WO2018105110A1 - Weighing device for elevator - Google Patents

Weighing device for elevator Download PDF

Info

Publication number
WO2018105110A1
WO2018105110A1 PCT/JP2016/086755 JP2016086755W WO2018105110A1 WO 2018105110 A1 WO2018105110 A1 WO 2018105110A1 JP 2016086755 W JP2016086755 W JP 2016086755W WO 2018105110 A1 WO2018105110 A1 WO 2018105110A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
spring
elevator
scale device
sensor
Prior art date
Application number
PCT/JP2016/086755
Other languages
French (fr)
Japanese (ja)
Inventor
壮史 松本
郷平 山中
渡辺 誠治
健 宮川
大樹 福井
馬場 俊行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/086755 priority Critical patent/WO2018105110A1/en
Priority to JP2018555422A priority patent/JP6742436B2/en
Priority to CN201680091315.9A priority patent/CN110023225B/en
Publication of WO2018105110A1 publication Critical patent/WO2018105110A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/14Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions in case of excessive loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/08Arrangements of ropes or cables for connection to the cars or cages, e.g. couplings

Definitions

  • the present invention relates to an elevator scale device provided at an end of a suspension body for suspending a car.
  • the sensor fixing part is fixed to the thimble rod.
  • a cylindrical sensor part is provided between the sensor fixing part and the compression spring.
  • a strain gauge is attached to the outer peripheral surface of the sensor unit. The strain gauge detects strain in the longitudinal direction of the sensor unit. The load applied to the main rope is measured from the strain amount of the sensor unit detected by the strain gauge (see, for example, Patent Document 1).
  • the sensor portion is configured to receive the rope tension directly, it is necessary to increase the load resistance of the sensor, which increases the cost. Further, when replacing the sensor unit, it is necessary to remove the rope tension, which is troublesome. Furthermore, in order to inspect whether overload is detected, it is necessary to actually load a weight equivalent to overload on the car, which is troublesome.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an elevator scale device that can reduce the load resistance of the sensor and facilitate replacement and inspection of the sensor. And
  • An elevator scale device includes a car, a plurality of suspension bodies that suspend a car, and a plurality of support springs that are provided at end portions of the suspension body and expand and contract according to a load in the car.
  • a lifting device that is connected to a support member, a load detection unit supported by the support member, and a load detection unit, and expands and contracts according to the expansion and contraction of the corresponding support spring.
  • a plurality of elastic bodies that apply force to the detection unit are provided, and the spring constant of each elastic body is smaller than the spring constant of the support spring.
  • a plurality of elastic bodies that expand and contract in accordance with expansion and contraction of the corresponding support springs and are connected to the load detection section are connected to the load detection section, and the spring constant of each elastic body is Since it is smaller than the spring constant of the support spring, it is possible to reduce the load resistance of the sensor and facilitate replacement and inspection of the sensor.
  • FIG. 14 is a front view illustrating an example in which the load sensor of FIG. 13 has two strain gauges. It is a front view which shows the elevator weighing apparatus by Embodiment 5 of this invention. It is a top view which shows the balance apparatus of FIG.
  • FIG. 1 is a schematic configuration diagram showing a first example of an elevator to which a weighing apparatus according to Embodiment 1 of the present invention is applied, and shows a 2: 1 roping type machine room-less elevator.
  • a hoisting machine 2 is installed in the upper part of the hoistway 1.
  • the hoisting machine 2 includes a drive sheave 3, a hoisting machine motor (not shown) that rotates the driving sheave 3, and a hoisting machine brake (not shown) that brakes the rotation of the driving sheave 3.
  • a plurality of suspension bodies 4 (only one is shown in FIG. 1) are wound around the drive sheave 3.
  • a rope or a belt is used as each suspension body 4.
  • the car 5 and the counterweight 6 are suspended in the hoistway 1 by the suspension body 4. Further, the car 5 and the counterweight 6 move up and down in the hoistway 1 by rotating the drive sheave 3.
  • a pair of car guide rails (not shown) and a pair of counterweight guide rails (not shown) are installed.
  • the car guide rail guides the raising and lowering of the car 5.
  • the counterweight guide rail guides the lifting and lowering of the counterweight 6.
  • the car 5 is provided with a car suspension car 7. Although only one car suspension car 7 is shown in FIG. 1, two or more car suspension cars 7 may be provided in the car 5. In addition, the car suspension wheel 7 may be provided in the lower part of the car 5.
  • the counterweight 6 is provided with a counterweight suspension vehicle 8. Although only one counterweight suspension vehicle 8 is shown in FIG. 1, two or more counterweight suspension vehicles 8 may be provided on the counterweight 6.
  • a first leash 9 and a second leash 10 are provided at the upper part in the hoistway 1.
  • the first end of the suspension body 4 is connected to the first rope stop 9.
  • the second end of the suspension body 4 is connected to the second rope stop 10.
  • a control device 11 for controlling the operation of the car 5 is installed in the hoistway 1.
  • the first leash 9 is provided with a scale device 12 that detects the load in the car 5.
  • the scale device 12 generates a signal corresponding to the mass in the car 5.
  • the signal generated by the scale device 12 is input to the control device 11.
  • the control device 11 processes the signal from the scale device 12 and measures the mass in the car 5.
  • the control device 11 processes a signal from the scale device 12 to monitor whether or not the tension of each suspension body 4 is abnormal.
  • control device 11 The function of the control device 11 is realized by, for example, a computer having a processor, a memory and an input / output port, or an analog electric circuit.
  • FIG. 2 is a front view showing the first leash 9 and the scale device 12 of FIG. 1
  • FIG. 3 is a plan view showing the scale device 12 of FIG. 2, in the case where three suspension bodies 4 are used.
  • the configuration is shown.
  • the first leash 9 includes a base 21, a plurality of shackle rods 22, a plurality of spring receivers 23, a plurality of spring seats 24, a plurality of support springs 25, and a plurality of nuts 26.
  • the base 21 is fixed to the upper part in the hoistway 1.
  • the base 21 is supported by at least one of a car guide rail and a counterweight guide rail, for example.
  • the first end portion of the corresponding suspension body 4 is connected to the lower end portion (not shown) of the shackle rod 22.
  • Each shackle rod 22 passes through the base 21, the corresponding spring receiver 23, the corresponding spring seat 24, and the corresponding support spring 25.
  • Each spring receiver 23 is placed on the base 21.
  • Each spring seat 24 is arranged above the corresponding spring receiver 23.
  • Each support spring 25 is sandwiched between a corresponding spring receiver 23 and a corresponding spring seat 24.
  • each support spring 25 expands and contracts according to a change in tension of the corresponding suspension body 4. That is, the support spring 25 functions as a compression spring and expands and contracts according to the mass in the car 5. As the support spring 25, coil springs having the same size and the same spring constant are used.
  • a flat support member 32 is fixed on the base 21 via a pair of support columns 31a and 31b.
  • the support member 32 is disposed above the shackle rod 22 and parallel to the base 21.
  • the load detection unit 33 is supported on the support member 32.
  • the load detection unit 33 has a plurality of load sensors 34. In this example, the same number of load sensors 34 as the suspension body 4 are used.
  • Each load sensor 34 is fixed to a fixture 36 with a screw 35.
  • Each fixing bracket 36 is fixed to the lower surface of the support member 32 by a pair of bolts 37a and 37b.
  • Each load sensor 34 has a metal sensor plate 38 and a strain gauge 39 provided on the sensor plate 38.
  • the planar shape of each sensor plate 38 is a rectangle.
  • each sensor plate 38 in the longitudinal direction is fixed to the fixing bracket 36 with a screw 35. That is, the sensor plate 38 is cantilevered by the fixture 36. The second end of each sensor plate 38 is located directly above the corresponding shackle rod 22.
  • Each strain gauge 39 is disposed on the lower surface of the middle portion of the sensor plate 38, that is, the surface on the shackle rod 22 side. However, each strain gauge 39 may be disposed on the upper surface of the intermediate portion of the sensor plate 38. Each strain gauge 39 changes its electrical resistance value according to the strain of the sensor plate 38.
  • Each eye nut 40 as a rod connecting tool is screwed into the upper end portion of each shackle rod 22.
  • Each eye nut 40 has a nut portion 40a and a ring portion 40b fixed to the nut portion 40a.
  • the first end of the detection spring 41 which is an elastic body, is connected to the second end of each sensor plate 38.
  • the detection spring 41 and the load sensor 34 are connected by 1: 1.
  • the second end of each detection spring 41 is connected to the corresponding eye nut 40. That is, the second end portion of each detection spring 41 is hooked on the ring portion 40 b of the corresponding eye nut 40.
  • Each detection spring 41 expands and contracts in accordance with the expansion and contraction of the corresponding support spring 25 and applies a tensile force to the sensor plate 38. That is, the detection spring 41 according to Embodiment 1 functions as a tension spring. As the detection spring 41, coil springs having the same size and the same spring constant are used. The spring constant of the detection spring 41 is smaller than the spring constant of the support spring 25. For this reason, the tension of the suspension 4 is reduced by the detection spring 41 and transmitted to the load detection unit 33.
  • the scale device 12 includes support columns 31a and 31b, a support member 32, a load detection unit 33, an eyenut 40, and a detection spring 41.
  • FIG. 4 is a plan view showing the load sensor 34 of FIG. At the first end of the sensor plate 38, a screw insertion hole 38a through which the screw 35 is passed is provided. A spring connection hole 38 b is provided at the second end of the sensor plate 38. The first end of the detection spring 41 is hooked on the spring connection hole 38b.
  • FIG. 5 is a plan view showing a modification of the load sensor 34 of FIG.
  • two screw insertion holes 38 a are provided at the first end of the sensor plate 38.
  • the sensor plate 38 is fixed to the fixing bracket 36 by the two screws 35. Thereby, the positioning accuracy of the load sensor 34 is improved.
  • the control device 11 measures the mass in the car 5 from the total output from the load sensor 34.
  • control device 11 monitors the presence or absence of an abnormality in the tension of the individual suspension bodies 4 from the outputs from the individual load sensors 34. That is, when the output value from each load sensor 34 is equal to or less than the threshold value, it is determined that abnormal loosening or breakage has occurred in the corresponding suspension body 4 and is notified to the outside.
  • the tension of the suspension body 4 is transmitted to the load sensor 34 via the detection spring 41, and the spring constant of the detection spring 41 is smaller than the spring constant of the support spring 25. It is possible to reduce the load resistance of the load sensor 34 used in the above. For this reason, the relatively inexpensive load sensor 34 can be used, and the cost can be reduced.
  • the load acting on the load sensor 34 can be suppressed to about several kg, the load resistance of the load sensor 34 can be reduced, and the cost can be reduced. Is possible.
  • the load sensor 34 can be easily inspected. That is, the car load can be increased or decreased in a pseudo manner, and the soundness of the load sensor 34 can be confirmed, such as confirmation of the operation in overload. Further, the load sensor 34 can be calibrated based on the inspection result.
  • the load corresponding to the overload can be applied to the load sensor 34 by removing the second end of the detection spring 41 from the eye nut 40 and hooking the inspection weight on the second end of the detection spring 41. it can.
  • the load corresponding to the overload can be a load K ⁇ Xs obtained by obtaining the displacement Xs of the support spring 25 at the time of overload and multiplying the displacement Xs by the spring constant K of the detection spring 41.
  • the load sensor 34 can be inspected by giving a displacement Xs to the detection spring 41.
  • the load sensor 34 and the detection spring 41 correspond in a 1: 1 ratio, an abnormality in the tension of the individual suspension bodies 4 can be detected. This makes it possible to determine which suspension body 4 is loosened or broken.
