CN113014086B - 一种高电压传输比的直流变压器拓扑结构及其控制方法 - Google Patents

一种高电压传输比的直流变压器拓扑结构及其控制方法 Download PDF

Info

Publication number
CN113014086B
CN113014086B CN202110251647.1A CN202110251647A CN113014086B CN 113014086 B CN113014086 B CN 113014086B CN 202110251647 A CN202110251647 A CN 202110251647A CN 113014086 B CN113014086 B CN 113014086B
Authority
CN
China
Prior art keywords
thyristor
voltage
bridge
low
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110251647.1A
Other languages
English (en)
Other versions
CN113014086A (zh
Inventor
陈武
舒良才
金浩哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110251647.1A priority Critical patent/CN113014086B/zh
Publication of CN113014086A publication Critical patent/CN113014086A/zh
Application granted granted Critical
Publication of CN113014086B publication Critical patent/CN113014086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及电力电子领域,具体的是一种高电压传输比的直流变压器拓扑结构及其控制方法,拓扑结构由N个功率模块组、高压滤波电感、低压滤波电感与低压滤波电容组成;功率模块组均包含一个输入端口与一个输出端口,N个功率模块组输入串联后,连接高压滤波电感与低压滤波电容,构成高压直流端口,N个功率模块组输出并联后,连接低压滤波电感与低压滤波电容,构成低压直流端口。本发明仅使用少量的半桥/全桥模块数量,可实现高传输比的直流电压变换,以及高、低压直流端口电流的连续,从而降低直流变压器系统体积,提升功率密度。

