WO2018110057A1 - 弾性波装置、高周波フロントエンド回路及び通信装置 - Google Patents

弾性波装置、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2018110057A1
WO2018110057A1 PCT/JP2017/036861 JP2017036861W WO2018110057A1 WO 2018110057 A1 WO2018110057 A1 WO 2018110057A1 JP 2017036861 W JP2017036861 W JP 2017036861W WO 2018110057 A1 WO2018110057 A1 WO 2018110057A1
Authority
WO
WIPO (PCT)
Prior art keywords
support member
wave device
piezoelectric substrate
elastic wave
piezoelectric
Prior art date
Application number
PCT/JP2017/036861
Other languages
English (en)
French (fr)
Inventor
一平 初田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020197015137A priority Critical patent/KR102253460B1/ko
Priority to CN201780077250.7A priority patent/CN110100387B/zh
Priority to JP2018556212A priority patent/JP6547914B2/ja
Publication of WO2018110057A1 publication Critical patent/WO2018110057A1/ja
Priority to US15/929,139 priority patent/US11005444B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02897Means for compensation or elimination of undesirable effects of strain or mechanical damage, e.g. strain due to bending influence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1042Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a housing formed by a cavity in a resin
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to an elastic wave device, a high-frequency front end circuit, and a communication device.
  • Patent Document 1 discloses an example of an acoustic wave device.
  • the acoustic wave device includes a piezoelectric substrate, a support member provided on the piezoelectric substrate, and a cover member provided on the support member.
  • An IDT electrode is provided on the piezoelectric substrate, and the IDT electrode is formed in a hollow space surrounded by the piezoelectric substrate, the support member, and the cover member.
  • the elastic wave device of Patent Document 1 is an elastic wave device having a WLP (Wafer Level Package) structure.
  • WLP Wafer Level Package
  • Heat is applied to the acoustic wave device in the manufacturing process and the mounting process. Even when an elastic wave device is used, the elastic wave device may become hot due to heat generated by the IDT electrode or heat applied from outside the elastic wave device.
  • the support member since the support member has a larger thermal expansion coefficient than the piezoelectric substrate, the support member tends to be deformed more than the piezoelectric substrate due to temperature change. Therefore, a large thermal stress is applied to the piezoelectric substrate, and the piezoelectric substrate may be damaged.
  • An object of the present invention is to provide an acoustic wave device, a high-frequency front end circuit, and a communication device that can disperse stress applied to a piezoelectric material such as a piezoelectric substrate and are less likely to cause damage to the piezoelectric material.
  • An elastic wave device includes a piezoelectric body, a functional electrode provided on the piezoelectric body, a support member provided on the piezoelectric body so as to surround the functional electrode, and the support member A hollow space surrounded by the piezoelectric body, the support member, and the cover member, wherein the support member has a thermal expansion coefficient larger than that of the piezoelectric body.
  • the support member has an inner surface that is a surface on the hollow space side and an outer surface that is a surface opposite to the inner surface, and at least one of the inner surface and the outer surface Has a recess provided on the surface.
  • the depth in the concave portion is the deepest. This portion is closer to the piezoelectric body than the cover member. In this case, since the piezoelectric body side is difficult to be deformed and stress is easily concentrated, the stress applied to the piezoelectric body can be further dispersed.
  • the support member in a plan view, has a plurality of corner portions, and the concave portion is provided in at least one corner portion of the plurality of corner portions. ing. In this case, since stress tends to concentrate particularly at the corners, the stress applied to the piezoelectric body can be effectively dispersed.
  • the recess is provided on the outer surface of the support member.
  • the stress applied to the outer surface is more concentrated than the inner surface, so that the stress applied to the piezoelectric body can be effectively dispersed.
  • the support member has a frame shape in plan view, and the recess is provided on the entire circumference of the support member.
  • the stress is absorbed in a wide range and uniformly, so that the stress applied to the piezoelectric body can be further dispersed.
  • the functional electrode is an IDT electrode.
  • the high-frequency front-end circuit according to the present invention includes an elastic wave device configured according to the present invention and a power amplifier.
  • the communication device of the present invention includes a high-frequency front-end circuit configured according to the present invention and an RF signal processing circuit.
  • an elastic wave device a high-frequency front-end circuit, and a communication device that can disperse stress applied to a piezoelectric material such as a piezoelectric substrate and are less likely to break the piezoelectric material.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged front cross-sectional view of the vicinity of the support member in the first embodiment of the present invention.
  • FIG. 3 is a plan view of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic plan view schematically showing thermal stress applied from the support member to the piezoelectric substrate in the acoustic wave device having the WLP structure.
  • FIG. 5 is an enlarged front cross-sectional view showing thermal stress distribution in the piezoelectric substrate, the support member, and the cover member in the first comparative example.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged front cross-sectional view of the vicinity of the support member in the first embodiment of the present invention.
  • FIG. 3 is a plan view of the acous
  • FIG. 6 is an enlarged front cross-sectional view showing thermal stress distribution in the piezoelectric substrate, the support member, and the cover member in the second comparative example.
  • FIG. 7 is an enlarged front cross-sectional view showing thermal stress distributions in the piezoelectric substrate, the support member, and the cover member in the third comparative example.
  • FIG. 8 is an enlarged front cross-sectional view showing the distribution of thermal stress in the piezoelectric substrate, the support member, and the cover member in the first embodiment of the present invention.
  • FIG. 9 is an enlarged front cross-sectional view showing the distribution of thermal stress in the piezoelectric substrate, the support member, and the cover member in the first modification of the first embodiment of the present invention.
  • FIG. 10 is an enlarged front cross-sectional view showing the distribution of thermal stress in the piezoelectric substrate, the support member, and the cover member in the second modification of the first embodiment of the present invention.
  • FIG. 11 is an enlarged front cross-sectional view of the vicinity of the support member in the third modification of the first embodiment of the present invention.
  • FIG. 12 is a front sectional view of an acoustic wave device according to a fourth modification of the first embodiment of the present invention.
  • 13 (a) to 13 (c) are front sectional views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 14 (a) to 14 (c) are front cross-sectional views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 15 is a plan view of an acoustic wave device according to the second embodiment of the present invention.
  • FIG. 16 is a configuration diagram of a communication apparatus having a high-frequency front end circuit.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged front cross-sectional view of the vicinity of the support member in the first embodiment.
