WO2018107740A1 - 一种污水脱氮除磷装置及其应用 - Google Patents

一种污水脱氮除磷装置及其应用 Download PDF

Info

Publication number
WO2018107740A1
WO2018107740A1 PCT/CN2017/092960 CN2017092960W WO2018107740A1 WO 2018107740 A1 WO2018107740 A1 WO 2018107740A1 CN 2017092960 W CN2017092960 W CN 2017092960W WO 2018107740 A1 WO2018107740 A1 WO 2018107740A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
nitrogen
sewage
sedimentation tank
iron
Prior art date
Application number
PCT/CN2017/092960
Other languages
English (en)
French (fr)
Inventor
李激
王硕
郑凯凯
王东
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2018107740A1 publication Critical patent/WO2018107740A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used

Definitions

  • the invention relates to a sewage nitrogen and phosphorus removal device and an application thereof, and belongs to the technical field of sewage treatment.
  • sewage treatment plants play an important role in the process of nitrogen and phosphorus removal.
  • domestic sewage treatment plants have generally implemented the first-class A standard in the “Emission Standards for Pollutants in Urban Sewage Treatment Plants” (GB18918-2002), in which the TN concentration should not exceed 15 mg/L and the TP concentration should not exceed 0.5 mg/L.
  • DB11/307-2013 the A standard in the Beijing Local Water Pollution Emission Standard reduces the total nitrogen and total phosphorus limits of effluent to 10 mg, respectively.
  • a first object of the present invention is to provide a sewage nitrogen and phosphorus removal device comprising a biosorption tank having an effective volume ratio of 1:8:16:8:3.2, a first sedimentation tank, an aeration tank, and a second sedimentation tank. And the ferro-zinc autotrophic denitrification filter, which is connected by pumps and/or pipes in turn.
  • the effective volume of the biological adsorption tank, the first sedimentation tank, the aeration tank, the second sedimentation tank, and the pyrite autotrophic denitrification filter in the sewage treatment device is 1.5L, respectively.
  • the front end of the biosorption tank is provided with a water pump, and the bottom part is provided with a ventilation duct connected to the fan;
  • a sludge return pump is arranged between the biosorption tank and the first sedimentation tank;
  • the first sedimentation tank is inverted Conical, the lower part is bidirectionally connected with the biological adsorption tank, the upper part is connected with the aeration tank;
  • the aeration tank is provided with a ventilation duct, and the pipeline is connected with the fan;
  • the aeration tank and the second sedimentation tank are connected in two phases, and a foul is disposed between the two
  • the aeration tank and the ferro-zinc autotrophic denitrification filter are connected by a ferro-sulphur autotrophic denitrification feed water pump.
  • the iron-iron autotrophic denitrification filter has an inner diameter of 10 cm and a support layer of 10 cm at the bottom, and is composed of stone particles having a particle diameter of 5-10 mm, and 60 cm is disposed above the support layer.
  • a mixed layer of sulfur iron filings, the filler is sulfur particles filled with iron filings, and the filling rate is 20% by volume, sulfur particles having a particle diameter of 2-4 mm and a porosity of 50%.
  • a second object of the present invention is to provide a method for applying the device for sewage treatment, which is to control the hydraulic adsorption time of the biosorption tank to be 0.35-0.7 h, the sludge age SRT 1.5-3d, and the dissolved oxygen DO range 0.5-1 mg/L.
  • mixed liquid suspension solid Degree MLSS 4000-5000mg/L HRT 2h of the first sedimentation tank; aeration tank HRT 6-8h, SRT 18-22d, DO range 2-4mg/L, MLSS maintained 3500-5000mg/L; second sedimentation tank HRT 3h; the iron sulfide autotrophic denitrification filter HRT is 2-3h.
  • the influent total nitrogen concentration of the sewage is in the range of 31.9-49.2 mg/L, the influent total phosphorus concentration is 1.69-4.9 mg/L, and the influent COD is 189-469 mg/ L.
  • the total nitrogen in the influent water of the sewage is ⁇ 82%.
  • a third object of the present invention is to provide an application of the sewage treatment apparatus in the field of the environment.
  • a fourth object of the present invention is to provide an application of the method for denitrifying and dephosphorizing industrial wastewater and domestic sewage in the chemical industry, including tail water treatment and sewage purification.
  • the bio-adsorption/aeration/sulfur iron autotrophic denitrification combined process is used to carry out experiments on the raw water of the sewage treatment plant, and the deep denitrification and dephosphorization of sewage treatment is realized.
  • the biosorption tank generates a large amount of sludge with high organic matter content while adsorbing organic matter in the water, reducing the organic load of the subsequent treatment unit and the influence of toxic and harmful substances, and can be used for anaerobic fermentation/digestion to realize resources.
  • Figure 1 is a process diagram of a sewage nitrogen and phosphorus removal device; 1, a feed pump; 2, a fan; 3, a biosorption tank; 4, a sludge return pump; 5, a first settling tank; 6, a fan; Pool; 8, sludge return pump; 9, second sedimentation tank; 10, sulfur iron autotrophic denitrification feed pump; 11, sulfur iron autotrophic denitrification filter; 12, sulfur iron scrap mixed layer; 13, stone grain;
  • Figure 2 shows the removal of total nitrogen by the biosorption section
  • Figure 3 shows the removal of ammonia nitrogen by the biosorption section
  • Figure 4 shows the removal of total phosphorus by the biosorption section
  • Figure 5 shows the removal of COD by the biosorption section
  • Figure 6 shows the changes in the MLSS and MLVSS/MLSS of the biosorption section
  • Figure 7 shows the total nitrogen, ammonia nitrogen, total phosphorus and COD concentrations in the effluent from the sewage nitrogen and phosphorus removal unit.
  • the process of the sewage treatment device is shown in Figure 1.
  • the device is made of acrylic plate, including biosorption tank 3, first sedimentation tank 5, aeration tank 7, second sedimentation tank 9, and autotrophic denitrification of pyrite.
