WO2018107622A1 - Pfc double full bridge-based smart correction wave voltage conversion circuit - Google Patents

Pfc double full bridge-based smart correction wave voltage conversion circuit Download PDF

Info

Publication number
WO2018107622A1
WO2018107622A1 PCT/CN2017/079190 CN2017079190W WO2018107622A1 WO 2018107622 A1 WO2018107622 A1 WO 2018107622A1 CN 2017079190 W CN2017079190 W CN 2017079190W WO 2018107622 A1 WO2018107622 A1 WO 2018107622A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
unit
bridge
pfc
tube
Prior art date
Application number
PCT/CN2017/079190
Other languages
French (fr)
Chinese (zh)
Inventor
何伟
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2018107622A1 publication Critical patent/WO2018107622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a voltage conversion circuit, in particular to an intelligent correction wave voltage conversion circuit based on a PFC double full bridge.
  • the intelligent buck-boost conversion device from AC to AC is also called a travel plug.
  • the modified wave voltage conversion circuit is a key circuit thereof, and is a circuit capable of realizing AC-AC conversion. It can realize the function of buck-boost and stabilize voltage and frequency in AC-AC conversion.
  • most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability.
  • the technical problem to be solved by the present invention is to provide an intelligent correction wave voltage conversion circuit based on PFC double full bridge which can improve the PF value of the voltage conversion device, improve the output voltage quality, and is safe and reliable. .
  • the present invention adopts the following technical solutions.
  • An intelligent correction wave voltage conversion circuit based on PFC double full bridge comprising: an input rectification filtering unit, wherein an input end is connected to a power grid for rectifying and filtering a grid voltage; and a PFC boosting unit is connected to the input An output end of the rectifying and filtering unit is configured to perform boost conversion on an output voltage of the input rectifying and filtering unit; a full-bridge DC-to-DC isolated converter unit includes a first switching tube, a second switching tube, a transformer, and a first rectification a bridge, an eighth switch tube, a ninth switch tube and a first electrolytic capacitor, a drain of the first switch tube is connected to an output end of the PFC boost unit, and a source of the first switch tube is connected to a primary winding of the transformer The first end of the second switch tube is connected to the source of the first switch tube, the source of the second switch tube is connected to the front end, and the drain of the eighth switch tube is connected to the PFC An output end of the voltage unit, a source of the
  • the anode on the output side of the first rectifier bridge is connected to the rear end, and the anode on the output side of the first rectifier bridge is connected to the anode of the first electrolytic capacitor, the first The anode of the electrolytic capacitor is connected to the rear end, and the anode of the output side of the first rectifier bridge is used as an output end of the full-bridge DC-to-DC isolating converter unit; an inverter inverter unit is connected to the full-bridge DC-to-DC isolation converter An output end of the unit, the inverter inverting unit is configured to invert and convert an output voltage of the full-bridge DC-to-DC isolated converter unit to output an alternating current.
  • the PFC boosting unit includes a boosting inductor, a third switching transistor, a first rectifying diode and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the input rectifying and filtering unit, the liter
  • the back end of the voltage inductor is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal
  • the third The drain of the switch tube is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is used as the output end of the PFC boost unit, and the cathode of the first rectifier diode is connected to the anode of the second electrolytic capacitor, and the second electrolytic capacitor
  • the negative pole is connected to the front end.
  • the method further includes an MCU control unit, a gate of the first switch tube, a gate of the second switch tube, a gate of the eighth switch tube, a gate of the ninth switch tube, and a gate of the third switch tube.
  • the poles are respectively connected to the MCU control unit, and the MCU control unit is configured to respectively output PWM signals to the first switch tube, the second switch tube, the eighth switch tube, the ninth switch tube and the third switch tube to control the first switch The on and off states of the tube, the second switch tube, the eighth switch tube, the ninth switch tube, and the third switch tube.
  • the input rectification filtering unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor and a rectifier bridge, and the fuse is connected to a neutral line or a live line of the socket, and the common mode rejection
  • the front end of the inductor is connected in parallel to the socket
  • the lightning protection resistor is connected in parallel to the front end of the common mode suppression inductor
  • the input ends of the safety capacitor and the rectifier bridge are both connected in parallel to the rear end of the common mode suppression inductor, and the output end of the rectifier bridge
  • the full-bridge DC-to-DC isolating converter unit further includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to a positive pole on an output side of the first rectifier bridge.
  • the back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit collects the electrical signal output by the full-bridge DC-to-DC isolated converter unit by the second sampling resistor and the third sampling resistor.
  • the method further includes an AC sampling unit connected between the input end of the input rectifying and filtering unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input rectifying and filtering unit and feed back to MCU control unit.
  • the AC sampling unit includes an operational amplifier, and two input ends of the operational amplifier are respectively connected to an input end of the input rectifying and filtering unit through a current limiting resistor, and an output end of the operational amplifier is connected to the MCU control unit. .
  • a first sampling resistor is connected between the source and the front end of the third switching transistor, and a source of the third switching transistor is connected to the MCU control unit, and the MCU is used by the first sampling resistor.
  • the control unit collects the third switch The electrical signal of the source of the tube.
  • the MCU control unit includes a single chip microcomputer and peripheral circuits thereof.
  • the inverter inverter unit comprises an inverter bridge composed of a fourth switch tube, a fifth switch tube, a sixth switch tube and a seventh switch tube, and a gate and a fifth switch of the fourth switch tube a gate of the tube, a gate of the sixth switch tube, and a gate of the seventh switch tube are respectively connected to the MCU control unit, and the fourth switch tube, the fifth switch tube, and the sixth switch tube are controlled by the MCU control unit And the seventh switch tube is turned on or off to enable the inverter inverting unit to output an alternating voltage.
  • the input rectification filtering unit is used for rectifying and filtering the grid voltage, and then outputting the pulsating DC voltage, and then using the PFC boosting unit to boost the pulsating DC voltage.
  • the full-bridge DC-to-DC isolated converter unit when the first switch tube and the ninth switch tube are turned on; the current is formed by the first switch tube, the transformer primary coil, and the ninth switch tube to the front end, and then The transformer core is coupled to the secondary side of the transformer.
  • the two diodes of the first rectifier bridge start to work, and the alternating current is rectified into a unidirectional pulsating power to the first electrolytic capacitor, and filtered to form a direct current.
  • the current is formed by the second switch tube primary coil and the eighth switch tube to the front end to form a loop, and then is coupled to the transformer secondary side through the transformer core, then the first The other two diodes of the rectifier bridge start to work, rectifying the alternating current into a unidirectional pulsating power to the first electrolytic capacitor, and filtering to form a direct current.
  • the output voltage can be adjusted to achieve boost or buck.
  • the invention adopts a full bridge isolation method to realize voltage isolation transmission, can effectively improve the PF value of the step-up/step-down conversion device, and also improve the output voltage quality, so that the voltage conversion process is more secure and reliable.
  • FIG. 1 is a circuit schematic diagram of a modified wave voltage conversion circuit.
  • FIG. 2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
  • the invention discloses an intelligent correction wave voltage conversion circuit based on a PFC double full bridge, which is combined with FIG. 1 to FIG. 3 and includes:
  • An input rectification and filtering unit 10 the input end of which is connected to the power grid for rectifying and filtering the grid voltage;
  • a PFC boosting unit 20 is connected to the output end of the input rectifying and filtering unit 10 for boosting and converting the output voltage of the input rectifying and filtering unit 10;
  • a full-bridge DC-to-DC isolated converter unit 30 includes a first switching transistor Q6, a second switching transistor Q7, and a transformer T1, a first rectifier bridge (D5, D6, D7, D8), an eighth switching transistor Q8, a ninth switching transistor Q9 and a first electrolytic capacitor C3, the drain of the first switching transistor Q6 is connected to the PFC boosting unit
  • the output of the first switch Q6 is connected to the first end of the primary winding of the transformer T1, and the drain of the second switch Q7 is connected to the source of the first switch Q6.