  • the elastic wave device 1 has a piezoelectric substrate 2 as a piezoelectric body.
  • the piezoelectric substrate 2 is made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 .
  • the piezoelectric substrate 2 may be made of an appropriate piezoelectric ceramic.
  • an IDT electrode 3 as a functional electrode is provided on the piezoelectric substrate 2.
  • the functional electrode may be a functional electrode other than the IDT electrode.
  • an electrode pad 7 electrically connected to the IDT electrode 3 is also provided.
  • the IDT electrode 3 has an electrode layer made of, for example, Ti, Al, Cu, Pt, W, Mo, NiCr, Au, or the like.
  • the IDT electrode 3 may be composed of a laminated metal film in which a plurality of electrode layers are laminated, or may be composed of a single electrode layer.
  • the electrode pad 7 is made of the same material as that of the IDT electrode 3.
  • a dielectric film 10 is provided on the piezoelectric substrate 2 so as to cover the IDT electrode 3.
  • the dielectric film 10 is made of, for example, SiO 2 or SiN. By having the dielectric film 10, the IDT electrode 3 is hardly damaged. Further, when the dielectric film 10 is made of SiN, the frequency can be easily adjusted. The dielectric film 10 may not be provided.
  • a support member 4 having an opening 4a is provided on the piezoelectric substrate 2.
  • the support member 4 is provided so as to surround the IDT electrode 3 by the opening 4a.
  • the support member 4 is made of an appropriate resin or the like.
  • the support member 4 has a thermal expansion coefficient larger than that of the piezoelectric substrate 2.
  • a cover member 6 is provided on the support member 4 so as to cover the opening 4a.
  • the cover member 6 includes an adhesive layer 6a and a protective layer 6b laminated on the adhesive layer 6a.
  • the adhesive layer 6a is made of an acrylic ester resin.
  • the protective layer 6b is made of PI. Thereby, the joining force of the supporting member 4 and the cover member 6 can be raised suitably, and durability of an elastic wave apparatus can also be improved.
  • the material of the cover member 6 is not limited to the above.
  • the cover member 6 may be a single layer.
  • the acoustic wave device 1 has a hollow space A surrounded by the piezoelectric substrate 2, the support member 4 and the cover member 6.
  • the IDT electrode 3 is located in the hollow space A.
  • the support member 4 has an inner surface 4b that is a surface on the hollow space A side and an outer surface 4c that is a surface opposite to the inner surface 4b.
  • the outer surface 4c of the support member 4 extends while being inclined with respect to the height direction.
  • the outer surface 4c of the support member 4 may extend in parallel to the height direction.
  • the recess 5 is provided on the outer surface 4c. More specifically, as shown in FIG. 2, the recess 5 is provided from between the cover member 6 and the piezoelectric substrate 2 on the outer surface 4 c to a portion in contact with the piezoelectric substrate 2.
  • the depth the length along the direction connecting the inner surface 4b and the outer surface 4c is defined as the depth.
  • the recessed part 5 has the bottom part 5a which is a part where the depth becomes the deepest. The position of the bottom 5a is closer to the piezoelectric substrate 2 than the cover member 6 in the height direction. In the recess 5, the depth gradually decreases from the bottom 5 a to the portion in contact with the piezoelectric substrate 2.
  • the recessed part 5 has the inclined surface 5b located between the bottom part 5a and the part which contact
  • the shape of the recessed part 5 is not limited above.
  • the support member 4 has a rectangular frame shape in plan view.
  • the support member 4 has four sides 4d and four corners 4e.
  • Concave portions 5 are provided in the vicinity of the central portion of the four sides 4d of the outer surface 4c and in the four corner portions 4e, respectively.
  • the position where the recessed part 5 is provided in the supporting member 4 is not limited to the above.
  • the recessed part 5 should just be provided in at least one among the inner surface 4b and the outer surface 4c.
  • the elastic wave device 1 of this embodiment is an elastic wave device having a WLP structure.
  • the feature of this embodiment is that the support member 4 has a recess 5 provided in the outer surface 4c. Thereby, the thermal stress can be dispersed and the piezoelectric substrate 2 is hardly damaged. This will be described below by comparing this embodiment with the first to third comparative examples.
  • the first to third comparative examples are different from the first embodiment in that they do not have a recess.
  • the outer surface of the support member in the first comparative example extends parallel to the height direction.
  • the entire outer surface of the support member in the second comparative example extends while being inclined with respect to the height direction.
  • the outer surface of the support member extends in the vicinity of the portion in contact with the piezoelectric substrate while being inclined with respect to the height direction, and the other portion extends in parallel with the height direction.
  • the thermal stress distributions in the first embodiment and the first to third comparative examples were compared.
  • FIG. 4 is a schematic plan view schematically showing thermal stress applied from the support member to the piezoelectric substrate in the elastic wave device having the WLP structure.
  • FIG. 5 is an enlarged front cross-sectional view showing thermal stress distribution in the piezoelectric substrate, the support member, and the cover member in the first comparative example.
  • FIG. 6 is an enlarged front cross-sectional view showing thermal stress distribution in the piezoelectric substrate, the support member, and the cover member in the second comparative example.
  • FIG. 7 is an enlarged front cross-sectional view showing thermal stress distributions in the piezoelectric substrate, the support member, and the cover member in the third comparative example.
  • FIG. 8 is an enlarged front cross-sectional view showing thermal stress distribution in the piezoelectric substrate, the support member, and the cover member in the first embodiment.
  • the cover member, the via electrode, and the electrode pad are omitted.
  • a large thermal stress is applied from the support member to the piezoelectric substrate due to a temperature cycle in which heat is applied to the acoustic wave device to increase the temperature, and further the heat is released from the acoustic wave device to decrease the temperature. More specifically, as indicated by an arrow A in FIG. 4, stress is applied from the outer surface 4 c side to the inner surface 4 b side of the support member 4. As shown in FIG. 5, in the first comparative example, it can be seen that stress concentration occurs at the portion where the support member and the piezoelectric substrate are in contact with each other. In the first comparative example, the maximum value of stress is 79.988 MPa.
  • the support member has a recess provided on the outer surface.
  • the stress is disperse
  • the maximum value of stress is 50.33 MPa, which is 16 MPa or more smaller than those of the first to third comparative examples.
  • the portion where the stress is maximum can be located near the bottom of the recess, and the piezoelectric substrate can be moved away from the portion where the stress is greatly applied. Therefore, the stress applied to the piezoelectric substrate can be effectively reduced. Therefore, the piezoelectric substrate can be effectively prevented from being damaged.
  • FIG. 9 is an enlarged front cross-sectional view showing the distribution of thermal stress in the piezoelectric substrate, the support member, and the cover member in the first modification of the first embodiment of the present invention
