WO2018107358A1 - 控制上行功率的方法和设备 - Google Patents

控制上行功率的方法和设备 Download PDF

Info

Publication number
WO2018107358A1
WO2018107358A1 PCT/CN2016/109652 CN2016109652W WO2018107358A1 WO 2018107358 A1 WO2018107358 A1 WO 2018107358A1 CN 2016109652 W CN2016109652 W CN 2016109652W WO 2018107358 A1 WO2018107358 A1 WO 2018107358A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
uplink
multiple access
power
terminal device
Prior art date
Application number
PCT/CN2016/109652
Other languages
English (en)
French (fr)
Inventor
林亚男
许华
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to IL267295A priority Critical patent/IL267295B/en
Priority to CN201680091423.6A priority patent/CN110063075B/zh
Priority to EP16924037.1A priority patent/EP3554149B1/en
Priority to PCT/CN2016/109652 priority patent/WO2018107358A1/zh
Priority to CN202011489394.3A priority patent/CN112601275B/zh
Priority to EP21150507.8A priority patent/EP3826376B1/en
Priority to BR112019012105-6A priority patent/BR112019012105B1/pt
Priority to MX2019006892A priority patent/MX2019006892A/es
Priority to ES16923811T priority patent/ES2861573T3/es
Priority to RU2019121866A priority patent/RU2730894C1/ru
Priority to KR1020197020312A priority patent/KR20190094420A/ko
Priority to EP16923811.0A priority patent/EP3550894B1/en
Priority to CA3046831A priority patent/CA3046831C/en
Priority to IL267296A priority patent/IL267296B/en
Priority to JP2019531804A priority patent/JP6895521B2/ja
Priority to PCT/CN2016/112421 priority patent/WO2018107520A1/zh
Priority to CN201680091532.8A priority patent/CN110073699B/zh
Priority to FIEP21150507.8T priority patent/FI3826376T3/fi
Priority to AU2016432572A priority patent/AU2016432572B2/en
Priority to TW106142939A priority patent/TWI765943B/zh
Publication of WO2018107358A1 publication Critical patent/WO2018107358A1/zh
Priority to CL2019001621A priority patent/CL2019001621A1/es
Priority to US16/439,272 priority patent/US20190297582A1/en
Priority to US16/439,982 priority patent/US10785729B2/en
Priority to PH12019501336A priority patent/PH12019501336A1/en
Priority to PH12019501338A priority patent/PH12019501338A1/en
Priority to ZA2019/04585A priority patent/ZA201904585B/en
Priority to US16/999,678 priority patent/US11363535B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • Embodiments of the present application relate to the field of communications, and more particularly, to a method and apparatus for controlling uplink power.
  • the uplink transmission power in the Long Term Evolution (LTE) system is determined by the terminal device according to the power control parameters configured on the network side and the downlink path loss measured by the terminal device.
  • LTE Long Term Evolution
  • a plurality of uplink multiple access methods will be introduced, and the method for performing uplink power control in the related related technologies cannot meet the requirements of different uplink multiple access methods. It is therefore desirable to provide a method of controlling uplink power in a communication system capable of supporting multiple uplink multiple access methods.
  • the present invention provides a method and device for controlling uplink power, which can flexibly adjust uplink transmission power to meet the requirements of different uplink multiple access modes, and is suitable for a communication system supporting multiple uplink multiple access modes.
  • the first aspect provides a method for controlling uplink power, including: receiving, by a terminal device, uplink power control information sent by a network device; and determining, by the terminal device, target power corresponding to the target uplink multiple access mode according to the uplink power control information a control parameter; the terminal device determines, according to the target power control parameter, a target transmit power when the target uplink signal is sent by using the target uplink multiple access mode.
  • the terminal device determines, according to the received uplink power control information sent by the network device, a target power control parameter corresponding to the target uplink multiple access mode. Therefore, when the terminal device uses different uplink multiple access methods for uplink signal transmission, the independent uplink power control process can be used to determine the uplink transmission power corresponding to the uplink multiple access mode, and the uplink transmission power can be flexibly adjusted to meet different uplink multiple access modes.
  • the requirements are applicable to communication systems that support multiple uplink and multiple access methods.
  • the target uplink multiple access mode is an uplink multiple access mode of multiple uplink multiple access modes.
  • the target uplink multiple access mode is a candidate uplink multiple access mode of the multiple candidate uplink multiple access modes in which the target uplink signal is sent by the terminal device; or the target uplink multiple access mode is sent by the terminal device.
  • the uplink multiple access method that needs to be adopted for the target uplink signal.
  • the uplink power control information includes open loop power control information, where the open loop power control information includes multiple uplink multiple access modes.
  • Corresponding open loop power control parameters, and multiple uplink multiple access modes include the target uplink multiple access mode;
  • the determining, by the terminal device, the target power control parameter corresponding to the target uplink multiple access mode, according to the uplink power control information the determining, by the terminal device, determining the open loop power control parameter according to the open loop power control information a target open loop power control parameter corresponding to the target uplink multiple access mode.
  • the receiving, by the terminal device, the uplink power control information that is sent by the network device includes: receiving, by the terminal device, the network device by using a radio resource The open loop power control information sent by the RRC message.
  • the target open loop power control parameter includes at least one of the following parameters: an uplink target receiving power, a path loss factor, and a sounding reference signal. SRS power adjustment value.
  • the uplink power control information includes power adjustment indication information
  • the determining, by the terminal device, the target power control parameter corresponding to the target uplink multiple access mode in the multiple uplink multiple access mode according to the uplink power control information including: the terminal device according to the power adjustment indication information and the pre And determining a target closed-loop power adjustment value corresponding to the target uplink multiple access mode, where the preset correspondence relationship is a correspondence between the power adjustment indication information and the closed-loop power adjustment value.
  • the terminal device determines, according to the power adjustment indication information and a preset correspondence, a target corresponding to the target uplink multiple access mode.
  • the closed-loop power adjustment value includes: determining, by the terminal device, the target correspondence relationship from the preset correspondence relationship according to the target uplink multiple access mode; the terminal device according to the power adjustment indication information and the target correspondence relationship And determining the target closed loop power adjustment value.
  • the terminal device receives the uplink power control information sent by the network device, where the terminal device receives the downlink control signaling DCI sent by the network device, where the DCI includes the power adjustment indication information.
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to a first transmit power, where the first transmit power is Transmit power used by the terminal device to transmit the same uplink signal as the target uplink signal for the previous time;
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the second transmit power, where the second transmit power is sent by the terminal device in the target uplink multiple access mode and the target uplink Transmit power used for uplink signals of the same signal type; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to a third transmission power, where the third transmission power is an uplink signal that is the same as the target uplink signal type that is last determined by the terminal device. Transmit power; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to the fourth transmission power, where the fourth transmission power is sent by the terminal device and determined by the target uplink multiple access method. Transmitting the transmit power of the uplink signal of the same uplink signal type; or
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the transmission power of the target uplink signal is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the method further includes: the terminal device adopting the target uplink multiple access mode and the target transmit power, to the network The device sends the target uplink signal.
  • the target uplink signal is one of the following signals: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, SRS, and demodulation Reference signal DMRS.
  • the target uplink multiple access mode is one of the following multiple access modes: orthogonal frequency division of discrete Fourier transform spread spectrum Multiplexed DFT-S-OFDM, cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM), Single-Carrier Frequency Division Multiple Access (SC-FDMA), and Orthogonal Frequency Division Multiple Access (OFDM).
  • orthogonal frequency division of discrete Fourier transform spread spectrum Multiplexed DFT-S-OFDM cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM), Single-Carrier Frequency Division Multiple Access (SC-FDMA), and Orthogonal Frequency Division Multiple Access (OFDM).
  • a method for controlling uplink power including: determining, by a network device, an uplink Power control information, the uplink power control information is used by the terminal device to determine a target power control parameter corresponding to the target uplink multiple access mode, and determining, according to the target power control parameter, that the target uplink uplink signal is sent by using the target uplink multiple access mode Target transmission power at the time; the network device sends the uplink power control information to the terminal device.
  • the network device sends uplink power control information to the terminal device, so that the terminal device can determine the target power control parameter corresponding to the target uplink multiple access mode according to the received uplink power control information. Therefore, when the terminal device uses different multiple access methods for uplink signal transmission, the independent uplink power control process can be used to determine the uplink transmission power corresponding to the uplink multiple access mode, and the uplink transmission power can be flexibly adjusted to meet different uplink multiple access modes.
  • the requirements are applicable to communication systems that support multiple uplink and multiple access methods.
  • the target uplink multiple access mode is an uplink multiple access mode of multiple uplink multiple access modes.
  • the target uplink multiple access mode is one of multiple candidate uplink multiple access modes for sending the target uplink signal to the terminal device
  • the candidate uplink multiple access mode; or the target uplink multiple access mode is an uplink multiple access mode that needs to be adopted by the terminal device to send the target uplink signal.
  • the uplink power control information includes open loop power control information
  • the open loop power control information includes multiple uplink multiple access modes.
  • the multiple uplink multiple access modes include the target uplink multiple access mode
  • the open loop power control information is used by the terminal device to determine the open loop power control parameter and the target uplink The target open loop power control parameter corresponding to the multiple access mode.
  • the network device sends the uplink power control information to the terminal device, where the network device controls an RRC message by using a radio resource. Sending the open loop power control information to the terminal device.
  • the target open loop power control parameter includes at least one of the following parameters: an uplink target receiving power, a path loss factor, and a sounding reference signal. SRS adjustment value.
  • the uplink power control information includes power adjustment indication information, where the power adjustment indication information is used by the terminal device according to the power Controlling the indication information and the preset correspondence, and determining a target closed-loop power adjustment value corresponding to the target uplink multiple access mode, where the preset correspondence relationship is a power adjustment indication Correspondence between information and closed-loop power adjustment values.
  • the sending, by the network device, the uplink power control information to the terminal device includes: sending, by the network device, the terminal device Downlink control signaling DCI, where the DCI includes the power adjustment indication information.
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the first transmit power, the first transmit power Transmit power used by the terminal device to transmit the same uplink signal as the target uplink signal for the previous time;
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the second transmit power, where the second transmit power is sent by the terminal device in the target uplink multiple access mode and the target uplink Transmit power used for uplink signals of the same signal type; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to a third transmission power, where the third transmission power is an uplink signal that is the same as the target uplink signal type that is last determined by the terminal device. Transmit power; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to the fourth transmission power, where the fourth transmission power is sent by the terminal device and determined by the target uplink multiple access method. Transmitting the transmit power of the uplink signal of the same uplink signal type; or
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the transmission power of the target uplink signal is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the method further includes: the network device receiving, by the terminal device, the target uplink multiple access mode and the target transmit power The target uplink signal sent.
  • the target uplink signal is one of the following signals: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, SRS, and demodulation Reference signal DMRS.
  • the target uplink multiple access mode is one of the following multiple access modes: orthogonal frequency division of discrete Fourier transform spread spectrum Multiplexed DFT-S-OFDM, cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM), single carrier frequency division multiple access Access to SC-FDMA and Orthogonal Frequency Division Multiple Access (OFDM).
  • multiple access modes orthogonal frequency division of discrete Fourier transform spread spectrum Multiplexed DFT-S-OFDM, cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM), single carrier frequency division multiple access Access to SC-FDMA and Orthogonal Frequency Division Multiple Access (OFDM).
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises functional modules for performing the method of the first aspect or any of the possible implementations of the first aspect described above.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises functional modules for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • a terminal device including a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path, transmitting control and/or data signals, such that the terminal device performs any of the above first aspect or any possible implementation of the first aspect The method in .
  • a network device including a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path, transmitting control and/or data signals, such that the network device performs any of the second or second aspects of the foregoing possible implementations The method in .
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing any of the possible implementations of the second or second aspect described above.
  • FIG. 1 is a schematic flowchart of a method for controlling uplink power according to an embodiment of the present application
  • FIG. 2 is another schematic flowchart of a method for controlling uplink power according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for controlling uplink power according to another embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a method for controlling uplink power according to another embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a network device according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device may include, but is not limited to, a mobile station (Mobile Station, abbreviated as "MS"), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), and a user equipment (User Equipment, UE).
  • a mobile device handset
  • a portable device a vehicle, etc.
  • the terminal device can communicate with one or more core networks via a radio access network (RAN), for example, the terminal device can be Mobile phones (or “cellular” phones), computers with wireless communication capabilities, etc., can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices.
  • RAN radio access network
  • the network device is a device deployed in the radio access network to provide a wireless communication function for the terminal device.
  • the network device may be a base station, and the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functionality may vary.
  • an Evolved NodeB (“eNB” or "eNodeB”
  • eNodeB is called a Node B (Node) in a 3rd Generation (3G) network.
  • 3G 3rd Generation
  • LTE system uplink transmission only supports discrete Fourier transform spread Orthogonal Frequency Division Multiplexing (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, referred to as "DFT-S-OFDM") multiple access mode, the network side only needs to configure one set of uplink power control parameters for uplink transmission.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the network side only needs to configure one set of uplink power control parameters for uplink transmission.
  • two uplink multiple access methods are introduced in the uplink transmission in the 5G system (or called " Upstream waveform"): DFT-S-OFDM multiple access mode and Cyclic Prefix ("CP”)-OFDM multiple access mode.
