WO2018107506A1 - 直流-直流变换设备 - Google Patents

直流-直流变换设备 Download PDF

Info

Publication number
WO2018107506A1
WO2018107506A1 PCT/CN2016/110580 CN2016110580W WO2018107506A1 WO 2018107506 A1 WO2018107506 A1 WO 2018107506A1 CN 2016110580 W CN2016110580 W CN 2016110580W WO 2018107506 A1 WO2018107506 A1 WO 2018107506A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
output
module
port
input
Prior art date
Application number
PCT/CN2016/110580
Other languages
English (en)
French (fr)
Inventor
薛济萍
陈燕虎
杨华勇
谢书鸿
张锋
杜宗印
郭朝阳
Original Assignee
中天海洋系统有限公司
江苏中天科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天海洋系统有限公司, 江苏中天科技股份有限公司 filed Critical 中天海洋系统有限公司
Priority to PCT/CN2016/110580 priority Critical patent/WO2018107506A1/zh
Publication of WO2018107506A1 publication Critical patent/WO2018107506A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the invention relates to a DC-DC converter device, in particular to a DC-DC converter device for reducing a high voltage level of high voltage direct current to a medium voltage level direct current.
  • the underwater DC micro power supply network, the onshore small DC power distribution system and the photovoltaic power generation function system are different from the traditional power network.
  • These power conversion systems all use direct current for power supply and distribution, and inevitably need to convert high voltage direct current into medium voltage direct current. Due to the special use occasions, especially on the underwater DC micro power supply network, special requirements are placed on such power conversion systems: 1) high input voltage level, up to tens of kilovolts; 2) volume of power conversion system The requirements are small enough because they need to be packaged in a small underwater waterproof and pressure-proof cavity or a small package; 3) high reliability requirements, high internal redundancy and fault tolerance.
  • An embodiment of the present invention provides a DC-DC conversion device, including:
  • a DC-DC conversion module includes N DC conversion sub-modules, and the N DC converters
  • the input ports of the sub-module are sequentially connected in series, the output ports are connected in series or in parallel, and the drive ports are connected in parallel, and correspondingly form an input port, an output port and a drive port of the DC-DC conversion module, where N is an integer greater than 1. ;as well as
  • a central control module includes a feedback input end and a control output end, the feedback input end of the central control module is connected in parallel with the output port of the DC-DC conversion module, and the control output end of the central control module and the DC - The drive ports of the DC converter module are connected in parallel.
  • the input port of the DC-DC conversion module is configured to receive an input voltage of several tens of kilovolts, and the output port of the DC-DC conversion module is used to output tens of volts to thousands of volts. The output voltage.
  • the DC conversion sub-module is an isolated DC-DC conversion circuit.
  • the central control module adopts a negative feedback control output unit based on a single chip or a power drive chip, and the central control module controls all DC conversion submodules to perform rectification and transformation simultaneously.
  • the input port of the DC conversion sub-module is for receiving an input voltage with a voltage range of 100 volts to 500 volts, and the output port of the DC conversion sub-module is for outputting an output voltage of 80 volts or less.
  • An embodiment of the present invention further provides a DC-DC conversion device, including:
  • a conversion main circuit includes at least two DC-DC conversion modules; each DC-DC conversion module includes N DC conversion sub-modules, and N DC conversion sub-modules in each DC-DC conversion module are in accordance with The first type or the second type topology is connected; the first type topology is that the input ports of the N DC conversion sub-modules are connected in series, the output ports are connected in series, the drive ports are connected in parallel, and the corresponding DC-DC conversion module is formed.
  • the second type topology is an input port of N DC conversion sub-modules, serially connected, output port Parallel to each other, the drive ports are connected in parallel, and correspondingly form an input port, an output port and a drive port of the DC-DC conversion module;
  • the DC-DC conversion module in the conversion main circuit is also in accordance with the first type or the second type The topology is connected and forms an input port, an output port, and a drive port of the conversion main circuit;
  • the central control module sends a control signal to the drive port, and controls each DC conversion sub-module to rectify and convert the voltage accessed by the conversion main circuit and output from the output port of the conversion main circuit.
  • At least one DC-DC conversion module in the conversion main circuit is connected by a first type topology, and at least one DC-DC conversion module is connected by a second type topology.
  • the central control module includes a feedback input end and a control output end; the feedback input end of the central control module is connected in parallel with the output port of the conversion main circuit, and the control output end of the central control module is The drive ports of the conversion main circuit are connected in parallel.
  • the central control module adopts a negative feedback control output unit based on a single chip or a power drive chip, and the central control module controls all DC conversion submodules to perform rectification and transformation simultaneously.
  • the DC conversion sub-module is an isolated DC-DC conversion circuit.
  • the input port of the DC conversion sub-module is used to receive an input voltage ranging from 100 volts to 500 volts, and the output port of the DC conversion sub-module is used to output an output voltage below 80 volts.
  • the input port of the conversion main circuit is for receiving an input voltage of several tens of kilovolts
  • the output port of the conversion main circuit is for outputting an output voltage of several tens of volts to several thousand volts.
  • Embodiments of the present invention also provide a DC-DC conversion apparatus including multiple layers of cascading DC - DC conversion unit, wherein the low-level DC-DC conversion unit is used as a component module of the high-level DC-DC conversion unit, and the constituent modules of the same DC-DC conversion unit are connected by the first type or the second type topology
  • the first type topology is that the input ports of the constituent modules constituting the same DC-DC conversion unit are connected in series, the output ports are connected in series, the drive ports are connected in parallel, and correspondingly form the input port and the output port of the DC-DC conversion unit.
  • the driving port; the second type topology is that the input ports of the constituent modules constituting the same DC-DC converting unit are serially connected in series, the output ports are connected in parallel, and the driving ports are connected in parallel and correspondingly form an input port of the DC-DC converting unit. , output port and drive port.
  • the bottommost DC-DC conversion unit is an isolated DC-DC conversion circuit.
  • the DC-DC conversion device provided by the embodiment of the invention has universality, can realize DC power conversion of high voltage input and medium voltage output, and the range of the input voltage and the output voltage can be determined by the combination of the DC conversion submodules.
  • the DC-DC converter device of the embodiment of the invention can realize electric energy conversion of several tens of kilovolts to several tens of volts to several thousand volts, and has the characteristics of small volume, compact structure and high efficiency, and is combined by using multiple DC conversion sub-modules.
  • the short-circuit fault of some sub-modules also does not affect the normal operation of the equipment. It has extremely high fault-tolerant operation capability and has a wide range of applications.
  • Fig. 1 is a functional block diagram showing an embodiment of a DC-DC converter device according to an embodiment of the present invention.
  • FIG. 2 is a topological structural view of a DC conversion submodule in a DC-DC converter device according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a combination of DC conversion submodules in a DC-DC converter device according to an embodiment of the present invention.
  • FIG. 4 is a functional block diagram showing another embodiment of a DC-DC conversion sub-module combined into a DC-DC conversion module in a DC-DC converter device according to an embodiment of the present invention.
  • Fig. 5 is a functional block diagram showing another embodiment of a DC-DC converting apparatus according to an embodiment of the present invention.