  • FIG. 10 is the first view of the present invention. It is an expanded front sectional view which shows distribution of the thermal stress in the piezoelectric substrate in the 2nd modification of embodiment of this embodiment, a supporting member, and a cover member.
  • the recessed part is provided in the whole in the height direction of the outer surface of a supporting member.
  • FIG. 9 in the 1st modification of 1st Embodiment, the recessed part is provided in the whole in the height direction of the outer surface of a supporting member.
  • the outer surface of the support member extends in parallel to the height direction.
  • the concave portion is provided on the outer surface from between the cover member and the piezoelectric substrate to the piezoelectric substrate. As shown in FIGS. 9 and 10, the stress can be dispersed also in the first and second modified examples. Therefore, the piezoelectric substrate is hardly damaged.
  • the recess 5 preferably has an inclined surface 5 b over the piezoelectric substrate 2.
  • the stress applied to the piezoelectric substrate 2 can be further dispersed.
  • the bottom 5a of the recess 5 is preferably closer to the piezoelectric substrate 2 than the cover member 6 in the height direction.
  • the support member 4 is not easily deformed on the piezoelectric substrate 2 side. Therefore, stress tends to concentrate on the piezoelectric substrate 2. Therefore, when the bottom 5a of the recess 5 is close to the piezoelectric substrate 2, the stress applied to the piezoelectric substrate 2 can be further dispersed.
  • the recess 5 is preferably provided in at least one corner of the support member 4.
  • stress is applied to the piezoelectric substrate 2 at the portion in contact with each side 4 d in the planar shape of the rectangular frame shape of the support member 4.
  • the two sides 4d are in contact with each other, so that the stress applied to the piezoelectric substrate 2 is particularly easily concentrated. Therefore, as shown in FIG. 3, the stress applied to the piezoelectric substrate 2 can be effectively dispersed by providing the recess 5 in the corner 4e. More preferably, the recesses 5 are provided in all the corners 4 e of the support member 4. In this case, the stress applied to the piezoelectric substrate 2 can be further dispersed.
  • the recess 5 is preferably provided on the outer surface 4 c of the support member 4. Thermal stress is applied to the piezoelectric substrate 2 from the support member 4 in a direction from the outer surface 4 c side to the inner surface 4 b side of the support member 4. Therefore, the stress applied to the piezoelectric substrate 2 is particularly large on the outer surface 4c side. Therefore, the stress applied to the piezoelectric substrate 2 can be effectively dispersed by providing the recess 5 on the outer surface 4c.
  • the recess 5 may be provided on at least one of the inner surface 4b and the outer surface 4c of the support member 4. Even in this case, the stress applied to the portion of the inner surface 4b and the outer surface 4c where the concave portion 5 is in contact with the piezoelectric substrate 2 can be dispersed, and the piezoelectric substrate 2 is damaged. hard.
  • FIG. 11 is an enlarged front cross-sectional view of the vicinity of the support member in the third modification of the first embodiment.
  • the recess 5 is provided on the inner surface 4 b and the outer surface 4 c of the support member 4.
  • the stress applied to the piezoelectric substrate 2 near the portion in contact with the inner surface 4b of the support member 4 and the portion in contact with the outer surface 4c can be effectively dispersed. Therefore, the piezoelectric substrate 2 is less likely to be damaged.
  • the piezoelectric body is the piezoelectric substrate 2, but the piezoelectric body may be the piezoelectric thin film 22 as in the fourth modification of the first embodiment shown in FIG. 12.
  • a low sound velocity film 23 may be provided on the surface of the piezoelectric thin film 22 opposite to the surface on which the IDT electrode 3 is provided.
  • a high sound speed member 24 may be provided on the surface of the low sound speed film 23 opposite to the piezoelectric thin film 22 side.
  • the low acoustic velocity film 23 is a membrane in which the acoustic velocity of the bulk wave propagating is lower than the acoustic velocity of the elastic wave propagating through the piezoelectric thin film 22.
  • the low acoustic velocity film 23 is made of, for example, a material mainly composed of glass, silicon oxynitride, tantalum oxide, or a compound obtained by adding fluorine, carbon, or boron to silicon oxide.
  • the material of the low sound velocity film 23 may be a material having a relatively low sound velocity.
  • the high sound velocity member 24 is a member in which the sound velocity of the bulk wave propagating is higher than the sound velocity of the elastic wave propagating through the piezoelectric thin film 22.
  • the high acoustic velocity member 24 is made of, for example, aluminum nitride, aluminum oxide, silicon carbide, silicon oxynitride, a DLC film, or a material mainly composed of diamond.
  • the material of the high sound speed member 24 may be a material having a relatively high sound speed.
  • the high sound speed member 24 may be a high sound speed film or a high sound speed substrate. As described above, when the low sound velocity film 23 and the high sound velocity member 24 are provided, the energy of the elastic wave can be effectively confined.
  • FIG. 13A to FIG. 13C are front sectional views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment.
  • FIG. 14A to FIG. 14C are front sectional views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment.
  • the IDT electrode 3 is formed on the piezoelectric substrate 2.
  • the IDT electrode 3 can be formed by, for example, a lift-off method or a sputtering method. In the case of using the sputtering method, a metal film for the IDT electrode 3 is formed by the sputtering method. Next, a resist pattern is formed on the metal film by photolithography. Next, the IDT electrode 3 can be formed by patterning the metal film along the resist pattern by a dry etching method. The electrode pad 7 is formed simultaneously with the IDT electrode 3.
  • a dielectric film 10 is formed on the piezoelectric substrate 2 so as to cover the IDT electrode 3.
  • the dielectric film 10 can be formed by, for example, a sputtering method.
  • the dielectric film 10 can be appropriately patterned by a photolithography method and a dry etching method.
  • a resin layer 34 for a support member is formed on the piezoelectric substrate 2 by a spin coating method so as to surround the IDT electrode 3.
  • the resin layer 34 is formed so as to cover the electrode pad 7.
  • the resin material used for the resin layer 34 is not particularly limited, but PI is preferably used as the resin material.
  • the resin layer 34 is pre-baked. At this time, it is preferable to set the pre-baking temperature to a relatively high temperature. Thereby, the exposure sensitivity of the resin layer 34 can be reduced, and a recess is easily formed in the support member formed from the resin layer 34.
  • the resin layer 34 is baked.
  • the baking temperature is preferably about 220 ° C., for example. In heating in baking, it is preferable to increase the rate of temperature rise. Thereby, it is easy to form a recess in the support member.
  • the recess 5 may be formed by cutting the support member 4 after the support member 4 is formed.
  • a cover member 6 is provided on the support member 4.
  • the protective layer 6 b may be laminated on the adhesive layer 6 a after the adhesive layer 6 a is provided on the support member 4.
  • the cover member 6 may be formed by previously laminating the adhesive layer 6 a and the protective layer 6 b in advance, and then the cover member 6 may be provided on the support member 4.
  • a through hole 38 is formed so as to penetrate the cover member 6 and the support member 4.
  • a through hole 38 is formed so as to reach the electrode pad 7.
  • the through hole 38 can be formed by, for example, laser light irradiation or physical cutting.
