WO2018109358A1 - Procédé de charge d'un terminal mobile par un dispositif mobile destiné à être embarqué sur un véhicule automobile et dispositif de charge associé - Google Patents

Procédé de charge d'un terminal mobile par un dispositif mobile destiné à être embarqué sur un véhicule automobile et dispositif de charge associé Download PDF

Info

Publication number
WO2018109358A1
WO2018109358A1 PCT/FR2017/053515 FR2017053515W WO2018109358A1 WO 2018109358 A1 WO2018109358 A1 WO 2018109358A1 FR 2017053515 W FR2017053515 W FR 2017053515W WO 2018109358 A1 WO2018109358 A1 WO 2018109358A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary antenna
charging
resonant
antenna
inductive
Prior art date
Application number
PCT/FR2017/053515
Other languages
English (en)
Inventor
Youri Vassilieff
Mohamed Cheikh
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to US16/342,236 priority Critical patent/US10819157B2/en
Priority to KR1020197019967A priority patent/KR102481554B1/ko
Priority to CN201780076726.5A priority patent/CN110168856B/zh
Publication of WO2018109358A1 publication Critical patent/WO2018109358A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/146Inductive couplings in combination with capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries

Definitions

  • the present invention relates to a method and a device for charging a mobile terminal by magnetic coupling.
  • the present invention finds a particularly advantageous application, although in no way limiting, in onboard load devices in motor vehicles.
  • Magnetic coupling charging devices for wireless charging of mobile devices are currently experiencing significant growth.
  • a magnetic coupling charging device comprises a conductive coil, called "primary antenna" which is connected to a load module.
  • the charging module forms a charging signal that makes it possible to circulate in the primary antenna an electric current whose intensity varies with time.
  • the primary antenna thus fed forms a variable magnetic field.
  • the mobile terminal comprises a receiving module comprising a conductive coil, called "secondary antenna".
  • a receiving module comprising a conductive coil, called "secondary antenna”.
  • the A4WP (Alliance for Wireless Power) Consortium which defines magnetic resonance charging devices that typically use a charging frequency of between 6 and 7 megahertz (MHz).
  • the primary antennas compatible with the needs of WPC and A4WP consortia have very different characteristics.
  • the primary WPC antennas are generally associated with a ferromagnetic body that can interfere with the operation of the primary antennas A4WP, so that the primary antennas WPC and A4WP can hardly be co-located.
  • the load surfaces WPC and A4WP must then be distant, and there is therefore a positioning constraint of the next mobile terminal if it is equipped with a WPC or A4WP receiving module.
  • the magnetic resonance loading requires a great precision on the adaptation of the impedance of the primary antenna A4WP resonant.
  • the presence of a mobile terminal near the primary antenna resonant A4WP changes the electrical parameters of said antenna and varies its resonant frequency. This impedance modification decreases the charging efficiency, it is then necessary to adapt the impedance so that the resonant frequency of the resonant primary antenna A4WP is equal to an optimum resonant frequency for maximum load efficiency. .
  • One solution of the prior art is to use a network consisting of several capacitors and switches connected in parallel, and connected to the primary antenna resonant A4WP, and to select one or more capacitors using the corresponding switches to obtain the desired impedance of said antenna.
  • the present invention aims to overcome all or part of the limitations of the solutions of the prior art, in particular those described above, by proposing a solution that allows to have two-mode magnetic coupling load devices having a a single charging surface for the WPC and A4WP charging modules and also allows the impedance of the A4WP resonant primary antenna to be precisely, easily and inexpensively matched.
  • the invention proposes a method of charging a mobile terminal by a charging device intended to be embedded in a motor vehicle, said charging device comprising at least a first induction charging antenna, or inductive primary antenna "WPC". "Having a charging frequency and a second resonance charging antenna, or” A4WP "resonant primary antenna having a resonant frequency, at least 1000 times greater than the charging frequency, a ferromagnetic body located underneath and integral with the inductive primary antenna, the charging method being remarkable in that it consists of:
  • the detection step and the determination step are carried out via the resonant primary antenna, and
  • the determination step comprises sending an identifier request message by the resonant primary antenna to the mobile terminal,
  • the mobile terminal is loaded via the resonant primary antenna
  • the mobile terminal is loaded via the inductive primary antenna.
  • the displacement of the ferromagnetic body integral with the inductive primary antenna only stops when the resonant frequency is within a window of predetermined values and
  • the displacement of the ferromagnetic body integral with the inductive primary antenna only stops when the charging efficiency of the inductive primary antenna is greater than or equal to a threshold predetermined.
  • the displacement of the inductive primary antenna and the ferrite is carried out in a plane parallel to the charge surface.
  • the invention also relates to a device for charging a mobile terminal, intended to be embedded in a motor vehicle, said charging device comprising at least a first induction charging antenna, or inductive primary antenna "WPC” having a load frequency and a second so-called resonance charging antenna, or resonant primary antenna "A4WP” having a resonant frequency, at least 1000 times higher than the charging frequency, a ferromagnetic body located underneath and integral with the inductive primary antenna , the charging device (D) being remarkable in that it comprises:
  • Second means of comparison between the charging efficiency of the inductive primary antenna and a predetermined threshold.
  • the charging surface comprising a longitudinal axis and a transverse axis intersecting at a center
  • the resonant primary antenna is located at the ends of the charging surface and the ferromagnetic body and the inductive primary antenna are able to move along the longitudinal axis of an initial position in which the inductive primary antenna or ferrite has a center coinciding with the center of the charging surface, to a final position in which the inductive primary antenna or the Ferrite is located near the resonant primary antenna at the ends of the charge surface.
  • the resonant primary antenna surrounds all or part of the inductive primary antenna.
  • the displacement of the inductive primary antenna and the ferrite is carried out in a plane parallel to the charging surface and the displacement means comprise:
  • a drive system comprising at least two pulleys, around which is driven in displacement a mat integral with the ferromagnetic body.
  • the invention also applies to any motor vehicle, comprising a charging device according to any one of the characteristics listed above.
  • FIG. 1 schematically represents a top view in section of a charging device D according to the invention
  • FIG. 2 schematically represents a sectional side view of a charging device D according to the invention
  • FIG. 3 graphically represents the variation of inductance of the resonant primary antenna A4WP of center O with respect to the position of the inductive primary antenna WPC of center O ',
  • FIG. 4 is a graph illustrating the decrease of the resonant frequency of the resonant primary antenna A4WP when the inductive primary antenna WPC approaches the center of the primary resonant antenna A4WP,
  • FIG. 5 is a graph illustrating the increase of the resonance frequency of the primary antenna A4WP, when the inductive primary antenna WPC approaches the ends Ext1, Ext2 of the charging device D, that is to say say, when said inductive primary antenna WPC approaches the resonant primary antenna A4WP,
  • FIG. 6 is a logic diagram representing the charging method according to the invention.
  • FIGS. 1, 2 and 7 schematically shows a sectional side view and detailed of a preferred embodiment of the charging device D according to the invention.
  • the charging device D of the invention is illustrated in FIGS. 1, 2 and 7.
  • Said device D is intended to be embedded in a motor vehicle in order to charge by magnetic coupling the battery of a mobile terminal (not shown in the figures ).
  • the charging device D is bi-mode, more specifically it makes it possible to charge compatible mobile terminals "WPC” and mobile terminals compatible "A4WP", that is to say that can be loaded either by magnetic induction at a frequency of charging between 100 and 200 kHz, or by magnetic resonance at a resonant frequency, greater than a thousand times the charging frequency, for example between about 6 and 7 MHz.
  • the charging device D comprises, under a charging surface 10 intended to receive the mobile terminal:
  • an inductive primary antenna B1 in the form of a plane circular antenna, comprising a plurality of copper wire windings, electrically connected to an induction charge management system (not shown), generally included in a microcontroller 200 located in said device D, and under which is located a ferromagnetic body C, integral with said antenna B1,
  • a resonant primary antenna B2 in the form of windings of copper wires, located at the periphery of the charging surface connected to a resonance charging system (not shown), generally included in a microcontroller 200 located in the device D.
  • the charging device D is of rectangular shape, with a center 0, through which two axes intersect, a longitudinal axis XX 'and a transverse axis YY .
  • the resonant primary antenna B2 located at the periphery of the charging device D which is also rectangular in shape, is symmetrical with respect to the two axes XX ', YY', and is centered with respect to the center O of the charging device D.
  • at least one winding or at least one loop of the resonant primary antenna B2 surrounds all or part of the inductive primary antenna B1.
  • This exemplary embodiment is in no way limiting, any shape and / or arrangement of the resonant primary antenna B2 in the charging device D can be envisaged (s). However, to ensure resonant charging efficiency, it is preferable that the antenna is arranged such that it provides an effective load regardless of the position of the mobile terminal on the charging surface 10. A provision at the periphery of the charging surface 10 of the resonant primary antenna B2 thus makes it possible to charge the mobile terminal whatever its position on the charging surface 10.
  • At least one loop or winding of the resonant primary antenna B2 is adjacent to the inductive primary antenna B1, more precisely to the ferrite C, so that the impedance of the resonant primary antenna B2 varies as the inductive primary antenna B1 moves relative to the B2 primary resonant antenna (this is explained below).
  • the two antennas, the B2 primary resonant antenna and the inductive primary antenna B1 are located nearby.
  • the two antennas, primary resonant B2, and primary inductive B1 do not each cover a surface identical to the charging surface 10.
