portions. A radiation optical element having the smallest inner diameter at one end for emitting radiation is held side by side in one of the two directions together with the mirror. Therefore, when aligning the radiation optical element having the smallest inner diameter at the one end with respect to the sample aligned with the mirror, the holding unit only needs to be moved in one direction. It is possible to combine.
 本発明の一態様においては、放射線を出射する出射端から試料までの距離が最小の放射線光学素子がミラーと共に前記二方向のうちの一方向に並べて保持されている。よって、ミラーに対して位置合せされた試料に対して、前記出射端から試料までの距離が最小の放射線光学素子を位置合せする際には一方向にのみ保持部を移動させればよいので、精度良く位置合わせを行うことが可能である。 In one aspect of the present invention, the radiation optical element having the minimum distance from the emission end that emits radiation to the sample is arranged and held in one of the two directions together with the mirror. Therefore, with respect to the sample aligned with the mirror, when aligning the radiation optical element having the minimum distance from the emission end to the sample, it is only necessary to move the holding unit in one direction. It is possible to perform alignment with high accuracy.
 本発明の一態様においては、ミラーから前記二方向に沿った距離が短い位置に、試料表面での照射径が小さい放射線光学素子が配置される。放射線光学素子は、照射径が小さいほど、保持部及び駆動部における寸法誤差及び組立誤差の影響を無視できない。また、寸法誤差及び組立誤差の影響は、位置合せの際の移動距離が長いほど大きくなる。よって、照射径が小さい放射線光学素子を、所定位置への位置合せの際に移動させる距離が短い位置に配置することにより、位置合せの際の移動距離を短くできるので、位置合せを精度良く行うことが可能となる。 In one aspect of the present invention, a radiation optical element having a small irradiation diameter on the sample surface is disposed at a position where the distance along the two directions from the mirror is short. In the radiation optical element, as the irradiation diameter is smaller, the influence of dimensional errors and assembly errors in the holding unit and the driving unit cannot be ignored. Further, the influence of the dimensional error and the assembly error becomes larger as the moving distance at the time of alignment becomes longer. Therefore, by arranging the radiation optical element having a small irradiation diameter at a position where the distance to be moved at the time of alignment to a predetermined position is short, the movement distance at the time of alignment can be shortened, so that the alignment is performed with high accuracy. It becomes possible.
 本発明の一態様においては、保持部が移動可能な二方向に沿ってそれぞれ複数の放射線光学素子が配置されている。よって、保持部を移動させて放射線光学素子を所定位置に配置させる位置合わせを精度良くかつ容易に行うことが可能となる。 In one aspect of the present invention, a plurality of radiation optical elements are arranged along two directions in which the holding unit can move. Therefore, it is possible to accurately and easily perform alignment for moving the holding unit and arranging the radiation optical element at a predetermined position.
 本発明の一態様においては、放射線光学素子は筒体であり、軸長方向の長さが短い放射線光学素子が、検出部に近い位置に配置されている。よって、保持部を移動させた場合であっても、検出部に接触しないように放射線光学素子を配置することが可能である。 In one embodiment of the present invention, the radiation optical element is a cylinder, and the radiation optical element having a short length in the axial direction is disposed at a position close to the detection unit. Therefore, even when the holding unit is moved, the radiation optical element can be arranged so as not to contact the detection unit.
 本発明の一態様においては、ミラーは、試料の光像を、所定位置に配置された観察部へ導く。よって、ミラーの位置から試料を観察できるので、試料を精度良く観察することが可能となる。 In one aspect of the present invention, the mirror guides the optical image of the sample to the observation unit arranged at a predetermined position. Therefore, since the sample can be observed from the position of the mirror, the sample can be observed with high accuracy.
 本発明の一態様においては、板状の保持部に厚み方向に複数の長孔が穿設されており、筒体の放射線光学素子が、長孔に挿通されて保持部に保持される。よって、保持部の長孔に放射線光学素子を挿通させることにより、放射線光学素子の保持部への取付が可能である。また保持部は放射線光学素子の軸長方向にミラー保持部が延設されており、ミラー保持部の延設端部にミラーが取り付けられている。ミラーは、反射面が前記長孔の並設方向に平行で、かつ、放射線光学素子の軸長方向に対して傾いた状態で取り付けられており、試料の光像を所定位置の観察部に適切に導くことが可能である。また、最小の出射径の放射線光学素子又は照射径が最小の放射線光学素子がミラーから近い位置に配置されているので、出射径又は照射径が最小の放射線光学素子を所定位置に配置させるための位置合せを容易にかつ精度良く行うことが可能となる。 In one aspect of the present invention, a plurality of long holes are formed in the thickness direction in the plate-like holding portion, and the cylindrical radiation optical element is inserted into the long hole and held by the holding portion. Therefore, the radiation optical element can be attached to the holding portion by inserting the radiation optical element through the long hole of the holding portion. Moreover, the holding part has a mirror holding part extending in the axial length direction of the radiation optical element, and a mirror is attached to an extended end of the mirror holding part. The mirror is mounted in a state where the reflecting surface is parallel to the parallel arrangement direction of the long holes and tilted with respect to the axial length direction of the radiation optical element, and the optical image of the sample is appropriately applied to the observation part at a predetermined position It is possible to lead to. In addition, since the radiation optical element having the smallest emission diameter or the radiation optical element having the smallest irradiation diameter is arranged at a position close to the mirror, the radiation optical element having the smallest emission diameter or irradiation diameter is arranged at a predetermined position. Positioning can be performed easily and accurately.
 本発明の一態様にあっては、ミラーを介して試料を精度良く確認することができる。また、試料に対する放射線光学素子の位置合せを精度良く行うことができる。 In one embodiment of the present invention, the sample can be confirmed with high accuracy through a mirror. In addition, the radiation optical element can be accurately aligned with the sample.
X線分析装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of an X-ray analyzer. 実施形態1に係る光学素子ユニットの構成を示す模式図である。2 is a schematic diagram illustrating a configuration of an optical element unit according to Embodiment 1. FIG. 実施形態1に係る光学素子ユニットの構成を示す模式図である。2 is a schematic diagram illustrating a configuration of an optical element unit according to Embodiment 1. FIG. 動作中のX線分析装置を示す模式図である。It is a schematic diagram which shows the X-ray analyzer in operation. 動作中のX線分析装置を示す模式図である。It is a schematic diagram which shows the X-ray analyzer in operation. 動作中のX線分析装置を示す模式図である。It is a schematic diagram which shows the X-ray analyzer in operation. 動作中のX線分析装置を示す模式図である。It is a schematic diagram which shows the X-ray analyzer in operation. X線分析装置が動作中である場合の光学素子ユニットの上面図である。It is a top view of an optical element unit when the X-ray analyzer is operating. 実施形態2に係る光学素子ユニットの上面図である。6 is a top view of an optical element unit according to Embodiment 2. FIG. 実施形態3に係る光学素子ユニットの斜視図である。6 is a perspective view of an optical element unit according to Embodiment 3. FIG. 実施形態3に係るX線光学素子の断面図である。It is sectional drawing of the X-ray optical element which concerns on Embodiment 3. FIG. 実施形態3のX線分析装置の一部の模式図である。FIG. 5 is a schematic diagram of a part of the X-ray analyzer according to the third embodiment.
 以下、本発明をその実施の形態を示す図面に基づき具体的に説明する。以下の実施形態では、X線を用いて試料の分析を行うX線分析装置を例に、本発明に係る放射線検出装置について説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings illustrating embodiments thereof. In the following embodiments, a radiation detection apparatus according to the present invention will be described using an X-ray analysis apparatus that analyzes a sample using X-rays as an example.
(実施形態1)
 図1は、X線分析装置の概略構成を示すブロック図である。X線分析装置は、分析対象の試料20が収納される試料箱2と、試料20に照射するX線を発生させるX線管3と、X線管3及び試料箱2の間に配置される真空箱1とを備えている。
 X線管3は真空箱1の上面に連通部30を介して取り付けられている。真空箱1は試料箱2の上面に、X線を良好に透過させるX線透過窓22が設けられた連通部を介して取り付けられている。真空箱1及び試料箱2は銅又はアルミニウム等の金属製である。X線透過窓22はX線を透過し易い材料によって形成されており、光も透過させる。
(Embodiment 1)
FIG. 1 is a block diagram showing a schematic configuration of an X-ray analyzer. The X-ray analyzer is disposed between a sample box 2 in which a sample 20 to be analyzed is stored, an X-ray tube 3 that generates X-rays to be irradiated on the sample 20, and the X-ray tube 3 and the sample box 2. A vacuum box 1 is provided.
The X-ray tube 3 is attached to the upper surface of the vacuum box 1 via the communication part 30. The vacuum box 1 is attached to the upper surface of the sample box 2 through a communication portion provided with an X-ray transmission window 22 that allows X-rays to pass through satisfactorily. The vacuum box 1 and the sample box 2 are made of metal such as copper or aluminum. The X-ray transmission window 22 is made of a material that easily transmits X-rays and transmits light.