  • the former can only be used for uplink single layer transmission, and the latter can be used for uplink single layer or multilayer transmission.
  • the terminal device uses can be configured by the network side according to the uplink channel quality of the terminal.
  • the DFT-S-OFDM multiple access method has better channel transmission coverage performance, but the spectrum efficiency is lower.
  • the CP-OFDM multiple access method has higher spectral efficiency, but its Peak to Average Power Ratio (PAPR) is higher, so its coverage performance is poor.
  • PAPR Peak to Average Power Ratio
  • the embodiment of the present application provides a method for controlling uplink power, so that the terminal device can calculate the uplink transmission power corresponding to each uplink multiple access mode by using an independent uplink power control process, and can flexibly adjust the uplink transmission power to meet different uplinks.
  • the uplink transmission refers to a process in which the terminal device sends a signal to the network device
  • the downlink transmission refers to a process in which the network device sends a signal to the terminal device
  • FIG. 1 illustrates a method of controlling uplink power in accordance with an embodiment of the present application. As shown in FIG. 1, the method 100 includes:
  • the terminal device receives uplink power control information sent by the network device.
  • the terminal device determines, according to the uplink power control information, a target power control parameter corresponding to the target uplink multiple access mode.
  • the terminal device determines, according to the target power control parameter, a target transmit power when the target uplink signal is sent by using the target uplink multiple access mode.
  • the terminal device determines the target power control parameter corresponding to the target uplink multiple access mode according to the received uplink power control information sent by the network device. Therefore, when the terminal device uses different uplink multiple access methods for uplink signal transmission, the independent uplink power control process can be used to determine the uplink transmission power corresponding to the uplink multiple access mode, and the uplink transmission power can be flexibly adjusted to meet different uplink multiple access modes.
  • the requirements are applicable to communication systems that support multiple uplink and multiple access methods.
  • the terminal device determines the target transmit power when the target uplink signal is sent by using the target uplink multiple access mode, and may adopt the target uplink multiple access mode. And the target transmit power transmits the target uplink signal at the current time, or may transmit the target uplink signal at the current time without using the target uplink multiple access method.
  • the terminal device may store the determined target transmission power, and when the target uplink uplink signal is actually transmitted by using the target uplink multiple access method, the determined target transmission is performed. The power transmits the target uplink signal.
  • the target uplink multiple access mode may be used by the terminal device to send one of the candidate uplink multiple access modes in the multiple candidate uplink multiple access modes that may be used by the target uplink signal.
  • the terminal device sends the uplink power according to the network device.
  • the control information determines power control parameters corresponding to each candidate uplink multiple access mode.
  • the target uplink multiple access mode is used for the terminal device to transmit the target uplink signal.
  • the terminal device can determine the target uplink multiple access mode according to the multiple access mode indication information configured by the network side.
  • the target uplink multiple access mode may display an indication by using a signaling, for example, a radio resource control (Radio Resource Control, abbreviated as "RRC" message or Downlink Control Information ("DCI").
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the address mode can be implicitly indicated by other information, for example, different DCI formats correspond to different uplink multiple access modes.
  • the target uplink multiple access mode is an uplink multiple access mode of multiple uplink multiple access modes.
  • the target uplink multiple access mode is one of the following multiple access modes: Fourier Transform Spread Orthogonal Frequency Division Multiplexing (referred to as “DFT-S-OFDM”) Cyclic Prefix ("CP") - OFDM, Single-Carrier Frequency-Division Multiple Access (SC-FDMA) and Orthogonal Frequency Division Multiple Access Orthogonal Frequency Division Multiple Access (“OFDMA”).
  • DFT-S-OFDM Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • CP Cyclic Prefix
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access Orthogonal Frequency Division Multiple Access
  • the uplink power control information includes open loop power control information
  • the open loop power control information includes multiple open loop power control parameters corresponding to multiple uplink multiple access modes, and multiple uplink multiple access modes.
  • the terminal device determines, according to the open loop power control information, a target open loop power control parameter corresponding to the target uplink multiple access mode in the open loop power parameter.
  • the target open loop power control parameter includes at least one of the following parameters: an uplink target receiving power, a path loss factor, and a Sounding Reference Signal (SRS) power adjustment. value.
  • SRS Sounding Reference Signal
  • the terminal device receives the open loop power control information that is sent by the network device by using an RRC message.
  • the network device uses open loop power control information for different uplink multiple access methods. Configure their respective open loop power control parameters.
  • the network device may configure a complete open loop power control parameter for an uplink multiple access mode, and configure an open loop power corresponding to the uplink multiple access mode for other upper phase multiple access modes.
  • the offset value of the parameter is controlled, thereby saving the overhead of downlink signaling.
  • the uplink target receiving power corresponding to the DFT-S-OFDM of the network device is -60 dBm
  • the offset value of the uplink target received power corresponding to the CP-OFDM is 10 dBm with respect to the uplink target received power corresponding to the DFT-S-OFDM.
  • the network device configures complete open loop power control parameters for each of the various uplink modes.
  • the uplink target receiving power corresponding to the DFT-S-OFDM of the network device is -60 dBm
  • the path loss factor is 1
  • the uplink target receiving power corresponding to the CP-OFDM is configured to be 20 dBm
  • the path loss factor is 2.
  • the transmit power of the target uplink signal is calculated according to the open loop power control parameters corresponding to the determined uplink multiple access mode.
  • the uplink power control information includes power adjustment indication information
  • the terminal device determines, according to the power adjustment indication information and the preset correspondence relationship, a target closed loop power adjustment value corresponding to the target uplink multiple access mode
  • the preset correspondence relationship is a correspondence between the power adjustment indication information and the closed loop power adjustment value.
  • the terminal device receives the DCI sent by the network device, where the DCI includes power adjustment indication information.
  • the DCI herein may be a DCI for scheduling target uplink signal transmission, or may be a DCI dedicated to carrying power adjustment indication information, and the DCI is not used for scheduling transmission of the target uplink signal.
  • the foregoing preset correspondence may be pre-determined by the terminal device and the network device, or may be configured by the network device by using the indication information.
  • the preset correspondence can be shown in Table 1. It should be noted that Table 1 merely gives an example of a preset correspondence, rather than a limitation on a preset correspondence.
  • the value of the closed loop power adjustment value indicated by the same indication field in the power adjustment indication information may be different. Therefore, the terminal device needs to determine the target correspondence relationship from the preset correspondence according to the target uplink multiple access mode, and then determine the target closed loop power adjustment value according to the power adjustment information and the target correspondence relationship.
  • the correspondence between the power adjustment indication information and the closed-loop power adjustment value may be pre-approved by the terminal device and the network device, or may be configured by the network device by using the indication information.
  • Table 2 shows another correspondence between the power adjustment indication information and the closed loop power adjustment value.
  • the target closed-loop power adjustment value may be an absolute value adjusted based on the open loop power, or may be an accumulated value adjusted based on the previous transmit power.
  • the network device may configure the terminal device by signaling whether the target closed-loop power adjustment value is a ground-based value adjusted based on the open-loop power or an accumulated value adjusted based on the previous transmission power.
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power relative to the first transmission power, where the first transmission power is used when the terminal device sends the same uplink signal as the target uplink signal type. Transmit power.
  • the target closed-loop power adjustment value may be an adjustment value of the transmission power of the physical uplink shared channel (Physical Uplink Shared Channel, referred to as "PUSCH") transmitted by the terminal device with respect to the transmission power of the PUSCH transmitted by the terminal device.
  • PUSCH Physical Uplink Shared Channel
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power relative to the second transmission power
  • the second transmission power is a transmission used when the terminal device transmits the uplink signal of the same type as the target uplink signal by using the target uplink multiple access method. power.
  • the target closed-loop power adjustment value is an adjustment value of the transmission power of the PUSCH transmitted by the terminal device using DFT-S-OFDM with respect to the transmission power of the PUSCH transmitted by the terminal device last time using DFT-S-OFDM.
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to the third transmission power
  • the third transmission power is a transmission power of the uplink signal that is the same as the target signal type that is last determined by the terminal device.
  • the target closed-loop power adjustment value is an adjustment value of the transmission power of the PUSCH transmitted by the terminal device with respect to the transmission power of the most recently calculated PUSCH. This does not mean that the terminal device needs to actually transmit the PUSCH when updating the transmission power, but the terminal device stores the transmission power of the most recently calculated PUSCH for transmission of the subsequent PUSCH.
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to the fourth transmission power
  • the fourth transmission power is the last transmission of the uplink signal that is sent by the terminal device in the target uplink multiple access mode and the target uplink signal type is the same. power.
  • the target power adjustment value is an adjustment value of the transmission power of the PUSCH transmitted by the terminal device using the DFT-S-OFDM and the transmission power of the PUSCH transmitted by the DFT-S-OFDM with respect to the last calculation (or the latest update). This does not mean that the terminal device does not mean that the terminal device needs to actually transmit the PUSCH when updating the transmission power, but the terminal device stores the transmission power of the most recently calculated PUSCH for subsequent PUSCH transmission.
  • the target power adjustment value is an adjustment value of the target transmission power with respect to the fifth transmission power
  • the fifth transmission power is a transmission power of the target uplink signal determined by the terminal equipment according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the open loop power control parameter herein may be a parameter configured by the network device through high layer signaling, such as target received power and path loss factor.
  • the terminal device can calculate the transmission power according to formula (1) and the open loop power control parameter.
  • P PUSCH (i) 10log 10 (M PUSCH (i))+P O_PUSCH (j)+ ⁇ (j) ⁇ PL+ ⁇ TF (i) (1)
  • M PUSCH (i) is the uplink transmission bandwidth
  • P O_PUSCH (j) is the target received power
  • ⁇ (j) is the path loss factor
  • PL is the downlink path loss
  • ⁇ TF (i) is the modulation and coding strategy (Modulation and Coding Scheme, referred to as "MCS" for the adjustment value.
  • MCS Modulation and Coding Scheme
  • the terminal device may determine the target open loop power control parameter corresponding to the target uplink multiple access mode according to the open loop power control parameters configured by the network device for different uplink multiple access modes by using the high layer signaling. And determining, according to the power adjustment indication information carried by the network device by using the DCI, the target closed-loop power adjustment value corresponding to the target uplink multiple access mode. The terminal device then calculates the target transmit power according to the target open loop power control parameter, the target closed loop power adjustment value, and a preset transmit power calculation method or formula.
  • the method 100 further includes:
  • the terminal device uses the target uplink multiple access mode and the target transmit power to send the target uplink signal to the network device.
  • the target uplink signal is one of the following signals: a PUSCH, a Physical Uplink Control Channel (PUCCH), an SRS, and a demodulation reference signal (De Modulation).
  • a PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • SRS SRS
  • De Modulation De Modulation reference signal
  • Reference Signal referred to as "DMRS”.
  • the method for controlling the uplink power according to the embodiment of the present application is described in detail above with reference to FIG. 1 and FIG. 2, and the method for controlling the uplink power according to the embodiment of the present application will be described in detail from the network device side in conjunction with FIG. 3 and FIG. . It should be understood that the interaction between the network device and the terminal device described on the network device side is the same as that described on the terminal device side. To avoid repetition, the related description is omitted as appropriate.
  • FIG. 3 is a method of controlling uplink power according to another embodiment of the present application. As shown in FIG. 3, the method 200 includes:
  • the network device determines uplink power control information, where the uplink power control information is used by the terminal device to determine a target power control parameter corresponding to the target uplink multiple access mode, and determining, according to the target power control parameter, that the target uplink is used.
  • the network device sends the uplink power control information to the terminal device.
  • the network device sends the uplink power control information to the terminal device, so that the terminal device can determine the target power control parameter corresponding to the target uplink multiple access mode according to the received uplink power control information. . Therefore, when the terminal device uses different multiple access methods for uplink signal transmission, the independent uplink power control process can be used to determine the uplink transmission power corresponding to the uplink multiple access mode, and the uplink transmission power can be flexibly adjusted to meet different uplink multiple access modes.
  • the requirements are applicable to communication systems that support multiple uplink and multiple access methods.
  • the target uplink multiple access mode is an uplink multiple access mode of multiple uplink multiple access modes.
  • the target uplink multiple access mode is one candidate multiple uplink multiple access mode of the multiple candidate uplink multiple access modes of the target uplink signal sent by the terminal device; or
  • the target uplink multiple access mode is an uplink multiple access mode required for the terminal device to send the target uplink signal.
  • the uplink power control information includes open loop power control information, where the open loop power control information includes multiple open loop power control corresponding to multiple uplink multiple access modes.
  • the parameter, the multiple uplink multiple access mode includes the target uplink multiple access mode, where the open loop power control information is used by the terminal device to determine that the open loop power control parameter corresponds to the target uplink multiple access mode The target open loop power control parameters.
  • the S220 specifically includes: the network device sends the open loop power control information to the terminal device by using a radio resource control RRC message.
  • the target open loop power control parameter includes at least one of the following parameters: an uplink target receiving power, a path loss factor, and a sounding reference signal SRS adjustment value.
  • the uplink power control information includes power adjustment indication information, where the power adjustment indication information is used by the terminal device to determine according to the power control indication information and a preset correspondence relationship. a target closed-loop power adjustment value corresponding to the target uplink multiple access mode, where the preset correspondence relationship is a correspondence between the power adjustment indication information and the closed-loop power adjustment value.
  • the S120 specifically includes: the network device sends a downlink control signaling DCI to the terminal device, where the DCI includes the power adjustment indication information.