  • the load detection unit 33 can be configured at low cost.
  • FIG. 6 is a schematic configuration diagram showing a second example of an elevator to which the scale device 12 according to the first embodiment is applied.
  • the hoisting machine 2 is arranged in the lower part in the hoistway 1.
  • a first return wheel 13 and a second return wheel 14 are arranged in the upper part of the hoistway 1.
  • the suspension body 4 is wound around the car suspension wheel 7, the first return wheel 13, the drive sheave 3, the second return wheel 14, and the counterweight suspension wheel 8 in order from the first end side. .
  • Other configurations are the same as those of the first example.
  • the scale device 12 of the first embodiment can also be applied to a 2: 1 roping elevator in which the hoist 2 is disposed in the lower part of the hoistway 1.
  • FIG. 7 is a schematic configuration diagram showing a third example of an elevator to which the scale device 12 according to the first embodiment is applied.
  • the hoisting machine 2 and the control device 11 are installed in a machine room 15 provided in the upper part of the hoistway 1.
  • the first end of the suspension body 4 is connected to the upper part of the car 5 via the first rope stopper 9.
  • the second end of the suspension body 4 is connected to the upper portion of the counterweight 6 via the second rope stop 10.
  • the scale device 12 is provided on the upper part of the car 5.
  • FIG. 8 is a front view showing the first leash 9 and the scale device 12 of FIG. In an elevator in which the first end of the suspension 4 is connected to the upper part of the car 5, the configuration of the scale device 12 is upside down as shown in FIG.
  • FIG. 9 is a front view showing an elevator weighing apparatus according to Embodiment 2 of the present invention.
  • a flat support member 42 is horizontally fixed to the upper end portion of each shackle rod 22.
  • a corresponding shackle rod 22 passes through each support member 42.
  • Each support member 42 is sandwiched between the two nuts 26 and fixed to the shackle rod 22.
  • Each load sensor 34 is fixed to a corresponding support member 42 with a screw 35.
  • the same number of eyebolts 43 as the load sensors 34 are fixed to the base 21.
  • Each eyebolt 43 is disposed directly below the second end of the corresponding load sensor 34.
  • each detection spring 41 is connected to the corresponding load sensor 34.
  • the second end of each detection spring 41 is connected to the corresponding eyebolt 43.
  • the detection springs 41 and the corresponding support springs 25 are arranged one above the other.
  • each detection spring 41 and the corresponding support springs 25 are arranged in the horizontal direction. Has been.
  • the scale device of the second embodiment includes a support member 42, an eyebolt 43, a load detection unit 33, and a detection spring 41.
  • the same effect as in the first embodiment can be obtained.
  • the detection springs 41 and the corresponding support springs 25 are arranged side by side in the horizontal direction, the total height of the first rope stopper 9 and the weighing device can be kept low. Thereby, the overhead dimension of an elevator can also be shortened.
  • the weighing apparatus according to the second embodiment can also be applied to an elevator as shown in FIGS.
  • FIG. 10 is a front view showing an elevator weighing apparatus according to Embodiment 3 of the present invention
  • FIG. 11 is a plan view showing the weighing apparatus of FIG.
  • the same number of rectangular recesses 32 a as the detection springs 41 are provided on the surface of the support member 32 opposite to the detection springs 41.
  • a rectangular through hole 32b is provided in a part of the bottom of the recess 32a, that is, in the center. Each through-hole 32b is disposed immediately above the corresponding detection spring 41.
  • the load detection unit 33 has the same number of load sensors 44 as the suspension body 4. Each load sensor 44 is accommodated in the corresponding recess 32a. Each load sensor 44 includes a metal sensor plate 45 and a strain gauge 46 provided on the sensor plate 45. A first end of a detection spring 41 is connected to each sensor plate 45 via an eyebolt 43.
  • FIG. 12 is an enlarged plan view showing the load sensor 44 of FIG.
  • the sensor plate 45 includes an annular stationary portion 45a placed on the bottom of the recess 32a so as to surround the through-hole 32b, an island-shaped movable portion 45b facing the through-hole 32b, and an outer periphery of the movable portion 45b.
  • a connecting portion 45c connecting the portion to the stationary portion 45a.
  • a screw hole 45d is provided at the center of the movable portion 45b.
  • An eyebolt 43 is screwed into the screw hole 45d. That is, the movable part 45 b receives a tensile force from the detection spring 41.
  • the strain gauge 46 is provided in the connecting portion 45c.
  • the same effect as in the first embodiment can be obtained. Further, since the load sensor 44 is merely placed in the recess 32a and is not fastened to the support member 32, the load sensor 44 can be easily assembled and the number of parts can be reduced.
  • the scale device according to the third embodiment can also be applied to an elevator as shown in FIGS. However, when applied to the elevator shown in FIG. 7, it is necessary to fix the load sensor 44 to the support member 32. Further, if the support member 42 of the second embodiment is extended to a position directly above the detection spring 41, the load sensor 44 of the third embodiment can be applied to the scale device of the second embodiment.
  • FIG. 13 is a front view showing an elevator weighing apparatus according to Embodiment 4 of the present invention.
  • an S-shaped metal fitting 47 as a rod connector is interposed between each detection spring 41 and the corresponding eye nut 40.
  • the S-shaped bracket 47 allows the shackle rod 22 to rotate with respect to the detection spring 41. That is, even if the shackle rod 22 rotates about its axis, the rotation is absorbed by the S-shaped metal fitting 47 and is not transmitted to the detection spring 41.
  • connection fitting 49 The first end of a U-shaped connection fitting 49 is connected to the second end of each sensor plate 38 by a screw 48.
  • An eye bolt 43 is connected to the second end of each connection fitting 49.
  • a first end of each detection spring 41 is connected to the eyebolt 43.
  • the same effect as in the first embodiment can be obtained. Further, since the S-shaped metal fitting 47 is interposed between the eye nut 40 and the detection spring 41, the detection spring 41 is not twisted even when the shackle rod 22 rotates, and the detection accuracy of the load sensor 34 is improved. be able to. Furthermore, it is not necessary to worry about the angles of the eyenut 40 and the detection spring 41 during installation, and the installation can be improved.
  • connection fitting 49 and the eyebolt 43 are interposed between the detection spring 41 and the load sensor 34, the rotation of the shackle rod 22 can be more reliably prevented from being transmitted to the load sensor 34.
  • the scale device according to the fourth embodiment can be applied to an elevator as shown in FIGS. Further, an S-shaped metal fitting 47 may be interposed between the sensor plate 38 and the detection spring 41 of the second embodiment. Furthermore, the load sensor 34 according to the fourth embodiment may be replaced with the load sensor 44 according to the third embodiment. Furthermore, the rod connector that allows rotation of the shackle rod 22 is not limited to the S-shaped bracket 47, and may be a joint that allows rotation, for example.
  • one strain gauge 39 is provided for each load sensor 34.
  • two strain gauges 39 may be provided.
  • the strain gauges 39 are arranged on the front and back of the sensor plate 38 at the same position.
  • a failure of the strain gauge 39 can be detected by comparing the signals from the two strain gauges 39 by the control device 11. For example, when the difference between the absolute values of the outputs of the two strain gauges 39 is equal to or greater than the threshold value, the control device 11 determines that one of the strain gauges 39 has failed.
  • two strain gauges 39 or 46 may be provided on one sensor plate 38 or 45.
  • FIG. 15 is a front view showing an elevator weighing apparatus according to Embodiment 5 of the present invention
  • FIG. 16 is a plan view showing the weighing apparatus of FIG.
  • a fixing plate 51 is fixed horizontally on the columns 31a and 31b.
  • the fixed plate 51 is provided with a plurality of through holes 51a through which the detection spring 41 is passed.
  • a flat support member 52 is provided on the fixed plate 51.
  • the support member 52 is provided with a plurality of through holes 52a through which the detection spring 41 is passed.
  • the load sensor 34 is attached to the support member 52.
  • Each detection spring 41 is connected to the corresponding load sensor 34 through the through hole 52a.
  • the support member 52 is screwed with a pair of adjustment bolts 53 as a drive mechanism.
  • the tip of the adjustment bolt 53 is in contact with the fixing plate 51.
  • the support member 52 can be moved up and down by rotating the adjustment bolt 53.
  • the support member 52 is movable in the extending and contracting direction of the detection spring 41.
  • the adjustment bolt 53 moves the support member 52 to simultaneously expand and contract the plurality of detection springs 41.
  • Other configurations and operations are the same as those in the first embodiment.
  • the same effect as in the first embodiment can be obtained.
  • all the detection springs 41 can be expanded and contracted simultaneously by moving the support member 52 with the adjusting bolt 53. For this reason, even when the detection spring 41 that has a large spring constant and cannot be extended by hand is used, the detection spring 41 can be easily connected between the load sensor 34 and the eyenut 40. Further, a load corresponding to overload can be applied to all the load sensors 34 in a pseudo and simultaneous manner, and the load sensors 34 can be easily inspected.
  • the weighing apparatus according to the fifth embodiment can also be applied to an elevator as shown in FIGS. Further, the support member 52 and the drive mechanism of the fifth embodiment may be applied to the third and fourth embodiments.
  • FIG. 17 is a front view showing an essential part of an elevator scale device according to Embodiment 6 of the present invention.
  • the same number of inspection bolts 54 as the load sensor 34 (only one is shown in FIG. 17) is screwed into the support member 32 as a load adding mechanism. Further, the lower end portion of each connection fitting 49 is extended to a position directly below the corresponding inspection bolt 54.
  • the inspection bolt 54 is separated from the connection fitting 49 in normal times. Further, the inspection bolt 54 can be screwed in the same direction as the tensile force by the detection spring 41. When the load sensor 34 is inspected, a load in the same direction as the tensile force of the detection spring 41 is applied to the load sensor 34 by screwing the inspection bolt 54 and pushing the connection fitting 49. Other configurations and operations are the same as those in the fourth embodiment.
  • the load sensor 34 inspections can be performed more easily.
  • the load sensor 34 is recorded. Inspection and calibration can be performed more easily.
  • FIG. 19 is a front view showing an essential part of an elevator scale device according to Embodiment 7 of the present invention.
  • the connection fitting 49 is provided with a weight connection portion 55.
  • An eye bolt similar to the eye bolt 43 can be used as the weight connection portion 55.
  • an inspection weight 56 is connected to the weight connection portion 55.
  • Other configurations and operations are the same as those in the fourth embodiment.
  • inspection weight 56 may be connected using the eyebolt 43 of the third embodiment as a weight connection portion.
  • FIG. 20 is a front view showing an elevator weighing apparatus according to Embodiment 8 of the present invention
  • FIG. 21 is a support spring 25, a load sensor 34, and a detection spring when the weighing apparatus of FIG. 20 is viewed from directly above. It is explanatory drawing which shows an example of the layout of 41.
  • FIG. 21 shows an example of the layout of 41.
  • the detection spring 41 and the load sensor 34 correspond 1: 1, but in the eighth embodiment, a plurality of detection springs 41 are connected to each load sensor 34.
  • the load detection unit 33 has two load sensors 34. Two load springs 41 are connected to one load sensor 34. In addition, three detection springs 41 are connected to the other load sensor 34.
  • Other configurations and operations are the same as those in the fourth embodiment.
  • the number of load sensors 34 can be reduced to reduce the cost. Moreover, although the tension
  • the scale device according to the eighth embodiment can also be applied to an elevator as shown in FIGS. Further, in the weighing devices of the first to third embodiments and the fifth to seventh embodiments, the number of load sensors 34 may be reduced as in the eighth embodiment. Furthermore, the number of load sensors 34 may be one or three or more.