  • Filter tank 11 the effective volume is: 1.5L, 12L, 24L, 12L and 4.8L.
  • the front end of the biosorption tank 3 is provided with a feed water pump 1 , and a ventilation duct is connected to the fan 2 at the bottom; a sludge return pump 4 is disposed between the biosorption tank 3 and the first sedimentation tank 5; Shape, the lower part is bidirectionally connected with the biological adsorption tank 3, the upper part is connected with the aeration tank 7; the aeration tank 7 is provided with a ventilation duct, the pipeline is connected with the fan 6; the aeration tank 7 and the second sedimentation tank 9 are connected in two phases, and A sludge return pump 8 is arranged between the two; the aeration tank 7 and the second sedimentation tank 9 are connected by a ferro-sulphur autotrophic denitrification feed pump 10; the iron-iron autotrophic denitrification filter 11 has an inner diameter of 10 cm and a bottom of 10 cm.
  • the supporting layer is composed of stone particles 13 having a particle diameter of 5-10 mm, and a 60 cm sulphur iron filing layer 12 is disposed above the supporting layer, and the filler is sulphur particles filled with iron filings, and the filling ratio is 20% by volume.
  • the particle size is 2-4 mm and the porosity is 50%.
  • the device uses ferric iron autotrophic denitrification and iron filings as the main body of nitrogen and phosphorus removal, and reduces the hydraulic retention time of the whole combined process, without adding carbon source and reducing operating cost.
  • most of the carbon sources in the raw water are enriched in the sludge, and the resource treatment using anaerobic fermentation to produce acid or methanogenesis can produce products with higher added value, and truly utilize the resource utilization of sewage treatment.
  • the combined process has low operating cost and can produce resource-added products, which is of great significance for exploring new ideas for sewage treatment in line with China's national conditions.
  • the hydraulic retention time HRT of the biosorption tank is controlled to be 0.3-0.6h, the sludge age SRT is 1-2d, the dissolved oxygen DO range is 0.35-0.75mg/L, and the mixed liquid suspension solid concentration MLSS is 4000-5000mg/L.
  • the HRT of the first settling tank was 1.5 h.
  • the aeration tank HRT is 6-8h, the SRT is 15-20d, the DO range is 2-5mg/L, and the MLSS is maintained at 3000-5000mg/L.
  • the HRT of the second settling tank was 2.5 h.
  • the HRT of the pyrite autotrophic denitrification filter is 2-3h.
  • the total nitrogen concentration in the influent ranged from 31.9 to 49.2 mg/L, with an average of 36.1 mg/L.
  • Most of the influent total nitrogen components were ammonia nitrogen, with an average ratio of 82%. Due to the small amount of aeration in the biosorption section, the ammonia nitrogen nitration effect is poor, and the average removal rate is only 24.2%.
  • the total phosphorus concentration in the influent ranged from 1.69 to 4.9 mg/L with an average of 3.04 mg/L.
  • the bioadsorption section removed some of the particulate total phosphorus with an average removal rate of 23.3%.
  • the influent COD was 189-469 mg/L with an average of 289 mg/L.
  • the biosorption section is a prokaryotic microorganism that can adapt to the raw water environment and can rapidly proliferate by controlling shorter HRT and SRT, and is used to adsorb particulate matter in the water. Therefore, the biosorption section has good removal ability for influent COD.
  • the COD range of the effluent from the biosorption section was 66-111 mg/L, the average value was 88.1 mg/L, and the average removal rate was 68.2%.
  • the imperfection of the urban sewage pipe network causes a large amount of inorganic impurities to enter the sewage, and the interception of fine inorganic impurities in the pretreatment section cannot achieve the expected effect, resulting in high inorganic matter content in the excess sludge, which seriously affects resource utilization.
  • the biological adsorption section sludge is mostly a collection of granular organic matter in the influent water. As shown in Fig. 6, the organic matter content of the sludge is obviously higher than that of the inoculated sludge, which is favorable for anaerobic fermentation/digestion and has high added value. The product.
  • the aeration tank realizes complete nitrification of ammonia nitrogen, and the high concentration nitrate nitrogen removes nitrogen by autotrophic denitrification of pyrite.
  • the denitrifying bacteria are enriched on the surface of the sulfur particles to form a biofilm.
  • the autotrophic bacteria use elemental sulfur as an electron donor and nitrate nitrogen as a receptor to complete the denitrification process.
  • the effluent ammonia nitrogen range of the test device is 0.4-2.8 mg/L, and the average value is 1.3 mg/L, which achieves good nitrification; the average effluent nitrogen is 3.9 mg/L, indicating that the ferrite is self-supporting.
  • the denitrification filter has a higher nitrate-nitrogen reduction efficiency, which saves the carbon source addition under the HRT condition of shortening the entire water treatment process.
  • the addition of iron filings can neutralize the H + produced by autotrophic denitrification, maintain the pH stability of the system and ensure the normal denitrification; on the other hand, the iron filings are alloys of pure iron and iron carbide, iron carbide and impurities.
  • the COD removal effect is better, and the effluent COD range is 18-45 mg/L, and the average value is 34.2 mg/L.
  • the embodiment is the same as the third embodiment.
  • the difference is that the iron filing rate of the sulfur-iron iron filing mixture layer in the ferro-zinc autotrophic denitrification filter is adjusted, and the total phosphorus content of the water is determined.
  • Table 1 The higher the effluent, the lower the total phosphorus concentration; but when the iron filling ratio is 25%, the effluent is brownish red.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种污水脱氮除磷装置及其应用,属于污水处理技术领域。污水脱氮除磷装置包括有效容积比为5:40:80:40:16的生物吸附池(3)、第一沉淀池(5)、曝气池(7)、第二沉淀池(9)、和硫铁自养反硝化滤池(11),依次通过泵和/或管道连接。该装置将硫铁自养反硝化和铁屑作为脱氮除磷的主体,在减少整套组合工艺水力停留时间的同时,无需投加碳源,降低了运行成本。应用该装置进行污水处理,可获得平均总氮浓度3.9mg/L、平均总磷浓度0.32mg/L的出水水质,优于《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准对于出水总氮和总磷的要求。