  • the invention proposes that the assembly consisting of the ferromagnetic body C and the inductive primary antenna B1 is movable relative to the primary resonant antenna B2, which itself is stationary and fixed in the device D.
  • the device D further comprises displacement means 100 able to move the ferromagnetic body C and the inductive primary antenna B1 relative to the primary resonant antenna B2.
  • the displacement of the inductive primary antenna B1 and of the ferromagnetic body C is carried out in a plane P (see FIG. 2) parallel to the charging surface 10.
  • the displacement could also be realized in a plane perpendicular to the load surface 10.
  • These displacement means 100 may consist, for example and as illustrated in FIG. 7, of an electric motor M, connected to a drive system comprising at least two pulleys P1, P2, by means of which is driven by moving a belt 30, located below and secured to the ferrite C, itself secured to the inductive primary antenna B1.
  • the electric motor M rotates an output shaft 40 mechanically connected to at least one of the two pulleys P1, P2, which in turn causes the belt 30 to move and the second pulley P2, P1.
  • the ferromagnetic body C being fixed and secured to the belt 30, said ferromagnetic body C is then also driven in displacement by the belt 30.
  • the belt 30 forms a loop around the two pulleys P1, P2, with a part forming a surface parallel to the load surface 30 and located below the ferromagnetic body C.
  • the two pulleys P1, P2 are advantageously located at each of the two ends Ext1, Ext2 of the device D along a longitudinal axis XX '(see FIG. 1), that is to say according to the example illustrated in FIG. 1, at the ends of the load surface 10.
  • the pulleys P1, P2 and the belt 30 connecting the two pulleys thus allow the displacement of the ferromagnetic body C and the inductive primary antenna B1 from a first end Ext1 to a second end. Ext2, passing through the center O of the load surface 10, along the longitudinal axis XX '.
  • the resonant primary antenna B2 is located at the periphery of the charging surface 10, that is to say at the ends Ext1, and Ext2 (and also Ext3, Ext4), when the ferromagnetic body C and the resonant primary antenna B1 move towards one or other of the ends Ext1, Ext2, said ferromagnetic body C and said antenna B1 approach the resonant primary antenna B2 thus modifying the impedance of the resonant primary antenna B2.
  • This variation in impedance varies the resonant frequency F R of the resonant primary antenna B2.
  • the invention proposes to use the displacement of the ferromagnetic body C and the inductive primary antenna B1 to adapt the resonant frequency F R of the resonant primary antenna B2 each time a mobile terminal is detected on the surface. 10 and a resonance charge is required, so that the resonance frequency F R is substantially equal to the optimum resonance frequency Fopt.
  • the invention also proposes, in an ingenious way, also using the displacement of the ferromagnetic body C and of the inductive primary antenna B1 in order to center the inductive primary antenna B1 with the mobile terminal and thus to optimize the charging efficiency, when Induction charging is required.
  • the charging device D comprising only one inductive primary antenna B1 for inductively charging the mobile terminal, when the mobile terminal is not centered with respect to said antenna, the charging efficiency decreases.
  • the inductive primary antenna B1 and the ferromagnetic body C being mobile, their displacement also makes it possible to center the inductive primary antenna B1 with respect to the mobile terminal in order to obtain a maximum charge efficiency Q.
  • the invention judiciously makes it possible to move the assembly consisting of these two elements in order to:
  • the charging device D also comprises (see FIG. First measuring means M1 has the resonant frequency F R of the primary resonant antenna B2,
  • First comparison means M1b between the resonance frequency of the resonant primary antenna B2 and a minimum value Rmin and a maximum value Rmax of a window R of predetermined values
  • Second comparison means M2b between the charging efficiency Q of the inductive primary antenna B1 and a predetermined threshold
  • First control means M1 c displacement means 100 as a function of the resonance frequency F R ,
  • Second control means M2c of the displacement means 100 as a function of the charge efficiency Q
  • the first measurement means M1a of the resonance frequency consist in measuring the intensity of the resonant primary antenna B2 as a function of an applied frequency (for example between 6M Hz and 7MHz, with a pitch of 0.1 MHz). resonance corresponding to the frequency for which said intensity is the highest.
  • the first measurement means M1 thus consists in measuring the voltage across, for example, a resonance capacitor electrically connected to the resonant primary antenna B2, using an analog converter included in the microcontroller 200. the value of this determined capacitance, it is then possible to derive the intensity of the current flowing through the resonant primary antenna B2 and then to determine the resonance frequency for which the intensity is the highest.
  • the measuring means M1a are known to those skilled in the art and will not be more detailed here.
  • the second measurement means M2a of the charging efficiency consist in measuring a ratio between an active power received by the microcontroller 200 from the inductive primary antenna B1 and the power generated by the microcontroller 200, supplying said inductive primary antenna B1. .
  • the power received by the microcontroller 200 takes the form of a modulated communication on the power carrier from the inductive primary antenna B1.
  • the measuring means M2a of the charging efficiency are known to those skilled in the art and will not be more detailed here.
  • the first and second comparison means M1 b, M2b consist of software means.
  • the first control means M1 c and the second control means M2c of the displacement means 100 consist of generations of alternative phases for the electric motor of the "step-by-step" type. This allows a displacement of the belt 30 that is to say the inductive primary antenna B1 accurate and repeatable.
  • the charging device D also comprises:
  • Presence detection means (not shown in the figures) of the mobile terminal on the charging surface 10, known to those skilled in the art, which consist of software means, for example a transmission circuit of a "Ping" to the mobile terminal and a circuit for receiving a return message from the mobile terminal which confirms its presence on the charging surface 10, the average means are included in the microcontroller (200),
  • Load type determination means (not shown in the figures), which consist for example of software means, for example a transmission circuit of an interrogation message by the B2 primary resonant antenna to the mobile terminal and a receiving circuit of an identifier from the mobile terminal. If this identifier is recognized by the resonant primary antenna B2, then the mobile terminal is compatible with a resonance loading, if the identifier is not recognized by the resonant primary antenna B2, then the mobile terminal is compatible by default. with induction charging. Of course, an exchange of identifier between the inductive primary antenna B1 and the mobile terminal can then be performed to confirm the compatibility of the type of load between the mobile terminal and the inductive primary antenna B1.
  • a selector for example a switch or software means, then allows the actuation of the appropriate resonant or inductive charging circuit. Said means for determining the type of charge can be included in the microcontroller (200).
  • a mobile terminal is detected on the charging surface 10 of the charging device D. This detection is carried out by sending "pings" or short pulses by the antenna inductive primary B1 or by the resonant primary antenna B2 to the charging device D and by receiving a message back from the mobile terminal if it is placed on the charging surface 10.
  • the method proposes to determine whether the mobile terminal is compatible with an induction charging method or with a resonance charging method. This method of determining the type of charge is known from the prior art and will not be explained in detail.
  • the two loading methods are mainly differentiated by the quality factor Q value of their respective antenna loading.
  • the resonant primary antenna B2 In order to determine the type of charge desired and the presence of the mobile terminal placed on the charging surface 10, the resonant primary antenna B2 periodically transmits an interrogation signal in the form of an electromagnetic pulse (for example every 150 ms). When a mobile terminal is placed near the B2 primary resonant antenna, it modifies the electromagnetic field generated during the transmission of said interrogation signal. Once a terminal has been detected and is compatible with the charging standard, the antenna B2 issues an authentication request and the mobile terminal responds by sending a response signal including its identifier and the state of its battery.
  • the first measuring means M1 has measured the resonant frequency F R of the resonant primary antenna B2.
  • the first comparison means M1b compare said frequency with a minimum value Rmin and a maximum value Rmax of a predetermined frequency window R (see FIGS. 4 and 5) located around an optimum resonant frequency F OPT .
  • the resonance frequency F R is included in said window R, in other words, if the resonance frequency F R is greater than the minimum value Rmin and if said resonant frequency FR is less than the maximum value Rmax, then the resonance charge starts (step E1b).
  • the first control means M1 c displacement means 100 control the movement of the ferromagnetic body C and the inductive primary antenna B1 with the aid of FIG. electric motor M, until the resonance frequency F R is included in the predetermined frequency window R (step E1a).
  • the displacement stops when the resonance frequency F R is located in the desired frequency window R and then the resonance charge starts (step E1 b).
  • step E2 the second measuring means M2a, measure the charging efficiency Q of the inductive primary antenna B1, and the second means of Comparison M2b compare the efficiency Q thus measured with a threshold, equal to a minimum efficiency Qmin.
  • the induction charge starts (step E2b).
  • the second control means M2c of the displacement means control the movement of the ferromagnetic body C and the inductive primary antenna B1 with the aid of the electric motor M, up to the charge efficiency Q is greater than or equal to the threshold Qmin (step E2a).
  • the displacement stops when the charge efficiency Q is greater than or equal to the threshold Qmin and then the induction charge begins (step E2b).
  • step E3 When the induction or resonance charge is complete (step E3), the process returns to the preliminary step S.
  • the invention judiciously makes it possible, by moving the assembly consisting of the inductive primary antenna B1 and the ferromagnetic body C, to remedy two problems, when the mobile terminal is placed on the charging surface 10 of the charging device D "bi fashion " :
  • the drop in loading efficiency Q if the mobile terminal and the inductive primary antenna B1 are not centered.
  • the invention is ingenious and easy to implement because it requires only software means and inexpensive means of travel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