  • the source of the second switching transistor Q7 is connected to the front end, the drain of the eighth switching transistor Q8 is connected to the output end of the PFC boosting unit 20, and the source of the eighth switching transistor Q8 is connected to the first winding of the transformer T1.
  • the drain of the ninth switch transistor Q9 is connected to the source of the eighth switch transistor Q8, the source of the ninth switch transistor Q9 is connected to the front end, and the gate of the first switch transistor Q6 is The gate of the second switch Q7, the gate of the eighth switch Q8, and the gate of the ninth switch Q9 are respectively used to access the PWM pulse signal to control the first switch Q6 and the ninth switch Q9 simultaneously.
  • both ends of the secondary winding of the transformer T1 and the first rectifier bridge (D5, D6, D7) D8)
  • the two ends of the input side are connected in parallel, and the negative pole on the output side of the first rectifier bridge (D5, D6, D7, D8) is connected to the back end, and the first rectifier bridge (D5, D6, D7, D8)
  • the positive electrode on the output side is connected to the positive electrode of the first electrolytic capacitor C3, the negative electrode of the first electrolytic capacitor C3 is connected to the rear end, and the positive electrode on the output side of the first rectifier bridge (D5, D6, D7, D8) is used as the full electrode.
  • An inverter inverting unit 40 is connected to the output of the full-bridge DC-to-DC isolating converter unit 30 for inverting the output voltage of the full-bridge DC-to-DC isolated converter unit 30. After the conversion, the output AC power.
  • the input rectification and filtering unit 10 rectifies and filters the grid voltage, and then outputs a pulsating DC voltage, and then the PFC boosting unit 20 boosts the pulsating DC voltage, and performs DC-DC isolation in the full-bridge.
  • the converter unit 30 when the first switching transistor Q6 and the ninth switching transistor Q9 are turned on; the current is formed by the first switching transistor Q6, the transformer T1 primary winding, and the ninth switching transistor Q9 to the front end, and then through the transformer.
  • the T1 core is coupled to the secondary side of the transformer.
  • the two diodes (D6, D7) of the first rectifier bridge start to work, and the alternating current is rectified into a unidirectional pulsating power to the first electrolytic capacitor C3, and filtered to form a direct current.
  • the second switching transistor Q7 and the eighth switching transistor Q8 are turned on, the current is formed by the second switching transistor Q7, the primary winding of the transformer T1, and the eighth switching transistor Q8 to form a loop, and then is coupled to the core through the transformer T1.
  • the secondary side of the transformer at which time the other two diodes (D5, D8) of the first rectifier bridge start to work, rectify the alternating current into a unidirectional pulsating power to the first electrolytic capacitor C3, and filter to form a direct current.
  • the output voltage can be adjusted to achieve boost or buck.
  • the invention adopts a full bridge isolation method to realize voltage isolation transmission, can effectively improve the PF value of the step-up/step-down conversion device, and also improve the output voltage quality, so that the voltage conversion process is more secure and reliable.
  • the PFC boosting unit 20 includes a boosting inductor L2, a third switching transistor Q5, a first rectifier diode D1, and a second electrolytic capacitor C2, and the front end of the boosting inductor L2 is connected to the input rectification filter.
  • the output end of the unit 10, the rear end of the boosting inductor L2 is connected to the drain of the third switching transistor Q5, and the source of the third switching transistor Q5 Connected to the front end, the gate of the third switch Q5 is used to access a PWM control signal, the drain of the third switch Q5 is connected to the anode of the first rectifier diode D1, and the first rectifier diode D1
  • the cathode serves as an output terminal of the PFC boosting unit 20, and the cathode of the first rectifier diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end.
  • the PFC boosting unit 20 when the output rectifying and filtering unit 10 detects that the half-wave AC voltage is output, the PFC boosting unit 20 enters the boosting mode to improve the PF value of the AC-to-AC intelligent buck switching topology circuit.
  • the specific boosting principle is as follows: When Q5 is turned on, the current on C1 forms a loop through the boost inductors L2 and Q5 to GND, and the boost inductor L2 stores energy; when Q5 is turned off The boosting inductor will form an induced electromotive force much higher than the input voltage.
  • the induced electromotive force is rectified by the freewheeling tube D1 to form a unidirectional pulse voltage and then sent to the C2 capacitor for filtering, and filtered into a DC voltage of 400V.
  • Q5 is to increase or decrease the on-time of Q5 according to the input AC change taken by the control chip, so that the current and voltage phases are consistent to increase the PF value.
  • the embodiment further includes an MCU control unit 80, a gate of the first switch tube Q6, a gate of the second switch tube Q7, a gate of the eighth switch tube Q8, and a ninth switch tube.
  • the gate of Q9 and the gate of the third switch Q5 are respectively connected to the MCU control unit 80, and the MCU control unit 80 is configured to respectively output PWM signals to the first switch tube Q6, the second switch tube Q7, and the eighth switch tube.
  • Q8 the ninth switch tube Q9 and the third switch tube Q5 to control the on/off state of the first switch tube Q6, the second switch tube Q7, the eighth switch tube Q8, the ninth switch tube Q9 and the third switch tube Q5.
  • the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
  • the input rectification filtering unit 10 includes a socket, a fuse F2, a lightning protection resistor RV1, a common mode suppression inductor L1, a safety capacitor CX1, and a rectifier bridge DB1.
  • the fuse F2 is connected in series with the socket.
  • the front end of the common mode suppression inductor L1 is connected in parallel to the socket
  • the lightning protection resistor RV1 is connected in parallel to the front end of the common mode rejection inductor L1
  • the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are connected in parallel
  • the common mode suppresses the rear end of the inductor L1, and the output terminal of the rectifier bridge DB1 has a filter capacitor C1 connected in parallel.
  • the full-bridge DC-to-DC isolated converter unit 30 further includes a second sampling resistor R13 and a third in series. a sampling resistor R15, a front end of the second sampling resistor R13 is connected to the anode of the output side of the first rectifier bridge (D5, D6, D7, D8), and a rear end of the third sampling resistor R15 is connected to the MCU control unit 80.
  • the MCU control unit 80 acquires an electrical signal output by the full-bridge DC-to-DC isolating converter unit 30 by the second sampling resistor R13 and the third sampling resistor R15.
  • the embodiment further includes an AC sampling unit 70, which is connected between the input end of the input rectification and filtering unit 10 and the MCU control unit 80.
  • the AC sampling unit 70 is configured to collect the voltage of the AC side of the input rectification filtering unit 10 and feed back to the MCU control unit 80.
  • the AC sampling unit 70 includes an operational amplifier U9B, and two input ends of the operational amplifier U9B are respectively connected to an input end of the input rectifying and filtering unit 10 through a current limiting resistor, and an output end of the operational amplifier U9B Connected to the MCU control unit 80.
  • a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to
  • the MCU control unit 80 causes the MCU control unit 80 to acquire an electrical signal of the source of the third switching transistor Q5 by the first sampling resistor R2A.
  • the inverter inverter unit 40 includes an inverter bridge composed of a fourth switching transistor Q1, a fifth switching transistor Q2, a sixth switching transistor Q3, and a seventh switching transistor Q4, and the fourth switching transistor
  • the gate of Q1, the gate of the fifth switching transistor Q2, the gate of the sixth switching transistor Q3, and the gate of the seventh switching transistor Q4 are respectively connected to the MCU control unit 80, and are controlled by the MCU control unit 80.
  • the four switching transistors Q1, the fifth switching transistor Q2, the sixth switching transistor Q3, and the seventh switching transistor Q4 are turned on or off to cause the inverter inverting unit 40 to output an alternating voltage.
  • the DC voltage passing through the C3 filter capacitor forms a loop through Q1, load, and Q4 to supply power to the load to form a first half cycle power frequency level; the second half cycle power frequency level passes through Q2.
  • the load and Q3 form a loop, thus forming a complete power frequency correction wave AC voltage on the load.
  • the PWM signal outputted by the control chip U1 is sent to the GATE poles of Q1, Q2, Q3, and Q4 by the PWM1H, PWM1L, PWM2H, and PWM2L through the driving circuit.
  • the phase and frequency in the inverter inverter circuit operate in accordance with the mode set in the control chip.
  • the invention has a high PF value, realizes isolation between the power grid and the output end, and has high security, and at the same time, The output voltage can be automatically adjusted within the input full voltage range, and the output frequency is fixed.
  • the output voltage is a modified wave output, and has an automatic shaping function for the AC voltage.
  • the present invention includes a voltage and current sampling circuit that can prevent Surge voltage and current.