Description

一种污水脱氮除磷装置及其应用 技术领域
本发明涉及一种污水脱氮除磷装置及其应用,属于污水处理技术领域。
背景技术
为减少污水中氮磷元素对环境的负面影响,污水处理厂在脱氮除磷过程中扮演重要角色。目前国内污水处理厂已普遍执行《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级A标准,其中TN浓度不得超过15mg/L,TP浓度不得超过0.5mg/L。近年来,我国许多地区开始执行更加严格的地方污水处理标准,如《北京地方水污染排放标准》(DB11/307-2013)中的A标准将出水总氮和总磷的限值分别降低至10mg/L和0.2mg/L,更高标准的氮磷出水要求已成为污水处理厂稳定运行所要面临的难题。传统活性污泥法需要利用碳源进行脱氮除磷,然而我国城镇污水处理厂普遍存在进水中碳源不足、碳氮比及碳磷比失衡的问题,这对于传统活性污泥法异养脱氮除磷无疑是巨大挑战。为实现一级A标准总氮及总磷的稳定达标,大部分污水处理厂要进行优质碳源及除磷药剂的投加,因而大大增加了运行成本。
发明内容
本发明的第一个目的是提供一种污水脱氮除磷装置,包括有效容积比为1:8:16:8:3.2的生物吸附池、第一沉淀池、曝气池、第二沉淀池、和硫铁自养反硝化滤池,依次通过泵和/或管道连接。
在本发明的一种实施方式中,所述污水处理装置中生物吸附池、第一沉淀池、曝气池、第二沉淀池、硫铁自养反硝化滤池的有效容积分别为1.5L、12L、24L、12L和4.8L;所述生物吸附池前端设置进水泵,底部设置通气管道与风机相连;生物吸附池与第一沉淀池之间设置污泥回流泵;所述第一沉淀池呈倒锥形,下部与生物吸附池双向连接,上部与曝气池连接;曝气池内设置通气管道,管道与风机连接;曝气池和第二沉淀池双相连接,并在二者之间设置污泥回流泵;曝气池与硫铁自养反硝化滤池之间通过硫铁自养反硝化进水泵连接。
在本发明的一种实施方式中,所述硫铁自养反硝化滤池内径10cm,底部为10cm的承托层,由粒径为5-10mm的石粒组成,承托层上方设置60cm的硫粒铁屑混合层,填料为填充铁屑的硫粒,填充率按体积比20%,粒径2-4mm,孔隙率50%的硫粒。
本发明的第二个目的是提供应用所述装置进行污水处理的方法,是控制生物吸附池水力停留时间为0.35-0.7h,污泥龄SRT 1.5-3d,溶解氧DO范围0.5-1mg/L,混合液悬浮固体浓 度MLSS 4000-5000mg/L;第一沉淀池的HRT 2h;曝气池HRT 6-8h,SRT 18-22d,DO范围2-4mg/L,MLSS维持3500-5000mg/L;第二沉淀池的HRT 3h;硫铁自养反硝化滤池HRT为2-3h。
在本发明的一种实施方式中,所述污水的进水总氮的浓度范围为31.9-49.2mg/L,进水总磷浓度为1.69-4.9mg/L,进水COD为189-469mg/L。
在本发明的一种实施方式中,所述污水的进水总氮中氨氮含量≥82%。
本发明的第三个目的是提供所述污水处理装置在环境领域的应用。
本发明的第四个目的是提供所述方法在化工领域对工业废水、生活污水进行脱氮除磷处理方面的应用,所述应用包括尾水处理、污水净化。
有益效果:采用生物吸附/曝气/硫铁自养反硝化组合工艺对污水处理厂原水进行实验,实现了污水处理的深度脱氮除磷。在该组合工艺中,生物吸附池在吸附进水中的有机物、减少后续处理单元有机负荷及有毒有害物质影响的同时,产生大量高有机质含量的污泥,可用于厌氧发酵/消化,实现资源化利用;曝气池实现氨氮的完全硝化及剩余COD的去除;硫铁自养反硝化实现硝态氮及磷酸盐的去除,完成脱氮除磷过程。结果表明,自养脱氮、铁屑除磷效率较高,可获得平均总氮浓度3.9mg/L、平均总磷浓度0.32mg/L的出水水质,优于《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准对于出水总氮和总磷的要求。
附图说明
图1为污水脱氮除磷装置的工艺图;1,进水泵;2,风机;3,生物吸附池;4,污泥回流泵;5,第一沉淀池;6,风机;7,曝气池;8,污泥回流泵;9,第二沉淀池;10,硫铁自养反硝化进水泵;11,硫铁自养反硝化滤池;12,硫粒铁屑混合层;13,石粒;
图2为生物吸附段对总氮的去除结果;
图3为生物吸附段对氨氮的去除结果;
图4为生物吸附段对总磷的去除结果;
图5为生物吸附段对COD的去除结果;
图6为生物吸附段MLSS及MLVSS/MLSS变化;
图7为污水脱氮除磷装置出水总氮、氨氮、总磷及COD浓度。
具体实施方式
实施例1污水处理装置的设计