 試料箱2内には所定位置に試料ステージ21が設置されており、試料ステージ21上に試料20が載置される。真空箱1内には所定位置に、後述するような光学素子ユニット10が配置されている。このような構成により、X線管3で発生されたX線は、連通部30を通って真空箱1内に入射し、真空箱1内の光学素子ユニット10を通り、更にX線透過窓22を通って試料箱2内に入射し、試料ステージ21上の試料20に照射される。
 試料ステージ21は、試料ステージ駆動部66によって、X線の照射方向(図1では上下方向)と、照射方向に直交する面内で、互いに直交する二方向(例えば、図1では左右方向及び奥行き方向)とに移動できるように構成されている。試料ステージ駆動部66は試料箱2の内部に設けられていてもよいし、試料箱2の外部に設けられていてもよい。
A sample stage 21 is installed at a predetermined position in the sample box 2, and the sample 20 is placed on the sample stage 21. In the vacuum box 1, an optical element unit 10 as will be described later is arranged at a predetermined position. With such a configuration, X-rays generated by the X-ray tube 3 enter the vacuum box 1 through the communication portion 30, pass through the optical element unit 10 in the vacuum box 1, and further pass through the X-ray transmission window 22. Then, the light enters the sample box 2 and is irradiated onto the sample 20 on the sample stage 21.
The sample stage 21 is driven by the sample stage drive unit 66 in two directions orthogonal to each other within the plane orthogonal to the X-ray irradiation direction (vertical direction in FIG. 1) and the irradiation direction (for example, horizontal direction and depth in FIG. 1). Direction). The sample stage drive unit 66 may be provided inside the sample box 2 or may be provided outside the sample box 2.
 真空箱1には、前述のようにX線が試料20に照射されることによって試料20から発生する特性X線(蛍光X線)を検出するX線検出器4が取り付けられている。図1に示す例では、X線検出器4は、蛍光X線の検出面をX線透過窓22に向けた状態で真空箱1に取り付けられている。
 また真空箱1には、CCD(Charge Coupled Device )カメラ又は光学顕微鏡等の観察部5が取り付けられている。後述するように真空箱1内の光学素子ユニット10はミラー12を有しており、観察部5はミラー12に対向するように配置されている。観察部5は、ミラー12によって反射される、試料箱2内の試料20の光像を取得するために設けられている。真空箱1又は試料箱2の内部の適宜箇所には、試料20を照明するために、図示しない光源が設けられている。光源は、例えばLED(発光ダイオード)であり、例えば試料箱2の上壁の内面(下面)に設けることができ、真空箱1の内部に設けられていてもよい。なお、観察部5の観察面を真空箱1の外面に接触させた状態で観察部5を真空箱1の外側に配置することもでき、この場合、観察面が接触する真空箱1の箇所が、光を透過させる透過膜にて構成されている。
An X-ray detector 4 for detecting characteristic X-rays (fluorescent X-rays) generated from the sample 20 when the sample 20 is irradiated with X-rays as described above is attached to the vacuum box 1. In the example shown in FIG. 1, the X-ray detector 4 is attached to the vacuum box 1 with the fluorescent X-ray detection surface facing the X-ray transmission window 22.
Further, an observation unit 5 such as a CCD (Charge Coupled Device) camera or an optical microscope is attached to the vacuum box 1. As will be described later, the optical element unit 10 in the vacuum box 1 has a mirror 12, and the observation unit 5 is arranged to face the mirror 12. The observation unit 5 is provided to acquire an optical image of the sample 20 in the sample box 2 reflected by the mirror 12. A light source (not shown) is provided at an appropriate location inside the vacuum box 1 or the sample box 2 to illuminate the sample 20. The light source is, for example, an LED (light emitting diode), and can be provided, for example, on the inner surface (lower surface) of the upper wall of the sample box 2 or may be provided inside the vacuum box 1. In addition, the observation part 5 can also be arrange | positioned in the outer side of the vacuum box 1 in the state which made the observation surface of the observation part 5 contact the outer surface of the vacuum box 1, In this case, the location of the vacuum box 1 to which an observation surface contacts , And a transmissive film that transmits light.
 図2A及び図2Bは、実施形態1に係る光学素子ユニット10の構成を示す模式図である。図2Aは光学素子ユニット10の斜視図であり、図2Bは光学素子ユニット10の上面図である。光学素子ユニット10は、X線管3にて発生されたX線を、ビーム径を絞って試料20に対して照射するものである。光学素子ユニット10は、光学素子切替ステージ10aに、複数のX線光学素子11a~11d(以下では、まとめてX線光学素子11ということもある)が装着されて構成されている。図2A及び図2Bに示す構成では、4つのX線光学素子11が装着されているが、この構成に限らない。 2A and 2B are schematic views showing the configuration of the optical element unit 10 according to Embodiment 1. FIG. FIG. 2A is a perspective view of the optical element unit 10, and FIG. 2B is a top view of the optical element unit 10. The optical element unit 10 irradiates the sample 20 with X-rays generated by the X-ray tube 3 with a reduced beam diameter. The optical element unit 10 is configured by mounting a plurality of X-ray optical elements 11a to 11d (hereinafter sometimes collectively referred to as X-ray optical elements 11) on an optical element switching stage 10a. In the configuration shown in FIGS. 2A and 2B, four X-ray optical elements 11 are mounted, but the configuration is not limited to this.
 X線光学素子11は、X線管3にて発生されて真空箱1内に入射されたX線を収束させる。X線光学素子11は、例えばガラスによって筒状(管状)に形成されたX線導管(キャピラリ)であり、一端から入射されたX線を内面で反射させながら導光し、他端から出射する。X線光学素子11a~11dのそれぞれは、例えば同じ外径及び異なる内径を有しており、この構成により、X線光学素子11a~11dのそれぞれから出射するX線のサンプル表面上での径(スポット径)を異ならせることができる。X線光学素子11の内径(X線の出射径)は適宜選択でき、図2A及び図2Bに示す例では、例えば、X線光学素子11a~11dの内径をそれぞれ、10μm、100μm、500μm、1.2mmとしてある。
 図2A及び図2Bに示すX線光学素子11は、所謂、モノキャピラリで構成されているが、極細のX線導管を複数本束ねて構成されたポリキャピラリを用いることもできる。
The X-ray optical element 11 converges the X-rays generated in the X-ray tube 3 and incident into the vacuum box 1. The X-ray optical element 11 is an X-ray conduit (capillary) formed of glass, for example, in a cylindrical shape (tubular shape). The X-ray optical element 11 guides an X-ray incident from one end while reflecting the X-ray on the inner surface, and emits it from the other end. . Each of the X-ray optical elements 11a to 11d has, for example, the same outer diameter and different inner diameters. With this configuration, the diameter of the X-rays emitted from the X-ray optical elements 11a to 11d on the sample surface ( Spot diameters can be made different. The inner diameter (X-ray emission diameter) of the X-ray optical element 11 can be selected as appropriate. In the example shown in FIGS. 2A and 2B, for example, the inner diameters of the X-ray optical elements 11a to 11d are 10 μm, 100 μm, 500 μm, 1 .2 mm.
The X-ray optical element 11 shown in FIGS. 2A and 2B is formed of a so-called monocapillary, but a polycapillary formed by bundling a plurality of ultrafine X-ray conduits can also be used.
 光学素子切替ステージ(保持部)10aは、矩形板状に形成されており、X線光学素子11を挿通させるための挿通孔10bが厚み方向に穿設されている。図2A及び図2Bに示す例では、光学素子切替ステージ10aの上面の左右方向(図2B中のX方向)を長軸方向として、楕円形断面を有する長孔である挿通孔10bが2つ設けられており、2つの挿通孔10bは、前記左右方向に直交する方向(図2B中のY方向)に並べて配置されている。挿通孔10bは、楕円形断面を有する構成に限らず、長円形断面又は矩形断面を有する構成でもよい。 The optical element switching stage (holding part) 10a is formed in a rectangular plate shape, and an insertion hole 10b for inserting the X-ray optical element 11 is formed in the thickness direction. In the example shown in FIGS. 2A and 2B, two insertion holes 10b, which are long holes having an elliptical cross section, are provided with the left-right direction (X direction in FIG. 2B) of the upper surface of the optical element switching stage 10a as the major axis direction. The two insertion holes 10b are arranged side by side in a direction (Y direction in FIG. 2B) orthogonal to the left-right direction. The insertion hole 10b is not limited to a configuration having an elliptical cross section, and may have a configuration having an oval cross section or a rectangular cross section.
 X線光学素子11は、挿通孔10bに挿通されて、X線光学素子11の一端側に設けられたフック(図示せず)が、光学素子切替ステージ10a(挿通孔10b)に設けられたフック(図示せず)に係止することにより、光学素子切替ステージ10aに取り付けられている。このような構成により、光学素子切替ステージ10aは、挿通孔10bに挿通されたX線光学素子11を保持している。図2A及び図2Bに示す例では、それぞれの挿通孔10bにX線光学素子11が2つずつ挿通されているが、それぞれの挿通孔10bに挿通されるX線光学素子11の数は2つに限らない。
 なお、図2Bに示す例では、下側の挿通孔10bには、ミラー12に近い左側の位置に、内径が最小のX線光学素子11aが挿通され、右側の位置に、内径が2番目に小さいX線光学素子11bが挿通されている。また、上側の挿通孔10bには、ミラー12に近い左側の位置に、内径が3番目に小さいX線光学素子11cが挿通され、右側の位置に、内径が最大のX線光学素子11dが挿通されている。
The X-ray optical element 11 is inserted into the insertion hole 10b, and a hook (not shown) provided on one end side of the X-ray optical element 11 is provided on the optical element switching stage 10a (insertion hole 10b). It is attached to the optical element switching stage 10a by being locked to (not shown). With such a configuration, the optical element switching stage 10a holds the X-ray optical element 11 inserted through the insertion hole 10b. In the example shown in FIGS. 2A and 2B, two X-ray optical elements 11 are inserted through each insertion hole 10b, but the number of X-ray optical elements 11 inserted through each insertion hole 10b is two. Not limited to.
