WO2018108382A1 - Laundry detergent composition - Google Patents

Laundry detergent composition Download PDF

Info

Publication number
WO2018108382A1
WO2018108382A1 PCT/EP2017/078016 EP2017078016W WO2018108382A1 WO 2018108382 A1 WO2018108382 A1 WO 2018108382A1 EP 2017078016 W EP2017078016 W EP 2017078016W WO 2018108382 A1 WO2018108382 A1 WO 2018108382A1
Authority
WO
WIPO (PCT)
Prior art keywords
anionic surfactant
preferably
laundry detergent
wt
detergent composition
Prior art date
Application number
PCT/EP2017/078016
Other languages
French (fr)
Inventor
Stephen Norman Batchelor
Original Assignee
Unilever Plc
Unilever N.V.
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP16204322 priority Critical
Priority to EP16204322.8 priority
Application filed by Unilever Plc, Unilever N.V., Conopco, Inc., D/B/A Unilever filed Critical Unilever Plc
Publication of WO2018108382A1 publication Critical patent/WO2018108382A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0005Special cleaning and washing methods
    • C11D11/0011Special cleaning and washing methods characterised by the objects to be cleaned
    • C11D11/0017"Soft" surfaces, e.g. textiles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials characterised by their shape or physical properties
    • C11D17/0008Detergent materials characterised by their shape or physical properties aqueous liquid non soap compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines, polyalkyleneimines

Abstract

The present invention provides aqueous laundry detergents of clarity in an otherwise rather opaque milieu.

Description

LAUNDRY DETERGENT COMPOSITION

FIELD OF INVENTION

The present invention provides an effective surfactant formulation for use in domestic laundry.

BACKGROUND OF THE INVENTION

Aqueous domestic laundry liquid formulations containing lauryl ether sulfate in combination with another type of anionic surfactant as the main surfactants are ubiquitous. The second anionic surfactant is typically linear alkyl benzene sulfonate. It is desirous that the surfactants fully dissolve in the water, to provide an aqueous solution of optical clarity; to facilitate this clarity hydrotropes are added. Effective binary anionic surfactant systems that fully dissolve in water without the need for an additional hydrotropes are required. Examples of hydrotropes include ethylene glycol, 1 ,3 propanediol, 1 ,2 propanediol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, 2,3-butane diol, 1 ,3 butanediol, diethylene glycol, triethylene glycol, polyethylene glycol, glycerol formal dipropylene glycol, polypropylene glycol, dipropylene glycol n-butyl ether, sodium p-toluenesulfonate sodium xylene sulfonate and mixtures thereof.

WO2013/087286 (Unilever) discloses liquids formulations containing alkyl ether carboxylic acids, betaines, anionic surfactant, non-ionic surfactant for providing softening benefits.

WO2014/060235 (Unilever) discloses a laundry detergent composition comprising (a) nonionic surfactant, (b) anionic surfactant, (c) alkyl ether carboxylic acid or carboxylate salt thereof, and, (d) a polyglucosamine or a copolymer of glucosamine and

N-acetylglucosamine; and to its use to soften fabrics. SUMMARY OF THE INVENTION

We have found that a particular alkyl ether carboxylates when part of a binary system with particular lauryl ether sulphates have optical clarity without the need for an additional hydrotrope.

In one aspect, the present invention provides an aqueous liquid laundry detergent composition comprising:

(i) from 3 to 10 wt%, preferably from 4 to 8 wt%, of lauryl ether sulfate anionic surfactant, wherein the lauryl ether sulfate anionic surfactant has a mole average of 1 to 4 moles, preferably 2.5 to 3.5 moles of ethoxylation per mole of surfactant molecule;

(ii) from 3 to 10 wt%, preferably 4 to 8 wt%, of an alkyl ether carboxylic acid anionic

surfactant of the following structure:

R2-(OCH2CH2)n-OCH2-COOH, wherein:

R2 is selected from saturated and mono-unsaturated C10 to C18 linear or branched alkyl chains, preferably selected from: C12; C14; C16; and, C18 saturated linear alkyl chain, wherein n is selected from: 15 to 20, wherein the weight fraction of lauryl ether sulfate anionic surfactant alkyl ether carboxylic acid anionic surfactant is from 0.4 to 1 .6, preferably 0.7 to 1 .3;

(iii) at least 60 wt%, preferably at least 70 wt% water;

(iv) from 0 to 4 wt%, preferably 0 to 3 wt%, of an ethoxylated alcohol non-ionic surfactant, preferably selected from: C10 to C16 primary and secondary aliphatic alcohols ethoxylated with an average of from 6 to 10 moles of ethylene oxide per mole of alcohol, most preferably a C12 to C15 primary aliphatic alcohol with 7 to 9 moles of ethylene oxide per mole of alcohol, wherein the weight fraction of ethoxylated alcohol non-ionic surfactant/ (lauryl ether sulfate anionic surfactant + alkyl ether carboxylic acid anionic surfactant) is from 0 to 0.4, preferably 0 to 0.2; (v) from 0 to 8 wt%, preferably 2 to 5 wt%, of an alkoxylated polyethylene imine, preferably ethoxylated polyethylene imine;

(vi) from 0 to 3 wt%, preferably 0.5 to 1 .5 wt% of a terephthalate polyester soil release polymer; and,

(vii) a further anionic surfactant wherein the ratio of further anionic surfactant (lauryl ether sulfate anionic surfactant + alkyl ether carboxylic acid anionic surfactant) is from 0 to 0.4, preferably 0 to 0.2.