污水处理装置的工艺流程如图1所示,所述装置采用亚克力板制成,包括生物吸附池3、第一沉淀池5、曝气池7、第二沉淀池9、硫铁自养反硝化滤池11,有效容积分别为:1.5L、 12L、24L、12L和4.8L。所述生物吸附池3前端设置进水泵1,底部设置通气管道与风机2相连;生物吸附池3与第一沉淀池5之间设置污泥回流泵4;所述第一沉淀池5呈倒锥形,下部与生物吸附池3双向连接,上部与曝气池7连接;曝气池7内设置通气管道,管道与风机6连接;曝气池7和第二沉淀池9双相连接,并在二者之间设置污泥回流泵8;曝气池7与第二沉淀池9之间通过硫铁自养反硝化进水泵10连接;硫铁自养反硝化滤池11内径10cm,底部为10cm的承托层,由粒径为5-10mm的石粒13组成,承托层上方设置60cm的硫粒铁屑混合层12,填料为填充铁屑的硫粒,填充率按体积比为20%,粒径2-4mm,孔隙率50%。
该装置将硫铁自养反硝化和铁屑作为脱氮除磷的主体,在减少整套组合工艺水力停留时间的同时,无需投加碳源,降低了运行成本。另外,大部分原水中的碳源被富集在污泥中,采用厌氧发酵产酸或产甲烷的资源化处理方式可产生附加值较高的产品,真正做到污水处理的资源化利用。该组合工艺运行费用较低,同时可产生资源化附加产物,对于探索符合我国国情的污水处理新思路具有重要意义。
实施例2生物吸附段的运行
控制生物吸附池水力停留时间HRT为0.3-0.6h,污泥龄SRT为1-2d,溶解氧DO范围为0.35-0.75mg/L,混合液悬浮固体浓度MLSS为4000-5000mg/L。第一沉淀池的HRT为1.5h。曝气池HRT为6-8h,SRT为15-20d,DO范围为2-5mg/L,MLSS维持在3000-5000mg/L。第二沉淀池的HRT为2.5h。硫铁自养反硝化滤池的HRT为2-3h。
如图2-5所示,进水总氮的浓度范围为31.9-49.2mg/L,平均值为36.1mg/L;进水总氮成分中大部分为氨氮,平均占比为82%。由于生物吸附段曝气量较小,氨氮硝化效果较差,平均去除率仅为24.2%。进水总磷浓度范围为1.69-4.9mg/L,平均值为3.04mg/L;生物吸附段可去除一部分颗粒状总磷,平均去除率为23.3%。进水COD为189-469mg/L,平均值为289mg/L。生物吸附段是通过控制较短HRT和SRT,培养适应原水环境、可以实现快速增殖的原核微生物,用以吸附进水中的颗粒态物质,因此生物吸附段对于进水中COD具有良好的去除能力,生物吸附段出水COD范围为66-111mg/L,平均值为88.1mg/L,平均去除率为68.2%。
城市污水管网的不完善致使大量的无机杂质进入到污水中,且预处理段对细小无机杂质的截留无法达到预期效果,导致剩余污泥中的无机质含量较高,严重影响资源化利用。生物吸附段污泥多为进水中颗粒状有机物的集合体,如图6所示,该段污泥有机质含量相比接种污泥明显升高,利于厌氧发酵/消化,生产附加值较高的产品。
实施例3污水处理装置的运行
应用实施例1的污水处理装置,控制生物吸附段水力停留时间HRT为0.3-0.6h,污泥龄 SRT为1-2d,溶解氧DO范围为0.35-0.75mg/L,混合液悬浮固体浓度MLSS为4000-5000mg/L。第一沉淀池的HRT为1.5h。曝气池HRT为6-8h,SRT为15-20d,DO范围为2-5mg/L,MLSS维持在3000-5000mg/L。第二沉淀池的HRT为2.5h。硫铁自养反硝化滤池的HRT为2-3h。
在该组合工艺中,曝气池实现氨氮的完全硝化,高浓度硝态氮通过硫铁自养反硝化实现氮的去除。脱氮硫杆菌富集在硫粒表面,形成生物膜,该自养菌以单质硫作为电子供体,硝态氮作为受体,完成脱氮过程。如图7所示,试验装置出水氨氮范围为0.4-2.8mg/L,平均值为1.3mg/L,实现了良好的硝化作用;出水总氮平均值为3.9mg/L,表明硫铁自养反硝化滤池有较高的硝态氮还原效率,在缩短了整个水处理工艺HRT条件下,节省了碳源的投加。铁屑的加入一方面可中和自养反硝化所产生的H+,维持系统pH稳定,保证反硝化的正常进行;另一方面,铁屑为纯铁和碳化铁的合金,碳化铁和杂质以极小的颗粒形式分散在铁屑中,当铁屑浸没在溶液中时,能构成完整的微电池回路,形成无数个腐蚀微电池,从而产生Fe3+/Fe2+,Fe3+/Fe2+与PO4 3-结合生成沉淀,从而实现污水中磷的去除。如图7所示,出水总磷浓度范围为0.2-0.43mg/L,平均值为0.32mg/L,获得了优于一级A标准的出水水质。不同铁屑填充比例条件下,总磷的去除效果不同,如表1所示,铁填充比例越高,出水总磷浓度越低;但当铁的填充比例为25%时,出水呈棕红色,原因为出水中携带的铁锈过多,因此将铁的填充比例设定为20%。COD的去除效果较好,出水COD的范围为18-45mg/L,平均值为34.2mg/L。
实施例4污水处理装置的运行
实施方式同实施例3,其区别在于,调整硫铁自养反硝化滤池中硫粒铁屑混合层的铁屑填充率,测定出水总磷的含量,结果如表1所示,铁填充比例的越高,出水总磷浓度越低;但当铁的填充比例为25%时,出水呈棕红色。
表1不同铁填充比例下的总磷去除效果
Figure PCTCN2017092960-appb-000001
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