La présente invention a pour objet un procédé de charge d'un terminal mobile par un dispositif de charge (D) destiné à être embarqué dans un véhicule automobile, le dispositif de charge (D) comprenant au moins une antenne primaire inductive (B1) « WPC » ayant une fréquence de charge et une deuxième antenne primaire résonante (B2) « A4WP » ayant une fréquence de résonance (FR), au moins 1000 fois supérieure à la fréquence de charge, un corps ferromagnétique (C) située en dessous et solidaire de l'antenne primaire inductive, l'invention proposant que le procédé consiste à : · à équiper préalablement le corps ferromagnétique et l'antenne primaire inductive de moyens de déplacement (100) aptes à déplacer le corps ferromagnétique et ladite antenne primaire inductive par rapport à l'antenne primaire résonante, · à déplacer (étapes E1 et E1a) le corps ferromagnétique associé à l'antenne primaire inductive par rapport à l'antenne primaire résonante, en fonction de la fréquence de résonance (FR) de ladite l'antenne primaire résonante lorsque le terminal mobile est chargé par l'antenne primaire résonante et, · à déplacer (étapes E2 et E2a) le corps ferromagnétique associé à l'antenne primaire inductive en fonction de l'efficacité de charge (Q) de l'antenne primaire inductive lorsque le terminal mobile est chargé par l'antenne primaire inductive.