Description

一种高电压传输比的直流变压器拓扑结构及其控制方法
技术领域
本发明涉及电力电子领域,具体的是一种高电压传输比的直流变压器拓扑结构及其控制方法。
背景技术
随着柔性直流输电与直流配电技术的发展,直流变压器作为连接不同电压等级的直流母线,其重要性日益凸显。当直流变压器连接高压与中压直流母线时,需要采用模块化结构,以降低开关器件电压应力。CN111525540A中提出了一种模块化直流潮流控制器,也可视作一种直流变压器拓扑,其模块阀串需要承受高压直流端口电压,且为了降低传输功率的波动,需要采用多组模块阀串交错并联,导致了大量的模块数量,进一步地增加了直流变压器成本、体积及占地面积,限制了其在实际工程中的应用。
因此,如何减小连接高压与中压直流母线场合下的直流变压器的模块数量是目前亟需解决的一个问题。
发明内容
为解决上述背景技术中提到的不足,本发明的目的在于提供一种高电压传输比的直流变压器拓扑结构及其控制方法,解决了在连接中高压直流母线的场合下,直流变压器,模块数量庞大,成本高昂、体积与占地面积过大的问题。
本发明的目的可以通过以下技术方案实现:
一种高电压传输比的直流变压器拓扑结构,所述拓扑结构由N个功率模块组、高压滤波电感LMV、低压滤波电感LLV与低压滤波电容CLV组成;
所述功率模块组均包含一个输入端口与一个输出端口,N个功率模块组输入串联后,连接高压滤波电感与低压滤波电容,构成高压直流端口,N个功率模块组输出并联后,连接低压滤波电感与低压滤波电容,构成低压直流端口。
进一步地,所述功率模块组由半桥/全桥混合模块阀组与十个晶闸管组成,半桥/全桥混合模块阀组包含n个半桥模块、m个全桥模块与一个阀组电感Lg,第一晶闸管与第六晶闸管、第二晶闸管与第七晶闸管、第三晶闸管与第八晶闸管、第四晶闸管与第九晶闸管、第五晶闸管与第十晶闸管反向并联。
进一步地,所述功率模块组内,半桥/全桥混合模块阀组正极连接第一晶闸管阴极与第三晶闸管阳极,半桥/全桥混合模块阀组负极连接第二晶闸管阳极与第四晶闸管阴极,第一晶闸管阳极连接第五晶闸管阳极,第二晶闸管阴极连接第五晶闸管阴极;第一晶闸管阳极与第二晶闸管阴极构成功率模块组输入端口;第三晶闸管阴极与第四晶闸管阳极构成功率模块组输出端口。
进一步地,所述晶闸管由多个低耐压的晶闸管串联组合形成,或者替换为串联高压IGCT阀或其他半导体双向开关。
一种高电压传输比的直流变压器拓扑结构的控制方法,所述控制方法如下:
在功率模块组中,开通第一晶闸管与第二晶闸管,关断第三晶闸管至第十晶闸管,半桥/全桥混合模块阀组连接至高压直流端口,功率可由高压直流端口单向传输至模块阀组;
开通第六晶闸管与第七晶闸管,关断第一晶闸管至第五晶闸管、第八晶闸管至第十闸管,半桥/全桥混合模块阀组连接至高压直流端口,功率可由模块阀组单向传输至高压直流端口;
在功率模块组中,开通第三晶闸管至第五晶闸管,关断第一晶闸管、第二晶闸管、第六晶闸管至第十晶闸管,半桥/全桥混合模块阀组经低压滤波电感,并联至低压直流端口,功率可由模块阀组单向传输至低压直流端口,且第五晶闸管导通,可实现高压直流端口电流连续;
开通第八晶闸管与第九晶闸管,关断第一晶闸管至第七晶闸管,半桥/全桥混合模块阀组经低压滤波电感,并联至低压直流端口,功率可由低压直流端口传输至模块阀组,且第十晶闸管导通,可实现高压直流端口电流连续。
进一步地,当采用更多的N个所述功率模块组(N>3)时,通过晶闸管与半桥/全桥混合模块阀组的控制与配合,可使得每一时刻,N个功率模块中有K(K<N-2)个模块串联在高压直流端口处,与高压直流端口进行功率交换;剩余N-K个模块并联在低压直流端口处,与低压直流端口进行功率交换。
本发明的有益效果:
本发明通过调节各功率模块组内,半桥/全桥混合模块阀组输出电压的大小与时间长短,可实现对低压或高压直流端口电压的控制、以及各功率模块组内半桥/全桥混合模块阀组子模块电容电压的均衡。本发明中的直流变压器拓扑结构仅使用少量的半桥/全桥模块数量,可实现高传输比的直流电压变换,以及高、低压直流端口电流的连续,从而降低直流变压器系统体积,提升功率密度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;
图1是本发明高电压传输比的直流变压器拓扑结构示意图;
图2是本发明高电压传输比的直流变压器中晶闸管替代方案拓扑示意图;
图3是本发明高电压传输比的直流变压器基本控制波形示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
一种高电压传输比的直流变压器拓扑结构,如图1所示,拓扑结构由N个功率模块组、高压滤波电感LMV、低压滤波电感LLV与低压滤波电容CLV组成。