  1. 一种污水脱氮除磷装置,其特征在于,包括有效容积比为1:8:16:8:3.2的生物吸附池、第一沉淀池、曝气池、第二沉淀池、和硫铁自养反硝化滤池,依次通过泵和/或管道连接。
  2. 根据权利要求1所述的污水脱氮除磷装置,其特征在于,所述污水脱氮除磷装置中生物吸附池、第一沉淀池、曝气池、第二沉淀池、硫铁自养反硝化滤池的有效容积比为1:8:16:8:3.2;所述生物吸附池前端设置进水泵,底部设置通气管道与风机相连;生物吸附池与第一沉淀池之间设置污泥回流泵;所述第一沉淀池呈倒锥形,下部与生物吸附池双向连接,上部与曝气池连接;曝气池内设置通气管道,管道与风机连接;曝气池和第二沉淀池双相连接,并在二者之间设置污泥回流泵;曝气池与硫铁自养反硝化滤池之间通过硫铁自养反硝化进水泵连接。
  3. 根据权利要求2所述的污水脱氮除磷装置,其特征在于,所述污水脱氮除磷装置中生物吸附池、第一沉淀池、曝气池、第二沉淀池、硫铁自养反硝化滤池的有效容积分别为1.5L、12L、24L、12L和4.8L。
  4. 根据权利要求1-3任一所述的污水脱氮除磷装置,其特征在于,所述硫铁自养反硝化滤池内径10~15cm,底部为10~15cm的承托层,由粒径为5-10mm的石粒组成,承托层上方设置60~70cm的硫粒铁屑混合层,填料为填充铁屑的硫粒,填充率按体积比20%,粒径2-4mm,孔隙率50%的硫粒。
  5. 一种污水处理的方法,其特征在于,应用权利要求1或2所述的污水脱氮除磷装置进行脱氮除磷处理。
  6. 根据权利要求5所述的方法,其特征在于,所述污水包括工业废水、生活污水。
  7. 根据权利要求6所述的方法,其特征在于,所述污水的进水总氮的浓度范围为31.9-49.2mg/L,进水总磷浓度为1.69-4.9mg/L,进水COD为189-469mg/L。
  8. 根据权利要求7所述的方法,其特征在于,所述污水的进水总氮中氨氮含量≥82%。
  9. 根据权利要求5所述的方法,其特征在于,控制生物吸附池水力停留时间为0.35-0.7h,污泥龄SRT 1.5-3d,溶解氧DO范围0.5-1mg/L,混合液悬浮固体浓度MLSS 4000-5000mg/L;第一沉淀池的HRT 2h;曝气池HRT 6-8h,SRT 18-22d,DO范围2-4mg/L,MLSS维持3500-5000mg/L;第二沉淀池的HRT 3h;硫铁自养反硝化滤池HRT为2-3h。
  10. 权利要求1-3任一所述的污水脱氮除磷装置在环境领域进行尾水处理、污水净化方面的应用。
PCT/CN2017/092960 2016-12-14 2017-07-14 一种污水脱氮除磷装置及其应用 WO2018107740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611149188.1A CN106630410A (zh) 2016-12-14 2016-12-14 一种污水脱氮除磷装置及其应用
CN201611149188.1 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018107740A1 true WO2018107740A1 (zh) 2018-06-21