In the example shown in FIG. 2B, the X-ray optical element 11a having the smallest inner diameter is inserted into the lower insertion hole 10b at the left position close to the mirror 12, and the inner diameter is the second position at the right position. A small X-ray optical element 11b is inserted. The X-ray optical element 11c having the third smallest inner diameter is inserted into the upper insertion hole 10b at a position on the left side near the mirror 12, and the X-ray optical element 11d with the largest inner diameter is inserted into the right position. Has been.
 光学素子切替ステージ10aにはX線光学素子11のほかにミラー12が取り付けられている。光学素子切替ステージ10aには、X線光学素子11の軸長方向にミラーホルダー12aが延設されており、ミラーホルダー12aの延設端にミラー12が取り付けられている。図2A及び図2Bに示す例では、ミラーホルダー12aは、光学素子切替ステージ10aの下面の左端辺に沿って、X線光学素子11aが取り付けられる挿通孔10bとX方向に並ぶ位置に、挿通孔10bのY軸方向における幅よりも若干長い領域から延設されている。ミラー12は、例えば円形板状の平面ミラーであり、ミラーホルダー12aのY方向における長さと同じ直径を有している。即ち、ミラー12は、挿通孔10bのY軸方向における幅(短軸方向の幅)よりも若干長い直径を有する。また、ミラー12は、その反射面が、光学素子切替ステージ10aの下面の左端辺(Y方向)に平行であり、かつ、X線光学素子11の軸長方向に対して45度±数度傾いた状態で取り付けられている。なお、ミラー12をこのような状態で保持できる構成であれば、ミラーホルダー12aはどのような形状でもよい。また、ミラー12の反射面は光を効率よく反射できるように研磨仕上げされていることが望ましい。 In addition to the X-ray optical element 11, a mirror 12 is attached to the optical element switching stage 10a. On the optical element switching stage 10a, a mirror holder 12a is extended in the axial length direction of the X-ray optical element 11, and the mirror 12 is attached to the extended end of the mirror holder 12a. In the example shown in FIGS. 2A and 2B, the mirror holder 12a has an insertion hole at a position aligned with the insertion hole 10b to which the X-ray optical element 11a is attached along the left end side of the lower surface of the optical element switching stage 10a. 10b extends from a region slightly longer than the width in the Y-axis direction. The mirror 12 is, for example, a circular plate-like plane mirror, and has the same diameter as the length of the mirror holder 12a in the Y direction. That is, the mirror 12 has a slightly longer diameter than the width of the insertion hole 10b in the Y-axis direction (width in the short axis direction). The reflection surface of the mirror 12 is parallel to the left end side (Y direction) of the lower surface of the optical element switching stage 10 a and is inclined by 45 degrees ± several degrees with respect to the axial length direction of the X-ray optical element 11. It is attached in the state. As long as the mirror 12 can be held in such a state, the mirror holder 12a may have any shape. The reflecting surface of the mirror 12 is preferably polished so that light can be efficiently reflected.
 このような構成の光学素子ユニット10が、光学素子切替ステージ10aを上側に、X線光学素子11の突出端を下側にして、更に、ミラー12の反射面を観察部5に対向させて、真空箱1内に収納されている。光学素子ユニット10が真空箱1内に収納された場合、ミラー12は、X線透過窓22に近い位置に配置される。なお、図1では、真空箱1内に光学素子ユニット10が収納された場合、光学素子ユニット10を隔てて観察部5とX線検出器4とが対向配置されているように示されている。しかし、実際には、図2Bに示すように、観察部5とX線検出器4とは、観察部5による観察方向とX線検出器4による検出方向とが90度をなすように配置されている。また、各X線光学素子11は、X線検出器4に近い位置に、軸長方向の長さが短いX線光学素子11が配置される。例えば、X線光学素子11が、内径が小さいほど長く形成されている場合、内径が大きく短いX線光学素子11が、X線検出器4に近い位置に配置される。これにより、光学素子ユニット10をX線検出器4側に移動させた場合であっても、各X線光学素子11がX線検出器4に接触することを回避できる。 The optical element unit 10 having such a configuration has the optical element switching stage 10a on the upper side, the protruding end of the X-ray optical element 11 on the lower side, and the reflection surface of the mirror 12 facing the observation unit 5, Housed in a vacuum box 1. When the optical element unit 10 is housed in the vacuum box 1, the mirror 12 is disposed at a position close to the X-ray transmission window 22. In FIG. 1, when the optical element unit 10 is housed in the vacuum box 1, the observation unit 5 and the X-ray detector 4 are shown to face each other with the optical element unit 10 interposed therebetween. . However, in practice, as shown in FIG. 2B, the observation unit 5 and the X-ray detector 4 are arranged such that the observation direction by the observation unit 5 and the detection direction by the X-ray detector 4 form 90 degrees. ing. In addition, each X-ray optical element 11 has an X-ray optical element 11 having a short axial length disposed at a position close to the X-ray detector 4. For example, when the X-ray optical element 11 is formed longer as the inner diameter is smaller, the X-ray optical element 11 having a larger inner diameter and a shorter inner diameter is disposed at a position close to the X-ray detector 4. Thereby, even if it is a case where the optical element unit 10 is moved to the X-ray detector 4 side, it can avoid that each X-ray optical element 11 contacts the X-ray detector 4. FIG.
 ミラー12は、光源による試料20の光像を、ミラー12に対向配置された観察部5へ反射させる。図1に示す例では、ミラー12は、反射面が観察部5の光軸と45度±数度をなし、また、ミラーホルダー12aの延設方向(X線光学素子11の軸長方向)と45度±数度をなした状態で配置されている。しかし、観察部5が試料20の光像を取得できる構成であれば、この構成に限らない。 The mirror 12 reflects the optical image of the sample 20 by the light source to the observation unit 5 arranged to face the mirror 12. In the example shown in FIG. 1, the mirror 12 has a reflection surface of 45 degrees ± several degrees with the optical axis of the observation unit 5, and the extending direction of the mirror holder 12 a (the axial length direction of the X-ray optical element 11). It is arranged in a state of 45 degrees ± several degrees. However, the configuration is not limited to this configuration as long as the observation unit 5 can acquire the optical image of the sample 20.
 光学素子切替ステージ10a(光学素子ユニット10)は、切替ステージ駆動部65によって、X線の照射方向(図1における上下方向)に直交する面内で、互いに直交する二方向、具体的には、図2B中のX方向及びY方向に移動できるように構成されている。切替ステージ駆動部65は、例えばステッピングモータを用いて構成されている。
 上述した構成により、実施形態1の光学素子ユニット10では、切替ステージ駆動部65によって光学素子切替ステージ10aが移動可能な二方向のうちの一方向(具体的には、図2B中のX方向)に沿って、内径が最小のX線光学素子11aとミラー12とが並べて配置されることになる。即ち、内径が最小のX線光学素子11aとミラー12とがX方向で同軸である。
The optical element switching stage 10a (optical element unit 10) is switched by the switching stage driving unit 65 in two directions orthogonal to each other in a plane orthogonal to the X-ray irradiation direction (vertical direction in FIG. 1). It is comprised so that it can move to the X direction and Y direction in FIG. 2B. The switching stage drive unit 65 is configured using, for example, a stepping motor.
With the configuration described above, in the optical element unit 10 of Embodiment 1, one of the two directions in which the optical element switching stage 10a can be moved by the switching stage driving unit 65 (specifically, the X direction in FIG. 2B). , The X-ray optical element 11a having the smallest inner diameter and the mirror 12 are arranged side by side. That is, the X-ray optical element 11a having the smallest inner diameter and the mirror 12 are coaxial in the X direction.
 切替ステージ駆動部65によって光学素子切替ステージ10aを移動させることにより、各X線光学素子11とミラー12との位置が切り替えられ、所定位置に配置されたX線光学素子11を介して、X線管3で発生したX線が試料20へ届けられる。なお、X線光学素子11a~11dの内径(出射径)が異なることにより、X線透過窓22から試料20の表面までの距離が同じである場合、内径に応じたビーム径のX線を試料20に照射することができる。
 所定位置に配置されたX線光学素子11から出射されたX線は、X線透過窓22を通過して試料20の上面に照射され、X線の照射によって試料20から蛍光X線が発生する。試料20から発生した蛍光X線はX線透過窓22を通してX線検出器4へ到達し、X線検出器4にて検出される。
By moving the optical element switching stage 10a by the switching stage driving unit 65, the position of each X-ray optical element 11 and the mirror 12 is switched, and the X-ray is transmitted via the X-ray optical element 11 arranged at a predetermined position. X-rays generated in the tube 3 are delivered to the sample 20. When the distance from the X-ray transmission window 22 to the surface of the sample 20 is the same due to the different inner diameters (outgoing diameters) of the X-ray optical elements 11a to 11d, X-rays having a beam diameter corresponding to the inner diameter are applied to the sample. 20 can be irradiated.
X-rays emitted from the X-ray optical element 11 arranged at a predetermined position pass through the X-ray transmission window 22 and are irradiated on the upper surface of the sample 20, and X-ray irradiation generates fluorescent X-rays from the sample 20. . X-ray fluorescence generated from the sample 20 reaches the X-ray detector 4 through the X-ray transmission window 22 and is detected by the X-ray detector 4.