Description

Procédé de charge d'un terminal mobile par un dispositif mobile destiné à être embarqué sur un véhicule automobile et dispositif de charge associé
La présente invention concerne un procédé et un dispositif de charge d'un terminal mobile par couplage magnétique. La présente invention trouve une application particulièrement avantageuse, bien que nullement limitative, dans les dispositifs de charge embarqués dans les véhicules automobiles.
Les dispositifs de charge par couplage magnétique, permettant de charger sans fil des terminaux mobiles (téléphones portables, ordinateurs portables, tablettes tactiles, appareil photo numérique, etc.), connaissent actuellement un essor important.
De manière conventionnelle, un dispositif de charge par couplage magnétique comporte une bobine conductrice, dite « antenne primaire » qui est reliée à un module de charge. En cours de charge d'un terminal mobile, le module de charge forme un signal de charge qui permet de faire circuler dans l'antenne primaire un courant électrique dont l'intensité varie avec le temps. L'antenne primaire ainsi alimentée forme un champ magnétique variable.
Le terminal mobile comporte un module de réception comportant une bobine conductrice, dite « antenne secondaire ». Lorsque ladite antenne secondaire est placée dans le champ magnétique variable formé par l'antenne primaire, un courant électrique est induit dans ladite antenne secondaire. Ce courant électrique permet de charger un accumulateur électrique relié à l'antenne secondaire alimentant ainsi en courant le terminal mobile.
On connaît plusieurs types de dispositifs de charge par couplage magnétique fonctionnant selon le principe général décrit ci-avant, notamment ceux définis par :
• le consortium WPC (acronyme de l'expression anglaise « Wireless Power Consortium »), qui définit des dispositifs de charge dits « par induction magnétique », qui utilisent une fréquence de charge comprise en principe entre 100 et 200 kilohertz (kHz),
• le consortium A4WP (acronyme de l'expression anglaise « Alliance for Wireless Power »), qui définit des dispositifs de charge dits « par résonance magnétique », qui utilisent une fréquence de charge comprise en principe entre 6 et 7 mégahertz (MHz).
Afin d'assurer une interopérabilité avec tous les terminaux mobiles, il existe de nos jours un besoin pour des dispositifs de charge par couplage magnétique bi-modes, c'est-à-dire compatibles à la fois avec les besoins définis par le consortium WPC et avec les besoins définis par le consortium A4WP.
Toutefois, les antennes primaires compatibles avec besoins des consortiums WPC et A4WP (dans un but de simplification, nous les appellerons dans la suite antenne primaire inductive WPC et antenne primaire résonante A4WP) ont des caractéristiques très différentes. Notamment, les antennes primaires WPC sont généralement associées à un corps ferromagnétique qui peut perturber le fonctionnement des antennes primaires A4WP, de sorte que les antennes primaires WPC et A4WP peuvent difficilement être co-localisées. Les surfaces de charge WPC et A4WP doivent alors être distantes, et il existe par conséquent une contrainte de positionnement du terminal mobile suivant s'il est équipé d'un module de réception WPC ou A4WP.
De plus, le chargement par résonance magnétique, nécessite une grande précision sur l'adaptation de l'impédance de l'antenne primaire résonante A4WP. En effet, la présence d'un terminal mobile à proximité de l'antenne primaire résonante A4WP modifie les paramètres électriques de ladite antenne et fait varier sa fréquence de résonance. Cette modification d'impédance diminue l'efficacité de chargement, il est alors nécessaire d'adapter l'impédance, afin que la fréquence de résonance de l'antenne primaire résonante A4WP soit égale à une fréquence de résonance optimale pour une efficacité de charge maximale.
Une solution de l'art antérieur consiste à utiliser un réseau constitué de plusieurs condensateurs et interrupteurs montés en parallèle, et relié à l'antenne primaire résonante A4WP, et de sélectionner un ou plusieurs condensateurs à l'aide des interrupteurs correspondants pour obtenir l'impédance souhaitée de ladite antenne.
Cette solution est coûteuse et nécessite une stratégie de commutation des interrupteurs complexe.
La présente invention a pour objectif de remédier à tout ou partie des limitations des solutions de l'art antérieur, notamment celles exposées ci-avant, en proposant une solution qui permette d'avoir des dispositifs de charge par couplage magnétique bi-modes présentant une surface de charge unique pour les modules de charge WPC et A4WP et permettant également d'adapter l'impédance de l'antenne primaire résonante A4WP de manière précise, simple et peu coûteuse.
L'invention propose un procédé de charge d'un terminal mobile par un dispositif de charge destiné à être embarqué dans un véhicule automobile, le dit dispositif de charge comprenant au moins une première antenne de chargement dite par induction, ou antenne primaire inductive « WPC » ayant une fréquence de charge et une deuxième antenne de chargement dite par résonance, ou antenne primaire résonante « A4WP » ayant une fréquence de résonance, au moins 1000 fois supérieure à la fréquence de charge, un corps ferromagnétique située en dessous et solidaire de l'antenne primaire inductive, le procédé de charge étant remarquable en ce qu'il consiste :
• à équiper préalablement le corps ferromagnétique et l'antenne primaire inductive de moyens de déplacement aptes à déplacer le corps ferromagnétique et ladite antenne primaire inductive par rapport à l'antenne primaire résonante,
• à détecter le terminal mobile sur la surface de charge,
• à déterminer un type de charge, entre le dispositif de charge et le terminal mobile afin de déclencher la charge par l'antenne primaire inductive ou l'antenne primaire résonante
• à déplacer le corps ferromagnétique solidaire de l'antenne primaire inductive par rapport à l'antenne primaire résonante, en fonction de la fréquence de résonance de ladite l'antenne primaire résonante lorsque le terminal mobile est chargé par l'antenne primaire résonante et,
• à déplacer le corps ferromagnétique solidaire de l'antenne primaire inductive en fonction de l'efficacité de charge de l'antenne primaire inductive lorsque le terminal mobile est chargé par l'antenne primaire inductive.
Plus particulièrement :
• l'étape de détection et l'étape de détermination sont réalisées par l'intermédiaire l'antenne primaire résonante, et
• l'étape de détermination comprend l'envoi d'un message de demande d'identifiant par l'antenne primaire résonante vers le terminal mobile,
- si un identifiant compatible est reçu en retour par l'antenne primaire résonante en provenance du terminal mobile, le terminal mobile est chargé par l'intermédiaire de l'antenne primaire résonante,
- sinon le terminal mobile est chargé par l'intermédiaire l'antenne primaire inductive.
Dans un mode de réalisation préférentiel:
• lorsque le terminal mobile est chargé par l'antenne primaire résonante, le déplacement du corps ferromagnétique solidaire de l'antenne primaire inductive ne s'arrête que lorsque la fréquence de résonance est comprise dans une fenêtre de valeurs prédéterminées et
• lorsque le terminal mobile est chargé par l'antenne primaire inductive, le déplacement du corps ferromagnétique solidaire de l'antenne primaire inductive ne s'arrête que lorsque l'efficacité de charge de l'antenne primaire inductive est supérieure ou égale à un seuil prédéterminé. Dans un mode de réalisation préférentiel, le déplacement de l'antenne primaire inductive et de la ferrite est réalisé dans un plan parallèle à la surface de charge.
L'invention concerne également un dispositif de charge d'un terminal mobile, destiné à être embarqué dans un véhicule automobile, le dit dispositif de charge comprenant au moins une première antenne de chargement dite par induction, ou antenne primaire inductive « WPC » ayant une fréquence charge et une deuxième antenne de chargement dite par résonance, ou antenne primaire résonante « A4WP » ayant une fréquence de résonance, au moins 1000 fois supérieure à la fréquence de charge, un corps ferromagnétique situé en dessous et solidaire de l'antenne primaire inductive, le dispositif de charge (D) étant remarquable en ce qu'il comprend :
• Des moyens de déplacement du corps ferromagnétique solidaire de l'antenne primaire inductive, aptes à déplacer le corps ferromagnétique et l'antenne primaire inductive,
• Des moyens de détection de la présence du terminal mobile sur la surface de charge,
• Des moyens de détermination du type de charge.
• Des premiers moyens de mesure de la fréquence de résonance de l'antenne primaire résonante,
• Des deuxièmes moyens de mesure de l'efficacité de charge de l'antenne primaire inductive,
• Des premiers moyens de contrôle des moyens de déplacement en fonction de la fréquence de résonance,
• Des deuxièmes moyens de contrôle des moyens de déplacement en fonction de l'efficacité de charge,
· Des premiers moyens de comparaison entre la fréquence de résonance de l'antenne primaire résonante et une valeur minimum et une valeur maximum d'une fenêtre de valeurs prédéterminées,
• Des deuxièmes moyens de comparaison entre l'efficacité de charge de l'antenne primaire inductive et un seuil prédéterminé.
Dans un mode de réalisation préférentiel, la surface de charge comprenant un axe longitudinal et un axe transversal se coupant en un centre, l'antenne primaire résonante est située aux extrémités de la surface de charge et le corps ferromagnétique et l'antenne primaire inductive sont aptes à se déplacer selon l'axe longitudinal d'une position initiale dans laquelle l'antenne primaire inductive ou la ferrite a un centre coïncidant avec le centre de la surface de charge, vers une position finale dans laquelle l'antenne primaire inductive ou la ferrite se situe à proximité de l'antenne primaire résonante aux extrémités de la surface de charge. Préférentiellement, l'antenne primaire résonante entoure tout ou en partie l'antenne primaire inductive.
Judicieusement, le déplacement de l'antenne primaire inductive et de la ferrite est réalisé dans un plan parallèle à la surface de charge et les moyens de déplacement comprennent :
• Un moteur électrique, relié à
• Un système d'entraînement comprenant au moins deux poulies, autour desquelles est entraîné en déplacement un tapis solidaire du corps ferromagnétique.
L'invention s'applique également à tout véhicule automobile, comprenant un dispositif de charge selon l'une quelconque des caractéristiques énumérées ci-dessus.
D'autres objets, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre à titre d'exemple non limitatif et à l'examen des dessins annexés dans lesquels :
- la figure 1 représente schématiquement une vue de dessus en coupe d'un dispositif de charge D selon l'invention,
- la figure 2, représente schématiquement une vue de côté en coupe d'un dispositif de charge D selon l'invention,