  • DC-DC converter 100 Central control module 20 DC-DC converter module 30, 41, 42 Transform main circuit 40 DC converter submodule M1-MN transformer Tm First power switch Q1 Second power switch Q2 First driver chip 31 Second driver chip 32 PWM generator 33 First diode D1 Second diode D2 Third diode D3 Fourth diode D4 Filter inductor Lm Output capacitor Cm
  • FIG. 1 is a functional block diagram of a DC-DC converting apparatus 100 according to an embodiment of the present invention.
  • the DC-DC conversion device 100 is capable of converting tens of kilovolts of high voltage direct current into tens of volts To thousands of volts of medium voltage direct current, the maximum power reaches tens of kilowatts to hundreds of kilowatts.
  • the DC-DC conversion device 100 includes a central control module 20 and a DC-DC conversion module 30. Referring to FIG. 2 to FIG. 4, the DC-DC conversion module 30 includes N DC conversion sub-modules M1-MN, where N is an integer greater than 1, and the DC conversion sub-module M1-MN is an isolated low voltage.
  • the DC-DC converter circuit can accept an input voltage ranging from 100 volts to 500 volts and output an output voltage below 100 volts or even below 80 volts.
  • the DC conversion sub-module M1-MN can be composed of various topologies, such as a two-switch forward converter, a two-tube flyback converter, or a full-bridge converter. Since the withstand voltage values of a single power semiconductor device are usually limited, a single power semiconductor device cannot be directly applied to a high voltage application. In order to realize that the low-voltage power device can be applied to a high-voltage occasion, the N DC-transform sub-modules M1-MN in the embodiment of the DC-DC converter device of the present invention are combined in a predetermined manner. Referring to FIG. 3 and FIG.
  • the DC-DC conversion module 30 is configured to convert high voltage direct current into medium voltage direct current.
  • the DC conversion submodule M1 is taken as an example to describe the topology of a single DC conversion submodule, and the DC conversion submodule M1 is a two-switch forward converter.
  • the DC conversion submodule M1 includes a transformer Tm, a first power switch Q1, a second power switch Q2, a first driving chip 31, a second driving chip 32, a PWM generator 33, and first to fourth diodes D1- D4, filter inductor Lm and output capacitor Cm.
  • the DC conversion submodule M1 further includes three ports: an input port, an output port, and a drive port.
  • the input port includes a high level input pin a and a low level input pin b
  • the output port includes a high level output pin c and a low level output pin d
  • the driving port includes a high level Drive pin e, low drive pin f.
  • the high level input pin a is connected to one end of the primary winding of the transformer Tm through the first power switch Q1
  • the low level input pin b is connected to the transformer Tm through the second power switch Q2
  • the other end of the primary winding, the anode of the first diode D1 is connected to the low level input pin b
  • the cathode of the first diode D1 is connected to one end of the primary winding of the transformer Tm.
  • Second diode The anode of D2 is connected to the other end of the primary winding of the transformer Tm, the cathode of the second diode D2 is connected to the high level input pin a, and the PWM generator 33 is connected to the high level driving lead
  • the foot e and the low level driving pin f are also connected to the control ends of the first and second power switches Q1 and Q2 via the first and second driving chips 31 and 32, respectively.
  • the first and second power switches Q1 and Q2 are MOS transistors, and the gate of the first power switch Q1 is connected to the first driving chip 31 by a control terminal, and the first power switch Q1 is The source is connected to one end of the primary winding of the transformer Tm and the first driving chip 31, and the drain of the first power switch Q1 is connected to the high level input pin a.
  • the gate of the second power switch Q2 is connected to the second driving chip 32 as a control terminal, and the source of the second power switch Q2 is connected to the low level input pin b and the second driving chip 32.
  • the drain of the second power switch Q2 is connected to the other end of the primary winding of the transformer Tm.
  • the first and second power switches Q1, Q2 may also be other types of electronic switches such as BJT transistors or IGBTs.
  • One end of the secondary winding of the transformer Tm is connected to the other end of the secondary winding of the transformer Tm through the third diode D3, the filter inductor Lm, and the output capacitor Cm, and the anode of the third diode D3 is connected to the transformer.
  • One end of the Tm secondary winding, and the cathode of the third diode D3 is connected to the filter inductor Lm.
  • the fourth diode D4 is connected in parallel to both ends of the filter inductor Lm and the output capacitor Cm, and the anode of the fourth diode D4 is connected to the output capacitor Cm, and the fourth diode D4 The cathode is connected to the filter inductor Lm.
  • Both ends of the output capacitor Cm are also respectively connected to the high level output pin c and the low level output pin d.
  • the PWM generator 33 sends a PWM signal of a predetermined duty ratio to control the first and second driving chips 31, 32 to drive the first and second power switches Q1, Q2 to be turned on and off to control the DC conversion submodule M1 voltage conversion.
  • one end of the primary winding of the transformer Tm and one end of the secondary winding are the same end, and the other end of the primary winding and the other end of the secondary winding are different names.
  • FIG. 3 When the plurality of DC conversion submodules form the DC-DC conversion module 30, FIG. 3 can be used. And the combination shown in Figure 4.
  • the connection structure of the DC conversion sub-module shown in FIG. 3 is referred to as a first type topology, and the connection structure of the DC conversion sub-module shown in FIG. 4 is referred to as a second type topology.
  • the DC-DC conversion module 30 includes N DC conversion sub-modules M1-MN, and each DC conversion sub-module has the same structure as the DC conversion sub-module M1 shown in FIG. 2.
  • each DC-transform sub-module M1-MN can also adopt different types of DC-DC conversion circuits.
  • the DC-DC conversion module 30 also includes three ports: an input port, an output port, and a drive port.
  • the input port includes a high level input pin A and a low level input pin B
  • the output port includes a high level output pin C and a low level output pin D
  • the driving port includes a high level.
  • Drive pin E low drive pin F.
  • the high-level input pin a of the i-th DC conversion sub-module is connected to the low-level input pin b of the i-1th DC conversion sub-module, the ith DC
  • the low level input pin b of the conversion submodule is connected to the high level input pin a of the i+1th DC conversion submodule; the high level input pin a of the first DC conversion submodule is used as the DC-DC
  • the high level input pin A of the conversion module 30 and the low level input pin b of the Nth DC conversion submodule serve as the low level input pin B of the DC-DC conversion module 30.
  • the high level input pin A and the low level input pin B of the DC-DC conversion module 30 are used to connect an external high voltage level high voltage DC power supply.
  • the high-level output pin c of the i-th DC conversion sub-module is connected to the low-level output pin d of the i-1th DC conversion sub-module, the ith DC
  • the low level output pin d of the conversion submodule is connected to the high level output pin c of the i+1th DC conversion submodule; the high level output pin c of the first DC conversion submodule is used as the DC-DC
  • the high level output pin C of the conversion module 30, the low level output pin d of the Nth DC conversion submodule is used as a DC-DC conversion
  • the low level output pin D of the module 30 where 1 ⁇ i ⁇ N.
  • the high-level output pin C and the low-level output pin D of the DC-DC conversion module 30 are used to output a DC voltage of a medium voltage level after being stepped down by the DC-DC conversion module 30. Load power supply.
  • the high-level driving pin e and the low-level driving pin f of all the DC conversion sub-modules M1-MN are respectively connected and respectively form a high-level driving pin E of the DC-DC conversion module 30, and low power
  • the drive pin F is driven to receive the control signal output by the central control module 20. It can be understood by those skilled in the art that in the first type of topology, the input ports of the N DC conversion submodules are sequentially connected in series, the output ports are sequentially connected in series, and the drive ports are connected in parallel, and the DC-DC conversion module is formed correspondingly. Input port, output port and drive port.
  • FIG. 4 another combination manner of N DC conversion sub-modules in the present invention is shown.