 X線検出器4は、X線を試料20に照射することにより発生する蛍光X線を検出する装置であり、検出した蛍光X線のエネルギーに比例した信号を出力する。X線検出器4には、X線検出器4が出力した信号を処理する信号処理部62が接続されている。信号処理部62は、X線検出器4が出力した各値の信号をカウントし、蛍光X線のエネルギーとカウント数との関係、即ち蛍光X線のスペクトルを生成する処理を行う。信号処理部62には分析部63が接続されている。信号処理部62は、生成したスペクトルを示すデータを分析部63へ出力する。分析部63は、演算を行う演算部及びデータを記憶するメモリを含んで構成されている。分析部63は、信号処理部62から入力されたデータが示すスペクトルに基づいて、試料20に含まれる元素の定性分析又は定量分析を行う。 The X-ray detector 4 is a device that detects fluorescent X-rays generated by irradiating the sample 20 with X-rays, and outputs a signal proportional to the energy of the detected fluorescent X-rays. The X-ray detector 4 is connected to a signal processing unit 62 that processes a signal output from the X-ray detector 4. The signal processing unit 62 counts each value signal output from the X-ray detector 4 and performs a process of generating the relationship between the fluorescent X-ray energy and the count number, that is, the fluorescent X-ray spectrum. An analysis unit 63 is connected to the signal processing unit 62. The signal processing unit 62 outputs data indicating the generated spectrum to the analysis unit 63. The analysis unit 63 includes a calculation unit that performs calculation and a memory that stores data. The analysis unit 63 performs qualitative analysis or quantitative analysis of the elements contained in the sample 20 based on the spectrum indicated by the data input from the signal processing unit 62.
 観察部5は、ミラー12による試料20の反射光像を取得することによって、試料20を上方から見た光学画像を取得できる。観察部5には、液晶ディスプレイ等の表示部64が接続されている。表示部64は、観察部5によって取得された試料20の画像を表示する。使用者は、表示部64に表示された試料20の画像を視認することにより、試料20を観察することができる。なお、観察部5が光学顕微鏡である場合、使用者が光学顕微鏡の接眼レンズをのぞいて試料20を観察することもできる。 The observation unit 5 can acquire an optical image obtained by viewing the sample 20 from above by acquiring a reflected light image of the sample 20 by the mirror 12. A display unit 64 such as a liquid crystal display is connected to the observation unit 5. The display unit 64 displays the image of the sample 20 acquired by the observation unit 5. The user can observe the sample 20 by visually recognizing the image of the sample 20 displayed on the display unit 64. In addition, when the observation part 5 is an optical microscope, a user can also observe the sample 20 except for the eyepiece of an optical microscope.
 X線管3、信号処理部62、分析部63、表示部64、切替ステージ駆動部65及び試料ステージ駆動部66は、制御部61に接続されている。制御部61は、演算部及びメモリを含んだコンピュータで構成されている。制御部61は、X線管3、信号処理部62、分析部63、表示部64、切替ステージ駆動部65及び試料ステージ駆動部66の動作を制御する。制御部61は、使用者からの指示を受け付け、受け付けた指示に応じてX線分析装置の各部の動作を制御する構成であってもよい。表示部64は、信号処理部62が生成したスペクトル又は分析部63による分析結果を表示してもよい。また、制御部61及び分析部63は同一のコンピュータで構成されていてもよい。 The X-ray tube 3, the signal processing unit 62, the analysis unit 63, the display unit 64, the switching stage driving unit 65 and the sample stage driving unit 66 are connected to the control unit 61. The control unit 61 is composed of a computer including a calculation unit and a memory. The control unit 61 controls operations of the X-ray tube 3, the signal processing unit 62, the analysis unit 63, the display unit 64, the switching stage driving unit 65 and the sample stage driving unit 66. The control unit 61 may be configured to receive an instruction from the user and control the operation of each unit of the X-ray analyzer according to the received instruction. The display unit 64 may display the spectrum generated by the signal processing unit 62 or the analysis result by the analysis unit 63. Moreover, the control part 61 and the analysis part 63 may be comprised with the same computer.
 以下に、上述した構成のX線分析装置を用いて、試料20の上面における任意の観察箇所20aの分析を行う際の手順について説明する。
 図3A乃至図4Bは、動作中のX線分析装置を示す模式図である。図3A及び図3Bには、試料20の上面における観察箇所20aをミラー12を介して観察部5によって観察している場合のX線分析装置を示している。図3AはX線分析装置の模式図であり、図3Bは光学素子ユニット10及び試料20の上面図である。図4A及び図4Bには、試料20の上面における観察箇所20aにX線光学素子11aを用いてX線を照射している場合のX線分析装置を示している。図4AはX線分析装置の模式図であり、図4Bは光学素子ユニット10及び試料20の上面図である。
Below, the procedure at the time of analyzing the arbitrary observation location 20a in the upper surface of the sample 20 using the X-ray analyzer of the structure mentioned above is demonstrated.
3A to 4B are schematic views showing the X-ray analyzer in operation. 3A and 3B show an X-ray analyzer when the observation portion 20a on the upper surface of the sample 20 is observed by the observation unit 5 via the mirror 12. FIG. FIG. 3A is a schematic diagram of the X-ray analyzer, and FIG. 3B is a top view of the optical element unit 10 and the sample 20. 4A and 4B show an X-ray analyzer in the case where an X-ray optical element 11a is used to irradiate the observation spot 20a on the upper surface of the sample 20 with X-rays. FIG. 4A is a schematic diagram of the X-ray analyzer, and FIG. 4B is a top view of the optical element unit 10 and the sample 20.
 使用者は、試料箱2内の試料ステージ21に試料20を載置した後、ミラー12が所定の基準位置に配置されるように、切替ステージ駆動部65によって光学素子切替ステージ10a(光学素子ユニット10)を移動させる。所定の基準位置とは、X線管3で発生されてX線光学素子11を介して試料20に照射されるX線の照射位置の上方の位置であり、ミラー12を介して観察部5で観察される試料20の光像の焦点が合う位置である。
 ミラー12を基準位置に配置した後、使用者は、観察部5による画像の取得を開始する。使用者は、観察部5によって取得された画像を見ながら、ミラー12に対して観察箇所20aの位置合せを行う。具体的には、使用者は、ミラー12による視野の所定位置(例えば、視野の中央)に、試料20の観察箇所20aが配置されるように、試料ステージ駆動部66によって試料ステージ21を移動させる。図3A中には、ミラー12によって観察部5に到達する試料20の光像を破線の矢符で示している。これにより、基準位置に配置されたミラー12に対する観察箇所20aの位置合せを、観察部5によって取得された画像を見ながら行うことができる。
After the user places the sample 20 on the sample stage 21 in the sample box 2, the user switches the optical element switching stage 10a (optical element unit) by the switching stage driving unit 65 so that the mirror 12 is placed at a predetermined reference position. 10) is moved. The predetermined reference position is a position above the X-ray irradiation position generated by the X-ray tube 3 and applied to the sample 20 via the X-ray optical element 11. This is the position where the optical image of the sample 20 to be observed is in focus.
After placing the mirror 12 at the reference position, the user starts to acquire an image by the observation unit 5. The user aligns the observation location 20 a with respect to the mirror 12 while viewing the image acquired by the observation unit 5. Specifically, the user moves the sample stage 21 by the sample stage driving unit 66 so that the observation location 20a of the sample 20 is arranged at a predetermined position of the visual field by the mirror 12 (for example, the center of the visual field). . In FIG. 3A, the optical image of the sample 20 that reaches the observation unit 5 by the mirror 12 is indicated by a dashed arrow. Thereby, alignment of the observation spot 20a with respect to the mirror 12 arrange | positioned in a reference | standard position can be performed, seeing the image acquired by the observation part 5. FIG.
 ミラー12に対する観察箇所20aの位置合せを行った後、使用者は、切替ステージ駆動部65によって光学素子ユニット10を移動させることにより、使用したいX線光学素子11を、観察箇所20aの上方に配置させる。具体的には、X線光学素子11aを用いる場合、切替ステージ駆動部65は、図3Bに示した状態の光学素子ユニット10をX方向左側に移動させ、図4Bに示す状態にする。なお、X線光学素子11bを用いる場合、切替ステージ駆動部65は、観察箇所20aの上方にX線光学素子11bが配置されるまで、光学素子ユニット10をX方向左側に移動させればよい。
 ミラー12とX線光学素子11aとのX方向における距離は予め分かっているので、観察箇所20aの上方にX線光学素子11aが配置されるまでに切替ステージ駆動部65が光学素子ユニット10を移動させる距離、具体的には、切替ステージ駆動部65を構成するステッピングモータが行う移動回数(パルスの個数)は予め分かる。よって、切替ステージ駆動部65による光学素子ユニット10のX方向における移動は自動的に行うことができる。
After positioning the observation point 20a with respect to the mirror 12, the user moves the optical element unit 10 by the switching stage drive unit 65, thereby placing the X-ray optical element 11 desired to be used above the observation point 20a. Let Specifically, when the X-ray optical element 11a is used, the switching stage driving unit 65 moves the optical element unit 10 in the state shown in FIG. 3B to the left side in the X direction to obtain the state shown in FIG. 4B. When the X-ray optical element 11b is used, the switching stage driving unit 65 may move the optical element unit 10 to the left in the X direction until the X-ray optical element 11b is disposed above the observation location 20a.
Since the distance in the X direction between the mirror 12 and the X-ray optical element 11a is known in advance, the switching stage driving unit 65 moves the optical element unit 10 until the X-ray optical element 11a is arranged above the observation location 20a. The distance to be moved, specifically, the number of movements (number of pulses) performed by the stepping motor constituting the switching stage driving unit 65 is known in advance. Therefore, the movement of the optical element unit 10 in the X direction by the switching stage driving unit 65 can be automatically performed.