  • the via electrode 8 is formed in the through hole 38 by electrolytic plating or the like.
  • a via electrode 8 is formed so as to be connected to the electrode pad 7.
  • bumps 9 are provided so as to be joined to the via electrodes 8.
  • FIG. 15 is a plan view of the acoustic wave device according to the second embodiment.
  • the elastic wave device 11 is different from the first embodiment in that the concave portion 15 is provided on the entire circumference of the outer surface 4c of the support member 4 in plan view. Except for the above points, the elastic wave device 11 of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the concave portion 5 is provided on the entire circumference of the outer surface 4c, and the place for absorbing the stress is present in a wide range and uniformly.
  • the stress can be effectively dispersed in the entire portion where the piezoelectric substrate 2 is in contact with the outer surface 4 c of the support member 4. Therefore, the piezoelectric substrate 2 is less likely to be damaged.
  • the elastic wave device can be used as a duplexer for a high-frequency front end circuit. This example is described below.
  • FIG. 16 is a configuration diagram of a communication apparatus having a high-frequency front end circuit.
  • components connected to the high-frequency front-end circuit 230 for example, the antenna element 202 and the RF signal processing circuit (RFIC) 203 are also shown.
  • the high-frequency front end circuit 230 and the RF signal processing circuit 203 constitute a communication device 240.
  • the communication device 240 may include a power supply, a CPU, and a display.
  • the high-frequency front-end circuit 230 includes a switch 225, duplexers 201A and 201B, filters 231, 232, low-noise amplifier circuits 214, 224, and power amplifier circuits 234a, 234b, 244a, 244b. Note that the high-frequency front-end circuit 230 and the communication device 240 in FIG. 16 are examples of the high-frequency front-end circuit and the communication device, and are not limited to this configuration.
  • the duplexer 201A includes filters 211 and 212.
  • the duplexer 201B includes filters 221 and 222.
  • the duplexers 201 ⁇ / b> A and 201 ⁇ / b> B are connected to the antenna element 202 via the switch 225.
  • the said elastic wave apparatus may be duplexers 201A and 201B, and may be filters 211, 212, 221 and 222.
  • the elastic wave device is also applicable to a multiplexer having three or more filters, such as a triplexer in which the antenna terminals of three filters are shared, and a hexaplexer in which the antenna terminals of six filters are shared. Can do.
  • the acoustic wave device includes an acoustic wave resonator, a filter, a duplexer, and a multiplexer including three or more filters.
  • the multiplexer is not limited to the configuration including both the transmission filter and the reception filter, and may be configured to include only the transmission filter or only the reception filter.
  • the switch 225 connects the antenna element 202 and a signal path corresponding to a predetermined band in accordance with a control signal from a control unit (not shown), and is configured by, for example, a SPDT (Single Pole Double Throw) type switch. .
  • a SPDT Single Pole Double Throw
  • the number of signal paths connected to the antenna element 202 is not limited to one and may be plural. That is, the high frequency front end circuit 230 may support carrier aggregation.
  • the low noise amplifier circuit 214 is a reception amplification circuit that amplifies a high frequency signal (here, a high frequency reception signal) via the antenna element 202, the switch 225, and the duplexer 201A and outputs the amplified signal to the RF signal processing circuit 203.
  • the low noise amplifier circuit 224 is a reception amplification circuit that amplifies a high-frequency signal (here, a high-frequency reception signal) that has passed through the antenna element 202, the switch 225, and the duplexer 201B, and outputs the amplified signal to the RF signal processing circuit 203.
  • the power amplifier circuits 234a and 234b are transmission amplifier circuits that amplify the high frequency signal (here, the high frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified signal to the antenna element 202 via the duplexer 201A and the switch 225.
  • the power amplifier circuits 244a and 244b are transmission amplifier circuits that amplify the high-frequency signal (here, the high-frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified signal to the antenna element 202 via the duplexer 201B and the switch 225. .
  • the RF signal processing circuit 203 performs signal processing on the high-frequency reception signal input from the antenna element 202 via the reception signal path by down-conversion or the like, and outputs a reception signal generated by the signal processing.
  • the RF signal processing circuit 203 performs signal processing on the input transmission signal by up-conversion or the like, and outputs a high-frequency transmission signal generated by the signal processing to the low noise amplifier circuit 224.
  • the RF signal processing circuit 203 is, for example, an RFIC.
  • the communication apparatus may include a BB (baseband) IC. In this case, the BBIC processes the received signal processed by the RFIC.
  • the BBIC processes the transmission signal and outputs it to the RFIC.
  • the reception signal processed by the BBIC and the transmission signal before the signal processing by the BBIC are, for example, an image signal or an audio signal.
  • the high-frequency front end circuit 230 may include other circuit elements between the above-described components.
  • the high-frequency front end circuit 230 may include a duplexer according to a modification of the duplexers 201A and 201B instead of the duplexers 201A and 201B.
  • the filters 231 and 232 in the communication device 240 are connected between the RF signal processing circuit 203 and the switch 225 without passing through the low noise amplifier circuits 214 and 224 and the power amplifier circuits 234a, 234b, 244a and 244b.
  • the filters 231 and 232 are also connected to the antenna element 202 via the switch 225, similarly to the duplexers 201A and 201B.
  • the high-frequency front-end circuit 230 and the communication device 240 configured as described above, by including the elastic wave device of the present invention, an acoustic wave resonator, a filter, a duplexer, a multiplexer including three or more filters, and the like.
  • the stress applied to the piezoelectric body such as the piezoelectric substrate can be dispersed, and the piezoelectric substrate is hardly damaged.
  • the elastic wave device, the high-frequency front-end circuit, and the communication device according to the embodiment of the present invention have been described with reference to the embodiment and its modified examples, but are realized by combining arbitrary components in the above-described embodiment and modified examples.
  • the present invention is not limited to the above-described embodiments, various modifications conceived by those skilled in the art without departing from the spirit of the present invention, and the high-frequency front-end circuit and communication device according to the present invention.
  • Various built-in devices are also included in the present invention.
  • the present invention can be widely used in communication devices such as mobile phones as an elastic wave resonator, a filter, a duplexer, a multiplexer, a front-end circuit, and a communication device that can be applied to a multiband system.
  • Duplexer 202 ... Antenna element 203 ... RF signal processing circuits 211, 212 ... Filter 214 ... Low noise amplifier circuits 221, 222 ... Filter 224 ... Low noise amplifier circuit 225 ... Switch 230 ... High frequency front end circuits 231, 232 ... Filters 234a, 234b ... Power amplifier circuit 240 ... Communication devices 244a, 244b ... Power amplifier circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