  • the implementation manner shown in FIG. 4 is the same as the connection manner of the input port and the driving port in the embodiment shown in FIG. Similarly, the details are not described here, except that in the embodiment shown in FIG. 4, the output ports of the respective DC conversion sub-modules are in parallel form, that is, the high levels of all DC conversion sub-modules M1-MN.
  • the output pin c is connected to form a high-level output pin C of the DC-DC conversion module 30, and the low-level output pins d of all the DC conversion sub-modules M1-MN are connected to form the DC-DC.
  • the low level output pin D of the conversion module 30 is connected to form the DC-DC.
  • the input ports of the N DC conversion sub-modules are sequentially connected, the output ports are connected in parallel, and the driving ports are connected in parallel, and the DC-DC conversion module is formed correspondingly.
  • Input port, output port and drive port are sequentially connected, the output ports are connected in parallel, and the driving ports are connected in parallel, and the DC-DC conversion module is formed correspondingly.
  • a DC-DC conversion module 30 composed of N DC conversion sub-modules is connected to the central control module 20, and the central control module 20 includes a control output end and a feedback input end, and the control output is The terminal includes control output pins r, s, and the feedback input includes feedback input pins j, k.
  • the control output end of the central control module 20 is connected in parallel with the driving port of the DC-DC conversion module 30, and the feedback input end is connected in parallel with the output port of the DC-DC conversion module, that is, the feedback input
  • the pin j is connected to the high-level output pin C of the DC-DC converter module 30, the feedback input pin k is connected to the low-level output pin D, and the control output pin r is connected to the high-level drive pin E, and the control output is led.
  • the pin s is connected to the low level drive pin F to form a complete power conversion system.
  • the central control module 20 can adopt a negative feedback control output unit based on a single chip or a power drive chip, so that the entire DC-DC converter device is a stable control system. In other embodiments, the central control module 20 may directly control the rectification conversion of the DC-DC conversion module 30 without using a feedback control format.
  • the central control module 20 When the DC-DC converter device 100 is converted from a high voltage level high voltage direct current to a medium voltage level direct current, the central control module 20 outputs a control signal control according to a voltage value fed back by the DC-DC conversion module output port.
  • the PWM generator 33 of each DC conversion sub-module M1-MN emits a pulse width modulation signal of a corresponding duty ratio, so that the first power switch Q1 and the second power switch Q2 are alternately turned on and off at high frequency, and the high voltage DC is turned on.
  • the current outputted by the power source is converted into a high-frequency alternating current; the transformer Tm transforms the high-frequency alternating current; the rectifier circuit composed of the third diode D3 and the fourth diode D4 on the secondary side of the transformer Tm is The AC current outputted by the transformer Tm is rectified, and the DC output is obtained by filtering the filter inductor Lm and the output capacitor Cm. In the process, all the DC conversion sub-modules M1-MN are synchronously rectified and transformed, and the circuit structure is simple and reliable.
  • the DC-DC conversion device is not limited to including only one DC-DC conversion module, and may further include at least two DC-DC conversion modules, and the at least two DC-DC converters.
  • the transform module constitutes a transform main circuit, and the DC-DC transform module in the transform main circuit can also be connected according to the first type or the second type topology.
  • FIG. 5 a schematic diagram of an embodiment of a DC-DC conversion device including two DC-DC conversion modules is shown.
  • a conversion main circuit 40 includes two DC-DC conversion modules 41 and 42.
  • Each of the DC-DC conversion modules 41 and 42 includes two DC conversion sub-modules M1 and M2 as an example.
  • the DC-DC conversion module 41 adopts a first type topology
  • the DC-DC conversion module 42 adopts a second type topology
  • the conversion main circuit 40 adopts a second type topology, that is, the
  • the input ports of the DC-DC conversion modules 41 and 42 in the conversion main circuit 40 are sequentially connected in series, the output ports are connected in parallel, and the drive ports are connected in parallel with each other, and correspondingly form the input port, the output port and the drive port of the conversion main circuit 40.
  • the driving port of the conversion main circuit 40 receives a control signal from the central control module, the input port of the conversion main circuit 40 receives a high voltage, and the output port of the conversion main circuit 40 outputs a medium-level voltage after the step-down processing. .
  • the DC-DC conversion module 41 may adopt a first type topology
  • the DC-DC conversion module 42 adopts a second type topology
  • the conversion main circuit 40 adopts a second type topology.
  • the DC-DC conversion modules 41 and 42 may each adopt a first type topology, and the conversion main circuit 40 adopts a second type topology; and the DC-DC conversion modules 41 and 42 may also be used.
  • the transform main circuit 40 employs a first type topology and the like.
  • the transform main circuit can also be used as a sub-module of a higher-level DC transform unit, and sub-modules such as multiple transform main circuits can also be performed according to the first type topology or the second type topology.
  • the DC conversion unit constituting the higher level is connected.
  • these levels can be further expanded to allow the formation of a multi-level DC-DC in the case where the actual voltage conditions of the components and the parameters of the components permit.
  • a cascaded topology of transform units For specific applications, the topology of each DC-DC converter module or conversion main circuit can be adjusted according to the input voltage and output voltage parameters.
  • embodiments of the present invention have the following features:
  • multiple voltage input parameters and output parameters can be combined through multiple module combinations. For example, according to the requirements of the device and design of the DC-DC converter device application Select the number of DC conversion submodules or DC-DC conversion modules included in the selection, and select the type of topology to use according to the design needs. When it is necessary to expand the capacity, it is only necessary to increase the number of DC conversion sub-modules, so that the capacity can be easily realized.
  • the input ports are connected in series, so that the voltage level of each DC conversion sub-module becomes lower, and a small-volume component can be used, thereby reducing the overall volume of the DC-DC conversion device, and easily implementing a compact structure.
  • All DC conversion sub-modules are controlled by only one central control module, and all DC conversion sub-modules are synchronously rectified and transformed, and the structure is simple and reliable.
  • the DC-DC converter device of the embodiment of the invention has universality, can realize DC power conversion of high voltage input and medium voltage output, and the range of input voltage and output voltage can be determined by a combination manner, and the highest voltage level is resistant by the minimum module. The voltage level and quantity are determined.
  • the DC-DC converter device of the embodiment of the invention can realize electric energy conversion of several tens of kilovolts to several tens of volts to several thousand volts, and has the characteristics of small volume, compact structure and high efficiency, and is combined by using multiple DC conversion sub-modules.
  • the short circuit fault of some sub-modules also does not affect the normal operation of the equipment. It has extremely high fault-tolerant operation capability and has a wide range of applications, such as underwater DC micro power supply network, onshore small DC power distribution system and Photovoltaic power generation function system.
  • first and second are used for the purpose of description, and are not to be construed as indicating or implying a relative importance, and therefore, are not to be construed as limiting the invention.
  • this embodiment means that a specific feature, structure, material or characteristic described in connection with the embodiment or example is included in at least one embodiment of the invention or In the example.
  • the schematic representation of the above terms is not It must be referring to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种直流-直流变换设备(100),包括一个直流-直流变换模组(30)及一中央控制模块(20),该直流-直流变换模组包括多个直流变换子模块(M1,M2……MN),多个直流变换子模块的输入端口(a, b)依次串联、输出端口(c, d)依次串联或互相并联、驱动端口(e, f)互相并联,并对应形成该直流-直流变换模组的输入端口(A, B)、输出端口(C, D)及驱动端口(E, F)。该中央控制模块控制每个直流变换子模块进行电压变换。直流-直流变换设备采用模块化方式,可实现多种电压输入参数和输出参数的组合,并可使用小体积的元器件,减小设备的整体体积,结构紧凑。