- la figure 3, représente graphiquement la variation d'inductance de l'antenne primaire résonante A4WP de centre O par rapport à la position de l'antenne primaire inductive WPC de centre O',
- la figure 4 est un graphique, illustrant la baisse de la fréquence de résonance de l'antenne primaire résonante A4WP, lorsque l'antenne primaire inductive WPC se rapproche du centre de l'antenne primaire résonante A4WP,
- la figure 5 est un graphique, illustrant l'augmentation de la fréquence de résonance de l'antenne primaire A4WP, lorsque l'antenne primaire inductive WPC se rapproche des extrémités Ext1 , Ext2 du dispositif de charge D, c'est-à-dire, lorsque la dite antenne primaire inductive WPC se rapproche de l'antenne primaire résonante A4WP,
- la figure 6 est un logigramme représentant le procédé de charge selon l'invention,
- la figure 7 représente schématiquement une vue de côté en coupe et détaillée d'un mode de réalisation préférentiel du dispositif de charge D selon l'invention. Le dispositif de charge D de l'invention est illustré aux figures 1 , 2 et 7. Ledit dispositif D est destiné à être embarqué dans un véhicule automobile afin de charger par couplage magnétique la batterie d'un terminal mobile (non représenté sur les figures).
Le dispositif de charge D est bi-mode, plus précisément il permet de charger des terminaux mobiles compatibles « WPC » et des terminaux mobiles compatibles « A4WP », c'est-à-dire pouvant être chargés soit par induction magnétique à une fréquence de charge entre 100 et 200 kHz, soit par résonance magnétique à une fréquence de résonance, supérieure à mille fois la fréquence de charge, par exemple comprise environ entre 6 et 7 MHz.
Dans ce but, le dispositif de charge D comprend, sous une surface de charge 10 destinée à recevoir le terminal mobile :
- une antenne primaire inductive B1 , sous la forme d'une antenne circulaire plane, comprenant plusieurs enroulements de fil de cuivre, reliée électriquement à un système de gestion de charge par induction (non représenté), généralement compris dans un microcontrôleur 200 situé dans ledit dispositif D, et sous laquelle est située un corps ferromagnétique C, solidaire de ladite antenne B1 ,
- une antenne primaire résonante B2, sous la forme d'enroulements de fils de cuivre, situés à la périphérie de la surface de charge 10 reliée à un système de charge par résonance (non représenté), généralement compris dans un microcontrôleur 200 situé dans le dispositif D.
Dans un mode de réalisation préférentiel de l'invention, le dispositif de charge D, comme illustré à la figure 1 est de forme rectangulaire, avec un centre 0, par lequel se coupent deux axes, un axe longitudinal XX' et un axe transversal YY'. L'antenne primaire résonante B2 située à la périphérie du dispositif de charge D qui est également de forme rectangulaire, est symétrique par rapport aux deux axes XX', YY', et est centrée par rapport au centre O du dispositif de charge D. Dans ce mode de réalisation préférentiel au moins un enroulement ou au moins une boucle de l'antenne primaire résonante B2 entoure tout ou en partie l'antenne primaire inductive B1 .
Cet exemple de réalisation n'est aucunement limitatif, toute forme et/ou disposition de l'antenne primaire résonante B2 dans le dispositif de charge D peut être envisagée(s). Cependant, pour assurer une efficacité de charge par résonance, il est préférable que l'antenne soit disposée de telle manière qu'elle assure une charge efficace quelle que soit la position du terminal mobile sur la surface de charge 10. Une disposition à la périphérie du de la surface de charge 10 de l'antenne primaire résonante B2 permet ainsi de charger le terminal mobile quelque soit sa position sur la surface de charge 10. Il est également nécessaire pour la mise en œuvre de l'invention qu'au moins une boucle ou un enroulement de l'antenne primaire résonante B2 soit avoisinante de l'antenne primaire inductive B1 , plus précisément de la ferrite C, de telle sorte que l'impédance de l'antenne primaire résonante B2 varie lorsque l'antenne primaire inductive B1 se déplace par rapport à l'antenne primaire résonante B2 (ceci est expliqué plus bas). Cependant, étant donné que les surfaces de charge de chargeurs inductifs embarqués dans des véhicules automobiles sont de dimensions restreintes, il s'avère généralement que les deux antennes, l'antenne primaire résonante B2 et l'antenne primaire inductive B1 sont situées à proximité.
II est en outre nécessaire pour que la mise en œuvre de l'invention que les deux antennes, primaire résonante B2, et primaire inductives B1 ne couvrent pas chacune une surface identique à la surface de charge 10.
L'invention propose que l'ensemble constitué du corps ferromagnétique C et de l'antenne primaire inductive B1 soit mobile par rapport à l'antenne primaire résonante B2, qui elle, est immobile et fixe dans le dispositif D.
Pour cela, selon l'invention, le dispositif D comprend en outre des moyens de déplacement 100 aptes à déplacer le corps ferromagnétique C et l'antenne primaire inductive B1 par rapport à l'antenne primaire résonante B2.
Dans le mode de réalisation préférentiel, le déplacement de la antenne primaire inductive B1 et du corps ferromagnétique C est réalisé dans un plan P (cf. figure 2) parallèle à la surface de charge 10. Cependant le déplacement pourrait être également réalisé dans un plan perpendiculaire à la surface de charge 10.
Ces moyens de déplacement 100 peuvent être constitués, par exemple et comme illustré à la figure 7, d'un moteur électrique M, relié à un système d'entraînement comprenant au moins deux poulies P1 , P2, à l'aide desquelles est entraîné en déplacement un tapis 30, situé en dessous et solidaire de la ferrite C, lui-même solidaire de la antenne primaire inductive B1 .
Le moteur électrique M, fait tourner un arbre de sortie 40 relié mécaniquement au moins une des deux poulies P1 , P2, qui entraine à son tour le tapis 30 en déplacement et la seconde poulie P2, P1 . Le corps ferromagnétique C étant fixé et solidaire du tapis 30, ledit corps ferromagnétique C est alors également entraîné en déplacement par le tapis 30. Dans cet exemple, le tapis 30 forme une boucle autour des deux poulies P1 , P2, avec une partie formant une surface parallèle à la surface de charge 30 et située en dessous du corps ferromagnétique C.
Bien sûr, cet exemple n'est aucunement limitatif, et l'invention s'applique également à tous moyens de déplacement connu de l'homme du métier, aptes à déplacer le corps ferromagnétique C solidaire de la antenne primaire inductive B1 par rapport à la antenne primaire résonante B2 set dans le plan P parallèle à la surface de charge 10, par exemple des systèmes d'engrenages, entraîné en rotation par le moteur électrique M.
Les deux poulies P1 , P2, sont avantageusement situées, à chacune des deux extrémités Ext1 , Ext2 du dispositif D selon un axe longitudinal XX' (cf. figure 1 ), c'est-à- dire selon l'exemple illustré à la figure 1 , aux extrémités de la surface de charge 10. Les poulies P1 , P2 et le tapis 30 reliant les deux poulies, permettent ainsi le déplacement du corps ferromagnétique C et de la antenne primaire inductive B1 d'une première extrémité Ext1 à une deuxième extrémité Ext2, en passant par le centre O de la surface de charge 10, selon l'axe longitudinal XX'.
La antenne primaire résonante B2 se situant à la périphérie de la surface de charge 10, c'est-à-dire aux extrémités Ext1 , et Ext2 (et aussi Ext3, Ext4), lorsque le corps ferromagnétique C et la antenne primaire résonante B1 se déplacent vers l'une ou l'autre des extrémités Ext1 , Ext2, ledit corps ferromagnétique C et ladite antenne B1 se rapprochent de la antenne primaire résonante B2 modifiant ainsi l'impédance de la antenne primaire résonante B2.
Ceci est illustré à la figure 3, O étant le centre du dispositif de charge D, et donc de l'antenne primaire résonante B2, et en considérant O' le centre de l'antenne primaire inductive B1 , lorsque le centre O' se rapproche du centre O, l'inductance L de l'antenne primaire résonante B2 augmente. Lorsque les centres O et O' sont distants de 30 mm, l'inductance L est égal à 2,8μΗ, lorsque les deux centres O, O' coïncident (distance nulle entre les deux), l'impédance est égale à 3,5 μΗ.
Il a été considéré comme référence dans la figure 3, le centre O' de la antenne primaire inductive B1 , cependant un centre O" de la ferrite (non représenté) aurait pu être considéré comme référence, dans le cas ou la antenne primaire inductive B1 et le corps ferromagnétique C ne sont pas centrés.
Cette variation d'impédance fait varier la fréquence de résonance FR de l'antenne primaire résonante B2.
Ceci est illustré aux figures 4 et 5.
A la figure 4, lorsque le centre O' de la antenne primaire inductive B1 se rapproche du centre O (ou le centre O" du corps ferromagnétique C) de l'antenne primaire résonante B2, la fréquence FR de résonance de l'antenne primaire résonante B2 diminue, et se déplace vers de plus petites valeurs, ce qui est illustré à la figure 4 par une flèche.
A la figure 5, lorsque le centre O' de la antenne primaire inductive B1 (ou le centre O" du corps ferromagnétique C) se rapproche de l'antenne primaire résonante B2, c'est- à-dire des extrémités Ext1 , Ext2, la fréquence de résonance FR de l'antenne primaire résonante B2 augmente et se déplace vers de plus grandes valeurs, ce qui est illustré par une flèche à la figure 5. Comme décrit dans l'art antérieur, lorsqu'un terminal mobile est posé sur la surface de charge 10, sa présence modifie l'impédance L de l'antenne primaire résonante B2 et par conséquent sa fréquence de résonance FR qui s'éloigne de la fréquence de résonance optimale Fopt, ce phénomène s'appelle la « désadaptation ». Dans l'art antérieur, il était connu à l'aide de capacités et d'interrupteurs d'adapter la fréquence de résonance FR de l'antenne primaire résonante B2 à chaque fois qu'un terminal mobile était détecté sur la surface de charge 10 afin qu'elle soit sensiblement égale à la fréquence de résonance optimale Fopt.
L'invention propose ici d'utiliser le déplacement du corps ferromagnétique C et de l'antenne primaire inductive B1 pour adapter la fréquence de résonance FR de l'antenne primaire résonante B2 à chaque fois qu'un terminal mobile est détecté sur la surface de charge 10 et qu'une charge par résonance est nécessaire, afin que la fréquence de résonance FR soit sensiblement égale à la fréquence de résonance optimale Fopt.
L'invention propose également et de manière ingénieuse d'utiliser également le déplacement du corps ferromagnétique C et de l'antenne primaire inductive B1 afin de centrer l'antenne primaire inductive B1 avec le terminal mobile et ainsi optimiser l'efficacité de charge, lorsqu'une charge par induction est nécessaire.
En effet, le dispositif de charge D ne comprenant qu'une seule et unique antenne primaire inductive B1 pour charger par induction le terminal mobile, lorsque le terminal mobile n'est pas centré par rapport à ladite antenne, l'efficacité de charge diminue.