圧電基板等の圧電体に加わる応力を分散することができ、圧電体の破損が生じ難い、弾性波装置を提供する。 弾性波装置1は、圧電基板2(圧電体)と、圧電基板2上に設けられているIDT電極3(機能電極)と、IDT電極3を囲むように、圧電基板2上に設けられている支持部材4と、支持部材4上に設けられているカバー部材6とを備える。支持部材4は、圧電基板2よりも熱膨張係数が大きい。IDT電極3は、圧電基板2、支持部材4及びカバー部材6により囲まれた中空空間A内に設けられている。支持部材4は、中空空間A側の面である内面4bと、内面4bとは反対側の面である外面4cとを有し、かつ、内面4b及び外面4cのうち少なくとも一方に設けられている凹部5を有する。

Description

弾性波装置、高周波フロントエンド回路及び通信装置
 本発明は、弾性波装置、高周波フロントエンド回路及び通信装置に関する。
 従来、弾性波装置は、携帯電話機のフィルタなどに広く用いられている。下記の特許文献1には、弾性波装置の一例が開示されている。この弾性波装置は、圧電基板と、圧電基板上に設けられている支持部材と、支持部材上に設けられているカバー部材とを有する。圧電基板上にはIDT電極が設けられており、IDT電極は、圧電基板、支持部材及びカバー部材により囲まれた中空空間内に形成されている。このように、特許文献1の弾性波装置は、WLP(Wafer Level Package)構造の弾性波装置である。
特開2010-278972号公報
 弾性波装置には、製造工程や実装工程において熱が加えられる。また、弾性波装置を使用する場合においても、IDT電極の発熱や、弾性波装置の外部から加えられる熱により、弾性波装置が高温になってしまうことがある。
 特許文献1に記載のようなWLP構造の弾性波装置においては、支持部材は圧電基板より熱膨張係数が大きいため、温度変化により、支持部材が圧電基板より大きく変形する傾向がある。そのため、圧電基板に大きい熱応力が加わり、圧電基板が破損することがあった。
 本発明の目的は、圧電基板等の圧電体に加わる応力を分散することができ、圧電体の破損が生じ難い、弾性波装置、高周波フロントエンド回路及び通信装置を提供することにある。
 本発明に係る弾性波装置は、圧電体と、前記圧電体上に設けられている機能電極と、前記機能電極を囲むように、前記圧電体上に設けられている支持部材と、前記支持部材上に設けられているカバー部材とを備え、前記支持部材は、前記圧電体よりも熱膨張係数が大きく、前記機能電極は、前記圧電体、前記支持部材及び前記カバー部材により囲まれた中空空間内に設けられており、前記支持部材は、前記中空空間側の面である内面と、前記内面とは反対側の面である外面とを有し、かつ、前記内面及び前記外面のうち少なくとも一方に設けられている凹部を有する。
 本発明に係る弾性波装置のある特定の局面では、前記凹部において前記支持部材の前記内面と前記外面とを結ぶ方向に沿う長さを深さとしたときに、前記凹部における前記深さが最も深くなる部分は、前記カバー部材よりも前記圧電体に近い。この場合には、圧電体側は変形し難く、応力が集中し易いため、圧電体に加わる応力をより一層分散させることができる。
 本発明に係る弾性波装置の他の特定の局面では、平面視において、前記支持部材は、角部を複数有し、前記凹部は、前記複数の角部のうち少なくとも1つの角部に設けられている。この場合には、角部においては、特に応力が集中し易いため、圧電体に加わる応力を効果的に分散させることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記凹部は、前記支持部材の前記外面に設けられている。この場合には、内面よりも外面への応力の方が集中し易いため、圧電体に加わる応力を効果的に分散させることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、平面視において、前記支持部材は枠状の形状を有し、前記凹部は、前記支持部材の全周に設けられている。この場合には、応力を吸収する場所が広範囲にかつ均一に存在するため、圧電体に加わる応力をより一層分散させることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記機能電極がIDT電極である。
 本発明の高周波フロントエンド回路は、本発明に従い構成された弾性波装置と、パワーアンプとを備える。
 本発明の通信装置は、本発明に従い構成された高周波フロントエンド回路と、RF信号処理回路とを備える。
 本発明によれば、圧電基板等の圧電体に加わる応力を分散することができ、圧電体の破損が生じ難い、弾性波装置、高周波フロントエンド回路及び通信装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。 図2は、本発明の第1の実施形態における支持部材付近の拡大正面断面図である。 図3は、本発明の第1の実施形態に係る弾性波装置の平面図である。 図4は、WLP構造の弾性波装置における、支持部材から圧電基板に加わる熱応力を模式的に示す模式的平面図である。 図5は、第1の比較例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。 図6は、第2の比較例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。 図7は、第3の比較例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。 図8は、本発明の第1の実施形態における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。 図9は、本発明の第1の実施形態の第1の変形例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。 図10は、本発明の第1の実施形態の第2の変形例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。 図11は、本発明の第1の実施形態の第3の変形例における支持部材付近の拡大正面断面図である。 図12は、本発明の第1の実施形態の第4の変形例に係る弾性波装置の正面断面図である。 図13(a)~図13(c)は、本発明の第1の実施形態に係る弾性波装置の製造方法の一例を説明するための正面断面図である。 図14(a)~図14(c)は、本発明の第1の実施形態に係る弾性波装置の製造方法の一例を説明するための正面断面図である。 図15は、本発明の第2の実施形態に係る弾性波装置の平面図である。 図16は、高周波フロントエンド回路を有する通信装置の構成図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。図2は、第1の実施形態における支持部材付近の拡大正面断面図である。図3は、第1の実施形態に係る弾性波装置の平面図である。なお、図1は、図3中のI-I線に沿う断面図である。
 図1に示すように、弾性波装置1は、圧電体としての圧電基板2を有する。圧電基板2は、LiNbOやLiTaOなどの圧電単結晶からなる。なお、圧電基板2は、適宜の圧電セラミックスからなっていてもよい。
 本実施形態では、圧電基板2上に、機能電極としてのIDT電極3が設けられている。なお、上記機能電極はIDT電極以外の機能電極であってもよい。圧電基板2上には、IDT電極3に電気的に接続されている電極パッド7も設けられている。
 IDT電極3は、例えば、Ti、Al、Cu、Pt、W、Mo、NiCr、Auなどからなる電極層を有する。IDT電極3は、複数の電極層が積層された積層金属膜からなっていてもよく、単層の電極層からなっていてもよい。電極パッド7は、IDT電極3と同様の材料からなる。
 圧電基板2上には、IDT電極3を覆うように、誘電体膜10が設けられている。誘電体膜10は、例えば、SiOやSiNなどからなる。誘電体膜10を有することにより、IDT電極3が破損し難い。また、誘電体膜10がSiNからなる場合には、周波数調整を容易に行うことができる。なお、誘電体膜10は設けられていなくともよい。
 圧電基板2上には、開口部4aを有する支持部材4が設けられている。支持部材4は、開口部4aによりIDT電極3を囲むように設けられている。支持部材4は、適宜の樹脂などからなる。そして、支持部材4は、圧電基板2よりも熱膨張係数が大きい。
 支持部材4上には、開口部4aを覆うように、カバー部材6が設けられている。本実施形態では、カバー部材6は、接着層6aと、接着層6a上に積層された保護層6bとを有する。接着層6aはアクリル酸エステル系樹脂からなる。保護層6bは、PIからなる。これにより、支持部材4とカバー部材6との接合力を好適に高めることができ、かつ弾性波装置の耐久性を高めることもできる。なお、カバー部材6の材料は上記に限定されない。カバー部材6は単層であってもよい。
 弾性波装置1は、圧電基板2、支持部材4及びカバー部材6により囲まれた中空空間Aを有する。この中空空間A内にIDT電極3が位置している。
 支持部材4は、中空空間A側の面である内面4bと、内面4bとは反対側の面である外面4cとを有する。圧電基板2とカバー部材6とを結ぶ方向を高さ方向としたときに、支持部材4の外面4cは、高さ方向に対して傾斜して延びている。なお、支持部材4の外面4cは、高さ方向に平行に延びていてもよい。
 本実施形態では、外面4cに凹部5が設けられている。より具体的には、図2に示すように、凹部5は、外面4cにおけるカバー部材6と圧電基板2との間から、圧電基板2に接する部分にかけて設けられている。ここで、凹部5において、内面4bと外面4cとを結ぶ方向に沿う長さを深さとする。このとき、凹部5は、深さが最も深くなる部分である底部5aを有する。底部5aの位置は、高さ方向において、カバー部材6よりも圧電基板2に近い。凹部5においては、底部5aから圧電基板2に接している部分にかけて、深さが徐々に浅くなっている。このように、凹部5は、底部5aと圧電基板2に接している部分との間に位置している傾斜面5bを有する。なお、凹部5の形状は上記に限定されない。