Family

ID=58825129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092960 WO2018107740A1 (zh) 2016-12-14 2017-07-14 一种污水脱氮除磷装置及其应用

Country Status (2)

Country Link
CN (1) CN106630410A (zh)
WO (1) WO2018107740A1 (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721154A (zh) * 2019-03-06 2019-05-07 苏州方舟环保科技有限公司 一种硫铁耦合技术去除硝态氮的装置
CN110156269A (zh) * 2019-06-06 2019-08-23 复旦大学 一种给水厂炭砂组合滤池
CN110526390A (zh) * 2019-09-16 2019-12-03 杭州金溢建设集团有限公司 污水强化脱氮系统及其控制方法
CN111115982A (zh) * 2020-01-20 2020-05-08 上源环工生态环境科技(苏州)有限公司 一种景观水循环过滤净化设备及其工艺
CN111252895A (zh) * 2020-03-09 2020-06-09 中国电建集团成都勘测设计研究院有限公司 一种聚丁二酸丁二醇酯和改性生物陶粒颗粒的双层组合滤料及其应用
CN112279378A (zh) * 2020-10-15 2021-01-29 苏州科技大学 净化养殖废水生物处理方法、装置及循环净化养殖装置
CN112897680A (zh) * 2019-12-04 2021-06-04 江苏孚璋生物技术有限公司 一种连续流自动化生活污水处理方法
CN112919626A (zh) * 2021-01-21 2021-06-08 臻和慧联(常山)环境科技有限公司 一种硫铁自氧反硝化装置及反应控制方法
CN112939335A (zh) * 2021-01-26 2021-06-11 中电环保股份有限公司 一种基于异养和自养联合处理的深度脱氮系统及方法
CN113184995A (zh) * 2021-05-19 2021-07-30 东华大学 一种基于多源电子供体的高氮废水同步硝化-自养反硝化脱氮方法及反应器
CN113371823A (zh) * 2021-07-29 2021-09-10 中原环保股份有限公司 一种市政污水极限脱氮的连续化运行装置及其脱氮方法
CN113683202A (zh) * 2021-06-07 2021-11-23 浙江建投环保工程有限公司 一种硫铁耦合废水处理装置
CN113998847A (zh) * 2021-12-13 2022-02-01 北京城市排水集团有限责任公司 一种电化学预处理的sbr污水处理装置及方法
CN114044570A (zh) * 2021-10-28 2022-02-15 中信环境技术(广州)有限公司 一种脱氮装置及低碳氮比废水脱氮方法
CN114409082A (zh) * 2022-02-08 2022-04-29 东华大学 高氨氮、低碳氮比污废水oao耦合零价铁脱氮除磷方法
CN114702205A (zh) * 2022-04-12 2022-07-05 漳州职业技术学院 一种高磷食品工业废水处理方法及其处理系统
CN114949931A (zh) * 2021-11-12 2022-08-30 昆明理工大学 一种吸附材料的解吸装置
CN115466010A (zh) * 2022-09-01 2022-12-13 南京信息工程大学 一种海水养殖废水处理系统及控制方法
CN115504627A (zh) * 2022-09-14 2022-12-23 上海电力大学 基于离子交换分离富集的磷酸铵镁沉淀回收装置和工艺
CN115536151A (zh) * 2021-06-29 2022-12-30 中国石油化工股份有限公司 一种提高污泥同步脱氮除磷的方法及装置
CN115745144A (zh) * 2022-11-24 2023-03-07 北京工业大学 一种pd/a混养同步脱氮除磷方法及装置
CN115818845A (zh) * 2023-02-24 2023-03-21 苏州苏科环保科技有限公司 一种垃圾转运站污水处理系统及工艺
CN116002871A (zh) * 2022-12-26 2023-04-25 浙江清华长三角研究院 一种强化脱氮填料及其制备方法和应用
CN116477760A (zh) * 2023-04-17 2023-07-25 北京天佑泽环保科技有限公司 一种垃圾废液的处理方法及系统
CN118458938A (zh) * 2024-06-20 2024-08-09 北京建筑大学 一种新型脱氮除磷复合填料、制备方法及应用
CN118495734A (zh) * 2024-05-29 2024-08-16 重庆大学 一种化粪池污水处理装置及其应用
CN118495704A (zh) * 2024-07-15 2024-08-16 中国海洋大学 一种高效处理海水养殖废水氮磷污染物装置和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630410A (zh) * 2016-12-14 2017-05-10 江南大学 一种污水脱氮除磷装置及其应用
CN109368769A (zh) * 2018-12-20 2019-02-22 北京梅凯尼克环保科技有限公司 一种采用新型复合填料的自养型深床滤池
CN110776219A (zh) * 2019-12-10 2020-02-11 江南大学 一种印染废水污染物深度处理装置及其应用
CN112978925A (zh) * 2021-04-26 2021-06-18 东华大学 一种硫铁协同混养反硝化强化低c/n污废水脱氮方法及反应器
CN115650428B (zh) * 2022-11-29 2023-04-25 北京科净源科技股份有限公司 一种用于污水处理厂尾水的深度除磷脱氮的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229693A (ja) * 1990-02-02 1991-10-11 Ngk Insulators Ltd 有機性廃水の処理方法
CN102276061A (zh) * 2011-05-18 2011-12-14 贾立敏 水解反硝化脱氮系统及方法
CN102874974A (zh) * 2011-07-15 2013-01-16 天津市裕川置业集团有限公司 污水处理厂污水污泥的深度处理和综合利用工艺
CN105621608A (zh) * 2016-03-21 2016-06-01 北京科技大学 一种印染废水自养反硝化脱氮装置及方法
CN106630410A (zh) * 2016-12-14 2017-05-10 江南大学 一种污水脱氮除磷装置及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580298A (zh) * 2009-06-26 2009-11-18 哈尔滨工业大学深圳研究生院 污水脱氮反硝化处理方法及系统
CN102225825B (zh) * 2011-05-09 2013-05-01 余静 零能耗的城市污水强化吸附ab处理方法
CN102642981B (zh) * 2012-04-17 2013-12-11 清华大学 一种脱氮除磷装置
CN204417293U (zh) * 2015-01-26 2015-06-24 冯祥军 一种脱氮除磷装置