Ingénieusement, l'antenne primaire inductive B1 et le corps ferromagnétique C étant mobiles, leur déplacement permet également de centrer l'antenne primaire inductive B1 par rapport au terminal mobile afin d'obtenir une efficacité de charge Q maximale.
Ainsi en rendant mobile l'antenne primaire inductive B1 et le corps ferromagnétique C qui lui est associé, l'invention permet judicieusement de déplacer l'ensemble constitué de ces deux éléments afin de :
-modifier l'impédance L de l'antenne primaire résonante B2, et de régler ainsi la fréquence de résonance FR de ladite antenne sensiblement égale à la fréquence de résonance optimale Fopt, lorsqu'un terminal mobile est posé sur la surface de charge 10 et qu'une charge par résonance est souhaitée,
-centrer l'antenne primaire inductive B1 par rapport au terminal mobile (plus précisément par rapport à une antenne réceptrice située dans le terminal mobile) afin d'optimiser l'efficacité de charge Q de l'antenne primaire inductive B1 , lorsqu'un terminal mobile est détecté sur la surface de charge 10 et qu'une charge par induction est souhaitée.
Dans ce but, le dispositif de charge D, comprend également (cf. figure 7) : • Des premiers moyens de mesure M1 a de la fréquence de résonance FR de l'antenne primaire résonante B2,
• Des deuxièmes moyens de mesure M2a de l'efficacité de charge de l'antenne primaire inductive B1 ,
· Des premiers moyens de comparaison M1 b entre la fréquence de résonance de l'antenne primaire résonante B2 et une valeur minimum Rmin et une valeur maximum Rmax d'une fenêtre R de valeurs prédéterminée,
• Des deuxièmes moyens de comparaison M2b entre l'efficacité de charge Q de l'antenne primaire inductive B1 et un seuil prédéterminé
Qmin,
• Des premiers moyens de contrôle M1 c des moyens de déplacement 100 en fonction de la fréquence de résonance FR,
• Des deuxièmes moyens de contrôle M2c des moyens de déplacement 100 en fonction de l'efficacité de charge Q,
Les premiers moyens de mesure M1 a de la fréquence de résonance consistent à mesurer l'intensité de l'antenne primaire résonante B2 en fonction d'une fréquence appliquée (par exemple entre 6M Hz et 7MHz, avec un pas de 0.1 MHz), la résonance correspondant à la fréquence pour laquelle ladite intensité est la plus élevée. Les premiers moyens de mesure M1 a consistent donc à mesurer la tension aux bornes par exemple d'une capacité de résonance électriquement connectée à l'antenne primaire résonante B2, à l'aide d'un convertisseur analogique compris dans le microcontrôleur 200. Une fois , la valeur de cette capacité déterminée, il est ensuite possible d'en dériver l'intensité du courant qui traverse la antenne primaire résonante B2 et de déterminer ensuite la fréquence de résonance pour laquelle l'intensité est la plus élevée. Les moyens de mesure M1 a sont connus de l'homme du métier et ne seront pas plus détaillés ici.
Les deuxièmes moyens de mesure M2a de l'efficacité de charge consistent à mesurer un ratio entre une puissance active reçue par le microcontrôleur 200 en provenance de l'antenne primaire inductive B1 et la puissance générée par le microcontrôleur 200, alimentant ladite antenne primaire inductive B1 . La puissance reçue par le microcontrôleur 200 prend la forme d'une communication modulée sur la porteuse de puissance en provenance de l'antenne primaire inductive B1 .
Les moyens de mesure M2a de l'efficacité de charge sont connus de l'homme du métier et ne seront pas plus détaillés ici.
Les premiers et deuxièmes moyens de comparaison M1 b, M2b consistent en des moyens logiciels. Les premiers moyens de contrôle M1 c et les deuxièmes moyens de contrôle M2c des moyens de déplacement 100, consistent en des générations de phases alternatives pour le moteur électrique de type « pas à pas ». Ceci permet un déplacement du tapis 30 c'est-à-dire de l'antenne primaire inductive B1 précis et répétable.
Le dispositif de charge D comprend également :
• Des moyens de détection de la présence (non représentés sur les figures) du terminal mobile sur la surface de charge 10, connus de l'homme du métier, qui consistent en des moyens logiciels, par exemple un circuit d'émission d'un « ping » à destination du terminal mobile et un circuit de réception d'un message en retour en provenance du terminal mobile qui confirme sa présence sur la surface de charge 10, ledits moyen sont compris dans le microcontrôleur (200),
• Des moyens de détermination du type de charge (non représentés sur les figures), qui consistent par exemple en des moyens logiciels, par exemple un circuit d'émission d'un message d'interrogation par l'antenne primaire résonante B2 à destination du terminal mobile et un circuit de réception d'un identifiant en provenance du terminal mobile. Si cet identifiant est reconnu par l'antenne primaire résonante B2, alors le terminal mobile est compatible avec un chargement par résonance, si l'identifiant n'est pas reconnu par l'antenne primaire résonante B2, alors le terminal mobile est par défaut compatible avec un chargement par induction. Bien sûr, un échange d'identifiant entre l'antenne primaire inductive B1 et le terminal mobile peut être ensuite réalisé afin de confirmé la compatibilité du type de charge entre le terminal mobile et l'antenne primaire inductive B1 . Un sélectionneur, par exemple un interrupteur ou des moyens logiciels, permet(tent) ensuite d'actionner le circuit de chargement adéquate résonant ou inductif. Les dits moyens de détermination du type de charge peuvent être compris dans le microcontrôleur (200).
Le procédé de détection, illustré à la figure 6 va maintenant être décrit.
Lors d'une étape préliminaire (étape S), un terminal mobile est détecté sur la surface de charge 10 du dispositif de charge D. Cette détection est réalisée grâce à l'envoi de « pings » ou impulsions de courte durée par l'antenne primaire inductive B1 ou par l'antenne primaire résonante B2 vers le dispositif de charge D et par à la réception d'un message en retour du terminal mobile si celui-ci est posé sur la surface de charge 10. Dans une première étape de détermination du procédé (E0), une fois le terminal mobile détecté, le procédé propose de déterminer si le terminal mobile est compatible avec un procédé de charge par induction ou avec un procédé de charge par résonance. Ce procédé de détermination de type de charge est connu de l'art antérieur et ne sera pas expliqué en détails. Les deux procédés de chargement sont principalement différenciés par la valeur du facteur de qualité Q de leur antenne respective en chargement.
Dans le but de déterminer le type de charge souhaité et la présence du terminal mobile posé sur la surface de charge 10, l'antenne primaire résonante B2 émet périodiquement un signal d'interrogation sous la forme d'une impulsion électromagnétique (par exemple toutes les 150 ms). Lorsqu'un terminal mobile est placé à proximité de l'antenne primaire résonante B2, il modifie le champ électromagnétique généré pendant l'émission dudit signal d'interrogation. Une fois qu'un terminal a été détecté et s'il est compatible avec la norme de chargement, l'antenne B2 émet une demande d'authentification et le terminal mobile répond en retour en envoyant un signal de réponse comportant son identifiant et l'état de sa batterie.
Si le terminal mobile est compatible avec une charge par résonance, alors lors de l'étape E1 , les premiers moyens de mesure M1 a mesure la fréquence de résonance FR de l'antenne primaire résonante B2. Les premiers moyens de comparaison M1 b comparent ladite fréquence à une valeur minimum Rmin et une valeur maximum Rmax d'une fenêtre de fréquences prédéterminée R (cf. figures 4 et 5) située autour d'une fréquence de résonance optimale FOPT.
Si la fréquence de résonance FR est comprise dans ladite fenêtre R, en d'autres termes, si la fréquence de résonance FR est supérieure à la valeur minimum Rmin et si la dite fréquence de résonance FR est inférieure à la valeur maximum Rmax, alors la charge par résonance commence (étape E1 b).
Si la fréquence de résonance FR n'est pas comprise dans ladite fenêtre R, alors les premiers moyens de contrôle M1 c des moyens de déplacement 100 commandent le déplacement du corps ferromagnétique C et de l'antenne primaire inductive B1 à l'aide du moteur électrique M, jusqu'à ce que la fréquence de résonance FR soit comprise dans la fenêtre R de fréquences prédéterminée (étape E1 a). Le déplacement s'arrête lorsque la fréquence de résonance FR est située dans la fenêtre R de fréquence souhaitée et alors la charge par résonance débute (étape E1 b).
De manière similaire, si le terminal mobile est compatible avec une charge par induction, alors lors de l'étape E2, les deuxièmes moyens de mesure M2a, mesurent l'efficacité de charge Q de l'antenne primaire inductive B1 , et les deuxièmes moyens de comparaison M2b comparent l'efficacité Q ainsi mesurée à un seuil, égal à une efficacité minimal Qmin.
Si l'efficacité Q mesurée est supérieure ou égale au seuil Qmin, alors la charge par induction commence (étape E2b).
Si l'efficacité Q mesurée est inférieure audit seuil Qmin, alors les deuxièmes moyens de contrôle M2c des moyens de déplacement commandent le déplacement du corps ferromagnétique C et de l'antenne primaire inductive B1 à l'aide du moteur électrique M, jusqu'à ce que l'efficacité Q de charge soit supérieure ou égale au seuil Qmin (étape E2a). Le déplacement s'arrête lorsque l'efficacité de charge Q est supérieure ou égale au seuil Qmin et alors la charge par induction commence (étape E2b).
Lorsque la charge par induction ou par résonance est terminée (étape E3), le procédé revient à l'étape préliminaire S.
L'invention permet judicieusement par le déplacement de l'ensemble constitué de l'antenne primaire inductive B1 et du corps ferromagnétique C de remédier à deux problèmes, lorsque le terminal mobile est placé sur la surface de charge 10 du dispositif de charge D « bi mode » :
• Si le terminal mobile est compatible avec un chargement par résonance : la désadaptation de la fréquence de résonance FR de l'antenne primaire résonante B2 vers une valeur de fréquence de résonance éloignée de la valeur de fréquence de résonance optimale
Fopt,
• Si le terminal mobile est compatible avec un chargement par induction : la baisse d'efficacité de chargement Q si le terminal mobile et l'antenne primaire inductive B1 ne sont pas centrés.
En rendant mobile cet ensemble (corps ferromagnétique et antenne primaire inductive B1 ), l'efficacité de charge Q optimale est assurée pour le chargement par induction et la fréquence de résonance optimale fopt est assuré pour le chargement par résonance, quelque soit le type de terminal mobile et quelque soit sa position sur la surface de charge 10 du dispositif de charge D.
L'invention est ingénieuse et facile à mettre en œuvre, car elle ne nécessite que des moyens logiciels et des moyens de déplacement peu coûteux.