各功率模块组均包含一个输入端口与一个输出端口,N个功率模块组输入串联后,连接高压滤波电感与低压滤波电容,构成高压直流端口;N个功率模块组输出并联后,连接低压滤波电感与低压滤波电容,构成低压直流端口。
功率模块组由半桥/全桥混合模块阀组与十个晶闸管组成,半桥/全桥混合模块阀组包含n个半桥模块、m个全桥模块与一个阀组电感Lg,其中第一晶闸管与第六晶闸管、第二晶闸管与第七晶闸管、第三晶闸管与第八晶闸管、第四晶闸管与第九晶闸管、第五晶闸管与第十晶闸管反向并联。
功率模块组内,半桥/全桥混合模块阀组正极连接第一晶闸管阴极与第三晶闸管阳极,半桥/全桥混合模块阀组负极连接第二晶闸管阳极与第四晶闸管阴极,第一晶闸管阳极连接第五晶闸管阳极,第二晶闸管阴极连接第五晶闸管阴极;第一晶闸管阳极与第二晶闸管阴极构成功率模块组输入端口;第三晶闸管阴极与第四晶闸管阳极构成功率模块组输出端口。
如图2所示,晶闸管由多个低耐压的晶闸管串联组合形成,也可以替换为串联高压IGCT阀或其他半导体双向开关。
如图3所示,一种高电压传输比的直流变压器基本控制波形示意图,以功率模组为3个,功率由高压直流端口向低压直流端口传输为例说明。当功率由高压直流端口向低压直流端口传输时,3个功率模块组中的第六晶闸管至第十晶闸管驱动保持低电平。模块切换时序如下:
(1)在t0时刻之前,功率模块组3并联在低压直流端口,其半桥/全桥混合模块阀组向低压直流端口放电,功率模块组1与功率模块组2串联在高压直流端口,其半桥/全桥混合模块阀组充电。
(2)t0时刻,功率模块组3内,半桥/全桥混合模块阀组输出电压降低至0。因此,在t1时刻,Lg电流下降到0,第三晶闸管与第四晶闸管由于受到反压而关断。
(3)t2时刻,功率模块组3内,其半桥/全桥混合模块阀组利用全桥子模块输出负电压,同时开通第一晶闸管与第二晶闸管。因此,在t3时刻,第五晶闸管电流下降到0,高压直流端口电流转移到第一晶闸管、第二晶闸管与半桥/全桥混合模块阀组支路,而第五晶闸管由于受到反压而关断。
(4)t4时刻,功率模块组3内半桥/全桥混合模块阀组输出电压上升,同时功率模块组1内的半桥/全桥混合模块阀组输出电压下降,至t5时刻,功率模块组3内半桥/全桥混合模块阀组输出电压上升至设定值,功率模块组1内的半桥/全桥混合模块阀组输出电压下降到零,功率模块组3串入高压直流端口开始充电。
(5)t6时刻,功率模块组1内第五晶闸管开通。t7时刻,功率模块组1内半桥/全桥混合模块阀组输出正电压,因此在t8时刻,第一晶闸管与第二晶闸管电流下降至0,由于承受反压而关断。在t8时刻,功率模块组1内,第三晶闸管与第四晶闸管开通,半桥/全桥混合模块阀组并联至低压直流端口,同时使其输出设定值电压,向低压直流端口放电。
在使用时,对本发明的拓扑结构进行控制:
在功率模块组中,开通第一晶闸管与第二晶闸管,关断第三晶闸管至第十晶闸管,半桥/全桥混合模块阀组连接至高压直流端口,功率可由高压直流端口单向传输至模块阀组;
开通第六晶闸管与第七晶闸管,关断第一晶闸管至第五晶闸管、第八晶闸管至第十闸管,半桥/全桥混合模块阀组连接至高压直流端口,功率可由模块阀组单向传输至高压直流端口;
在功率模块组中,开通第三晶闸管至第五晶闸管,关断第一晶闸管、第二晶闸管、第六晶闸管至第十晶闸管,半桥/全桥混合模块阀组经低压滤波电感,并联至低压直流端口,功率可由模块阀组单向传输至低压直流端口,且第五晶闸管导通,可实现高压直流端口电流连续;
开通第八晶闸管与第九晶闸管,关断第一晶闸管至第七晶闸管,半桥/全桥混合模块阀组经低压滤波电感,并联至低压直流端口,功率可由低压直流端口传输至模块阀组,且第十晶闸管导通,可实现高压直流端口电流连续。
上述3个功率模块组的例子可实现高压直流端口电流的连续,但低压直流端口电流断续。当采用更多的N个功率模块组(N>3)时,通过晶闸管与半桥/全桥混合模块阀组的控制与配合,可使得每一时刻,N个功率模块中有K(K<N-2)个模块串联在高压直流端口处,与高压直流端口进行功率交换;剩余N-K个模块并联在低压直流端口处,与低压直流端口进行功率交换。从而,实现高压直流端口与低压直流端口的功率交换,并保证高压与低压直流端口的连续性。
通过调节各功率模块组内,半桥/全桥混合模块阀组输出电压的大小与时间长短,可实现对低压或高压直流端口电压的控制、以及各功率模块组内半桥/全桥混合模块阀组子模块电容电压的均衡。
综上,本发明所提出的拓扑结构相对于传统直流变压器拓扑,具有更高的电压传输比,适用于连接中高压直流电网,且具有少模块数,低成本、低体积与低占地面积的优势。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (4)