Abstract

A power-factor correction (PFC) double full bridge-based smart correction wave voltage conversion circuit, comprising: an input rectifying and filtering unit (10), a PFC boosting unit (20), and a full bridge DC-DC isolating converter unit (30), wherein a drain of a first switch tube Q6 is connected to an output terminal of the PFC boosting unit (20), while a source of the first switch tube Q6 is connected to a first terminal of a primary winding of a transformer T1; a drain of a second switch tube Q7 is connected to the source of the first switch tube Q6, while a source of the second switch tube Q7 is connected to a front end ground; a drain of an eighth switch tube Q8 is connected to the output terminal of the PFC boosting unit (20), while a source of the eighth switch tube Q8 is connected to a second terminal of the primary winding of the transformer T1; a drain of a ninth switch tube Q9 is connected to the source of the eighth switch tube Q8, while a source of the ninth switch tube Q9 is connected to the front end ground; two terminals of a secondary winding of the transformer T1 are connected in parallel to two terminals of an input side of a first rectifying bridge, a positive electrode of an output side of the first rectifying bridge acting as an output terminal and being connected to a phase inverting unit (40), thereby improving output voltage quality.

Description

一种基于PFC双全桥的智能型修正波电压转换电路Intelligent correction wave voltage conversion circuit based on PFC double full bridge
技术领域Technical field
本发明涉及电压转换电路,尤其涉及一种基于PFC双全桥的智能型修正波电压转换电路。The invention relates to a voltage conversion circuit, in particular to an intelligent correction wave voltage conversion circuit based on a PFC double full bridge.
背景技术Background technique
现有技术中,由AC转AC的智能升降压转换装置又被称为旅行插排,该装置中,修正波电压转换电路是其关键电路,是一种能实现AC-AC变换的电路,可以在AC-AC变换中实现升降压并稳定电压与频率的功能。然而目前的AC-AC便隽式设备市场大多数为非隔离型的拓扑电路,且PF值低、输出电压质量低、安全可靠性差。In the prior art, the intelligent buck-boost conversion device from AC to AC is also called a travel plug. In this device, the modified wave voltage conversion circuit is a key circuit thereof, and is a circuit capable of realizing AC-AC conversion. It can realize the function of buck-boost and stabilize voltage and frequency in AC-AC conversion. However, most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability.
发明内容Summary of the invention
本发明要解决的技术问题在于,针对现有技术的不足,提供一种可提高电压转换装置的PF值、可提高输出电压质量,并且安全可靠的基于PFC双全桥的智能型修正波电压转换电路。The technical problem to be solved by the present invention is to provide an intelligent correction wave voltage conversion circuit based on PFC double full bridge which can improve the PF value of the voltage conversion device, improve the output voltage quality, and is safe and reliable. .
为解决上述技术问题,本发明采用如下技术方案。In order to solve the above technical problems, the present invention adopts the following technical solutions.
一种基于PFC双全桥的智能型修正波电压转换电路,其包括有:一输入整流滤波单元,其输入端连接电网,用于对电网电压进行整流和滤波;一PFC升压单元,连接于输入整流滤波单元的输出端,用于对输入整流滤波单元的输出电压进行升压转换;一全桥DC转DC隔离变换器单元,包括有第一开关管、第二开关管、变压器、第一整流桥、第八开关管、第九开关管和第一电解电容,所述第一开关管的漏极连接于PFC升压单元的输出端,所述第一开关管的源极连接于变压器初级绕组的第一端,所述第二开关管的漏极连接于第一开关管的源极,所述第二开关管的源极接前端地,所述第八开关管的漏极连接于PFC升压单元的输出端,所述第八开关管的源极连接于变压器初级绕组的第二端,所述第九开关管的漏极连接于第八开关管的源极,所述第九开关管的源极连接前端地,所述第一开关管的栅极、第二开关管的栅极、第八开关管的栅极和第九开关管的栅极分别用于接入PWM脉冲信号,以控制所述第一开关管与第九开关管同时通断,且所述第二开关管与第八开关管同时通断,所述变压器副边绕组的两端与第一整流桥输入侧的两端相并联,所述第一整流桥输出侧的负极连接于后端地,所述第一整流桥输出侧的正极连接于第一电解电容的正极,所述第一 电解电容的负极连接于后端地,所述第一整流桥输出侧的正极作为全桥DC转DC隔离变换器单元的输出端;一逆变倒相单元,连接于全桥DC转DC隔离变换器单元的输出端,所述逆变倒相单元用于对全桥DC转DC隔离变换器单元的输出电压进行逆变转换后输出交流电。An intelligent correction wave voltage conversion circuit based on PFC double full bridge, comprising: an input rectification filtering unit, wherein an input end is connected to a power grid for rectifying and filtering a grid voltage; and a PFC boosting unit is connected to the input An output end of the rectifying and filtering unit is configured to perform boost conversion on an output voltage of the input rectifying and filtering unit; a full-bridge DC-to-DC isolated converter unit includes a first switching tube, a second switching tube, a transformer, and a first rectification a bridge, an eighth switch tube, a ninth switch tube and a first electrolytic capacitor, a drain of the first switch tube is connected to an output end of the PFC boost unit, and a source of the first switch tube is connected to a primary winding of the transformer The first end of the second switch tube is connected to the source of the first switch tube, the source of the second switch tube is connected to the front end, and the drain of the eighth switch tube is connected to the PFC An output end of the voltage unit, a source of the eighth switch tube is connected to a second end of the primary winding of the transformer, a drain of the ninth switch tube is connected to a source of the eighth switch tube, and the ninth switch tube Source connection front end The gate of the first switch, the gate of the second switch, the gate of the eighth switch, and the gate of the ninth switch are respectively used to access a PWM pulse signal to control the first The switch tube and the ninth switch tube are simultaneously turned on and off, and the second switch tube and the eighth switch tube are simultaneously turned on and off, and both ends of the secondary winding of the transformer are connected in parallel with the two ends of the input side of the first rectifier bridge. The anode on the output side of the first rectifier bridge is connected to the rear end, and the anode on the output side of the first rectifier bridge is connected to the anode of the first electrolytic capacitor, the first The anode of the electrolytic capacitor is connected to the rear end, and the anode of the output side of the first rectifier bridge is used as an output end of the full-bridge DC-to-DC isolating converter unit; an inverter inverter unit is connected to the full-bridge DC-to-DC isolation converter An output end of the unit, the inverter inverting unit is configured to invert and convert an output voltage of the full-bridge DC-to-DC isolated converter unit to output an alternating current.
优选地,所述PFC升压单元包括有升压电感、第三开关管、第一整流二极管和第二电解电容,所述升压电感的前端连接于输入整流滤波单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一整流二极管的阳极,所述第一整流二极管的阴极作为PFC升压单元的输出端,且该第一整流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。Preferably, the PFC boosting unit includes a boosting inductor, a third switching transistor, a first rectifying diode and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the input rectifying and filtering unit, the liter The back end of the voltage inductor is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal, the third The drain of the switch tube is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is used as the output end of the PFC boost unit, and the cathode of the first rectifier diode is connected to the anode of the second electrolytic capacitor, and the second electrolytic capacitor The negative pole is connected to the front end.
优选地,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极、第八开关管的栅极、第九开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管、第二开关管、第八开关管、第九开关管和第三开关管,以控制第一开关管、第二开关管、第八开关管、第九开关管和第三开关管的通断状态。Preferably, the method further includes an MCU control unit, a gate of the first switch tube, a gate of the second switch tube, a gate of the eighth switch tube, a gate of the ninth switch tube, and a gate of the third switch tube. The poles are respectively connected to the MCU control unit, and the MCU control unit is configured to respectively output PWM signals to the first switch tube, the second switch tube, the eighth switch tube, the ninth switch tube and the third switch tube to control the first switch The on and off states of the tube, the second switch tube, the eighth switch tube, the ninth switch tube, and the third switch tube.