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power relative to the first transmission power, where the first transmission power is the previous transmission and location of the terminal device. Transmit power used when the uplink signal of the same uplink signal type is the same; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the second transmit power, where the second transmit power is sent by the terminal device in the target uplink multiple access mode and the target uplink Transmit power used for uplink signals of the same signal type; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to a third transmission power, where the third transmission power is an uplink signal that is the same as the target uplink signal type that is last determined by the terminal device. Transmit power; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to the fourth transmission power, where the fourth transmission power is sent by the terminal device and determined by the target uplink multiple access method. Transmitting the transmit power of the uplink signal of the same uplink signal type; or
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the transmission power of the target uplink signal is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the method 200 further includes:
  • the network device receives, by the terminal device, the target uplink multiple access mode and the location The target uplink signal sent by the target transmit power.
  • the target uplink signal is one of the following signals: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, an SRS, and a demodulation reference signal DMRS.
  • the target uplink multiple access mode is one of the following multiple access modes: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM), Single-Carrier Frequency Division Multiple Access (SC-FDMA), and Orthogonal Frequency Division Multiple Access (OFDM).
  • DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • CP-OFDM cyclic prefix Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiple Access
  • the terminal device 10 includes:
  • the transceiver module 11 is configured to receive uplink power control information sent by the network device.
  • the processing module 12 is configured to determine, according to the uplink power control information, a target power control parameter corresponding to the target uplink multiple access mode;
  • the processing module 12 is further configured to determine, according to the target power control parameter, a target transmit power when the target uplink signal is sent by using the target uplink multiple access mode.
  • the terminal device determines the target power control parameter corresponding to the target uplink multiple access mode according to the uplink power control information sent by the received network device. Therefore, when the terminal device uses different uplink multiple access methods for uplink signal transmission, the independent uplink power control process can be used to determine the uplink transmission power corresponding to the uplink multiple access mode, and the uplink transmission power can be flexibly adjusted to meet different uplink multiple access modes.
  • the requirements are applicable to communication systems that support multiple uplink and multiple access methods.
  • the target uplink multiple access mode is an uplink multiple access mode of multiple uplink multiple access modes.
  • the target uplink multiple access mode is one candidate multiple uplink multiple access mode of the multiple candidate uplink multiple access modes of the target uplink signal sent by the terminal device; or
  • the target uplink multiple access mode is an uplink multiple access mode required for the terminal device to send the target uplink signal.
  • the uplink power control information includes open loop power control information, where the open loop power control information includes multiple open loop power control parameters corresponding to multiple uplink multiple access modes, and multiple The uplink multiple access mode includes the target uplink multiple access mode;
  • the processing module 12 is specifically configured to: determine, according to the open loop power control information, a target open loop power control parameter corresponding to the target uplink multiple access mode in the open loop power control parameter.
  • the transceiver module 11 is specifically configured to: receive the open loop power control information that is sent by the network device by using a radio resource control RRC message.
  • the target open loop power control parameter includes at least one of the following parameters: an uplink target receiving power, a path loss factor, and a sounding reference signal SRS power adjustment value.
  • the uplink power control information includes power adjustment indication information
  • the processing module 12 is specifically configured to: determine, according to the power adjustment indication information and the preset correspondence relationship, a target closed loop power adjustment value corresponding to the target uplink multiple access mode, where the preset correspondence relationship is power adjustment indication information. Correspondence with closed loop power adjustment values.
  • the processing module 12 is specifically configured to: determine, according to the target uplink multiple access mode, a target correspondence relationship from the preset correspondence relationship, according to the power adjustment indication information and The target correspondence relationship determines the target closed loop power adjustment value.
  • the transceiver module 11 is specifically configured to: receive downlink control signaling (DCI) sent by the network device, where the DCI includes the power adjustment indication information.
  • DCI downlink control signaling
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power relative to the first transmission power, where the first transmission power is the previous transmission and location of the terminal device. Transmit power used when the uplink signal of the same uplink signal type is the same; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the second transmit power, where the second transmit power is sent by the terminal device in the target uplink multiple access mode and the target uplink Transmit power used for uplink signals of the same signal type; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to a third transmission power, where the third transmission power is an uplink signal that is the same as the target uplink signal type that is last determined by the terminal device. Transmit power; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to the fourth transmission power, where the fourth transmission power is sent by the terminal device and determined by the target uplink multiple access method. Transmitting the transmit power of the uplink signal of the same uplink signal type; or
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the transmission power of the target uplink signal is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the transceiver module 11 is further configured to: send the target uplink signal to the network device by using the target uplink multiple access mode and the target sending power.
  • the target uplink signal is one of the following signals: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, an SRS, and a demodulation reference signal DMRS.
  • the target uplink multiple access mode is one of the following multiple access modes: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM), Single-Carrier Frequency Division Multiple Access (SC-FDMA), and Orthogonal Frequency Division Multiple Access (OFDM).
  • DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • CP-OFDM cyclic prefix Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiple Access
  • the terminal device may refer to the process of the method 100 corresponding to the embodiment of the present application, and the respective units/modules in the terminal device and the other operations and/or functions described above are respectively implemented to implement the corresponding processes in the method 100. For the sake of brevity, it will not be repeated here.
  • FIG. 6 shows a network device according to an embodiment of the present application.
  • the network device 20 includes:
  • the processing module 21 is configured to determine uplink power control information, where the uplink power control information is used by the terminal device to determine a target power control parameter corresponding to the target uplink multiple access mode, and determine, according to the target power control parameter, that the target is used.
  • Target transmit power when the uplink uplink signal is transmitted in the uplink multiple access mode;
  • the transceiver module 22 is configured to send the uplink power control information to the terminal device.
  • the network device sends the uplink power control information to the terminal device, so that the terminal device can determine the target power control parameter corresponding to the target uplink multiple access mode according to the received uplink power control information. Therefore, when the terminal device uses different multiple access methods for uplink signal transmission, the independent uplink power control process can be used to determine the uplink transmission power corresponding to the uplink multiple access mode, and the uplink transmission power can be flexibly adjusted to meet different uplink multiple access modes.
  • the requirements are applicable to communication systems that support multiple uplink and multiple access methods.
  • the target uplink multiple access mode is an uplink multiple access mode of multiple uplink multiple access modes.
  • the target uplink multiple access mode is one candidate multiple uplink multiple access mode of the multiple candidate uplink multiple access modes of the target uplink signal sent by the terminal device; or
  • the target uplink multiple access mode is an uplink multiple access mode required for the terminal device to send the target uplink signal.
  • the uplink power control information includes open loop power control information, where the open loop power control information includes multiple open loop power control parameters corresponding to multiple uplink multiple access modes, and multiple The uplink multiple access mode includes the target uplink multiple access mode, and the open loop power control information is used by the terminal device to determine a target open loop power corresponding to the target uplink multiple access mode in the open loop power control parameter. Control parameters.
  • the transceiver module 22 is specifically configured to: send the open loop power control information to the terminal device by using a radio resource control RRC message.
  • the target open loop power control parameter includes at least one of the following parameters: an uplink target receiving power, a path loss factor, and a sounding reference signal SRS adjustment value.
  • the uplink power control information includes power adjustment indication information, where the power adjustment indication information is used by the terminal device to determine according to the power control indication information and a preset correspondence relationship. a target closed-loop power adjustment value corresponding to the target uplink multiple access mode, where the preset correspondence relationship is a correspondence between the power adjustment indication information and the closed-loop power adjustment value.
  • the transceiver 22 module is specifically configured to: send downlink control signaling DCI to the terminal device, where the DCI includes the power adjustment indication information.
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power relative to the first transmission power, where the first transmission power is the previous transmission and location of the terminal device. Transmit power used when the uplink signal of the same uplink signal type is the same; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the second transmit power, where the second transmit power is sent by the terminal device in the target uplink multiple access mode and the target uplink Transmit power used for uplink signals of the same signal type; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to a third transmission power, where the third transmission power is an uplink signal that is the same as the target uplink signal type that is last determined by the terminal device. Transmit power; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmission power with respect to the fourth transmission power, where the fourth transmission power is sent by the terminal device and determined by the target uplink multiple access method. Transmitting the transmit power of the uplink signal of the same uplink signal type; or,
  • the target closed-loop power adjustment value is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the transmission power of the target uplink signal is an adjustment value of the target transmit power relative to the fifth transmit power, and the fifth transmit power is determined by the terminal device according to the open loop power control parameter corresponding to the target uplink multiple access mode.
  • the transceiver module 22 is further configured to: receive the target uplink signal that is sent by the terminal device by using the target uplink multiple access mode and the target transmit power.
  • the target uplink signal is one of the following signals: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, an SRS, and a demodulation reference signal DMRS.
  • the target uplink multiple access mode is one of the following multiple access modes: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM), Single-Carrier Frequency Division Multiple Access (SC-FDMA), and Orthogonal Frequency Division Multiple Access (OFDM).
  • DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • CP-OFDM cyclic prefix Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiple Access
  • the network device may refer to the process of the method 200 corresponding to the embodiment of the present application, and the respective units/modules in the network device and the foregoing other operations and/or functions respectively implement the corresponding processes in the method 200.
  • the respective units/modules in the network device and the foregoing other operations and/or functions respectively implement the corresponding processes in the method 200.
  • it will not be repeated here.
  • FIG. 7 shows a terminal device according to another embodiment of the present application.
  • the terminal device 100 includes a processor 110 and a transceiver 120.
  • the processor 110 is connected to the transceiver 120.
  • the network device 100 further includes a memory 130, and the memory 130 is connected to the processor 110.
  • the processor 110, the memory 130, and the transceiver 120 can communicate with each other through an internal connection path.
  • the transceiver 120 is configured to receive uplink power control information sent by the network device, where the processor 110 is configured to determine, according to the uplink power control information, a target power control parameter corresponding to the target uplink multiple access mode;
  • the target power control parameter determines a target transmit power when the target uplink signal is sent by using the target uplink multiple access mode.
  • the terminal device determines the target power control parameter corresponding to the target uplink multiple access mode according to the uplink power control information sent by the received network device. Therefore, when the terminal device uses different uplink multiple access methods for uplink signal transmission, the independent uplink power control process can be used to determine the uplink transmission power corresponding to the uplink multiple access mode, and the uplink transmission power can be flexibly adjusted to meet different uplink multiple access modes.
  • the requirements are applicable to communication systems that support multiple uplink and multiple access methods.
  • the terminal device 100 may refer to the terminal device 10 corresponding to the embodiment of the present application, and each unit/module in the terminal device and the foregoing other operations and/or functions respectively implement the corresponding processes in the method 100. For the sake of brevity, it will not be repeated here.
  • FIG. 8 is a schematic block diagram of a network device according to another embodiment of the present application.
  • the network device 200 includes a processor 210 and a transceiver 220.
  • the processor 210 and the transceiver 220 are connected.
  • the terminal device 200 further includes a memory 230, and the memory 230 is connected to the processor 210.
  • the processor 210, the memory 230, and the transceiver 220 can communicate with each other through an internal connection path.
  • the processor 210 is configured to determine uplink power control information, where the uplink power control information is used by the terminal device to determine a target power control parameter corresponding to the target uplink multiple access mode, and is determined according to the target power control parameter.
  • the target transmit power when the target uplink signal is sent by using the target uplink multiple access mode; the transceiver 220 is configured to send the uplink power control information to the terminal device.
  • the network device sends the uplink power control information to the terminal device, so that the terminal device can determine the target power control parameter corresponding to the target uplink multiple access mode according to the received uplink power control information. Therefore, when the terminal device uses different multiple access methods for uplink signal transmission, the independent uplink power control process can be used to determine the uplink transmission power corresponding to the uplink multiple access mode, and the uplink transmission power can be flexibly adjusted to meet different uplink multiple access modes.
  • the requirements are applicable to communication systems that support multiple uplink and multiple access methods.
  • the network device 200 may refer to the network device 20 corresponding to the embodiment of the present application, and the respective units/modules in the network device and the foregoing other operations and/or functions respectively implement the corresponding processes in the method 200, For the sake of brevity, it will not be repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM) or a programmable read-only memory (Programmable ROM). PROM), Erasable Programmable Read Only Memory (EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM) or Flash Memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本申请提供一种控制上行功率的方法和设备,该方法包括:终端设备接收网络设备发送的上行功率控制信息;所述终端设备根据所述上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数;所述终端设备根据所述目标功率控制参数,确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率。本申请提供的控制上行功率的方法和设备能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。