 観察箇所20aの上方に、X線分析に用いるX線光学素子11aを配置した後、使用者は、観察箇所20aに対するX線分析を開始する。具体的には、X線管3によってX線が発生され、発生したX線がX線光学素子11aを介して試料20に照射され、試料20から発生した蛍光X線をX線検出器4が検出する。図4A中には、X線管3から試料20に照射されるX線と、試料20からX線検出器4に到達する蛍光X線とを矢符で示している。
 なお、X線分析が行われる場合、観察部5による画像の取得が停止され、真空箱1が真空状態に保持される。試料箱2の内部は、真空箱1と共に真空状態に保持されてもよいし、大気圧状態のままでもよい。X線分析装置は、真空箱1の内部を真空にする図示しない排気部を備えている。なお、排気部は、真空箱1と共に試料箱2の内部も真空にできるように構成してあってもよい。
After disposing the X-ray optical element 11a used for X-ray analysis above the observation location 20a, the user starts X-ray analysis for the observation location 20a. Specifically, X-rays are generated by the X-ray tube 3, the generated X-rays are irradiated onto the sample 20 via the X-ray optical element 11a, and the X-ray detector 4 converts the fluorescent X-rays generated from the sample 20 into the X-ray detector 4. To detect. In FIG. 4A, X-rays irradiated from the X-ray tube 3 to the sample 20 and fluorescent X-rays reaching the X-ray detector 4 from the sample 20 are indicated by arrows.
In addition, when X-ray analysis is performed, acquisition of the image by the observation part 5 is stopped, and the vacuum box 1 is hold | maintained in a vacuum state. The inside of the sample box 2 may be kept in a vacuum state together with the vacuum box 1 or may remain in an atmospheric pressure state. The X-ray analyzer includes an exhaust unit (not shown) that evacuates the vacuum box 1. The exhaust unit may be configured so that the inside of the sample box 2 can be evacuated together with the vacuum box 1.
 実施形態1のX線分析装置では、ミラー12及びX線光学素子11が移動可能であるので、ミラー12及びX線光学素子11を試料20の上方の同軸上に配置する必要がない。よって、実施形態1では、従来のようにミラー12に切欠き部を設ける必要がないので、ミラー12を介した視野が制限されず、ミラー12を介して試料20を精度良く確認できる。
 また、光学素子ユニット10がX方向及びY方向の二方向に沿って移動できるので、試料20に対するX線光学素子11の位置と、X線管3に対するX線光学素子11の位置との調整が容易であり、かつ精度良く行うことができる。試料20及びX線管3に対する最適な位置にX線光学素子11を配置することができるので、X線分析における精度も向上する。 
In the X-ray analysis apparatus according to the first embodiment, the mirror 12 and the X-ray optical element 11 are movable, and therefore it is not necessary to arrange the mirror 12 and the X-ray optical element 11 on the same axis above the sample 20. Therefore, in Embodiment 1, since it is not necessary to provide a notch in the mirror 12 as in the prior art, the field of view through the mirror 12 is not limited, and the sample 20 can be accurately confirmed through the mirror 12.
Further, since the optical element unit 10 can move along two directions of the X direction and the Y direction, the position of the X-ray optical element 11 with respect to the sample 20 and the position of the X-ray optical element 11 with respect to the X-ray tube 3 can be adjusted. It is easy and can be performed with high accuracy. Since the X-ray optical element 11 can be arranged at an optimal position with respect to the sample 20 and the X-ray tube 3, the accuracy in X-ray analysis is also improved.
 実施形態1のX線分析装置において、X線分析にX線光学素子11cを用いる場合、使用者は、ミラー12に対する観察箇所20aの位置合せを行った後に、切替ステージ駆動部65によって光学素子ユニット10を移動させ、X線光学素子11cを観察箇所20aの上方に配置させる。
 図5は、X線分析装置が動作中である場合の光学素子ユニットの上面図である。X線光学素子11cを用いる場合、切替ステージ駆動部65は、図3Bに示した状態の光学素子ユニット10をX方向左側に移動させて図4Bに示す状態にした後、光学素子ユニット10を図4B中のY方向下側に移動させて図5に示す状態にする。X線光学素子11a,11bとX線光学素子11c,11dとのY方向における距離は予め分かっているので、切替ステージ駆動部65が光学素子ユニット10をY方向に移動させる距離、具体的には、切替ステージ駆動部65を構成するステッピングモータが行う移動回数(パルスの個数)は予め分かる。よって、切替ステージ駆動部65による光学素子ユニット10のY方向における移動も自動的に行うことができる。
In the X-ray analysis apparatus according to the first embodiment, when the X-ray optical element 11c is used for X-ray analysis, the user aligns the observation point 20a with the mirror 12 and then uses the switching stage driving unit 65 to change the optical element unit. 10 is moved, and the X-ray optical element 11c is arranged above the observation point 20a.
FIG. 5 is a top view of the optical element unit when the X-ray analyzer is in operation. When the X-ray optical element 11c is used, the switching stage driving unit 65 moves the optical element unit 10 in the state shown in FIG. 3B to the left side in the X direction to the state shown in FIG. It moves to the lower side in the Y direction in 4B to obtain the state shown in FIG. Since the distance in the Y direction between the X-ray optical elements 11a and 11b and the X-ray optical elements 11c and 11d is known in advance, the distance by which the switching stage driving unit 65 moves the optical element unit 10 in the Y direction, specifically The number of movements (number of pulses) performed by the stepping motor constituting the switching stage drive unit 65 is known in advance. Therefore, the movement of the optical element unit 10 in the Y direction by the switching stage driving unit 65 can also be automatically performed.
 実施形態1の光学素子ユニット10では、ミラー12に近い位置にX線光学素子11aが配置され、ミラー12から遠い位置にX線光学素子10dが配置されている。ビーム径が小さいX線光学素子11ほど、光学素子ユニット10における寸法誤差や組立誤差の影響を受け易い。また、位置合せを行う際の移動距離が短いほど、光学素子ユニット10における寸法誤差や組立誤差の影響が少ない。よって、ビーム径が小さいX線光学素子11ほど、試料20及びX線管3に対する位置合せを行う際の移動距離を短くするために、ミラー12に近い位置に配置されることが好ましい。具体的には、観察箇所20aに対してX線光学素子11の位置合せを行う際に光学素子ユニット10を移動させる距離が短い位置に、ビーム径が小さいX線光学素子11を配置させる。 In the optical element unit 10 of the first embodiment, an X-ray optical element 11 a is disposed at a position close to the mirror 12, and an X-ray optical element 10 d is disposed at a position far from the mirror 12. An X-ray optical element 11 having a smaller beam diameter is more susceptible to dimensional errors and assembly errors in the optical element unit 10. Further, the shorter the moving distance for alignment, the smaller the influence of dimensional errors and assembly errors in the optical element unit 10. Therefore, the X-ray optical element 11 having a smaller beam diameter is preferably arranged at a position closer to the mirror 12 in order to shorten the moving distance when aligning the sample 20 and the X-ray tube 3. Specifically, the X-ray optical element 11 having a small beam diameter is disposed at a position where the distance to which the optical element unit 10 is moved when the X-ray optical element 11 is aligned with the observation location 20a.
 実施形態1のX線分析装置において、X線光学素子11は、X線導管のほかに、コリメータによって構成されてもよい。
 上述の実施形態1では、試料20にX線を照射することによって試料20から生じる蛍光X線を検出するX線分析装置について説明した。本発明に係る放射線検出装置は、このようなX線分析装置に限らず、例えば、試料20にX線又は電子線等の放射線を照射することによって試料20から生じる透過X線、散乱X線、二次電子、反射電子等の放射線を検出する装置にも適用できる。
In the X-ray analysis apparatus of the first embodiment, the X-ray optical element 11 may be configured by a collimator in addition to the X-ray conduit.
In the first embodiment described above, the X-ray analyzer that detects fluorescent X-rays generated from the sample 20 by irradiating the sample 20 with X-rays has been described. The radiation detection apparatus according to the present invention is not limited to such an X-ray analysis apparatus. For example, transmitted X-rays, scattered X-rays generated from the sample 20 by irradiating the sample 20 with radiation such as X-rays or electron beams, The present invention can also be applied to an apparatus that detects radiation such as secondary electrons and reflected electrons.
(実施形態2)
 実施形態1のX線分析装置における光学素子ユニット10の変形例について説明する。図6は、実施形態2に係る光学素子ユニットの上面図である。
 図6に示す光学素子ユニット10では、3つのX線光学素子11a,11b,11cがY方向に並んで配置されている。図6に示す光学素子ユニット10では、ミラー12は、X線光学素子11の外径よりも少し大きい直径を有しており、上から見た場合に、光学素子切替ステージ10aの左端辺に沿って、X線光学素子11aとX方向に並んで配置されている。即ち、ミラー12とX線光学素子11aとがX方向で同軸である。光学素子ユニット10の他の構成及びX線分析装置の構成は実施形態1と同様である。
(Embodiment 2)
A modification of the optical element unit 10 in the X-ray analyzer of Embodiment 1 will be described. FIG. 6 is a top view of the optical element unit according to the second embodiment.
In the optical element unit 10 shown in FIG. 6, three X-ray optical elements 11a, 11b, and 11c are arranged side by side in the Y direction. In the optical element unit 10 shown in FIG. 6, the mirror 12 has a diameter slightly larger than the outer diameter of the X-ray optical element 11, and when viewed from above, along the left end side of the optical element switching stage 10a. The X-ray optical element 11a is arranged side by side in the X direction. That is, the mirror 12 and the X-ray optical element 11a are coaxial in the X direction. Other configurations of the optical element unit 10 and the configuration of the X-ray analyzer are the same as those in the first embodiment.