优选地,所述输入整流滤波单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有滤波电容。Preferably, the input rectification filtering unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor and a rectifier bridge, and the fuse is connected to a neutral line or a live line of the socket, and the common mode rejection The front end of the inductor is connected in parallel to the socket, the lightning protection resistor is connected in parallel to the front end of the common mode suppression inductor, and the input ends of the safety capacitor and the rectifier bridge are both connected in parallel to the rear end of the common mode suppression inductor, and the output end of the rectifier bridge There is a filter capacitor in parallel.
优选地,所述全桥DC转DC隔离变换器单元还包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于第一整流桥输出侧的正极,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集全桥DC转DC隔离变换器单元输出的电信号。Preferably, the full-bridge DC-to-DC isolating converter unit further includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to a positive pole on an output side of the first rectifier bridge. The back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit collects the electrical signal output by the full-bridge DC-to-DC isolated converter unit by the second sampling resistor and the third sampling resistor.
优选地,还包括有一交流采样单元,所述交流采样单元连接于输入整流滤波单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入整流滤波单元交流侧的电压并反馈至MCU控制单元。Preferably, the method further includes an AC sampling unit connected between the input end of the input rectifying and filtering unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input rectifying and filtering unit and feed back to MCU control unit.
优选地,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入整流滤波单元的输入端,所述运放的输出端连接于MCU控制单元。Preferably, the AC sampling unit includes an operational amplifier, and two input ends of the operational amplifier are respectively connected to an input end of the input rectifying and filtering unit through a current limiting resistor, and an output end of the operational amplifier is connected to the MCU control unit. .
优选地,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关 管源极的电信号。Preferably, a first sampling resistor is connected between the source and the front end of the third switching transistor, and a source of the third switching transistor is connected to the MCU control unit, and the MCU is used by the first sampling resistor. The control unit collects the third switch The electrical signal of the source of the tube.
优选地,所述MCU控制单元包括有单片机及其外围电路。Preferably, the MCU control unit includes a single chip microcomputer and peripheral circuits thereof.
优选地,所述逆变倒相单元包括由第四开关管、第五开关管、第六开关管和第七开关管组成的逆变桥,所述第四开关管的栅极、第五开关管的栅极、第六开关管的栅极和第七开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第四开关管、第五开关管、第六开关管和第七开关管导通或截止,以令所述逆变倒相单元输出交流电压。Preferably, the inverter inverter unit comprises an inverter bridge composed of a fourth switch tube, a fifth switch tube, a sixth switch tube and a seventh switch tube, and a gate and a fifth switch of the fourth switch tube a gate of the tube, a gate of the sixth switch tube, and a gate of the seventh switch tube are respectively connected to the MCU control unit, and the fourth switch tube, the fifth switch tube, and the sixth switch tube are controlled by the MCU control unit And the seventh switch tube is turned on or off to enable the inverter inverting unit to output an alternating voltage.
本发明公开的基于PFC双全桥的智能型修正波电压转换电路中,利用输入整流滤波单元对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元对脉动直流电压进行升压处理,在全桥DC转DC隔离变换器单元中,当第一开关管和第九开关管时导通;电流由第一开关管、变压器原边线圈、第九开关管到前端地形成回路,然后通过变压器磁芯藕合至变压器副边,这时第一整流桥的两个二极管开始工作,将交流电整流成单向脉动电给第一电解电容,并滤波而形成直流。当第二开关管和第八开关管导通时,电流由第二开关管原边线圈、第八开关管到前端地形成回路,然后通过变压器磁芯藕合至变压器副边,这时第一整流桥的另两个二极管开始工作,将交流电整流成单向脉动电给第一电解电容,并滤波而形成直流。通过改变变压器原副边的匝数比可以调整输出电压的高低,进而实现升压或降压。基于上述结构,本发明采用全桥隔离的方式,实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。In the intelligent modified wave voltage conversion circuit based on PFC double full bridge disclosed in the invention, the input rectification filtering unit is used for rectifying and filtering the grid voltage, and then outputting the pulsating DC voltage, and then using the PFC boosting unit to boost the pulsating DC voltage. In the full-bridge DC-to-DC isolated converter unit, when the first switch tube and the ninth switch tube are turned on; the current is formed by the first switch tube, the transformer primary coil, and the ninth switch tube to the front end, and then The transformer core is coupled to the secondary side of the transformer. At this time, the two diodes of the first rectifier bridge start to work, and the alternating current is rectified into a unidirectional pulsating power to the first electrolytic capacitor, and filtered to form a direct current. When the second switch tube and the eighth switch tube are turned on, the current is formed by the second switch tube primary coil and the eighth switch tube to the front end to form a loop, and then is coupled to the transformer secondary side through the transformer core, then the first The other two diodes of the rectifier bridge start to work, rectifying the alternating current into a unidirectional pulsating power to the first electrolytic capacitor, and filtering to form a direct current. By changing the turns ratio of the primary side of the transformer, the output voltage can be adjusted to achieve boost or buck. Based on the above structure, the invention adopts a full bridge isolation method to realize voltage isolation transmission, can effectively improve the PF value of the step-up/step-down conversion device, and also improve the output voltage quality, so that the voltage conversion process is more secure and reliable.
附图说明DRAWINGS
图1为修正波电压转换电路的电路原理图。FIG. 1 is a circuit schematic diagram of a modified wave voltage conversion circuit.
图2为本发明优选实施例中交流采样单元的电路原理图。2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
图3为本发明优选实施例中MCU控制单元的电路原理图。3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
具体实施方式detailed description
下面结合附图和实施例对本发明作更加详细的描述。The invention will now be described in greater detail with reference to the drawings and embodiments.
本发明公开了一种基于PFC双全桥的智能型修正波电压转换电路,结合图1至图3所示,其包括有:The invention discloses an intelligent correction wave voltage conversion circuit based on a PFC double full bridge, which is combined with FIG. 1 to FIG. 3 and includes:
一输入整流滤波单元10,其输入端连接电网,用于对电网电压进行整流和滤波;An input rectification and filtering unit 10, the input end of which is connected to the power grid for rectifying and filtering the grid voltage;
一PFC升压单元20,连接于输入整流滤波单元10的输出端,用于对输入整流滤波单元10的输出电压进行升压转换;a PFC boosting unit 20 is connected to the output end of the input rectifying and filtering unit 10 for boosting and converting the output voltage of the input rectifying and filtering unit 10;