Description

控制上行功率的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及控制上行功率的方法和设备。
背景技术
在长期演进(Long Term Evolution,简称为“LTE”)系统中的上行发送功率是终端设备根据网络侧配置的功率控制参数及终端设备测量的下行路损确定的。未来无线通信系统的上行传输中将引入多种上行多址方式,现有相关技术中进行上行功率控制的方法不能满足不同上行多址方式的需求。因此需要提供一种能够用于支持多种上行多址方式的通信系统中的控制上行功率的方法。
发明内容
本申请提供一种控制上行功率的方法和设备,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
第一方面,提供了一种控制上行功率的方法,包括:终端设备接收网络设备发送的上行功率控制信息;所述终端设备根据所述上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数;所述终端设备根据所述目标功率控制参数,确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率。
本申请的控制上行功率的方法,终端设备根据接收到的网络设备发送的上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数。由此当终端设备使用不同的上行多址方式进行上行信号传输时,可以采用独立的上行功率控制进程确定上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
结合第一方面,在第一方面的一种实现方式中,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述 目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括所述目标上行多址方式;
其中,所述终端设备根据所述上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数,包括:所述终端设备根据所述开环功率控制信息,确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述终端设备接收网络设备发送的上行功率控制信息,包括:所述终端设备接收所述网络设备通过无线资源控制RRC消息发送的所述开环功率控制信息。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS功率调整值。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述上行功率控制信息中包括功率调整指示信息;
其中,所述终端设备根据所述上行功率控制信息,确定多个上行多址方式中的目标上行多址方式对应的目标功率控制参数,包括:所述终端设备根据所述功率调整指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述终端设备根据所述功率调整指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,包括:所述终端设备根据所述目标上行多址方式,从所述预设对应关系中确定目标对应关系;所述终端设备根据所述功率调整指示信息和所述目标对应关系,确定所述目标闭环功率调整值。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述 终端设备接收网络设备发送的上行功率控制信息,包括:所述终端设备接收所述网络设备发送的下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应的开环功率控制参数确定的所述目标上行信号的发送功率。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述方法还包括:所述终端设备采用所述目标上行多址方式和所述目标发送功率,向所述网络设备发送所述目标上行信号。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
第二方面,提供了一种控制上行功率的方法,包括:网络设备确定上行 功率控制信息,所述上行功率控制信息用于所述终端设备确定目标上行多址方式对应的目标功率控制参数,并根据所述目标功率控制参数确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率;所述网络设备向所述终端设备发送所述上行功率控制信息。
根据本申请的控制上行功率的方法,网络设备向终端设备发送上行功率控制信息,使得终端设备能够根据接收到的上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数。由此当终端设备使用不同的多址方式进行上行信号的传输时,可以采用独立的上行功率控制进程确定上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
结合第二方面,在第二方面的一种实现方式中,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括所述目标上行多址方式,所述开环功率控制信息用于所述终端设备确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述网络设备向所述终端设备发送所述上行功率控制信息,包括:所述网络设备通过无线资源控制RRC消息向所述终端设备发送所述开环功率控制信息。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS调整值。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述上行功率控制信息中包括功率调整指示信息,所述功率调整指示信息用于所述终端设备根据所述功率控制指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示 信息与闭环功率调整值的对应关系。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述网络设备向所述终端设备发送所述上行功率控制信息,包括:所述网络设备向所述终端设备发送下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应的开环功率控制参数确定的所述目标上行信号的发送功率。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述方法还包括:所述网络设备接收所述终端设备采用所述目标上行多址方式和所述目标发送功率发送的所述目标上行信号。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址 接入SC-FDMA和正交频分多址接入OFDMA。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器、存储器和收发器。所述处理器、所述存储器和所述收发器之间通过内部连接通路互相通信,传递控制和/或数据信号,使得所述终端设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器、存储器和收发器。所述处理器、所述存储器和所述收发器之间通过内部连接通路互相通信,传递控制和/或数据信号,使得所述网络设备执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,所述计算机程序包括用于执行上述第一方面或第一方面的任意可能的实现方式中的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,所述计算机程序包括用于执行上述第二方面或第二方面的任意可能的实现方式中的指令。
附图说明
图1是根据本申请实施例的控制上行功率的方法的示意性流程图;
图2是根据本申请实施例的控制上行功率的方法的另一示意性流程图;
图3是根据本申请另一实施例的控制上行功率的方法的示意性流程图;
图4是根据本申请另一实施例的控制上行功率的方法的另一示意性流程图;
图5是根据本申请实施例的终端设备的示意性框图;
图6是根据本申请实施例的网络设备的示意性框图;
图7是根据本申请另一实施例的终端设备的示意性框图;
图8是根据本申请另一实施例的网络设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)或全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统、5G系统,或者说新无线(New Radio,NR)系统。
在本申请实施例中,终端设备可以包括但不限于移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本申请实施例中,网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述网络设备可以为基站,所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的系统中,具有基站功能的设备的名称可能会有所不同。例如在LTE网络中,称为演进的节点B(Evolved NodeB,简称为“eNB”或“eNodeB”),在第三代(3rd Generation,简称为“3G”)网络中,称为节点B(Node B)等等。
LTE系统上行传输仅支持离散傅里叶变换扩频的正交频分复用(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,简称为 “DFT-S-OFDM”)多址方式,网络侧仅需要配置一套上行功率控制参数用于上行传输,但是目前5G系统中的上行传输中引入了两种上行多址方式(或称为“上行波形”):DFT-S-OFDM多址方式和循环前缀(Cyclic Prefix,简称为“CP”)-OFDM多址方式。前者只能用于上行单层传输,后者可以用于上行单层或多层传输。终端设备使用哪一种多址方式可以由网络侧根据终端的上行信道质量配置。通常DFT-S-OFDM多址方式的信道传输覆盖性能更好,但是频谱效率较低。而CP-OFDM多址方式的频谱效率较高,但由于其峰均比(Peak to Average Power Ratio,简称为“PAPR”)较高,因此其覆盖性能较差。当终端设备使用不同的多址方式进行上行信号的传输时,由于覆盖范围不同,需要的上行发送功率也不同,采用LTE系统中的控制上行功率方法无法满足不同上行多址方式的需求。
因此,本申请实施例提供一种控制上行功率的方法,使得终端设备能够采用独立的上行功率控制进程计算每种上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求。
需要说明的是,本申请实施例中,上行传输指的是终端设备向网络设备发送信号的过程,下行传输指的是网络设备向终端设备发送信号的过程。
图1示出了根据本申请实施例的控制上行功率的方法。如图1所示,方法100包括:
S110,终端设备接收网络设备发送的上行功率控制信息;
S120,所述终端设备根据所述上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数;
S130,所述终端设备根据所述目标功率控制参数,确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率。
根据本申请实施例的控制上行功率方法,终端设备根据接收到的网络设备发送的上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数。由此当终端设备使用不同的上行多址方式进行上行信号传输时,可以采用独立的上行功率控制进程确定上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
需要说明的是,终端设备根据目标功率控制参数确定了采用目标上行多址方式发送目标上行信号时的目标发送功率后,可以采用目标上行多址方式 和目标发送功率在当前时刻传输目标上行信号,也可以不采用目标上行多址方式在当前时刻传输目标上行信号。当终端设备不采用目标上行多址方式在当前时刻传输目标上行信号时,终端设备可以存储确定的目标发送功率,在以后采用目标上行多址方式实际传输目标上行信号时,采用确定的这个目标发送功率传输所述目标上行传信号。
并且,目标上行多址方式可以为终端设备发送目标上行信号可能采用的多种候选上行多址方式中的一种候选上行多址方式,在这种情况下,终端设备根据网络设备发送的上行功率控制信息确定每一种候选上行多址方式对应的功率控制参数。或者目标上行多址方式为终端设备发送目标上行信号需要采用的上行多址方式,在这种情况下,终端设备可以根据网络侧配置的多址方式指示信息确定目标上行多址方式。例如,目标上行多址方式可以通过信令显示指示,例如,无线资源控制(Radio Resource Control,简称为“RRC”消息或下行控制信息(Downlink Control Information,简称为“DCI”)。或者目标上行多址方式可以通过其他信息隐性指示,例如不同的DCI格式对应不同的上行多址方式。
在本申请实施例中,可选地,目标上行多址方式为多种上行多址方式中的一种上行多址方式。例如,目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用(Fourier Transform Spread Orthogonal Frequency Division Multiplexing,简称为“DFT-S-OFDM”)、循环前缀(Cyclic Prefix,简称为“CP”)-OFDM、单载波频分多址接入(Single-carrier Frequency-Division Multiple Access,简称为“SC-FDMA”)和正交频分多址接入(Orthogonal Frequency Division Multiple Access,简称为“OFDMA”)。
在本申请实施例中,可选地,上行功率控制信息中包括开环功率控制信息,开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括目标上行多址方式。终端设备根据开环功率控制信息确定开环功率参数中与目标上行多址方式中对应的目标开环功率控制参数。
可选地,作为一个例子,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号(Sounding Reference Signal,简称为“SRS”)功率调整值。
可选地,作为一个例子,终端设备接收网络设备通过RRC消息发送的开环功率控制信息。网络设备通过开环功率控制信息为不同的上行多址方式 分别配置各自的开环功率控制参数。
具体地,在一些实施例中,网络设备可以为一种上行多址方式配置完整的开环功率控制参数,为其他上相多址方式配置相对于这一种上行多址方式对应的开环功率控制参数的偏移值,由此能够节省下行信令的开销。例如,网络设备配置DFT-S-OFDM对应的上行目标接收功率为-60dBm,配置CP-OFDM对应的上行目标接收功率相对于DFT-S-OFDM对应的上行目标接收功率的偏移值为10dBm。
或者,在一些实施例中,网络设备为每一种上行多种方式配置完整的开环功率控制参数。例如网络设备配置DFT-S-OFDM对应的上行目标接收功率为-60dBm,路损因子为1,配置CP-OFDM对应的上行目标接收功率为20dBm,路损因子为2。当终端设备确定采用其中的一种上行多址方式发送目标上行信号时,根据确定的上行多址方式对应的这些开环功率控制参数来计算目标上行信号的发送功率。
在本申请实施例中,可选地,上行功率控制信息中包括功率调整指示信息,终端设备根据功率调整指示信息和预设对应关系,确定与目标上行多址方式对应的目标闭环功率调整值,预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