  • FIG. 22 is a front view showing an elevator weighing apparatus according to Embodiment 9 of the present invention.
  • each detection spring 41 is connected to a corresponding support spring 25 via a U-shaped support spring connector 57 and an eyebolt 43.
  • the support spring connector 57 is sandwiched between the spring seat 24 and the nut 26 and connected to the movable side end of the support spring 25.
  • Each support spring connector 57 includes a first horizontal portion 57a, a second horizontal portion 57b facing the first horizontal portion 57a above the first horizontal portion 57a, and a first horizontal portion 57a. And a vertical portion 57c that connects the second horizontal portion 57b.
  • the first horizontal portion 57 a is interposed between the spring seat 24 and the nut 26.
  • the eyebolt 43 is fixed by being screwed into the second horizontal portion 57b.
  • a second end of the detection spring 41 is hung on the eyebolt 43.
  • the detection spring 41 expands and contracts according to the expansion and contraction of the support spring 25 without using the shackle rod 22.
  • Other configurations and operations are the same as those in the first embodiment.
  • FIG. 23 is a front view showing an elevator weighing apparatus according to Embodiment 10 of the present invention.
  • the length of the second horizontal portion 57b is shorter than the length of the first horizontal portion 57a. That is, the protruding amount of the second horizontal portion 57b from the vertical portion 57c is smaller than the protruding amount of the first horizontal portion 57a from the vertical portion 57c.
  • the second horizontal portion 57b does not overlap the shackle rod 22 when viewed from directly above.
  • each detection spring 41 is disposed at a position shifted from directly above the shackle rod 22.
  • the connection position of each detection spring 41 with respect to the support spring connector 57 is a position deviated from directly above the corresponding shackle rod 22.
  • the first end of the detection spring 41 is connected to the sensor plate 38 directly above the shackle rod 22. For this reason, each detection spring 41 is inclined and arranged.
  • the vertical dimension of the support spring connector 57 is sufficiently secured in order to secure a space for adjusting the vertical position of the shackle rod 22.
  • the vertical dimension of the support spring connector 57 can be reduced. Thereby, the height dimension of the scale device can be suppressed.
  • the weighing devices according to the ninth and tenth embodiments can also be applied to an elevator as shown in FIGS. Further, the support spring connector 57 of the ninth or tenth embodiment may be applied to the scale devices of the second, third, fifth, and seventh embodiments.
  • FIG. 24 is a front view showing an elevator weighing apparatus according to Embodiment 11 of the present invention.
  • a tension spring is used as the detection spring 41.
  • the detection spring 61 which is an elastic body, functions as a compression spring.
  • the detection spring 61 coil springs having the same size and the same spring constant are used.
  • the spring constant of the detection spring 61 is smaller than the spring constant of the support spring 25.
  • Each detection spring 61 is sandwiched between the upper connector 62 and the lower connector 63 in a pre-compressed state.
  • Each upper connector 62 is connected to the second end of the corresponding sensor plate 38.
  • the threaded portion of the corresponding shackle rod 22 is screwed into each lower connector 63.
  • the weighing apparatus according to the eleventh embodiment can also be applied to an elevator as shown in FIGS.
  • the tension spring can be replaced with a compression spring.
  • a compression spring if the configuration in which both ends of the detection spring are simply hooked may be removed during expansion / contraction, it is necessary to have a configuration that does not come out during expansion / contraction.
  • the load sensor is not limited to a sensor using a strain gauge, and may be a sensor using a piezoelectric element, for example.
  • the detection spring is not limited to a coil spring, and may be a leaf spring, for example.
  • the elastic body is not limited to a spring, and may be rubber, for example.
  • the control device that measures the mass in the car using a signal from the scale device may be separated from the control device 11 that controls the operation of the car.
  • the control device may be a safety monitoring device, for example.
  • the elevator to which the weighing apparatus of the present invention is applied is not limited to the elevator shown in FIGS. 1, 6, and 7.
  • the present invention includes an elevator having a machine room, a double deck elevator, It can also be applied to shaft double car type elevators.
  • the one-shaft double-car type elevator is an elevator in which an upper car and a lower car arranged directly below the upper car are lifted and lowered independently in a common hoistway.

Abstract

This weighing device is installed in an elevator that is provided with: a cage; multiple suspension bodies; and multiple support springs that expand and contract in accordance with a load placed in the cage. The weighing device is provided with: a support member; a load detection unit which is supported by the support member; and multiple elastic bodies which are connected to the load detection unit, expand and contract in response to the expansion and contraction of the corresponding support springs, and impart a force to the load detection unit. The respective elastic bodies have a spring constant smaller than that of the support springs.

Description

エレベータの秤装置Elevator scale equipment
 この発明は、かごを吊る懸架体の端部に設けられているエレベータの秤装置に関するものである。 The present invention relates to an elevator scale device provided at an end of a suspension body for suspending a car.
 従来の主ロープテンション計測装置では、シンブルロッドにセンサ固定部が固定されている。センサ固定部と圧縮ばねとの間には、円筒形のセンサ部が設けられている。センサ部の外周面には、歪みゲージが取り付けられている。歪みゲージは、センサ部の長手方向の歪みを検出する。歪みゲージにより検出されたセンサ部の歪み量から、主ロープにかかる荷重が計測される(例えば、特許文献1参照)。 In the conventional main rope tension measuring device, the sensor fixing part is fixed to the thimble rod. A cylindrical sensor part is provided between the sensor fixing part and the compression spring. A strain gauge is attached to the outer peripheral surface of the sensor unit. The strain gauge detects strain in the longitudinal direction of the sensor unit. The load applied to the main rope is measured from the strain amount of the sensor unit detected by the strain gauge (see, for example, Patent Document 1).
特開2015-86026号公報JP-A-2015-86026
 上記のような従来の主ロープテンション計測装置では、センサ部がロープ張力を直接受ける構成であるため、センサの耐荷重を大きくする必要があり、コストが高くなる。また、センサ部を交換する際には、ロープ張力を抜く必要があり、手間がかかる。さらに、オーバーロードを検出するかどうかの検査を行うためには、オーバーロード相当のおもりをかごに実際に積載する必要があり、手間がかかる。 In the conventional main rope tension measuring device as described above, since the sensor portion is configured to receive the rope tension directly, it is necessary to increase the load resistance of the sensor, which increases the cost. Further, when replacing the sensor unit, it is necessary to remove the rope tension, which is troublesome. Furthermore, in order to inspect whether overload is detected, it is necessary to actually load a weight equivalent to overload on the car, which is troublesome.
 この発明は、上記のような課題を解決するためになされたものであり、センサの耐荷重を小さくするとともに、センサの交換及び検査を容易にすることができるエレベータの秤装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an elevator scale device that can reduce the load resistance of the sensor and facilitate replacement and inspection of the sensor. And
 この発明に係るエレベータの秤装置は、かごと、かごを吊る複数の懸架体と、懸架体の端部にそれぞれ設けられており、かご内の荷重に応じて伸縮する複数の支持ばねとを備えているエレベータに設けられている秤装置であって、支持部材、支持部材に支持されている荷重検出部、荷重検出部に接続されており、対応する支持ばねの伸縮に応じて伸縮し、荷重検出部に力を与える複数の弾性体を備え、各弾性体のばね定数は、支持ばねのばね定数よりも小さい。 An elevator scale device according to the present invention includes a car, a plurality of suspension bodies that suspend a car, and a plurality of support springs that are provided at end portions of the suspension body and expand and contract according to a load in the car. A lifting device that is connected to a support member, a load detection unit supported by the support member, and a load detection unit, and expands and contracts according to the expansion and contraction of the corresponding support spring. A plurality of elastic bodies that apply force to the detection unit are provided, and the spring constant of each elastic body is smaller than the spring constant of the support spring.
 この発明のエレベータの秤装置は、対応する支持ばねの伸縮に応じて伸縮し、荷重検出部に力を与える複数の弾性体が、荷重検出部に接続されており、各弾性体のばね定数は、支持ばねのばね定数よりも小さいので、センサの耐荷重を小さくするとともに、センサの交換及び検査を容易にすることができる。 In the elevator weighing device according to the present invention, a plurality of elastic bodies that expand and contract in accordance with expansion and contraction of the corresponding support springs and are connected to the load detection section are connected to the load detection section, and the spring constant of each elastic body is Since it is smaller than the spring constant of the support spring, it is possible to reduce the load resistance of the sensor and facilitate replacement and inspection of the sensor.
この発明の実施の形態1による秤装置が適用されるエレベータの第1の例を示す概略の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows the 1st example of the elevator with which the scale apparatus by Embodiment 1 of this invention is applied. 図1の第1の綱止め及び秤装置を示す正面図である。It is a front view which shows the 1st leash and the scale apparatus of FIG. 図2の秤装置を示す平面図である。It is a top view which shows the balance apparatus of FIG. 図2の荷重センサを示す平面図である。It is a top view which shows the load sensor of FIG. 図4の荷重センサの変形例を示す平面図である。It is a top view which shows the modification of the load sensor of FIG. 実施の形態1による秤装置が適用されるエレベータの第2の例を示す概略の構成図である。It is a schematic block diagram which shows the 2nd example of the elevator with which the balance apparatus by Embodiment 1 is applied. 実施の形態1による秤装置が適用されるエレベータの第3の例を示す概略の構成図である。It is a schematic block diagram which shows the 3rd example of the elevator with which the balance apparatus by Embodiment 1 is applied. 図7の第1の綱止め及び秤装置を示す正面図である。It is a front view which shows the 1st leash and the scale apparatus of FIG. この発明の実施の形態2によるエレベータの秤装置を示す正面図である。It is a front view which shows the elevator weighing apparatus by Embodiment 2 of this invention. この発明の実施の形態3によるエレベータの秤装置を示す正面図である。It is a front view which shows the elevator weighing apparatus by Embodiment 3 of this invention. 図10の秤装置を示す平面図である。It is a top view which shows the balance apparatus of FIG. 図11の荷重センサを拡大して示す平面図である。It is a top view which expands and shows the load sensor of FIG. この発明の実施の形態4によるエレベータの秤装置を示す正面図である。It is a front view which shows the elevator weighing apparatus by Embodiment 4 of this invention. 図13の荷重センサの歪みゲージを2つにした例を示す正面図である。FIG. 14 is a front view illustrating an example in which the load sensor of FIG. 13 has two strain gauges. この発明の実施の形態5によるエレベータの秤装置を示す正面図である。It is a front view which shows the elevator weighing apparatus by Embodiment 5 of this invention. 図15の秤装置を示す平面図である。It is a top view which shows the balance apparatus of FIG. この発明の実施の形態6によるエレベータの秤装置の要部を示す正面図である。It is a front view which shows the principal part of the elevator scale apparatus by Embodiment 6 of this invention. 図17の調整ボルトを示す平面図である。It is a top view which shows the adjustment bolt of FIG. この発明の実施の形態7によるエレベータの秤装置の要部を示す正面図である。It is a front view which shows the principal part of the elevator scale apparatus by Embodiment 7 of this invention. この発明の実施の形態8によるエレベータの秤装置を示す正面図である。It is a front view which shows the elevator weighing apparatus by Embodiment 8 of this invention. 図20の秤装置を真上から見たときの支持ばね、荷重センサ、及び検出ばねのレイアウトの一例を示す説明図である。It is explanatory drawing which shows an example of the layout of a support spring, a load sensor, and a detection spring when the scale apparatus of FIG. 20 is seen from right above. この発明の実施の形態9によるエレベータの秤装置を示す正面図である。It is a front view which shows the elevator weighing apparatus by Embodiment 9 of this invention. この発明の実施の形態10によるエレベータの秤装置を示す正面図である。It is a front view which shows the elevator weighing apparatus by Embodiment 10 of this invention. この発明の実施の形態11によるエレベータの秤装置を示す正面図である。It is a front view which shows the elevator weighing apparatus by Embodiment 11 of this invention.