一全桥DC转DC隔离变换器单元30,包括有第一开关管Q6、第二开关管Q7、变压器 T1、第一整流桥(D5、D6、D7、D8)、第八开关管Q8、第九开关管Q9和第一电解电容C3,所述第一开关管Q6的漏极连接于PFC升压单元20的输出端,所述第一开关管Q6的源极连接于变压器T1初级绕组的第一端,所述第二开关管Q7的漏极连接于第一开关管Q6的源极,所述第二开关管Q7的源极接前端地,所述第八开关管Q8的漏极连接于PFC升压单元20的输出端,所述第八开关管Q8的源极连接于变压器T1初级绕组的第二端,所述第九开关管Q9的漏极连接于第八开关管Q8的源极,所述第九开关管Q9的源极连接前端地,所述第一开关管Q6的栅极、第二开关管Q7的栅极、第八开关管Q8的栅极和第九开关管Q9的栅极分别用于接入PWM脉冲信号,以控制所述第一开关管Q6与第九开关管Q9同时通断,且所述第二开关管Q7与第八开关管Q8同时通断,所述变压器T1副边绕组的两端与第一整流桥(D5、D6、D7、D8)输入侧的两端相并联,所述第一整流桥(D5、D6、D7、D8)输出侧的负极连接于后端地,所述第一整流桥(D5、D6、D7、D8)输出侧的正极连接于第一电解电容C3的正极,所述第一电解电容C3的负极连接于后端地,所述第一整流桥(D5、D6、D7、D8)输出侧的正极作为全桥DC转DC隔离变换器单元30的输出端;A full-bridge DC-to-DC isolated converter unit 30 includes a first switching transistor Q6, a second switching transistor Q7, and a transformer T1, a first rectifier bridge (D5, D6, D7, D8), an eighth switching transistor Q8, a ninth switching transistor Q9 and a first electrolytic capacitor C3, the drain of the first switching transistor Q6 is connected to the PFC boosting unit The output of the first switch Q6 is connected to the first end of the primary winding of the transformer T1, and the drain of the second switch Q7 is connected to the source of the first switch Q6. The source of the second switching transistor Q7 is connected to the front end, the drain of the eighth switching transistor Q8 is connected to the output end of the PFC boosting unit 20, and the source of the eighth switching transistor Q8 is connected to the first winding of the transformer T1. The drain of the ninth switch transistor Q9 is connected to the source of the eighth switch transistor Q8, the source of the ninth switch transistor Q9 is connected to the front end, and the gate of the first switch transistor Q6 is The gate of the second switch Q7, the gate of the eighth switch Q8, and the gate of the ninth switch Q9 are respectively used to access the PWM pulse signal to control the first switch Q6 and the ninth switch Q9 simultaneously. Turning on and off, and the second switch tube Q7 and the eighth switch tube Q8 are turned on and off at the same time, both ends of the secondary winding of the transformer T1 and the first rectifier bridge (D5, D6, D7) D8) The two ends of the input side are connected in parallel, and the negative pole on the output side of the first rectifier bridge (D5, D6, D7, D8) is connected to the back end, and the first rectifier bridge (D5, D6, D7, D8) The positive electrode on the output side is connected to the positive electrode of the first electrolytic capacitor C3, the negative electrode of the first electrolytic capacitor C3 is connected to the rear end, and the positive electrode on the output side of the first rectifier bridge (D5, D6, D7, D8) is used as the full electrode. The output of the bridge DC to DC isolation converter unit 30;
一逆变倒相单元40,连接于全桥DC转DC隔离变换器单元30的输出端,所述逆变倒相单元40用于对全桥DC转DC隔离变换器单元30的输出电压进行逆变转换后输出交流电。An inverter inverting unit 40 is connected to the output of the full-bridge DC-to-DC isolating converter unit 30 for inverting the output voltage of the full-bridge DC-to-DC isolated converter unit 30. After the conversion, the output AC power.
上述修正波电压转换电路中,利用输入整流滤波单元10对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元20对脉动直流电压进行升压处理,在全桥DC转DC隔离变换器单元30中,当第一开关管Q6和第九开关管Q9时导通;电流由第一开关管Q6、变压器T1原边线圈、第九开关管Q9到前端地形成回路,然后通过变压器T1磁芯藕合至变压器副边,这时第一整流桥的两个二极管(D6、D7)开始工作,将交流电整流成单向脉动电给第一电解电容C3,并滤波而形成直流。当第二开关管Q7和第八开关管Q8导通时,电流由第二开关管Q7、变压器T1原边线圈、第八开关管Q8到前端地形成回路,然后通过变压器T1磁芯藕合至变压器副边,这时第一整流桥的另两个二极管(D5、D8)开始工作,将交流电整流成单向脉动电给第一电解电容C3,并滤波而形成直流。通过改变变压器T1原副边的匝数比可以调整输出电压的高低,进而实现升压或降压。基于上述结构,本发明采用全桥隔离的方式,实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。In the above correction wave voltage conversion circuit, the input rectification and filtering unit 10 rectifies and filters the grid voltage, and then outputs a pulsating DC voltage, and then the PFC boosting unit 20 boosts the pulsating DC voltage, and performs DC-DC isolation in the full-bridge. In the converter unit 30, when the first switching transistor Q6 and the ninth switching transistor Q9 are turned on; the current is formed by the first switching transistor Q6, the transformer T1 primary winding, and the ninth switching transistor Q9 to the front end, and then through the transformer. The T1 core is coupled to the secondary side of the transformer. At this time, the two diodes (D6, D7) of the first rectifier bridge start to work, and the alternating current is rectified into a unidirectional pulsating power to the first electrolytic capacitor C3, and filtered to form a direct current. When the second switching transistor Q7 and the eighth switching transistor Q8 are turned on, the current is formed by the second switching transistor Q7, the primary winding of the transformer T1, and the eighth switching transistor Q8 to form a loop, and then is coupled to the core through the transformer T1. The secondary side of the transformer, at which time the other two diodes (D5, D8) of the first rectifier bridge start to work, rectify the alternating current into a unidirectional pulsating power to the first electrolytic capacitor C3, and filter to form a direct current. By changing the turns ratio of the primary and secondary sides of the transformer T1, the output voltage can be adjusted to achieve boost or buck. Based on the above structure, the invention adopts a full bridge isolation method to realize voltage isolation transmission, can effectively improve the PF value of the step-up/step-down conversion device, and also improve the output voltage quality, so that the voltage conversion process is more secure and reliable.
关于升压部分,所述PFC升压单元20包括有升压电感L2、第三开关管Q5、第一整流二极管D1和第二电解电容C2,所述升压电感L2的前端连接于输入整流滤波单元10的输出端,所述升压电感L2的后端连接于第三开关管Q5的漏极,所述第三开关管Q5的源极 接前端地,所述第三开关管Q5的栅极用于接入一路PWM控制信号,所述第三开关管Q5的漏极连接第一整流二极管D1的阳极,所述第一整流二极管D1的阴极作为PFC升压单元20的输出端,且该第一整流二极管D1的阴极连接第二电解电容C2的正极,第二电解电容C2的负极接前端地。Regarding the boosting portion, the PFC boosting unit 20 includes a boosting inductor L2, a third switching transistor Q5, a first rectifier diode D1, and a second electrolytic capacitor C2, and the front end of the boosting inductor L2 is connected to the input rectification filter. The output end of the unit 10, the rear end of the boosting inductor L2 is connected to the drain of the third switching transistor Q5, and the source of the third switching transistor Q5 Connected to the front end, the gate of the third switch Q5 is used to access a PWM control signal, the drain of the third switch Q5 is connected to the anode of the first rectifier diode D1, and the first rectifier diode D1 The cathode serves as an output terminal of the PFC boosting unit 20, and the cathode of the first rectifier diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end.
上述PFC升压单元20中,当监测到输入整流滤波单元10输出半波交流电压是,PFC升压单元20进入升压模式,以提高AC转AC智能降压转换拓扑电路的PF值,升压后通过C2滤波后的电压为400V,具体的升压原理如下:Q5导通时,C1上的电流经升压电感L2、Q5到GND形成回路,升压电感L2储存能量;当Q5关断时,升压电感上会形成比输入电压高得多的感应电动势,感应电动势经续流管D1进行整流后形成单向脉冲电压再送给C2电容进滤波,滤波成400V的直流电压。并且Q5是根据控制芯片采到的输入交流电变化来加大或减少Q5的导通时间,以使电流与电压相位变一致来提高PF值。In the PFC boosting unit 20, when the output rectifying and filtering unit 10 detects that the half-wave AC voltage is output, the PFC boosting unit 20 enters the boosting mode to improve the PF value of the AC-to-AC intelligent buck switching topology circuit. After the C2 filtered voltage is 400V, the specific boosting principle is as follows: When Q5 is turned on, the current on C1 forms a loop through the boost inductors L2 and Q5 to GND, and the boost inductor L2 stores energy; when Q5 is turned off The boosting inductor will form an induced electromotive force much higher than the input voltage. The induced electromotive force is rectified by the freewheeling tube D1 to form a unidirectional pulse voltage and then sent to the C2 capacitor for filtering, and filtered into a DC voltage of 400V. And Q5 is to increase or decrease the on-time of Q5 according to the input AC change taken by the control chip, so that the current and voltage phases are consistent to increase the PF value.