Description

直流-直流变换设备 技术领域
本发明涉及一种直流-直流变换设备,尤其涉及一种将较高电压等级的高压直流电降低到中等电压级别的直流电的直流-直流变换设备。
背景技术
水下直流微型供电网、陆上小型直流配电系统和光伏发电功能系统不同于传统电力网,这些电能变换系统均使用直流电进行供配电,其中不可避免地需要将高压直流电转换为中压直流电。由于使用场合的特殊,尤其是在水下直流微型供电网上,对此类电能变换系统提出了特殊的需求:1)输入电压等级高,最高可达数十千伏;2)电能变换系统的体积要求足够小,因为需封装在狭小的水下防水防压腔体或小型的封装盒里面;3)可靠性要求高,需具有较高的内部冗余度和容错能力。传统的高中压直流电能变换系统应用较少,且基本上使用的是可控硅等大型零部件进行整流变换的方式,电能变换系统体积庞大,不具备内部冗余度,难以容错运行,不适合应用于对体积和冗余度要求较高的场合。
发明内容
有鉴于此,有必要提供一种新型可实现高压电能到中压电能的直流-直流变换设备。
本发明的实施例提供一种直流-直流变换设备,包括:
一个直流-直流变换模组,包括N个直流变换子模块,所述N个直流变 换子模块的输入端口依次串联、输出端口依次串联或互相并联、驱动端口互相并联,并对应形成所述直流-直流变换模组的输入端口、输出端口及驱动端口,其中N为大于1的整数;以及
一中央控制模块,包括反馈输入端及控制输出端,所述中央控制模块的反馈输入端与所述直流-直流变换模组的输出端口并联,所述中央控制模块的控制输出端与所述直流-直流变换模组的驱动端口并联。
作为一种优选方案,所述直流-直流变换模组的输入端口用于接收数十千伏的输入电压,所述直流-直流变换模组的输出端口用于输出数十伏到数千伏的输出电压。
作为一种优选方案,所述直流变换子模块为隔离型的直流-直流变换电路。
作为一种优选方案,所述中央控制模块采用基于单片机或电源驱动芯片组成的负反馈控制输出单元,所述中央控制模块控制所有的直流变换子模块同步进行整流变换。
作为一种优选方案,所述直流变换子模块的输入端口用于接收电压范围为100伏至500伏的输入电压,所述直流变换子模块的输出端口用于输出80伏以下的输出电压。
本发明的实施例还提供一种直流-直流变换设备,包括:
一个变换主电路,包括至少两个直流-直流变换模组;每个直流-直流变换模组包括N个直流变换子模块,每个直流-直流变换模组内的N个直流变换子模块按照第一型或第二型拓扑结构进行连接;所述第一型拓扑结构为N个直流变换子模块的输入端口依次串联、输出端口依次串联、驱动端口互相并联并对应形成所在直流-直流变换模组的输入端口、输出端口及驱动端口;所述第二型拓扑结构为N个直流变换子模块的输入端口依次串联、输出端口 互相并联、驱动端口互相并联,并对应形成所在直流-直流变换模组的输入端口、输出端口及驱动端口;所述变换主电路中的直流-直流变换模组也按照第一型或第二型拓扑结构连接,并形成所述变换主电路的输入端口、输出端口及驱动端口;以及
一中央控制模块,所述中央控制模块向所述驱动端口发送控制信号,控制每个直流变换子模块对变换主电路接入的电压进行整流变换并从所述变换主电路的输出端口输出。
作为一种优选方案,所述变换主电路中至少有一个直流-直流变换模组采用第一型拓扑结构连接,还至少有一个直流-直流变换模组采用第二型拓扑结构连接。
作为一种优选方案,所述中央控制模块包括反馈输入端及控制输出端;所述中央控制模块的反馈输入端与所述变换主电路的输出端口并联,所述中央控制模块的控制输出端与所述变换主电路的驱动端口并联。
作为一种优选方案,所述中央控制模块采用基于单片机或电源驱动芯片组成的负反馈控制输出单元,所述中央控制模块控制所有的直流变换子模块同步进行整流变换。
作为一种优选方案,所述直流变换子模块为隔离型的直流-直流变换电路。
作为一种优选方案,所直流变换子模块的输入端口用于接收电压范围为100伏至500伏的输入电压,直流变换子模块的输出端口用于输出80伏以下的输出电压。
作为一种优选方案,所述变换主电路的输入端口用于接收数十千伏的输入电压,所述变换主电路的输出端口用于输出数十伏到数千伏的输出电压。
本发明的实施方式还提供一种直流-直流变换设备,包括多层级联的直流 -直流变换单元,其中低层级的直流-直流变换单元作为高一层级直流-直流变换单元的组成模块,组成同一个直流-直流变换单元的组成模块采用第一型或第二型拓扑结构进行连接;所述第一型拓扑结构为组成同一个直流-直流变换单元的组成模块的输入端口依次串联、输出端口依次串联、驱动端口互相并联并对应形成所在直流-直流变换单元的输入端口、输出端口及驱动端口;所述第二型拓扑结构为组成同一个直流-直流变换单元的组成模块的输入端口依次串联、输出端口互相并联、驱动端口互相并联并对应形成所在直流-直流变换单元的输入端口、输出端口及驱动端口。
作为一种优选方案,最底层的直流-直流变换单元为隔离型的直流-直流变换电路。
本发明实施例提供的直流-直流变换设备具有通用性,可实现高电压输入、中电压输出的直流电能变换,输入电压和输出电压的范围可由直流变换子模块组合的方式决定。本发明实施例的直流-直流变换设备可以实现数十千伏至数十伏到数千伏的电能变换,具有体积小、结构紧凑、效率高的特点,由于采用多个直流变换子模块组合的方式,其中部分子模块出现短路故障同样不影响设备的正常运行,具有极高的容错运行能力,具有极广的应用范围。
附图说明
附图中:
图1示出本发明实施方式的直流-直流变换设备的一实施例的功能框图。
图2示出本发明实施方式的直流-直流变换设备中直流变换子模块的拓扑结构图。
图3示出本发明实施方式的直流-直流变换设备中直流变换子模块组合成 直流-直流变换模组的一种实施例的功能框图。
图4示出本发明实施方式的直流-直流变换设备中直流变换子模块组合成直流-直流变换模组的另一种实施例的功能框图。
图5示出本发明实施方式的直流-直流变换设备的另一实施例的功能框图。
主要元件符号说明
直流-直流变换设备 100
中央控制模块 20
直流-直流变换模组 30、41、42
变换主电路 40
直流变换子模块 M1-MN
变压器 Tm
第一功率开关 Q1
第二功率开关 Q2
第一驱动芯片 31
第二驱动芯片 32
PWM发生器 33
第一二极管 D1
第二二极管 D2