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1による秤装置が適用されるエレベータの第1の例を示す概略の構成図であり、2:1ローピング方式の機械室レスエレベータを示している。図において、昇降路1内の上部には、巻上機2が設置されている。巻上機2は、駆動シーブ3、駆動シーブ3を回転させる巻上機モータ(図示せず)、及び駆動シーブ3の回転を制動する巻上機ブレーキ(図示せず)を有している。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram showing a first example of an elevator to which a weighing apparatus according to Embodiment 1 of the present invention is applied, and shows a 2: 1 roping type machine room-less elevator. In the figure, a hoisting machine 2 is installed in the upper part of the hoistway 1. The hoisting machine 2 includes a drive sheave 3, a hoisting machine motor (not shown) that rotates the driving sheave 3, and a hoisting machine brake (not shown) that brakes the rotation of the driving sheave 3.
 駆動シーブ3には、複数(図1では1本のみ示す)の懸架体4が巻き掛けられている。各懸架体4としては、ロープ又はベルトが用いられている。かご5及び釣合おもり6は、懸架体4により昇降路1内に吊り下げられている。また、かご5及び釣合おもり6は、駆動シーブ3を回転させることにより、昇降路1内を昇降する。 A plurality of suspension bodies 4 (only one is shown in FIG. 1) are wound around the drive sheave 3. As each suspension body 4, a rope or a belt is used. The car 5 and the counterweight 6 are suspended in the hoistway 1 by the suspension body 4. Further, the car 5 and the counterweight 6 move up and down in the hoistway 1 by rotating the drive sheave 3.
 昇降路1内には、一対のかごガイドレール(図示せず)と、一対の釣合おもりガイドレール(図示せず)とが設置されている。かごガイドレールは、かご5の昇降を案内する。釣合おもりガイドレールは、釣合おもり6の昇降を案内する。 In the hoistway 1, a pair of car guide rails (not shown) and a pair of counterweight guide rails (not shown) are installed. The car guide rail guides the raising and lowering of the car 5. The counterweight guide rail guides the lifting and lowering of the counterweight 6.
 かご5には、かご吊り車7が設けられている。図1では、かご吊り車7を1つのみ示したが、2つ以上のかご吊り車7をかご5に設けてもよい。また、かご吊り車7は、かご5の下部に設けられていてもよい。 The car 5 is provided with a car suspension car 7. Although only one car suspension car 7 is shown in FIG. 1, two or more car suspension cars 7 may be provided in the car 5. In addition, the car suspension wheel 7 may be provided in the lower part of the car 5.
 釣合おもり6には、釣合おもり吊り車8が設けられている。図1では、釣合おもり吊り車8を1つのみ示したが、2つ以上の釣合おもり吊り車8を釣合おもり6に設けてもよい。 The counterweight 6 is provided with a counterweight suspension vehicle 8. Although only one counterweight suspension vehicle 8 is shown in FIG. 1, two or more counterweight suspension vehicles 8 may be provided on the counterweight 6.
 昇降路1内の上部には、第1の綱止め9及び第2の綱止め10が設けられている。懸架体4の第1の端部は、第1の綱止め9に接続されている。懸架体4の第2の端部は、第2の綱止め10に接続されている。 At the upper part in the hoistway 1, a first leash 9 and a second leash 10 are provided. The first end of the suspension body 4 is connected to the first rope stop 9. The second end of the suspension body 4 is connected to the second rope stop 10.
 昇降路1内には、かご5の運行を制御する制御装置11が設置されている。第1の綱止め9には、かご5内の荷重を検出する秤装置12が設けられている。秤装置12は、かご5内の質量に応じた信号を発生する。 A control device 11 for controlling the operation of the car 5 is installed in the hoistway 1. The first leash 9 is provided with a scale device 12 that detects the load in the car 5. The scale device 12 generates a signal corresponding to the mass in the car 5.
 秤装置12で発生した信号は、制御装置11に入力される。制御装置11は、秤装置12からの信号を処理してかご5内の質量を計測する。また、制御装置11は、秤装置12からの信号を処理して各懸架体4の張力の異常の有無を監視する。 The signal generated by the scale device 12 is input to the control device 11. The control device 11 processes the signal from the scale device 12 and measures the mass in the car 5. In addition, the control device 11 processes a signal from the scale device 12 to monitor whether or not the tension of each suspension body 4 is abnormal.
 制御装置11の機能は、例えば、プロセッサ、メモリ及び入出力ポートを有するコンピュータ、又はアナログ電気回路により実現される。 The function of the control device 11 is realized by, for example, a computer having a processor, a memory and an input / output port, or an analog electric circuit.
 図2は図1の第1の綱止め9及び秤装置12を示す正面図、図3は図2の秤装置12を示す平面図であり、3本の懸架体4が用いられている場合の構成を示している。第1の綱止め9は、ベース21、複数のシャックルロッド22、複数のばね受け23、複数のばね座24、複数の支持ばね25、及び複数のナット26を有している。 2 is a front view showing the first leash 9 and the scale device 12 of FIG. 1, and FIG. 3 is a plan view showing the scale device 12 of FIG. 2, in the case where three suspension bodies 4 are used. The configuration is shown. The first leash 9 includes a base 21, a plurality of shackle rods 22, a plurality of spring receivers 23, a plurality of spring seats 24, a plurality of support springs 25, and a plurality of nuts 26.
 ベース21は、昇降路1内の上部に固定されている。また、ベース21は、例えば、かごガイドレール及び釣合おもりガイドレールの少なくともいずれかに支持されている。 The base 21 is fixed to the upper part in the hoistway 1. The base 21 is supported by at least one of a car guide rail and a counterweight guide rail, for example.
 シャックルロッド22の下端部(図示せず)には、対応する懸架体4の第1の端部が接続されている。また、各シャックルロッド22は、ベース21、対応するばね受け23、対応するばね座24、及び対応する支持ばね25を貫通している。 The first end portion of the corresponding suspension body 4 is connected to the lower end portion (not shown) of the shackle rod 22. Each shackle rod 22 passes through the base 21, the corresponding spring receiver 23, the corresponding spring seat 24, and the corresponding support spring 25.
 各ばね受け23は、ベース21上に置かれている。各ばね座24は、対応するばね受け23の上方に配置されている。各支持ばね25は、対応するばね受け23と対応するばね座24との間に挟まれている。 Each spring receiver 23 is placed on the base 21. Each spring seat 24 is arranged above the corresponding spring receiver 23. Each support spring 25 is sandwiched between a corresponding spring receiver 23 and a corresponding spring seat 24.
 各シャックルロッド22の上端部には、ねじ部が形成されており、2個のナット26がねじ込まれている。これにより、ばね座24のシャックルロッド22からの抜けが阻止されている。各支持ばね25は、対応する懸架体4の張力変化に応じて伸縮する。即ち、支持ばね25は、圧縮ばねとして機能しており、かご5内の質量に応じて伸縮する。支持ばね25としては、互いに同サイズで同じばね定数のコイルばねが用いられている。 Threaded portions are formed at the upper end of each shackle rod 22, and two nuts 26 are screwed in. As a result, the spring seat 24 is prevented from coming off from the shackle rod 22. Each support spring 25 expands and contracts according to a change in tension of the corresponding suspension body 4. That is, the support spring 25 functions as a compression spring and expands and contracts according to the mass in the car 5. As the support spring 25, coil springs having the same size and the same spring constant are used.
 ベース21上には、一対の支柱31a,31bを介して平板状の支持部材32が固定されている。支持部材32は、シャックルロッド22の上方でベース21に平行に配置されている。 A flat support member 32 is fixed on the base 21 via a pair of support columns 31a and 31b. The support member 32 is disposed above the shackle rod 22 and parallel to the base 21.
 支持部材32には、荷重検出部33が支持されている。荷重検出部33は、複数の荷重センサ34を有している。この例では、懸架体4と同数の荷重センサ34が用いられている。 The load detection unit 33 is supported on the support member 32. The load detection unit 33 has a plurality of load sensors 34. In this example, the same number of load sensors 34 as the suspension body 4 are used.
 各荷重センサ34は、ねじ35により固定金具36に固定されている。各固定金具36は、一対のボルト37a,37bにより支持部材32の下面に固定されている。 Each load sensor 34 is fixed to a fixture 36 with a screw 35. Each fixing bracket 36 is fixed to the lower surface of the support member 32 by a pair of bolts 37a and 37b.
 各荷重センサ34は、金属製のセンサ板38と、センサ板38に設けられている歪みゲージ39とを有している。各センサ板38の平面形状は、長方形である。 Each load sensor 34 has a metal sensor plate 38 and a strain gauge 39 provided on the sensor plate 38. The planar shape of each sensor plate 38 is a rectangle.
 各センサ板38の長手方向の第1の端部は、ねじ35により固定金具36に固定されている。即ち、センサ板38は、固定金具36に片持ち支持されている。各センサ板38の第2の端部は、対応するシャックルロッド22の真上に位置している。 The first end portion of each sensor plate 38 in the longitudinal direction is fixed to the fixing bracket 36 with a screw 35. That is, the sensor plate 38 is cantilevered by the fixture 36. The second end of each sensor plate 38 is located directly above the corresponding shackle rod 22.
 各歪みゲージ39は、センサ板38の中間部の下面、即ちシャックルロッド22側の面に配置されている。但し、各歪みゲージ39は、センサ板38の中間部の上面に配置してもよい。また、各歪みゲージ39は、センサ板38の歪みに応じて電気抵抗値が変化する。 Each strain gauge 39 is disposed on the lower surface of the middle portion of the sensor plate 38, that is, the surface on the shackle rod 22 side. However, each strain gauge 39 may be disposed on the upper surface of the intermediate portion of the sensor plate 38. Each strain gauge 39 changes its electrical resistance value according to the strain of the sensor plate 38.
 各シャックルロッド22の上端部には、ロッド接続具としてのアイナット40がねじ込まれている。各アイナット40は、ナット部40aと、ナット部40aに固定されているリング部40bとを有している。 An eye nut 40 as a rod connecting tool is screwed into the upper end portion of each shackle rod 22. Each eye nut 40 has a nut portion 40a and a ring portion 40b fixed to the nut portion 40a.
 各センサ板38の第2の端部には、弾性体である検出ばね41の第1の端部が接続されている。検出ばね41と荷重センサ34とは、1:1で接続されている。各検出ばね41の第2の端部は、対応するアイナット40に接続されている。即ち、各検出ばね41の第2の端部は、対応するアイナット40のリング部40bに引っ掛けられている。 The first end of the detection spring 41, which is an elastic body, is connected to the second end of each sensor plate 38. The detection spring 41 and the load sensor 34 are connected by 1: 1. The second end of each detection spring 41 is connected to the corresponding eye nut 40. That is, the second end portion of each detection spring 41 is hooked on the ring portion 40 b of the corresponding eye nut 40.