作为一种优选方式,本实施例还包括有一MCU控制单元80,所述第一开关管Q6的栅极、第二开关管Q7的栅极、第八开关管Q8的栅极、第九开关管Q9的栅极和第三开关管Q5的栅极分别连接于MCU控制单元80,所述MCU控制单元80用于分别输出PWM信号至第一开关管Q6、第二开关管Q7、第八开关管Q8、第九开关管Q9和第三开关管Q5,以控制第一开关管Q6、第二开关管Q7、第八开关管Q8、第九开关管Q9和第三开关管Q5的通断状态。进一步地,所述MCU控制单元80包括有单片机U1及其外围电路。As a preferred manner, the embodiment further includes an MCU control unit 80, a gate of the first switch tube Q6, a gate of the second switch tube Q7, a gate of the eighth switch tube Q8, and a ninth switch tube. The gate of Q9 and the gate of the third switch Q5 are respectively connected to the MCU control unit 80, and the MCU control unit 80 is configured to respectively output PWM signals to the first switch tube Q6, the second switch tube Q7, and the eighth switch tube. Q8, the ninth switch tube Q9 and the third switch tube Q5, to control the on/off state of the first switch tube Q6, the second switch tube Q7, the eighth switch tube Q8, the ninth switch tube Q9 and the third switch tube Q5. Further, the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
作为一种优选方式,所述输入整流滤波单元10包括有插座、保险F2、防雷电阻RV1、共模抑制电感L1、安规电容CX1和整流桥DB1,所述保险F2串接于插座的零线或火线上,所述共模抑制电感L1的前端并联于插座,所述防雷电阻RV1并联于共模抑制电感L1的前端,所述安规电容CX1和整流桥DB1的输入端均并联于共模抑制电感L1的后端,所述整流桥DB1的输出端并联有滤波电容C1。As a preferred mode, the input rectification filtering unit 10 includes a socket, a fuse F2, a lightning protection resistor RV1, a common mode suppression inductor L1, a safety capacitor CX1, and a rectifier bridge DB1. The fuse F2 is connected in series with the socket. On the line or the live line, the front end of the common mode suppression inductor L1 is connected in parallel to the socket, the lightning protection resistor RV1 is connected in parallel to the front end of the common mode rejection inductor L1, and the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are connected in parallel The common mode suppresses the rear end of the inductor L1, and the output terminal of the rectifier bridge DB1 has a filter capacitor C1 connected in parallel.
本实施例中,为了实现对全桥DC转DC隔离变换器单元30输出的直流电进行采样,所述全桥DC转DC隔离变换器单元30还包括有依次串联的第二采样电阻R13和第三采样电阻R15,所述第二采样电阻R13的前端连接于第一整流桥(D5、D6、D7、D8)输出侧的正极,所述第三采样电阻R15的后端连接于MCU控制单元80,藉由所述第二采样电阻R13和第三采样电阻R15而令MCU控制单元80采集全桥DC转DC隔离变换器单元30输出的电信号。In this embodiment, in order to sample the direct current outputted by the full-bridge DC-to-DC isolated converter unit 30, the full-bridge DC-to-DC isolated converter unit 30 further includes a second sampling resistor R13 and a third in series. a sampling resistor R15, a front end of the second sampling resistor R13 is connected to the anode of the output side of the first rectifier bridge (D5, D6, D7, D8), and a rear end of the third sampling resistor R15 is connected to the MCU control unit 80. The MCU control unit 80 acquires an electrical signal output by the full-bridge DC-to-DC isolating converter unit 30 by the second sampling resistor R13 and the third sampling resistor R15.
为了监测输入整流滤波单元10的输出信号,本实施例还包括有一交流采样单元70,所述交流采样单元70连接于输入整流滤波单元10的输入端与MCU控制单元80之间,所 述交流采样单元70用于采集输入整流滤波单元10交流侧的电压并反馈至MCU控制单元80。In order to monitor the output signal of the input rectification and filtering unit 10, the embodiment further includes an AC sampling unit 70, which is connected between the input end of the input rectification and filtering unit 10 and the MCU control unit 80. The AC sampling unit 70 is configured to collect the voltage of the AC side of the input rectification filtering unit 10 and feed back to the MCU control unit 80.
进一步地,所述交流采样单元70包括有运放U9B,所述运放U9B的两个输入端分别通过限流电阻而连接于输入整流滤波单元10的输入端,所述运放U9B的输出端连接于MCU控制单元80。Further, the AC sampling unit 70 includes an operational amplifier U9B, and two input ends of the operational amplifier U9B are respectively connected to an input end of the input rectifying and filtering unit 10 through a current limiting resistor, and an output end of the operational amplifier U9B Connected to the MCU control unit 80.
为了便于对PFC升压单元20中的电流进行实时采集,所述第三开关管Q5的源极与前端地之间连接有第一采样电阻R2A,所述第三开关管Q5的源极连接于MCU控制单元80,藉由所述第一采样电阻R2A而令MCU控制单元80采集第三开关管Q5源极的电信号。In order to facilitate real-time acquisition of the current in the PFC boosting unit 20, a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to The MCU control unit 80 causes the MCU control unit 80 to acquire an electrical signal of the source of the third switching transistor Q5 by the first sampling resistor R2A.
关于逆变部分,所述逆变倒相单元40包括由第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4组成的逆变桥,所述第四开关管Q1的栅极、第五开关管Q2的栅极、第六开关管Q3的栅极和第七开关管Q4的栅极分别连接于MCU控制单元80,藉由所述MCU控制单元80而控制第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4导通或截止,以令所述逆变倒相单元40输出交流电压。Regarding the inverter part, the inverter inverter unit 40 includes an inverter bridge composed of a fourth switching transistor Q1, a fifth switching transistor Q2, a sixth switching transistor Q3, and a seventh switching transistor Q4, and the fourth switching transistor The gate of Q1, the gate of the fifth switching transistor Q2, the gate of the sixth switching transistor Q3, and the gate of the seventh switching transistor Q4 are respectively connected to the MCU control unit 80, and are controlled by the MCU control unit 80. The four switching transistors Q1, the fifth switching transistor Q2, the sixth switching transistor Q3, and the seventh switching transistor Q4 are turned on or off to cause the inverter inverting unit 40 to output an alternating voltage.
上述逆变倒相单元40中,经过C3滤波电容的直流电压经Q1、负载、Q4形成回路给负载供电形成第一个半周期工频电平;第二个半周期工频电平通过Q2、负载、Q3形成回路,这样在负载上就形成了一个完整的工频修正波交流电压。控制芯片U1输出的PWM信号经驱动电路后分别送出PWM1H、PWM1L、PWM2H、PWM2L给Q1、Q2、Q3、Q4的GATE极。逆变倒相电路中的相位与频率按照控制芯片内部设定的模式进行工作。In the above-mentioned inverter inverting unit 40, the DC voltage passing through the C3 filter capacitor forms a loop through Q1, load, and Q4 to supply power to the load to form a first half cycle power frequency level; the second half cycle power frequency level passes through Q2. The load and Q3 form a loop, thus forming a complete power frequency correction wave AC voltage on the load. The PWM signal outputted by the control chip U1 is sent to the GATE poles of Q1, Q2, Q3, and Q4 by the PWM1H, PWM1L, PWM2H, and PWM2L through the driving circuit. The phase and frequency in the inverter inverter circuit operate in accordance with the mode set in the control chip.
本发明公开的基于PFC双全桥的智能型修正波电压转换电路中,相比现有技术而言,首先,本发明具有高PF值,实现了电网与输出端隔离,安全性非常高,同时,在输入全电压范围内能够能自动调节输出电压,并且固定输出频率,再次,输出电压是以修正波输出,对交流电压有自动整形功能,此外,本发明方案含有电压与电流采样电路,能防浪涌电压与电流。In the intelligent modified wave voltage conversion circuit based on PFC double full bridge disclosed in the present invention, compared with the prior art, firstly, the invention has a high PF value, realizes isolation between the power grid and the output end, and has high security, and at the same time, The output voltage can be automatically adjusted within the input full voltage range, and the output frequency is fixed. Again, the output voltage is a modified wave output, and has an automatic shaping function for the AC voltage. In addition, the present invention includes a voltage and current sampling circuit that can prevent Surge voltage and current.
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。 The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. All modifications, equivalents, and improvements made within the technical scope of the present invention are intended to be included within the scope of the present invention.