第三二极管 D3
第四二极管 D4
滤波电感 Lm
输出电容 Cm
高电平输入引脚 A、a
低电平输入引脚 B、b
高电平输出引脚 C、c
低电平输出引脚 D、d
高电平驱动引脚 E、e
低电平驱动引脚 F、f
控制输出引脚 r、s
反馈输入引脚 j、k
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。可以理解,附图仅提供参考与说明用,并非用来对本发明加以限制。附图中显示的尺寸仅仅是为便于清晰描述,而并不限定比例关系。
需要说明的是,当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参考图1,图1示出本发明实施方式的直流-直流变换设备100的功能框图。所述直流-直流变换设备100能够将数十千伏的高压直流电变换为数十伏 到数千伏的中压直流电,最大功率达到数十千瓦至数百千瓦。所述直流-直流变换设备100包括中央控制模块20及直流-直流变换模组30。请参考图2-图4,所述直流-直流变换模组30包括N个直流变换子模块M1-MN,其中N为大于1的整数,所述直流变换子模块M1-MN为隔离型的低压直流-直流变换电路,可以接收电压范围为100伏至500伏的输入电压,并输出100伏以下甚至80伏以下的输出电压。所述直流变换子模块M1-MN可由多种拓扑结构组成,如为双管正激式变换器、双管反激式变换器或全桥变换器等。由于单个功率半导体器件的耐压值通常是有限的,所以单个功率半导体器件无法直接应用于高电压场合。为了实现低压功率器件能够应用在高电压场合,本发明直流-直流变换设备的实施例中所述N个直流变换子模块M1-MN按照预定的方式进行组合,参考图3及图4,形成所述直流-直流变换模组30以实现将高压直流电变换为中压直流电。
请参考图2,本实施例中,以所述直流变换子模块M1为例说明单个直流变换子模块的拓扑结构,所述直流变换子模块M1为双管正激式变换器。所述直流变换子模块M1包括变压器Tm、第一功率开关Q1、第二功率开关Q2、第一驱动芯片31、第二驱动芯片32、PWM发生器33、第一至第四二极管D1-D4、滤波电感Lm及输出电容Cm。所述直流变换子模块M1还包括三个端口:输入端口、输出端口及驱动端口。所述输入端口包括高电平输入引脚a、低电平输入引脚b,所述输出端口包括高电平输出引脚c、低电平输出引脚d,所述驱动端口包括高电平驱动引脚e、低电平驱动引脚f。所述高电平输入引脚a通过所述第一功率开关Q1连接所述变压器Tm原边绕组的一端,所述低电平输入引脚b通过所述第二功率开关Q2连接所述变压器Tm原边绕组的另一端,所述第一二极管D1的阳极连接所述低电平输入引脚b,所述第一二极管D1的阴极连接所述变压器Tm原边绕组的一端,所第二二极管 D2的阳极连接所述变压器Tm原边绕组的另一端,所述第二二极管D2的阴极连接所述高电平输入引脚a,所述PWM发生器33连接所述高电平驱动引脚e及低电平驱动引脚f,还分别经所述第一及第二驱动芯片31、32连接所述第一及第二功率开关Q1及Q2的控制端。在本实施方式中,所述第一及第二功率开关Q1及Q2为MOS管,所述第一功率开关Q1的栅极为控制端连接所述第一驱动芯片31,所述第一功率开关Q1的源极连接所述变压器Tm原边绕组的一端及第一驱动芯片31,所述第一功率开关Q1的漏极连接所述高电平输入引脚a。所述第二功率开关Q2的栅极作为控制端连接所述第二驱动芯片32,所述第二功率开关Q2的源极连接所述低电平输入引脚b及第二驱动芯片32,所述第二功率开关Q2的漏极连接所述变压器Tm原边绕组的另一端。在其他实施方式中,所述第一及第二功率开关Q1、Q2还可以为其他类型的电子开关如BJT三极管或IGBT等。
所述变压器Tm副边绕组的一端通过第三二极管D3、滤波电感Lm、输出电容Cm连接所述变压器Tm副边绕组的另一端,所述第三二极管D3的阳极连接所述变压器Tm副边绕组的一端,所述第三二极管D3的阴极连接所述滤波电感Lm。所述第四二极管D4并联连接于所述滤波电感Lm及输出电容Cm的两端,所述第四二极管D4的阳极连接所述输出电容Cm,所述第四二极管D4的阴极连接所述滤波电感Lm。所述输出电容Cm的两端还分别连接所述高电平输出引脚c及低电平输出引脚d。所述PWM发生器33发出预定占空比的PWM信号控制所述第一及第二驱动芯片31、32驱动第一及第二功率开关Q1、Q2导通及截止以控制所述直流变换子模块M1的电压转换。本实施方式中,所述变压器Tm原边绕组的一端及副边绕组的一端为同名端,所述原边绕组的另一端及副边绕组的另一端为异名端。
当所述多个直流变换子模块组成直流-直流变换模组30时可以采用如图3 及图4所示的组合方式。图3所示的直流变换子模块的连接结构记为第一型拓扑结构,图4所示的直流变换子模块的连接结构记为第二型拓扑结构,本领域技术人员可以理解,所述双管正激式变换器只是本发明例举的一个实施例,其他对双管正激式变换器的改进的方式或可实现直流-直流变换的其他形式的变换电路也均可实现本发明的效果。
请参考图3,所述直流-直流变换模组30包括N个直流变换子模块M1-MN,每个直流变换子模块均具有与如图2所示的直流变换子模块M1相同的结构。当然其他实施方式中,每个直流变换子模块M1-MN也可以采用不同类型的直流-直流变换电路。所述直流-直流变换模组30也包括三个端口:输入端口、输出端口及驱动端口。所述输入端口包括高电平输入引脚A、低电平输入引脚B,所述输出端口包括高电平输出引脚C、低电平输出引脚D,所述驱动端口包括高电平驱动引脚E、低电平驱动引脚F。所述直流-直流变换模组30中,第i个直流变换子模块的高电平输入引脚a连接至第i-1个直流变换子模块的低电平输入引脚b,第i个直流变换子模块的低电平输入引脚b连接至第i+1个直流变换子模块的高电平输入引脚a;第1个直流变换子模块的高电平输入引脚a作为直流-直流变换模组30的高电平输入引脚A,第N个直流变换子模块的低电平输入引脚b作为直流-直流变换模组30的低电平输入引脚B。所述直流-直流变换模组30的高电平输入引脚A及低电平输入引脚B用于连接外部较高电压等级的高压直流电源。