 図3に示すように、平面視において、支持部材4は矩形枠状の形状を有する。支持部材4は4つの辺4dと、4つの角部4eとを有する。外面4cの4つの辺4dの中央部付近及び4つの角部4eに、凹部5がそれぞれ設けられている。なお、凹部5が支持部材4に設けられている位置は、上記に限定されない。凹部5は、内面4b及び外面4cのうち少なくとも一方に設けられていればよい。
 図1に戻り、支持部材4及びカバー部材6を貫通するように、ビア電極8が設けられている。ビア電極8の一端は電極パッド7に接続されている。ビア電極8の他端に接合されるように、バンプ9が設けられている。バンプ9は、例えば、半田からなる。IDT電極3は、電極パッド7、ビア電極8及びバンプ9を介して外部に電気的に接続される。このように、本実施形態の弾性波装置1は、WLP構造の弾性波装置である。
 本実施形態の特徴は、支持部材4が、外面4cに設けられている凹部5を有することにある。それによって、熱応力を分散することができ、圧電基板2の破損が生じ難い。これを、本実施形態と第1~第3の比較例とを比較することにより、以下において説明する。
 なお、第1~第3の比較例は、凹部を有しない点で、第1の実施形態と異なる。第1の比較例における支持部材の外面は、高さ方向に平行に延びている。第2の比較例における支持部材の外面は、高さ方向に対して全体が傾斜して延びている。第3の比較例における支持部材の外面は、圧電基板に接している部分付近が高さ方向に対して傾斜して延びており、他の部分は高さ方向に平行に延びている。
 第1の実施形態及び第1~第3の比較例における熱応力の分布を比較した。
 図4は、WLP構造の弾性波装置における、支持部材から圧電基板に加わる熱応力を模式的に示す模式的平面図である。図5は、第1の比較例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。図6は、第2の比較例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。図7は、第3の比較例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。図8は、第1の実施形態における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。なお、図4においては、カバー部材、ビア電極や電極パッドを省略している。
 弾性波装置に熱が加えられて温度が上がり、さらに弾性波装置から放熱されて温度が下がることによる温度サイクルにより、支持部材から圧電基板に大きい熱応力が加わる。より具体的には、図4中において矢印Aで示すように、支持部材4の外面4c側から内面4b側に向かい応力が加わる。図5に示すように、第1の比較例においては、支持部材と圧電基板とが接する部分において、応力集中が生じていることがわかる。第1の比較例においては、応力の最大値は、79.988MPaとなっている。
 図6及び図7に示すように、第2の比較例及び第3の比較例においても、支持部材と圧電基板とが接する部分において、応力集中が生じていることがわかる。第2の比較例においては、応力の最大値は87.849MPaとなっている。第3の比較例においては、応力の最大値は66.36MPaとなっている。このように、第1~第3の比較例においては、圧電基板に大きい応力が加わるため、圧電基板が破損し易い。
 これに対して、第1の実施形態においては、支持部材が外面に設けられた凹部を有する。それによって、図8に示すように、応力が分散されていることがわかる。応力が分散されることにより、圧電基板に加わる応力も小さくなっていることがわかる。応力の最大値は50.33MPaであり、第1~第3の比較例より16MPa以上小さい値となっている。さらに、応力が最大となる部分を凹部の底部付近に位置させることができ、応力が大きく加わる部分から圧電基板を遠ざけることができる。よって、圧電基板に加わる応力を効果的に小さくすることができる。従って、圧電基板を効果的に破損し難くすることができる。
 上述したように、凹部の位置や形状は特に限定されない。図9は、本発明の第1の実施形態の第1の変形例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図であり、図10は、本発明の第1の実施形態の第2の変形例における圧電基板、支持部材及びカバー部材における熱応力の分布を示す拡大正面断面図である。図9に示すように、第1の実施形態の第1の変形例では、凹部は支持部材の外面の、高さ方向における全体に設けられている。図10に示すように、第1の実施形態の第2の変形例では、支持部材の外面は高さ方向に平行に延びている。凹部は、外面における、カバー部材と圧電基板との間から、圧電基板にかけて設けられている。図9及び図10に示すように、第1の変形例及び第2の変形例においても、応力を分散させることができる。よって、圧電基板の破損が生じ難い。
 図2に示す本実施形態のように、凹部5は、圧電基板2にかけて傾斜面5bを有することが好ましい。この場合には、圧電基板2に加わる応力をより一層分散させることができる。
 凹部5の底部5aは、高さ方向において、カバー部材6よりも圧電基板2に近いことが好ましい。支持部材4は、圧電基板2側において変形し難い。そのため、圧電基板2に応力が集中し易い。よって、凹部5の底部5aが圧電基板2に近いことにより、圧電基板2に加わる応力をより一層分散させることができる。
 平面視において、凹部5は支持部材4の少なくとも1つの角部に設けられていることが好ましい。図4に示すように、支持部材4の矩形枠状の平面形状における各辺4dに接する部分において、圧電基板2に応力が加わる。角部4eにおいては、2つの辺4dが接しているため、圧電基板2に加わる応力は特に集中し易い。よって、図3に示すように、凹部5が角部4eに設けられていることにより、圧電基板2に加わる応力を効果的に分散させることができる。より好ましくは、凹部5は、支持部材4の全ての角部4eに設けられていることが望ましい。この場合には、圧電基板2に加わる応力をより一層分散させることができる。
 凹部5は、支持部材4の外面4cに設けられていることが好ましい。支持部材4からは、支持部材4の外面4c側から内面4b側に向かう方向に、圧電基板2に熱応力が加わる。そのため、圧電基板2に加わる応力は、外面4c側が特に大きい。よって、凹部5が外面4cに設けられていることにより、圧電基板2に加わる応力を効果的に分散させることができる。
 なお、上述したように、凹部5は、支持部材4の内面4b及び外面4cのうち少なくとも一方に設けられていればよい。この場合においても、内面4b及び外面4cのうち凹部5が設けられている方の面と、圧電基板2とが接している部分付近に加わる応力を分散させることができ、圧電基板2が破損し難い。
 図11は、第1の実施形態の第3の変形例における支持部材付近の拡大正面断面図である。
 第3の変形例では、凹部5は支持部材4の内面4b及び外面4cに設けられている。この場合には、圧電基板2における、支持部材4の内面4bに接している部分付近及び外面4cに接している部分付近に加わる応力を効果的に分散させることができる。よって、圧電基板2がより一層破損し難い。
 ところで、第1の実施形態では、圧電体は圧電基板2であるが、図12に示す第1の実施形態の第4の変形例のように、圧電体は圧電薄膜22であってもよい。例えば、圧電薄膜22のIDT電極3が設けられている面とは反対側の面には、低音速膜23が設けられていてもよい。低音速膜23の圧電薄膜22側とは反対側の面には、高音速部材24が設けられていてもよい。
 ここで、低音速膜23とは、圧電薄膜22を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低速な膜である。低音速膜23は、例えば、ガラス、酸窒化ケイ素、酸化タンタルまたは酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料などからなる。なお、低音速膜23の材料は、相対的に低音速な材料であればよい。
 高音速部材24とは、圧電薄膜22を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速な部材である。高音速部材24は、例えば、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンドを主成分とする材料などからなる。なお、高音速部材24の材料は、相対的に高音速な材料であればよい。
 高音速部材24は、高音速膜であってもよく、あるいは、高音速基板であってもよい。このように、低音速膜23及び高音速部材24を有する場合、弾性波のエネルギーを効果的に閉じ込めることができる。
 以下において、第1の実施形態の弾性波装置の製造方法の一例を説明する。
 図13(a)~図13(c)は、第1の実施形態に係る弾性波装置の製造方法の一例を説明するための正面断面図である。図14(a)~図14(c)は、第1の実施形態に係る弾性波装置の製造方法の一例を説明するための正面断面図である。
 図13(a)に示すように、圧電基板2上にIDT電極3を形成する。IDT電極3は、例えば、リフトオフ法やスパッタリング法などにより形成することができる。なお、スパッタリング法を用いる場合には、スパッタリング法により、IDT電極3用の金属膜を形成する。次に、上記金属膜上に、フォトリソグラフィ法によりレジストパターンを形成する。次に、ドライエッチング法により、上記レジストパターンに沿い、上記金属膜をパターニングすることにより、IDT電極3を形成することができる。電極パッド7は、IDT電極3と同時に形成する。