可选地,在一些实施例中,终端设备接收网络设备发送的DCI,所述DCI中包括功率调整指示信息。并且,这里的DCI可以是用于调度目标上行信号传输的DCI,也可以是专门用于承载功率调整指示信息的DCI,此时DCI不用于调度目标上行信号的传输。
可选地,作为一个例子,上述的预设对应关系可以是由终端设备与网络设备预先预定好的,也可以是网络设备通过指示信息为终端设备配置的。预设对应关系可以入表1所示。需要说明的是,表1仅仅是给出了一种预设对应关系的例子,而不是对预设对应关系的限定。
表1
Figure PCTCN2016109652-appb-000001
Figure PCTCN2016109652-appb-000002
在本申请实施例中,对于不同的上行多址方式,功率调整指示信息中同一指示域指示的闭环功率调整值的取值可能不同。由此终端设备需要根据目标上行多址方式从预设对应关系中确定目标对应关系,之后根据功率调整信息和目标对应关系,确定目标闭环功率调整值。对于不同的上行多址方式,功率调整指示信息与闭环功率调整值的对应关系可以由终端设备与网络设备预先约定好,也可以通过网络设备通过指示信息为终端设备配置。例如,表2示出了功率调整指示信息与闭环功率调整值的另一种对应关系。
表2
Figure PCTCN2016109652-appb-000003
在本申请实施例中,可选地,目标闭环功率调整值可以是基于开环功率进行调整的绝对值,也可以是基于前一次发送功率进行调整的累加值。网络设备可以通过信令配置终端设备所述目标闭环功率调整值是基于开环功率进行调整的绝地值还是基于前一次发送功率进行调整的累加值。
具体地,在一些实施例中,目标闭环功率调整值为目标发送功率相对于第一发射功率的调整值,第一发送功率为终端设备前一次发送与目标上行信号类型相同的上行信号时所用的发送功率。例如,目标闭环功率调整值可以是终端设备发送物理上行共享信道(Physical Uplink Shared Channel,简称为“PUSCH”)的发送功率相对于终端设备上一次发送PUSCH的发送功率的调整值。
或者,目标闭环功率调整值为目标发送功率相对于第二发送功率的调整值,第二发送功率为终端设备前一次采用目标上行多址方式发送与目标上行信号类型相同的上行信号时所用的发送功率。例如,目标闭环功率调整值为终端设备采用DFT-S-OFDM发送PUSCH的发送功率相对于终端设备上一次采用DFT-S-OFDM发送PUSCH的发送功率的调整值。
或者,目标闭环功率调整值为目标发送功率相对于第三发送功率的调整值,第三发送功率为终端设备最近一次确定的与目标信号类型相同的上行信号的发送功率。例如,目标闭环功率调整值为终端设备发送PUSCH的发送功率相对于最近计算的PUSCH的发送功率的调整值。这里并不意味着终端设备在更新发送功率时需要实际发送PUSCH,但终端设备会存储最近计算的PUSCH的发送功率用于后续的PUSCH的传输。
或者,目标闭环功率调整值为目标发送功率相对于第四发送功率的调整值,第四发送功率为终端设备最近一次确定的采用目标上行多址方式发送且目标上行信号类型相同的上行信号的发送功率。例如,目标功率调整值为终端设备采用DFT-S-OFDM发送PUSCH的发送功率相对于最近一次计算得到(或最近一次更新)的采用DFT-S-OFDM发送PUSCH的发送功率的调整值。这里并不意味着终端设备这里并不意味着终端设备在更新发送功率时需要实际发送PUSCH,但终端设备会存储最近计算的PUSCH的发送功率用于后续的PUSCH的传输。
或者,目标功率调整值为目标发送功率相对于第五发送功率的调整值,第五发送功率为终端设备根据目标上行多址方式对应的开环功率控制参数确定的目标上行信号的发送功率。这里的开环功率控制参数可以是网络设备通过高层信令配置的参数,例如目标接收功率和路损因子。终端设备可以根据公式(1)和开环功率控制参数计算发送功率。
PPUSCH(i)=10log10(MPUSCH(i))+PO_PUSCH(j)+α(j)·PL+ΔTF(i)      (1)
其中,MPUSCH(i)为上行传输带宽,PO_PUSCH(j)为目标接收功率,α(j)为路损因子,PL为下行路损,ΔTF(i)为调制与编码策略(Modulation and Coding Scheme,简称为“MCS”)相关的调整值。
在上述实施例中,终端设备可以根据网络设备通过高层信令为不同的上行多址方式分别配置的开环功率控制参数,确定目标上行多址方式对应的目标开环功率控制参数。并根据网络设备通过DCI携带的功率调整指示信息,确定与目标上行多址方式对应的目标闭环功率调整值。之后终端设备根据目标开环功率控制参数、目标闭环功率调整值以及预设的发送功率计算方法或公式,计算目标发送功率。
进一步地,在终端设备确定目标发送功率之后,如图2所示,方法100还包括:
S130,终端设备采用目标上行多址方式和目标发送功率,向网络设备发送目标上行信号。
在上述所有实施例中,可选地,目标上行信号为下列信号中的一种:PUSCH、物理上行控制信道(Physical Uplink Control Channel,简称为“PUCCH”)、SRS和解调参考信号(De Modulation Reference Signal,简称为“DMRS”)。
以上结合图1和图2从终端设备侧详细描述根据本申请实施例的控制上行功率的方法,下面将结合图3和图4从网络设备侧详细描述根据本申请实施例的控制上行功率的方法。应理解,网络设备侧描述的网络设备与终端设备的交互与终端设备侧的描述相同,为避免重复,适当省略相关描述。
图3是根据本申请另一实施例的控制上行功率的方法,如图3所示,方法200包括:
S210,网络设备确定上行功率控制信息,所述上行功率控制信息用于所述终端设备确定目标上行多址方式对应的目标功率控制参数,并根据所述目标功率控制参数确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率;
S220,所述网络设备向所述终端设备发送所述上行功率控制信息。
因此,根据本申请实施例的控制上行功率的方法,网络设备向终端设备发送上行功率控制信息,使得终端设备能够根据接收到的上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数。由此当终端设备使用不同的多址方式进行上行信号的传输时,可以采用独立的上行功率控制进程确定上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
在本申请实施例中,可选地,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
在本申请实施例中,可选地,所述目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
在本申请实施例中,可选地,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控 制参数,多种上行多址方式包括所述目标上行多址方式,所述开环功率控制信息用于所述终端设备确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
在本申请实施例中,可选地,S220具体包括:所述网络设备通过无线资源控制RRC消息向所述终端设备发送所述开环功率控制信息。
在本申请实施例中,可选地,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS调整值。
在本申请实施例中,可选地,所述上行功率控制信息中包括功率调整指示信息,所述功率调整指示信息用于所述终端设备根据所述功率控制指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
在本申请实施例中,可选地,S120具体包括:所述网络设备向所述终端设备发送下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
在本申请实施例中,可选地,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应的开环功率控制参数确定的所述目标上行信号的发送功率。
在本申请实施例中,可选地,如图4所示,所述方法200还包括:
S230,所述网络设备接收所述终端设备采用所述目标上行多址方式和所 述目标发送功率发送的所述目标上行信号。
在本申请实施例中,可选地,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
在本申请实施例中,可选地,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
以上结合图1至图4详细描述了根据本申请实施例的控制上行功率的方法,下面将结合图5详细描述根据本申请实施例的终端设备,如图5所示,终端设备10包括:
收发模块11,用于接收网络设备发送的上行功率控制信息;
处理模块12,用于根据所述上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数;
所述处理模块12,还用于根据所述目标功率控制参数,确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率。
因此,根据本申请实施例的终端设备根据接收到的网络设备发送的上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数。由此当终端设备使用不同的上行多址方式进行上行信号传输时,可以采用独立的上行功率控制进程确定上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
在本申请实施例中,可选地,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
在本申请实施例中,可选地,所述目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
在本申请实施例中,可选地,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括所述目标上行多址方式;
其中,所述处理模块12具体用于:根据所述开环功率控制信息,确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
在本申请实施例中,可选地,所述收发模块11具体用于:接收所述网络设备通过无线资源控制RRC消息发送的所述开环功率控制信息。
在本申请实施例中,可选地,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS功率调整值。
在本申请实施例中,可选地,所述上行功率控制信息中包括功率调整指示信息;
其中,处理模块12具体用于:根据所述功率调整指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
在本申请实施例中,可选地,所述处理模块12具体用于:根据所述目标上行多址方式,从所述预设对应关系中确定目标对应关系,根据所述功率调整指示信息和所述目标对应关系,确定所述目标闭环功率调整值。
在本申请实施例中,可选地,所述收发模块11具体用于:接收所述网络设备发送的下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
在本申请实施例中,可选地,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应的开环功率控制参数确定的所述目标上行信号的发送功率。
在本申请实施例中,可选地,所述收发模块11还用于:采用所述目标上行多址方式和所述目标发送功率,向所述网络设备发送所述目标上行信号。
在本申请实施例中,可选地,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
在本申请实施例中,可选地,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
根据本申请实施例的终端设备可以参照对应本申请实施例的方法100的流程,并且,该终端设备中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,为了简洁,在此不再赘述。
图6示出了根据本申请实施例的网络设备,如图6所示,网络设备20包括:
处理模块21,用于确定上行功率控制信息,所述上行功率控制信息用于所述终端设备确定目标上行多址方式对应的目标功率控制参数,并根据所述目标功率控制参数确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率;
收发模块22,用于向所述终端设备发送所述上行功率控制信息。
因此,根据本申请实施例的网络设备向终端设备发送上行功率控制信息,使得终端设备能够根据接收到的上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数。由此当终端设备使用不同的多址方式进行上行信号的传输时,可以采用独立的上行功率控制进程确定上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
在本申请实施例中,可选地,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
在本申请实施例中,可选地,所述目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
在本申请实施例中,可选地,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括所述目标上行多址方式,所述开环功率控制信息用于所述终端设备确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
在本申请实施例中,可选地,所述收发模块22具体用于:通过无线资源控制RRC消息向所述终端设备发送所述开环功率控制信息。
在本申请实施例中,可选地,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS调整值。
在本申请实施例中,可选地,所述上行功率控制信息中包括功率调整指示信息,所述功率调整指示信息用于所述终端设备根据所述功率控制指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
在本申请实施例中,可选地,所述收发22模块具体用于:向所述终端设备发送下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
在本申请实施例中,可选地,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率; 或,
所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应的开环功率控制参数确定的所述目标上行信号的发送功率。
在本申请实施例中,可选地,所述收发模块22还用于:接收所述终端设备采用所述目标上行多址方式和所述目标发送功率发送的所述目标上行信号。
在本申请实施例中,可选地,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
在本申请实施例中,可选地,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
根据本申请实施例的网络设备可以参照对应本申请实施例的方法200的流程,并且,该网络设备中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,为了简洁,在此不再赘述。