Claims

REVENDICATIONS
Procédé de charge d'un terminal mobile par un dispositif de charge (D) destiné à être embarqué dans un véhicule automobile, le dit dispositif de charge (D) comprenant au moins une première antenne de chargement dite par induction, ou antenne primaire inductive (B1 ) « WPC » ayant une fréquence de charge et une deuxième antenne de chargement dite par résonance, ou antenne primaire résonante (B2) « A4WP » ayant une fréquence de résonance (FR), au moins 1000 fois supérieure à la fréquence de charge, un corps ferromagnétique (C) située en dessous et solidaire de l'antenne primaire inductive (B1 ), le procédé de charge étant caractérisé en ce qu'il consiste :
à équiper préalablement le corps ferromagnétique (C) et l'antenne primaire inductive (B1 ) de moyens de déplacement (100) aptes à déplacer le corps ferromagnétique (C) et ladite antenne primaire inductive (B1 ) par rapport à l'antenne primaire résonante (B2),
• à détecter (étape S) le terminal mobile sur la surface de charge (10),
• à déterminer (E0) un type de charge, entre le dispositif de charge (D) et le terminal mobile afin de déclencher la charge par l'antenne primaire inductive (B1 ) ou l'antenne primaire résonante (B2).
• à déplacer (étapes E1 et E1 a) le corps ferromagnétique (C) solidaire de l'antenne primaire inductive (B1 ) par rapport à l'antenne primaire résonante (B2), en fonction de la fréquence de résonance (FR) de ladite l'antenne primaire résonante (B2) lorsque le terminal mobile est chargé par l'antenne primaire résonante (B2) et,
• à déplacer (étapes E2 et E2a) le corps ferromagnétique (C) solidaire de l'antenne primaire inductive (B1 ) en fonction de l'efficacité de charge (Q) de l'antenne primaire inductive (B1 ) lorsque le terminal mobile est chargé par l'antenne primaire inductive (B1 ).
Procédé de charge selon la revendication précédente, caractérisé en ce que :
• l'étape de détection (étape S) et l'étape de détermination (étape E0) sont réalisées par l'intermédiaire l'antenne primaire résonante (B2), et
• l'étape de détermination (étape E0) comprend l'envoi d'un message de demande d'identifiant par l'antenne primaire résonante (B2) vers le terminal mobile, - si un identifiant compatible est reçu en retour par l'antenne primaire résonante (B2) en provenance du terminal mobile, le terminal mobile est chargé par l'intermédiaire de l'antenne primaire résonante (B2),
- sinon le terminal mobile est chargé par l'intermédiaire l'antenne primaire inductive (B1 ).
3. Procédé de charge selon l'une quelconque des revendications précédentes, caractérisé en ce que,
• lorsque le terminal mobile est chargé par l'antenne primaire résonante (B2), le déplacement du corps ferromagnétique (C) solidaire de l'antenne primaire inductive (B1 ) ne s'arrête que lorsque la fréquence de résonance (FR) est comprise dans une fenêtre (R) de valeurs prédéterminées et
• lorsque le terminal mobile est chargé par l'antenne primaire inductive (B1 ), le déplacement du corps ferromagnétique (C) solidaire de l'antenne primaire inductive (B1 ) ne s'arrête que lorsque l'efficacité de charge (Q) de l'antenne primaire inductive (B1 ) est supérieure ou égale à un seuil prédéterminé (Qmin).
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce le déplacement de la antenne primaire inductive (B1 ) et de la ferrite (C) est réalisé dans un plan parallèle (P) à la surface de charge (10) et
5. Dispositif de charge (D) d'un terminal mobile, destiné à être embarqué dans un véhicule automobile, le dit dispositif de charge (D) comprenant au moins une première antenne de chargement dite par induction, ou antenne primaire inductive (B1 ) « WPC » ayant une fréquence charge et une deuxième antenne de chargement dite par résonance, ou antenne primaire résonante (B2) « A4WP » ayant une fréquence de résonance, au moins 1000 fois supérieure à la fréquence de charge, un corps ferromagnétique (C) situé en dessous et solidaire de l'antenne primaire inductive (B1 ), le dispositif de charge (D) étant caractérisé en ce qu'il comprend :
• Des moyens de déplacement (100) du corps ferromagnétique (C) solidaire de à l'antenne primaire inductive (B1 ), aptes à déplacer le corps ferromagnétique (C) et l'antenne primaire inductive (B1 ), Des moyens de détection de la présence du terminal mobile sur la surface de charge (10),
Des moyens de détermination du type de charge,
Des premiers moyens de mesure (M1 a) de la fréquence de résonance (FR) de l'antenne primaire résonante (B2),
Des deuxièmes moyens de mesure (M2a) de l'efficacité de charge (Q) de l'antenne primaire inductive (B1 ),
Des premiers moyens de contrôle (M1 b) des moyens de déplacement (100) en fonction de la fréquence de résonance (FR),
• Des deuxièmes moyens de contrôle (M2b) des moyens de déplacement (100) en fonction de l'efficacité de charge (Q),
• Des premiers moyens de comparaison (M1 c) entre la fréquence de résonance (FR) de l'antenne primaire résonante (B2) et une valeur minimum (Rmin) et une valeur maximum (Rmax) d'une fenêtre (R) de valeurs prédéterminées,
• Des deuxièmes moyens de comparaison (M2c) entre l'efficacité de charge (Q) de l'antenne primaire inductive (B2) et un seuil prédéterminé (Qmin).
Dispositif de charge (D) selon la revendication précédente, caractérisé en ce que la surface de charge (10) comprenant un axe longitudinal (XX') et un axe transversal (ΥΥ') se coupant en un centre (O), l'antenne primaire résonante (B2) est située aux extrémités (Ext1 , Ext2, Ext3, Ext4) de la surface de charge (10) et le corps ferromagnétique (C) et l'antenne primaire inductive (B1 ) sont aptes à se déplacer selon l'axe longitudinal (XX') d'une position initiale dans laquelle l'antenne primaire inductive (B1 ) ou la ferrite (C) a un centre (Ο') coïncidant avec le centre (O) de la surface de charge (10), vers une position finale dans laquelle l'antenne primaire inductive (B1 ) ou la ferrite (C) se situe à proximité de l'antenne primaire résonante (B2) aux extrémités (Ext1 , Ext2) de la surface de charge (10).
Dispositif de charge (D), selon l'une quelconque des revendications 5 ou 6, caractérisé en ce que de l'antenne primaire résonante (B2) entoure tout ou en partie l'antenne primaire inductive (B1 ).
Dispositif de charge (D), selon l'une quelconque des revendications 5 à 7, caractérisé en ce que le déplacement de la antenne primaire inductive (B1 ) et de la ferrite (C) est réalisé dans un plan parallèle (P) à la surface de charge (10) et en ce que les moyens de déplacement (100) comprennent :
• Un moteur électrique (M),
• Un système d'entraînement comprenant au moins deux poulies (P1 , P2), autour desquelles est entraîné en déplacement un tapis (30) solidaire du corps ferromagnétique (C)
9. Véhicule automobile, caractérisé en ce qu'il comprend un dispositif de charge
(D) selon l'une quelconque des revendications 5 à 8.
PCT/FR2017/053515 2016-12-13 2017-12-12 Procédé de charge d'un terminal mobile par un dispositif mobile destiné à être embarqué sur un véhicule automobile et dispositif de charge associé WO2018109358A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/342,236 US10819157B2 (en) 2016-12-13 2017-12-12 Method for charging a mobile terminal with a mobile device with which a motor vehicle is intended to be equipped and associated charging device
KR1020197019967A KR102481554B1 (ko) 2016-12-13 2017-12-12 자동차에 장비되도록 의도된 이동 디바이스를 이용해서 이동 단말기를 충전하기 위한 방법 및 연관된 충전 디바이스
CN201780076726.5A CN110168856B (zh) 2016-12-13 2017-12-12 由旨在车载在机动车辆上的可移动设备对移动终端进行充电的方法和相关充电设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662355A FR3060234B1 (fr) 2016-12-13 2016-12-13 Procede de charge d'un terminal mobile par un dispositif mobile destine a etre embarque sur un vehicule automobile et dispositif de charge associe
FR1662355 2016-12-13