The further anionic surfactant(s) (integer vii) may serve to control foaming.

In another aspect the present invention provides a domestic method of treating a textile, the method comprising the steps of:

(i) treating a textile with from 1 g/L of an aqueous solution of the laundry detergent

composition as defined in any one of the preceding claims; and,

(ii) allowing said aqueous laundry detergent solution to remain in contact with the textile for 10 minutes to 2 days then rinsing and drying the textile.

Preferably the clothes to be washed contain 0.1 to 2 wt% human sebum.

In the method aspects of the present invention the surfactant used is preferably as preferred for the composition aspects of the present invention.

Domestic methods are preferably conducted in a domestic washing machine or by hand washing. The temperature of the wash is preferably from 285 to 313K. The main wash time is preferably 5 to 30 minutes.

The textile is preferably an item of clothing, bedding or table cloth. Preferred items of clothing are cotton containing shirts, trousers, underwear and jumpers.

Notwithstanding the fact that the present invention is to negate the need for the presence of a hydrotrope one may be added for redundancy or another purpose. Another purpose, for example, would than we found in stabilizers for enzyme premixtures that are added to the detergent.

It is preferred that the aqueous liquid laundry detergent composition comprises less than or equal to 5 wt% (0 to 5 wt%), more preferably less than or equal to 0.2 wt% (0 to 0.2 wt%) of hydrotope selected from: ethylene glycol; 1 ,3 propanediol; 1 ,2 propanediol; tetramethylene glycol; pentamethylene glycol; hexamethylene glycol; 2,3-butane diol; 1 ,3 butanediol;

diethylene glycol; triethylene glycol; polyethylene glycol; glycerol formal dipropylene glycol; polypropylene glycol; dipropylene glycol n-butyl ether; and, mixtures thereof. Preferably the hydrotope at the low level is selected from the group comprising: 1 ,2 propanediol;

dipropylene glycol; polypropylene glycol; 2,3- butane diol; dipropylene glycol n-butyl ether; and, mixtures thereof.

DETAILED DESCRIPTION OF THE INVENTION

The surfactants of invention are preferably non-amine neutralized. Typical amine used to neutralise surfactants are alkyl ether carboxylic acid monoethanolamine, triethanolamine, diisopropanolamine, triisopropanolamine, monoamino hexanol, 2-[(2-methoxyethyl) methylamino]- ethanol, propanolamine, N-methylethanolamine, diethanolamine,

monobutanol amine, isobutanolamine, monopentanol amine, l-amino-3-(2-methoxyethoxy)- 2-propanol, 2-methyl-4-(methylamino)- 2-butanol, 6-amino-l -hexanol, heptaminol, isoetarine, norepinephrine, sphingosine, phenylpropanolamine and mixtures thereof. The surfactants of invention are preferably neutralized with an aqueous solution of sodium hydroxide.

The surfactants are made from natural or synthetically derived chemicals, preferably they are naturally derived, most preferably the alkyl chains are obtained from renewable natural sources.

Weights of anionic surfactants are calculated as their protonated form. Alkyl Ether Carboxylic Acid

Weights of alkyl ether carboxylic acid are calculated as the protonated form, R2-(OCH2CH2)n- OCH2COOH . They may be used as salt version for example sodium salt, or amine salt. The integer n is the mole average of ethoxylation per mole of surfactant.

The alkyl chain may be linear or branched, preferably it is linear.

The alkyl chain may be aliphatic or contain one cis or trans double bond. The alkyl chain is preferably selected from CH3(CH2)n, CH3(CH2)i3, CH3(CH2)i5, CH3(CH2)i7. A further example of an alkyl ether carboxylic acid is CH3(CH2)7CH=CH(CH2)8-.

The alkyl ether carboxylic acid is most preferably selected from the structure: CH3(CH2)i5 (OCH2CH2)2oOCH2COOH;

and,

CH3(CH2)i7 (OCH2CH2)2oOCH2COOH.

Alkyl ether carboxylic acid are available from Kao (Akypo ®), Huntsman (Empicol®) and Clariant (Emulsogen ®). The sodium salt of the alkyl ether carboxylate is most preferred.

An additional advantage of AEC incorporation is that it potentates the Ca and Mg salts of free fatty acids found in human sebum on clothes, converting them to useful soap surfactant. This allows use of less surfactant in the laundry liquid detergent for the same general detergency. In this aspect Palmitic and sapienic acid are particularly useful components of human sebum.

Lauryl Ether Sulfate

Weights of lauryl ether sulfate are calculated as the protonated form. The average number of moles of ethoxylation per mole of surfactant is preferably 1 to 4, most preferably 2.5 to 3.5. The sodium salt of the lauryl ether sulfate is preferred.