图7示出了根据本申请另一实施例的终端设备。如图7所示,终端设备100包括处理器110和收发器120,处理器110和收发器120相连,可选地,该网络设备100还包括存储器130,存储器130与处理器110相连。其中,处理器110、存储器130和收发器120可以通过内部连接通路互相通信。其中,收发器120,用于接收网络设备发送的上行功率控制信息;所述处理器110,用于根据所述上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数;根据所述目标功率控制参数,确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率。
因此,根据本申请实施例的终端设备根据接收到的网络设备发送的上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数。由此当终端设备使用不同的上行多址方式进行上行信号传输时,可以采用独立的上行功率控制进程确定上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
根据本申请实施例的终端设备100可以参照对应本申请实施例的终端设备10,并且,该终端设备中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,为了简洁,在此不再赘述。
图8示出了根据本申请另一实施例的网络设备的示意性框图,如图8所示,网络设备200包括:处理器210和收发器220,处理器210和收发器220相连,可选地,所述终端设备200还包括存储器230,存储器230与处理器210相连。其中,处理器210、存储器230和收发器220可以通过内部连接通路互相通信。其中,所述处理器210,用于确定上行功率控制信息,所述上行功率控制信息用于所述终端设备确定目标上行多址方式对应的目标功率控制参数,并根据所述目标功率控制参数确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率;所述收发器220,用于向所述终端设备发送所述上行功率控制信息。
因此,根据本申请实施例的网络设备向终端设备发送上行功率控制信息,使得终端设备能够根据接收到的上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数。由此当终端设备使用不同的多址方式进行上行信号的传输时,可以采用独立的上行功率控制进程确定上行多址方式对应的上行发送功率,能够灵活调整上行发送功率,满足不同上行多址方式的需求,适用于支持多种上行多址方式的通信系统。
根据本申请实施例的网络设备200可以参照对应本申请实施例的网络设备20,并且,该网络设备中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,为了简洁,在此不再赘述。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM, PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种控制上行功率的方法,其特征在于,包括:
    终端设备接收网络设备发送的上行功率控制信息;
    所述终端设备根据所述上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数;
    所述终端设备根据所述目标功率控制参数,确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括所述目标上行多址方式;
    其中,所述终端设备根据所述上行功率控制信息,确定多个上行多址方式中的目标上行多址方式对应的目标功率控制参数,包括:
    所述终端设备根据所述开环功率控制信息,确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备接收网络设备发送的上行功率控制信息,包括:
    所述终端设备接收所述网络设备通过无线资源控制RRC消息发送的所述开环功率控制信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS功率调整值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述上行功率控制信息中包括功率调整指示信息;
    其中,所述终端设备根据所述上行功率控制信息,确定目标上行多址方 式对应的目标功率控制参数,包括:
    所述终端设备根据所述功率调整指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备根据所述功率调整指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,包括:
    所述终端设备根据所述目标上行多址方式,从所述预设对应关系中确定目标对应关系;
    所述终端设备根据所述功率调整指示信息和所述目标对应关系,确定所述目标闭环功率调整值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述终端设备接收网络设备发送的上行功率控制信息,包括:
    所述终端设备接收所述网络设备发送的下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应 的开环功率控制参数确定的所述目标上行信号的发送功率。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备采用所述目标上行多址方式和所述目标发送功率,向所述网络设备发送所述目标上行信号。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
  14. 一种控制上行功率的方法,其特征在于,包括:
    网络设备确定上行功率控制信息,所述上行功率控制信息用于所述终端设备确定目标上行多址方式对应的目标功率控制参数,并根据所述目标功率控制参数确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率;
    所述网络设备向所述终端设备发送所述上行功率控制信息。
  15. 根据权利要求14所述的方法,其特征在于,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
  16. 根据权利要求14或15所述的方法,其特征在于,所述目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括所述目标上行多址方式,所述开环功率控制信息用于所述终端设备确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
  18. 根据权利要求17所述的方法,其特征在于,所述网络设备向所述终端设备发送所述上行功率控制信息,包括:
    所述网络设备通过无线资源控制RRC消息向所述终端设备发送所述开环功率控制信息。
  19. 根据权利要求17或18所述的方法,其特征在于,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS调整值。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述上行功率控制信息中包括功率调整指示信息,所述功率调整指示信息用于所述终端设备根据所述功率控制指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
  21. 根据权利要求20所述的方法,其特征在于,所述网络设备向所述终端设备发送所述上行功率控制信息,包括:
    所述网络设备向所述终端设备发送下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
  22. 根据权利要求20或21所述的方法,其特征在于,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应的开环功率控制参数确定的所述目标上行信号的发送功率。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备采用所述目标上行多址方式和所述目标发送功率发送的所述目标上行信号。
  24. 根据权利要求14至23中任一项所述的方法,其特征在于,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
  25. 根据权利要求14至24中任一项所述的方法,其特征在于,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
  26. 一种终端设备,其特征在于,包括:
    收发模块,用于接收网络设备发送的上行功率控制信息;
    处理模块,用于根据所述上行功率控制信息,确定目标上行多址方式对应的目标功率控制参数;
    所述处理模块,还用于根据所述目标功率控制参数,确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率。
  27. 根据权利要求26所述的终端设备,其特征在于,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
  28. 根据权利要求26或27所述的终端设备,其特征在于,所述目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
  29. 根据权利要求26至28中任一项所述的终端设备,其特征在于,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括所述目标上行多址方式;
    其中,所述处理模块具体用于:根据所述开环功率控制信息,确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
  30. 根据权利要求29所述的终端设备,其特征在于,所述收发模块具 体用于:接收所述网络设备通过无线资源控制RRC消息发送的所述开环功率控制信息。
  31. 根据权利要求29或30所述的终端设备,其特征在于,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS功率调整值。
  32. 根据权利要求26至31中任一项所述的终端设备,其特征在于,所述上行功率控制信息中包括功率调整指示信息;
    其中,处理模块具体用于:根据所述功率调整指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
  33. 根据权利要求32所述的终端设备,其特征在于,所述处理模块具体用于:根据所述目标上行多址方式,从所述预设对应关系中确定目标对应关系;
    根据所述功率调整指示信息和所述目标对应关系,确定所述目标闭环功率调整值。
  34. 根据权利要求32或33所述的终端设备,其特征在于,所述收发模块具体用于:接收所述网络设备发送的下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
  35. 根据权利要求32至34中任一项所述的终端设备,其特征在于,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率; 或,
    所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应的开环功率控制参数确定的所述目标上行信号的发送功率。
  36. 根据权利要求26至35中任一项所述的终端设备,其特征在于,所述收发模块还用于:采用所述目标上行多址方式和所述目标发送功率,向所述网络设备发送所述目标上行信号。
  37. 根据权利要求26至36中任一项所述的终端设备,其特征在于,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
  38. 根据权利要求26至37中任一项所述的终端设备,其特征在于,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
  39. 一种网络设备,其特征在于,包括:
    处理模块,用于确定上行功率控制信息,所述上行功率控制信息用于所述终端设备确定目标上行多址方式对应的目标功率控制参数,并根据所述目标功率控制参数确定采用所述目标上行多址方式发送目标上行信号时的目标发送功率;
    收发模块,用于向所述终端设备发送所述上行功率控制信息。
  40. 根据权利要求39所述的网络设备,其特征在于,所述目标上行多址方式为多种上行多址方式中的一种上行多址方式。
  41. 根据权利要求39或40所述的网络设备,其特征在于,所述目标上行多址方式为所述终端设备发送所述目标上行信号的多种候选上行多址方式中的一种候选上行多址方式;或,所述目标上行多址方式为所述终端设备发送所述目标上行信号需要采用的上行多址方式。
  42. 根据权利要求39至41中任一项所述的网络设备,其特征在于,所述上行功率控制信息中包括开环功率控制信息,所述开环功率控制信息中包括多种上行多址方式对应的开环功率控制参数,多种上行多址方式包括所述目标上行多址方式,所述开环功率控制信息用于所述终端设备确定所述开环功率控制参数中与所述目标上行多址方式相对应的目标开环功率控制参数。
  43. 根据权利要求42所述的网络设备,其特征在于,所述收发模块具体用于:通过无线资源控制RRC消息向所述终端设备发送所述开环功率控制信息。
  44. 根据权利要求42或43所述的网络设备,其特征在于,所述目标开环功率控制参数包括下列参数中的至少一种:上行目标接收功率、路损因子和探测参考信号SRS调整值。
  45. 根据权利要求39至44中任一项所述的网络设备,其特征在于,所述上行功率控制信息中包括功率调整指示信息,所述功率调整指示信息用于所述终端设备根据所述功率控制指示信息和预设对应关系,确定与所述目标上行多址方式对应的目标闭环功率调整值,所述预设对应关系为功率调整指示信息与闭环功率调整值的对应关系。
  46. 根据权利要求45所述的网络设备,其特征在于,所述收发模块具体用于:向所述终端设备发送下行控制信令DCI,所述DCI中包括所述功率调整指示信息。
  47. 根据权利要求45或46所述的网络设备,其特征在于,所述目标闭环功率调整值为所述目标发送功率相对于第一发送功率的调整值,所述第一发送功率为所述终端设备前一次发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第二发送功率的调整值,所述第二发送功率为所述终端设备前一次采用所述目标上行多址方式发送与所述目标上行信号类型相同的上行信号时所用的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第三发送功率的调整值,所述第三发送功率为所述终端设备最近一次确定的与所述目标上行信号类型相同的上行信号的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第四发送功率的调整值,所述第四发送功率为所述终端设备最近一次确定的采用所述目标上行多址方式发送且与所述目标上行信号类型相同的上行信号的发送功率;或,
    所述目标闭环功率调整值为所述目标发送功率相对于第五发送功率的调整值,所述第五发送功率为所述终端设备根据所述目标上行多址方式对应的开环功率控制参数确定的所述目标上行信号的发送功率。
  48. 根据权利要求39至47中任一项所述的网络设备,其特征在于,所述收发模块还用于:接收所述终端设备采用所述目标上行多址方式和所述目标发送功率发送的所述目标上行信号。
  49. 根据权利要求39至48中任一项所述的网络设备,其特征在于,所述目标上行信号为下列信号中的一种:物理上行共享信道PUSCH、物理上行控制信道PUCCH、SRS和解调参考信号DMRS。
  50. 根据权利要求39至49中任一项所述的网络设备,其特征在于,所述目标上行多址方式为下列多址方式中的一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
PCT/CN2016/109652 2016-12-13 2016-12-13 控制上行功率的方法和设备 WO2018107358A1 (zh)