 各検出ばね41は、対応する支持ばね25の伸縮に応じて伸縮し、センサ板38に引張力を与える。即ち、実施の形態1の検出ばね41は、引張ばねとして機能している。検出ばね41としては、互いに同サイズで同じばね定数のコイルばねが用いられている。検出ばね41のばね定数は、支持ばね25のばね定数よりも小さい。このため、懸架体4の張力は、検出ばね41により縮小されて荷重検出部33に伝達される。 Each detection spring 41 expands and contracts in accordance with the expansion and contraction of the corresponding support spring 25 and applies a tensile force to the sensor plate 38. That is, the detection spring 41 according to Embodiment 1 functions as a tension spring. As the detection spring 41, coil springs having the same size and the same spring constant are used. The spring constant of the detection spring 41 is smaller than the spring constant of the support spring 25. For this reason, the tension of the suspension 4 is reduced by the detection spring 41 and transmitted to the load detection unit 33.
 実施の形態1の秤装置12は、支柱31a,31b、支持部材32、荷重検出部33、アイナット40、及び検出ばね41を有している。 The scale device 12 according to the first embodiment includes support columns 31a and 31b, a support member 32, a load detection unit 33, an eyenut 40, and a detection spring 41.
 図4は図2の荷重センサ34を示す平面図である。センサ板38の第1の端部には、ねじ35を通すねじ挿入孔38aが設けられている。センサ板38の第2の端部には、ばね接続孔38bが設けられている。検出ばね41の第1の端部は、ばね接続孔38bに引っ掛けられる。 FIG. 4 is a plan view showing the load sensor 34 of FIG. At the first end of the sensor plate 38, a screw insertion hole 38a through which the screw 35 is passed is provided. A spring connection hole 38 b is provided at the second end of the sensor plate 38. The first end of the detection spring 41 is hooked on the spring connection hole 38b.
 図5は図4の荷重センサ34の変形例を示す平面図である。この例では、センサ板38の第1の端部に、2つのねじ挿入孔38aが設けられている。このため、センサ板38は、2つのねじ35により固定金具36に固定される。これにより、荷重センサ34の位置決め精度が向上する。 FIG. 5 is a plan view showing a modification of the load sensor 34 of FIG. In this example, two screw insertion holes 38 a are provided at the first end of the sensor plate 38. For this reason, the sensor plate 38 is fixed to the fixing bracket 36 by the two screws 35. Thereby, the positioning accuracy of the load sensor 34 is improved.
 次に、動作について説明する。乗客の乗降によりかご5内の質量が変動すると、懸架体4の張力にも変動が生じる。支持ばね25は、懸架体4の張力の変動によって伸縮する。また、シャックルロッド22は、支持ばね25の伸縮により上下方向へ変位する。 Next, the operation will be described. When the mass in the car 5 fluctuates due to passengers getting on and off, the tension of the suspension 4 also fluctuates. The support spring 25 expands and contracts due to fluctuations in the tension of the suspension body 4. Further, the shackle rod 22 is displaced in the vertical direction by the expansion and contraction of the support spring 25.
 これにより、検出ばね41が伸縮し、センサ板38に付加される引張力が変化し、センサ板38の歪み量が変化する。制御装置11は、荷重センサ34からの出力の合計から、かご5内の質量を計測する。 Thereby, the detection spring 41 expands and contracts, the tensile force applied to the sensor plate 38 changes, and the strain amount of the sensor plate 38 changes. The control device 11 measures the mass in the car 5 from the total output from the load sensor 34.
 荷重検出部33からの出力からかご5内の質量を計測するためには、例えばエレベータの据付時に、異なる2つの荷重条件における荷重検出部33からの2つの出力値を予め求めておく。そして、得られた2つの出力値から、荷重検出部33の線形特性、即ち出力値とかご5内の荷重との関係を制御装置11に設定しておく。 In order to measure the mass in the car 5 from the output from the load detection unit 33, for example, when the elevator is installed, two output values from the load detection unit 33 under two different load conditions are obtained in advance. Then, from the two obtained output values, the linear characteristic of the load detection unit 33, that is, the relationship between the output value and the load in the car 5 is set in the control device 11.
 また、制御装置11は、個々の荷重センサ34からの出力から、個々の懸架体4の張力の異常の有無を監視する。即ち、個々の荷重センサ34からの出力値が閾値以下になると、対応する懸架体4に異常な緩み又は破断が発生したと判定し、外部に報知する。 Further, the control device 11 monitors the presence or absence of an abnormality in the tension of the individual suspension bodies 4 from the outputs from the individual load sensors 34. That is, when the output value from each load sensor 34 is equal to or less than the threshold value, it is determined that abnormal loosening or breakage has occurred in the corresponding suspension body 4 and is notified to the outside.
 このような秤装置12では、懸架体4の張力が検出ばね41を介して荷重センサ34に伝達され、かつ検出ばね41のばね定数が支持ばね25のばね定数よりも小さいので、荷重検出部33に用いる荷重センサ34の耐荷重を小さくすることができる。このため、比較的安価な荷重センサ34を用いることができ、コストを低減することができる。 In such a scale device 12, the tension of the suspension body 4 is transmitted to the load sensor 34 via the detection spring 41, and the spring constant of the detection spring 41 is smaller than the spring constant of the support spring 25. It is possible to reduce the load resistance of the load sensor 34 used in the above. For this reason, the relatively inexpensive load sensor 34 can be used, and the cost can be reduced.
 例えば、手で伸縮させることができる軟らかさの検出ばね41を用いると、荷重センサ34に作用する荷重は数kg程度に抑えることができ、荷重センサ34の耐荷重を小さくし、低コスト化が可能である。 For example, when a soft detection spring 41 that can be expanded and contracted by hand is used, the load acting on the load sensor 34 can be suppressed to about several kg, the load resistance of the load sensor 34 can be reduced, and the cost can be reduced. Is possible.
 また、荷重センサ34を交換する際には、懸架体4の張力を抜くことなく、検出ばね41を外すだけで済むため、荷重センサ34の交換を容易にすることができる。 Further, when the load sensor 34 is replaced, it is only necessary to remove the detection spring 41 without releasing the tension of the suspension body 4, so that the load sensor 34 can be easily replaced.
 さらに、検出ばね41の引張力と同方向への力を荷重センサ34に付加することにより、かご5のオーバーロードを検出するかどうかの検査を行うことができるため、荷重センサ34の検査を容易にすることができる。即ち、かご積載荷重を擬似的に増減させることができ、オーバーロードにおける動作の確認など、荷重センサ34の健全性を確認できる。また、検査結果に基づいて、荷重センサ34を校正することもできる。 Further, by adding a force in the same direction as the tensile force of the detection spring 41 to the load sensor 34, it is possible to inspect whether or not the car 5 is overloaded, so that the load sensor 34 can be easily inspected. Can be. That is, the car load can be increased or decreased in a pseudo manner, and the soundness of the load sensor 34 can be confirmed, such as confirmation of the operation in overload. Further, the load sensor 34 can be calibrated based on the inspection result.
 例えば、検出ばね41の第2の端部をアイナット40から外し、検出ばね41の第2の端部に検査用おもりを引っ掛けることにより、オーバーロードに相当する荷重を荷重センサ34に付加することができる。オーバーロードに相当する荷重は、オーバーロード時の支持ばね25の変位Xsを求めておき、変位Xsに検出ばね41のばね定数Kを掛けた荷重K×Xsとすることができる。 For example, the load corresponding to the overload can be applied to the load sensor 34 by removing the second end of the detection spring 41 from the eye nut 40 and hooking the inspection weight on the second end of the detection spring 41. it can. The load corresponding to the overload can be a load K × Xs obtained by obtaining the displacement Xs of the support spring 25 at the time of overload and multiplying the displacement Xs by the spring constant K of the detection spring 41.
 なお、センサ板38の検出ばね41とは異なる位置に荷重K×Xsを付加する場合には、位置の違いによる補正を荷重K×Xsに加える必要がある。 In addition, when adding the load K × Xs to a position different from the detection spring 41 of the sensor plate 38, it is necessary to add correction due to the difference in position to the load K × Xs.
 また、検出ばね41に変位Xsを与えることでも、荷重センサ34の検査を行うことができる。 Also, the load sensor 34 can be inspected by giving a displacement Xs to the detection spring 41.
 さらにまた、荷重センサ34と検出ばね41とが1:1で対応しているため、個々の懸架体4の張力の異常を検出することができる。これにより、どの懸架体4に緩み又は破断が生じているかを判定することもできる。 Furthermore, since the load sensor 34 and the detection spring 41 correspond in a 1: 1 ratio, an abnormality in the tension of the individual suspension bodies 4 can be detected. This makes it possible to determine which suspension body 4 is loosened or broken.
 また、センサ板38に歪みゲージ39を貼り付けた荷重センサ34を用いたので、荷重検出部33を安価に構成することができる。 Further, since the load sensor 34 having the strain gauge 39 attached to the sensor plate 38 is used, the load detection unit 33 can be configured at low cost.
 図6は実施の形態1による秤装置12が適用されるエレベータの第2の例を示す概略の構成図である。この例では、巻上機2が昇降路1内の下部に配置されている。昇降路1内の上部には、第1の返し車13及び第2の返し車14が配置されている。懸架体4は、第1の端部側から順に、かご吊り車7、第1の返し車13、駆動シーブ3、第2の返し車14、及び釣合おもり吊り車8に巻き掛けられている。他の構成は、第1の例と同様である。 FIG. 6 is a schematic configuration diagram showing a second example of an elevator to which the scale device 12 according to the first embodiment is applied. In this example, the hoisting machine 2 is arranged in the lower part in the hoistway 1. A first return wheel 13 and a second return wheel 14 are arranged in the upper part of the hoistway 1. The suspension body 4 is wound around the car suspension wheel 7, the first return wheel 13, the drive sheave 3, the second return wheel 14, and the counterweight suspension wheel 8 in order from the first end side. . Other configurations are the same as those of the first example.
 このように、巻上機2が昇降路1内の下部に配置されている2:1ローピング方式のエレベータにも、実施の形態1の秤装置12を適用することができる。 Thus, the scale device 12 of the first embodiment can also be applied to a 2: 1 roping elevator in which the hoist 2 is disposed in the lower part of the hoistway 1.
 図7は実施の形態1による秤装置12が適用されるエレベータの第3の例を示す概略の構成図である。この例では、巻上機2及び制御装置11が、昇降路1の上部に設けられている機械室15に設置されている。 FIG. 7 is a schematic configuration diagram showing a third example of an elevator to which the scale device 12 according to the first embodiment is applied. In this example, the hoisting machine 2 and the control device 11 are installed in a machine room 15 provided in the upper part of the hoistway 1.
 懸架体4の第1の端部は、第1の綱止め9を介して、かご5の上部に接続されている。懸架体4の第2の端部は、第2の綱止め10を介して釣合おもり6の上部に接続されている。秤装置12は、かご5の上部に設けられている。 The first end of the suspension body 4 is connected to the upper part of the car 5 via the first rope stopper 9. The second end of the suspension body 4 is connected to the upper portion of the counterweight 6 via the second rope stop 10. The scale device 12 is provided on the upper part of the car 5.
 図8は図7の第1の綱止め9及び秤装置12を示す正面図である。懸架体4の第1の端部がかご5の上部に接続されているエレベータでは、秤装置12の構成は、図8に示すように、図2の構成とは上下反対である。 FIG. 8 is a front view showing the first leash 9 and the scale device 12 of FIG. In an elevator in which the first end of the suspension 4 is connected to the upper part of the car 5, the configuration of the scale device 12 is upside down as shown in FIG.
 実施の形態2.
 次に、図9はこの発明の実施の形態2によるエレベータの秤装置を示す正面図である。実施の形態2では、各シャックルロッド22の上端部に、平板状の支持部材42が水平に固定されている。各支持部材42には、対応するシャックルロッド22が貫通している。また、各支持部材42は、2個のナット26の間に挟まれてシャックルロッド22に対して固定されている。
Embodiment 2. FIG.