 図6に示す光学素子ユニット10においても、ビーム径が最小のX線光学素子11aがミラー12とX方向に並んで配置されている。よって、ミラー12に対して試料20の観察箇所20aを位置合せした後に、観察箇所20aに対してX線光学素子11aを位置合せする際に、光学素子ユニット10をX方向にのみ移動させればよい。よって、観察箇所20aとX線光学素子11aとの位置合せを容易にかつ精度良く行うことができる。また、ビーム径が最大のX線光学素子11cは、ミラー12から遠い位置に配置されているが、光学素子ユニット10が二方向に移動できるので、観察箇所20aに対するX線光学素子11cの位置合せも容易にかつ精度良く行うことができる。 Also in the optical element unit 10 shown in FIG. 6, the X-ray optical element 11a having the smallest beam diameter is arranged side by side with the mirror 12 in the X direction. Therefore, when the X-ray optical element 11a is aligned with the observation location 20a after the observation location 20a of the sample 20 is aligned with the mirror 12, the optical element unit 10 is moved only in the X direction. Good. Therefore, it is possible to easily and accurately align the observation location 20a and the X-ray optical element 11a. The X-ray optical element 11c having the maximum beam diameter is arranged at a position far from the mirror 12, but the optical element unit 10 can be moved in two directions, so that the X-ray optical element 11c is aligned with the observation location 20a. Can be easily and accurately performed.
 実施形態2のX線分析装置においても、実施形態1と同様の効果が得られる。具体的には、ミラー12を介して試料20を精度良く観察することができる。また、試料20に対するX線光学素子11の位置と、X線管3に対するX線光学素子11の位置との調整が容易であり、かつ精度良く行うことができる。試料20及びX線管3に対する最適な位置にX線光学素子11を配置することができるので、X線分析における精度も向上する。
 また、実施形態2のX線分析装置においても、X線光学素子11はコリメータによって構成されてもよい。
In the X-ray analysis apparatus of the second embodiment, the same effect as that of the first embodiment can be obtained. Specifically, the sample 20 can be accurately observed through the mirror 12. In addition, the position of the X-ray optical element 11 with respect to the sample 20 and the position of the X-ray optical element 11 with respect to the X-ray tube 3 can be easily adjusted with high accuracy. Since the X-ray optical element 11 can be arranged at an optimal position with respect to the sample 20 and the X-ray tube 3, the accuracy in X-ray analysis is also improved.
Also in the X-ray analysis apparatus of the second embodiment, the X-ray optical element 11 may be configured by a collimator.
 X線光学素子11は、実施形態1に示したように、X方向及びY方向のそれぞれに2つずつ並んで配置されてもよいし、図6に示したようにX方向に1つ、Y方向に3つ並んで配置されてもよい。また、例えば、X方向に3つ、Y方向に2つのX線光学素子11が並んで配置される構成としてもよいし、X方向に2つ、Y方向に3つのX線光学素子11が並んで配置される構成としてもよい。内径が最小のX線光学素子11aとミラー12とが、上から見た場合にX方向に並んで配置されていればよい。 As shown in the first embodiment, two X-ray optical elements 11 may be arranged side by side in each of the X direction and the Y direction, or one X direction Y, as shown in FIG. Three may be arranged side by side in the direction. Alternatively, for example, three X-ray optical elements 11 in the X direction and two X-ray optical elements 11 in the Y direction may be arranged side by side, or two X-ray optical elements 11 in the X direction and three X-ray optical elements 11 in the Y direction may be arranged. It is good also as a structure arrange | positioned by. The X-ray optical element 11a and the mirror 12 having the smallest inner diameter may be arranged side by side in the X direction when viewed from above.
 上述の実施形態1,2では、例えば図2Bに示すように、内径が最小のX線光学素子11aとミラー12とが、上から見た場合にX方向に同一軸上に配置されている。ミラー12の位置とX線光学素子11aの位置とは必ずしも同一軸上である必要はなく、ミラー12を介して観察部5にて観察される試料20の観察箇所の位置(ミラー12を介した観察部5の視野の位置)と、X線光学素子11aから試料20に出射される、X線のスポット位置とが同一軸上であればよい。 In the first and second embodiments described above, for example, as shown in FIG. 2B, the X-ray optical element 11a having the smallest inner diameter and the mirror 12 are arranged on the same axis in the X direction when viewed from above. The position of the mirror 12 and the position of the X-ray optical element 11a are not necessarily on the same axis, and the position of the observation position of the sample 20 observed by the observation unit 5 via the mirror 12 (via the mirror 12). The position of the field of view of the observation unit 5) and the X-ray spot position emitted from the X-ray optical element 11a to the sample 20 may be on the same axis.
(実施形態3)
 実施形態1のX線分析装置における光学素子ユニット10の変形例について説明する。図7は、実施形態3に係る光学素子ユニット10の斜視図である。
 実施形態3に係るX線分析装置は、光学素子ユニット10のX線光学素子14a~14dの形状が実施形態1のX線光学素子11a~11dと異なる点以外は、実施形態1と同様の構成を有する。よって、X線分析装置及び光学素子ユニット10において、実施形態1と同一の構成については同一の符号を付して説明を省略する。
(Embodiment 3)
A modification of the optical element unit 10 in the X-ray analyzer of Embodiment 1 will be described. FIG. 7 is a perspective view of the optical element unit 10 according to the third embodiment.
The X-ray analyzer according to Embodiment 3 has the same configuration as that of Embodiment 1 except that the shapes of the X-ray optical elements 14a to 14d of the optical element unit 10 are different from those of the X-ray optical elements 11a to 11d of Embodiment 1. Have Therefore, in the X-ray analysis apparatus and the optical element unit 10, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 実施形態3の光学素子ユニット10においても、光学素子切替ステージ10aに複数のX線光学素子14a~14d(以下では、まとめてX線光学素子14ということもある)が装着される。なお、装着されるX線光学素子14の数は、図7に示す4つに限らない。また、実施形態3においても、X線光学素子14は、X線管3にて発生されて真空箱1内に入射されたX線を収束させて試料20に照射する。 Also in the optical element unit 10 of the third embodiment, a plurality of X-ray optical elements 14a to 14d (hereinafter sometimes collectively referred to as X-ray optical elements 14) are mounted on the optical element switching stage 10a. The number of X-ray optical elements 14 to be mounted is not limited to four shown in FIG. Also in the third embodiment, the X-ray optical element 14 converges the X-rays generated in the X-ray tube 3 and entered into the vacuum box 1 to irradiate the sample 20.
 図8は、実施形態3に係るX線光学素子14の断面図である。図8には、X線管3から照射されるX線の照射方向を矢符で示しており、X線が入射される入射端と、X線を出射する出射端(一端部)とをそれぞれ上下方向にしてX線光学素子14を示している。図9は実施形態3のX線分析装置の一部の模式図であり、試料ステージ21に載置された試料20に対するX線光学素子14の位置関係を示す。実施形態3のX線光学素子14は、実施形態1のX線光学素子11と同様に、例えばガラスによって筒状(管状)に形成されたX線導管(キャピラリ)である。実施形態3のX線光学素子14は、軸長方向の中央部の内径d2が両端部の内径d1,d3よりも大きい形状を有する筒体である。なお、X線光学素子14の両端部の内径d1及びd3は同じ長さであっても異なる長さであってもよい。 FIG. 8 is a cross-sectional view of the X-ray optical element 14 according to the third embodiment. In FIG. 8, the irradiation direction of the X-rays irradiated from the X-ray tube 3 is indicated by arrows, and an incident end where X-rays are incident and an emission end (one end) that emits X-rays are respectively shown. The X-ray optical element 14 is shown in the vertical direction. FIG. 9 is a schematic diagram of a part of the X-ray analysis apparatus according to the third embodiment, and shows the positional relationship of the X-ray optical element 14 with respect to the sample 20 placed on the sample stage 21. Similar to the X-ray optical element 11 of Embodiment 1, the X-ray optical element 14 of Embodiment 3 is an X-ray conduit (capillary) formed of, for example, glass in a tubular shape (tubular). The X-ray optical element 14 of Embodiment 3 is a cylindrical body having a shape in which the inner diameter d2 at the center in the axial length direction is larger than the inner diameters d1 and d3 at both ends. The inner diameters d1 and d3 at both ends of the X-ray optical element 14 may be the same length or different lengths.
 X線光学素子14a~14dのそれぞれは、周面の湾曲度合及び軸長方向の長さが異なる形状に形成されており、X線が入射する入射端(図8では上端)の内径d3、中央部の内径d2、X線を出射する出射端(図8では下端)の内径d1がそれぞれ異なる。また、X線光学素子14a~14dは、出射端の内径d1が小さいほど、軸長方向の長さが長く形成されている。このような形状の差異により、X線光学素子14a~14dのそれぞれから出射されるX線のサンプル表面上での照射径(スポット径)が異なる。また、X線光学素子14a~14dは、出射端から、出射されたX線が収束する焦点までの距離がそれぞれ異なる。X線光学素子14から出射されたX線は、焦点の位置で試料20の観察箇所20aに照射されることが望ましい。よって、それぞれのX線光学素子14a~14dの焦点の位置に観察箇所20aが配置されるように試料20が配置されるので、それぞれのX線光学素子14a~14dは、出射端から観察箇所20aまでの距離WD(Working Distance)が異なる。なお、出射端の内径d1が小さいほど距離WDは短くなる。X線光学素子14a~14dのそれぞれの入射端及び出射端の内径、湾曲度合及び軸長方向の長さは適宜選択できる。 Each of the X-ray optical elements 14a to 14d is formed in a shape having a different degree of curvature of the peripheral surface and a length in the axial length direction, and has an inner diameter d3 at the incident end (upper end in FIG. 8) where the X-rays enter, The inner diameter d2 of the portion differs from the inner diameter d1 of the emitting end (lower end in FIG. 8) for emitting X-rays. Further, the X-ray optical elements 14a to 14d are formed such that the smaller the inner diameter d1 of the emission end, the longer the length in the axial direction. Due to the difference in shape, the irradiation diameter (spot diameter) of the X-rays emitted from each of the X-ray optical elements 14a to 14d on the sample surface is different. The X-ray optical elements 14a to 14d have different distances from the emission end to the focal point where the emitted X-rays converge. It is desirable that the X-rays emitted from the X-ray optical element 14 are applied to the observation location 20a of the sample 20 at the focal position. Therefore, since the sample 20 is arranged so that the observation point 20a is arranged at the focal position of each X-ray optical element 14a to 14d, each X-ray optical element 14a to 14d is connected to the observation point 20a from the emission end. The distance WD (Working Distance) is different. The smaller the inner diameter d1 of the emitting end, the shorter the distance WD. The inner diameter, the degree of curvature, and the length in the axial length direction of each of the entrance and exit ends of the X-ray optical elements 14a to 14d can be appropriately selected.