Claims (10)

  1. 一种基于PFC双全桥的智能型修正波电压转换电路,其特征在于,包括有:An intelligent correction wave voltage conversion circuit based on PFC double full bridge, characterized in that it comprises:
    一输入整流滤波单元,其输入端连接电网,用于对电网电压进行整流和滤波;An input rectifying and filtering unit, the input end of which is connected to the power grid for rectifying and filtering the grid voltage;
    一PFC升压单元,连接于输入整流滤波单元的输出端,用于对输入整流滤波单元的输出电压进行升压转换;a PFC boosting unit is connected to the output end of the input rectifying and filtering unit for boosting and converting the output voltage of the input rectifying and filtering unit;
    一全桥DC转DC隔离变换器单元,包括有第一开关管、第二开关管、变压器、第一整流桥、第八开关管、第九开关管和第一电解电容,所述第一开关管的漏极连接于PFC升压单元的输出端,所述第一开关管的源极连接于变压器初级绕组的第一端,所述第二开关管的漏极连接于第一开关管的源极,所述第二开关管的源极接前端地,所述第八开关管的漏极连接于PFC升压单元的输出端,所述第八开关管的源极连接于变压器初级绕组的第二端,所述第九开关管的漏极连接于第八开关管的源极,所述第九开关管的源极连接前端地,所述第一开关管的栅极、第二开关管的栅极、第八开关管的栅极和第九开关管的栅极分别用于接入PWM脉冲信号,以控制所述第一开关管与第九开关管同时通断,且所述第二开关管与第八开关管同时通断,所述变压器副边绕组的两端与第一整流桥输入侧的两端相并联,所述第一整流桥输出侧的负极连接于后端地,所述第一整流桥输出侧的正极连接于第一电解电容的正极,所述第一电解电容的负极连接于后端地,所述第一整流桥输出侧的正极作为全桥DC转DC隔离变换器单元的输出端;a full-bridge DC-to-DC isolated converter unit includes a first switch tube, a second switch tube, a transformer, a first rectifier bridge, an eighth switch tube, a ninth switch tube, and a first electrolytic capacitor, and the first switch The drain of the tube is connected to the output end of the PFC boosting unit, the source of the first switching tube is connected to the first end of the primary winding of the transformer, and the drain of the second switching tube is connected to the source of the first switching tube a pole, a source of the second switching transistor is connected to the front end, a drain of the eighth switching transistor is connected to an output end of the PFC boosting unit, and a source of the eighth switching transistor is connected to a first winding of the transformer a second end, a drain of the ninth switch tube is connected to a source of the eighth switch tube, a source of the ninth switch tube is connected to the front end, a gate of the first switch tube, and a second switch tube a gate, a gate of the eighth switch tube, and a gate of the ninth switch tube are respectively used for accessing a PWM pulse signal to control the first switch tube and the ninth switch tube to be turned on and off at the same time, and the second switch The tube and the eighth switch tube are simultaneously turned on and off, and the two ends of the secondary winding of the transformer are the first The two ends of the input side of the bridge are connected in parallel, the anode on the output side of the first rectifier bridge is connected to the rear end, and the anode on the output side of the first rectifier bridge is connected to the anode of the first electrolytic capacitor, the first electrolysis a cathode of the capacitor is connected to the rear end, and an anode of the output side of the first rectifier bridge is used as an output end of the full-bridge DC-to-DC isolating converter unit;
    一逆变倒相单元,连接于全桥DC转DC隔离变换器单元的输出端,所述逆变倒相单元用于对全桥DC转DC隔离变换器单元的输出电压进行逆变转换后输出交流电。An inverter inverting unit is connected to an output end of the full-bridge DC-to-DC isolating converter unit, and the inverter inverting unit is configured to invert and convert the output voltage of the full-bridge DC-to-DC isolated converter unit AC power.
  2. 如权利要求1所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,所述PFC升压单元包括有升压电感、第三开关管、第一整流二极管和第二电解电容,所述升压电感的前端连接于输入整流滤波单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一整流二极管的阳极,所述第一整流二极管的阴极作为PFC升压单元的输出端,且该第一整流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。The PFC dual full bridge-based intelligent correction wave voltage conversion circuit according to claim 1, wherein the PFC boosting unit comprises a boosting inductor, a third switching transistor, a first rectifier diode, and a second electrolytic capacitor. The front end of the boosting inductor is connected to the output end of the input rectifying and filtering unit, the rear end of the boosting inductor is connected to the drain of the third switching tube, and the source of the third switching tube is connected to the front end. The gate of the third switching transistor is used to access a PWM control signal, the drain of the third switching transistor is connected to the anode of the first rectifier diode, and the cathode of the first rectifier diode is used as the output terminal of the PFC boosting unit. And the cathode of the first rectifier diode is connected to the anode of the second electrolytic capacitor, and the cathode of the second electrolytic capacitor is connected to the front end.
  3. 如权利要求2所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极、第八开关管的栅极、第九开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管、第二开关管、第八开关管、第九开关管和第三开关管,以控制第一开关管、第二开关管、第八开关管、第九开关管和第三开关管的通断状态。 The PFC dual full bridge-based intelligent correction wave voltage conversion circuit according to claim 2, further comprising an MCU control unit, a gate of the first switching tube, a gate of the second switching tube, and a The gate of the eighth switch, the gate of the ninth switch, and the gate of the third switch are respectively connected to the MCU control unit, and the MCU control unit is configured to respectively output PWM signals to the first switch and the second switch And an eighth switch tube, a ninth switch tube and a third switch tube to control the on and off states of the first switch tube, the second switch tube, the eighth switch tube, the ninth switch tube and the third switch tube.
  4. 如权利要求1所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,所述输入整流滤波单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有滤波电容。The PFC dual full bridge-based intelligent correction wave voltage conversion circuit according to claim 1, wherein the input rectification filtering unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor, and a rectification. a bridge connected to the neutral or the live line of the socket, the front end of the common mode suppression inductor being connected in parallel to the socket, the lightning protection resistor being parallel to the front end of the common mode rejection inductor, the safety capacitor and the rectifier bridge The input ends are all connected in parallel to the rear end of the common mode rejection inductor, and the output end of the rectifier bridge is connected with a filter capacitor in parallel.
  5. 如权利要求3所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,所述全桥DC转DC隔离变换器单元还包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于输出侧的正极,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集全桥DC转DC隔离变换器单元输出的电信号。The PFC dual full bridge based intelligent correction wave voltage conversion circuit according to claim 3, wherein the full bridge DC to DC isolating converter unit further comprises a second sampling resistor and a third sampling resistor connected in series in sequence. The front end of the second sampling resistor is connected to the positive pole on the output side, and the rear end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit collects the second sampling resistor and the third sampling resistor. The electrical signal output by the full-bridge DC-to-DC isolated converter unit.
  6. 如权利要求3所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,还包括有一交流采样单元,所述交流采样单元连接于输入整流滤波单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入整流滤波单元交流侧的电压并反馈至MCU控制单元。The PFC dual full bridge-based intelligent correction wave voltage conversion circuit according to claim 3, further comprising an AC sampling unit, wherein the AC sampling unit is connected to the input end of the input rectification filtering unit and the MCU control unit. The AC sampling unit is configured to collect the voltage of the AC side of the input rectification filtering unit and feed back to the MCU control unit.
  7. 如权利要求6所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入整流滤波单元的输入端,所述运放的输出端连接于MCU控制单元。The PFC dual full bridge-based intelligent correction wave voltage conversion circuit according to claim 6, wherein the AC sampling unit comprises an operational amplifier, and the two input ends of the operational amplifier are respectively connected by a current limiting resistor. At the input of the input rectification filtering unit, the output of the operational amplifier is connected to the MCU control unit.
  8. 如权利要求3所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。The PFC dual full bridge-based intelligent correction wave voltage conversion circuit according to claim 3, wherein a first sampling resistor is connected between the source and the front end of the third switching transistor, and the third switch The source of the tube is connected to the MCU control unit, and the MCU control unit acquires an electrical signal of the source of the third switching tube by the first sampling resistor.
  9. 如权利要求3所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,所述MCU控制单元包括有单片机及其外围电路。The intelligent modified wave voltage conversion circuit based on PFC double full bridge according to claim 3, wherein the MCU control unit comprises a single chip microcomputer and a peripheral circuit thereof.
  10. 如权利要求3所述的基于PFC双全桥的智能型修正波电压转换电路,其特征在于,所述逆变倒相单元包括由第四开关管、第五开关管、第六开关管和第七开关管组成的逆变桥,所述第四开关管的栅极、第五开关管的栅极、第六开关管的栅极和第七开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第四开关管、第五开关管、第六开关管和第七开关管导通或截止,以令所述逆变倒相单元输出交流电压。 The PFC dual full bridge-based intelligent correction wave voltage conversion circuit according to claim 3, wherein the inverter inverting unit comprises a fourth switching tube, a fifth switching tube, a sixth switching tube, and a seventh An inverter bridge composed of a switch tube, a gate of the fourth switch tube, a gate of the fifth switch tube, a gate of the sixth switch tube, and a gate of the seventh switch tube are respectively connected to the MCU control unit, The MCU control unit controls the fourth switching transistor, the fifth switching transistor, the sixth switching transistor, and the seventh switching transistor to be turned on or off to enable the inverter inverting unit to output an AC voltage.
PCT/CN2017/079190 2016-12-14 2017-04-01 Pfc double full bridge-based smart correction wave voltage conversion circuit WO2018107622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611154604.7A CN106602907A (en) 2016-12-14 2016-12-14 Intelligent correction wave voltage conversion circuit based on PFC dual full bridge
CN201611154604.7 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018107622A1 true WO2018107622A1 (en) 2018-06-21