1.一种高电压传输比的直流变压器拓扑结构,其特征在于,所述拓扑结构由N个功率模块组、高压滤波电感LMV、低压滤波电感LLV与低压滤波电容CLV组成;
所述功率模块组均包含一个输入端口与一个输出端口,N个功率模块组输入串联后,连接高压滤波电感与低压滤波电容,构成高压直流端口,N个功率模块组输出并联后,连接低压滤波电感与低压滤波电容,构成低压直流端口;
所述功率模块组由半桥/全桥混合模块阀组与十个晶闸管组成,半桥/全桥混合模块阀组由n个半桥模块、m个全桥模块与一个阀组电感Lg串联而成,半桥/全桥混合模块阀组的正端连接第一晶闸管的阴极、第三晶闸管的阳极、第六晶闸管的阳极与第八晶闸管的阴极,半桥/全桥混合模块阀组的负端连接第二晶闸管的阳极、第四晶闸管的阴极、第七晶闸管的阴极与第九晶闸管的阳极;第一晶闸管的阳极连接第六晶闸管的阴极、第五晶闸管的阳极与第十晶闸管的阴极;第三晶闸管的阴极连接第八晶闸管的阳极,第五晶闸管的阴极连接第十晶闸管的阳极、第二晶闸管的阴极与第七晶闸管的阳极,第四晶闸管的阳极连接第九晶闸管的阴极;
所述第一晶闸管的阳极与第二晶闸管的阴极构成功率模块组输入端口,第三晶闸管阴极与第四晶闸管阳极构成功率模块组输出端口。
2.根据权利要求1所述的一种高电压传输比的直流变压器拓扑结构,其特征在于,所述晶闸管由多个低耐压的晶闸管串联组合形成,或者替换为串联高压IGCT阀或其他半导体双向开关。
3.一种高电压传输比的直流变压器拓扑结构的控制方法,包括如权利要求2所述的高电压传输比的直流变压器拓扑结构,其特征在于,所述控制方法如下:
在功率模块组中,开通第一晶闸管与第二晶闸管,关断第三晶闸管至第十晶闸管,半桥/全桥混合模块阀组连接至高压直流端口,功率可由高压直流端口单向传输至模块阀组;
开通第六晶闸管与第七晶闸管,关断第一晶闸管至第五晶闸管、第八晶闸管至第十闸管,半桥/全桥混合模块阀组连接至高压直流端口,功率可由模块阀组单向传输至高压直流端口;
在功率模块组中,开通第三晶闸管至第五晶闸管,关断第一晶闸管、第二晶闸管、第六晶闸管至第十晶闸管,半桥/全桥混合模块阀组经低压滤波电感,并联至低压直流端口,功率可由模块阀组单向传输至低压直流端口,且第五晶闸管导通,可实现高压直流端口电流连续;
开通第八晶闸管与第九晶闸管,关断第一晶闸管至第七晶闸管,半桥/全桥混合模块阀组经低压滤波电感,并联至低压直流端口,功率可由低压直流端口传输至模块阀组,且第十晶闸管导通,可实现高压直流端口电流连续。
4.根据权利要求3所述的一种高电压传输比的直流变压器拓扑结构的控制方法,其特征在于,当采用更多的N个所述功率模块组时,通过晶闸管与半桥/全桥混合模块阀组的控制与配合,可使得每一时刻,N个功率模块中有K个模块串联在高压直流端口处,与高压直流端口进行功率交换;剩余N−K个模块并联在低压直流端口处,与低压直流端口进行功率交换;
其中,功率模块组N>3,功率模块K<N-2。
CN202110251647.1A 2021-03-08 2021-03-08 一种高电压传输比的直流变压器拓扑结构及其控制方法 Active CN113014086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110251647.1A CN113014086B (zh) 2021-03-08 2021-03-08 一种高电压传输比的直流变压器拓扑结构及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110251647.1A CN113014086B (zh) 2021-03-08 2021-03-08 一种高电压传输比的直流变压器拓扑结构及其控制方法