 実施形態3の光学素子ユニット10においても、X線光学素子14は、光学素子切替ステージ10aに設けられた挿通孔10bに挿通されて光学素子切替ステージ10aに取り付けられる。図7に示す例では、右側(手前側)の挿通孔10bには、ミラー12に近い左側の位置に、出射端の内径d1が最小で軸長方向の長さが最長のX線光学素子14aが挿通され、右側の位置に、出射端の内径d1が2番目に小さく2番目に長いX線光学素子14bが挿通されている。また、左側(奥側)の挿通孔10bには、ミラー12に近い左側の位置に、出射端の内径d1が3番目に小さく3番目に長いX線光学素子14cが挿通され、右側の位置に、出射端の内径d1が最大で最も短いX線光学素子14dが挿通されている。このように、X線光学素子14a~14dは、出射端の内径d1が小さい順にミラー12から近い位置に配置される。その結果、X線光学素子14a~14dは、距離WDが短い順にミラー12から近い位置に配置される。 Also in the optical element unit 10 of the third embodiment, the X-ray optical element 14 is inserted into the insertion hole 10b provided in the optical element switching stage 10a and attached to the optical element switching stage 10a. In the example shown in FIG. 7, the right (front) insertion hole 10 b has an X-ray optical element 14 a having a minimum inner diameter d 1 at the exit end and a longest length in the axial direction at a position on the left side near the mirror 12. Is inserted, and the X-ray optical element 14b having the second smallest inner diameter d1 at the emission end and the second longest is inserted at the right position. Further, the X-ray optical element 14c having the third smallest inner diameter d1 at the emission end and the third longest X-ray optical element 14c is inserted into the left side (back side) insertion hole 10b at a position on the left side close to the mirror 12. The X-ray optical element 14d having the shortest inner diameter d1 at the emission end is inserted. Thus, the X-ray optical elements 14a to 14d are arranged at positions closer to the mirror 12 in ascending order of the inner diameter d1 of the emission end. As a result, the X-ray optical elements 14a to 14d are arranged at positions closer to the mirror 12 in order of increasing distance WD.
 このような構成の実施形態3の光学素子ユニット10は、実施形態1と同様の状態で真空箱1内に収納される。また、実施形態3の光学素子ユニット10が真空箱1に収納されたX線分析装置は、実施形態1と同様の手順及び処理によって、試料20にX線を照射し、試料20から生じる蛍光X線を検出する。よって、実施形態3においても、実施形態1と同様の効果が得られる。例えば、実施形態3の光学素子ユニット10において、切替ステージ駆動部65によって光学素子切替ステージ10aが移動可能な二方向のうちの一方向(具体的には、図2B中のX方向)に沿って、出射端の内径d1が小さいX線光学素子14a,14bがミラー12と並べて配置される。よって、ミラー12に対して試料20の観察箇所20aを位置合せした後に、光学素子ユニット10をX方向にのみ移動させることにより、観察箇所20aに対してX線光学素子14a,14bを位置合せすることができる。また、光学素子ユニット10が二方向に移動できるので、観察箇所20aに対するX線光学素子14c,14dの位置合せも容易にかつ精度良く行うことができる。また、各X線光学素子14は、X線検出器4に近い位置に、軸長方向の長さが短いX線光学素子14c,14dが配置される。これにより、光学素子ユニット10をX線検出器4側に移動させた場合であっても、各X線光学素子11がX線検出器4に接触することを回避できる。 The optical element unit 10 of the third embodiment having such a configuration is housed in the vacuum box 1 in the same state as that of the first embodiment. Further, the X-ray analyzer in which the optical element unit 10 of Embodiment 3 is housed in the vacuum box 1 irradiates the sample 20 with X-rays by the same procedure and processing as in Embodiment 1, and generates fluorescence X generated from the sample 20. Detect lines. Therefore, also in Embodiment 3, the same effect as in Embodiment 1 can be obtained. For example, in the optical element unit 10 of Embodiment 3, the optical element switching stage 10a can be moved by the switching stage driving unit 65 along one direction (specifically, the X direction in FIG. 2B). The X-ray optical elements 14a and 14b having a small inner diameter d1 at the emission end are arranged side by side with the mirror 12. Therefore, after aligning the observation portion 20a of the sample 20 with respect to the mirror 12, the X-ray optical elements 14a and 14b are aligned with respect to the observation portion 20a by moving the optical element unit 10 only in the X direction. be able to. Further, since the optical element unit 10 can move in two directions, the alignment of the X-ray optical elements 14c and 14d with respect to the observation location 20a can be easily and accurately performed. In addition, each X-ray optical element 14 is arranged with X-ray optical elements 14 c and 14 d having a short length in the axial length direction at a position close to the X-ray detector 4. Thereby, even if it is a case where the optical element unit 10 is moved to the X-ray detector 4 side, it can avoid that each X-ray optical element 11 contacts the X-ray detector 4. FIG.
 実施形態3のX線光学素子14は、上述した実施形態2のX線分析装置の光学素子ユニット10にも適用できる。X線光学素子14は、図6に示したようにX方向に1つ、Y方向に3つ並んで配置されてもよい。X線光学素子14は、出射端の内径d1が最小であり、スポット位置(試料20の観察箇所20a)までの距離WDが最短のX線光学素子14aとミラー12とが、上から見た場合にX方向に並んで配置されていればよい。 The X-ray optical element 14 of Embodiment 3 can also be applied to the optical element unit 10 of the X-ray analyzer of Embodiment 2 described above. As shown in FIG. 6, one X-ray optical element 14 may be arranged side by side in the X direction and three in the Y direction. When the X-ray optical element 14 is viewed from above, the X-ray optical element 14a and the mirror 12 having the shortest inner diameter d1 at the emission end and the shortest distance WD to the spot position (the observation position 20a of the sample 20) are viewed from above. Need only be arranged side by side in the X direction.
 今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined not by the above-described meaning but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 3 X線管
 4 X線検出器(検出部)
 5 観察部
 10 光学素子ユニット
 12 ミラー
 20 試料
 65 切替ステージ駆動部
 10a 光学素子切替ステージ(保持部)
 11a~11d X線光学素子(放射線光学素子)
 12a ミラーホルダー(ミラー保持部)
 14a~14d X線光学素子(放射線光学素子)
 
 
3 X-ray tube 4 X-ray detector (detection unit)
DESCRIPTION OF SYMBOLS 5 Observation part 10 Optical element unit 12 Mirror 20 Sample 65 Switching stage drive part 10a Optical element switching stage (holding part)
11a to 11d X-ray optical element (radiation optical element)
12a Mirror holder (mirror holding part)
14a to 14d X-ray optical element (radiation optical element)

Claims (10)

  1.  試料に照射される放射線を絞る放射線光学素子と、前記試料への放射線の照射によって生じる放射線を検出する検出部と、前記試料に対向配置されたミラーと、前記放射線光学素子及びミラーを保持する保持部とを備える放射線検出装置において、
     前記保持部を、前記試料に照射される放射線の照射方向に交差する面内で、交差する二方向に移動させる駆動部を更に備え、
     前記保持部は、前記放射線の出射径が異なる複数の前記放射線光学素子を保持しており、前記ミラー及び最小の出射径の前記放射線光学素子を前記二方向のうちの一方向に並べて保持している
     ことを特徴とする放射線検出装置。
    A radiation optical element that narrows down the radiation applied to the sample, a detection unit that detects radiation generated by the irradiation of the sample with radiation, a mirror disposed opposite to the sample, and a holder that holds the radiation optical element and the mirror A radiation detection apparatus comprising:
    A drive unit that moves the holding unit in two intersecting directions within a plane that intersects the irradiation direction of the radiation irradiated on the sample;
    The holding unit holds a plurality of the radiation optical elements having different radiation emission diameters, and holds the mirror and the radiation optical element having the smallest emission diameter side by side in one of the two directions. A radiation detection apparatus characterized by comprising:
  2.  前記保持部は、出射径が小さい前記放射線光学素子を、前記ミラーから前記二方向に沿った距離が短い位置で保持していることを特徴とする請求項1に記載の放射線検出装置。 2. The radiation detection apparatus according to claim 1, wherein the holding unit holds the radiation optical element having a small emission diameter at a position where the distance along the two directions from the mirror is short.