CN104710081B (zh) * 2015-03-18 2016-08-24 河海大学 一种污水脱氮除磷方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229693A (ja) * 1990-02-02 1991-10-11 Ngk Insulators Ltd 有機性廃水の処理方法
CN102276061A (zh) * 2011-05-18 2011-12-14 贾立敏 水解反硝化脱氮系统及方法
CN102874974A (zh) * 2011-07-15 2013-01-16 天津市裕川置业集团有限公司 污水处理厂污水污泥的深度处理和综合利用工艺
CN105621608A (zh) * 2016-03-21 2016-06-01 北京科技大学 一种印染废水自养反硝化脱氮装置及方法
CN106630410A (zh) * 2016-12-14 2017-05-10 江南大学 一种污水脱氮除磷装置及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU ET AL: "Sulfur and Sulfur-Iron Particles Packed Reactors for Simultaneous Advanced Removal of Nitrogen and Phosphorus", CHEMICAL INDUSTRY AND ENGINEERING, vol. 32, no. 4, 31 July 2015 (2015-07-31), pages 63 - 67 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721154A (zh) * 2019-03-06 2019-05-07 苏州方舟环保科技有限公司 一种硫铁耦合技术去除硝态氮的装置
CN110156269A (zh) * 2019-06-06 2019-08-23 复旦大学 一种给水厂炭砂组合滤池
CN110526390A (zh) * 2019-09-16 2019-12-03 杭州金溢建设集团有限公司 污水强化脱氮系统及其控制方法
CN112897680A (zh) * 2019-12-04 2021-06-04 江苏孚璋生物技术有限公司 一种连续流自动化生活污水处理方法
CN111115982A (zh) * 2020-01-20 2020-05-08 上源环工生态环境科技(苏州)有限公司 一种景观水循环过滤净化设备及其工艺
CN111252895A (zh) * 2020-03-09 2020-06-09 中国电建集团成都勘测设计研究院有限公司 一种聚丁二酸丁二醇酯和改性生物陶粒颗粒的双层组合滤料及其应用
CN112279378A (zh) * 2020-10-15 2021-01-29 苏州科技大学 净化养殖废水生物处理方法、装置及循环净化养殖装置
CN112279378B (zh) * 2020-10-15 2024-01-12 苏州科技大学 净化养殖废水生物处理方法、装置及循环净化养殖装置
CN112919626B (zh) * 2021-01-21 2022-03-11 臻和慧联(浙江)环境科技有限公司 一种硫铁自养反硝化装置及反应控制方法
CN112919626A (zh) * 2021-01-21 2021-06-08 臻和慧联(常山)环境科技有限公司 一种硫铁自氧反硝化装置及反应控制方法
CN112939335A (zh) * 2021-01-26 2021-06-11 中电环保股份有限公司 一种基于异养和自养联合处理的深度脱氮系统及方法
CN113184995B (zh) * 2021-05-19 2022-11-04 东华大学 一种基于多源电子供体的高氮废水同步硝化-自养反硝化脱氮方法及反应器
CN113184995A (zh) * 2021-05-19 2021-07-30 东华大学 一种基于多源电子供体的高氮废水同步硝化-自养反硝化脱氮方法及反应器
CN113683202A (zh) * 2021-06-07 2021-11-23 浙江建投环保工程有限公司 一种硫铁耦合废水处理装置
CN115536151A (zh) * 2021-06-29 2022-12-30 中国石油化工股份有限公司 一种提高污泥同步脱氮除磷的方法及装置
CN115536151B (zh) * 2021-06-29 2024-05-31 中国石油化工股份有限公司 一种提高污泥同步脱氮除磷的方法及装置
CN113371823A (zh) * 2021-07-29 2021-09-10 中原环保股份有限公司 一种市政污水极限脱氮的连续化运行装置及其脱氮方法
CN113371823B (zh) * 2021-07-29 2022-12-23 中原环保股份有限公司 一种市政污水极限脱氮的连续化运行装置及其脱氮方法
CN114044570A (zh) * 2021-10-28 2022-02-15 中信环境技术(广州)有限公司 一种脱氮装置及低碳氮比废水脱氮方法
CN114949931B (zh) * 2021-11-12 2024-04-05 昆明理工大学 一种吸附材料的解吸装置
CN114949931A (zh) * 2021-11-12 2022-08-30 昆明理工大学 一种吸附材料的解吸装置
CN113998847A (zh) * 2021-12-13 2022-02-01 北京城市排水集团有限责任公司 一种电化学预处理的sbr污水处理装置及方法
CN114409082B (zh) * 2022-02-08 2024-03-01 东华大学 高氨氮、低碳氮比污废水oao耦合零价铁脱氮除磷方法
CN114409082A (zh) * 2022-02-08 2022-04-29 东华大学 高氨氮、低碳氮比污废水oao耦合零价铁脱氮除磷方法
CN114702205A (zh) * 2022-04-12 2022-07-05 漳州职业技术学院 一种高磷食品工业废水处理方法及其处理系统
CN115466010A (zh) * 2022-09-01 2022-12-13 南京信息工程大学 一种海水养殖废水处理系统及控制方法
CN115466010B (zh) * 2022-09-01 2023-07-04 南京信息工程大学 一种海水养殖废水处理系统及控制方法
CN115504627B (zh) * 2022-09-14 2024-02-02 上海电力大学 基于离子交换分离富集的磷酸铵镁沉淀回收装置和工艺
CN115504627A (zh) * 2022-09-14 2022-12-23 上海电力大学 基于离子交换分离富集的磷酸铵镁沉淀回收装置和工艺
CN115745144A (zh) * 2022-11-24 2023-03-07 北京工业大学 一种pd/a混养同步脱氮除磷方法及装置
CN115745144B (zh) * 2022-11-24 2024-05-24 北京工业大学 一种pd/a混养同步脱氮除磷方法及装置
CN116002871A (zh) * 2022-12-26 2023-04-25 浙江清华长三角研究院 一种强化脱氮填料及其制备方法和应用
CN115818845A (zh) * 2023-02-24 2023-03-21 苏州苏科环保科技有限公司 一种垃圾转运站污水处理系统及工艺
CN116477760A (zh) * 2023-04-17 2023-07-25 北京天佑泽环保科技有限公司 一种垃圾废液的处理方法及系统
CN118495734A (zh) * 2024-05-29 2024-08-16 重庆大学 一种化粪池污水处理装置及其应用
CN118458938A (zh) * 2024-06-20 2024-08-09 北京建筑大学 一种新型脱氮除磷复合填料、制备方法及应用
CN118495704A (zh) * 2024-07-15 2024-08-16 中国海洋大学 一种高效处理海水养殖废水氮磷污染物装置和方法