Next, FIG. 9 is a front view showing an elevator weighing apparatus according to Embodiment 2 of the present invention. In the second embodiment, a flat support member 42 is horizontally fixed to the upper end portion of each shackle rod 22. A corresponding shackle rod 22 passes through each support member 42. Each support member 42 is sandwiched between the two nuts 26 and fixed to the shackle rod 22.
 各荷重センサ34は、対応する支持部材42にねじ35により固定されている。ベース21には、荷重センサ34と同数のアイボルト43が固定されている。各アイボルト43は、対応する荷重センサ34の第2の端部の真下に配置されている。 Each load sensor 34 is fixed to a corresponding support member 42 with a screw 35. The same number of eyebolts 43 as the load sensors 34 are fixed to the base 21. Each eyebolt 43 is disposed directly below the second end of the corresponding load sensor 34.
 各検出ばね41の第1の端部は、対応する荷重センサ34に接続されている。各検出ばね41の第2の端部は、対応するアイボルト43に接続されている。実施の形態1では、各検出ばね41と対応する支持ばね25とが上下に並べて配置されていたが、実施の形態2では、各検出ばね41と対応する支持ばね25とが横方向に並べて配置されている。 The first end of each detection spring 41 is connected to the corresponding load sensor 34. The second end of each detection spring 41 is connected to the corresponding eyebolt 43. In the first embodiment, the detection springs 41 and the corresponding support springs 25 are arranged one above the other. In the second embodiment, each detection spring 41 and the corresponding support springs 25 are arranged in the horizontal direction. Has been.
 実施の形態2の秤装置は、支持部材42、アイボルト43、荷重検出部33、及び検出ばね41を有している。 The scale device of the second embodiment includes a support member 42, an eyebolt 43, a load detection unit 33, and a detection spring 41.
 かご5内の質量の変動によりシャックルロッド22が上下方向へ変位すると、荷重センサ34もシャックルロッド22と一体に上下方向へ変位する。これにより、検出ばね41が伸縮し、センサ板38に付加される引張力が変化し、センサ板38の歪み量が変化する。他の構成及び動作は、実施の形態1と同様である。 When the shackle rod 22 is displaced in the vertical direction due to a change in the mass in the car 5, the load sensor 34 is also displaced in the vertical direction integrally with the shackle rod 22. As a result, the detection spring 41 expands and contracts, the tensile force applied to the sensor plate 38 changes, and the strain amount of the sensor plate 38 changes. Other configurations and operations are the same as those in the first embodiment.
 このような秤装置によっても、実施の形態1と同様の効果を得ることができる。また、各検出ばね41と対応する支持ばね25とが横方向に並べて配置されているので、第1の綱止め9と秤装置との合計の高さを低く抑えることができる。これにより、エレベータのオーバーヘッド寸法を短縮することもできる。 Even with such a weighing device, the same effect as in the first embodiment can be obtained. In addition, since the detection springs 41 and the corresponding support springs 25 are arranged side by side in the horizontal direction, the total height of the first rope stopper 9 and the weighing device can be kept low. Thereby, the overhead dimension of an elevator can also be shortened.
 なお、実施の形態2の秤装置についても、例えば図1、6、7に示したようなエレベータに適用できる。 Note that the weighing apparatus according to the second embodiment can also be applied to an elevator as shown in FIGS.
 実施の形態3.
 次に、図10はこの発明の実施の形態3によるエレベータの秤装置を示す正面図、図11は図10の秤装置を示す平面図である。支持部材32の検出ばね41とは反対側の面には、検出ばね41と同数の矩形の凹部32aが設けられている。凹部32aの底部の一部、即ち中央には、矩形の貫通孔32bが設けられている。各貫通孔32bは、対応する検出ばね41の真上に配置されている。
Embodiment 3 FIG.
Next, FIG. 10 is a front view showing an elevator weighing apparatus according to Embodiment 3 of the present invention, and FIG. 11 is a plan view showing the weighing apparatus of FIG. The same number of rectangular recesses 32 a as the detection springs 41 are provided on the surface of the support member 32 opposite to the detection springs 41. A rectangular through hole 32b is provided in a part of the bottom of the recess 32a, that is, in the center. Each through-hole 32b is disposed immediately above the corresponding detection spring 41.
 荷重検出部33は、懸架体4と同数の荷重センサ44を有している。各荷重センサ44は、対応する凹部32aに収容されている。また、各荷重センサ44は、金属製のセンサ板45と、センサ板45に設けられている歪みゲージ46とを有している。各センサ板45には、アイボルト43を介して、検出ばね41の第1の端部が接続されている。 The load detection unit 33 has the same number of load sensors 44 as the suspension body 4. Each load sensor 44 is accommodated in the corresponding recess 32a. Each load sensor 44 includes a metal sensor plate 45 and a strain gauge 46 provided on the sensor plate 45. A first end of a detection spring 41 is connected to each sensor plate 45 via an eyebolt 43.
 図12は図11の荷重センサ44を拡大して示す平面図である。センサ板45は、貫通孔32bを囲むように凹部32aの底部に載せられている環状の定置部45aと、貫通孔32bに臨んでいる島状の可動部45bと、可動部45bの外周の一部を定置部45aに接続している繋ぎ部45cとを有している。 FIG. 12 is an enlarged plan view showing the load sensor 44 of FIG. The sensor plate 45 includes an annular stationary portion 45a placed on the bottom of the recess 32a so as to surround the through-hole 32b, an island-shaped movable portion 45b facing the through-hole 32b, and an outer periphery of the movable portion 45b. A connecting portion 45c connecting the portion to the stationary portion 45a.
 可動部45bの中央には、ねじ孔45dが設けられている。ねじ孔45dには、アイボルト43がねじ込まれる。即ち、可動部45bは、検出ばね41からの引張力を受ける。歪みゲージ46は、繋ぎ部45cに設けられている。 A screw hole 45d is provided at the center of the movable portion 45b. An eyebolt 43 is screwed into the screw hole 45d. That is, the movable part 45 b receives a tensile force from the detection spring 41. The strain gauge 46 is provided in the connecting portion 45c.
 検出ばね41が伸縮し、可動部45bに付加される引張力が変化すると、繋ぎ部45cの歪み量が変化する。他の構成及び動作は、実施の形態1と同様である。 When the detection spring 41 expands and contracts and the tensile force applied to the movable portion 45b changes, the strain amount of the connecting portion 45c changes. Other configurations and operations are the same as those in the first embodiment.
 このような秤装置によっても、実施の形態1と同様の効果を得ることができる。また、荷重センサ44は、凹部32a内に置かれているだけで、支持部材32に締結されていないため、組み付けを容易にすることができるとともに、部品点数を削減することができる。 Even with such a weighing device, the same effect as in the first embodiment can be obtained. Further, since the load sensor 44 is merely placed in the recess 32a and is not fastened to the support member 32, the load sensor 44 can be easily assembled and the number of parts can be reduced.
 なお、実施の形態3の秤装置についても、例えば図1、6、7に示したようなエレベータに適用できる。但し、図7に示したエレベータに適用する場合、支持部材32に対して荷重センサ44を固定する必要がある。
 また、実施の形態2の支持部材42を検出ばね41の真上まで延長すれば、実施の形態3の荷重センサ44を実施の形態2の秤装置に適用することもできる。
The scale device according to the third embodiment can also be applied to an elevator as shown in FIGS. However, when applied to the elevator shown in FIG. 7, it is necessary to fix the load sensor 44 to the support member 32.
Further, if the support member 42 of the second embodiment is extended to a position directly above the detection spring 41, the load sensor 44 of the third embodiment can be applied to the scale device of the second embodiment.
 実施の形態4.
 次に、図13はこの発明の実施の形態4によるエレベータの秤装置を示す正面図である。実施の形態4では、各検出ばね41と対応するアイナット40との間に、ロッド接続具としてのS字金具47が介在している。
Embodiment 4 FIG.
Next, FIG. 13 is a front view showing an elevator weighing apparatus according to Embodiment 4 of the present invention. In the fourth embodiment, an S-shaped metal fitting 47 as a rod connector is interposed between each detection spring 41 and the corresponding eye nut 40.
 S字金具47は、検出ばね41に対するシャックルロッド22の回転を許容する。即ち、シャックルロッド22がその軸線を中心として回転しても、その回転がS字金具47で吸収され検出ばね41には伝達されない。 The S-shaped bracket 47 allows the shackle rod 22 to rotate with respect to the detection spring 41. That is, even if the shackle rod 22 rotates about its axis, the rotation is absorbed by the S-shaped metal fitting 47 and is not transmitted to the detection spring 41.
 各センサ板38の第2の端部には、ねじ48により、コ字形の接続金具49の第1の端部が接続されている。各接続金具49の第2の端部には、アイボルト43が接続されている。各検出ばね41の第1の端部は、アイボルト43に接続されている。他の構成及び動作は、実施の形態1と同様である。 The first end of a U-shaped connection fitting 49 is connected to the second end of each sensor plate 38 by a screw 48. An eye bolt 43 is connected to the second end of each connection fitting 49. A first end of each detection spring 41 is connected to the eyebolt 43. Other configurations and operations are the same as those in the first embodiment.
 このような秤装置によっても、実施の形態1と同様の効果を得ることができる。また、アイナット40と検出ばね41との間にS字金具47を介在させたので、シャックルロッド22が回転しても、検出ばね41が捻られることがなく、荷重センサ34の検出精度を向上させることができる。さらに、据付時にアイナット40及び検出ばね41の角度を気にする必要がなくなり、据付性を向上させることができる。 Even with such a weighing device, the same effect as in the first embodiment can be obtained. Further, since the S-shaped metal fitting 47 is interposed between the eye nut 40 and the detection spring 41, the detection spring 41 is not twisted even when the shackle rod 22 rotates, and the detection accuracy of the load sensor 34 is improved. be able to. Furthermore, it is not necessary to worry about the angles of the eyenut 40 and the detection spring 41 during installation, and the installation can be improved.
 また、検出ばね41と荷重センサ34との間に接続金具49及びアイボルト43を介在させたので、シャックルロッド22の回転が荷重センサ34に伝達されるのをより確実に防止することができる。 Further, since the connection fitting 49 and the eyebolt 43 are interposed between the detection spring 41 and the load sensor 34, the rotation of the shackle rod 22 can be more reliably prevented from being transmitted to the load sensor 34.
 なお、実施の形態4の秤装置についても、例えば図1、6、7に示したようなエレベータに適用できる。
 また、実施の形態2のセンサ板38と検出ばね41との間に、S字金具47を介在させてもよい。
 さらに、実施の形態4の荷重センサ34を実施の形態3の荷重センサ44と置き換えてもよい。
 さらにまた、シャックルロッド22の回転を許容するロッド接続具は、S字金具47に限定されず、例えば回転を許容する継ぎ手であってもよい。
The scale device according to the fourth embodiment can be applied to an elevator as shown in FIGS.
Further, an S-shaped metal fitting 47 may be interposed between the sensor plate 38 and the detection spring 41 of the second embodiment.
Furthermore, the load sensor 34 according to the fourth embodiment may be replaced with the load sensor 44 according to the third embodiment.
Furthermore, the rod connector that allows rotation of the shackle rod 22 is not limited to the S-shaped bracket 47, and may be a joint that allows rotation, for example.