Non-ionic surfactant

The non-ionic surfactant is preferably an ethoxylated alcohol non-ionic surfactant, preferably selected from: C10 to C16 primary and secondary aliphatic alcohols ethoxylated with an average of from 6 to 10 moles of ethylene oxide per mole of alcohol, most preferably a C12 to C15 primary aliphatic alcohol with 7 to 9 moles of ethylene oxide per mole of alcohol, wherein the weight fraction of ethoxylated alcohol non-ionic surfactant/ (lauryl ether sulfate anionic surfactant + alkyl ether carboxylic acid anionic surfactant) is from 0 to 0.4, preferably 0 to 0.2;

Preferably the alkyl chain is linear.

Further Surfactant

The aqueous liquid laundry detergent may comprises from 0 to 4 wt% of further surfactants, for example those described in "Surface Active Agents" Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by Manufacturing

Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 or in Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1996).

Examples of suitable further anionic detergent compounds are; alkyl sulphates, especially those obtained by sulphating linear or branched Cs to Cie alcohols; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof. Soaps are particularly preferred, preferably from 0.5 to 2wt%.

Linear alkyl benzene sulphonates are preferably present in the aqueous liquid laundry detergent composition at a level from 0 to 1 wt% and ideally the composition is substantially devoid of linear alkyl benzene sulfonate.

Alkoxylate Polyethylene Imine

The alkoxylated polyethyelene imine comprises a polyethyleneimine backbone wherein the modification of the polyethyleneimine backbone is intended to leave the polymer without quaternisation. Such materials may be represented as PEI(X)YAO where X represents the molecular weight of the unmodified PEI and Y represents the average moles of alkoxylation (AO) per available NH in the unsubstituted polyethyleneimine backbone. Y is preferably from 7 to 40 more preferably it is in the range of 16 to 26, most preferably 18 to 22. X is selected to be from about 300 to about 10000 weight average molecular weight and is preferably about 600. The alkoxylation is preferably selected from ethoxylation or propoxylation, or a combination of the two, Ethoxylation is most preferred. The alkoxy chains may be capped with groups selected from: H; CH3; SO3"; CH2COO"; PO32"; C2H5; n-propyl, i-propyl; n-butyl; t-butyl; and, sulfosuccinate, most preferably H.

Most preferably the alkoxylated PEI is PEI(600)20EO. Terephthalate Polyester Soil Release Polymer

Terephthalate Polyester Soil Release Polymer comprise polymers of aromatic dicarboxylic acids and alkylene glycols (including polymers containing polyalkylene glycols), as described in WO2009/153184, EP2692842 and WO2014/019903.

Examples of Terephthalate Polyester Soil Release Polymer are the REPEL-O-TEX® line of polymers supplied by Rhodia, including REPEL-O-TEX® SRP6 and REPEL-O-TEX® SF-2. Other suitable soil release polymers include TexCare® polymers, including TexCare® SRA- 100, TexCare® SRA-300, TexCare® SRN-100, TexCare® SRN-170, TexCare® SRN-240, TexCare® SRN-300, and TexCare® SRN-325, all supplied by Clariant.

Preferred structure are -[(Z)a-0-OC-Ar-CO-]b and (Z)a-0-OC-[Ar-CO-0-C3H6-0-OC]b-Ar-CO- 0-(Z)a, where Ar is selected from 1 ,4 substituted phenylene and 1 ,3 substituted phenylene substituted in the 5 position with a sulphonates (SO3") group; Z is selected from

ethoxy;propoxy; and mixtures of ethoxy and propoxy; a is from 5 to 100 and b from 2 to 40. C3H6 is i-propyl. The alkoxy chains are capped with groups selected from H; CH3; SO3"; CH2COO"; PO32"; C2H5; n-propyl, i-propyl; n-butyl; t-butyl; and, sulfosuccinate.

Most preferably the Terephthalate Polyester Soil Release Polymer is:

Figure imgf000008_0001
wherein c is from 4 to 9; d is from 1 to 3; e is from 40 to 50. Polymers

The composition may comprise one or more further polymers. Examples are

carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid

copolymers. Co-polymers as described in WO2014/082955 (Unilever) may be present. Polymers present to prevent dye deposition may be present, for example

poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).

Such polymers are preferably present at levels of less then 0.5wt%. The composition is preferably devoid of silicone polymers and polymers bearing quaternised N groups.

Builders and Sequestrants

The detergent compositions may also optionally contain relatively low levels of organic detergent builder or sequestrant material. Examples include the alkali metal, citrates, succinates, malonates, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylates. Specific examples include sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, ethylene diamine tetra-acetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid, and citric acid. Other examples are DEQUEST™, organic phosphonate type sequestering agents sold by Monsanto and alkanehydroxy phosphonates.

Other suitable organic builders include the higher molecular weight polymers and

copolymers known to have builder properties. For example, such materials include appropriate polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic acid copolymers and their salts, such as those sold by BASF under the name SOKALAN™.

If utilized, the aqueous liquid laundry detergent formunation comprise from 0.1 % to 2.0 wt% builder and sequesterant material. Citrate is most preferred.