所述直流-直流变换模组30中,第i个直流变换子模块的高电平输出引脚c连接至第i-1个直流变换子模块的低电平输出引脚d,第i个直流变换子模块的低电平输出引脚d连接至第i+1个直流变换子模块的高电平输出引脚c;第1个直流变换子模块的高电平输出引脚c作为直流-直流变换模组30的高电平输出引脚C,第N个直流变换子模块的低电平输出引脚d作为直流-直流变换 模组30的低电平输出引脚D;其中1<i<N。所述直流-直流变换模组30的高电平输出引脚C及低电平输出引脚D用于输出经直流-直流变换模组30进行降压处理后的中等电压级别的直流电以为用电负载供电。
所有直流变换子模块M1-MN的高电平驱动引脚e、低电平驱动引脚f分别对应相连并分别形成所述直流-直流变换模组30的高电平驱动引脚E、低电平驱动引脚F,以接收中央控制模块20输出的控制信号。本领域技术人员可以理解,该第一型拓扑结构中,所述N个直流变换子模块的输入端口依次串联、输出端口依次串联、驱动端口互相并联,并对应形成所述直流-直流变换模组的输入端口、输出端口及驱动端口。
请参考图4,示出本发明中N个直流变换子模块的另一种组合方式,图4所述的实施方式与图3所示的实施方式在输入端口及驱动端口的连接方式上相同或类似,在此不再赘述,不同点在于,图4所示的实施方式中,所述各个直流变换子模块的输出端口采用并联的形式,即所有的直流变换子模块M1-MN的高电平输出引脚c连接并形成所述直流-直流变换模组30的高电平输出引脚C,所有的直流变换子模块M1-MN的低电平输出引脚d连接并形成所述直流-直流变换模组30的低电平输出引脚D。本领域技术人员可以理解,该第二型拓扑结构中,所述N个直流变换子模块的输入端口依次串联、输出端口互相并联、驱动端口互相并联,并对应形成所述直流-直流变换模组的输入端口、输出端口及驱动端口。
请再次参考图1,由N个直流变换子模块组成的直流-直流变换模组30与所述中央控制模块20连接,所述中央控制模块20包括控制输出端及反馈输入端,所述控制输出端包括控制输出引脚r、s,反馈输入端包括反馈输入引脚j、k。所述中央控制模块20的控制输出端与所述直流-直流变换模组30的驱动端口并联,反馈输入端与直流-直流变换模组的输出端口并联,即反馈输入引 脚j连接直流-直流变换模组30的高电平输出引脚C,反馈输入引脚k连接低电平输出引脚D,控制输出引脚r连接高电平驱动引脚E、控制输出引脚s连接低电平驱动引脚F,从而形成一个完整的电能变换系统。其中,所述中央控制模块20可采用基于单片机或电源驱动芯片组成的负反馈控制输出单元,从而使得整个直流-直流变换设备为一个稳定的控制系统。其他实施方式中,中央控制模块20也可以不采用反馈控制形式而直接控制直流-直流变换模组30的整流变换。
在所述直流-直流变换设备100由高电压等级的高压直流电到中等电压级别的直流电进行转换时,所述中央控制模块20根据直流-直流变换模组输出端口反馈回的电压值输出控制信号控制每一直流变换子模块M1-MN中的PWM发生器33发出相应占空比的脉宽调制信号,使第一功率开关Q1、第二功率开关Q2高频交替导通和关断,将高压直流电源输出的电流转换为高频交流电流;变压器Tm将所述高频交流电流进行变压;变压器Tm副边的由第三二极管D3和第四二极管D4组成的整流电路对所述变压器Tm输出的交流电流进行整流,并通过滤波电感Lm及输出电容Cm滤波得到直流输出;该过程中,所有的直流变换子模块M1-MN同步进行整流变换,电路结构简单可靠。
在本发明的其他实施方式中,所述直流-直流变换设备中不限于只包括一个直流-直流变换模组,还可以包括至少两个直流-直流变换模组,所述至少两个直流-直流变换模组组成一个变换主电路,所述变换主电路中的直流-直流变换模组也可以按照第一型或第二型拓扑结构进行连接。请参考图5,示出直流-直流变换设备包括两个直流-直流变换模组的一种实施方式的示意图。本实施方式中,一变换主电路40包括两个直流-直流变换模组41、42,每个直流-直流变换模组41、42中以包括两个直流变换子模块M1、M2为例进行说 明,所述直流-直流变换模组41采用第一型拓扑结构,所述直流-直流变换模组42采用第二型拓扑结构,所述变换主电路40采用第二型拓扑结构,即所述变换主电路40中的直流-直流变换模组41、42的输入端口依次串联、输出端口互相并联、驱动端口互相并联,并对应形成所述变换主电路40的输入端口、输出端口及驱动端口。所述变换主电路40的驱动端口接收中央控制模块发出的控制信号,所述变换主电路40的输入端口接收高电压,所述变换主电路40的输出端口输出降压处理后的中等级的电压。其他实施方式中,还可以所述直流-直流变换模组41采用第一型拓扑结构,所述直流-直流变换模组42采用第二型拓扑结构,所述变换主电路40采用第二型拓扑结构;还可以所述直流-直流变换模组41、42均采用第一型拓扑结构,所述变换主电路40采用第二型拓扑结构;还可以所述直流-直流变换模组41、42均采用第二型拓扑结构,所述变换主电路40采用第一型拓扑结构等等。
本领域技术人员还可以理解,所述变换主电路也可以作为更高层级直流变换单元的子模块,多个变换主电路这样的子模块同样可以按照第一型拓扑结构或第二型拓扑结构进行连接组成该更高层级的直流变换单元。当然按照第一型拓扑结构或第二型拓扑结构的形式这些层级在元器件的耐压等级、元器件的参数等实际条件允许的情况下还可以进一步进行扩展,以形成包括多层级直流-直流变换单元的级联型拓扑结构。具体应用时,每个直流-直流变换模组或变换主电路采用的拓扑结构可以根据输入电压及输出电压的参数要求进行调整。
根据本发明的实施例的多个直流变换子模块的多种组合方式,本发明的实施例具有如下特点:
1.采用模块化设计,通过多个模块组合,可实现多种电压输入参数和输出参数的组合。如可根据所述直流-直流变换设备应用的装置及设计的需求选 择其中包括的直流变换子模块或直流-直流变换模组的数量,并根据设计需要选择使用的拓扑结构的类型。当需要扩大容量时,只需要增加直流变换子模块的个数,就可以方便地实现扩容。
2.当某个直流变换子模块发生短路故障而失效后,相当于组成整体直流-直流变换设备的子模块少了一部分,但不影响整个设备的运行,具有较高的容错能力。
3.输入端口串联连接,使每个直流变换子模块的受电压等级变低,可使用小体积的元器件,从而降低所述直流-直流变换设备的整体体积,容易实现紧凑型的结构。