 また、実施の形態4では、各荷重センサ34に1つの歪みゲージ39を設けたが、図14に示すように、2つの歪みゲージ39を設けてもよい。この場合、歪みゲージ39は、センサ板38の同じ位置の表裏に配置される。
 このような構成では、2つの歪みゲージ39からの信号を制御装置11で比較することにより、歪みゲージ39の故障を検出することができる。例えば、2つの歪みゲージ39の出力の絶対値の差が閾値以上となると、制御装置11は、歪みゲージ39のいずれかが故障していると判定する。
In the fourth embodiment, one strain gauge 39 is provided for each load sensor 34. However, as shown in FIG. 14, two strain gauges 39 may be provided. In this case, the strain gauges 39 are arranged on the front and back of the sensor plate 38 at the same position.
In such a configuration, a failure of the strain gauge 39 can be detected by comparing the signals from the two strain gauges 39 by the control device 11. For example, when the difference between the absolute values of the outputs of the two strain gauges 39 is equal to or greater than the threshold value, the control device 11 determines that one of the strain gauges 39 has failed.
 なお、実施の形態1~3についても、1つのセンサ板38又は45に2つの歪みゲージ39又は46を設けてもよい。 In the first to third embodiments, two strain gauges 39 or 46 may be provided on one sensor plate 38 or 45.
 実施の形態5.
 次に、図15はこの発明の実施の形態5によるエレベータの秤装置を示す正面図、図16は図15の秤装置を示す平面図である。支柱31a,31b上には、固定板51が水平に固定されている。固定板51には、検出ばね41を通す複数の貫通孔51aが設けられている。
Embodiment 5 FIG.
15 is a front view showing an elevator weighing apparatus according to Embodiment 5 of the present invention, and FIG. 16 is a plan view showing the weighing apparatus of FIG. A fixing plate 51 is fixed horizontally on the columns 31a and 31b. The fixed plate 51 is provided with a plurality of through holes 51a through which the detection spring 41 is passed.
 固定板51上には、平板状の支持部材52が設けられている。支持部材52には、検出ばね41を通す複数の貫通孔52aが設けられている。荷重センサ34は、支持部材52に取り付けられている。各検出ばね41は、貫通孔52aを通して、対応する荷重センサ34に接続されている。 On the fixed plate 51, a flat support member 52 is provided. The support member 52 is provided with a plurality of through holes 52a through which the detection spring 41 is passed. The load sensor 34 is attached to the support member 52. Each detection spring 41 is connected to the corresponding load sensor 34 through the through hole 52a.
 支持部材52には、駆動機構としての一対の調整ボルト53がねじ込まれている。調整ボルト53の先端部は、固定板51に当たっている。支持部材52は、調整ボルト53を回転させることにより上下動可能になっている。即ち、支持部材52は、検出ばね41の伸縮方向へ移動可能である。調整ボルト53は、支持部材52を移動させて複数の検出ばね41を同時に伸縮させる。他の構成及び動作は、実施の形態1と同様である。 The support member 52 is screwed with a pair of adjustment bolts 53 as a drive mechanism. The tip of the adjustment bolt 53 is in contact with the fixing plate 51. The support member 52 can be moved up and down by rotating the adjustment bolt 53. In other words, the support member 52 is movable in the extending and contracting direction of the detection spring 41. The adjustment bolt 53 moves the support member 52 to simultaneously expand and contract the plurality of detection springs 41. Other configurations and operations are the same as those in the first embodiment.
 このような秤装置によっても、実施の形態1と同様の効果を得ることができる。また、調整ボルト53により支持部材52を移動させて全ての検出ばね41を同時に伸縮させることができる。このため、ばね定数が大きく、手で伸ばせない検出ばね41を用いる場合でも、荷重センサ34とアイナット40との間に検出ばね41を容易に接続することができる。また、全ての荷重センサ34にオーバーロード相当の負荷を擬似的、かつ同時に与えることができ、荷重センサ34の検査を容易に行うことができる。 Even with such a weighing device, the same effect as in the first embodiment can be obtained. In addition, all the detection springs 41 can be expanded and contracted simultaneously by moving the support member 52 with the adjusting bolt 53. For this reason, even when the detection spring 41 that has a large spring constant and cannot be extended by hand is used, the detection spring 41 can be easily connected between the load sensor 34 and the eyenut 40. Further, a load corresponding to overload can be applied to all the load sensors 34 in a pseudo and simultaneous manner, and the load sensors 34 can be easily inspected.
 なお、実施の形態5の秤装置についても、例えば図1、6、7に示したようなエレベータに適用できる。
 また、実施の形態5の支持部材52と駆動機構とを実施の形態3、4に適用してもよい。
Note that the weighing apparatus according to the fifth embodiment can also be applied to an elevator as shown in FIGS.
Further, the support member 52 and the drive mechanism of the fifth embodiment may be applied to the third and fourth embodiments.
 実施の形態6.
 次に、図17はこの発明の実施の形態6によるエレベータの秤装置の要部を示す正面図である。実施の形態6では、荷重付加機構として、荷重センサ34と同数(図17では1つのみ示す)の検査ボルト54が支持部材32にねじ込まれている。また、各接続金具49の下端部が、対応する検査ボルト54の真下まで延長されている。
Embodiment 6 FIG.
Next, FIG. 17 is a front view showing an essential part of an elevator scale device according to Embodiment 6 of the present invention. In the sixth embodiment, the same number of inspection bolts 54 as the load sensor 34 (only one is shown in FIG. 17) is screwed into the support member 32 as a load adding mechanism. Further, the lower end portion of each connection fitting 49 is extended to a position directly below the corresponding inspection bolt 54.
 検査ボルト54は、通常時は接続金具49から離れている。また、検査ボルト54は、検出ばね41による引張力と同方向へねじ込み可能である。荷重センサ34の検査時には、検査ボルト54をねじ込んで接続金具49を押すことにより、検出ばね41による引張力と同方向への荷重が荷重センサ34に付加される。他の構成及び動作は、実施の形態4と同様である。 The inspection bolt 54 is separated from the connection fitting 49 in normal times. Further, the inspection bolt 54 can be screwed in the same direction as the tensile force by the detection spring 41. When the load sensor 34 is inspected, a load in the same direction as the tensile force of the detection spring 41 is applied to the load sensor 34 by screwing the inspection bolt 54 and pushing the connection fitting 49. Other configurations and operations are the same as those in the fourth embodiment.
 このような秤装置によっても、実施の形態4と同様の効果を得ることができる。また、簡単な構成により、荷重センサ34毎に検査を容易に行うことができる。 Even with such a weighing apparatus, the same effect as in the fourth embodiment can be obtained. Further, the inspection can be easily performed for each load sensor 34 with a simple configuration.
 また、例えば図18に示すように、検査ボルト54の通常時の回転位置と検査時の回転位置とが分かるように、支持部材32及び検査ボルト54の頭に目印を付けておけば、荷重センサ34の検査をさらに容易に行うことができる。 Further, for example, as shown in FIG. 18, if a mark is attached to the head of the support member 32 and the inspection bolt 54 so that the normal rotation position of the inspection bolt 54 and the rotation position at the time of inspection can be understood, the load sensor 34 inspections can be performed more easily.
 さらに、例えば据付時に、ノーロード状態とフルロード状態とで、検査ボルト54の先端が接続金具49に接触する検査ボルト54の回転位置及び荷重センサ34の出力とを記録しておけば、荷重センサ34の検査及び校正をさらに容易に行うことができる。 Further, for example, if the rotation position of the inspection bolt 54 where the tip of the inspection bolt 54 contacts the connection fitting 49 and the output of the load sensor 34 are recorded in the no-load state and the full-load state at the time of installation, the load sensor 34 is recorded. Inspection and calibration can be performed more easily.
 実施の形態7.
 次に、図19はこの発明の実施の形態7によるエレベータの秤装置の要部を示す正面図である。実施の形態7では、接続金具49におもり接続部55が設けられている。おもり接続部55としては、アイボルト43と同様のアイボルトを用いることができる。また、実施の形態7では、実施の形態6の検査ボルト54の代わりに、荷重付加機構としての検査おもり56がおもり接続部55に接続される。他の構成及び動作は、実施の形態4と同様である。
Embodiment 7 FIG.
Next, FIG. 19 is a front view showing an essential part of an elevator scale device according to Embodiment 7 of the present invention. In the seventh embodiment, the connection fitting 49 is provided with a weight connection portion 55. An eye bolt similar to the eye bolt 43 can be used as the weight connection portion 55. Further, in the seventh embodiment, instead of the inspection bolt 54 of the sixth embodiment, an inspection weight 56 as a load adding mechanism is connected to the weight connection portion 55. Other configurations and operations are the same as those in the fourth embodiment.
 このような秤装置によっても、実施の形態4と同様の効果を得ることができる。また、簡単な構成により、荷重センサ34毎に検査を容易に行うことができる。 Even with such a weighing apparatus, the same effect as in the fourth embodiment can be obtained. Further, the inspection can be easily performed for each load sensor 34 with a simple configuration.
 なお、実施の形態3のアイボルト43をおもり接続部として利用し、検査おもり56を接続してもよい。 Note that the inspection weight 56 may be connected using the eyebolt 43 of the third embodiment as a weight connection portion.
 実施の形態8.
 次に、図20はこの発明の実施の形態8によるエレベータの秤装置を示す正面図、図21は図20の秤装置を真上から見たときの支持ばね25、荷重センサ34、及び検出ばね41のレイアウトの一例を示す説明図である。
Embodiment 8 FIG.
Next, FIG. 20 is a front view showing an elevator weighing apparatus according to Embodiment 8 of the present invention, and FIG. 21 is a support spring 25, a load sensor 34, and a detection spring when the weighing apparatus of FIG. 20 is viewed from directly above. It is explanatory drawing which shows an example of the layout of 41. FIG.
 実施の形態1~7では、検出ばね41と荷重センサ34とが1:1で対応していたが、実施の形態8では、各荷重センサ34に複数の検出ばね41が接続されている。具体的には、荷重検出部33は、2個の荷重センサ34を有している。そして、一方の荷重センサ34には、2つの検出ばね41が接続されている。また、他方の荷重センサ34には、3つの検出ばね41が接続されている。他の構成及び動作は、実施の形態4と同様である。 In the first to seventh embodiments, the detection spring 41 and the load sensor 34 correspond 1: 1, but in the eighth embodiment, a plurality of detection springs 41 are connected to each load sensor 34. Specifically, the load detection unit 33 has two load sensors 34. Two load springs 41 are connected to one load sensor 34. In addition, three detection springs 41 are connected to the other load sensor 34. Other configurations and operations are the same as those in the fourth embodiment.
 このような秤装置では、荷重センサ34の数を削減して、低コスト化を図ることができる。また、個々の懸架体4の張力を検出することはできないが、張力変化が大きい懸架体4の破断は検出することができる。 In such a weighing apparatus, the number of load sensors 34 can be reduced to reduce the cost. Moreover, although the tension | tensile_strength of each suspension body 4 cannot be detected, the fracture | rupture of the suspension body 4 with a large tension | tensile_strength change can be detected.
 なお、実施の形態8の秤装置についても、例えば図1、6、7に示したようなエレベータに適用できる。
 また、実施の形態1~3、5~7の秤装置について、実施の形態8と同様にして荷重センサ34の数を減らしてもよい。
 さらに、荷重センサ34の数は、1個又は3個以上であってもよい。
The scale device according to the eighth embodiment can also be applied to an elevator as shown in FIGS.
Further, in the weighing devices of the first to third embodiments and the fifth to seventh embodiments, the number of load sensors 34 may be reduced as in the eighth embodiment.
Furthermore, the number of load sensors 34 may be one or three or more.
 実施の形態9.