Also Published As

Publication number Publication date
CN106630410A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018107740A1 (zh) 一种污水脱氮除磷装置及其应用
CN101417850B (zh) 一种新型投料活性污泥法处理焦化废水工艺
CN106517649B (zh) 一种污水深度脱氮除磷的方法
CN105776541A (zh) 一种达标地表水ⅳ类之改良氧化沟工艺
WO2019169610A1 (zh) 污水生物处理工艺升级扩容的方法
CN106746174A (zh) 一种餐厨垃圾浆料厌氧发酵废水处理方法
CN109694131B (zh) 一种垃圾渗滤液的脱氮方法及系统
CN106277555A (zh) 一种焦化废水的高效低成本处理方法及系统
CN204958663U (zh) 污水处理工艺的污泥吸附分离深度脱氮除磷系统
CN106396282A (zh) 餐厨垃圾浆料厌氧发酵废水处理装置
CN110615534A (zh) 一种硫铁自养反硝化装置及其应用
CN105585123A (zh) 一体化生物粉末活性炭吸附沉淀装置及其使用方法
CN111333175A (zh) 一种采用铁碳和好氧颗粒污泥耦合处理含有dmac、dmf废水的方法
CN110642478B (zh) 一种焦化酚氰废水的生化法和物化法耦合处理系统及方法
CN105481099B (zh) 一种除油后焦化废水的处理方法
CN113666507B (zh) 粉末载体富集世代周期长的脱氮功能菌分离回收装置及方法
CN211445412U (zh) 一种焦化酚氰废水的生化法和物化法耦合处理系统
CN107337321A (zh) 餐厨垃圾厌氧消化废水处理装置
CN104310710A (zh) 一种煤化工废水高效节能处理工艺
CN106565055A (zh) 一种污水深度脱氮的方法
CN117247110A (zh) 极限脱氮除磷协同深度降碳装置及方法
CN104496130B (zh) 一种处理难降解精细化工废水的方法
CN216687821U (zh) 一种同步脱硫反硝化脱氮耦合电化学除磷系统
CN106865740A (zh) 一种焦化废水生化系统处理生物载体及应用
CN106495413A (zh) 一种污水处理装置及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881454

Country of ref document: EP

Kind code of ref document: A1