4.所有直流变换子模块只由一个中央控制模块控制,所有直流变换子模块同步整流变换,结构简单可靠。
本发明实施例的直流-直流变换设备具有通用性,可实现高电压输入、中电压输出的直流电能变换,输入电压和输出电压的范围可由组合的方式决定,最高的电压等级由最小模块的耐电压等级及数量决定。本发明实施例的直流-直流变换设备可以实现数十千伏至数十伏到数千伏的电能变换,具有体积小、结构紧凑、效率高的特点,由于采用多个直流变换子模块组合的方式,其中部分子模块出现短路故障同样不影响设备的正常运行,具有极高的容错运行能力,具有极广的应用范围,如可用于水下直流微型供电网、陆上小型直流配电系统和光伏发电功能系统内。
在本说明书的描述中,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性,因此,不能理解为对发明的限制。
在本说明书的描述中,术语“本实施方式”、“其他实施方式”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不 一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种直流-直流变换设备,包括:
    一个直流-直流变换模组,包括N个直流变换子模块,所述N个直流变换子模块的输入端口依次串联、输出端口依次串联或互相并联、驱动端口互相并联,并对应形成所述直流-直流变换模组的输入端口、输出端口及驱动端口,其中N为大于1的整数;以及
    一中央控制模块,包括反馈输入端及控制输出端,所述中央控制模块的反馈输入端与所述直流-直流变换模组的输出端口并联,所述中央控制模块的控制输出端与所述直流-直流变换模组的驱动端口并联。
  2. 如权利要求1所述的直流-直流变换设备,其特征在于,所述直流-直流变换模组的输入端口用于接收数十千伏的输入电压,所述直流-直流变换模组的输出端口用于输出数十伏到数千伏的输出电压。
  3. 如权利要求1所述的直流-直流变换设备,其特征在于,所述直流变换子模块为隔离型的直流-直流变换电路。
  4. 如权利要求1所述的直流-直流变换设备,其特征在于,所述中央控制模块采用基于单片机或电源驱动芯片组成的负反馈控制输出单元,所述中央控制模块控制所有的直流变换子模块同步进行整流变换。
  5. 如权利要求2所述的直流-直流变换设备,其特征在于,所述直流变换子模块的输入端口用于接收电压范围为100伏至500伏的输入电压,所述直流变换子模块的输出端口用于输出80伏以下的输出电压。
  6. 一种直流-直流变换设备,包括:
    一个变换主电路,包括至少两个直流-直流变换模组;每个直流-直流变换模组包括N个直流变换子模块,每个直流-直流变换模组内的N个直流变 换子模块按照第一型或第二型拓扑结构进行连接;所述第一型拓扑结构为N个直流变换子模块的输入端口依次串联、输出端口依次串联、驱动端口互相并联并对应形成所在直流-直流变换模组的输入端口、输出端口及驱动端口;所述第二型拓扑结构为N个直流变换子模块的输入端口依次串联、输出端口互相并联、驱动端口互相并联,并对应形成所在直流-直流变换模组的输入端口、输出端口及驱动端口;所述变换主电路中的直流-直流变换模组也按照第一型或第二型拓扑结构连接,并形成所述变换主电路的输入端口、输出端口及驱动端口;以及
    一中央控制模块,所述中央控制模块向所述驱动端口发送控制信号,控制每个直流变换子模块对变换主电路接入的电压进行整流变换并从所述变换主电路的输出端口输出。
  7. 如权利要求6所述的直流-直流变换设备,其特征在于,所述变换主电路中至少有一个直流-直流变换模组采用第一型拓扑结构连接,还至少有一个直流-直流变换模组采用第二型拓扑结构连接。
  8. 如权利要求6所述的直流-直流变换设备,其特征在于,所述中央控制模块包括反馈输入端及控制输出端;所述中央控制模块的反馈输入端与所述变换主电路的输出端口并联,所述中央控制模块的控制输出端与所述变换主电路的驱动端口并联。
  9. 如权利要求6所述的直流-直流变换设备,其特征在于,所述中央控制模块采用基于单片机或电源驱动芯片组成的负反馈控制输出单元,所述中央控制模块控制所有的直流变换子模块同步进行整流变换。
  10. 如权利要求6所述的直流-直流变换设备,其特征在于,所述直流变换子模块为隔离型的直流-直流变换电路。
  11. 如权利要求6所述的直流-直流变换设备,其特征在于,所直流变换 子模块的输入端口用于接收电压范围为100伏至500伏的输入电压,直流变换子模块的输出端口用于输出80伏以下的输出电压。
  12. 如权利要求11所述的直流-直流变换设备,其特征在于,所述变换主电路的输入端口用于接收数十千伏的输入电压,所述变换主电路的输出端口用于输出数十伏到数千伏的输出电压。
  13. 一种直流-直流变换设备,包括多层级联的直流-直流变换单元,其中低层级的直流-直流变换单元作为高一层级直流-直流变换单元的组成模块,组成同一个直流-直流变换单元的组成模块采用第一型或第二型拓扑结构进行连接;所述第一型拓扑结构为组成同一个直流-直流变换单元的组成模块的输入端口依次串联、输出端口依次串联、驱动端口互相并联并对应形成所在直流-直流变换单元的输入端口、输出端口及驱动端口;所述第二型拓扑结构为组成同一个直流-直流变换单元的组成模块的输入端口依次串联、输出端口互相并联、驱动端口互相并联并对应形成所在直流-直流变换单元的输入端口、输出端口及驱动端口。
  14. 如权利要求13所述的直流-直流变换设备,其特征在于,最底层的直流-直流变换单元为隔离型的直流-直流变换电路。
PCT/CN2016/110580 2016-12-17 2016-12-17 直流-直流变换设备 WO2018107506A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110580 WO2018107506A1 (zh) 2016-12-17 2016-12-17 直流-直流变换设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110580 WO2018107506A1 (zh) 2016-12-17 2016-12-17 直流-直流变换设备