 次に、IDT電極3を覆うように、圧電基板2上に誘電体膜10を形成する。誘電体膜10は、例えば、スパッタリング法などにより形成することができる。誘電体膜10は、フォトリソグラフィ法及びドライエッチング法により、適宜パターニングを行うことができる。
 次に、図13(b)に示すように、IDT電極3を囲むように、圧電基板2上に、支持部材用の樹脂層34を、スピンコート法により形成する。なお、樹脂層34は、電極パッド7を覆うように形成する。樹脂層34に用いられる樹脂材料は特に限定されないが、上記樹脂材料としては、PIが好適に用いられる。
 次に、樹脂層34のプリベークを行う。このとき、プリベークの温度を比較的に高温にすることが好ましい。これにより、樹脂層34の露光感度を低下させることができ、樹脂層34から形成される支持部材に、凹部を形成し易い。次に、樹脂層34のベークを行う。樹脂層34にPIを用いる場合、ベークの温度は、例えば、220℃程度とすることが好ましい。ベークにおける加熱に際し、昇温の速度を速くすることが好ましい。それによって、支持部材に凹部を形成し易い。樹脂層34のベークを行うことにより、図13(c)に示すように、支持部材4を形成すると同時に、支持部材4に凹部5を形成する。なお、凹部5の形成は、支持部材4を形成した後に、支持部材4を切削することにより行ってもよい。
 次に、図14(a)に示すように、支持部材4上にカバー部材6を設ける。このとき、支持部材4上に接着層6aを設けた後に接着層6a上に保護層6bを積層してもよい。あるいは、あらかじめ接着層6aと保護層6bとを積層してカバー部材6を形成しておき、その後に、支持部材4上にカバー部材6を設けてもよい。
 次に、図14(b)に示すように、カバー部材6及び支持部材4を貫通するように、貫通孔38を形成する。電極パッド7に至るように貫通孔38を形成する。貫通孔38の形成は、例えば、レーザー光の照射や物理的な切削などにより行うことができる。
 次に、貫通孔38内に、電解めっき法などにより、図14(c)に示すように、ビア電極8を形成する。電極パッド7に接続するようにビア電極8を形成する。次に、ビア電極8に接合するように、バンプ9を設ける。
 図15は、第2の実施形態に係る弾性波装置の平面図である。
 弾性波装置11は、平面視において、凹部15が支持部材4の外面4cの全周に設けられている点で、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置11は、第1の実施形態の弾性波装置1と同様の構成を有する。
 弾性波装置11においては、凹部5が外面4cの全周に設けられており、応力を吸収する場所が広範囲にかつ均一に存在している。本実施形態においては、圧電基板2が支持部材4の外面4cに接している部分全体において、応力を効果的に分散させることができる。よって、圧電基板2がより一層破損し難い。
 上記弾性波装置は、高周波フロントエンド回路のデュプレクサなどとして用いることができる。この例を下記において説明する。
 図16は、高周波フロントエンド回路を有する通信装置の構成図である。なお、同図には、高周波フロントエンド回路230と接続される各構成要素、例えば、アンテナ素子202やRF信号処理回路(RFIC)203も併せて図示されている。高周波フロントエンド回路230及びRF信号処理回路203は、通信装置240を構成している。なお、通信装置240は、電源、CPUやディスプレイを含んでいてもよい。
 高周波フロントエンド回路230は、スイッチ225と、デュプレクサ201A,201Bと、フィルタ231,232と、ローノイズアンプ回路214,224と、パワーアンプ回路234a,234b,244a,244bとを備える。なお、図16の高周波フロントエンド回路230及び通信装置240は、高周波フロントエンド回路及び通信装置の一例であって、この構成に限定されるものではない。
 デュプレクサ201Aは、フィルタ211,212を有する。デュプレクサ201Bは、フィルタ221,222を有する。デュプレクサ201A,201Bは、スイッチ225を介してアンテナ素子202に接続される。なお、上記弾性波装置は、デュプレクサ201A,201Bであってもよいし、フィルタ211,212,221,222であってもよい。
 さらに、上記弾性波装置は、例えば、3つのフィルタのアンテナ端子が共通化されたトリプレクサや、6つのフィルタのアンテナ端子が共通化されたヘキサプレクサなど、3以上のフィルタを備えるマルチプレクサについても適用することができる。
 すなわち、上記弾性波装置は、弾性波共振子、フィルタ、デュプレクサ、3以上のフィルタを備えるマルチプレクサを含む。そして、該マルチプレクサは、送信フィルタ及び受信フィルタの双方を備える構成に限らず、送信フィルタのみ、または、受信フィルタのみを備える構成であってもかまわない。
 スイッチ225は、制御部(図示せず)からの制御信号に従って、アンテナ素子202と所定のバンドに対応する信号経路とを接続し、例えば、SPDT(Single Pole Double Throw)型のスイッチによって構成される。なお、アンテナ素子202と接続される信号経路は1つに限らず、複数であってもよい。つまり、高周波フロントエンド回路230は、キャリアアグリゲーションに対応していてもよい。
 ローノイズアンプ回路214は、アンテナ素子202、スイッチ225及びデュプレクサ201Aを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。ローノイズアンプ回路224は、アンテナ素子202、スイッチ225及びデュプレクサ201Bを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。
 パワーアンプ回路234a,234bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201A及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。パワーアンプ回路244a,244bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201B及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。
 RF信号処理回路203は、アンテナ素子202から受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号を出力する。また、RF信号処理回路203は、入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号をローノイズアンプ回路224へ出力する。RF信号処理回路203は、例えば、RFICである。なお、通信装置は、BB(ベースバンド)ICを含んでいてもよい。この場合、BBICは、RFICで処理された受信信号を信号処理する。また、BBICは、送信信号を信号処理し、RFICに出力する。BBICで処理された受信信号や、BBICが信号処理する前の送信信号は、例えば、画像信号や音声信号等である。なお、高周波フロントエンド回路230は、上述した各構成要素の間に、他の回路素子を備えていてもよい。
 なお、高周波フロントエンド回路230は、上記デュプレクサ201A,201Bに代わり、デュプレクサ201A,201Bの変形例に係るデュプレクサを備えていてもよい。
 他方、通信装置240におけるフィルタ231,232は、ローノイズアンプ回路214,224及びパワーアンプ回路234a,234b,244a,244bを介さず、RF信号処理回路203とスイッチ225との間に接続されている。フィルタ231,232も、デュプレクサ201A,201Bと同様に、スイッチ225を介してアンテナ素子202に接続される。
 以上のように構成された高周波フロントエンド回路230及び通信装置240によれば、本発明の弾性波装置である、弾性波共振子、フィルタ、デュプレクサ、3以上のフィルタを備えるマルチプレクサ等を備えることにより、圧電基板などの圧電体に加わる応力を分散することができ、圧電基板の破損が生じ難い。
 以上、本発明の実施形態に係る弾性波装置、高周波フロントエンド回路及び通信装置について、実施形態及びその変形例を挙げて説明したが、上記実施形態及び変形例における任意の構成要素を組み合わせて実現される別の実施形態や、上記実施形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波フロントエンド回路及び通信装置を内蔵した各種機器も本発明に含まれる。
 本発明は、弾性波共振子、フィルタ、デュプレクサ、マルチバンドシステムに適用できるマルチプレクサ、フロントエンド回路及び通信装置として、携帯電話機などの通信機器に広く利用できる。
1…弾性波装置
2…圧電基板
3…IDT電極
4…支持部材
4a…開口部
4b…内面
4c…外面
4d…辺
4e…角部
5…凹部
5a…底部
5b…傾斜面
6…カバー部材
6a…接着層
6b…保護層
7…電極パッド
8…ビア電極
9…バンプ
10…誘電体膜
11…弾性波装置
15…凹部
22…圧電薄膜
23…低音速膜
24…高音速部材
34…樹脂層
38…貫通孔
201A,201B…デュプレクサ
202…アンテナ素子
203…RF信号処理回路
211,212…フィルタ
214…ローノイズアンプ回路
221,222…フィルタ
224…ローノイズアンプ回路
225…スイッチ
230…高周波フロントエンド回路
231,232…フィルタ
234a,234b…パワーアンプ回路
240…通信装置
244a,244b…パワーアンプ回路