Priority Applications (27)

Application Number Priority Date Filing Date Title
IL267295A IL267295B (en) 2016-12-13 2016-12-13 Method and device for satellite power control
CN201680091423.6A CN110063075B (zh) 2016-12-13 2016-12-13 控制上行功率的方法和设备
EP16924037.1A EP3554149B1 (en) 2016-12-13 2016-12-13 Uplink power control method and device
PCT/CN2016/109652 WO2018107358A1 (zh) 2016-12-13 2016-12-13 控制上行功率的方法和设备
IL267296A IL267296B (en) 2016-12-13 2016-12-27 Method and device for satellite power control
PCT/CN2016/112421 WO2018107520A1 (zh) 2016-12-13 2016-12-27 控制上行功率的方法和设备
BR112019012105-6A BR112019012105B1 (pt) 2016-12-13 2016-12-27 Método e dispositivo para controlar potência de enlace ascendente
MX2019006892A MX2019006892A (es) 2016-12-13 2016-12-27 Metodo y dispositivo para controlar la potencia del enlace ascendente.
ES16923811T ES2861573T3 (es) 2016-12-13 2016-12-27 Método y dispositivo para controlar una potencia de enlace ascendente
RU2019121866A RU2730894C1 (ru) 2016-12-13 2016-12-27 Способ и устройство для управления мощностью восходящей линии связи
KR1020197020312A KR20190094420A (ko) 2016-12-13 2016-12-27 상향 링크 파워 제어 방법 및 장치
EP16923811.0A EP3550894B1 (en) 2016-12-13 2016-12-27 Method and device for controlling uplink power
CA3046831A CA3046831C (en) 2016-12-13 2016-12-27 Method and device for controlling uplink power
CN202011489394.3A CN112601275B (zh) 2016-12-13 2016-12-27 控制上行功率的方法和设备
JP2019531804A JP6895521B2 (ja) 2016-12-13 2016-12-27 上り電力制御方法及び装置
EP21150507.8A EP3826376B1 (en) 2016-12-13 2016-12-27 Method and device for controlling uplink power
CN201680091532.8A CN110073699B (zh) 2016-12-13 2016-12-27 控制上行功率的方法和设备
FIEP21150507.8T FI3826376T3 (fi) 2016-12-13 2016-12-27 Menetelmä ja laite uplink-suunnan tehon säätämiseen
AU2016432572A AU2016432572B2 (en) 2016-12-13 2016-12-27 Method and device for controlling uplink power
TW106142939A TWI765943B (zh) 2016-12-13 2017-12-07 控制上行功率的方法和設備
CL2019001621A CL2019001621A1 (es) 2016-12-13 2019-06-12 Método y dispositivo para controlar la potencia del enlace ascendente.
US16/439,272 US20190297582A1 (en) 2016-12-13 2019-06-12 Method and device for controlling uplink power
US16/439,982 US10785729B2 (en) 2016-12-13 2019-06-13 Method and device for controlling uplink power
PH12019501336A PH12019501336A1 (en) 2016-12-13 2019-06-13 Method and device for controlling uplink power
PH12019501338A PH12019501338A1 (en) 2016-12-13 2019-06-13 Method and device for controlling uplink power
ZA2019/04585A ZA201904585B (en) 2016-12-13 2019-07-12 Method and device for controlling uplink power
US16/999,678 US11363535B2 (en) 2016-12-13 2020-08-21 Method and device for controlling uplink power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109652 WO2018107358A1 (zh) 2016-12-13 2016-12-13 控制上行功率的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/439,272 Continuation US20190297582A1 (en) 2016-12-13 2019-06-12 Method and device for controlling uplink power

Publications (1)

Publication Number Publication Date
WO2018107358A1 true WO2018107358A1 (zh) 2018-06-21

Family

ID=62557778

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/109652 WO2018107358A1 (zh) 2016-12-13 2016-12-13 控制上行功率的方法和设备
PCT/CN2016/112421 WO2018107520A1 (zh) 2016-12-13 2016-12-27 控制上行功率的方法和设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112421 WO2018107520A1 (zh) 2016-12-13 2016-12-27 控制上行功率的方法和设备

Country Status (18)

Country Link
US (3) US20190297582A1 (zh)
EP (3) EP3554149B1 (zh)
JP (1) JP6895521B2 (zh)
KR (1) KR20190094420A (zh)
CN (3) CN110063075B (zh)
AU (1) AU2016432572B2 (zh)
BR (1) BR112019012105B1 (zh)
CA (1) CA3046831C (zh)
CL (1) CL2019001621A1 (zh)
ES (1) ES2861573T3 (zh)
FI (1) FI3826376T3 (zh)
IL (2) IL267295B (zh)
MX (1) MX2019006892A (zh)
PH (2) PH12019501336A1 (zh)
RU (1) RU2730894C1 (zh)
TW (1) TWI765943B (zh)
WO (2) WO2018107358A1 (zh)
ZA (1) ZA201904585B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972246A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 功率控制方法、传输功率控制参数确定方法及相关设备
CN114128168A (zh) * 2019-05-14 2022-03-01 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3554149B1 (en) * 2016-12-13 2020-11-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink power control method and device
WO2018126441A1 (en) * 2017-01-06 2018-07-12 Qualcomm Incorporated Transmitting sounding reference signals in new radio
CN108282433B (zh) * 2017-01-06 2021-03-23 华为技术有限公司 一种上行信号发送方法、接收方法、终端及基站
BR112019026688A2 (pt) * 2017-08-04 2020-06-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de comunicação sem fio e dispositivo terminal
US11153826B2 (en) * 2017-08-10 2021-10-19 Qualcomm Incorporated Procedure-based uplink power control
US10771214B2 (en) * 2017-09-11 2020-09-08 Apple Inc. System and method for uplink power contrl framework
CN116193577A (zh) * 2018-04-20 2023-05-30 汉阳大学校产学协力团 移动终端的位置测量系统
CN110831135B (zh) * 2018-08-10 2022-08-26 华为技术有限公司 一种功率控制的方法和装置
CN110972211B (zh) 2018-09-28 2023-10-20 华为技术有限公司 一种功率控制的方法和装置
US10757655B1 (en) * 2019-04-18 2020-08-25 At&T Intellectual Property I, L.P. Uplink interference avoidance under closed loop power control conditions
US11039398B2 (en) 2019-05-31 2021-06-15 At&T Intellectual Property I, L.P. Uplink interference avoidance under open loop power control conditions
WO2021076103A1 (en) * 2019-10-15 2021-04-22 Hewlett-Packard Development Company, L.P. Port role assignments
CN114828182B (zh) * 2019-11-08 2023-08-22 Oppo广东移动通信有限公司 上行功率调整方法及相关设备
CN111511004B (zh) * 2020-04-15 2024-05-14 北京星网锐捷网络技术有限公司 一种功率控制方法、装置及计算机设备、存储介质
BR112023019730A2 (pt) * 2021-03-30 2024-01-23 Beijing Xiaomi Mobile Software Co Ltd Método e aparelho para determinar um parâmetro de potência, dispositivo de comunicação, e, meio de armazenamento legível por computador
WO2023133821A1 (zh) * 2022-01-14 2023-07-20 北京小米移动软件有限公司 发送功率确定方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005236A2 (en) * 2008-07-08 2010-01-14 Lg Electronics Inc. Method of controlling uplink power in wireless communication system
CN102014468A (zh) * 2009-09-28 2011-04-13 大唐移动通信设备有限公司 一种进行信道信息反馈的功率控制方法及装置
CN102239733A (zh) * 2008-12-08 2011-11-09 夏普株式会社 用于上行链路功率控制的系统和方法
CN103312484A (zh) * 2012-03-16 2013-09-18 中兴通讯股份有限公司 探测参考信号发射功率的控制方法、用户设备和基站
US20150018030A1 (en) * 2012-02-27 2015-01-15 Lg Electronics Inc. Method for controlling uplink transmission power in wireless communication system and apparatus therefor

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005202512B8 (en) * 2004-06-09 2008-06-05 Samsung Electronics Co., Ltd. Method and apparatus for data transmission in a mobile telecommunication system supporting enhanced uplink service
WO2007146891A2 (en) * 2006-06-13 2007-12-21 Qualcomm Incorporated Power control for wireless communication systems
EP2117127A4 (en) * 2007-02-21 2014-07-02 Nec Corp COMMUNICATION TERMINAL, TFC SELECTION PROCEDURE AND PROGRAM
ES2592276T3 (es) * 2007-03-07 2016-11-29 Interdigital Technology Corporation Procedimiento combinado de bucle abierto/bucle cerrado para controlar la potencia de enlace ascendente de una estación móvil
CN101499831B (zh) * 2008-02-02 2012-11-28 鼎桥通信技术有限公司 一种进行辅助信息反馈的方法
CN101567713B (zh) * 2008-04-25 2012-10-03 电信科学技术研究院 时分双工系统中上行传输功率的确定方法、系统及装置
US20100004016A1 (en) * 2008-07-07 2010-01-07 Hujun Yin Power control techniques
WO2010098593A2 (en) * 2009-02-25 2010-09-02 Lg Electronics Inc. Method and device for controling transmission power in uplink transmission
CN101860947B (zh) * 2009-04-10 2012-12-26 电信科学技术研究院 一种多载波上行功率控制的方法及设备
US8688163B2 (en) * 2009-12-30 2014-04-01 Qualcomm Incorporated Interaction between accumulative power control and minimum/maximum transmit power in LTE systems
EP2529489B1 (en) * 2010-01-27 2018-10-17 Telefonaktiebolaget LM Ericsson (publ) Closed loop precoding weight estimation
EP3358890B1 (en) * 2010-04-01 2021-03-03 Sun Patent Trust Transmit power control for physical random access channels
US9144040B2 (en) * 2010-04-01 2015-09-22 Futurewei Technologies, Inc. System and method for uplink multi-antenna power control in a communications system
WO2011127358A1 (en) * 2010-04-09 2011-10-13 Interdigital Patent Holdings Inc. Method and apparatus for power control for closed loop transmit diversity and mimo in uplink
US9185658B2 (en) * 2010-05-20 2015-11-10 Lg Electronics Inc. Uplink power control method and user equipment
US8582518B2 (en) * 2010-11-09 2013-11-12 Telefonaktiebolaget L M Ericsson (Publ) Power control for ACK/NACK formats with carrier aggregation
BR112013026747B1 (pt) 2011-04-18 2020-10-20 Dow Global Technologies Llc processo de nitração à alta pressão
JP5927801B2 (ja) * 2011-08-02 2016-06-01 シャープ株式会社 基地局、端末および通信方法
MX2014000918A (es) 2011-08-09 2014-05-12 Ericsson Telefon Ab L M Metodo y disposicion para el control de potencia de enlace ascendente.
CN103947249B (zh) * 2011-09-30 2018-04-27 英特尔公司 通过多个无线网络同时地传送因特网业务的方法
US9794887B2 (en) * 2011-09-30 2017-10-17 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, method for terminal apparatus, and method for base station apparatus which can set appropriate uplink transmission power
CN111615199B (zh) * 2011-10-28 2023-10-24 华为技术有限公司 上行功率控制的方法、用户设备和接入点
CN103313368B (zh) * 2012-03-16 2018-12-04 中兴通讯股份有限公司 物理上行控制信道的功率控制方法及用户设备
TWI436411B (zh) * 2012-04-27 2014-05-01 Liu Hung Ta 觸控裝置
KR102160693B1 (ko) * 2013-04-23 2020-09-29 삼성전자주식회사 무선 통신 시스템에서 상향링크 전력 제어 방법 및 장치
CN104185261A (zh) * 2013-05-28 2014-12-03 索尼公司 用于在无线通信系统中进行无线通信的方法、装置和系统
CN105309017B (zh) * 2013-06-18 2019-12-31 Lg电子株式会社 用于在支持无线资源的用途的改变的无线通信系统中控制传输功率的方法及其装置
US10085265B2 (en) 2014-01-30 2018-09-25 Qualcomm Incorporated Uplink transmit power allocation and power headroom reporting by a user equipment in a multi-connectivity environment
US9420551B2 (en) * 2014-05-09 2016-08-16 Innovative Technology Lab Co., Ltd. Apparatus and method for controlling transmission power in wireless communication system
CA2963068C (en) * 2014-09-29 2021-01-26 Telefonaktiebolaget L M Ericsson (Publ) Deriving pcmax in dual connectivity
WO2016161634A1 (en) * 2015-04-10 2016-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods of enabling measurements for handling of a device-to-device d2d side link in a cellular system
JP6775007B2 (ja) * 2015-09-10 2020-10-28 インターデイジタル パテント ホールディングス インコーポレイテッド マルチユーザ電力制御方法および手順
CN105307254B (zh) * 2015-09-21 2018-11-02 中国人民解放军国防科学技术大学 一种用户设备发射功率控制系统及其控制方法
WO2017165668A1 (en) 2016-03-25 2017-09-28 Intel Corporation Uplink power control for 5g systems
EP3439378B1 (en) * 2016-05-10 2021-04-28 LG Electronics Inc. Method for transmitting or receiving signal in wireless communication system and apparatus therefor
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN109952716B (zh) * 2016-08-12 2022-08-23 瑞典爱立信有限公司 用于高级csi反馈开销减少的可配置码本
US10602461B2 (en) * 2016-09-22 2020-03-24 Lg Electronics Inc. Method for power control for supporting reduced TTI in wireless communication system, and device therefor
CN109691187B (zh) * 2016-11-03 2020-12-18 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
EP3554149B1 (en) * 2016-12-13 2020-11-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink power control method and device
EP4075886A1 (en) * 2017-01-05 2022-10-19 LG Electronics Inc. Method for uplink power control of physical uplink control channel in wireless communication system, and devices therefor
US10264534B1 (en) * 2017-09-07 2019-04-16 Sprint Spectrum L.P. Power control for high power class wireless devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005236A2 (en) * 2008-07-08 2010-01-14 Lg Electronics Inc. Method of controlling uplink power in wireless communication system
CN102239733A (zh) * 2008-12-08 2011-11-09 夏普株式会社 用于上行链路功率控制的系统和方法
CN102014468A (zh) * 2009-09-28 2011-04-13 大唐移动通信设备有限公司 一种进行信道信息反馈的功率控制方法及装置
US20150018030A1 (en) * 2012-02-27 2015-01-15 Lg Electronics Inc. Method for controlling uplink transmission power in wireless communication system and apparatus therefor
CN103312484A (zh) * 2012-03-16 2013-09-18 中兴通讯股份有限公司 探测参考信号发射功率的控制方法、用户设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3554149A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972246A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 功率控制方法、传输功率控制参数确定方法及相关设备
CN110972246B (zh) * 2018-09-28 2023-09-22 维沃移动通信有限公司 功率控制方法、传输功率控制参数确定方法及相关设备
CN114128168A (zh) * 2019-05-14 2022-03-01 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114128168B (zh) * 2019-05-14 2024-01-23 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
CN110073699B (zh) 2021-01-12
CL2019001621A1 (es) 2019-09-13
EP3554149B1 (en) 2020-11-25
US20200383063A1 (en) 2020-12-03
IL267296A (en) 2019-11-28
US10785729B2 (en) 2020-09-22
JP6895521B2 (ja) 2021-06-30
FI3826376T3 (fi) 2023-07-25
TW201822563A (zh) 2018-06-16
EP3554149A4 (en) 2019-11-27
KR20190094420A (ko) 2019-08-13
IL267295B (en) 2022-08-01
US20190297582A1 (en) 2019-09-26
CN110073699A (zh) 2019-07-30
MX2019006892A (es) 2019-11-05
PH12019501336A1 (en) 2020-02-24
AU2016432572B2 (en) 2022-02-03
ES2861573T3 (es) 2021-10-06
CN112601275A (zh) 2021-04-02
EP3550894A1 (en) 2019-10-09
BR112019012105A2 (pt) 2019-10-29
TWI765943B (zh) 2022-06-01
WO2018107520A1 (zh) 2018-06-21
CN110063075B (zh) 2020-12-11
IL267296B (en) 2022-08-01
US11363535B2 (en) 2022-06-14
IL267295A (en) 2019-11-28
RU2730894C1 (ru) 2020-08-26
CA3046831C (en) 2021-07-13
BR112019012105B1 (pt) 2023-11-21
CA3046831A1 (en) 2018-06-21
AU2016432572A1 (en) 2019-07-25
CN110063075A (zh) 2019-07-26
JP2020504940A (ja) 2020-02-13
EP3554149A1 (en) 2019-10-16
EP3550894B1 (en) 2021-02-17
PH12019501338A1 (en) 2020-03-02
EP3826376A1 (en) 2021-05-26
EP3826376B1 (en) 2023-06-28
CN112601275B (zh) 2022-11-22
EP3550894A4 (en) 2019-11-20
US20190297583A1 (en) 2019-09-26
ZA201904585B (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2018107358A1 (zh) 控制上行功率的方法和设备
WO2019000321A1 (zh) 用于传输信号的方法、终端设备和网络设备
US11310814B2 (en) Wireless communication method, network device, and terminal device
EP3668254B1 (en) Wireless communication method, network device, and terminal device
AU2016433266A1 (en) Method and device for configuring communication parameter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016924037

Country of ref document: EP

Effective date: 20190708