The pH of the formulation is preferably from 6.5 to 8.5, most preferably 6.8 to 7.5. pH may be obtained by the addition of an alkali, such as NaOH or an amine. Shading Dye

Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zurich, 2003) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003).

Shading Dyes for use in laundry detergents preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol"1 cm"1, preferably greater than 10000 L mol"1 cm"1. The dyes are blue or violet in colour.

Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane. Preferred mono-azo dyes contain a heterocyclic ring and are most preferably thiophene dyes. The mono-azo dyes are preferably alkoxylated and are preferably uncharged or anionically charged at pH=7. Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497. Preferred examples of thiophene dyes are shown below:

Figure imgf000010_0001

Figure imgf000010_0002

Figure imgf000010_0003
Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5, acid blue 59. The shading dye is present is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.

A mixture of shading dyes may be used.

The shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine. The alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation. Preferably 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.

Preferably the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800. An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:

Figure imgf000012_0001

(Structure I). Preferred reactive anthraquinone dyes are: Reactive blue 1 ; Reactive blue 2; Reactive blue 4; Reactive blue 5; Reactive blue 6; Reactive blue 12; Reactive blue 16; reactive blue 19; Reactive blue 24 ; Reactive blue 27; Reactive blue 29; Reactive blue 36; Reactive blue 44; Reactive blue 46 ; Reactive blue 47; reactive blue 49; Reactive blue 50; Reactive blue 53; Reactive blue 55; Reactive blue 61 ; Reactive blue 66; Reactive blue 68; Reactive blue 69; Reactive blue 74; Reactive blue 86; Reactive blue 93; Reactive blue 94; Reactive bluel 01 ; Reactive bluel 03; Reactive bluel 14; Reactive bluel 17; Reactive bluel 25; Reactive blue141 ; Reactive blue142; Reactive blue 145; Reactive blue 149; Reactive blue 155; Reactive blue 164; Reactive blue 166; Reactive blue 177; Reactive blue 181 ; Reactive blue 185; Reactive blue 188; Reactive blue 189; Reactive blue 206; Reactive blue 208; Reactive blue 246; Reactive blue 247; Reactive blue 258; Reactive blue 261 ; Reactive blue 262; Reactive blue 263; and Reactive blue 172.

The dyes are listed according to Colour Index (Society of Dyers and Colourists/American Association of Textile Chemists and Colorists) classification. Protease Enzyme

Protease enzymes hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains. Examples of suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases;

aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk/). Serine proteases are preferred. Subtilase type serine proteases are more preferred. The term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991 ) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523. Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate. The subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family. Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B.

alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140). Other useful proteases may be those described in W092/175177, WO01/016285, WO02/026024 and WO02/016547. Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO89/06270, W094/25583 and

WO05/040372, and the chymotrypsin proteases derived from Cellumonas described in WO05/052161 and WO05/052146.

Further Examples of useful proteases are the variants described in: W092/19729,

WO96/034946, WO98/201 15, WO98/201 16, WO99/01 1768, WO01/44452, WO03/006602, WO04/03186, WO04/041979, WO07/006305, W01 1/036263, W01 1/036264, especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104, 106, 1 18, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 using the BPN' numbering. More preferred the subtilase variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, *36D, V68A, N76D, N87S,R, *97E, A98S,

S99G,D,A, S99AD, S101 G,M,R S103A, V104I,Y,N, S106A, G1 18V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering).

Most preferably the protease is a subtilisins (EC 3.4.21.62).

Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B.

alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140). Preferably the subsilisin is derived from Bacillus, preferably Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii as described in US 6,312,936 Bl, US 5,679,630, US 4,760,025, US7,262,042 and WO09/021867. Most preferably the subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.

Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® all could be sold as Ultra® or Evity® (Novozymes A S).

Those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®,

Purafect®, Purafect Prime®, Purafect Ox®, FN 3®, FN4®, Excellase® and Purafect OXP® by Genencor International.

Those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Purafect®, Purafect Prime®, PreferenzTm, Purafect MA®, Purafect Ox®, Purafect OxP®, Puramax®,

Properase®, EffectenzTm, FN2®, FN3® , FN4®, Excellase®, Opticlean® and Optimase® (Danisco/DuPont), Axapem™ (Gist-Brocases N.V.),

Those available from Henkel/ Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the following mutations S99D + SIOI R + S103A + V104I + G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D), BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) - all from Henkel/Kemira; and KAP (Bacillus alkalophilus subtilisin with mutations A230V + S256G + S259N) from Kao.

Inclusion of protease in the formulation enhances cleaning.

Further Enzymes

One or more further enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.

Preferably the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.

Preferably the further enzyme is selected from: alpha-amylases; lipases; and, cellulases.

Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360),

B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).

Other examples are lipase variants such as those described in WO 92/05249,

WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292,

WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and

WO 97/07202, and WO 00/60063.

Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ and Lipoclean™(Novozymes A/S). The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1 .4 and/or EC 3.1.1 .32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids. Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively. The method of the invention may be carried out in the presence of cutinase classified in EC 3.1 .1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.

Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha- amylases obtained from Bacillus, e.g. a special strain of B. lichen iformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or

WO 00/060060. Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).

Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora

thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263,

US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.

Commercially available cellulases include Celluzyme™, Carezyme™, Celluclean™, Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation). Celluclean™ is preferred. Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S).

Further enzymes suitable for use are discussed in WO2009/087524, WO2009/090576, WO2009/107091 , WO2009/1 1 1258, and WO2009/148983. Enzyme Stabilizers

Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g., WO 92/19709 and WO 92/19708.

Where alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains. The alkyl groups are preferably linear or branched, most preferably linear.

Fluorescent Agent

The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially.

Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.

Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.

Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino}stilbene-2-2' disulophonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1 ,3,5- triazin-2-yl)]amino} stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl. The total amount of the fluorescent agent or agents used in the composition is preferably from 0.0001 to 0.5 wt %, more preferably 0.005 to 2 wt %, most preferably 0.05 to 0.25 wt %.

The aqueous solution used in the method has a fluorescer present. The fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.

Perfume

The composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, more preferably 0.05 to 0.5 wt%, most preferably from 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance

Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co. Preferably the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; Pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1 -dimethylethyl)-, 1 -acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2- phenylethyl ester;amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate. Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA).

It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components. In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.

The International Fragrance Association has published a list of fragrance ingredients (perfumes) in 201 1 : (http://www.ifraorg.Org/en-us/ingredients#.U7Z4hPldWzk).

The Research Institute for Fragrance Materials provides a database of perfumes

(fragrances) with safety information.

Perfume top note may be used to cue the whiteness and brightness benefit of the invention.

Some or all of the perfume may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also

advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0. These materials, of relatively low boiling point and relatively low CLog P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d- carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate,

cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethyl amyl ketone, ethyl benzoate, ethyl butyrate, ethyl hexyl ketone, ethyl phenyl acetate, eucalyptol, eugenol, fenchyl acetate, flor acetate (tricyclo decenyl acetate) , frutene (tricyclco decenyl propionate) , geraniol, hexenol, hexenyl acetate, hexyl acetate, hexyl formate, hydratropic alcohol, hydroxycitronellal, indone, isoamyl alcohol, iso menthone, isopulegyl acetate, isoquinolone, ligustral, linalool, linalool oxide, linalyl formate, menthone, menthyl acetphenone, methyl amyl ketone, methyl anthranilate, methyl benzoate, methyl benyl acetate, methyl eugenol, methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, methyl-n-methyl anthranilate, nerol, octalactone, octyl alcohol, p-cresol, p- cresol methyl ether, p-methoxy acetophenone, p-methyl acetophenone, phenoxy ethanol, phenyl acetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl bornate, pulegone, rose oxide, safrole, 4-terpinenol, alpha- terpinenol, and /or viridine. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.

Another group of perfumes with which the present invention can be applied are the socalled aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium,

Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.

It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.

The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise. A most preferred aspect of the invention, the at least 60 wt% containing composition comprises from 4 to 6 wt% of lauryl ether sulfate anionic surfactant with a mole average of 2.5 to 3.5 moles of ethoxylation per mole surfactant; from 4 to 6 wt% of an stearyl ether carboxylic acid anionic surfactant with a mole average of 15 to 20 moles of ethoxylation per mole surfactant; from 0 to 2 wt% of an C12 to C15 primary aliphatic alcohol with 7 to 9 moles of ethylene oxide per mole of alcohol non-ionic surfactant.

The liquid laundry detergent composition may be present in a water-soluble unit dose article. In such an embodiment, the water-soluble unit dose article comprises at least one water- soluble film shaped such that the unit-dose article comprises at least one internal compartment surrounded by the water-soluble film. The at least one compartment comprises the liquid laundry detergent composition. The water-soluble film is sealed such that the liquid laundry detergent composition does not leak out of the compartment during storage.

However, upon addition of the water-soluble unit dose article to water, the water-soluble film dissolves and releases the contents of the internal compartment into the wash liquor. Experimental

Aqueous laundry liquid detergent were made, as outlined in the table below. The pH of the liquid was adjusted to 7. The optical absorbance was measures in a 1 cm cell at 470nm and is also reported in the table. Higher absorbance values indicate scattering effects dye to incomplete solubilisation of the surfactant mix.

Figure imgf000021_0001

The inventive formulation Inv 1 and Inv 2 containing the alkyl ether carboxylic acid have lower absorbance than the comparative reference formulations, indicating better solubilisation of the surfactant mix.

Claims

1 . An aqueous liquid laundry detergent composition comprising:
(i) from 3 to 10 wt% of lauryl ether sulfate anionic surfactant, wherein the lauryl ether sulfate anionic surfactant has a mole average of 1 to 4 moles of ethoxylation per mole surfactant molecule;
(ii) from 3 to 10 wt% of an alkyl ether carboxylic acid anionic surfactant of the
following structure:
R2-(OCH2CH2)n-OCH2-COOH! wherein:
R2 is selected from saturated and mono-unsaturated C10 to C18 linear or
branched alkyl chains, preferably selected from: C12; C14; C16; and, C18 saturated linear alkyl chain, wherein n is selected from: 15 to 20, and wherein the weight fraction of lauryl ether sulfate anionic surfactant/ alkyl ether carboxylic acid anionic surfactant is from 0.4 to 1.6;
(iii) at least 60 wt% water;
(iv) from 0 to 4 wt% of an ethoxylated alcohol non-ionic surfactant, wherein the
weight fraction of ethoxylated alcohol non-ionic surfactant/ (lauryl ether sulfate anionic surfactant + alkyl ether carboxylic acid anionic surfactant) is from 0 to 0.4;
(v) from 0 to 8 wt% of an alkoxylated polyethylene imine;
(vi) from 0 to 3 wt% of a terephthalate polyester soil release polymer; and,
(vii) a further anionic surfactant wherein the ratio of further anionic surfactant/(lauryl ether sulfate anionic surfactant + alkyl ether carboxylic acid anionic surfactant) is from 0 to 0.4, preferably 0 to 0.2.
2. An aqueous liquid laundry detergent composition according to claim 1 , wherein the lauryl ether sulfate anionic surfactant has a mole average of from 2.5 to 3.5 of ethoxylation.
3. An aqueous liquid laundry detergent composition according to claim 1 or 2, wherein R2 is selected from a C12, C14, C16, and C18 saturated linear alkyl chain. An aqueous liquid laundry detergent composition according to any one of the preceding claims, wherein the weight fraction of lauryl ether sulfate anionic surfactant/ alkyl ether carboxylic acid anionic surfactant is from 0.7 to 1 .3.
An aqueous liquid laundry detergent composition according to any one of the preceding claims, wherein the ethoxylated alcohol non-ionic surfactant is a C12 to C16 primary aliphatic alcohol with 7 to 9 moles of ethylene oxide per mole of alcohol.
An aqueous liquid laundry detergent composition according to any one of the preceding claims, wherein the weight fraction of ethoxylated alcohol non-ionic surfactant/ (lauryl ether sulfate anionic surfactant + alkyl ether carboxylic acid anionic surfactant) is from 0 to 0.2.
An aqueous liquid laundry detergent composition according to claim 1 , wherein the ratio of further anionic surfactant/(lauryl ether sulfate anionic surfactant + alkyl ether carboxylic acid anionic surfactant) is from 0 to 0.2.
A domestic method of treating a textile, the method comprising the steps of:
(i) treating a textile with from 1 g/L of an aqueous solution of the laundry detergent composition as defined in any one of the preceding claims; and,
(ii) allowing said aqueous laundry detergent solution to remain in contact with the textile for 10 minutes to 2 days then rinsing and drying the textile.
PCT/EP2017/078016 2016-12-15 2017-11-02 Laundry detergent composition WO2018108382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16204322 2016-12-15
EP16204322.8 2016-12-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201780073326.9A CN110023469A (en) 2016-12-15 2017-11-02 Laundry detergent composition

Publications (1)

Publication Number Publication Date
WO2018108382A1 true WO2018108382A1 (en) 2018-06-21

Family

ID=57570203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/078016 WO2018108382A1 (en) 2016-12-15 2017-11-02 Laundry detergent composition

Country Status (3)

Country Link
CN (1) CN110023469A (en)
AR (1) AR110513A1 (en)
WO (1) WO2018108382A1 (en)

Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
WO1989006279A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Mutated subtilisin genes
WO1989006270A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Enzymatic detergent
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1992017577A1 (en) 1991-04-03 1992-10-15 Novo Nordisk A/S Novel proteases
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1992019729A1 (en) 1991-05-01 1992-11-12 Novo Nordisk A/S Stabilized enzymes and detergent compositions
WO1993018140A1 (en) 1992-03-04 1993-09-16 Novo Nordisk A/S Novel proteases
WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
US5269960A (en) * 1988-09-25 1993-12-14 The Clorox Company Stable liquid aqueous enzyme detergent
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
US5352604A (en) 1989-08-25 1994-10-04 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1994025583A1 (en) 1993-05-05 1994-11-10 Novo Nordisk A/S A recombinant trypsin-like protease
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1996034946A1 (en) 1995-05-05 1996-11-07 Novo Nordisk A/S Protease variants and compositions
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
WO1998020115A1 (en) 1996-11-04 1998-05-14 Novo Nordisk A/S Subtilase variants and compositions
WO1998020116A1 (en) 1996-11-04 1998-05-14 Novo Nordisk A/S Subtilase variants and compositions
WO1999011768A1 (en) 1997-08-29 1999-03-11 Novo Nordisk A/S Protease variants and compositions
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2001016285A2 (en) 1999-08-31 2001-03-08 Novozymes A/S Novel proteases and variants thereof
WO2001044452A1 (en) 1999-12-15 2001-06-21 Novozymes A/S Subtilase variants having an improved wash performance on egg stains
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
WO2002016547A2 (en) 2000-08-21 2002-02-28 Novozymes A/S Subtilase enzymes
WO2002026024A1 (en) 2000-08-05 2002-04-04 Haiquan Li An apparatus using recyclable resource
WO2003006602A2 (en) 2001-07-12 2003-01-23 Novozymes A/S Subtilase variants
WO2004003186A2 (en) 2002-06-26 2004-01-08 Novozymes A/S Subtilases and subtilase variants having altered immunogenicity
WO2004041979A2 (en) 2002-11-06 2004-05-21 Novozymes A/S Subtilase variants
WO2005040372A1 (en) 2003-10-23 2005-05-06 Novozymes A/S Protease with improved stability in detergents
WO2005052161A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
WO2007006305A1 (en) 2005-07-08 2007-01-18 Novozymes A/S Subtilase variants
US7262042B2 (en) 2001-12-20 2007-08-28 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease
WO2008087497A1 (en) 2007-01-19 2008-07-24 The Procter & Gamble Company Laundry care composition comprising a whitening agent for cellulosic substrates
WO2009021867A2 (en) 2007-08-10 2009-02-19 Henkel Ag & Co. Kgaa Agents containing proteases
WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
WO2009090576A2 (en) 2008-01-11 2009-07-23 Procter & Gamble International Operations Sa Cleaning and/or treatment compositions
WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
WO2009111258A2 (en) 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase
WO2009153184A1 (en) 2008-06-16 2009-12-23 Unilever Plc Improvements relating to fabric cleaning
WO2011036263A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Subtilase variants
WO2011036264A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Use of protease variants
WO2013087286A1 (en) 2011-12-12 2013-06-20 Unilever Plc Laundry compositions
WO2013142495A1 (en) 2012-03-19 2013-09-26 Milliken & Company Carboxylate dyes
EP2692842A1 (en) 2012-07-31 2014-02-05 Unilever PLC Concentrated liquid detergent compositions
WO2014019903A1 (en) 2012-07-31 2014-02-06 Unilever Plc Alkaline liquid laundry detergent compositions comprising polyesters
WO2014060235A2 (en) 2012-10-17 2014-04-24 Unilever Plc Laundry compositions
WO2014082955A1 (en) 2012-11-29 2014-06-05 Unilever Plc Thickened aqueous detergent liquid
CN104194963A (en) * 2014-09-19 2014-12-10 江苏万淇生物科技有限公司 Highly-concentrated enzyme-containing liquid detergent free of enzyme stabilizer
WO2016188693A1 (en) * 2015-05-27 2016-12-01 Unilever Plc Laundry detergent composition
WO2017162378A1 (en) * 2016-03-21 2017-09-28 Unilever Plc Laundry detergent composition

Patent Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
WO1989006279A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Mutated subtilisin genes
WO1989006270A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Enzymatic detergent
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
US5691178A (en) 1988-03-22 1997-11-25 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
US5269960A (en) * 1988-09-25 1993-12-14 The Clorox Company Stable liquid aqueous enzyme detergent
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
US5352604A (en) 1989-08-25 1994-10-04 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1992017577A1 (en) 1991-04-03 1992-10-15 Novo Nordisk A/S Novel proteases
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1992019729A1 (en) 1991-05-01 1992-11-12 Novo Nordisk A/S Stabilized enzymes and detergent compositions
WO1993018140A1 (en) 1992-03-04 1993-09-16 Novo Nordisk A/S Novel proteases
WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1994025583A1 (en) 1993-05-05 1994-11-10 Novo Nordisk A/S A recombinant trypsin-like protease
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1996034946A1 (en) 1995-05-05 1996-11-07 Novo Nordisk A/S Protease variants and compositions
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
WO1998020116A1 (en) 1996-11-04 1998-05-14 Novo Nordisk A/S Subtilase variants and compositions
WO1998020115A1 (en) 1996-11-04 1998-05-14 Novo Nordisk A/S Subtilase variants and compositions
WO1999011768A1 (en) 1997-08-29 1999-03-11 Novo Nordisk A/S Protease variants and compositions
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2001016285A2 (en) 1999-08-31 2001-03-08 Novozymes A/S Novel proteases and variants thereof
WO2001044452A1 (en) 1999-12-15 2001-06-21 Novozymes A/S Subtilase variants having an improved wash performance on egg stains
WO2002026024A1 (en) 2000-08-05 2002-04-04 Haiquan Li An apparatus using recyclable resource
WO2002016547A2 (en) 2000-08-21 2002-02-28 Novozymes A/S Subtilase enzymes
WO2003006602A2 (en) 2001-07-12 2003-01-23 Novozymes A/S Subtilase variants
US7262042B2 (en) 2001-12-20 2007-08-28 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease
WO2004003186A2 (en) 2002-06-26 2004-01-08 Novozymes A/S Subtilases and subtilase variants having altered immunogenicity
WO2004041979A2 (en) 2002-11-06 2004-05-21 Novozymes A/S Subtilase variants
WO2005040372A1 (en) 2003-10-23 2005-05-06 Novozymes A/S Protease with improved stability in detergents
WO2005052161A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
WO2005052146A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
WO2007006305A1 (en) 2005-07-08 2007-01-18 Novozymes A/S Subtilase variants
WO2008087497A1 (en) 2007-01-19 2008-07-24 The Procter & Gamble Company Laundry care composition comprising a whitening agent for cellulosic substrates
WO2009021867A2 (en) 2007-08-10 2009-02-19 Henkel Ag & Co. Kgaa Agents containing proteases
WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
WO2009090576A2 (en) 2008-01-11 2009-07-23 Procter & Gamble International Operations Sa Cleaning and/or treatment compositions
WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
WO2009111258A2 (en) 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase
WO2009153184A1 (en) 2008-06-16 2009-12-23 Unilever Plc Improvements relating to fabric cleaning
WO2011036264A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Use of protease variants
WO2011036263A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Subtilase variants
WO2013087286A1 (en) 2011-12-12 2013-06-20 Unilever Plc Laundry compositions
WO2013142495A1 (en) 2012-03-19 2013-09-26 Milliken & Company Carboxylate dyes
WO2014019903A1 (en) 2012-07-31 2014-02-06 Unilever Plc Alkaline liquid laundry detergent compositions comprising polyesters
EP2692842A1 (en) 2012-07-31 2014-02-05 Unilever PLC Concentrated liquid detergent compositions
WO2014060235A2 (en) 2012-10-17 2014-04-24 Unilever Plc Laundry compositions
WO2014082955A1 (en) 2012-11-29 2014-06-05 Unilever Plc Thickened aqueous detergent liquid
CN104194963A (en) * 2014-09-19 2014-12-10 江苏万淇生物科技有限公司 Highly-concentrated enzyme-containing liquid detergent free of enzyme stabilizer
WO2016188693A1 (en) * 2015-05-27 2016-12-01 Unilever Plc Laundry detergent composition
WO2017162378A1 (en) * 2016-03-21 2017-09-28 Unilever Plc Laundry detergent composition