Publications (1)

Publication Number Publication Date
WO2018107506A1 true WO2018107506A1 (zh) 2018-06-21

Family

ID=62557829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110580 WO2018107506A1 (zh) 2016-12-17 2016-12-17 直流-直流变换设备

Country Status (1)

Country Link
WO (1) WO2018107506A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034661A (zh) * 2018-08-01 2019-07-19 上海芯哲微电子科技股份有限公司 一种多路输出直流电源装置
CN110492748A (zh) * 2019-06-24 2019-11-22 华北电力大学 一种基于dab的输出往复式隔离型dc/dc变换器拓扑
CN113014086A (zh) * 2021-03-08 2021-06-22 东南大学 一种高电压传输比的直流变压器拓扑结构及其控制方法
CN113541448A (zh) * 2021-07-22 2021-10-22 山东鲁软数字科技有限公司智慧能源分公司 一种能够实现磁隔离多输入多输出柔性直流输电供电电路
CN110034661B (zh) * 2018-08-01 2024-05-24 上海芯哲微电子科技股份有限公司 一种多路输出直流电源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046959A (ja) * 2014-08-26 2016-04-04 富士電機株式会社 直流電源装置
CN105958828A (zh) * 2016-04-22 2016-09-21 深圳启雅杰科技有限公司 一种dc-dc变换电路
CN106130354A (zh) * 2016-08-29 2016-11-16 中天海洋系统有限公司 一种10kV供电的高中压DC‑DC变换器
CN106208717A (zh) * 2016-08-29 2016-12-07 中天海洋系统有限公司 一种2kV供电的高中压DC‑DC变换器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046959A (ja) * 2014-08-26 2016-04-04 富士電機株式会社 直流電源装置
CN105958828A (zh) * 2016-04-22 2016-09-21 深圳启雅杰科技有限公司 一种dc-dc变换电路
CN106130354A (zh) * 2016-08-29 2016-11-16 中天海洋系统有限公司 一种10kV供电的高中压DC‑DC变换器
CN106208717A (zh) * 2016-08-29 2016-12-07 中天海洋系统有限公司 一种2kV供电的高中压DC‑DC变换器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034661A (zh) * 2018-08-01 2019-07-19 上海芯哲微电子科技股份有限公司 一种多路输出直流电源装置
CN110034661B (zh) * 2018-08-01 2024-05-24 上海芯哲微电子科技股份有限公司 一种多路输出直流电源装置
CN110492748A (zh) * 2019-06-24 2019-11-22 华北电力大学 一种基于dab的输出往复式隔离型dc/dc变换器拓扑
CN113014086A (zh) * 2021-03-08 2021-06-22 东南大学 一种高电压传输比的直流变压器拓扑结构及其控制方法
CN113014086B (zh) * 2021-03-08 2022-02-01 东南大学 一种高电压传输比的直流变压器拓扑结构及其控制方法
CN113541448A (zh) * 2021-07-22 2021-10-22 山东鲁软数字科技有限公司智慧能源分公司 一种能够实现磁隔离多输入多输出柔性直流输电供电电路

Similar Documents

Publication Publication Date Title
Forouzesh et al. Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications
TWI661632B (zh) 模組化電源系統
Tang et al. Hybrid switched-inductor converters for high step-up conversion
Forouzesh et al. A survey on voltage boosting techniques for step-up DC-DC converters
US8432709B2 (en) DC-to-AC power inverting apparatus for photovoltaic modules
EP2884646B1 (en) Multiple-output DC/DC converter and power supply having the same
US20090116266A1 (en) Paralleled power conditioning system with circulating current filter
US11336187B2 (en) Resonant switching converter
US8885366B2 (en) DC-to-DC voltage regulator and its operating method thereof
WO2018107506A1 (zh) 直流-直流变换设备
Vinnikov et al. Quasi-Z-source half-bridge DC-DC converter for photovoltaic applications
EP3796528B1 (en) Current balancing in power semiconductors of a dc/dc converter
CN108206632A (zh) 直流-直流变换设备
CN108777544B (zh) 用于柔性直流输电的dc/dc变换器及其控制方法
WO2018108141A1 (zh) 模块化电源系统
Alluhaybi et al. Design and implementation of dual-input microinverter for PV-battery applications
Xiang et al. The resonant modular multilevel DC converters for high step-ratio and low step-ratio interconnection in MVDC distribution network
CN204761032U (zh) 模块化逆变器系统
Liivik et al. Efficiency improvement from topology modification of the single-switch isolated quasi-Z-source DC-DC converter
Stewart et al. Design & evaluation of a hybrid switched capacitor circuit with wide-bandgap Devices for compact MVDC PV power conversion
CN107257206B (zh) 一种三端直流变压器
Heidari et al. Single-switch single-magnetic core high step-up converter with continuous input current and reduced voltage stress for photovoltaic applications
US11705823B2 (en) Double-ended dual magnetic DC-DC switching power converter with stacked secondary windings and an AC coupled output
CN112994471B (zh) 一种基于串联全桥谐振电路的电力电子变压器
US11239745B2 (en) Power converter including a recirculating snubber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923898

Country of ref document: EP

Kind code of ref document: A1