Publications (1)

Publication Number Publication Date
WO2018109358A1 true WO2018109358A1 (fr) 2018-06-21

Family

ID=58737630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053515 WO2018109358A1 (fr) 2016-12-13 2017-12-12 Procédé de charge d'un terminal mobile par un dispositif mobile destiné à être embarqué sur un véhicule automobile et dispositif de charge associé

Country Status (5)

Country Link
US (1) US10819157B2 (fr)
KR (1) KR102481554B1 (fr)
CN (1) CN110168856B (fr)
FR (1) FR3060234B1 (fr)
WO (1) WO2018109358A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113098154B (zh) * 2020-01-08 2024-07-30 北京小米移动软件有限公司 无线充电方法及装置、电子设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243397A1 (en) * 2008-03-05 2009-10-01 Nigel Power, Llc Packaging and Details of a Wireless Power device
US20100156347A1 (en) * 2008-12-24 2010-06-24 Samsung Electronics Co., Ltd. Wireless charging system and method
US20120212074A1 (en) * 2009-12-16 2012-08-23 Fujitsu Limited Magnetic resonance power transmitter and magnetic resonance power receiver
US20150115723A1 (en) * 2013-10-28 2015-04-30 Nokia Corporation Multi-Mode Wireless Charging
EP2919357A1 (fr) * 2014-03-13 2015-09-16 LG Innotek Co., Ltd. Appareil et procédé de transmission d'alimentation sans fil
US20150280450A1 (en) * 2014-03-27 2015-10-01 Lg Innotek Co., Ltd. Wireless power transmission system having wireless power transmitter
US20160254705A1 (en) * 2013-10-31 2016-09-01 Hanrim Postech Co., Ltd. Hybrid wireless power transmitting system and method therefor
EP3089320A1 (fr) * 2013-12-10 2016-11-02 The Chugoku Electric Power Co., Inc. Dispositif de transmission de puissance et système d'alimentation en énergie

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011814B (zh) * 2011-12-21 2017-08-15 阿莫先恩电子电器有限公司 磁场屏蔽片及其制造方法和无线充电器用接收装置
JP2013135599A (ja) * 2011-12-27 2013-07-08 Sanyo Electric Co Ltd 無接点充電方法
FR3003411B1 (fr) * 2013-03-14 2016-11-11 Continental Automotive France Procede de chargement inductif d'un appareil portable et dispositif de charge associe embarque dans un vehicule
EP2994976B1 (fr) * 2013-05-10 2018-07-11 Cynetic Designs Ltd Alimentation et donnees couplees par induction sans fil pour un vetement par l'intermediaire d'une cle electronique
FR3010252B1 (fr) * 2013-08-30 2015-08-21 Continental Automotive France Dispositif et procede de charge par couplage magnetique bi-mode pour vehicule automobile
KR20150139731A (ko) * 2014-06-03 2015-12-14 주식회사 히타치엘지 데이터 스토리지 코리아 무선 전력 전송 장치
EP3204997A4 (fr) * 2014-10-08 2018-02-14 PowerbyProxi Limited Onduleur pour émetteur de puissance inductive
KR102423618B1 (ko) * 2015-03-06 2022-07-22 삼성전자주식회사 무선 전력 송신기
CN106160253B (zh) * 2015-03-13 2020-09-04 恩智浦美国有限公司 用于无线功率传输的自由谐振模拟探察

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243397A1 (en) * 2008-03-05 2009-10-01 Nigel Power, Llc Packaging and Details of a Wireless Power device
US20100156347A1 (en) * 2008-12-24 2010-06-24 Samsung Electronics Co., Ltd. Wireless charging system and method
US20120212074A1 (en) * 2009-12-16 2012-08-23 Fujitsu Limited Magnetic resonance power transmitter and magnetic resonance power receiver
US20150115723A1 (en) * 2013-10-28 2015-04-30 Nokia Corporation Multi-Mode Wireless Charging
US20160254705A1 (en) * 2013-10-31 2016-09-01 Hanrim Postech Co., Ltd. Hybrid wireless power transmitting system and method therefor
EP3089320A1 (fr) * 2013-12-10 2016-11-02 The Chugoku Electric Power Co., Inc. Dispositif de transmission de puissance et système d'alimentation en énergie
EP2919357A1 (fr) * 2014-03-13 2015-09-16 LG Innotek Co., Ltd. Appareil et procédé de transmission d'alimentation sans fil
US20150280450A1 (en) * 2014-03-27 2015-10-01 Lg Innotek Co., Ltd. Wireless power transmission system having wireless power transmitter

Also Published As

Publication number Publication date
KR102481554B1 (ko) 2022-12-26
KR20190092524A (ko) 2019-08-07
US20200059115A1 (en) 2020-02-20
US10819157B2 (en) 2020-10-27
FR3060234B1 (fr) 2019-05-10
CN110168856B (zh) 2023-11-03
CN110168856A (zh) 2019-08-23
FR3060234A1 (fr) 2018-06-15

Similar Documents

Publication Publication Date Title
EP3213955B1 (fr) Installation améliorée de recharge par conduction d'un véhicule
WO2018197771A1 (fr) Procede d'activation d'une fonction vehicule a partir d'un dispositif d'acces portable et module d'activation associe
FR2781622A1 (fr) Dispositif a transpondeur
FR3010252A1 (fr) Dispositif et procede de charge par couplage magnetique bi-mode pour vehicule automobile
FR3029862A1 (fr) Determination d'une position de charge d'un dispositif de charge d'une borne de recharge
WO2019053123A1 (fr) Dispositif de télé-alimentation répéteur de communication sans contact pour une poignée de porte de véhicule automobile
WO2017076502A1 (fr) Dispositif de detection d'un objet metallique parasite dans la zone d'emission d'un dispositif de recharge d'un equipement d'utilisateur pour automobile et procede de detection
WO2017118555A1 (fr) Systeme de securisation pour un ensemble de couplage electromecanique, station de recharge d'un vehicule electrique munie d'un tel systeme et procede de couplage associe
FR2837985A1 (fr) Antenne receptrice morcelee
FR2947114A1 (fr) Charge d'une batterie de vehicule automobile
FR2989529A1 (fr) Procede et banc de charge par couplage magnetique
FR3013069A1 (fr) Poignee de portiere de vehicule comprenant une antenne de communication en champ proche
WO2021110309A1 (fr) Dispositif de communication en champ proche a haute frequence et de rechargement par induction d'un appareil electronique portable
WO2018109358A1 (fr) Procédé de charge d'un terminal mobile par un dispositif mobile destiné à être embarqué sur un véhicule automobile et dispositif de charge associé
WO2018211220A1 (fr) Dispositif de détection d'approche et de communication en champ proche
FR3071111B1 (fr) Procede de determination de la position d'un objet metallique sur un support de charge par induction
EP2803524B1 (fr) Dispositif de charge par induction de batteries d'un véhicule automobile électrique
FR2947113A1 (fr) Charge d'une batterie de vehicule automobile
FR3043275A1 (fr) Procede de detection d'un objet metallique dans la zone d'emission d'un dispositif de recharge d'un equipement d'utilisateur pour vehicule automobile
WO2020188106A1 (fr) Procede de charge par induction et dispositif de charge associe
FR3103328A1 (fr) Procédé et dispositif de contrôle de connexion entre une batterie et une prise d’un véhicule à moteur électrique
WO2020234131A1 (fr) Procede de contrôle de chargement inductif d'un ecuipement d'utilisateur et dispositif de charge associe pour vehicule automobile
FR3107791A1 (fr) Ensemble de transfert d’énergie électrique sans fil et sans contact comprenant un système amélioré de régulation de l’énergie transférée.
WO2018091839A1 (fr) Boîtier électronique d'un système de surveillance de paramètres de pneumatiques muni d'un moyen d'alimentation électrique rechargeable
WO2014139647A1 (fr) Procede de chargement inductif d'un appareil portable et dispositif de charge associe embarque dans un vehicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17821982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019967

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17821982

Country of ref document: EP

Kind code of ref document: A1