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"Anionic Surfactants: Organic Chemistry", 1996, MARCEL DEKKER
"Chemicals Buyers Directory 80th Annual Edition", 1993, SCHNELL PUBLISHING CO.
"Fenaroli's Handbook of Flavor Ingredients", 1975, CRC PRESS
"Industrial Dyes Chemistry, Properties Applications", 2003, WILEY-VCH
"International Buyers Guide", 1992, CFTA
"McCutcheon's Emulsifiers and Detergents", MANUFACTURING CONFECTIONERS COMPANY
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1993, pages 253 - 360
DATABASE WPI Week 201524, 2014 Derwent World Patents Index; AN 2015-089011, XP002770380 *
H ZOLLINGER: "Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments", 2003, WILEY VCH
H. STACHE: "Tenside-Taschenbuch", 1981, CARL HAUSER VERLAG
M. B. JACOBS: "Synthetic Food Adjuncts", 1947
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
S. ARCTANDER, PERFUME AND FLAVOR CHEMICALS, 1969
SCHWARTZ; PERRY: "Surface Active Agents", vol. 1, 1949, INTERSCIENCE
SCHWARTZ; PERRY; BERCH: "SURFACE ACTIVE AGENTS", vol. 2, 1958, INTERSCIENCE
SIEZEN ET AL., PROTEIN ENGNG., vol. 4, 1991, pages 719 - 737
SIEZEN ET AL., PROTEIN SCIENCE, vol. 6, 1997, pages 501 - 523

Also Published As

Publication number Publication date
CN110023469A (en) 2019-07-16
AR110513A1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6396583B2 (en) Cleaning compositions containing polyetheramine
ES2471456T3 (en) Detergent for washing dishes machine
JP6081658B2 (en) Polyetheramines, soil release polymers, and cleaning compositions containing carboxymethylcellulose
EP2534206B1 (en) Dye polymers
JP6105560B2 (en) Compositions and methods comprising the serine protease variant
EP2297288B1 (en) Laundry compositions
JP5819302B2 (en) Storage stable liquid detergent or cleaning agent containing protease
JP5911996B2 (en) Laundry care compositions containing a dye
CN102648277B (en) Use of protease variants
JP6046167B2 (en) Laundry care compositions containing a dye
EP2445478B1 (en) Process for the production of a dye-polymer
JP5883127B2 (en) Laundry care compositions containing a dye
CA2775045A1 (en) Subtilase variants for use in detergent and cleaning compositions
US20150132831A1 (en) Compositions Comprising Lipase and Methods of Use Thereof
JP2011513539A (en) Detergent composition comprising a lipase
CN105492587B (en) Polyether amine containing cleaning composition
KR20120100937A (en) Dye polymers
CN101426890A (en) Compact fluid laundry detergent composition
KR20110095260A (en) Bacillus subtilisin comprising one or more combinable mutations
EP2038393A2 (en) Enzyme stabilization
EP1440141A2 (en) Detergent or cleanser that can be dispersed in an essentially sediment-free manner
CN103429670B (en) Dye polymer
WO2012126665A1 (en) Dye polymer
CN107532007A (en) Leuco triphenylmethane colorants as bluing agents in laundry care compositions
EP2313483A2 (en) Method for improving the cleaning action of a detergent or cleaning agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17793644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011999

Country of ref document: BR