Family

ID=58802516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079190 WO2018107622A1 (en) 2016-12-14 2017-04-01 Pfc double full bridge-based smart correction wave voltage conversion circuit

Country Status (2)

Country Link
CN (1) CN106602907A (en)
WO (1) WO2018107622A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD918654S1 (en) 2019-06-06 2021-05-11 Sharkninja Operating Llc Grill plate
US11051654B2 (en) 2019-02-25 2021-07-06 Sharkninja Operating Llc Cooking device and components thereof
CN114914996A (en) * 2022-07-13 2022-08-16 宁波均胜新能源研究院有限公司 Battery management system and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533193A (en) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 PFC dual-full-bridge-based intelligent sine wave voltage conversion circuit
CN110086349B (en) * 2019-05-27 2024-02-13 佛山科学技术学院 Full-bridge isolation DC-DC circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951011A (en) * 2010-08-25 2011-01-19 南京航空航天大学 Solar photovoltaic and commercial power combined power supply system and control method thereof
US20110157928A1 (en) * 2009-12-29 2011-06-30 Delta Electronics, Inc. Dc-to-ac converting circuit with wide input voltage
CN106208638A (en) * 2015-04-30 2016-12-07 神华集团有限责任公司 Device for converting electric energy and corresponding electric energy management connection system
CN106533193A (en) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 PFC dual-full-bridge-based intelligent sine wave voltage conversion circuit
CN206332624U (en) * 2016-12-14 2017-07-14 广东百事泰电子商务股份有限公司 A kind of intelligent amendment wave voltage change-over circuit for bridge of being enjoyed a double blessing based on PFC
CN206332618U (en) * 2016-12-14 2017-07-14 广东百事泰电子商务股份有限公司 A kind of intelligent sine voltage change-over circuit for bridge of being enjoyed a double blessing based on PFC

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724152B2 (en) * 2002-07-19 2004-04-20 Donald K. Gladding Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply
JP5481939B2 (en) * 2009-05-29 2014-04-23 ソニー株式会社 Power supply
CN102064712A (en) * 2010-12-24 2011-05-18 东南大学 Power electronic transformer based on simple PFC (Power Factor Correction)
CN205681151U (en) * 2016-06-07 2016-11-09 四川阿海珐电气有限公司 Emergency power supply charger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110157928A1 (en) * 2009-12-29 2011-06-30 Delta Electronics, Inc. Dc-to-ac converting circuit with wide input voltage
CN101951011A (en) * 2010-08-25 2011-01-19 南京航空航天大学 Solar photovoltaic and commercial power combined power supply system and control method thereof
CN106208638A (en) * 2015-04-30 2016-12-07 神华集团有限责任公司 Device for converting electric energy and corresponding electric energy management connection system
CN106533193A (en) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 PFC dual-full-bridge-based intelligent sine wave voltage conversion circuit
CN206332624U (en) * 2016-12-14 2017-07-14 广东百事泰电子商务股份有限公司 A kind of intelligent amendment wave voltage change-over circuit for bridge of being enjoyed a double blessing based on PFC
CN206332618U (en) * 2016-12-14 2017-07-14 广东百事泰电子商务股份有限公司 A kind of intelligent sine voltage change-over circuit for bridge of being enjoyed a double blessing based on PFC

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051654B2 (en) 2019-02-25 2021-07-06 Sharkninja Operating Llc Cooking device and components thereof
USD918654S1 (en) 2019-06-06 2021-05-11 Sharkninja Operating Llc Grill plate
CN114914996A (en) * 2022-07-13 2022-08-16 宁波均胜新能源研究院有限公司 Battery management system and control method thereof
CN114914996B (en) * 2022-07-13 2022-10-25 宁波均胜新能源研究院有限公司 Battery management system and control method thereof

Also Published As

Publication number Publication date
CN106602907A (en) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018107623A1 (en) Pfc dual-full-bridge-based smart sine wave voltage conversion circuit
WO2018107619A1 (en) Pfc and llc resonance-based intelligent full-bridge sine-wave voltage conversion circuit
WO2018107600A1 (en) Pfc forward full-bridge based intelligent modified-wave voltage conversion circuit
WO2018107621A1 (en) Smart sine wave voltage conversion circuit based on pfc flyback full bridge
WO2018120483A1 (en) Pfc interleaved flyback full bridge based intelligent sine-wave voltage conversion circuit
WO2018129825A1 (en) Smart half-bridge sine-wave voltage conversion circuit based on pfc interleaved flyback
WO2018107599A1 (en) Pfc forward full bridge-based intelligent sine wave voltage conversion circuit
WO2018120523A1 (en) Pfc forward conversion half bridge-based smart sine wave voltage conversion circuit
WO2018107622A1 (en) Pfc double full bridge-based smart correction wave voltage conversion circuit
WO2018126557A1 (en) Pfc and llc resonance-based smart half bridge sine wave voltage conversion circuit
WO2018126554A1 (en) Smart correction wave voltage conversion circuit based on pfc, full bridge, and half bridge
WO2018107620A1 (en) Pfc flyback full bridge-based smart correction wave voltage conversion circuit
WO2018129824A1 (en) Smart half-bridge modified-wave voltage conversion circuit based on pfc interleaved flyback
WO2018120482A1 (en) Pfc staggered flyback full bridge-based smart correction wave voltage conversion circuit
WO2018126556A1 (en) Intelligent half-bridge correction wave voltage conversion circuit based on pfc and llc resonances
CN206620058U (en) Intelligent half-bridge sine voltage change-over circuit based on PFC Yu LLC resonance
WO2018126555A1 (en) Smart sine wave voltage conversion circuit based on pfc, full bridge and half bridge
CN208508805U (en) Intelligent full-bridge sine voltage conversion circuit based on PFC Yu LLC resonance
CN206364711U (en) Intelligent sine voltage change-over circuit based on PFC, full-bridge and half-bridge
CN206364710U (en) Intelligent half-bridge amendment wave voltage change-over circuit based on PFC Yu LLC resonance
WO2018129832A1 (en) Vienna pfc-based smart half bridge modified wave voltage conversion circuit
CN206402114U (en) A kind of intelligent amendment wave voltage change-over circuit based on PFC normal shock half-bridges
CN206620057U (en) Intelligent amendment wave voltage change-over circuit based on PFC, full-bridge and half-bridge
WO2018120522A1 (en) Pfc forward conversion half bridge-based smart modified sine wave voltage conversion circuit
CN109391138A (en) A kind of offset-type regulated power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880255

Country of ref document: EP

Kind code of ref document: A1