  3.  試料に照射される放射線を絞る放射線光学素子と、前記試料への放射線の照射によって生じる放射線を検出する検出部と、前記試料に対向配置されたミラーと、前記放射線光学素子及びミラーを保持する保持部とを備える放射線検出装置において、
     前記保持部を、前記試料に照射される放射線の照射方向に交差する面内で、交差する二方向に移動させる駆動部を更に備え、
     前記保持部は、前記試料の表面での前記放射線の照射径が異なる複数の前記放射線光学素子を保持しており、前記ミラー及び前記照射径が最小の前記放射線光学素子を前記二方向のうちの一方向に並べて保持している
     ことを特徴とする放射線検出装置。
    A radiation optical element that narrows down the radiation applied to the sample, a detection unit that detects radiation generated by the irradiation of the sample with radiation, a mirror disposed opposite to the sample, and a holder that holds the radiation optical element and the mirror A radiation detection apparatus comprising:
    A drive unit that moves the holding unit in two intersecting directions within a plane that intersects the irradiation direction of the radiation irradiated on the sample;
    The holding unit holds a plurality of the radiation optical elements having different irradiation diameters of the radiation on the surface of the sample, and the mirror and the radiation optical element having the smallest irradiation diameter are arranged in the two directions. A radiation detector characterized by being held side by side in one direction.
  4.  前記放射線光学素子は、筒体であり、軸長方向の中央部の内径が両端部の内径よりも大きい形状を有し、
     前記保持部は、前記放射線を出射する一端部の内径が最小の前記放射線光学素子を前記ミラーと共に前記二方向のうちの一方向に並べて保持している
     ことを特徴とする請求項3に記載の放射線検出装置。
    The radiation optical element is a cylinder, and has a shape in which the inner diameter of the central portion in the axial length direction is larger than the inner diameters of both end portions,
    The said holding | maintenance part arrange | positions and hold | maintains the said radiation optical element with the smallest internal diameter of the one end part which emits the said radiation with the said mirror in one direction of the said two directions. Radiation detection device.
  5.  前記保持部は、前記放射線を出射する出射端から前記試料までの距離が最小の前記放射線光学素子を前記ミラーと共に前記二方向のうちの一方向に並べて保持している
     ことを特徴とする請求項3に記載の放射線検出装置。
    The holding unit holds the radiation optical element having a minimum distance from the emission end that emits the radiation to the sample along with the mirror in one of the two directions. 3. The radiation detection apparatus according to 3.
  6.  前記保持部は、前記照射径が小さい前記放射線光学素子を、前記ミラーから前記二方向に沿った距離が短い位置で保持していることを特徴とする請求項3から5までのいずれかひとつに記載の放射線検出装置。 The said holding | maintenance part hold | maintains the said radiation optical element with the said small irradiation diameter in the position where the distance along the said 2 direction from the said mirror is short, It is any one of Claim 3-5 characterized by the above-mentioned. The radiation detection apparatus described.
  7.  前記放射線光学素子は、前記二方向のそれぞれに複数ずつ並んで配置されていることを特徴とする請求項1から6までのいずれかひとつに記載の放射線検出装置。 The radiation detecting device according to any one of claims 1 to 6, wherein a plurality of the radiation optical elements are arranged side by side in each of the two directions.
  8.  前記放射線光学素子は筒体であり、
     前記保持部は、軸長方向の長さが短い前記放射線光学素子を前記検出部に近い位置で保持している
     ことを特徴とする請求項1から7までのいずれかひとつに記載の放射線検出装置。
    The radiation optical element is a cylinder,
    The radiation detection apparatus according to any one of claims 1 to 7, wherein the holding unit holds the radiation optical element having a short axial length in a position close to the detection unit. .
  9.  前記ミラーは、前記試料の光像を、所定位置に配置された観察部へ導くように配置されていることを特徴とする請求項1から8までのいずれかひとつに記載の放射線検出装置。 The radiation detection apparatus according to any one of claims 1 to 8, wherein the mirror is arranged to guide an optical image of the sample to an observation unit arranged at a predetermined position.
  10.  前記放射線光学素子は、前記放射線の照射方向を軸長方向として配置された筒体であり、
     前記保持部は、板状に形成されており、
     前記保持部は、厚み方向に穿設された複数の長孔を有しており、
     前記長孔は、前記二方向のうちの一方向を長軸方向として、他方向に並べて設けられており、
     前記保持部は、前記長孔に挿通された前記放射線光学素子を保持しており、
     前記保持部は、前記放射線光学素子の軸長方向に延設されたミラー保持部を有しており、
     前記ミラー保持部の延設端部には、前記ミラーが、反射面を前記他方向に平行で、かつ、前記放射線光学素子の軸長方向に対して傾いた状態で取り付けられており、
     前記最小の出射径の放射線光学素子又は前記照射径が最小の放射線光学素子は、前記ミラーから前記一方向に近い位置に配置されている
     ことを特徴とする請求項1から9までのいずれかひとつに記載の放射線検出装置。
     
     
    The radiation optical element is a cylindrical body arranged with the irradiation direction of the radiation as an axial length direction,
    The holding portion is formed in a plate shape,
    The holding portion has a plurality of long holes drilled in the thickness direction,
    The long hole is provided side by side in the other direction, with one of the two directions as the major axis direction,
    The holding unit holds the radiation optical element inserted through the long hole,
    The holding part has a mirror holding part extended in the axial length direction of the radiation optical element,
    The mirror is attached to the extended end of the mirror holding portion in a state where the reflecting surface is parallel to the other direction and inclined with respect to the axial length direction of the radiation optical element,
    The radiation optical element having the smallest emission diameter or the radiation optical element having the smallest irradiation diameter is disposed at a position close to the one direction from the mirror. The radiation detection apparatus according to 1.

PCT/JP2017/042409 2016-12-15 2017-11-27 Radiation detection device WO2018110260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556535A JP6944952B2 (en) 2016-12-15 2017-11-27 Radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242916 2016-12-15
JP2016242916 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110260A1 true WO2018110260A1 (en) 2018-06-21

Family

ID=62558376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042409 WO2018110260A1 (en) 2016-12-15 2017-11-27 Radiation detection device

Country Status (2)

Country Link
JP (1) JP6944952B2 (en)
WO (1) WO2018110260A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085826A (en) * 2018-11-30 2020-06-04 株式会社島津製作所 Fluorescent x-ray analysis system, fluorescent x-ray analyzer and fluorescent x-ray analysis method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258061A (en) * 1993-03-08 1994-09-16 Seiko Instr Inc Fluorescent x-ray film thickness meter
JPH06273147A (en) * 1993-03-19 1994-09-30 Seiko Instr Inc Fluorescent x-ray apparatus for measuring film thickness of minute part
JP2002107134A (en) * 2000-07-27 2002-04-10 Seiko Instruments Inc Thickness meter for x-ray fluorescence film
JP2003207467A (en) * 2002-01-16 2003-07-25 Seiko Instruments Inc X-ray analyzer
JP2004279355A (en) * 2003-03-19 2004-10-07 Jeol Ltd X-ray analyzer
JP2007292476A (en) * 2006-04-21 2007-11-08 Shimadzu Corp Combined device of optical microscope and x-ray analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258061A (en) * 1993-03-08 1994-09-16 Seiko Instr Inc Fluorescent x-ray film thickness meter
JPH06273147A (en) * 1993-03-19 1994-09-30 Seiko Instr Inc Fluorescent x-ray apparatus for measuring film thickness of minute part
JP2002107134A (en) * 2000-07-27 2002-04-10 Seiko Instruments Inc Thickness meter for x-ray fluorescence film
JP2003207467A (en) * 2002-01-16 2003-07-25 Seiko Instruments Inc X-ray analyzer
JP2004279355A (en) * 2003-03-19 2004-10-07 Jeol Ltd X-ray analyzer
JP2007292476A (en) * 2006-04-21 2007-11-08 Shimadzu Corp Combined device of optical microscope and x-ray analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085826A (en) * 2018-11-30 2020-06-04 株式会社島津製作所 Fluorescent x-ray analysis system, fluorescent x-ray analyzer and fluorescent x-ray analysis method
JP7135795B2 (en) 2018-11-30 2022-09-13 株式会社島津製作所 Fluorescent X-ray Analysis System and Fluorescent X-ray Analysis Method

Also Published As

Publication number Publication date
JPWO2018110260A1 (en) 2019-10-24
JP6944952B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
KR101739597B1 (en) Fluorescent x-ray analysis device and fluorescent x-ray analysis method
JP3996821B2 (en) X-ray analyzer
US9658175B2 (en) X-ray analyzer
JP6096418B2 (en) X-ray detector
US20170069458A1 (en) Sample holder, observation system, and image generation method
JP2009074934A (en) Sample analyzer
WO2018110260A1 (en) Radiation detection device
JP3718818B2 (en) Cathodoluminescence sample holder and cathodoluminescence spectrometer
EP3570311A1 (en) Cathodoluminescence optical hub
US10823688B2 (en) Radiation detection device
EP1865306A1 (en) Optical measuring apparatus
US9268126B2 (en) Observation and analysis unit
JP4140490B2 (en) X-ray analyzer and its focusing device
JP2020052383A (en) Microscope device
KR101158859B1 (en) Portable X-ray fluorescence analytical apparatus including alignment system for optical components
JP5341025B2 (en) Scanning electron microscope
CN115266578A (en) Analysis device
JP2022064854A (en) microscope
US6477237B1 (en) X-ray shielding mechanism for off-axis X-rays
CN110231358B (en) Combined device of scanning electron microscope and spectrum equipment
EP2333501B1 (en) Apparatus and method for automatic optical realignment
JP4731749B2 (en) X-ray analyzer
KR102332578B1 (en) X-ray generator using optical focusing system
CN211652596U (en) Cylinder inner wall check out test set
JP5646147B2 (en) Method and apparatus for measuring a two-dimensional distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880192

Country of ref document: EP

Kind code of ref document: A1