Publications (2)

Publication Number Publication Date
CN113014086A CN113014086A (zh) 2021-06-22
CN113014086B true CN113014086B (zh) 2022-02-01

Family

ID=76408510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110251647.1A Active CN113014086B (zh) 2021-03-08 2021-03-08 一种高电压传输比的直流变压器拓扑结构及其控制方法

Country Status (1)

Country Link
CN (1) CN113014086B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125374A (ja) * 2000-08-09 2002-04-26 Abb Res Ltd 高電圧dc/dcコンバータ
JP2010193614A (ja) * 2009-02-18 2010-09-02 Origin Electric Co Ltd 電力変換装置
CN103427658A (zh) * 2013-08-01 2013-12-04 南京南瑞继保电气有限公司 一种基于多绕组变压器的高压直流-直流变换装置
CN103441676A (zh) * 2013-08-01 2013-12-11 南京南瑞继保电气有限公司 一种模块化的高压直流-直流变换装置
CN206302343U (zh) * 2017-01-05 2017-07-04 南方电网科学研究院有限责任公司 直流变换器的拓扑电路以及海上风场场内直流集电系统
WO2018107506A1 (zh) * 2016-12-17 2018-06-21 中天海洋系统有限公司 直流-直流变换设备
CN109347357A (zh) * 2018-10-09 2019-02-15 特变电工新疆新能源股份有限公司 一种四端口电力电子变压器
US10224827B1 (en) * 2018-02-15 2019-03-05 Futurewei Technologies, Inc. Power converter with wide DC voltage range
CN109687717A (zh) * 2019-01-23 2019-04-26 东南大学 一种功率可调lc输入串联输出并联直流变压器及控制方法
CN112311238A (zh) * 2019-07-29 2021-02-02 华北电力大学(保定) 一种具备直流短路故障保护能力的新型直流电力电子变压器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522913A (zh) * 2011-12-04 2012-06-27 中国科学院电工研究所 基于h全桥子单元的混合多电平变流拓扑及其控制方法
CN112311274B (zh) * 2019-08-02 2024-05-28 国网智能电网研究院有限公司 一种基于可控关断的混合式换流器拓扑结构及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125374A (ja) * 2000-08-09 2002-04-26 Abb Res Ltd 高電圧dc/dcコンバータ
JP2010193614A (ja) * 2009-02-18 2010-09-02 Origin Electric Co Ltd 電力変換装置
CN103427658A (zh) * 2013-08-01 2013-12-04 南京南瑞继保电气有限公司 一种基于多绕组变压器的高压直流-直流变换装置
CN103441676A (zh) * 2013-08-01 2013-12-11 南京南瑞继保电气有限公司 一种模块化的高压直流-直流变换装置
WO2018107506A1 (zh) * 2016-12-17 2018-06-21 中天海洋系统有限公司 直流-直流变换设备
CN206302343U (zh) * 2017-01-05 2017-07-04 南方电网科学研究院有限责任公司 直流变换器的拓扑电路以及海上风场场内直流集电系统
US10224827B1 (en) * 2018-02-15 2019-03-05 Futurewei Technologies, Inc. Power converter with wide DC voltage range
CN109347357A (zh) * 2018-10-09 2019-02-15 特变电工新疆新能源股份有限公司 一种四端口电力电子变压器
CN109687717A (zh) * 2019-01-23 2019-04-26 东南大学 一种功率可调lc输入串联输出并联直流变压器及控制方法
CN112311238A (zh) * 2019-07-29 2021-02-02 华北电力大学(保定) 一种具备直流短路故障保护能力的新型直流电力电子变压器

Also Published As

Publication number Publication date
CN113014086A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN104702114B (zh) 一种开关电容接入的高频链双向直流变压器及其控制方法
CN102714471B (zh) 用于对储能器充电和放电的变流器和变流器的子模块
CN105556787A (zh) 用于高电压的模块化多点变流器
CN108134384B (zh) 交错连接软开关混合型多电平直流互联变流器
CN107592017B (zh) 一种dc-dc变换器及控制方法
WO2020169018A1 (zh) 一种多直流端口换流器及控制方法
CN105356731A (zh) 模块化多电平换流器高压直流输电系统子模块触发方法
CN109194130A (zh) 一种单向直流电压变换装置和系统及其控制方法
CN111541370B (zh) 用于真伪双极互联的柔性直流输电dc/dc变换器
CN105406728B (zh) 全双向开关型双级矩阵变换器整流级开关管开路故障时的容错控制方法
CN109327016B (zh) 一种直流极间分断装置及控制方法
CN110994974B (zh) 一种低损耗模块化多电平直流直流变换器及其子模块
CN113014086B (zh) 一种高电压传输比的直流变压器拓扑结构及其控制方法
TWI663816B (zh) 交錯式高升壓直流-直流轉換器
CN116054585A (zh) 一种新型高压直流变压器及控制方法
CN113489359B (zh) 一种具备直流故障清除能力的子模块拓扑
US20210203227A1 (en) Modular multilevel dynamic switching dc-dc transformer
CN112290801B (zh) 一种高升压比隔离型直流变换器及其控制方法
CN105162105B (zh) 一种直流电网潮流控制器拓扑
CN113037081B (zh) 一种模块化高电压传输比直流变压器拓扑结构及控制方法
CN109728720B (zh) 用于柔性直流输电的双极dc/dc变换器及其控制方法
CN208461712U (zh) 具备直流故障自清除能力的换流器功率模块和换流器
Wang et al. Fault ride-through scheme and control strategy of multilevel voltage-balancing DC-DC converter
CN110635683A (zh) 二端口子模块、自耦式直流变压器及其调制方法
CN217215984U (zh) Dc/dc变换器及直流风电场输电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant