WO2018105671A1 - 有機金属錯体触媒 - Google Patents

有機金属錯体触媒 Download PDF

Info

Publication number
WO2018105671A1
WO2018105671A1 PCT/JP2017/043889 JP2017043889W WO2018105671A1 WO 2018105671 A1 WO2018105671 A1 WO 2018105671A1 JP 2017043889 W JP2017043889 W JP 2017043889W WO 2018105671 A1 WO2018105671 A1 WO 2018105671A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
ligand
organometallic complex
complex catalyst
Prior art date
Application number
PCT/JP2017/043889
Other languages
English (en)
French (fr)
Inventor
準哲 崔
訓久 深谷
俊也 小野澤
佐藤 一彦
弘之 安田
智照 水崎
由紀夫 高木
Original Assignee
国立研究開発法人産業技術総合研究所
エヌ・イー ケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, エヌ・イー ケムキャット株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018555049A priority Critical patent/JP7048945B2/ja
Priority to EP17878231.4A priority patent/EP3552699B1/en
Priority to US16/466,436 priority patent/US11161103B2/en
Priority to CN201780075767.2A priority patent/CN110062655B/zh
Publication of WO2018105671A1 publication Critical patent/WO2018105671A1/ja
Priority to US17/487,333 priority patent/US20220008905A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2291Olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4277C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues
    • B01J2231/4283C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues using N nucleophiles, e.g. Buchwald-Hartwig amination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • B01J2531/004Ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum

Definitions

  • the present invention relates to an organometallic complex catalyst used for a cross-coupling reaction. More specifically, the present invention relates to an organometallic complex catalyst having a ligand containing a nitrogen-containing heterocyclic carbene structure and used for a cross-coupling reaction.
  • Aromatic amines are widely used in medicine, agricultural chemicals and electronic materials.
  • a method for synthesizing this aromatic amine a method of synthesizing by a CN coupling reaction using a palladium complex catalyst has been reported (for example, Non-Patent Documents 1 to 3).
  • a ligand containing a structure of a nitrogen-containing heterocyclic carbene hereinafter referred to as “NHC” if necessary
  • Pd complex catalysts having the following have been proposed. This ligand containing NHC structure was first isolated as crystalline NHC by Arduengo et al. In 1991, and its structure was confirmed by X-ray crystal structure analysis (for example, Non-Patent Document 4, the following chemical formula (Refer to (P1)).
  • the Pd complex catalyst having a ligand containing the NHC structure (hereinafter referred to as “NHC-Pd complex catalyst”) is capable of coordinating to palladium due to the strong ⁇ donor property and weak ⁇ acceptor property of NHC. And is known to be stable to air and water in a complex state. In addition, many examples have been reported which are used as catalysts for various cross-coupling reactions and exhibit very high activity characteristics.
  • NHC-Pd complex catalyst for example, an NHC-Pd complex catalyst named “PEPPSI” in 2005 by Organ et al. Has been proposed (for example, Non-Patent Document 5).
  • This PEPPSI is useful as a coupling reaction catalyst and is used in many reactions including the Suzuki coupling reaction (see, for example, Non-Patent Documents 6 to 8 and the following chemical formula (P2)).
  • R represents a hydrocarbon group (including a hydrocarbon group composed of carbon and hydrogen and a hydrocarbon group including —NH 2 group, —SH group and —OH group), —NH 2 group, —SH group as well as —OH group
  • PEPPSI is an abbreviation of Pyridine Enhanced Preparation Preparation Initiation Initiation and has a chemical structure represented by the following formula (P3).
  • i Pr indicates an isopropyl group (Isopropyl group).
  • NHC-Pd complex catalysts were proposed in 2006 by Nolan et al.
  • an NHC—Pd complex catalyst represented by the following formula (P4) (“IPrPd (allyl)”) is used as a catalyst for a CN coupling reaction represented by the following formula (P6), for example, even at room temperature: It has been reported that the reaction proceeds well (for example, see Non-Patent Documents 9 to 10).
  • IPr represents a ligand (1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene) having an NHC structure represented by the following formula (P5). .
  • R, R ′ and R ′′ may be the same as or different from each other, and may be a hydrocarbon group (a hydrocarbon group composed of carbon and hydrogen, an —NH 2 group, an —SH group, and , A hydrocarbon group including —OH group), —NH 2 group, —SH group, and —OH group, and “ t Bu” represents a tert.-butyl group (tertiary butyl group).
  • this patent applicant presents the following publications as publications in which the above-mentioned literature known invention is described.
  • the present invention has been made in view of such technical circumstances, and an object thereof is to provide an organometallic complex catalyst capable of obtaining a higher yield of a target product than a conventional catalyst in a cross-coupling reaction. To do.
  • Another object of the present invention is to provide a ligand having a nitrogen-containing heterocyclic carbene structure that is a constituent material of the organometallic complex catalyst of the present invention.
  • this invention aims at providing the manufacturing method of the organometallic complex catalyst for cross-coupling reactions which uses the ligand of this invention.
  • TEP value (Tolman electronic paramater) [Tolman electronic paramater] obtained from infrared spectroscopy for the electron donating property to the central metal for a ligand having a silyl group bonded to the 4-position carbon in the NHC structure of the imidazole ring.
  • TEP value Tolman electronic paramater
  • IPr ligand Formula (P5)
  • the present invention includes the following technical matters. That is, the present invention An organometallic complex catalyst used in a cross-coupling reaction, It has a structure represented by the following formula (1), An organometallic complex catalyst is provided.
  • M is a coordination center and represents an atom or ion of any metal selected from the group consisting of Pd, Pt, Rh, Ru, and Cu.
  • R 1 , R 2 and R 3 may be the same or different and are each selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and an aryl group.
  • substituents One kind of substituent.
  • R 4 , R 5 , R 6 , and R 7 may be the same or different, and are each a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryl group, a hydroxy group, Group, hydroxylate group, thiocarboxy group, dithiocarboxy group, sulfo group, sulfino group, oxycarbonyl group, carbamoyl group, hydrazinocarbonyl group, amidino group, cyano group, isocyano group, cyanato group, isocyanato group, thiocyanato group, At least one selected from the group consisting of isothiocyanato group, formyl group, oxo group, thioformyl group, thioxo group, mercapto group, amino group, imino group, hydrazino group, allyloxy group, sulf
  • X represents a halogen atom capable of coordinating with the coordination center M.
  • R 8 represents a substituent having 3 to 20 carbon atoms and having a ⁇ bond capable of coordinating with M.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are the above coordinations of the ligand having a nitrogen-containing heterocyclic carbene structure represented by the following formula (2) containing them
  • the TEP value (Tolman electronic paramater) [cm ⁇ 1 ] obtained from infrared spectroscopy is the TEP value [cm ⁇ 1 ] of the ligand represented by the following formula (2-1).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are R 1 , R 2 , R 3 , R 4 , R in the formula (1). 5 , the same substituent as R 6 and R 7 is shown.
  • R 4, R 5, R 6 and R 7 represents an R 4, R 5, R 6 and R 7 the same substituents in the formula (1).
  • the organometallic complex catalyst of the present invention having the above-described structure has a higher yield of the target product than conventional catalysts such as the NHC-Pd complex catalysts exemplified in Non-Patent Documents 1 to 10 described above in the cross-coupling reaction. Can be obtained.
  • the present inventors speculate as follows. That is, the present inventors have developed a structure (IPr ligand (formula (P5)) structure) in which a conventional catalyst is bonded to a backbone carbon at the 4-position or 5-position in the NHC structure of an imidazole ring.
  • the organometallic complex catalyst of the present invention has a structure in which the silyl group (—SiR 1 R 2 R 3 ) is bonded to the backbone carbon at the 4-position or 5-position in the NHC structure. It is speculated that this contributes to the improvement of the yield of the target product.
  • the present inventors have used an infrared absorption spectrum of an Rh carbonyl complex in which a portion represented by -MR 8 X of the organometallic complex of the present invention is substituted with -Rh (CO) 2 Cl.
  • the resulting TEP value was measured.
  • the present inventors among the ligands represented by the formula (2), have a TEP value shifted to a higher wave number side than the IPr ligand (formula (P5)), that is, an IPr configuration.
  • the organometallic complex catalyst having a ligand having a lower electron donating property than the ligand is more than the conventional catalyst such as the NHC-Pd complex catalyst (IPrPd (allyl)) represented by the formula (P4).
  • IPrPd NHC-Pd complex catalyst
  • the organometallic complex catalyst becomes relatively bulky and prevents the catalyst active species M 0 (zero valence) in the catalytic reaction from oligomerizing and deactivating. Therefore, it is thought that the target product can be obtained with high yield because the life of the catalyst is improved (for example, see Examples 1 and 2 described later).
  • the TEP value [cm ⁇ 1 ] of the ligand having a nitrogen-containing heterocyclic carbene structure represented by the formula (2) is ⁇ MR 8 in the formula (1).
  • the stretching frequency [cm ⁇ of the carbonyl group obtained from the infrared absorption spectrum measured for the Rh carbonyl complex represented by the following formula (1-1) in which the moiety represented by X is substituted with —Rh (CO) 2 Cl 1 ] is preferable.
  • the TEP value can be obtained by the following formula (E1).
  • ⁇ CO av / Rh represents an arithmetic average value of the stretching frequency [cm ⁇ 1 ] of the carbonyl group obtained from the infrared absorption spectrum measured for the Rh carbonyl complex
  • the TEP value (Tolman electronic paramater) is a stretching frequency of a carbonyl group originally obtained from an infrared absorption spectrum of a Ni carbonyl complex in which the coordination center is Ni.
  • the Ni carbonyl complex is highly toxic and it is difficult for the measurer to measure the infrared absorption spectrum.
  • the stretching frequency of the carbonyl group obtained from the infrared absorption spectrum of the Rh carbonyl complex and the formula (E1) the infrared absorption spectrum of the measurer can be measured in an environment where safety is improved. Measurement work can be performed.
  • the organometallic complex catalyst of the present invention is preferably used for a CN cross-coupling reaction. Furthermore, from the viewpoint of obtaining the effect of the present invention more reliably, the organometallic complex catalyst of the present invention has a structure represented by the following formula (3), formula (4) or formula (5). preferable.
  • i Pr represents an isopropyl group
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Formulas (3) and (5) OEt represents an ethoxide group.
  • the present invention is a ligand that is a constituent material of an organometallic complex catalyst having a structure represented by the following formula (1) used for the cross-coupling reaction, and is represented by the following formula (2).
  • a ligand having the structure of a nitrogen-containing heterocyclic carbene is provided.
  • M is a coordination center and represents an atom or ion of any metal selected from the group consisting of Pd, Pt, Rh, Ru, and Cu.
  • R 1 , R 2 and R 3 may be the same or different and are each at least one selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and an aryl group. Is a substituent.
  • R 4 , R 5 , R 6 , and R 7 may be the same or different and are each a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryl group, a hydroxy group, Hydroxylate group, thiocarboxy group, dithiocarboxy group, sulfo group, sulfino group, oxycarbonyl group, carbamoyl group, hydrazinocarbonyl group, amidino group, cyano group, isocyano group, cyanato group, isocyanato group, thiocyanato group, isothiocyanato group , Formyl group, oxo group, thioformyl group, thioxo group, mercapto group, amino group, imino group, hydrazino group, allyloxy group, sulfide group, nitro group, and silyl group It
  • X represents a halogen atom capable of coordinating with the coordination center M.
  • R 8 represents a substituent having 3 to 20 carbon atoms and having a ⁇ bond capable of coordinating with M.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are the above-mentioned coordination of the ligand having a nitrogen-containing heterocyclic carbene structure represented by the formula (2) containing them.
  • the TEP value (Tolman electronic paramater) [cm ⁇ 1 ] obtained from infrared spectroscopy is the TEP value [cm ⁇ 1 ] of the ligand represented by the following formula (2-1). Are combined and arranged so as to shift to the higher wave number side.
  • R 4, R 5, R 6 and R 7 represents an R 4, R 5, R 6 and R 7 the same substituents in the formula (1).
  • the ligand of this invention is a ligand suitable as a constituent material of the organometallic complex catalyst of this invention mentioned above.
  • the ligand of the present invention hydrogen bonded to the 4-position or 5-position backbone carbon constituting the 5-membered ring of a ligand having an NHC structure such as IPr is converted to a silyl group (—SiR 1 R 2 R 3 ). Since the substituted structure is relatively bulky, the catalyst active species M 0 (zero valence) in the catalytic reaction is prevented from being oligomerized and deactivated, and the inventors of the present invention improve the life of the catalyst. I guess.
  • the TEP value of the ligand having a nitrogen-containing heterocyclic carbene structure represented by the formula (2) is a moiety represented by -MR 8 X in the formula (1). Is a value obtained from the stretching frequency of the carbonyl group obtained from the infrared absorption spectrum measured for the Rh carbonyl complex represented by the following formula (1-1) substituted with —Rh (CO) 2 Cl. preferable.
  • the TEP value can be obtained by the equation (E1) described above.
  • the present invention provides A method for producing an organometallic complex catalyst having a structure represented by the following formula (1) used for a cross-coupling reaction, A first step of synthesizing a ligand having a structure of a nitrogen-containing heterocyclic carbene represented by the following formula (2); A second step of synthesizing a complex comprising a coordination center M in the formula (1), a halogen X, and a substituent R 8 ; A third step of reacting the ligand having the NHC structure obtained in the first step with the complex obtained in the second step; Including, A method for producing an organometallic complex catalyst is provided.
  • M is a coordination center and represents an atom or ion of any metal selected from the group consisting of Pd, Pt, Rh, Ru, and Cu.
  • R 1 , R 2 and R 3 may be the same or different and are each at least one selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and an aryl group. Is a substituent.
  • R 4 , R 5 , R 6 , and R 7 may be the same or different and are each a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryl group, a hydroxy group, Hydroxylate group, thiocarboxy group, dithiocarboxy group, sulfo group, sulfino group, oxycarbonyl group, carbamoyl group, hydrazinocarbonyl group, amidino group, cyano group, isocyano group, cyanato group, isocyanato group, thiocyanato group, isothiocyanato group , Formyl group, oxo group, thioformyl group, thioxo group, mercapto group, amino group, imino group, hydrazino group, allyloxy group, sulfide group, nitro group, and silyl group It
  • X represents a halogen atom capable of coordinating with the coordination center M.
  • R 8 represents a substituent having 3 to 20 carbon atoms and having a ⁇ bond capable of coordinating with M.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are the above-mentioned coordination of the ligand having a nitrogen-containing heterocyclic carbene structure represented by the formula (2) containing them.
  • the TEP value (Tolman electronic paramater) [cm ⁇ 1 ] obtained from infrared spectroscopy is the TEP value [cm ⁇ 1 ] of the ligand represented by the following formula (2-1). Are combined and arranged so as to shift to the higher wave number side.
  • R 4, R 5, R 6 and R 7 represents an R 4, R 5, R 6 and R 7 the same substituents in the formula (1).
  • the present inventors provide a ligand having the NHC structure represented by the formula (2), more specifically, the backbone at the 4th or 5th position in the NHC structure of the imidazole ring.
  • a new ligand (the ligand of the present invention) having a structure in which a silyl group (—SiR 1 R 2 R 3 ) is bonded to carbon and having a TEP value that satisfies the above-described conditions is novel in the first step. It has been found that the use of this is effective for solving the above-mentioned problems.
  • an organometallic complex catalyst for a cross-coupling reaction using the ligand which can obtain a higher yield of the target product than a conventional catalyst in the cross-coupling reaction.
  • the manufacturing method which can manufacture a complex catalyst reliably can be provided.
  • an organometallic complex catalyst for a cross-coupling reaction using the ligand of the present invention wherein the yield of the target product is higher than that of a conventional catalyst in the cross-coupling reaction.
  • the organometallic complex catalyst of the present invention capable of obtaining the above can be produced more easily and more reliably.
  • a structure in which hydrogen bonded to the 4- or 5-position backbone carbon constituting the 5-membered ring of a ligand having an NHC structure such as IPr is substituted with a silyl group and the TEP value is obtained.
  • the ligand of the present invention having a structure that satisfies the conditions described above can be more easily produced.
  • synthesis of a ligand having an NHC structure in which hydrogen of the backbone carbon is substituted with other substituents requires a multi-step synthesis step.
  • the 4-position or 5-position such as IPr is used.
  • the ligand with silyl group bonded to the 4- or 5-position backbone carbon is synthesized in a high yield with relatively few synthesis steps and relatively mild conditions. Is possible.
  • various types of silyl groups can be introduced into the hydrogen moiety bonded to the 4- or 5-position backbone carbon by changing the raw silicon reagent.
  • a final product (a ligand obtained by substituting a hydrogen of backbone carbon of a ligand having an NHC structure with a silyl group)
  • the synthesis steps required to obtain the organic Pd complex catalyst or the organic Rh complex catalyst having the above can be made into three steps which are relatively few.
  • the organometallic complex which can obtain the yield of a target object higher than the conventional catalyst in a cross-coupling reaction.
  • it has a structure of a nitrogen-containing heterocyclic carbene that is a constituent material of the organometallic complex catalyst of the present invention, which can obtain a higher yield of the target product than the conventional catalyst in the cross-coupling reaction.
  • a ligand is provided.
  • an organometallic complex catalyst for a cross-coupling reaction using the ligand of the present invention which can obtain a higher yield of the target product than the conventional catalyst in the cross-coupling reaction.
  • FIG. 3 is a graph showing 1 H NMR spectra obtained for ligands having an NHC structure represented by reaction formulas (R1) to (R3). Is a graph showing the 1 H NMR spectrum obtained for Ligand "IPr” and "TMS IPr” having NHC structure.
  • 2 is a graph showing the 1 H NMR spectrum obtained for the organometallic complex catalyst ⁇ TMS IPrPd (allyl) ⁇ of Comparative Example 1.
  • 2 is a graph showing the spectrum of MALDI-TOF-MS obtained for the organometallic complex catalyst ⁇ TMS IPrPd (allyl) ⁇ of Comparative Example 1. Is a graph showing the 1 H NMR spectrum obtained for Ligand "IPr” and "TEOS IPr” having NHC structure.
  • FIG. 2 is a graph showing a 1 H NMR spectrum obtained for the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) ⁇ of Example 1.
  • FIG. 2 is a graph showing the spectrum of MALDI-TOF-MS obtained for the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) ⁇ of Example 1.
  • 2 is a graph showing a 1 H NMR spectrum obtained for a ligand having an NHC structure of the organometallic complex catalyst of Example 2.
  • FIG. 2 is a graph showing the 1 H NMR spectrum obtained for the organometallic complex catalyst of Example 2.
  • FIG. 2 is a graph showing the 1 H NMR spectrum obtained for the organometallic complex catalyst ⁇ TEOS IPrPd (cinnamyl) ⁇ of Example 3.
  • FIG. 6 is a graph showing the spectrum of MALDI-TOF-MS obtained for the organometallic complex catalyst ⁇ TEOS IPrPd (cinnamyl) ⁇ of Example 3. It is a figure which shows ORTEP obtained about the organometallic complex catalyst ⁇ TMS IPrPd (allyl) ⁇ of the comparative example 1.
  • 1 is a diagram showing ORTEP obtained for an organometallic complex catalyst ⁇ TEOS IPrPd (allyl) ⁇ of Example 1.
  • FIG. It is a figure which shows ORTEP obtained about the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) ⁇ of Example 1 and the organometallic complex catalyst ⁇ TMS IPrPd (allyl) ⁇ of Comparative Example 1.
  • IPr, TMS IPr is a graph showing the 1 H NMR spectrum obtained for TEOS IPr.
  • FIG. 3 is a conceptual diagram showing a reaction mechanism that has been clarified in a CN coupling reaction using an organic Pd complex catalyst.
  • the organometallic complex catalyst of this embodiment is an organometallic complex catalyst used in a cross-coupling reaction, preferably a CN cross-coupling reaction, and has a structure represented by the following formula (1). Yes.
  • the ligand of the present embodiment is a ligand that is a constituent material of the organometallic complex catalyst of the present embodiment, and has a structure of a nitrogen-containing heterocyclic carbene represented by the following formula (2). ing.
  • M is a coordination center and represents an atom or ion of any metal selected from the group consisting of Pd, Pt, Rh, Ru, and Cu.
  • R 1 , R 2 and R 3 may be the same or different and are each selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and an aryl group.
  • substituents One kind of substituent.
  • R 4 , R 5 , R 6 , and R 7 may be the same or different, and are each a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryl group, a hydroxy group, Group, hydroxylate group, thiocarboxy group, dithiocarboxy group, sulfo group, sulfino group, oxycarbonyl group, carbamoyl group, hydrazinocarbonyl group, amidino group, cyano group, isocyano group, cyanato group, isocyanato group, thiocyanato group, At least one selected from the group consisting of isothiocyanato group, formyl group, oxo group, thioformyl group, thioxo group, mercapto group, amino group, imino group, hydrazino group, allyloxy group, sulf
  • X represents a halogen atom capable of coordinating with the coordination center M.
  • R 8 represents a substituent having 3 to 20 carbon atoms and having a ⁇ bond capable of coordinating with M.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are the above coordinations of the ligand having a nitrogen-containing heterocyclic carbene structure represented by the following formula (2) containing them
  • the TEP value (Tolman electronic paramater) [cm ⁇ 1 ] obtained from infrared spectroscopy is the TEP value [cm ⁇ 1 ] of the ligand represented by the following formula (2-1).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are R 1 , R 2 , R 3 , R 4 , R in the formula (1). 5 , the same substituent as R 6 and R 7 is shown.
  • R 4, R 5, R 6 and R 7 represents an R 4, R 5, R 6 and R 7 the same substituents in the formula (1).
  • the organometallic complex catalyst of the present embodiment using the ligand of the present embodiment having the above-described configuration as a constituent material is an NHC—Pd complex catalyst exemplified in Non-Patent Documents 1 to 10 described above in the cross-coupling reaction. A higher yield of the target product can be obtained than conventional catalysts such as.
  • the present inventors guess as follows. That is, the present inventors have a structure in which a hydrogen atom is bonded to a backbone carbon at the 4-position or the 5-position in the NHC structure of an imidazole ring, whereas the present organometallic complex of the present invention.
  • the catalyst has a structure in which the silyl group (—SiR 1 R 2 R 3 ) described above is bonded to the 4th or 5th backbone carbon in the NHC structure, and the TEP value satisfies the conditions described above. It is speculated that this contributes to the improvement of the yield of the target product.
  • the present inventors used an infrared absorption spectrum for a Rh carbonyl complex in which a portion represented by -MR 8 X of the organometallic complex of this embodiment is substituted with -Rh (CO) 2 Cl.
  • the TEP value obtained was measured.
  • the present inventors among the ligands represented by the formula (2), have a TEP value shifted to a higher wave number side than the IPr ligand (formula (P5)), that is, an IPr configuration.
  • An organometallic complex catalyst having a ligand having an NHC structure having a lower electron donating property than a ligand is an NHC-Pd complex catalyst represented by formula (P4) (IPrPd (allyl)), etc. It has been found that a higher yield of the target product can be obtained than conventional catalysts.
  • the present inventors have a structure in which a silyl group (—SiR 1 R 2 R 3 ) is bonded to the backbone carbon at the 4-position or the 5-position in the NHC structure of the imidazole ring and the TEP value.
  • the organometallic complex catalyst becomes relatively bulky and prevents the catalyst active species M 0 (zero valence) in the catalytic reaction from oligomerizing and deactivating. Therefore, it is thought that the target product can be obtained with high yield because the life of the catalyst is improved (for example, see Examples 1 and 2 described later).
  • the TEP value [cm ⁇ 1 ] of the ligand having a nitrogen-containing heterocyclic carbene structure represented by the formula (2) is ⁇ MR in the formula (1).
  • the stretching frequency of the carbonyl group obtained from the infrared absorption spectrum measured for the Rh carbonyl complex represented by the following formula (1-1) in which the moiety represented by X is substituted with —Rh (CO) 2 Cl [cm A value obtained from -1 ] is preferred.
  • the TEP value can be obtained by the following equation (E1).
  • ⁇ CO av / Rh represents an arithmetic average value of the stretching frequency [cm ⁇ 1 ] of the carbonyl group obtained from the infrared absorption spectrum measured for the Rh carbonyl complex
  • the TEP value (Tolman electronic paramater) is the stretching frequency of the carbonyl group originally obtained from the infrared absorption spectrum of a Ni carbonyl complex with Ni as the coordination center.
  • the Ni carbonyl complex is highly toxic and it is difficult for the measurer to measure the infrared absorption spectrum.
  • the stretching frequency of the carbonyl group obtained from the infrared absorption spectrum of the Rh carbonyl complex and the formula (E1) the infrared absorption spectrum of the measurer can be measured in an environment where safety is improved. Measurement work can be performed.
  • the coordination center M is preferably Pd from the viewpoint of more reliably obtaining the effects of the present invention.
  • At least one of R 1 , R 2 and R 3 is preferably an alkyl group or an alkoxy group from the viewpoint of more reliably obtaining the effects of the present invention. More preferably, it is an alkyl group having 1 to 3 carbon atoms or an alkoxy group.
  • At least one of R 4 , R 5 , R 6 and R 7 is preferably an alkyl group having 1 to 3 carbon atoms from the viewpoint of obtaining the effects of the present invention more reliably.
  • X is preferably Cl among halogen atoms.
  • R 8 is preferably a substituent having 3 to 10 carbon atoms having a ⁇ bond that can be coordinated to the coordination center M, and is preferably coordinated to the preferred coordination center Pd.
  • a substituent having 3 to 9 carbon atoms having a recognizable ⁇ bond is more preferable.
  • the organometallic complex catalyst of the present invention comprising the ligand of the present invention as a constituent material is preferably used for the CN cross-coupling reaction. Furthermore, from the viewpoint of obtaining the effect of the present invention more reliably, the organometallic complex catalyst of the present invention has a structure represented by the following formula (3), formula (4) or formula (5). preferable.
  • i Pr represents an isopropyl group
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Formulas (3) and (5) OEt represents an ethoxide group.
  • an organometallic complex catalyst capable of obtaining a higher yield of a target product than a conventional catalyst in a cross-coupling reaction, and a ligand as a constituent material of the organometallic complex catalyst are provided. .
  • the organometallic complex catalyst of the present embodiment is not particularly limited and can be produced by combining and optimizing known ligand synthesis methods and complex catalyst synthesis methods.
  • the method for producing the organometallic complex catalyst of the present embodiment is as follows: A first step of synthesizing a ligand having an NHC structure represented by formula (2); A second step of synthesizing a complex comprising a coordination center M in formula (1), a halogen X, and a substituent R 8 ; A third step of synthesizing the organometallic complex catalyst of the present embodiment by reacting the ligand having the NHC structure obtained in the first step with the complex obtained in the second step; including.
  • the method for producing the organometallic complex catalyst of the present embodiment may further include a fourth step of purifying the organometallic complex catalyst of the present embodiment obtained after the third step.
  • a known purification method can be adopted as the purification method in the fourth step.
  • a recrystallization method using a predetermined solvent may be employed.
  • an organometallic complex catalyst for a cross-coupling reaction using the ligand which has a higher target in the cross-coupling reaction than a conventional catalyst.
  • An organometallic complex catalyst capable of obtaining a yield can be reliably produced.
  • an organometallic complex catalyst for cross-coupling reaction using the ligand of the present embodiment which is higher in target in the cross-coupling reaction than a conventional catalyst.
  • the organometallic complex catalyst of the present embodiment capable of obtaining a yield can be produced more easily and more reliably.
  • a structure in which hydrogen bonded to the 4- or 5-position backbone carbon constituting the five-membered ring of a ligand having an NHC structure such as IPr is substituted with a silyl group and the TEP value is obtained.
  • the ligand of the present invention having a structure satisfying the conditions described above can be more easily produced.
  • synthesis of a ligand having an NHC structure in which hydrogen of the backbone carbon is substituted with other substituents requires a multi-step synthesis step.
  • the 4-position or 5-position such as IPr is used.
  • the ligand with silyl group bonded to the 4- or 5-position backbone carbon is synthesized in a high yield with relatively few synthesis steps and relatively mild conditions. Is possible.
  • various types of silyl groups can be introduced into the hydrogen moiety bonded to the 4- or 5-position backbone carbon by changing the raw silicon reagent.
  • the final product (the ligand in which the hydrogen of the backbone carbon of the ligand having an NHC structure is substituted with a silyl group from IPr.
  • the number of synthesis steps required to obtain an organic Pd complex catalyst or an organic Rh complex catalyst having a high molecular weight can be relatively small.
  • R 1, R 2 and R 3 are the same as R 1, R 2 and R 3 in the formula (1) mentioned above.
  • Elemental analysis was performed using CE Instruments E1110 elementary analyzer manufactured by CE Instruments.
  • Single crystal X-ray crystal structure analysis was performed using a Bruker SMART APEX CCD manufactured by Bruker. For the analytical calculation, Crystal Structure manufactured by Rigaku Corporation was used.
  • GC measurement For gas chromatography (GC) measurement, GC-2014 manufactured by Shimadzu Corporation was used. The capital column used was TC-1 (60 m).
  • Nitrogen adsorption measurement was performed using a high precision specific surface area / pore distribution measuring device (Bel sorp mini) manufactured by Bell Japan.
  • EDX measurement For the EDX measurement, a fluorescent X-ray analyzer (EDX-800HS) manufactured by Shimadzu Corporation was used.
  • IR measurement For the IR measurement, a NICOLET 6700 diamond ATR (smart orbit) manufactured by Thermo Scientific was used.
  • Column equipment A medium pressure preparative liquid chromatograph YFLC-Al-580 manufactured by Yamazen was used, and Hizen Flash Column Silica gel manufactured by Yamazen was used as the silica column.
  • Reagents manufactured by Kanto Chemical Co., Ltd . acetic acid, potassium tert-butoxide, n-butyllithium, chlorobenzene, 1,2-dimethoxyethane, Reagents manufactured by Sigma-Aldrich Japan: chlorotriethoxysilane, mesitylene, deuterated chloroform, MCM-41 Reagents manufactured by Tokyo Chemical Industry: 2,6-diisopropylaniline, chlorotrimethylsilane, 2,4,6-trimethylaniline, 1,3-di-tertbutylimidazol-2-ylidene, cinnamilk chloride, manufactured by Wako Pure Chemical Industries, Ltd.
  • Reagents methanol, ethyl acetate, tetrahydrofuran, hexane, Toluene, dodecane, dibutylaniline, allyl chloride, 40% glyoxal solution, paraformaldehyde Reagents manufactured by N.E. Chemcat: Palladium chloride Reagents manufactured by Fujisilyl Corporation: Q-6 Reagents made by ISOTEC: heavy benzene, heavy THF
  • TMS IPrPd (allyl) An organometallic complex catalyst ⁇ trade name “NTMS-PDA”, manufactured by NE CHEMCAT (hereinafter referred to as “ TMS IPrPd (allyl)” if necessary) ⁇ was prepared.
  • This TMS IPrPd (allyl) is an organometallic complex catalyst represented by the formula (3).
  • the organometallic complex catalyst ⁇ TMS IPrPd (allyl) ⁇ of Comparative Example 1 was synthesized by the following procedure.
  • MeOH represents methanol and HOAc represents acetic acid.
  • TMSCl represents chlorotrimethylsilane
  • EtOAc represents ethyl acetate
  • t BuOK represents (CH 3 ) 3 COK
  • THF represents tetrahydrofuran
  • FIG. 1 shows 1 H NMR spectra obtained for each of the ligands having the NHC structure shown in the reaction formulas (R1) to (R3).
  • FIG. 1A shows the 1 H NMR spectrum of intermediate product 1 in formula (R1). CDCl 3 was used as a deuterated solvent.
  • FIG. 1B shows the 1 H NMR spectrum of intermediate product 2 in formula (R2). CD 3 CN was used as a heavy solvent.
  • FIG. 1C shows a 1 H NMR spectrum of IPr represented by product 3 in formula (R3). C 6 D 6 was used as a heavy solvent.
  • n BuLi CH 3 CH 2 CH 2 CH 2 Li
  • THF tetrahydrofuran
  • the solution in the centrifuge tube was centrifuged at 4000 rpm for 6 minutes at room temperature to separate the salt (LiCl).
  • the obtained filtrate was passed through a filter (manufactured by Advantec, 0.2 ⁇ m) and separated into 50 mL Schlenk.
  • the solvent was removed to obtain a yellow powdered solid ( TMS IPr, ie, the target ligand 5).
  • TMS IPr yellow powdered solid
  • the yield of product 5 “ TMS IPr” (yellow powder solid) in the formula (R4) was 0.901 g, and the yield was 98.9%.
  • FIG. 2 shows 1 H NMR spectra obtained for ligand IPr (reactant 3) and TMS IPr (target ligand 5) having an NHC structure.
  • FIG. 2 (A) shows the 1 H NMR spectrum of IPr (reactant 3). C 6 D 6 was used as a deuterated solvent.
  • FIG. 2 (B) shows the 1 H NMR spectrum of TMS IPr (target ligand 5). C 6 D 6 was used as a heavy solvent.
  • IPr (reaction 3) -CH derived from i Pr groups by TMS group is bonded to 4-position carbon in NHC structure It was confirmed that the proton peak was asymmetric and split into two. In addition, consumption of the raw material was confirmed, and a peak derived from the methyl group of the TMS group was observed near 0 ppm. It was confirmed that TMS IPr (target ligand 5) could be synthesized because the chemical shift and the integrated value were consistent with the literature. It was also confirmed that the lithiation of IPr (reactant 3) with n BuLi was sufficiently advanced.
  • TMS IPrPd (allyl) 15 was confirmed by 1 H NMR, 13 C ⁇ 1 H ⁇ NMR, 29 Si ⁇ 1 H ⁇ NMR, MALDI-TOF-MS, and elemental analysis.
  • the measurement results of TMS IPrPd (allyl) 15 are shown below.
  • FIG. 3 shows the 1 H NMR spectrum obtained for the organometallic complex catalyst ⁇ TMS IPrPd (allyl) 15 ⁇ of Example 1.
  • FIG. 4 shows the spectrum of MALDI-TOF-MS obtained for the organometallic complex catalyst ⁇ TMS IPrPd (allyl) 15 ⁇ of Example 1. Table 1 shows the results of elemental analysis.
  • TMS IPrPd (allyl) 15 was observed to have an allyl group-derived peak, and the integrated value was consistent with the target structure. In addition, a clean single signal was observed from 29 Si ⁇ 1 H ⁇ NMR.
  • the detailed assignments of 1 H NMR and 13 C ⁇ 1 H ⁇ NMR were determined from 1 H- 1 H correlation, 1 H- 13 C correlation, and 13 C DEPT spectrum. As shown in Table 1, since the calculated value and the actual measurement value related to the elemental analysis are almost the same (difference within 0.3%), it was judged that the target compound TMS IPrPd (allyl) 15 could be synthesized. Further, from the result of MALDI-TOF-MS shown in FIG.
  • Example 1 An organometallic complex catalyst represented by the formula (4) ⁇ trade name “NTEOS-PDA”, manufactured by NE CHEMCAT (hereinafter referred to as “ TEOS IPrPd (allyl)” if necessary) ⁇ was prepared.
  • the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) ⁇ of Comparative Example 2 was synthesized by the following procedure.
  • Example 1 First Step-1 Synthesis of Ligand “IPr” Having NHC Structure The same procedure and identification method as those described in [Example 1 First Step-1] of Example 1 The IPr was synthesized with
  • Example 1 First step-2] Synthesis of a ligand in which a triethoxysilyl group is bonded to the 4-position carbon in the NHC structure of IPr
  • n BuLi represents CH 3 CH 2 CH 2 CH 2 Li
  • THF represents tetrahydrofuran.
  • the intermediate product 4 (Li-IPr) in the formula (R7) is obtained from the intermediate product 4 (Li-IPr) in the formula (R4) described in [Example 1 first step-2] of Example 1. The synthesis was performed in the same procedure as the synthesis procedure.
  • FIG. 5 shows 1 H NMR spectra obtained for the ligand IPr (reactant 3) and the TEOS IPr (target ligand 6) having an NHC structure.
  • FIG. 5 (A) shows the 1 H NMR spectrum of IPr (Reactant 3). C 6 D 6 was used as a deuterated solvent.
  • FIG. 5B shows a 1 H NMR spectrum of TEOS IPr (target ligand 6). C 6 D 6 was used as a heavy solvent.
  • IPr reactant 3 It was confirmed that the proton peak derived from —CH of the i Pr group became asymmetric because the TEOS group was bonded to the 4-position carbon in the NHC structure of FIG. Further, the consumption of the raw materials was confirmed, and peaks derived from the ethoxy group (—OEt group) of the TEOS group were observed near 1.1 ppm and 3.6 ppm. From this, it is considered that TEOS IPr (target ligand 6) was synthesized.
  • Example 1 Second Step Synthesis of Complex Containing Coordination Center M, Halogen X, and Substituent R 8
  • Example 1 Third Step Reaction of the ligand having the NHC structure obtained in the first step with the complex obtained in the second step> Using the ligand ( TEOS IPr) having the NHC structure obtained in the first step and the ⁇ -allyl Pd complex ⁇ [(allyl) PdCl 2 ] 2 ⁇ obtained in the second step, the following reaction formula (R6)
  • the organometallic complex catalyst “ TEOS IPrPd (allyl) 16” of Example 1 was synthesized by the reaction shown in FIG.
  • the inventors independently examined the reaction conditions.
  • Example 1 Fourth step Purification of organometallic complex catalyst obtained after the third step After the third step, the white solid ⁇ TEOS IPrPd (allyl) 16 ⁇ is purified by recrystallization using hexane or the like. Went.
  • the TEOS IPrPd (allyl) 16 was synthesized for the first time by the present inventors as an organometallic complex catalyst used for the cross-coupling reaction.
  • the yield of TEOS IPrPd (allyl) 16 (white powdered solid) was 2.53 g, and the yield was 42.8%.
  • Example 1 identification The identity of TEOS IPrPd (allyl) 16 was confirmed by 1 H NMR, 13 C ⁇ 1 H ⁇ NMR, 29 Si ⁇ 1 H ⁇ NMR, MALDI-TOF-MS, and elemental analysis. The measurement results of TEOS IPrPd (allyl) 16 are shown below.
  • FIG. 6 shows the 1 H NMR spectrum obtained for the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) 16 ⁇ of Example 1.
  • FIG. 7 shows the spectrum of MALDI-TOF-MS obtained for the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) 16 ⁇ of Example 1.
  • Table 2 shows the results of elemental analysis.
  • TEOS IPrPd (allyl) 16 was observed to have an allyl group-derived peak, and the integrated value was consistent with the target structure. In addition, a clean single signal was observed from 29 Si ⁇ 1 H ⁇ NMR.
  • the detailed assignments of 1 H NMR and 13 C ⁇ 1 H ⁇ NMR were determined from 1 H- 1 H correlation, 1 H- 13 C correlation, and 13 C DEPT spectrum. As shown in Table 2, since the calculated value and the actual measurement value related to the elemental analysis are substantially the same (difference within 0.3%), it was judged that the target compound TEOS IPrPd (allyl) 16 could be synthesized. Further, from the result of MALDI-TOF-MS shown in FIG.
  • Example 2 An organometallic complex catalyst represented by the formula (4) ⁇ trade name “NPNL-PDA”, manufactured by NE CHEMCAT, Inc. ⁇ was prepared.
  • the organometallic complex catalyst of Example 2 was synthesized by the following procedure.
  • Example 2 First Step-1 Synthesis of Ligand “IPr” Having NHC Structure The same procedure and identification method as those described in [Comparative Example 1 First Step-1] of Comparative Example 1 The IPr was synthesized with
  • Example 2 First Step-2
  • a ligand having a NHC structure ⁇ ligand represented by the following formula (9) ⁇ used in Example 2 represented by the formula (4) was synthesized.
  • n BuLi represents CH 3 CH 2 CH 2 CH 2 Li
  • THF represents tetrahydrofuran.
  • the intermediate product 4 (Li-IPr) in the formula (R9) is obtained from the intermediate product 4 (Li-IPr) in the formula (R4) described in [Comparative Example 1 first step-2] of Comparative Example 1.
  • the synthesis was performed in the same procedure as the synthesis procedure.
  • a predetermined amount of dehydrated hexane was added to the product in (R9) and transferred to a centrifuge tube. Centrifugation was performed at 4000 rpm for a predetermined time at room temperature to separate a salt (LiCl). Next, the obtained filtrate was passed through a filter (manufactured by Advantec, 0.2 ⁇ m) and separated into 50 mL Schlenk. Next, the solvent was removed to obtain the product in (R9), that is, the target ligand.
  • FIG. 8 shows the 1 H NMR spectrum obtained for the product (ligand) in (R9) having the NHC structure.
  • Example 2 Reaction of ligand having NHC structure obtained in first step and complex obtained in second step> Using the ligand having the NHC structure obtained in the first step and the ⁇ -allyl Pd complex ⁇ [(allyly) PdCl 2 ] 2 ⁇ obtained in the second step, the reaction represented by the following reaction formula (R10) is performed. The organometallic complex catalyst of Example 2 was synthesized. In the third step, the inventors independently examined the reaction conditions.
  • a predetermined amount of dehydrated THF was added to a predetermined amount of the ligand having the NHC structure obtained in the first step in 50 mL Schlenk.
  • a predetermined amount of the ⁇ allyl Pd complex ⁇ [(allyl) PdCl 2 ] 2 ⁇ obtained in the second step and a predetermined amount of dehydrated THF were added to a 50 mL vial.
  • the liquid of ⁇ allyl Pd complex was dropped into the liquid of a ligand having an NHC structure.
  • the resulting liquid was stirred at room temperature for a predetermined time.
  • the liquid was passed through activated carbon powder to remove Pd black produced by the reaction.
  • the color of the liquid changed to yellow after passing through activated carbon.
  • THF was completely removed from the obtained liquid.
  • a small amount of dehydrated hexane was added to form a powder.
  • the resulting solid was washed with hexane to obtain the product in formula (R10).
  • Example 2 Fourth step Purification of organometallic complex catalyst obtained after the third step After the third step, the product in the formula (R10) is purified by recrystallization using hexane or the like, The organometallic complex catalyst of Example 2 was obtained.
  • the organometallic complex catalyst of Example 2 was synthesized by the present inventors for the first time as an organometallic complex catalyst used in the cross-coupling reaction.
  • Example 2 identification The identification of the organometallic complex catalyst of Example 2 was confirmed by 1 H NMR, 13 C ⁇ 1 H ⁇ NMR, 29 Si ⁇ 1 H ⁇ NMR, MALDI-TOF-MS, and elemental analysis. The measurement results are shown below.
  • FIG. 9 shows the 1 H NMR spectrum obtained for the organometallic complex catalyst of Example 2.
  • Example 3 An organometallic complex catalyst ⁇ trade name “NTMS-PDC”, manufactured by NE CHEMCAT (hereinafter, referred to as “TEOS IPrPd (cinnamyl)” if necessary) ⁇ was prepared.
  • This TEOS IPrPd (cinnamyl) is an organometallic complex catalyst represented by the formula (6).
  • the organometallic complex catalyst ⁇ TEOS IPrPd (cinnamyl) ⁇ of Example 3 was synthesized by the following procedure.
  • Example 3 First Step-1 Synthesis of Ligand “IPr” Having NHC Structure The same procedure and identification method as described in [Example 1 First Step-1] of Example 1 The IPr was synthesized with
  • Example 3 Step 1-2 Synthesis of a ligand in which a triethoxysilyl group is bonded to the 4-position carbon in the NHC structure of IPr
  • the procedure described in [Example 1 Step 1-2] of Example 1 The ligand ( TEOS IPr) having the NHC structure used in Example 3 was synthesized by the same procedure and identification method as the identification method.
  • Example 3 Third Step Reaction of the ligand having the NHC structure obtained in the first step with the complex obtained in the second step>
  • the ligand ( TEOS IPr) 6 having the NHC structure obtained in the first step and the ⁇ -allyl Pd complex ⁇ product 13 in the formula (R5)] obtained in the second step are represented by the following reaction formula (R12)
  • the organometallic complex catalyst ⁇ TEOS IPrPd (cinnamyl) 19 ⁇ of Example 3 was synthesized by reacting as shown in FIG.
  • the inventors independently examined the reaction conditions.
  • Example 3 Step 4 Purification of organometallic complex catalyst obtained after step 3 After step 3, the yellow solid ⁇ TEOS IPrPd (cinnamyl) 19 ⁇ is purified by recrystallization using hexane or the like. Went.
  • the TEOS IPrPd (cinnamyl) 19 was synthesized for the first time by the present inventors as an organometallic complex catalyst used in the cross-coupling reaction.
  • the yield of TEOS IPrPd (cinnamyl) 19 (yellow solid) was 2.75 g, and the yield was 72.5%.
  • Example 3 Identification The identity of TEOS IPrPd (cinnamyl) 19 was confirmed by 1 H NMR, 13 C ⁇ 1 H ⁇ NMR, 29 Si ⁇ 1 H ⁇ NMR, MALDI-TOF-MS, and elemental analysis. The measurement results of TEOS IPrPd (cinnamyl) 19 are shown below.
  • FIG. 10 shows the 1 H NMR spectrum obtained for the organometallic complex catalyst ⁇ TEOS IPrPd (cinnamyl) 19 ⁇ of Example 3.
  • FIG. 11 shows the spectrum of MALDI-TOF-MS obtained for the organometallic complex catalyst ⁇ TEOS IPrPd (cinnamyl) 19 ⁇ of Example 3.
  • Table 3 shows the results of elemental analysis.
  • TEOS IPrPd (cinnamyl) 19 was observed to have an allyl group-derived peak, and the integrated value was consistent with the target structure. In addition, a clean single signal was observed from 29 Si ⁇ 1 H ⁇ NMR.
  • the detailed assignments of 1 H NMR and 13 C ⁇ 1 H ⁇ NMR were determined from 1 H- 1 H correlation, 1 H- 13 C correlation, and 13 C DEPT spectrum. As shown in Table 3, since the calculated value and the actual measurement value related to the elemental analysis are substantially the same (difference within 0.3%), it was judged that the target compound TEOS IPrPd (cinnamyl) 19 was synthesized. Further, from the result of MALDI-TOF-MS shown in FIG.
  • FIG. 12 shows ORTEP (Oak Ridge Thermal Ellipoid Plot) obtained for the organometallic complex catalyst of Comparative Example 1.
  • FIG. 13 shows the ORTEP obtained for the organometallic complex catalyst of Example 1.
  • FIG. 14 shows ORTEPs obtained for the organometallic complex catalyst of Example 1 and the organometallic complex catalyst of Comparative Example 1. Table 4 shows the bond distances and bond angles obtained for the constituent atoms constituting the comparative example 1 shown in FIG.
  • Table 5 shows bond distances and bond angles obtained for each of the constituent atoms constituting Example 1 shown in FIG.
  • Table 6 shows the main description items described in the CIF file defined by the International Union of Crystallography (IUCr) for the crystal structure analysis data of Example 1 and Comparative Example 1.
  • IUCr International Union of Crystallography
  • Example 1 As a result of the crystal structure analysis of Example 1 and Comparative Example 1 described above, a TMS group is bonded to the 4-position carbon of the imidazole ring constituting the organometallic complex catalyst ⁇ TMS IPrPd (allyl) 15 ⁇ of Comparative Example 1. It was confirmed that the TEOS group was bonded to the 4-position carbon of the imidazole ring constituting the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) 16 ⁇ of Example 1.
  • the bond angle ⁇ of C (1) -N (1) -C (1) in the organometallic complex catalyst ⁇ TMS IPrPd (allyl) 15 ⁇ of Comparative Example 1 (shown as ORTEP of Example 1 in FIG. 14) It can be seen that the coupling angle ⁇ 1) is smaller by about 1 ° to 5 ° than the angle at the same position on the opposite side (see Table 4 and FIG. 14).
  • the bond angle ⁇ of C (1) -N (1) -C (8) in the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) 16 ⁇ of Example 1 (shown as ORTEP of Example 1 in FIG. 14). It can be seen that the coupling angle ⁇ 2) is smaller by about 1 ° to 5 ° than the angle at the same position on the opposite side. (See Table 5 and FIG. 14).
  • each complex catalyst was perpendicular to the plane of the imidazole ring.
  • the organometallic complex catalyst ⁇ TEOS IPrPd (allyl) 16 ⁇ of Example 1 is more TEOS group ⁇ (EtO) than the organometallic complex catalyst ⁇ TMS IPrPd (allyl) 15 ⁇ of Example 1.
  • Example 1-Rh An organometallic complex catalyst ⁇ trade name “NTEOS-RHA”, manufactured by NE CHEMCAT, Inc.] was prepared.
  • Comparative Example 1-Rh is a catalyst having a structure in which Pd at the coordination center of the organometallic complex catalyst (trade name “NTEOS-PDA”) of Comparative Example 1 described above is substituted with Rh.
  • NTEOS-PDA organometallic complex catalyst
  • Example 1-Rh first step First, the same synthesis procedure and analysis as in Comparative Example 1 were performed, and a ligand ( TEOS IPr) having an NHC structure represented by the formula (8) described above was synthesized.
  • Example 1-Rh second step commercially available [Rh (CO) 2 Cl] 2 manufactured by Aldrich was prepared as a ⁇ -allyl Pd complex that is an Rh source.
  • Example 1-Rh third step Next, using the ligand ( TEOS IPr) having the NHC structure represented by the formula (8) obtained in the first step and the ⁇ -allyl Rh complex prepared in the second step, the following reaction formula (R13) The organometallic complex catalyst ⁇ trade name “NTEOS-RHA” ⁇ of Comparative Example 1-Rh was synthesized.
  • Example 1-Rh, fourth step Purification of organometallic complex catalyst obtained after the third step After the third step, the solid containing the product of formula (R13) was purified by recrystallization treatment using hexane or the like.
  • Example 1 Identification of Rh The product of formula (R13), ie, the organometallic complex catalyst of Comparative Example 1-Rh (trade name “NTEOS-RHA”) is identified by 1 H NMR, 13 C ⁇ 1 H ⁇ NMR, 29 Si ⁇ 1 H ⁇ Confirmed by NMR, MALDI-TOF-MS, elemental analysis.
  • Example 2 Rh An organometallic complex catalyst ⁇ trade name “NPNL-RHA”, manufactured by NE CHEMCAT, Inc.] was prepared.
  • Example 2-Rh is a catalyst having a configuration in which Pd at the coordination center of the organometallic complex catalyst of Example 2 described above is substituted with Rh.
  • Example 2-Rh first step First, the same synthesis procedure and analysis as in Example 1 were performed to synthesize a ligand having an NHC structure represented by the formula (9) described above.
  • Example 2-Rh second step Next, commercially available [Rh (CO) 2 Cl] 2 manufactured by Aldrich was prepared as a ⁇ -allyl Pd complex that is an Rh source.
  • Example 2-Rh, third step Next, the reaction represented by the following reaction formula (R14) is performed using the ligand having the NHC structure represented by the formula (9) obtained in the first step and the ⁇ -allyl Rh complex prepared in the second step.
  • Example 2 An organometallic complex catalyst of Rh was synthesized.
  • Example 2-Rh 4th step Purification of organometallic complex catalyst obtained after the third step After the third step, the solid containing the product of formula (R14) was purified by recrystallization treatment using hexane or the like.
  • Example 2-Rh identification The product of the formula (R14), ie, the organometallic complex catalyst of Example 2-Rh (trade name “NPNL-RHA”, manufactured by NE CHEMCAT) was identified by 1 H NMR, 13 C ⁇ 1 H ⁇ NMR, 29 Si ⁇ 1 H ⁇ NMR, MALDI-TOF-MS, confirmed by elemental analysis.
  • Example 1-Rh An organometallic complex catalyst ⁇ trade name “NTMS-RHA”, manufactured by NE CHEMCAT, Inc.] was prepared.
  • Example 1-Rh is a catalyst having a configuration in which Pd at the coordination center of the organometallic complex catalyst of Example 1 described above is substituted with Rh.
  • [Comparative Example 1-Rh first step] First, the same synthesis procedure and analysis as in Example 1 were performed to synthesize a ligand having an NHC structure represented by the formula (7) described above.
  • Comparative Example 1-Rh Second Step Next, commercially available [Rh (CO) 2 Cl] 2 manufactured by Aldrich was prepared as a ⁇ -allyl Pd complex that is an Rh source.
  • Comparative Example 2-Rh Commercially available organometallic complex catalyst represented by the formula (10) described above ⁇ trade name “allyl [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] chloropalladium (II)”, Aldrich
  • An organometallic complex catalyst (hereinafter referred to as “IPrRh” as necessary) was prepared by substituting Rd for Pd at the coordination center of “IPrPd (allyl)” ⁇ .
  • Comparative Example 2-Rh is a catalyst having a configuration in which Pd at the coordination center of the organometallic complex catalyst of Comparative Example 2 described above is substituted with Rh.
  • Table 7 shows the TEP values determined for each organometallic complex catalyst. * A The number in parentheses indicates the difference between the TEP value of Comparative Example 1-Rh and the TEP value of each organometallic catalyst.
  • the TEP values of the organometallic complex catalysts of Example 1-Rh and Example 1-Rh are shifted to the higher wavenumber side than the TEP value of Comparative Example 2-Rh.
  • the organometallic complex catalyst of Example 1-Rh and Example 1-Rh is a ligand having an NHC structure having a lower electron donating property than the IPr ligand (formula (P5)) of Comparative Example 2-Rh. It was found to have Accordingly, the organometallic complex catalysts of Example 1 and Example 2 in which the coordination center is substituted from Rh to Pd also have lower electron donating properties than the IPr ligand (Formula (P5)) of Comparative Example 1.
  • the organometallic complex catalyst of Example 3 also has the same ligand having the NHC structure as that of Example 1, the TEP value of the organometallic complex catalyst of Example 3 is comparative example 2- It can be easily estimated that the Rh shifts to a higher wave number than the TEP value.
  • the present inventors have prevented the organometallic complex catalysts of Example 1 and Example 2 from becoming relatively bulky and causing M 0 (zero valence), which is a catalytically active species in the catalytic reaction, to oligomerize and deactivate. It is estimated that the life of the catalyst is improved. Therefore, the present inventors have found that the organometallic complex catalysts of Example 1 and Example 2 satisfying the configuration of the present invention are more than the organometallic complex catalyst of Comparative Example 2 after a sufficient reaction time after 60 minutes. It is assumed that the desired product is obtained with high yield.
  • M 0 zero valence
  • the reaction starts with oxidative addition in which electron-rich palladium donates an electron to the aryl halide and breaks the C—X bond (X is a halogen atom) (for example, See “Akio Yamamoto Organometallic Complex. Therefore, it can be estimated that the oxidative addition is promoted by increasing the electron density of palladium.
  • the rate-limiting step when a bulky ligand is used is the coordination of amine to metal. It has become clear that it is a stage of proton extraction by position or base (for example, academic paper “a) Organ.
  • FIG. 14 is a conceptual diagram showing the reaction mechanism clarified in the CN coupling reaction using the organic Pd complex catalyst (see the above-mentioned academic papers a) to c)).
  • the step of coordination of amine to metal or extraction of proton on amine is the rate-determining step, a silyl group is introduced into the 4-position carbon of the imidazole ring, and the TEP value is described above.
  • the catalyst of the present invention can obtain a higher yield of the target product than the conventional catalyst in the cross-coupling reaction. Therefore, the present invention contributes to the development of mass production technology in the fields of pharmaceuticals, agricultural chemicals and electronic materials in which cross-coupling can be used for the synthesis of desired products (for example, aromatic amines).
  • the ligand of the present invention it is possible to provide an organometallic complex catalyst capable of obtaining a higher yield of a target product than a conventional catalyst in a cross-coupling reaction.
  • an organometallic complex catalyst for a cross-coupling reaction using the ligand, and a higher yield of the target product can be obtained in the cross-coupling reaction than a conventional catalyst.
  • the manufacturing method which can manufacture an organometallic complex catalyst reliably can be provided. Therefore, the present invention contributes to the development of mass production technology in the fields of pharmaceuticals, agricultural chemicals and electronic materials in which cross-coupling can be used for the synthesis of desired products (for example, aromatic amines).
  • TMS IPrPd (allyl) 16 EOS IPrPd (allyl) 19 TEOS IPrPd (cinnamyl) IPr 1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene NHC nitrogen-containing heterocyclic carbene (N-Heterocyclic Carbene) TEOS Triethoxysilyl group TMS Trimethylsilyl group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることのできる有機金属錯体の提供。有機金属錯体触媒は式(1)で表される構造を有しクロスカップリング反応に使用される。式(1)中、Mは配位中心でありPd等の金属の原子又はそのイオンを示す。R、R及びRは同一であっても異なっていてもよく、水素原子等の置換基である。R、R、R、及びRは同一であっても異なっていてもよく、水素原子等の置換基である。Xはハロゲン原子を示す。Rはπ結合を有する炭素数3~20の置換基を示す。ただし、R~Rは、これらを含む式(2)の配位子の配位中心Mに対する電子供与性について、赤外分光法から得られるTEP値が、式(2-1)の配位子のTEP値と比較して高波数側へシフトするように組合せられて配置されている。

Description

有機金属錯体触媒
 本発明はクロスカップリング反応に使用される有機金属錯体触媒に関する。より詳しくは、含窒素ヘテロ環状カルベンの構造を含む配位子を有し、クロスカップリング反応に使用される有機金属錯体触媒に関する。
 芳香族アミン類は医薬、農薬、電子材料用途に広く利用されている。
 この芳香族アミン類の合成方法としては、パラジウム錯体触媒を用いたC-Nカップリング反応により合成する方法が報告されている(例えば、非特許文献1~3)。
 更に、このC-Nカップリング反応をより効率的に進行させることを意図し、含窒素ヘテロ環状カルベン(N-Heterocyclic Carbene,以下、必要に応じて「NHC」という)の構造を含む配位子を有するPd錯体触媒が提案されている。
 このNHCの構造を含む配位子は、1991年にArduengoらによって、結晶性NHCとして初めて単離され、X線結晶構造解析によってその構造が確認されている(例えば、非特許文献4、下記化学式(P1)参照)。
Figure JPOXMLDOC01-appb-C000018
[(P1)中、cat.とは所定の触媒を示し、THFとは、テトラヒドロフラン(tetrahydrofuran)を示し、DMSOとは、ジメチルスルホキシド (Dimethyl sulfoxide)を示す。]
 このNHCの構造を含む配位子を有するPd錯体触媒(以下、必要に応じ「NHC-Pd錯体触媒」という)はNHCの強いσドナー性と弱いπアクセプター性の性質からパラジウムへの配位能が高く、錯体状態において空気や水に安定であることが知られている。また、種々のクロスカップリング反応の触媒として用いられ、非常に高活性な特性を示した例が数多く報告されている。
 このNHC-Pd錯体触媒としては、例えば、2005年にOrganらによって「PEPPSI」と名付けられたNHC-Pd錯体触媒が提案されている(例えば、非特許文献5)。このPEPPSIはカップリング反応触媒として有用であり、鈴木カップリング反応をはじめ多くの反応に用いられている(例えば、非特許文献6~8、下記化学式(P2)参照)。
Figure JPOXMLDOC01-appb-C000019
[(P2)中、Rは炭化水素基(炭素及び水素からなる炭化水素基と、-NH基、-SH基及び、-OH基を含む炭化水素基とを含む)、-NH基、-SH基、並びに、-OH基を示し、「PEPPSI」とは、Pyridine Enhanced Precatalyst Preparation Stabilization Initiationの略語を示し、下記式(P3)で表される化学構造を有する。]
Figure JPOXMLDOC01-appb-C000020
 ここで、本明細書において、「Pr」は、イソプロピル基(Isopropyl group)を示す。
 更に、2006年にNolanらによって様々なNHC-Pd錯体触媒が提案された。例えば、下記式(P4)で示されるNHC-Pd錯体触媒(「IPrPd(allyl)」)を、例えば、下記式(P6)で示されるC-Nカップリング反応の触媒として用いたところ、室温でも反応が良好に進行することが報告されている(例えば、非特許文献9~10参照)。
Figure JPOXMLDOC01-appb-C000021
 ここで、本明細書において、「IPr」は、下記式(P5)で示されるNHC構造を有する配位子(1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン)を示す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
[(P6)中、R、R´、R´´は互いに同一であっても異なっていてもよく、炭化水素基(炭素及び水素からなる炭化水素基と、-NH基、-SH基及び、-OH基を含む炭化水素基とを含む)、-NH基、-SH基、並びに、-OH基を示し、「Bu」は、tert・-ブチル基(tertiary butyl group)を示す。]
 なお、本件特許出願人は、上記文献公知発明が記載された刊行物として、以下の刊行物を提示する。
Kosugi, M., Kameyama, M., Migita. T. Chem. Lett. 1983, 927 Guram, A. S., Rennels, R. A., Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1348 Louie, J., Hartwig, J. F. Tetrahedron Lett. 1995, 36(21), 3609 Louie, J., Arduengo, A. J. Am. Chem. Soc. 1991, 113, 361 Organ, M. G. Rational catalyst design and its application in sp3-sp3 couplings. Presented at the 230th National Meeting of the American Chemical Society, Washington, DC, 2005; Abstract 308. Organ, M. G., Avola, S., Dubovyk, L., Hadei, N., Kantchev, E. A. B., OBrien, C., Valente, C. Chem. Eur. J. 2006, 12, 4749 Ray, L., Shaikh, M. M., Ghosh, P. Dalton trans. 2007, 4546 Obrien, C. J., Kantchev, E. A. B., Valente, C., Hadei, N., Chass, G. A., Lough, A., Hopkinson, A. C., Organ, M. G. Chem. Eur. J. 2006, 12, 4743 Marion, M., Navarro, O., Stevens , J. M, E., Scott, N. M., Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101 Navarro, O., Marion, N., Mei, J., Nolan, S. P.Chem. Eur. J. 2006, 12, 5142
 しかしながら、クロスカップリング反応において目的物の高い収率を得るという観点からは、上述した従来技術の触媒であっても未だ改善の余地があることを本発明者らは見出した。
 本発明は、かかる技術的事情に鑑みてなされたものであって、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることのできる有機金属錯体触媒を提供することを目的とする。
 また、本発明は、本発明の有機金属錯体触媒の構成材料となる含窒素ヘテロ環カルベンの構造を有する配位子を提供することを目的とする。
 更に、本発明は、本発明の配位子を使用したクロスカップリング反応用の有機金属錯体触媒の製造方法を提供することを目的とする。
 本発明者らは、上述の課題の解決に向けて鋭意検討を行った結果、イミダゾール環のNHCの構造における4位又は5位の炭素原子(以下、必要に応じて「バックボーン炭素」という)に結合するケイ素原子を含む置換基「-SiR」(以下、必要に応じて「シリル基」という)が結合した下記式(1)で示される構造を有する有機金属錯体触媒の構成が有効であることを見出した。
 更に本発明者らは、イミダゾール環のNHCの構造における4位炭素にシリル基が結合した配位子について、中心金属に対する電子供与性を赤外分光法から得られるTEP値(Tolman electronic paramater)[cm-1]を測定することにより比較したところ、IPr配位子(式(P5))よりも中心金属に対する電子供与性が低い配位子を有する有機金属錯体触媒が有効であることを見出し、本発明を完成するに至った。
 より具体的には、本発明は、以下の技術的事項から構成される。
 すなわち、本発明は、
 クロスカップリング反応に使用される有機金属錯体触媒であって、
 下記式(1)で表される構造を有している、
有機金属錯体触媒を提供する。
Figure JPOXMLDOC01-appb-C000024
 ここで、式(1)中、Mは配位中心であり、Pd、Pt、Rh、Ru及びCuからなる群から選択される何れかの金属の原子又はそのイオンを示す。
 また、R、R及びRは同一であっても異なっていてもよく、それぞれ、水素原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、及びアリール基からなる群から選択される少なくとも1種の置換基である。
 更に、R、R、R、及びRは同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、ヒドロキシレート基、チオカルボキシ基、ジチオカルボキシ基、スルホ基、スルフィノ基、オキシカルボニル基、カルバモイル基、ヒドラジノカルボニル基、アミジノ基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、ホルミル基、オキソ基、チオホルミル基、チオキソ基、メルカプト基、アミノ基、イミノ基、ヒドラジノ基、アリロキシ基、スルフィド基、ニトロ基、及びシリル基からなる群から選択される少なくとも1種の置換基である。
 また、式(1)中、Xは前記配位中心Mに配位可能なハロゲン原子を示す。
 更に、Rは前記Mに配位可能なπ結合を有する炭素数3~20の置換基を示す。
 ただし、R、R、R、R、R、R及びRは、これらを含む下記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記配位中心Mに対する電子供与性について、赤外分光法から得られるTEP値(Tolman electronic paramater)[cm-1]が、下記式(2-1)で示される配位子のTEP値[cm-1]と比較して高波数側へシフトするように組合せられて配置されている。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 ここで、式(2)中、R、R、R、R、R、R及びRは、式(1)中のR、R、R、R、R、R及びRと同一の置換基を示す。
 また、式(2-1)中、R、R、R及びRは、式(1)中のR、R、R及びRと同一の置換基を示す。
 上述の構成を有する本発明の有機金属錯体触媒は、クロスカップリング反応において先に述べた非特許文献1~10に例示したNHC-Pd錯体触媒などの従来の触媒よりも目的物の高い収率を得ることができる。
 本発明の有機金属錯体触媒が目的物の高い収率を得ることができる詳細なメカニズムは解明されていないが、本発明者らは、以下のように推察している。
 すなわち、本発明者らは従来の触媒がイミダゾール環のNHCの構造における4位又は5位のバックボーン炭素に水素原子が結合している構造(IPr配位子(式(P5))の構造)を有しているのに対し、本発明の有機金属錯体触媒はNHCの構造における4位又は5位のバックボーン炭素に先に述べたシリル基(-SiR)が結合した構造となっていることが目的物の収率の向上に寄与していると推察している。
 また、本発明者らは、後述するように、本発明の有機金属錯体の-MRXで示される部分を-Rh(CO)Clに置換したRhカルボニル錯体について、赤外線吸収スペクトルを用いて得られるTEP値を測定した。
 その結果、本発明者らは、式(2)で示される配位子のうちTEP値がIPr配位子(式(P5))よりも高波数側へシフトする配位子、すなわち、IPr配位子(式(P5))よりも電子供与性の低い配位子を有する有機金属錯体触媒は、式(P4)で示されるNHC-Pd錯体触媒(IPrPd(allyl))などの従来の触媒よりも目的物の高い収率を得ることができることを見出した。
 そして、これらの結果から、本発明者らは、イミダゾール環のNHCの構造における4位又は5位のバックボーン炭素にシリル基(-SiR)が結合している構造でかつTEP値を先に述べた条件を満たす構造とすることで、有機金属錯体触媒が比較的嵩高くなり触媒反応中での触媒活性種であるM(ゼロ価)がオリゴマー化して失活する事を防いで、触媒の寿命が向上するため、高収率で目的物が得られるようになるのではないかと考えている(例えば、後述の実施例1及び実施例2を参照)。
 また、本発明の有機金属錯体において、前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記TEP値[cm-1]は、前記式(1)中の-MRXで示される部分が-Rh(CO)Clに置換された下記式(1-1)で示されるRhカルボニル錯体について測定される赤外吸収スペクトルから得られるカルボニル基の伸縮振動数[cm-1]から求められる値であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 この場合、TEP値は下記式(E1)により求めることができる。
Figure JPOXMLDOC01-appb-M000028
 ここで、式(E1)中、νCO av/Rh、は、Rhカルボニル錯体について測定される赤外吸収スペクトルから得られるカルボニル基の伸縮振動数[cm-1]の相加平均値を示し、νCO av/Niは、Niカルボニル錯体のカルボニル基の伸縮振動数の相加平均値[cm-1](=TEP値[cm-1])を示す。
 本発明においては、有機金属錯体触媒のNHCの構造を含む配位子の中心金属への電子供与性を上記式(E1)を用いて算出されるTEP値を用いて評価する方法として、非特許文献「T. Dröge and F. Glorius, Angew. Chem. Int. Ed., 2010, 49, 6940」に記載の方法が採用されている。
 TEP値(Tolman electronic paramater)は、本来は配位中心をNiとしたNiカルボニル錯体の赤外吸収スペクトルから得られるカルボニル基の伸縮振動数である。しかし、Niカルボニル錯体は毒性が強く測定者の赤外吸収スペクトルの測定作業がやり難かった。そこで、このように、Rhカルボニル錯体の赤外吸収スペクトルから得られるカルボニル基の伸縮振動数と式(E1)とを用いることにより、安全性が改善された環境で測定者の赤外吸収スペクトルの測定作業を実施することができるようになる。
 また、本発明の効果をより確実に得る観点から、本発明の有機金属錯体触媒は、C-Nクロスカップリング反応に使用されることが好ましい。
 更に、本発明の効果をより確実に得る観点から、本発明の有機金属錯体触媒は、下記式(3)、式(4)又は式(5)で表される構造を有していることが好ましい。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 ここで、式(3)~式(5)中、Prはイソプロピル基を示し、式(4)中、Meはメチル基を示し、Phはフェニル基を示し、式(3)及び式(5)中、OEtはエトキシド基を示す。
 また、本発明は、クロスカップリング反応に使用される下記式(1)で表される構造を有する有機金属錯体触媒の構成材料となる配位子であって、下記式(2)で表される含窒素ヘテロ環カルベンの構造を有している、配位子を提供する。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 ここで、式(1)及び式(2)中、Mは配位中心であり、Pd、Pt、Rh、Ru及びCuからなる群から選択される何れかの金属の原子又はそのイオンを示す。
 R、R及びRは同一であっても異なっていてもよく、それぞれ、水素原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、及びアリール基からなる群から選択される少なくとも1種の置換基である。
 R、R、R、及びRは同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、ヒドロキシレート基、チオカルボキシ基、ジチオカルボキシ基、スルホ基、スルフィノ基、オキシカルボニル基、カルバモイル基、ヒドラジノカルボニル基、アミジノ基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、ホルミル基、オキソ基、チオホルミル基、チオキソ基、メルカプト基、アミノ基、イミノ基、ヒドラジノ基、アリロキシ基、スルフィド基、ニトロ基、及びシリル基からなる群から選択される少なくとも1種の置換基である。
 Xは前記配位中心Mに配位可能なハロゲン原子を示す。
 Rは前記Mに配位可能なπ結合を有する炭素数3~20の置換基を示す。
 ただし、R、R、R、R、R、R及びRは、これらを含む前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記配位中心Mに対する電子供与性について、赤外分光法から得られるTEP値(Tolman electronic paramater)[cm-1]が、下記式(2-1)で示される配位子のTEP値[cm-1]と比較して高波数側へシフトするように組合せられて配置されている。
Figure JPOXMLDOC01-appb-C000034
 ここで、式(2-1)中、R、R、R及びRは、式(1)中のR、R、R及びRと同一の置換基を示す。
 本発明の配位子は、上述した本発明の有機金属錯体触媒の構成材料として好適な配位子である。
 本発明の配位子は、IPrなどのNHC構造を有する配位子の五員環を構成する4位又は5位のバックボーン炭素に結合した水素をシリル基(-SiR)に置換した構造であるため、比較的嵩高くなり触媒反応中での触媒活性種であるM(ゼロ価)がオリゴマー化して失活する事を防いで、触媒の寿命が向上すると本発明者らは推察している。
 また、本発明の有機金属錯体において、前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記TEP値は、前記式(1)中の-MRXで示される部分が-Rh(CO)Clに置換された下記式(1-1)で示されるRhカルボニル錯体について測定される赤外吸収スペクトルから得られるカルボニル基の伸縮振動数から求められる値であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
 この場合、TEP値は先に述べた式(E1)により求めることができる。
 更に、本発明は、
 クロスカップリング反応に使用される下記式(1)で表される構造を有する有機金属錯体触媒の製造方法であって、
 下記式(2)で表される含窒素ヘテロ環カルベンの構造を有する配位子を合成する第1工程と、
 前記式(1)中の配位中心MとハロゲンXと置換基Rとを含む錯体を合成する第2工程と、
 前記第1工程で得られたNHC構造を有する前記配位子と前記第2工程で得られた前記錯体とを反応させる第3工程と、
を含んでいる、
有機金属錯体触媒の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 ここで、式(1)及び式(2)中、Mは配位中心であり、Pd、Pt、Rh、Ru及びCuからなる群から選択される何れかの金属の原子又はそのイオンを示す。
 R、R及びRは同一であっても異なっていてもよく、それぞれ、水素原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、及びアリール基からなる群から選択される少なくとも1種の置換基である。
 R、R、R、及びRは同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、ヒドロキシレート基、チオカルボキシ基、ジチオカルボキシ基、スルホ基、スルフィノ基、オキシカルボニル基、カルバモイル基、ヒドラジノカルボニル基、アミジノ基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、ホルミル基、オキソ基、チオホルミル基、チオキソ基、メルカプト基、アミノ基、イミノ基、ヒドラジノ基、アリロキシ基、スルフィド基、ニトロ基、及びシリル基からなる群から選択される少なくとも1種の置換基である。
 Xは前記配位中心Mに配位可能なハロゲン原子を示す。
 Rは前記Mに配位可能なπ結合を有する炭素数3~20の置換基を示す。
 ただし、R、R、R、R、R、R及びRは、これらを含む前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記配位中心Mに対する電子供与性について、赤外分光法から得られるTEP値(Tolman electronic paramater)[cm-1]が、下記式(2-1)で示される配位子のTEP値[cm-1]と比較して高波数側へシフトするように組合せられて配置されている。
Figure JPOXMLDOC01-appb-C000038
 ここで、式(2-1)中、R、R、R及びRは、式(1)中のR、R、R及びRと同一の置換基を示す。
 本発明者らは、有機金属錯体触媒の製造プロセスにおいて、式(2)で表されるNHCの構造を有する配位子、より詳しくは、イミダゾール環のNHCの構造における4位又は5位のバックボーン炭素にシリル基(-SiR)が結合している構造でかつTEP値を先に述べた条件を満たす構造の配位子(本発明の配位子)を第1工程に新規に使用することが、上記の課題解決に有効であることを見出した。
 本発明によれば、当該配位子を使用したクロスカップリング反応用の有機金属錯体触媒であって、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることができる有機金属錯体触媒を確実に製造することのできる製造方法を提供することができる。
 また、本発明の製造方法によれば、本発明の配位子を使用したクロスカップリング反応用の有機金属錯体触媒であって、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることができる本発明の有機金属錯体触媒をより容易かつより確実に製造することができる。
 本発明の製造方法によれば、IPrなどのNHC構造を有する配位子の五員環を構成する4位又は5位のバックボーン炭素に結合した水素をシリル基に置換した構造でかつTEP値を先に述べた条件を満たす構造を有する本発明の配位子をより容易に製造することができる。
 従来、バックボーン炭素の水素を他の置換基に置換したNHC構造を有する配位子の合成には多段階の合成ステップを必要としたが、本発明の製造方法では、IPrなど4位又は5位のバックボーン炭素に水素が結合した配位子をベースに比較的少ない合成ステップでかつ比較的穏和な条件で4位又は5位のバックボーン炭素にシリル基が結合した配位子が高収率で合成可能である。しかも、本発明の製造方法では、原料のケイ素試薬を変えることで様々な種類のシリル基を4位又は5位のバックボーン炭素に結合した水素の部分に導入することができる。
 例えば、本発明の製造方法によれば、下記式(C1)に示すように、IPrから、最終生成物(NHC構造を有する配位子のバックボーン炭素の水素をシリル基で置換した配位子を有する有機Pd錯体触媒又は有機Rh錯体触媒)を得るまでに必要な合成ステップは比較的少ない3ステップにすることができる。
Figure JPOXMLDOC01-appb-C000039
 本発明によれば、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることのできる有機金属錯体が提供される。
 また、本発明によれば、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることのできる本発明の有機金属錯体触媒の構成材料となる含窒素ヘテロ環カルベンの構造を有する配位子が提供される。
 更に、本発明によれば、本発明の配位子を使用したクロスカップリング反応用の有機金属錯体触媒であって、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることができる有機金属錯体触媒をより確実に製造することのできる製造方法が提供される。
反応式(R1)~(R3)に示したNHC構造を有する配位子について得られたH NMR スペクトルを示すグラフである。 NHC構造を有する配位子「IPr」及び「TMSIPr」について得られたH NMR スペクトルを示すグラフである。 比較例1の有機金属錯体触媒{TMSIPrPd(allyl)}について得られたH NMRのスペクトルを示すグラフである。 比較例1の有機金属錯体触媒{TMSIPrPd(allyl)}について得られたMALDI-TOF-MSのスペクトルを示すグラフである。 NHC構造を有する配位子「IPr」及び「TEOSIPr」について得られたH NMR スペクトルを示すグラフである。 実施例1の有機金属錯体触媒{TEOSIPrPd(allyl)}について得られたH NMRのスペクトルを示すグラフである。 実施例1の有機金属錯体触媒{TEOSIPrPd(allyl)}について得られたMALDI-TOF-MSのスペクトルを示すグラフである。 実施例2の有機金属錯体触媒のNHC構造を有する配位子について得られたH NMRのスペクトルを示すグラフである。 実施例2の有機金属錯体触媒について得られたH NMRのスペクトルを示すグラフである。 実施例3の有機金属錯体触媒{TEOSIPrPd(cinnamyl)}について得られたH NMRのスペクトルを示すグラフである。 実施例3の有機金属錯体触媒{TEOSIPrPd(cinnamyl)}について得られたMALDI-TOF-MSのスペクトルを示すグラフである。 比較例1の有機金属錯体触媒{TMSIPrPd(allyl)}について得られたORTEPを示す図である。 実施例1の有機金属錯体触媒{TEOSIPrPd(allyl)}について得られたORTEPを示す図である。 実施例1の有機金属錯体触媒{TEOSIPrPd(allyl)}、比較例1の有機金属錯体触媒{TMSIPrPd(allyl)}について得られたORTEPを示す図である。 IPr、TMSIPr、TEOSIPrについて得られたH NMRスペクトルを示すグラフである。 有機Pd錯体触媒を用いたC-Nカップリング反応において明らかにされている反応機構を示す概念図である。
 以下、本発明の好適な実施形態について詳細に説明する。
 <有機金属錯体触媒の構成>
 本実施形態の有機金属錯体触媒は、クロスカップリング反応、好ましくはC-Nクロスカップリング反応に使用される有機金属錯体触媒であって、下記式(1)で表される構造を有している。
 また、本実施形態の配位子は、本実施形態の有機金属錯体触媒の構成材料となる配位子であって、下記式(2)で表される含窒素ヘテロ環カルベンの構造を有している。
Figure JPOXMLDOC01-appb-C000040
 ここで、式(1)中、Mは配位中心であり、Pd、Pt、Rh、Ru及びCuからなる群から選択される何れかの金属の原子又はそのイオンを示す。
 また、R、R及びRは同一であっても異なっていてもよく、それぞれ、水素原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、及びアリール基からなる群から選択される少なくとも1種の置換基である。
 更に、R、R、R、及びRは同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、ヒドロキシレート基、チオカルボキシ基、ジチオカルボキシ基、スルホ基、スルフィノ基、オキシカルボニル基、カルバモイル基、ヒドラジノカルボニル基、アミジノ基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、ホルミル基、オキソ基、チオホルミル基、チオキソ基、メルカプト基、アミノ基、イミノ基、ヒドラジノ基、アリロキシ基、スルフィド基、ニトロ基、及びシリル基からなる群から選択される少なくとも1種の置換基である。
 また、式(1)中、Xは前記配位中心Mに配位可能なハロゲン原子を示す。
 更に、Rは前記Mに配位可能なπ結合を有する炭素数3~20の置換基を示す。
 ただし、R、R、R、R、R、R及びRは、これらを含む下記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記配位中心Mに対する電子供与性について、赤外分光法から得られるTEP値(Tolman electronic paramater)[cm-1]が、下記式(2-1)で示される配位子のTEP値[cm-1]と比較して高波数側へシフトするように組合せられて配置されている。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 ここで、式(2)中、R、R、R、R、R、R及びRは、式(1)中のR、R、R、R、R、R及びRと同一の置換基を示す。
 また、式(2-1)中、R、R、R及びRは、式(1)中のR、R、R及びRと同一の置換基を示す。
 上述の構成を有する本実施形態の配位子を構成材料とする本実施形態の有機金属錯体触媒は、クロスカップリング反応において先に述べた非特許文献1~10に例示したNHC-Pd錯体触媒などの従来の触媒よりも目的物の高い収率を得ることができる。
 本実施形態の有機金属錯体触媒が目的物の高い収率を得ることができる詳細なメカニズムは解明されていないが、本発明者らは、以下のように推察している。
 すなわち、本発明者らは従来の触媒がイミダゾール環のNHCの構造における4位又は5位のバックボーン炭素に水素原子が結合している構造を有しているのに対し、本発明の有機金属錯体触媒はNHCの構造における4位又は5位のバックボーン炭素に先に述べたシリル基(-SiR)が結合した構造でかつTEP値を先に述べた条件を満たす構造となっていることが目的物の収率の向上に寄与していると推察している。
 また、本発明者らは、後述するように、本実施形態の有機金属錯体の-MRXで示される部分を-Rh(CO)Clに置換したRhカルボニル錯体について、赤外線吸収スペクトルを用いて得られるTEP値を測定した。
 その結果、本発明者らは、式(2)で示される配位子のうちTEP値がIPr配位子(式(P5))よりも高波数側へシフトする配位子、すなわち、IPr配位子(式(P5))よりも電子供与性の低いNHC構造を有する配位子を有する有機金属錯体触媒は、式(P4)で示されるNHC-Pd錯体触媒(IPrPd(allyl))などの従来の触媒よりも目的物の高い収率を得ることができることを見出した。
 そして、これらの結果から、本発明者らは、イミダゾール環のNHCの構造における4位又は5位のバックボーン炭素にシリル基(-SiR)が結合している構造でかつTEP値を先に述べた条件を満たす構造とすることで、有機金属錯体触媒が比較的嵩高くなり触媒反応中での触媒活性種であるM(ゼロ価)がオリゴマー化して失活する事を防いで、触媒の寿命が向上するため、高収率で目的物が得られるようになるのではないかと考えている(例えば、後述の実施例1及び実施例2を参照)。
 また、本実施形態の有機金属錯体において、前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記TEP値[cm-1]は、前記式(1)中の-MRXで示される部分が-Rh(CO)Clに置換された下記式(1-1)で示されるRhカルボニル錯体について測定される赤外吸収スペクトルから得られるカルボニル基の伸縮振動数[cm-1]から求められる値であることが好ましい。
Figure JPOXMLDOC01-appb-C000043
 この場合、TEP値は下記式(E1)により求めることができる。
Figure JPOXMLDOC01-appb-M000044
 ここで、式(E1)中、νCO av/Rh、は、Rhカルボニル錯体について測定される赤外吸収スペクトルから得られるカルボニル基の伸縮振動数[cm-1]の相加平均値を示し、νCO av/Niは、Niカルボニル錯体のカルボニル基の伸縮振動数の相加平均値[cm-1](=TEP値[cm-1])を示す。
 本発明においては、有機金属錯体触媒のNHCの構造を含む配位子の中心金属への電子供与性を上記式(E1)を用いて算出されるTEP値を用いて評価する方法として、非特許文献「T. Dröge and F. Glorius, Angew. Chem. Int. Ed., 2010, 49, 6940」に記載の方法が採用されている。
 TEP値(Tolman electronic paramater)は、本来は配位中心をNiとしたNiカルボニル錯体の赤外吸収スペクトルから得られるカルボニル基の伸縮振動数である。しかし、Niカルボニル錯体は毒性が強く測定者の赤外吸収スペクトルの測定作業がやり難かった。そこで、このように、Rhカルボニル錯体の赤外吸収スペクトルから得られるカルボニル基の伸縮振動数と式(E1)とを用いることにより、安全性が改善された環境で測定者の赤外吸収スペクトルの測定作業を実施することができるようになる。
 ここで、配位中心Mは、本発明の効果をより確実に得る観点から、Pdであることが好ましい。
 R、R及びRのうちの少なくとも一つは、本発明の効果をより確実に得る観点から、アルキル基又はアルコキシ基であることが好ましい。より好ましくは、炭素数1~3のアルキル基又はアルコキシ基であることが好ましい。
 R、R、R、及びRはのうちの少なくとも一つは、本発明の効果をより確実に得る観点から、炭素数1~3のアルキル基であることが好ましい。
 Xは、本発明の効果をより確実に得る観点及び原料の入手容易性から、ハロゲン原子のうちClであることが子好ましい。
 Rは、本発明の効果をより確実に得る観点から、配位中心Mに配位可能なπ結合を有する炭素数3~10の置換基であることが好ましく、好ましい配位中心Pdに配位可能なπ結合を有する炭素数3~9の置換基であることがより好ましい。
 また、本発明の効果をより確実に得る観点から、本発明の配位子を構成材料とする本発明の有機金属錯体触媒はC-Nクロスカップリング反応に使用されることが好ましい。
 更に、本発明の効果をより確実に得る観点から、本発明の有機金属錯体触媒は、下記式(3)、式(4)又は式(5)で表される構造を有していることが好ましい。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 ここで、式(3)~式(5)中、Prはイソプロピル基を示し、式(4)中、Meはメチル基を示し、Phはフェニル基を示し、式(3)及び式(5)中、OEtはエトキシド基を示す。
 本実施形態によれば、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることのできる有機金属錯体触媒、当該有機金属錯体触媒の構成材料となる配位子が提供される。
 <有機金属錯体触媒の製造方法の好適な実施形態>
 本実施形態の有機金属錯体触媒は、特に限定されず公知の配位子の合成方法、錯体触媒の合成手法を組合せ、最適化することで製造することができる。
 本実施形態の有機金属錯体触媒の製造方法は、
 式(2)で示されるNHC構造を有する配位子を合成する第1工程と、
 式(1)中の配位中心MとハロゲンXと置換基Rとを含む錯体を合成する第2工程と、
 第1工程で得られたNHC構造を有する配位子と第2工程で得られた錯体とを反応させ本実施形態の有機金属錯体触媒を合成する第3工程と、
を含む。
 更に、本実施形態の有機金属錯体触媒の製造方法には、第3工程の後にえられる本実施形態の有機金属錯体触媒を精製する第4工程が更に含まれていてもよい。第4工程の精製手法は公知の精製手法を採用することができる。例えば、所定の溶媒を使用する再結晶法を採用してもよい。
 本実施形態の有機金属錯体触媒の製造方法によれば、当該配位子を使用したクロスカップリング反応用の有機金属錯体触媒であって、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることができる有機金属錯体触媒を確実に製造することができる。
 また、本実施形態の製造方法によれば、本実施形態の配位子を使用したクロスカップリング反応用の有機金属錯体触媒であって、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることができる本実施形態の有機金属錯体触媒をより容易かつより確実に製造することができる。
 本実施形態の製造方法によれば、IPrなどのNHC構造を有する配位子の五員環を構成する4位又は5位のバックボーン炭素に結合した水素をシリル基に置換した構造でかつTEP値を先に述べた条件を満たす構造を有する本発明の配位子をより容易に製造することができる。
 従来、バックボーン炭素の水素を他の置換基に置換したNHC構造を有する配位子の合成には多段階の合成ステップを必要としたが、本発明の製造方法では、IPrなど4位又は5位のバックボーン炭素に水素が結合した配位子をベースに比較的少ない合成ステップでかつ比較的穏和な条件で4位又は5位のバックボーン炭素にシリル基が結合した配位子が高収率で合成可能である。しかも、本発明の製造方法では、原料のケイ素試薬を変えることで様々な種類のシリル基を4位又は5位のバックボーン炭素に結合した水素の部分に導入することができる。
 例えば、本実施形態の製造方法によれば、下記式(C1)に示すように、IPrから、最終生成物(NHC構造を有する配位子のバックボーン炭素の水素をシリル基で置換した配位子を有する有機Pd錯体触媒又は有機Rh錯体触媒)を得るまでに必要な合成ステップは比較的少ない3ステップにすることができる。
Figure JPOXMLDOC01-appb-C000048
 ここで、式(C1)中、R、R及びRは先に述べた式(1)中のR、R及びRと同一である。
 以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
 (分析装置の説明)
 以下に説明する実施例1~3、比較例1~2の有機金属錯体触媒を合成する際の分析については、以下の装置を使用した。
 〔NMRスペクトル〕
 H NMR、13C{H}NMR、29Si{H}NMRスペクトル測定には、Bruker社製のBruker Biospin Avance400(400 MHz)を使用して測定を行った。配位子の測定はいずれも脱水した重溶媒を使用した。これは、配位子の分解防止のためである。
 13C{H}CPMAS、29Si{H}CPMASスペクトル測定には、Bruker社製のBruker Avance400WB(400 MHz)を用いた。
 〔質量分析〕
 MALDI-TOF-MSスペクトル測定は、Bruker社製のAUTOFLEXTMTOF/TOFを用いた。
 〔元素分析〕
 元素分析は、CE Instruments社製のCE Instruments EÅ1110 elemental analyzerを用いた。
 〔単結晶X線結晶構造解析〕
 単結晶X線結晶構造解析はBruker社製のBruker SMART APEX CCDを用いた。解析計算はリガク社製Crystal Structureを用いた。
 〔GC測定〕
 ガスクロマトグラフィー(GC)測定は島津製作所社製のGC-2014を用いた。キャピタリーカラムはTC-1(60m)を使用した。
 〔窒素吸着測定〕
 窒素吸着測定は、日本ベル社の高精度比表面積・細孔分布測定装置(Bel sorp mini)を用いた。
 〔EDX測定〕
 EDX測定は、島津製作所社製の蛍光X線分析装置(EDX-800HS)を用いた。
 〔IR測定〕
 IR測定は、Thermo Scientific社製のNICOLET6700ダイヤモンドATR(smart orbit)を用いた。
 〔カラム装置〕
 山善製の中圧分取液体クロマトグラフYFLC-Al-580を使用し、シリカカラムとして山善製Hi-Flash Column Silica gelを使用した。
 (市販の試薬の説明)
 以下に説明する実施例1~3、比較例1~2の有機金属錯体触媒の合成と分析の際、市販の試薬は以下のものを使用した。
 関東化学社製の試薬:酢酸、カリウムtert-ブトキシド、n-ブチルリチウム、クロロベンゼン、1,2-ジメトキシエタン、
 シグマアルドリッチジャパン社製の試薬:クロロトリエトキシシラン、メシチレン、重クロロホルム、MCM-41
 東京化成社製の試薬:2,6-ジイソプロピルアニリン、クロロトリメチルシラン、2,4,6-トリメチルアニリン、1,3-ジ-tertブチルイミダゾール-2-イリデン、シンナミルクロリド
 和光純薬工業社製の試薬:メタノール、酢酸エチル、テトラヒドロフラン、ヘキサン、
トルエン、ドデカン、ジブチルアニリン、塩化アリル、40%グリオキサール溶液、パラホルムアルデヒド
 エヌ・イーケムキャット社製の試薬:塩化パラジウム
 富士シリル社製の試薬:Q-6
 ISOTEC社製の試薬:重ベンゼン、重THF
 (比較例1)
 有機金属錯体触媒{商品名「NTMS-PDA」、N.E.CHEMCAT社製(以下、必要に応じて「TMSIPrPd(allyl)」と表記)}を用意した。このTMSIPrPd(allyl)は、式(3)に示した有機金属錯体触媒である。
 比較例1の有機金属錯体触媒{TMSIPrPd(allyl)}は以下の手順で合成した。
 [比較例1 第1工程-1]NHC構造を有する配位子「IPr」の合成
 2,6-ジイソプロピルアニリンを出発原料として、先に述べた式(P5)で示されるNHC構造を有する配位子「IPr」{1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン}の合成を行った。
 具体的には、学術論文(Tang, P., Wang, W., Ritter, T. J. Am. Chem. Soc. 2011, 133, 11482、及び、Pompeo, M., Froese, R. D. J., Hadei, N., Organ, M. G. Angew. Chem. Int. Ed. 2012, 51, 11354)に記載の手法を参考にして、下記反応式(R1)~(R3)で示される3つのステップを経て合成した。
 H NMRを用いて同定を行いIPr及び中間生成物が合成できていることを確認した。
Figure JPOXMLDOC01-appb-C000049
 式(R1)中、MeOHはメタノールを示し、HOAcは酢酸を示す。
 式(R1)中の中間生成物1の合成手順について説明する。
 50mLナスフラスコに2,6-ジイソプロピルアニリン6.00g(33.8mmol)、メタノール30mL、酢酸0.31mL(3.5mol%)を加え、50℃に加熱した。次に、グリオキサール40%aq.2.40g(0.5eq.)とメタノール10mLの混合溶液を滴下した。混合液は滴下していくにつれて無色透明な溶液から黄色の透明な溶液へと変化した。15分、50℃で撹拌後、室温に戻してさらに11時間撹拌した。室温まで冷えると、黄色の固体が析出してきた。反応終了後、メンブレンフィルターを用いてろ過を行い、メタノールで固体を洗浄した。洗浄した際、目的の中間生成物1はメタノールに少量溶けてしまうので、ろ液を回収し溶媒除去を行い、得られた固体を少量のメタノールで再び洗浄、ろ過を行った。1回目と2回目で得られた黄色の固体を合わせて、乾燥した。
 式(R1)中の中間生成物1(黄色の粉末固体)の収量5.49g、収率86.0%であった。
Figure JPOXMLDOC01-appb-C000050
 式(R2)中、TMSClはクロロトリメチルシランを示し、EtOAcは酢酸エチルを示す。
 式(R2)中の中間生成物2の合成手順について説明する。
 500mLナスフラスコに(1E,2E)-1,2-ビス(2,6-ジイソプロピルフェニルイミノ)エタン3.80g(10.08mmol)、パラホルムアルデヒド0.32 g (10.66 mmol)、酢酸エチル83mLを加え、70℃に加熱した。混合液は黄色のスラリー状の溶液状態であった。次に、クロロトリメチルシラン0.34mL(10.66 mmol)と酢酸エチル8mLの混合溶液を20分かけて滴下した。その後、70℃、2時間撹拌した。黄色からオレンジ色に溶媒の色が変化した。反応終了後、氷水につけて、0℃まで冷やした。冷却後、メンブレンフィルターによってろ過し、酢酸エチルによって固体を洗浄した。その後、真空乾燥し薄いピンク色の粉末固体を得た。
 式(R2)中の中間生成物2(白色の粉末固体)の収量3.96g、収率92.5%であった。
Figure JPOXMLDOC01-appb-C000051
 式(R3)中、BuOKは(CHCOKを示し、THFはテトラヒドロフランを示す。
 式(R3)中の生成物3「IPr」の合成手順について説明する。
 不活性ガス雰囲気下において、25mLシュレンクに1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド0.43g(1.01mmol)、BuOK0.14g(1.21mmol)、脱水THF5mLを加えて、室温にて3.5時間撹拌した。白色の溶液から茶色の溶液へ変化した。反応終了後に溶媒除去を行い、脱水トルエン5mLを加え、50℃にて加熱撹拌することで固体を溶解させた。その後、脱水ヘキサンを5mL加えた。溶液中の塩(KCl)を取り除くために、グローブボックス内でセライトろ過を行った。茶色の透明な溶液を得た。溶媒除去を行い、真空乾燥し、茶色の粉末固体を得た。
 式(R3)中の生成物3「IPr」(茶色の粉末固体)の収量0.30g、収率78.0%であった。
 H NMRを用いて同定を行いIPr及び中間生成物(式(R1)中の中間生成物1、式(R2)中の中間生成物2)が合成できていることを確認した。
 反応式(R1)~(R3)に示したNHC構造を有する配位子のそれぞれについて得られたH NMR スペクトルを図1に示す。図1(A)は式(R1)中の中間生成物1のH NMR スペクトルを示す。重溶媒(deuterated solvent)としてCDClを使用した。図1(B)は式(R2)中の中間生成物2のH NMR スペクトルを示す。重溶媒としてCDCNを使用した。図1(C)は式(R3)中、生成物3で示されるIPrのH NMR スペクトルを示す。重溶媒としてCを使用した。
 中間生成物1の測定結果を以下に示す。
 1H NMR (CDCl3, 400 MHz): δ8.10 (s, 2H), 7.20-7.13 (m, 6H), 2.94 (m, 4H), 1.21 (d, 24H, J = 6.8 Hz)
 中間生成物2の測定結果を以下に示す。
 1H NMR (CD3CN, 400 MHz): δ9.35 (s, 1H), 7.87 (s, 2H), 7.65 (t, 2H, J = 7.5 Hz), 7.47 (d, 4H, J = 7.7 Hz), 2.41 (m, 4H), 1.26 (d, 12H, J = 6.8 Hz), 1.20 (d, 12H, J = 6.8 Hz)
 生成物3「IPr」の測定結果を以下に示す。
 1H NMR (C6D6, 400 MHz): δ7.31-7.27 (m, 2H), 7.19-7.17 (m, 4H), 6.61 (s, 2H), 2.96 (m, 4H), 1.29 (d, 12H, J = 6.8 Hz), 1.18 (d, 12H, J = 7.0 Hz)
 [比較例1 第1工程-2]IPrのNHC構造における4位炭素にトリメチルシリル基を結合させた配位子の合成
 先に述べた[第1工程-1]で得られた配位子IPrを用いて、式(3)で示される実施例1の有機金属錯体に使用されるNHC構造を有する配位子{下記式(7)で示される配位子}の合成を行った。
Figure JPOXMLDOC01-appb-C000052
 具体的には、学術論文(Wang,Y., Xie, Yaming., Abraham, M. Y., Wei, P., Schaeferlll, H. F., Schleyer, P. R., Robinson, G. H. J. Am. Chem. Soc. 2010, 132, 14370)に記載の手法を改良し、下記反応式(R4)で示される2つのステップを経て、IPr(反応物3)のNHC構造における4位炭素にトリメチルシリル基(-SiMe、以下必要に応じて「TMS基」という)を結合させた式(7)で示される配位子5{以下、必要に応じて「TMSIPr」5という}の合成を行った。
Figure JPOXMLDOC01-appb-C000053
 式(R4)中、BuLiはCHCHCHCHLiを示し、THFはテトラヒドロフランを示す。
 式(R4)中の中間生成物4(Li-IPr)の合成手順を説明する。
 先ずグローブボックス内にて300mLナスフラスコにIPr(反応物3)10.79g(27.62mmol)と脱水ヘキサン100mLを加え、得られた液を室温で30分撹拌した。次に、得られた懸濁液に、BuLiをゆっくり滴下し、室温下において、1晩撹拌を続け反応させた。薄い茶色のスラリー状の溶液から黄色のスラリー状の溶液へ変化した。反応終了後、メンブレンフィルターにてろ過し、脱水ヘキサンで洗浄した。得られた黄色の粉末固体{式(R4)中の中間生成物4(リチオ化物:Li-IPr)}を乾燥させた。
 式(R4)中の中間生成物4(黄色の粉末固体)の収量 10.0g、収率 92.0%であった。
 次に、式(R4)中の生成物5(TMSIPr)の合成手順について説明する。
 先ず、グローブボックス内にて50mLシュレンクに中間生成物4(Li-IPr)0.78g(1.98mmol)と脱水THF25mLを加え溶解させた。次に、クロロトリメチルシラン(ClSiMe、以下、必要に応じて「ClTMS」という)0.26mL(2.04mmol)をゆっくり滴下し、25分反応させ、反応終了後、溶媒除去を行った。
 グローブボックス内にて、固体生成物に脱水トルエンを10mL加えて溶解させ、得られた液を遠沈管に移した。遠沈管内の液に4000rpm、6分、室温の条件で遠心分離処理を行い、塩(LiCl)を分離した。次に、得られたろ液をフィルター(advantec社製、0.2μm)に通して50mLシュレンクに分離した。次に溶媒除去を行い、黄色の粉末固体(TMSIPr、すなわち、目的の配位子5)を得た。
 式(R4)中の生成物5「TMSIPr」(黄色の粉末固体)の収量0.901g、収率98.9%であった。
 H NMRを用いて同定を行い、IPr(反応物3)のNHC構造における4位炭素に結合した水素原子のリチオ化が進行し、TMSIPr(目的の配位子5)が合成できていることを確認した。
 図2にNHC構造を有する配位子IPr(反応物3)及びTMSIPr(目的の配位子5)につい得られたH NMRのスペクトルを示す。図2(A)はIPr(反応物3)のH NMR スペクトルを示す。重溶媒(deuterated solvent)としてCを使用した。図2(B)はTMSIPr(目的の配位子5)のH NMR スペクトルを示す。重溶媒としてCを使用した。
 生成物5「TMSIPr」(目的の配位子5)の測定結果を以下に示す。
 1H NMR (C6D6, 400 MHz): δ=7.33-7.27 (m, 2H), 7.21-7.17 (m, 4H), 6.89 (s, 2H), 3.04 (m, 2H), 2.84 (m, 2H), 1.40 (d, 6H, J = 6.8 Hz), 1.28 (d, 12H, J =6.8 Hz, 6.9 Hz), 1.18 (d, 6H, J = 6.9 Hz), 0.05 ppm (s, 9H)。
 図2(A)及び図2(B)に示したH NMR の結果より、IPr(反応物3)のNHC構造における4位炭素にTMS基が結合したことによりPr基の-CH由来のプロトンピークが左右非対称となり2つに分裂していることが確認された。
 また、原料の消費が確認され、0ppm付近にTMS基のメチル基由来のピークが観測された。化学シフトや積分値が文献と一致したことからTMSIPr(目的の配位子5)が合成できたことを確認した。また、BuLiによるIPr(反応物3)のリチオ化が十分に進行していることが確認された。
 [比較例1 第2工程] 配位中心MとハロゲンXと置換基Rとを含む錯体の合成
 非特許文献9を参考に、下記式(R5)で示される反応によりPdソースであるπアリルPd錯体13{(アリル)パラジウム(II)クロリド、以下、必要に応じて「[(allyl)PdCl」という}の合成を行った。
Figure JPOXMLDOC01-appb-C000054
 式(R5)中のπアリルPd錯体13{[(allyl)PdCl}の合成手順を説明する。
 500mLシュレンクに蒸留水(260mL)を加え、Arで30分バブリングした。次に、PdCl(2.14g,12.0mmol)とKCl(1.89g,24.0mmol)を加え、1時間、室温で撹拌した。撹拌の前後で液がスラリー状から茶色の透明な液に変化した。この液に塩化アリル(2.96mL,36.0mmol)を滴下し、一晩、室温で更に撹拌し式(R5)の反応を進行させた。反応終了後にクロロホルム(30mL)で5回抽出を行い、取り出したクロロホルムをMgSOで乾燥させた。次に、得られた液について、ろ過、溶媒除去を行い、黄色の固体{πアリルPd錯体13}を得た。
 πアリルPd錯体13(黄色の粉末固体)の収量2.09g、収率94.9%であった。
 H NMRを用いて同定を行い、化学シフトや積分値が非特許文献9に記載の値と一致したことから、目的化合物であるπアリルPd錯体13{[(allyl)PdCl}が合成できたと判断した。
 πアリルPd錯体13の測定結果{[(allyl)PdCl}を以下に示す。
 1H NMR (CDCl3, 400 MHz): δ=5.45 (m, 2H), 4.10 (d, 4H, J = 6.7 Hz), 3.03 (d, 4H, J = 12.1 Hz)
 [比較例1 第3工程] 第1工程で得られたNHC構造を有する配位子と、第2工程で得られた錯体との反応>
 第1工程で得られたNHC構造を有する配位子(TMSIPr)と第2工程で得られたπアリルPd錯体13{[(allyl)PdCl}とを用いて下記反応式(R6)で示す反応を行い実施例1の有機金属錯体触媒「TMSIPrPd(allyl)15」を合成した。
 この第3工程は本発明者らが独自に反応条件を検討したものである。
Figure JPOXMLDOC01-appb-C000055
 グローブボックス内にて、50mLシュレンクに第1工程で得られたNHC構造を有する配位子(TMSIPr)0.90g(1.95mmol)と、脱水THF15mLとを加えた。次に、20mLバイアルに第2工程で得られたπアリルPd錯体{[(allyl)PdCl}0.36g(0.98mmol)}と脱水THF10mLを加えた。πアリルPd錯体13の溶液をTMSIPr5の溶液へ滴下した。得られた液を室温にて1時間撹拌した。液の色が撹拌の前後でオレンジ色から茶色に変化した。次に、液を活性炭の粉末に通し、反応によって生じたPdブラックを取り除いた。このとき、液の色は活性炭を通した後に黄色へと変化した。次に、得られた液からTHFを完全に除去した。次に、脱水ヘキサンを少量加え、パウダー化させた。生じた固体をヘキサンで洗浄し、黄色の固体{式(R6)中の生成物15、すなわち、TMSIPrPd(allyl)}を得た。
 [比較例1 第4工程]第3工程の後に得られる有機金属錯体触媒の精製
 第3工程の後、黄色の固体{TMSIPrPd(allyl)15}についてヘキサン等を使用した再結晶化処理により精製を行った。
 なお、このTMSIPrPd(allyl)15はクロスカップリング反応に使用される有機金属錯体触媒として本発明者らが初めて合成したものである。
 TMSIPrPd(allyl)15(黄色の粉末固体)の収量0.84g、収率66.8 %であった。
 [比較例1 同定]
 TMSIPrPd(allyl)15の同定は、H NMR、13C{H}NMR、29Si{H}NMR、MALDI-TOF-MS、元素分析によって確認した。
 TMSIPrPd(allyl)15の測定結果を以下に示す。
 図3に実施例1の有機金属錯体触媒{TMSIPrPd(allyl)15}について得られたH NMRのスペクトルを示す。図4に実施例1の有機金属錯体触媒{TMSIPrPd(allyl)15}について得られたMALDI-TOF-MSのスペクトルを示す。表1に元素分析結果を示す。
 1H NMR (CDCl3, 400MHz): δ7.37-7.44 (m, 2H), 7.23-7.28 (m, 4H), 7.18 (s, 1H), 4.80 (m, 1H), 3.93 (d, 1H, J = 7.2 Hz), 3.12 (m, 2H), 2.97 (m, 2H), 2.82 (d, 1H, J = 13.5 Hz), 2.75 (m, 1H), 1.59 (d, 1H, J = 11.8 Hz), 1.36 (m, 12H), 1.19 (m, 12H), 0.09 (s, 9H)
 13C{1H} NMR (CDCl3, 100MHz): δ188.2, 146.5, 146.2, 145.9, 145.6, 137.6, 136.1, 135.8, 133.4, 130.0, 129.8, 129.7, 124.2, 124.1, 123.7, 114.2, 73.2, 50.0, 28.8, 28.4, 28.2, 26.5, 25.7, 25.6, 25.3, 24.7, 26.1, 23.3, 0.1
 29Si{1H} NMR (CDCl3, 80 MHz):δ-8.12
Figure JPOXMLDOC01-appb-T000056
 H NMR の結果から、TMSIPrPd(allyl)15はアリル基由来のピークが観測され、積分値が目的の構造と一致した。また、29Si{H}NMRからはきれいな1本のシグナルが観測された。なお、H NMR、13C{H}NMRの詳しい帰属は、H-H相関、H-13C相関、13C DEPTスペクトルから決定した。
 表1に示すように、元素分析に係る計算値と実測値がほぼ一致(0.3%以内の差)であることから、目的化合物であるTMSIPrPd(allyl)15が合成できたと判断した。
 また、図4に示したMALDI-TOF-MSの結果から、レーザーによってPdからClが外れたものが観測された。MALDI-TOF-MSの結果はNHC構造を有する配位子とPdとが結合していることを示唆しており、この観点からも目的のTMSIPrPd(allyl)15が合成できたと判断した。
 (実施例1)
 式(4)で示した有機金属錯体触媒{商品名「NTEOS-PDA」、N.E.CHEMCAT社製(以下、必要に応じて「TEOSIPrPd(allyl)」と表記)}を用意した。
 比較例2の有機金属錯体触媒{TEOSIPrPd(allyl)}は以下の手順で合成した。
 [実施例1 第1工程-1]NHC構造を有する配位子「IPr」の合成
 実施例1の[実施例1 第1工程-1]に記載した手順、同定手法と同一の手順、同定手法でIPrを合成した。
 [実施例1 第1工程-2]IPrのNHC構造における4位炭素にトリエトキシシリル基を結合させた配位子の合成
 先に述べた[第1工程-1]で得られた配位子IPrを用いて、式(4)で示される実施例1に使用されるNHC構造を有する配位子{下記式(8)で示される配位子}の合成を行った。
Figure JPOXMLDOC01-appb-C000057
 具体的には、下記反応式(R7)で示される2つのステップを経て、IPr(反応物3)のNHC構造における4位炭素にトリエトキシシリル基(-Si(OEt)、以下必要に応じて「TEOS基」という)を結合させた式(8)で示される配位子6{式(4)及び式(6)で示される有機金属錯体を構成するNHC構造を有する配位子、以下、必要に応じて「TEOSIPr」という}の合成を行った。
Figure JPOXMLDOC01-appb-C000058
 式(R7)中、BuLiはCHCHCHCHLiを示し、THFはテトラヒドロフランを示す。
 式(R7)中の中間生成物4(Li-IPr)の合成手順を説明する。式(R7)中の中間生成物4(Li-IPr)は、実施例1の[実施例1 第1工程-2]において説明した式(R4)中の中間生成物4(Li-IPr)の合成手順と同一の手順で合成した。
 次に、式(R7)中の生成物6(TEOSIPr)の合成手順について説明する。
 先ず、グローブボックス内にて100mLナスフラスコに中間生成物4(Li-IPr)3.28g(8.32mmol)と脱水THF65mLを加え溶解させた。次に、クロロトリエトキシシラン(ClSi(OEt)、以下、必要に応じて「ClTEOS」という)1.68mL(8.57mmol)をゆっくり滴下し、20分反応させた。黄色い溶液から茶色の溶液へと変化した。反応終了後、溶媒除去を行った。
 グローブボックス内にて、得られた粘り気のある生成物に脱水ヘキサンを20mL加えて、遠沈管に移した。4000rpm、6分、室温の条件で遠心分離を行い、塩(LiCl)を分離した。次に、得られたろ液をフィルター(advantec社製、0.2μm)に通して50mLシュレンクに分離した。次に溶媒除去を行い、茶色のオイル状の液体(TEOSIPr、すなわち、目的の配位子6)を得た。
 式(R7)中の生成物5「TEOSIPr」(茶色のオイル状の液体)の収量4.44g、収率96.9%であった。
 H NMR、13C{H}NMR、及び、29Si{H}NMRを用いて同定を行い、IPr(反応物3)のNHC構造における4位炭素に結合した水素原子のリチオ化が進行し、TEOSIPr(目的の配位子6)が合成できていることを確認した。
 図5にNHC構造を有する配位子IPr(反応物3)及びTEOSIPr(目的の配位子6)につい得られたH NMRのスペクトルを示す。図5(A)はIPr(反応物3)のH NMR スペクトルを示す。重溶媒(deuterated solvent)としてCを使用した。図5(B)はTEOSIPr(目的の配位子6)のH NMR スペクトルを示す。重溶媒としてCを使用した。
 TEOSIPrの測定結果を以下に示す。
 1H NMR (C6D6, 400MHz): δ7.32-7.28 (m, 2H), 7.26 (s, 1H), 7.23-7.18 (m, 4H), 3.57 (q, 4H), 3.03 (m, 2H), 2.95 (m, 2H), 1.38 (t, 12H), 1.29 (d, 6H), 1.18 (d, 6H), 1.03 (t, 9H, J = 7.0 Hz)
 13C{1H} NMR (C6D6, 100MHz): δ164.9, 146.3, 140.1, 139.1, 138.8, 134.4, 133.0, 129.0, 128.6, 126.0, 124.3, 123.8, 123.3, 58.8, 29.1, 28.8, 25.7, 24.5, 23.9, 22.7, 18.1
 29Si{1H} NMR (C6D6, 80 MHz): δ-65.4
 図5(A)及び図5(B)に示したH NMR の結果より、IPr(反応物3)のNHC構造における4位炭素にTMS基が結合した場合と同様に、IPr(反応物3)のNHC構造における4位炭素にTEOS基が結合したことによって、Pr基の-CH由来のプロトンピークが左右非対称となったため2つに分裂していることが確認された。
 また、原料の消費が確認され、1.1ppmと3.6ppm付近にTEOS基のエトキシ基(-OEt基)由来のピークが観測された。このことから、TEOSIPr(目的の配位子6)が合成できたと考えられる。更に、IPr(反応物3)のNHC構造における4位炭素にシリル基を導入することで、5位炭素のプロトンが低磁場シフトしている事が確認された。
 なお、IPr(反応物3)、IPr(反応物3)のNHC構造における4位炭素に結合した水素原子がLiで置換された中間生成物4、及び、TEOSIPr(目的の配位子6)のそれぞれの収率を式(R7)中に示した。
 [実施例1 第2工程] 配位中心MとハロゲンXと置換基Rとを含む錯体の合成
 実施例1における[実施例1 第2工程]に記載した手順、同定手法と同一の手順、同定手法により、式(R5)で示した反応を行いπアリルPd錯体13{[(allyl)PdCl}の合成を行った。
 [実施例1 第3工程] 第1工程で得られたNHC構造を有する配位子と、第2工程で得られた錯体との反応>
 第1工程で得られたNHC構造を有する配位子(TEOSIPr)と第2工程で得られたπアリルPd錯体{[(allyl)PdCl}とを用いて下記反応式(R6)で示す反応を行い実施例1の有機金属錯体触媒「TEOSIPrPd(allyl)16」を合成した。
 この第3工程は本発明者らが独自に反応条件を検討したものである。
Figure JPOXMLDOC01-appb-C000059
 グローブボックス内にて、50mLシュレンクに第1工程で得られたNHC構造を有する配位子(TEOSIPr)4.44g(8.06mmol)と脱水THF15mLを加えた。次に、50mLバイアルに第2工程で得られたπアリルPd錯体13{[(allyl)PdCl}1.47g(4.02mmol)と脱水THF20mLを加えた。πアリルPd錯体13の液をTEOSIPr6の液へ滴下した。得られた液を室温にて1.5時間撹拌した。撹拌の前後で液の色が茶色から黒色に変化した。次に、液を活性炭の粉末に通し、反応によって生じたPdブラックを取り除いた。液の色は活性炭を通した後に黄色へと変化した。次に、得られた液からTHFを完全に除去した。次に、脱水ヘキサンを少量加え、パウダー化させた。生じた固体をヘキサンで洗浄し、白色の固体{式(R8)中の生成物16、すなわち、TEOSIPrPd(allyl)を得た。
 [実施例1 第4工程]第3工程の後にえられる有機金属錯体触媒の精製
 第3工程の後、白色の固体{TEOSIPrPd(allyl)16}についてヘキサン等を使用した再結晶化処理により精製を行った。
 なお、このTEOSIPrPd(allyl)16はクロスカップリング反応に使用される有機金属錯体触媒として本発明者らが初めて合成したものである。
 TEOSIPrPd(allyl)16(白色の粉末固体)の収量2.53g、収率42.8%であった。
 [実施例1 同定]
 TEOSIPrPd(allyl)16の同定は、H NMR、13C{H}NMR、29Si{H}NMR、MALDI-TOF-MS、元素分析によって確認した。
 TEOSIPrPd(allyl)16の測定結果を以下に示す。
 図6に実施例1の有機金属錯体触媒{TEOSIPrPd(allyl)16}について得られたH NMRのスペクトルを示す。図7に実施例1の有機金属錯体触媒{TEOSIPrPd(allyl)16}について得られたMALDI-TOF-MSのスペクトルを示す。表2に元素分析結果を示す。
 1H NMR 1H NMR (CDCl3, 400MHz): δ7.39-7.36 (m, 2H), 7.37 (s, 1H), 7.28-7.20 (m, 4H), 4.76 (m, 1H), 3.92 (d, 1H, J = 7.4 Hz), 3.58 (q, 6H), 3.05 (m, 3H), 2.94 (m, 1H), 2.81 (d, 1H, J = 13.6 Hz), 2.63 (m, 1H), 1.52 (d, 1H, J = 11.8 Hz), 1.42-1.15 (m, 24H), 1.03 (t, 9H, J = 7.0 Hz)
 13C{1H} NMR (CDCl3, 100MHz): δ190.3, 146.8, 146.5, 145.8, 145.5, 137.6, 135.9, 135.3, 129.8, 129.3, 128.1, 124.3, 124.0, 123.7, 114.2, 72.9, 58.8, 50.4, 28.8, 28.7, 28.4, 26.6, 25.8, 25.4, 25.1, 24.8, 23.4, 17.9
 29Si{1H} NMR (CDCl3, 80 MHz): δ-68.6
Figure JPOXMLDOC01-appb-T000060
 H NMR の結果から、TEOSIPrPd(allyl)16はアリル基由来のピークが観測され、積分値が目的の構造と一致した。また、29Si{H}NMRからはきれいな1本のシグナルが観測された。なお、H NMR、13C{H}NMRの詳しい帰属は、H-H相関、H-13C相関、13C DEPTスペクトルから決定した。
 表2に示すように、元素分析に係る計算値と実測値がほぼ一致(0.3%以内の差)であることから、目的化合物であるTEOSIPrPd(allyl)16が合成できたと判断した。
 また、図7に示したMALDI-TOF-MSの結果から、レーザーによってPdからClが外れたものが観測された。MALDI-TOF-MSの結果はNHC構造を有する配位子とPdとが結合していることを示唆しており、この観点からも目的のTEOSIPrPd(allyl)が合成できたと判断した。
 (実施例2)
 式(4)で示した有機金属錯体触媒{商品名「NPNL-PDA」、N.E.CHEMCAT社製}を用意した。
 実施例2の有機金属錯体触媒は以下の手順で合成した。
 [実施例2 第1工程-1]NHC構造を有する配位子「IPr」の合成
 比較例1の[比較例1 第1工程-1]に記載した手順、同定手法と同一の手順、同定手法でIPrを合成した。
 [実施例2 第1工程-2]IPrのNHC構造における4位炭素にシリル基(-SiMePh)基を結合させた配位子の合成
 先に述べた[第1工程-1]で得られた配位子IPrを用いて、式(4)で示される実施例2に使用されるNHC構造を有する配位子{下記式(9)で示される配位子}の合成を行った。
Figure JPOXMLDOC01-appb-C000061
 具体的には、下記反応式(R9)で示される2つのステップを経て、IPr(反応物3)のNHC構造における4位炭素にシリル基(-SiMe2Ph)を結合させた式(9)で示される配位子の合成を行った。
Figure JPOXMLDOC01-appb-C000062
 式(R9)中、BuLiはCHCHCHCHLiを示し、THFはテトラヒドロフランを示す。
 式(R9)中の中間生成物4(Li-IPr)は、比較例1の[比較例1 第1工程-2]において説明した式(R4)中の中間生成物4(Li-IPr)の合成手順と同一の手順で合成した。
 次に、式(R9)中の生成物、すなわち、配位子IPrのNHC構造における4位炭素へのシリル基(-SiMe2Ph)が結合した目的の配位子)の合成手順について説明する。
 先ず、グローブボックス内にて100mLナスフラスコに式(R9)中の中間生成物(Li-IPr)の所定量に脱水THF所定量を加え溶解させた。次に、ClSiMe2Ph所定量をゆっくり滴下し、所定時間反応させた。反応終了後、溶媒除去を行った。
 グローブボックス内にて、(R9)中の生成物に脱水ヘキサンを所定量加えて、遠沈管に移した。4000rpm、所定時間、室温の条件で遠心分離を行い、塩(LiCl)を分離した。次に、得られたろ液をフィルター(advantec社製、0.2μm)に通して50mLシュレンクに分離した。次に溶媒除去を行い、(R9)中の生成物、すなわち、目的の配位子を得た。
 H NMR、13C{H}NMR、及び、29Si{H}NMRを用いて同定を行い、IPr(反応物3)のNHC構造における4位炭素に結合した水素原子のリチオ化が進行し、(R9)中の生成物(目的の配位子)が合成できていることを確認した。
 図8にNHC構造を有する(R9)中の生成物(配位子)につい得られたH NMRのスペクトルを示す。
 (R9)中の生成物、配位子IPrのNHC構造における4位炭素へのシリル基(-SiMe2Ph)が結合した目的の配位子の測定結果を以下に示す。
 1H NMR (THF-d8, 400 MHz): δ 7.44-7.37 (m, 4H), 7.34-7.28 (m, 6H), 7.24-7.22 (m, 2H), 2.89 (sept, J=6.9 Hz, 2H), 1.24 (d, J=7.0 Hz, 6H), 1.21 (d, J=6.9 Hz, 6H), 1.15 (d, J=6.8 Hz, 6H), 1.04 (d, J=6.8 Hz, 6H), -0.21 (s, 6H) ppm
 13C{1H} NMR (THF-d8, 100 MHz) δ 223.0, 146.1, 145.7, 139.6, 138.4, 137.3, 133.7, 132.4, 129.5, 129.0, 128.4, 128.2, 127.6, 123.0, 122.6, 28.6, 28.1, 25.5, 23.7, 23.3, 20.8, -2.7 ppm
 29Si{1H} NMR (THF-d8, 80 MHz): δ -16.4 ppm
 図8に示したH NMR の結果より、配位子IPrのNHC構造における4位炭素へのシリル基(-SiMe2Ph)が結合した目的の配位子が合成できたことが確認できた。
 [実施例2 第2工程] 配位中心MとハロゲンXと置換基Rとを含む錯体の合成
 比較例1における[比較例1 第2工程]に記載した手順、同定手法と同一の手順、同定手法により、式(R5)で示した反応を行いπアリルPd錯体13{[(allyl)PdCl}の合成を行った。
 [実施例2 第3工程] 第1工程で得られたNHC構造を有する配位子と、第2工程で得られた錯体との反応>
 第1工程で得られたNHC構造を有する配位子と第2工程で得られたπアリルPd錯体{[(allyl)PdCl}とを用いて下記反応式(R10)で示す反応を行い実施例2の有機金属錯体触媒を合成した。
 この第3工程は本発明者らが独自に反応条件を検討したものである。
Figure JPOXMLDOC01-appb-C000063
 グローブボックス内にて、50mLシュレンクに第1工程で得られたNHC構造を有する配位子所定量に脱水THF所定量を加えた。次に、50mLバイアルに第2工程で得られたπアリルPd錯体{[(allyl)PdCl}所定量と脱水THF所定量を加えた。πアリルPd錯体の液をNHC構造を有する配位子の液へ滴下した。得られた液を室温にて所定時間撹拌した。
 次に、液を活性炭の粉末に通し、反応によって生じたPdブラックを取り除いた。液の色は活性炭を通した後に黄色へと変化した。次に、得られた液からTHFを完全に除去した。次に、脱水ヘキサンを少量加え、パウダー化させた。生じた固体をヘキサンで洗浄し式(R10)中の生成物を得た。
 [実施例2 第4工程]第3工程の後にえられる有機金属錯体触媒の精製
 第3工程の後、式(R10)中の生成物についてヘキサン等を使用した再結晶化処理により精製を行い、実施例2の有機金属錯体触媒を得た。
 なお、この実施例2の有機金属錯体触媒はクロスカップリング反応に使用される有機金属錯体触媒として本発明者らが初めて合成したものである。
 [実施例2 同定]
 実施例2の有機金属錯体触媒の同定は、H NMR、13C{H}NMR、29Si{H}NMR、MALDI-TOF-MS、元素分析によって確認した。その測定結果を以下に示す。
 図9に実施例2の有機金属錯体触媒について得られたH NMRのスペクトルを示す。
 1H NMR (C6D6, 400 MHz): δ 7.42-7.40 (m, 2H), 7.27-7.23 (m, 1H), 7.19-7.14 (m, 7H), 7.07-7.01 (m, 2H), 4.48-4.38 (m, 1H), 3.85-3.83 (m, 1H), 3.46-3.38 (m, 3H), 3.03-2.97 (m, 2H), 2.76(d, J=13.4 Hz, 1H), 1.63 (d, J=12.0 Hz, 1H), 1.58 (d, J=6.6 Hz, 3H), 1.46 (d, J=6.6 Hz, 3H), 1.41 (d, J=6.7 Hz, 3H), 1.33 (d, J=6.7 Hz, 3H), 1.11 (d, J=6.9 Hz, 3H), 1.04-1.02 (m, 6H), 0.96 (d, J=6.8 Hz, 3H), 0.07 (s, 3H), 0.03 (s, 3H) ppm
 13C{1H} NMR (C6D6, 100 MHz) δ 191.0, 146.9, 146.2, 145.6, 137.6, 137.3, 136.4, 134.9, 133.6, 132.3, 129.7, 129.5, 128.3, 124.3, 124.2, 123.8, 123.5, 113.5, 72.1, 49.7, 28.8, 28.6, 28.2, 28.1, 26.4, 25.7, 25.5, 25.0, 24.6, 24.4, 23.4, 22.6, -1.7, -2.1 ppm
 29Si{1H} NMR (C6D6, 80 MHz): δ -13.7 ppm
 図9に示したH NMR の結果から、式(R10)中の生成物、すなわち、実施例2の有機金属錯体触媒が合成できたと判断した。
 (実施例3)
 有機金属錯体触媒{商品名「NTMS-PDC」、N.E.CHEMCAT社製(以下、必要に応じて「TEOSIPrPd(cinnamyl)」と表記)}を用意した。このTEOSIPrPd(cinnamyl)は、式(6)に示した有機金属錯体触媒である。
 実施例3の有機金属錯体触媒{TEOSIPrPd(cinnamyl)}は以下の手順で合成した。
 [実施例3 第1工程-1]NHC構造を有する配位子「IPr」の合成
 実施例1の[実施例1 第1工程-1]に記載した手順、同定手法と同一の手順、同定手法でIPrを合成した。
 [実施例3 第1工程-2]IPrのNHC構造における4位炭素にトリエトキシシリル基を結合させた配位子の合成
 実施例1の[実施例1 第1工程-2]に記載した手順、同定手法と同一の手順、同定手法で、実施例3に使用されるNHC構造を有する配位子(TEOSIPr)の合成を行った。
 [実施例3 第2工程] 配位中心MとハロゲンXと置換基Rとを含む錯体の合成
 非特許文献9を参考に下記式(R11)で示される反応によりPdソースであるπアリルPd錯体14{(シンナミル)パラジウム(II)クロリド、以下、必要に応じて「[(cinnamyl)PdCl」と表記する}の合成を行った。
Figure JPOXMLDOC01-appb-C000064
 式(R11)中のπアリルPd錯体14の合成手順を説明する。
 500mLシュレンクに蒸留水(200mL)を加え、Arで30分バブリングした。その後、PdCl(4.45 g,25.1 mmol)とKCl(3.74 g,50.2mmol)を加え、1 時間、室温で撹拌した。撹拌の前後で液がスラリー状から茶色の透明な液に変化した。この液にシンナミルクロリド (10.7mL,75.3mmol)を滴下し、一晩、室温で更に撹拌し式(R11)の反応を進行させた。反応終了後にクロロホルム(50mL)で5回抽出を行い、取り出したクロロホルムをMgSOで乾燥させた。次に、得られた液について、ろ過、溶媒除去を行い、黄色の固体{πアリルPd錯体14}を得た。
 πアリルPd錯体14(黄色の粉末固体)の収量3.02g、収率46.5%であった。
 H NMRを用いて同定を行い、化学シフトや積分値が非特許文献9に記載の値と一致したことから、目的化合物であるπアリルPd錯体14が合成できたと判断した。
 πアリルPd錯体14の測定結果を以下に示す。
 1H NMR (CDCl3, 400 MHz): δ=7.49-7.24(m, 10H), 5.77 (d, 2H), 4.61(d, 4H, J = 11.3 Hz), 3.95(d, 4H, J = 6.7 Hz), 3.01(d, 4H, J = 11.8 Hz)
 [実施例3 第3工程] 第1工程で得られたNHC構造を有する配位子と第2工程で得られた錯体との反応>
 第1工程で得られたNHC構造を有する配位子(TEOSIPr)6と第2工程で得られたπアリルPd錯体{式(R5)中の生成物13}とを下記反応式(R12)に示すように反応させ実施例3の有機金属錯体触媒{TEOSIPrPd(cinnamyl)19}を合成した。
この第3工程は本発明者らが独自に反応条件を検討したものである。
Figure JPOXMLDOC01-appb-C000065
 グローブボックス内にて、100mLシュレンクに第1工程で得られたNHC構造を有する配位子(TEOSIPr)2.58g(4.69mmol)と脱水THF 40mLを加えた。次に、50mLバイアルにπアリルPd錯体(先に述べた式(R11)中の生成物14)1.21 g(2.34mmol)と脱水THF30mLを加えた。πアリルPd錯体14の液をTEOSIPr6の液へ滴下した。得られた液を室温にて1時間撹拌した。撹拌の前後で液の色がオレンジ色の溶液から黒色に変化した。次に、液を活性炭の粉末に通し、反応によって生じたPdブラックを取り除いた。液の色は活性炭を通した後に黄色へと変化した。次に、得られた液からTHFを完全に除去した。次に、脱水ヘキサンを少量加え、パウダー化させた。生じた固体をヘキサンで軽く洗浄し、黄色の固体{式(R12)中の生成物19、すなわち、TEOSIPrPd(cinnamyl)19を得た。
 [実施例3 第4工程]第3工程の後に得られる有機金属錯体触媒の精製
 第3工程の後、黄色の固体{TEOSIPrPd(cinnamyl)19}についてヘキサン等を使用した再結晶化処理により精製を行った。
 なお、このTEOSIPrPd(cinnamyl)19はクロスカップリング反応に使用される有機金属錯体触媒として本発明者らが初めて合成したものである。
 TEOSIPrPd(cinnamyl)19(黄色の固体)の収量2.75 g、収率72.5 %であった。
 [実施例3 同定]
 TEOSIPrPd(cinnamyl)19の同定は、H NMR、13C{H}NMR、29Si{H}NMR、MALDI-TOF-MS、元素分析によって確認した。
 TEOSIPrPd(cinnamyl)19の測定結果を以下に示す。
 図10に実施例3の有機金属錯体触媒{TEOSIPrPd(cinnamyl)19}について得られたH NMRのスペクトルを示す。図11に実施例3の有機金属錯体触媒{TEOSIPrPd(cinnamyl)19}について得られたMALDI-TOF-MSのスペクトルを示す。表3に元素分析結果を示す。
 1H NMR (C6D6, 400MHz): δ7.41 (s, 1H), 7.23-7.17 (m, 2H), 7.01-6.96 (m, 4H), 5.11 (m, 1H), 4.43 (d, 1H, J = 12.9 Hz), 3.55 (q, 6H), 3.37 (m, 2H), 3.29 (m, 1H), 3.02 (m, 1H), 2.96 (m, 1H), 1.81 (m, 1H), 1.55-1.33 (m, 18H), 1.07 (d, 6H, J = 6.8 Hz), 0.96 (t, 9H, J = 7.0 Hz)
 13C{1H} NMR (C6D6, 100MHz): δ191.1, 147.2, 146.1, 138.3, 138.2, 136.5, 135.9, 130.1, 129.6, 1236.9, 124.1, 108.7, 91.2, 59.0, 46.6, 29.0, 28.7, 26.3, 25.2, 23.4, 18.0
 29Si{1H} NMR (C6D6, 80 MHz): δ-68.2
Figure JPOXMLDOC01-appb-T000066
 H NMR の結果から、TEOSIPrPd(cinnamyl)19はアリル基由来のピークが観測され、積分値が目的の構造と一致した。また、29Si{H}NMRからはきれいな1本のシグナルが観測された。なお、H NMR、13C{H}NMRの詳しい帰属は、H-H相関、H-13C相関、13C DEPTスペクトルから決定した。
 表3に示すように、元素分析に係る計算値と実測値がほぼ一致(0.3%以内の差)であることから、目的化合物であるTEOSIPrPd(cinnamyl)19が合成できたと判断した。
 また、図11に示したMALDI-TOF-MSの結果から、レーザーによってPdからClが外れたものが観測された。MALDI-TOF-MSの結果はNHC構造を有する配位子とPdとが結合していることを示唆しており、この観点からも目的のTEOSIPrPd(cinnamyl)19が合成できたと判断した。
 (比較例1)
 下記式(10)で示される市販の有機金属錯体触媒{商品名「アリル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]クロロパラジウム(II)」、アルドリッチ社製(以下、必要に応じて「IPrPd(allyl)」と表記)}を用意した。
Figure JPOXMLDOC01-appb-C000067
 <X線結晶構造解析>
 実施例1と比較例1の単結晶を作成することができたため、X線結晶構造解析を行った。
 実施例1及び比較例1の各々をヘキサンに溶解させ、得られる液を室温から-40℃まで冷却することで再結晶を行った。
 図12に比較例1の有機金属錯体触媒について得られたORTEP(Oak Ridge Thermal Ellipsoid Plot)を示す。
 図13に、実施例1の有機金属錯体触媒について得られたORTEPを示す。
 図14に実施例1の有機金属錯体触媒、比較例1の有機金属錯体触媒について得られたORTEPを示す。
 なお、表4は、図12に示した比較例1を構成する各構成原子について得られた結合距離と結合角を示す。また、表5は、図13に示した実施例1を構成する各構成原子について得られた結合距離と結合角を示す。
 更に、実施例1及び比較例1の結晶構造解析データについて、国際結晶連合IUCr(Internastinal Union of Crystallography)が定めたCIFファイルに記載の主な記載事項を表6に示す。
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
 以上の実施例1及び比較例1の結晶構造解析の結果、比較例1の有機金属錯体触媒{TMSIPrPd(allyl) 15}を構成するイミダゾール環の4位炭素にはTMS基が結合しており、実施例1の有機金属錯体触媒{TEOSIPrPd(allyl) 16}を構成するイミダゾール環の4位炭素にはTEOS基が結合していることが確認できた。
 表4、表5に示した結果から、比較例1の有機金属錯体触媒{TMSIPrPd(allyl) 15}と実施例1の有機金属錯体触媒{TEOSIPrPd(allyl) 16}について、それぞれのイミダゾール環のカルベン炭素とPdとの結合距離は2つの錯体に大きな違いは見られなかった。
 ただし、比較例1の有機金属錯体触媒{TMSIPrPd(allyl) 15}におけるC(1)-N(1)-C(1)の結合角θ(図14中の実施例1のORTEPに示した結合角θ1を参照)を、反対側の同じ位置の角度と比べると1°~5°程度小さくなっていることが分かる(表4、図14参照)。
 また、実施例1の有機金属錯体触媒{TEOSIPrPd(allyl) 16}におけるC(1)-N(1)-C(8)の結合角θ(図14中の実施例1のORTEPに示した結合角θ2を参照)を、反対側の同じ位置の角度と比べると1°~5°程度小さくなっていることが分かる。(表5、図14参照)。
 更に、比較例1の有機金属錯体触媒{TMSIPrPd(allyl) 15}と実施例1の有機金属錯体触媒{TEOSIPrPd(allyl) 16}について、それぞれの錯体触媒をイミダゾール環の平面に対して垂直方向から見た場合、実施例1の有機金属錯体触媒{TMSIPrPd(allyl) 15}よりも実施例1の有機金属錯体触媒{TEOSIPrPd(allyl) 16}の方が、TEOS基{(EtO)Si基}が結合している影響(立体障害の影響)で、イミダゾール環を構成する窒素のうちTEOS基に近い側に位置する窒素上の置換基が全体的に大きくねじれていることが分かった(図14、実施例1のORTEPを参照)。
 (実施例1-Rh)
 有機金属錯体触媒{商品名「NTEOS-RHA」、N.E.CHEMCAT社製]を用意した。この比較例1-Rhは先に述べた比較例1の有機金属錯体触媒(商品名「NTEOS-PDA」)の配位中心のPdをRhに置換した構成を有する触媒である。
 [実施例1-Rh 第1工程]
 まず、比較例1と同様の合成手順と分析を行い、先に述べた式(8)で示したNHC構造を有する配位子(TEOSIPr)を合成した。
 [実施例1-Rh 第2工程]
 次に、RhソースであるπアリルPd錯体として、市販のアルドリッチ社製の[Rh(CO)Cl]を用意した。
 [実施例1-Rh 第3工程]
 次に、第1工程で得られた式(8)で示したNHC構造を有する配位子(TEOSIPr)と、第2工程で準備したπアリルRh錯体とを用いて下記反応式(R13)で示す反応を行い比較例1-Rhの有機金属錯体触媒{商品名「NTEOS-RHA」}を合成した。
Figure JPOXMLDOC01-appb-C000071
 [実施例1-Rh 第4工程]
 第3工程の後に得られる有機金属錯体触媒の精製
 第3工程の後、式(R13)の生成物を含む固体についてヘキサン等を使用した再結晶化処理により精製を行った。
 [実施例1-Rh 同定]
 式(R13)の生成物、すなわち、比較例1-Rhの有機金属錯体触媒(商品名「NTEOS-RHA」)の同定は、H NMR、13C{H}NMR、29Si{H}NMR、MALDI-TOF-MS、元素分析によって確認した。
 (実施例2-Rh)
 有機金属錯体触媒{商品名「NPNL-RHA」、N.E.CHEMCAT社製]を用意した。この実施例2-Rhは先に述べた実施例2の有機金属錯体触媒の配位中心のPdをRhに置換した構成を有する触媒である。
 [実施例2-Rh 第1工程]
 まず、実施例1と同様の合成手順と分析を行い、先に述べた式(9)で示したNHC構造を有する配位子を合成した。
 [実施例2-Rh 第2工程]
 次に、RhソースであるπアリルPd錯体として、市販のアルドリッチ社製の[Rh(CO)Cl]を用意した。
 [実施例2-Rh 第3工程]
 次に、第1工程で得られた式(9)で示したNHC構造を有する配位子と、第2工程で準備したπアリルRh錯体とを用いて下記反応式(R14)で示す反応を行い実施例2-Rhの有機金属錯体触媒を合成した。
Figure JPOXMLDOC01-appb-C000072
 [実施例2-Rh 第4工程]
 第3工程の後に得られる有機金属錯体触媒の精製
 第3工程の後、式(R14)の生成物を含む固体についてヘキサン等を使用した再結晶化処理により精製を行った。
 [実施例2-Rh 同定]
 式(R14)の生成物、すなわち、実施例2-Rhの有機金属錯体触媒{商品名「NPNL-RHA」、N.E.CHEMCAT社製]の同定は、H NMR、13C{H}NMR、29Si{H}NMR、MALDI-TOF-MS、元素分析によって確認した。
 (比較例1-Rh)
 有機金属錯体触媒{商品名「NTMS-RHA」、N.E.CHEMCAT社製]を用意した。この実施例1-Rhは先に述べた実施例1の有機金属錯体触媒の配位中心のPdをRhに置換した構成を有する触媒である。
 [比較例1-Rh 第1工程]
 まず、実施例1と同様の合成手順と分析を行い、先に述べた式(7)で示したNHC構造を有する配位子を合成した。
 [比較例1-Rh 第2工程]
 次に、RhソースであるπアリルPd錯体として、市販のアルドリッチ社製の[Rh(CO)Cl]を用意した。
 [比較例1-Rh 第3工程]
 次に、第1工程で得られた式(7)で示したNHC構造を有する配位子と、第2工程で準備したπアリルRh錯体とを用いて下記反応式(R15)で示す反応を行い実施例1-Rhの有機金属錯体触媒を合成した。
Figure JPOXMLDOC01-appb-C000073
 [比較例1-Rh 第4工程]
 第3工程の後に得られる有機金属錯体触媒の精製
 第3工程の後、式(R15)の生成物を含む固体についてヘキサン等を使用した再結晶化処理により精製を行った。
 [比較例1-Rh 同定]
 式(R15)の生成物、すなわち、実施例1-Rhの有機金属錯体触媒{商品名「NTMS-RHA」、N.E.CHEMCAT社製]の同定は、H NMR、13C{H}NMR、29Si{H}NMR、MALDI-TOF-MS、元素分析によって確認した。
 (比較例2-Rh)
 先に述べた式(10)で示される市販の有機金属錯体触媒{商品名「アリル[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]クロロパラジウム(II)」、アルドリッチ社製、「IPrPd(allyl)」)}の配位中心のPdをRhに置換した有機金属錯体触媒(以下、必要に応じて「IPrRh」という)を用意した。この比較例2-Rhは先に述べた比較例2の有機金属錯体触媒の配位中心のPdをRhに置換した構成を有する触媒である。
 [比較例2-Rh 第1工程]
 まず、実施例1の第1工程―1と同様の合成手順と分析を行い、先に述べた式(P5)で示したNHC構造を有する配位子IPrを合成した。
 [比較例2-Rh 第2工程]
 次に、RhソースであるπアリルPd錯体として、市販のアルドリッチ社製の[Rh(CO)Cl]を用意した。
 [比較例2-Rh 第3工程]
 次に、第1工程で得られた式(P5)で示したNHC構造を有する配位子IPrと、第2工程で準備したπアリルRh錯体とを用いて下記反応式(R16)で示す反応を行い比較例2-Rhの有機金属錯体触媒IPrRhを合成した。
Figure JPOXMLDOC01-appb-C000074
 [比較例2-Rh 第4工程]
 第3工程の後に得られる有機金属錯体触媒の精製
 第3工程の後、式(R16)の生成物IPrRhを含む固体についてヘキサン等を使用した再結晶化処理により精製を行った。
 [比較例2-Rh 同定]
 式(R16)の生成物、すなわち、比較例2-Rhの有機金属錯体触媒IPrRhの同定は、H NMR、13C{H}NMR、29Si{H}NMR、MALDI-TOF-MS、元素分析によって確認した。
 <実施例1-Rh、実施例2-Rh、比較例1-Rh、比較例2-RhのIR測定>
 実施例1-Rh、実施例2-Rh、比較例1-Rh、比較例2-Rhの有機金属錯体触媒について赤外吸収スペクトルを測定した。そして、それぞれの赤外吸収スペクトルから得られるカルボニル基の伸縮振動数[cm-1]の相加平均値を用いて、先に述べた下記式(E1)により、配位中心をRhからNiに置換した有機金属錯体触媒のTEP値[cm-1]を求めた。
Figure JPOXMLDOC01-appb-M000075
 それぞれの有機金属錯体触媒について求めたTEP値を表7に示す。
Figure JPOXMLDOC01-appb-T000076
※a 括弧内の数字は比較例1-RhのTEP値とそれぞれの有機金属触媒のTEP値との差を示す。
 表7に示した結果から明らかなように、実施例1-Rh、実施例1-Rhの有機金属錯体触媒のTEP値は、比較例2-RhのTEP値よりも高波数側へシフトすることが確認された。すなわち、実施例1-Rh、実施例1-Rhの有機金属錯体触媒は、比較例2-RhのIPr配位子(式(P5))よりも電子供与性の低いNHC構造を有する配位子を有することがわかった。
 このことから、配位中心をRhからPdに置換した実施例1、実施例2の有機金属錯体触媒についても、比較例1のIPr配位子(式(P5))よりも電子供与性の低いNHC構造を有する配位子を有することがわかった。また、実施例3の有機金属錯体触媒についても、実施例1と同一のNHC構造を有する配位子を有していることから、実施例3の有機金属錯体触媒のTEP値が比較例2-RhのTEP値よりも高波数側へシフトすることが容易に推定できる。
 <クロスカップリング反応による触媒活性評価>
 実施例1、実施例2、比較例1、及び、比較例2の有機金属錯体触媒を使用して、下記反応式(R17)で示されるC-Nクロスカップリング反応(Buchwald-Hartwig reaction)を実施した。
Figure JPOXMLDOC01-appb-C000077
 反応式(R17)に示すように、基質としてクロロベンゼン、N,N-ジブチルアアミン、塩基としてBuOK、溶媒として1,2-ジメトキシエタン(DME)1mLを用いた。仕込みや反応は、グローブボックス内で全て不活性ガス(Ar)雰囲気下にて行った。内標準物質としてドデカン及びメシチレンを使用し、GCによって収率を算出した。
 反応条件は、クロロベンゼン1mmolに対して、N,N-ジブチルアミン 1.7mmol、温度70℃、触媒量 0.1mol%とした。実施例1、実施例2、比較例1、及び、比較例2の有機金属錯体触媒の触媒活性評価を行った結果を表8に示す。
Figure JPOXMLDOC01-appb-T000078
 表8に示した結果から、市販品である比較例2の有機金属錯体触媒に比較し、本発明の構成を満たす実施例1、実施例2の有機金属錯体触媒を用いた場合、C-Nクロスカップリング反応に対し非常に高い収率で目的の生成物が得られることが明らかとなった。
 特に、本発明の構成を満たす実施例1、実施例2の有機金属錯体触媒は、60分以降の十分な反応時間の経過後において比較例2の有機金属錯体触媒よりも高い収率で目的の生成物が得られることが明らかとなった。本発明者らは、実施例1、実施例2の有機金属錯体触媒は比較的嵩高くなり触媒反応中での触媒活性種であるM(ゼロ価)がオリゴマー化して失活する事を防いで、触媒の寿命が向上すると推察している。そのため、本発明者らは、本発明の構成を満たす実施例1、実施例2の有機金属錯体触媒は、60分以降の十分な反応時間の経過後において比較例2の有機金属錯体触媒よりも高い収率で目的の生成物が得られていると推察している。
 一般的に、クロスカップリング反応では、電子を豊富に持つパラジウムがハロゲン化アリールへ電子を与え、C-X結合(Xはハロゲン原子)を切断する酸化的付加から反応が開始される(例えば、「山本明夫 有機金属錯体 裳華房」を参照)。そのため、パラジウムの電子密度が増加することで酸化的付加が促進されていると推測できる。
 しかし、図14に示した反応機構のように、反応式(R17)のようなC-Nカップリング反応においては、嵩高い配位子を用いた場合の律速段階は、アミンの金属への配位もしくは塩基によるプロトンの引き抜きの段階であることが明らかになっている(例えば、学術論文「a) Organ. M. G., Abdel-Hadi, M., Avola, S., Dubovyk, I., Hadei, N., Kantchev, E. A. B., Obrien, C. J., Valente, C. Chem. Eur. J. 2008, 14, 2443  b)Hoi, K. H., Calimsiz, S., Froese, R. D. J., Hopkinson, A. C., Organ, M. G. Chem. Eur. J. 2011, 17, 3086  c) Ikawa, T., Barder, T. E., Biscoe, M. R., Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001」を参照)。
 ここで、図14は、有機Pd錯体触媒を用いたC-Nカップリング反応において明らかにされている反応機構を示す概念図である(上記の学術論文a)~c)を参照)。
 すなわち、C-Nカップリング反応はアミンの金属への配位もしくはアミン上のプロトンの引き抜きの段階が律速段階であり、イミダゾール環の4位炭素にシリル基を導入しかつTEP値を先に述べた条件を満たす構造とすることで、比較的嵩高くなり触媒反応中での触媒活性種であるM(ゼロ価)がオリゴマー化して失活する事を防いで、触媒の寿命が向上することに繋がっていると本発明者らは考えている。
 本発明の触媒は、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることができる。従って、本発明は、目的の生成物(例えば、芳香族アミン類)の合成にクロスカップリングが利用可能な医薬、農薬、電子材料の分野の量産技術の発達に寄与にする。
 本発明の配位子によれば、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることができる有機金属錯体触媒を提供することができる。
 また、本発明によれば、当該配位子を使用したクロスカップリング反応用の有機金属錯体触媒であって、クロスカップリング反応において従来の触媒よりも目的物の高い収率を得ることができる有機金属錯体触媒を確実に製造することのできる製造方法を提供することができる。
 従って、本発明は、目的の生成物(例えば、芳香族アミン類)の合成にクロスカップリングが利用可能な医薬、農薬、電子材料の分野の量産技術の発達に寄与にする。
 15  TMSIPrPd(allyl)
 16  EOSIPrPd(allyl)
 19  TEOSIPrPd(cinnamyl)
 IPr  1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン
 NHC  含窒素ヘテロ環状カルベン(N-Heterocyclic Carbene)
 TEOS  トリエトキシシリル基
 TMS  トリメチルシリル基

 

Claims (9)

  1.  クロスカップリング反応に使用される有機金属錯体触媒であって、
     下記式(1)で表される構造を有している、
    有機金属錯体触媒。
    Figure JPOXMLDOC01-appb-C000001
                                              
     [式(1)中、
     Mは配位中心であり、Pd、Pt、Rh、Ru及びCuからなる群から選択される何れかの金属の原子又はそのイオンを示し、
     R、R及びRは同一であっても異なっていてもよく、それぞれ、水素原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、及びアリール基からなる群から選択される少なくとも1種の置換基であり、
     R、R、R、及びRは同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、ヒドロキシレート基、チオカルボキシ基、ジチオカルボキシ基、スルホ基、スルフィノ基、オキシカルボニル基、カルバモイル基、ヒドラジノカルボニル基、アミジノ基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、ホルミル基、オキソ基、チオホルミル基、チオキソ基、メルカプト基、アミノ基、イミノ基、ヒドラジノ基、アリロキシ基、スルフィド基、ニトロ基、及びシリル基からなる群から選択される少なくとも1種の置換基であり、
     Xは前記配位中心Mに配位可能なハロゲン原子を示しており、
     Rは前記Mに配位可能なπ結合を有する炭素数3~20の置換基を示しており、
     ただし、R、R、R、R、R、R及びRは、これらを含む下記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記配位中心Mに対する電子供与性について、赤外分光法から得られるTEP値(Tolman electronic paramater)[cm-1]が、下記式(2-1)で示される配位子のTEP値[cm-1]と比較して高波数側へシフトするように組合せられて配置されており、
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     式(2)中、R、R、R、R、R、R及びRは、式(1)中のR、R、R、R、R、R及びRと同一の置換基を示し、
     式(2-1)中、R、R、R及びRは、式(1)中のR、R、R及びRと同一の置換基を示す。]
  2.  前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記TEP値は、前記式(1)中の-MRXで示される部分が-Rh(CO)Clに置換された下記式(1-1)で示されるRhカルボニル錯体について測定される赤外吸収スペクトルから得られるカルボニル基の伸縮振動数から求められる、
    請求項1に記載の有機金属錯体触媒。
    Figure JPOXMLDOC01-appb-C000004
  3.  C-Nクロスカップリング反応に使用される、
    請求項1又は2に記載の有機金属錯体触媒。
  4.  下記式(3)、式(4)又は式(5)で表される構造を有している、
    請求項1~3のうちの何れか1項に記載の有機金属錯体触媒。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
     [式(3)~式(5)中、Prはイソプロピル基を示し、式(4)中、Meはメチル基を示し、Phはフェニル基を示し、式(3)及び式(5)中、OEtはエトキシド基を示す。]
  5.  クロスカップリング反応に使用される下記式(1)で表される構造を有する有機金属錯体触媒の構成材料となる配位子であって、
     下記式(2)で表される含窒素ヘテロ環カルベンの構造を有している、配位子。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    [式(1)及び式(2)中、
     Mは配位中心であり、Pd、Pt、Rh、Ru及びCuからなる群から選択される何れかの金属の原子又はそのイオンを示し、
     R、R及びRは同一であっても異なっていてもよく、それぞれ、水素原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、及びアリール基からなる群から選択される少なくとも1種の置換基であり、
     R、R、R、及びRは同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、ヒドロキシレート基、チオカルボキシ基、ジチオカルボキシ基、スルホ基、スルフィノ基、オキシカルボニル基、カルバモイル基、ヒドラジノカルボニル基、アミジノ基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、ホルミル基、オキソ基、チオホルミル基、チオキソ基、メルカプト基、アミノ基、イミノ基、ヒドラジノ基、アリロキシ基、スルフィド基、ニトロ基、及びシリル基からなる群から選択される少なくとも1種の置換基であり、
     Xは前記配位中心Mに配位可能なハロゲン原子を示しており、
     Rは前記Mに配位可能なπ結合を有する炭素数3~20の置換基を示しており、
     ただし、R、R、R、R、R、R及びRは、これらを含む前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記配位中心Mに対する電子供与性について、赤外分光法から得られるTEP値(Tolman electronic paramater)[cm-1]が、下記式(2-1)で示される配位子のTEP値[cm-1]と比較して高波数側へシフトするように組合せられて配置されており、
    Figure JPOXMLDOC01-appb-C000010
     式(2-1)中、R、R、R及びRは、式(1)中のR、R、R及びRと同一の置換基を示す。]
  6.  前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記TEP値は、前記式(1)中の-MRXで示される部分が-Rh(CO)Clに置換された下記式(1-1)で示されるRhカルボニル錯体について測定される赤外吸収スペクトルから得られるカルボニル基の伸縮振動数から求められる値である、
    請求項5に記載の配位子。
    Figure JPOXMLDOC01-appb-C000011
  7.  前記式(1)で表される構造を有する前記有機金属錯体触媒がC-Nクロスカップリング反応に使用される、
    請求項5又は6に記載の配位子。
  8.  前記式(1)で表される構造を有する前記有機金属錯体触媒が下記式(3)、式(4)又は式(5)で表される構造を有している、
    請求項5~7のうちの何れか1項に記載の有機金属錯体触媒。
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
      [式(3)~式(5)中、Prはイソプロピル基を示し、式(4)中、Meはメチル基を示し、Phはフェニル基を示し、式(3)及び式(5)中、OEtはエトキシド基を示す。]
  9.  クロスカップリング反応に使用される下記式(1)で表される構造を有する有機金属錯体触媒の製造方法であって、
     下記式(2)で表される含窒素ヘテロ環カルベンの構造を有する配位子を合成する第1工程と、
     前記式(1)中の配位中心MとハロゲンXと置換基Rとを含む錯体を合成する第2工程と、
     前記第1工程で得られたNHC構造を有する前記配位子と前記第2工程で得られた前記錯体とを反応させる第3工程と、
    を含んでいる、
    有機金属錯体触媒の製造方法。
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    [式(1)及び式(2)中、
     Mは配位中心であり、Pd、Pt、Rh、Ru及びCuからなる群から選択される何れかの金属の原子又はそのイオンを示し、
     R、R及びRは同一であっても異なっていてもよく、それぞれ、水素原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、及びアリール基からなる群から選択される少なくとも1種の置換基であり、
     R、R、R、及びRは同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、ヒドロキシレート基、チオカルボキシ基、ジチオカルボキシ基、スルホ基、スルフィノ基、オキシカルボニル基、カルバモイル基、ヒドラジノカルボニル基、アミジノ基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、ホルミル基、オキソ基、チオホルミル基、チオキソ基、メルカプト基、アミノ基、イミノ基、ヒドラジノ基、アリロキシ基、スルフィド基、ニトロ基、及びシリル基からなる群から選択される少なくとも1種の置換基であり、
     Xは前記配位中心Mに配位可能なハロゲン原子を示しており、
     Rは前記Mに配位可能なπ結合を有する炭素数3~20の置換基を示しており、
     ただし、R、R、R、R、R、R及びRは、これらを含む前記式(2)で示される含窒素ヘテロ環カルベン構造を有する配位子の前記配位中心Mに対する電子供与性について、赤外分光法から得られるTEP値(Tolman electronic paramater)[cm-1]が、下記式(2-1)で示される配位子のTEP値[cm-1]と比較して高波数側へシフトするように組合せられて配置されており、
    Figure JPOXMLDOC01-appb-C000017
     式(2-1)中、R、R、R及びRは、式(1)中のR、R、R及びRと同一の置換基を示す。]
     
     
     

     
PCT/JP2017/043889 2016-12-07 2017-12-06 有機金属錯体触媒 WO2018105671A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018555049A JP7048945B2 (ja) 2016-12-07 2017-12-06 有機金属錯体触媒
EP17878231.4A EP3552699B1 (en) 2016-12-07 2017-12-06 Organometallic complex catalyst
US16/466,436 US11161103B2 (en) 2016-12-07 2017-12-06 Organometallic complex catalyst
CN201780075767.2A CN110062655B (zh) 2016-12-07 2017-12-06 有机金属络合物催化剂
US17/487,333 US20220008905A1 (en) 2016-12-07 2021-09-28 Organometallic complex catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-237942 2016-12-07
JP2016237941 2016-12-07
JP2016237942 2016-12-07
JP2016-237941 2016-12-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/466,436 A-371-Of-International US11161103B2 (en) 2016-12-07 2017-12-06 Organometallic complex catalyst
US17/487,333 Division US20220008905A1 (en) 2016-12-07 2021-09-28 Organometallic complex catalyst

Publications (1)

Publication Number Publication Date
WO2018105671A1 true WO2018105671A1 (ja) 2018-06-14

Family

ID=62491057

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/043890 WO2018105672A1 (ja) 2016-12-07 2017-12-06 有機金属錯体触媒
PCT/JP2017/043889 WO2018105671A1 (ja) 2016-12-07 2017-12-06 有機金属錯体触媒

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043890 WO2018105672A1 (ja) 2016-12-07 2017-12-06 有機金属錯体触媒

Country Status (5)

Country Link
US (4) US11167278B2 (ja)
EP (2) EP3552699B1 (ja)
JP (3) JP7048945B2 (ja)
CN (2) CN110062655B (ja)
WO (2) WO2018105672A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045476A1 (ja) 2018-08-31 2020-03-05 エヌ・イー ケムキャット株式会社 クロスカップリング反応用触媒
WO2023048084A1 (ja) * 2021-09-22 2023-03-30 エヌ・イー ケムキャット株式会社 オレフィンメタセシス反応用有機金属錯体触媒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804074A (zh) * 2019-11-14 2020-02-18 西安凯立新材料股份有限公司 一种烯丙基氯化钯二聚体的制备方法
CA3164263A1 (en) * 2020-01-08 2021-07-15 Michal SZOSTAK Complexes of n-heterocyclic carbenes for transition metal catalysis
WO2022187205A1 (en) * 2021-03-01 2022-09-09 Rutgers, The State University Of New Jersey Unsymmetrical n-heterocyclic carbene catalysts and methods using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017047A1 (de) * 2005-08-09 2007-02-15 Merck Patent Gmbh Immobilisierbare n-heterozyklische carben-metall-komplexe mit alkoxysilylgruppen
WO2007017041A1 (de) * 2005-08-09 2007-02-15 Merck Patent Gmbh Immobilisierbare imidazoliumsalze mit alkoxysilylgruppen in 4-position

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005525B2 (en) * 2002-12-17 2006-02-28 Brookhaven Science Associates, Llc Recyclable catalysts methods of making and using the same
DE102009049587A1 (de) * 2009-10-16 2011-04-21 Merck Patent Gmbh Metallkomplexe
GB201009656D0 (en) * 2010-06-09 2010-07-21 Univ St Andrews Carboxylation catalysts
CN102206226B (zh) * 2011-04-14 2013-10-23 天津师范大学 三甲基苯连接的氮杂环卡宾金属配合物及其制备方法
US9616418B2 (en) * 2013-03-14 2017-04-11 National Institute Of Advanced Industrial Science And Technology Metal complex and supported metal complex having disiloxane as ligand, method for production therefor, and supported metal catalyst prepared by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017047A1 (de) * 2005-08-09 2007-02-15 Merck Patent Gmbh Immobilisierbare n-heterozyklische carben-metall-komplexe mit alkoxysilylgruppen
WO2007017041A1 (de) * 2005-08-09 2007-02-15 Merck Patent Gmbh Immobilisierbare imidazoliumsalze mit alkoxysilylgruppen in 4-position

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
DUBININA, G. G. ET AL.: "Active trifluoromethylating agents from well-defined copper(I)-CF3 complexes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 27, 9 July 2008 (2008-07-09), pages 8600 - 8601, XP055091562, ISSN: 0002-7863 *
GURAM, A. S.RENNELS, R. A.BUCHWALD, S. L., ANGEW. CHEM., INT. ED. ENGL., vol. 34, 1995, pages 1348
HOI, K. H.CALIMSIZ, S.FROESE, R. D. J.HOPKINSON, A. C.ORGAN, M. G., CHEM. EUR. J., vol. 17, 2011, pages 3086
IKAWA, T.BARDER, T. E.BISCOE, M. R.BUCHWALD, S. L., J. AM. CHEM. SOC., vol. 129, 2007, pages 13001
KOSUGI, M.KAMEYAMA, M.MIGITA. T., CHEM. LETT., vol. 927, 1983
LOUIE, J.ARDUENGO, A., J. AM. CHEM. SOC., vol. 113, 1991, pages 361
LOUIE, J.HARTWIG, J. F., TETRAHEDRON LETT., vol. 36, no. 21, 1995, pages 3609
MARION, M.NAVARRO, 0.STEVENS , J. M, E.SCOTT, N. M.NOLAN, S. P., J. AM. CHEM. SOC., vol. 128, 2006, pages 4101
MENDOZA-ESPINOSA, D. ET AL.: "Synthesis of 4- and 4,5-functionalized imidazol-2-ylidenes from a single 4,5-unsubstituted imidazol-2-ylidene", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 21, 2 June 2010 (2010-06-02), pages 7264 - 7265, XP055491705, ISSN: 0002-7863 *
OBRIEN, C. J.KANTCHEV, E. A. B.VALENTE, C.HADEI, N.CHASS, G. A.LOUGH, A.HOPKINSON, A. C.ORGAN, M. G., CHEM. EUR. J., vol. 12, 2006, pages 5142
ORGAN, M. G.: "the 230th National Meeting", 2005, THE AMERICAN CHEMICAL SOCIETY, article "Rational catalyst design and its application in sp3-sp3 couplings"
ORGAN. M. G.ABDEL-HADI, M.AVOLA, S.DUBOVYK, I.HADEI, N.KANTCHEV, E. A. B.OBRIEN, C. J.VALENTE, C., CHEM. EUR. J., vol. 14, 2008, pages 2443
POMPEO, M.FROESE, R. D. J.HADEI, N.ORGAN, M. G., ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 11354
RAY, L.SHAIKH, M. M.GHOSH, P., DALTON TRANS., vol. 4546, 2007
SOLOVYEV, A. ET AL.: "Ring lithiation and functionalization of imidazol-2-ylidene-boranes", ORGANIC LETTERS, vol. 13, no. 22, 18 November 2011 (2011-11-18), pages 6042 - 6045, XP055491711, ISSN: 1523-7052 *
T. DRöGEF. GLORIUS, ANGEW. CHEM. INT. ED., vol. 49, 2010, pages 6940
TANG, P.WANG, W.RITTER, T., J. AM. CHEM. SOC., vol. 133, 2011, pages 11482
WANG, Y.XIE, YAMING.ABRAHAM, M. Y.WEI, P.SCHAEFERLLL, H. F.SCHLEYER, P. R.ROBINSON, G. H., J. AM. CHEM. SOC., vol. 132, 2010, pages 14370
WANQ Y. Z. ET AL.: "A viable anionic N-heterocyclic dicarbene", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 41, 20 October 2010 (2010-10-20), pages 14370 - 14372, XP055491707, ISSN: 0002-7863 *
YU , D. H. ET AL.: "Mechanism of trifluoromethylation reactions with well-defined NHC copper trifluoromethyl complexes and iodobenzene: A computational exploration", CHINESE CHEMICAL LETTERS, vol. 26, no. 5, 31 May 2015 (2015-05-31), pages 564 - 566, XP029168153, ISSN: 1001-8417 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045476A1 (ja) 2018-08-31 2020-03-05 エヌ・イー ケムキャット株式会社 クロスカップリング反応用触媒
KR20210045483A (ko) 2018-08-31 2021-04-26 엔.이. 켐캣 가부시키가이샤 크로스 커플링 반응용 촉매
JPWO2020045476A1 (ja) * 2018-08-31 2021-09-02 エヌ・イーケムキャット株式会社 クロスカップリング反応用触媒
JP7032769B2 (ja) 2018-08-31 2022-03-09 エヌ・イーケムキャット株式会社 クロスカップリング反応用触媒
WO2023048084A1 (ja) * 2021-09-22 2023-03-30 エヌ・イー ケムキャット株式会社 オレフィンメタセシス反応用有機金属錯体触媒

Also Published As

Publication number Publication date
EP3552699A4 (en) 2020-08-12
CN110062655B (zh) 2022-08-16
JP7231170B2 (ja) 2023-03-01
CN110062655A (zh) 2019-07-26
CN110049815A (zh) 2019-07-23
JPWO2018105672A1 (ja) 2019-10-24
CN110049815B (zh) 2022-04-12
EP3552699A1 (en) 2019-10-16
EP3552699B1 (en) 2021-05-19
US11161103B2 (en) 2021-11-02
JP7066125B2 (ja) 2022-05-13
EP3552700A1 (en) 2019-10-16
JPWO2018105671A1 (ja) 2019-10-24
US20200188897A1 (en) 2020-06-18
EP3552700A4 (en) 2020-08-12
JP2022078118A (ja) 2022-05-24
WO2018105672A1 (ja) 2018-06-14
US20190308182A1 (en) 2019-10-10
US11167278B2 (en) 2021-11-09
US20220032278A1 (en) 2022-02-03
JP7048945B2 (ja) 2022-04-06
EP3552700B1 (en) 2021-04-28
US20220008905A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP7231170B2 (ja) 有機金属錯体触媒
Noshiranzadeh et al. Green click synthesis of β-hydroxy-1, 2, 3-triazoles in water in the presence of a Cu (II)–azide catalyst: a new function for Cu (II)–azide complexes
Ervithayasuporn et al. Homogeneous and heterogeneous catalysts of organopalladium functionalized-polyhedral oligomeric silsesquioxanes for Suzuki–Miyaura reaction
Kobelt et al. Synthesis and structural characterisation of neutral pentacoordinate silicon (IV) complexes with a tridentate dianionic N, N, S chelate ligand
Singh et al. Derivatization of 3-aminopropylsilatrane to introduce azomethine linkage in the axial chain: Synthesis, characterization and structural studies
CN111995554B (zh) 无金属化学氧化法制备不对称有机硒醚类化合物的方法
Zakrzewska et al. Zinc complexes bearing BIAN ligands as efficient catalysts for the formation of cyclic carbonates from CO 2 and epoxides
Nguyen et al. Synthesis and X-ray structure of a Cu (II) complex of N, N′-bis (2-pyridylmethylidene)-(R, R)-1, 2-diaminocyclohexane and its catalytic application for asymmetric Henry reaction
KR101839877B1 (ko) 신규한 유기촉매 및 이를 이용한 알킬렌 카보네이트의 제조방법
KR102514498B1 (ko) 크로스 커플링 반응용 촉매
JP7209016B2 (ja) イオン性金属アルキリデン化合物及びオレフィンメタセシス反応におけるその使用
Cao et al. Palladium complexes with picolyl functionalized N-heterocyclic carbene ligands and their application in the Mizoroki–Heck reaction
WO2023048084A1 (ja) オレフィンメタセシス反応用有機金属錯体触媒
Wang et al. Synthesis of a phosphapyracene via metal-mediated cyclization: structural and reactivity effects of acenaphthene precursors
Ferreira et al. Synthesis and Structural Characterization of ZnII α‐Diimine Complexes with Chloride and Thiocyanate Co‐Ligands
US20050288505A1 (en) Metal complexes for catalytic carbon-carbon bond formation
de León et al. Reactivity of [PdCl (μ-med)] 2 with monodentate anionic ligands. Structure of dinuclear complexes [Pd (X)(μ-med)] 2 (X= SCN−, N3-).[Hmed= N-2-mercaptoethyl)-3, 5-dimethylpyrazole]
CN117534704A (zh) 一种三价有机膦化合物的制备方法
Sengupta 1, 2, 3-(NH)-triazoles: Its metal-free synthesis and application as ligands in transition metal catalysis
Castonguay et al. Chapitre 5: Regioselective Hydroamination of Acrylonitrile Catalyzed by Cationic Pincer Complexes of Nickel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878231

Country of ref document: EP

Effective date: 20190708