Claims (9)

  1.  圧電体と、
     前記圧電体上に設けられている機能電極と、
     前記機能電極を囲むように、前記圧電体上に設けられている支持部材と、
     前記支持部材上に設けられているカバー部材と、
    を備え、
     前記支持部材は、前記圧電体よりも熱膨張係数が大きく、
     前記機能電極は、前記圧電体、前記支持部材及び前記カバー部材により囲まれた中空空間内に設けられており、
     前記支持部材は、前記中空空間側の面である内面と、前記内面とは反対側の面である外面と、を有し、かつ、前記内面及び前記外面のうち少なくとも一方に設けられている凹部を有する、弾性波装置。
  2.  前記凹部において前記支持部材の前記内面と前記外面とを結ぶ方向に沿う長さを深さとしたときに、前記凹部における前記深さが最も深くなる部分は、前記カバー部材よりも前記圧電体に近い、請求項1に記載の弾性波装置。
  3.  平面視において、前記支持部材は、角部を複数有し、
     前記凹部は、前記複数の角部のうち少なくとも1つの角部に設けられている、請求項1または2に記載の弾性波装置。
  4.  前記凹部は、前記支持部材の前記外面に設けられている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記凹部は、前記支持部材の前記内面及び前記外面に設けられている、請求項4に記載の弾性波装置。
  6.  平面視において、前記支持部材は枠状の形状を有し、
     前記凹部は、前記支持部材の全周に設けられている、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記機能電極がIDT電極である、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  請求項1~7のいずれか1項に記載の弾性波装置と、
     パワーアンプと、
    を備える、高周波フロントエンド回路。
  9.  請求項8に記載の高周波フロントエンド回路と、
     RF信号処理回路と、
    を備える、通信装置。
PCT/JP2017/036861 2016-12-16 2017-10-11 弾性波装置、高周波フロントエンド回路及び通信装置 WO2018110057A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197015137A KR102253460B1 (ko) 2016-12-16 2017-10-11 탄성파 장치, 고주파 프론트엔드 회로 및 통신 장치
CN201780077250.7A CN110100387B (zh) 2016-12-16 2017-10-11 弹性波装置、高频前端电路以及通信装置
JP2018556212A JP6547914B2 (ja) 2016-12-16 2017-10-11 弾性波装置、高周波フロントエンド回路及び通信装置
US15/929,139 US11005444B2 (en) 2016-12-16 2019-06-06 Acoustic wave device, radio-frequency front end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244127 2016-12-16
JP2016-244127 2016-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/929,139 Continuation US11005444B2 (en) 2016-12-16 2019-06-06 Acoustic wave device, radio-frequency front end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2018110057A1 true WO2018110057A1 (ja) 2018-06-21

Family

ID=62558439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036861 WO2018110057A1 (ja) 2016-12-16 2017-10-11 弾性波装置、高周波フロントエンド回路及び通信装置

Country Status (5)

Country Link
US (1) US11005444B2 (ja)
JP (1) JP6547914B2 (ja)
KR (1) KR102253460B1 (ja)
CN (1) CN110100387B (ja)
WO (1) WO2018110057A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006157A1 (ja) * 2019-07-10 2021-01-14 株式会社村田製作所 弾性波装置
WO2021006156A1 (ja) * 2019-07-10 2021-01-14 株式会社村田製作所 弾性波装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115428330B (zh) * 2020-04-29 2023-09-12 株式会社村田制作所 弹性波器件
CN116318041A (zh) * 2022-11-18 2023-06-23 深圳新声半导体有限公司 声表面波滤波器及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096563A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 弾性波装置およびその製造方法
JP2010157956A (ja) * 2009-01-05 2010-07-15 Panasonic Corp 弾性表面波デバイス
JP2011199823A (ja) * 2010-02-26 2011-10-06 Kyocera Corp 弾性表面波装置
JP2014036091A (ja) * 2012-08-08 2014-02-24 Ricoh Co Ltd パッケージ構造
WO2016199480A1 (ja) * 2015-06-08 2016-12-15 株式会社村田製作所 弾性波装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532685B2 (ja) 2009-06-01 2014-06-25 株式会社村田製作所 弾性波装置
CN104995836B (zh) * 2013-02-27 2018-01-19 京瓷株式会社 弹性波元件、分波器以及通信模块
WO2016147687A1 (ja) * 2015-03-13 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
JP6528843B2 (ja) 2015-03-16 2019-06-12 株式会社村田製作所 弾性表面波装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096563A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 弾性波装置およびその製造方法
JP2010157956A (ja) * 2009-01-05 2010-07-15 Panasonic Corp 弾性表面波デバイス
JP2011199823A (ja) * 2010-02-26 2011-10-06 Kyocera Corp 弾性表面波装置
JP2014036091A (ja) * 2012-08-08 2014-02-24 Ricoh Co Ltd パッケージ構造
WO2016199480A1 (ja) * 2015-06-08 2016-12-15 株式会社村田製作所 弾性波装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006157A1 (ja) * 2019-07-10 2021-01-14 株式会社村田製作所 弾性波装置
WO2021006156A1 (ja) * 2019-07-10 2021-01-14 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
JP6547914B2 (ja) 2019-07-24
US20190288665A1 (en) 2019-09-19
CN110100387A (zh) 2019-08-06
JPWO2018110057A1 (ja) 2019-07-18
US11005444B2 (en) 2021-05-11
KR20190069560A (ko) 2019-06-19
CN110100387B (zh) 2023-06-06
KR102253460B1 (ko) 2021-05-17

Similar Documents

Publication Publication Date Title
US10250222B2 (en) Electronic device
WO2018163860A1 (ja) 弾性波装置、高周波フロントエンド回路、通信装置及び弾性波装置の製造方法
WO2018110057A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
US7808935B2 (en) Duplexer and communication device
JP5033876B2 (ja) 弾性表面波装置及び通信装置
US11545952B2 (en) Electronic package including cavity formed by removal of sacrificial material from within a cap
JP5110611B2 (ja) 弾性表面波装置及び通信装置
JP6756411B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
US20180041186A1 (en) Surface acoustic wave elements with protective films
WO2018116680A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
CN108063603B (zh) 弹性波装置、高频前端电路以及通信装置
JP6791390B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP2018201083A (ja) 電子部品
KR102186692B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
KR20200060318A (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
WO2019124126A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置並びに弾性波装置の製造方法
JP2006333169A (ja) 弾性表面波共振器および弾性表面波装置ならびに通信装置
WO2018079007A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP4502779B2 (ja) 弾性表面波素子および通信装置
US20230142089A1 (en) Stacked filter package having multiple types of acoustic wave devices
JP5111585B2 (ja) 弾性表面波共振器および弾性表面波装置並びに通信装置
JP4562517B2 (ja) 弾性表面波素子および通信装置
JP5111586B2 (ja) 弾性表面波共振器および弾性表面波装置並びに通信装置
JP2007124092A (ja) 弾性表面波共振器及び弾性表面波装置並びに通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556212

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197015137

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879766

Country of ref document: EP

Kind code of ref document: A1