 次に、図22はこの発明の実施の形態9によるエレベータの秤装置を示す正面図である。実施の形態9では、各検出ばね41が、コ字形の支持ばね接続具57及びアイボルト43を介して、対応する支持ばね25に接続されている。支持ばね接続具57は、ばね座24とナット26との間に挟まれて、支持ばね25の可動側端部に接続されている。
Embodiment 9 FIG.
Next, FIG. 22 is a front view showing an elevator weighing apparatus according to Embodiment 9 of the present invention. In the ninth embodiment, each detection spring 41 is connected to a corresponding support spring 25 via a U-shaped support spring connector 57 and an eyebolt 43. The support spring connector 57 is sandwiched between the spring seat 24 and the nut 26 and connected to the movable side end of the support spring 25.
 また、各支持ばね接続具57は、第1の水平部57aと、第1の水平部57aの上方で第1の水平部57aに対向する第2の水平部57bと、第1の水平部57aと第2の水平部57bとを繋ぐ垂直部57cとを有している。第1の水平部57aは、ばね座24とナット26との間に介在している。 Each support spring connector 57 includes a first horizontal portion 57a, a second horizontal portion 57b facing the first horizontal portion 57a above the first horizontal portion 57a, and a first horizontal portion 57a. And a vertical portion 57c that connects the second horizontal portion 57b. The first horizontal portion 57 a is interposed between the spring seat 24 and the nut 26.
 アイボルト43は、第2の水平部57bにねじ込まれて固定されている。検出ばね41の第2の端部は、アイボルト43に掛けられている。これにより、検出ばね41は、シャックルロッド22を介さず、支持ばね25の伸縮に応じて伸縮する。他の構成及び動作は、実施の形態1と同様である。 The eyebolt 43 is fixed by being screwed into the second horizontal portion 57b. A second end of the detection spring 41 is hung on the eyebolt 43. As a result, the detection spring 41 expands and contracts according to the expansion and contraction of the support spring 25 without using the shackle rod 22. Other configurations and operations are the same as those in the first embodiment.
 このような秤装置では、支持ばね25に対するシャックルロッド22の上下方向位置によらず、支持ばね25の伸縮と検出ばね41の伸縮とが直接対応している。このため、懸架体4の設置前にゼロ点補正を実施するか、又は検出ばね41に力がかかる直前の位置関係にしておくことにより、懸架体4の張力の絶対値を計測することが可能となる。 In such a scale device, the expansion and contraction of the support spring 25 and the expansion and contraction of the detection spring 41 directly correspond to each other regardless of the vertical position of the shackle rod 22 with respect to the support spring 25. For this reason, it is possible to measure the absolute value of the tension of the suspension body 4 by performing zero point correction before the suspension body 4 is installed or by setting the positional relationship immediately before the force is applied to the detection spring 41. It becomes.
 実施の形態10.
 次に、図23はこの発明の実施の形態10によるエレベータの秤装置を示す正面図である。実施の形態10では、第2の水平部57bの長さが第1の水平部57aの長さよりも短い。即ち、第2の水平部57bの垂直部57cからの突出量が、第1の水平部57aの垂直部57cからの突出量よりも小さくなっている。これにより、真上から見て、第2の水平部57bは、シャックルロッド22と重ならないようになっている。
Embodiment 10 FIG.
Next, FIG. 23 is a front view showing an elevator weighing apparatus according to Embodiment 10 of the present invention. In the tenth embodiment, the length of the second horizontal portion 57b is shorter than the length of the first horizontal portion 57a. That is, the protruding amount of the second horizontal portion 57b from the vertical portion 57c is smaller than the protruding amount of the first horizontal portion 57a from the vertical portion 57c. As a result, the second horizontal portion 57b does not overlap the shackle rod 22 when viewed from directly above.
 また、アイボルト43は、シャックルロッド22の真上からずれた位置に配置されている。これにより、各検出ばね41の支持ばね接続具57に対する接続位置は、対応するシャックルロッド22の真上から外れた位置となっている。一方、検出ばね41の第1の端部は、シャックルロッド22の真上でセンサ板38に接続されている。このため、各検出ばね41は、傾いて配置されている。 Further, the eyebolt 43 is disposed at a position shifted from directly above the shackle rod 22. Thereby, the connection position of each detection spring 41 with respect to the support spring connector 57 is a position deviated from directly above the corresponding shackle rod 22. On the other hand, the first end of the detection spring 41 is connected to the sensor plate 38 directly above the shackle rod 22. For this reason, each detection spring 41 is inclined and arranged.
 実施の形態9では、シャックルロッド22の上下方向位置を調整するためのスペースを確保するため、支持ばね接続具57の上下方向寸法を十分に確保している。これに対して、実施の形態10では、シャックルロッド22の上下方向位置を調整しても支持ばね接続具57と干渉しないため、支持ばね接続具57の上下方向寸法を小さくすることができる。これにより、秤装置の高さ寸法を抑えることができる。 In the ninth embodiment, the vertical dimension of the support spring connector 57 is sufficiently secured in order to secure a space for adjusting the vertical position of the shackle rod 22. On the other hand, in the tenth embodiment, even if the vertical position of the shackle rod 22 is adjusted, it does not interfere with the support spring connector 57, so that the vertical dimension of the support spring connector 57 can be reduced. Thereby, the height dimension of the scale device can be suppressed.
 また、シャックルロッド22に軸回りの回転が生じても、検出ばね41の長さが変化せず、シャックルロッド22の回転による誤差が発生しない。 Also, even if the shackle rod 22 rotates about its axis, the length of the detection spring 41 does not change, and an error due to the rotation of the shackle rod 22 does not occur.
 なお、実施の形態9及び10の秤装置についても、例えば図1、6、7に示したようなエレベータに適用できる。
 また、実施の形態2、3、5~7の秤装置について、実施の形態9又は10の支持ばね接続具57を適用してもよい。
Note that the weighing devices according to the ninth and tenth embodiments can also be applied to an elevator as shown in FIGS.
Further, the support spring connector 57 of the ninth or tenth embodiment may be applied to the scale devices of the second, third, fifth, and seventh embodiments.
 実施の形態11.
 次に、図24はこの発明の実施の形態11によるエレベータの秤装置を示す正面図である。実施の形態1~10では、検出ばね41として引張ばねを用いたが、実施の形態11では、弾性体である検出ばね61が圧縮ばねとして機能している。検出ばね61としては、互いに同サイズで同じばね定数のコイルばねが用いられている。検出ばね61のばね定数は、支持ばね25のばね定数よりも小さい。
Embodiment 11 FIG.
Next, FIG. 24 is a front view showing an elevator weighing apparatus according to Embodiment 11 of the present invention. In the first to tenth embodiments, a tension spring is used as the detection spring 41. However, in the eleventh embodiment, the detection spring 61, which is an elastic body, functions as a compression spring. As the detection spring 61, coil springs having the same size and the same spring constant are used. The spring constant of the detection spring 61 is smaller than the spring constant of the support spring 25.
 各検出ばね61は、予め圧縮された状態で、上部接続具62と下部接続具63との間に挟まれている。各上部接続具62は、対応するセンサ板38の第2の端部に接続されている。各下部接続具63には、対応するシャックルロッド22のねじ部がねじ込まれている。 Each detection spring 61 is sandwiched between the upper connector 62 and the lower connector 63 in a pre-compressed state. Each upper connector 62 is connected to the second end of the corresponding sensor plate 38. The threaded portion of the corresponding shackle rod 22 is screwed into each lower connector 63.
 懸架体4に作用する荷重が大きくなると、支持ばね25が圧縮される。このとき、検出ばね61の圧縮量は減少する。即ち、検出ばね61は伸びる。逆に、懸架体4に作用する荷重が小さくなると、支持ばね25の圧縮量が小さくなり、検出ばね61の圧縮量が増大する。他の構成及び動作は、実施の形態1と同様である。 When the load acting on the suspension body 4 increases, the support spring 25 is compressed. At this time, the compression amount of the detection spring 61 decreases. That is, the detection spring 61 extends. Conversely, when the load acting on the suspension body 4 is reduced, the compression amount of the support spring 25 is reduced and the compression amount of the detection spring 61 is increased. Other configurations and operations are the same as those in the first embodiment.
 このように、検出ばね61として圧縮ばねを用いても、実施の形態1と同様の効果を得ることができる。 Thus, even if a compression spring is used as the detection spring 61, the same effect as in the first embodiment can be obtained.
 なお、実施の形態11の秤装置についても、例えば図1、6、7に示したようなエレベータに適用できる。
 また、実施の形態2~10の構成においても、引張ばねを圧縮ばねに置き換えることも可能である。但し、圧縮ばねを用いる場合、検出ばねの両端部を単に引っ掛ける構成のままだと伸縮時に外れることがあるため、伸縮時に外れない構成とする必要がある。
The weighing apparatus according to the eleventh embodiment can also be applied to an elevator as shown in FIGS.
Also in the configurations of Embodiments 2 to 10, the tension spring can be replaced with a compression spring. However, in the case of using a compression spring, if the configuration in which both ends of the detection spring are simply hooked may be removed during expansion / contraction, it is necessary to have a configuration that does not come out during expansion / contraction.
 さらに、荷重センサは、歪みゲージを用いたセンサに限定されるものではなく、例えば圧電素子を用いたセンサであってもよい。
 さらにまた、検出ばねは、コイルばねに限定されるものではなく、例えば板ばねであってもよい。
 また、弾性体は、ばねに限定されるものではなく、例えばゴムであってもよい。
 さらに、秤装置からの信号を用いてかご内の質量を計測する制御装置は、かごの運行を制御する制御装置11から切り離してもよい。また、制御装置は、例えば安全監視装置であってもよい。
 さらにまた、この発明の秤装置を適用するエレベータは、図1、6、7に示したエレベータに限定されるものではなく、この発明は、例えば、機械室を有するエレベータ、ダブルデッキエレベータ、及びワンシャフトダブルカータイプのエレベータにも適用できる。ワンシャフトダブルカータイプのエレベータは、上かごと、上かごの真下に配置された下かごとが、共通の昇降路内を独立して昇降するエレベータである。
Further, the load sensor is not limited to a sensor using a strain gauge, and may be a sensor using a piezoelectric element, for example.
Furthermore, the detection spring is not limited to a coil spring, and may be a leaf spring, for example.
The elastic body is not limited to a spring, and may be rubber, for example.
Furthermore, the control device that measures the mass in the car using a signal from the scale device may be separated from the control device 11 that controls the operation of the car. The control device may be a safety monitoring device, for example.
Furthermore, the elevator to which the weighing apparatus of the present invention is applied is not limited to the elevator shown in FIGS. 1, 6, and 7. For example, the present invention includes an elevator having a machine room, a double deck elevator, It can also be applied to shaft double car type elevators. The one-shaft double-car type elevator is an elevator in which an upper car and a lower car arranged directly below the upper car are lifted and lowered independently in a common hoistway.
 4 懸架体、5 かご、12 秤装置、22 シャックルロッド、25 支持ばね、32,42,52 支持部材、33 荷重検出部、32a 凹部、32b 貫通孔、34,44 荷重センサ、38,45 センサ板、39,46 歪みゲージ、40 アイナット(ロッド接続具)、41,61 検出ばね(弾性体)、45a 定置部、45b 可動部、45c 繋ぎ部、47 S字金具(ロッド接続具)、53 調整ボルト(駆動機構)、54 検査ボルト(荷重付加機構)、55 おもり接続部、56 検査おもり(荷重付加機構)、57 支持ばね接続具。 4 Suspension body, 5 cage, 12 scale device, 22 shackle rod, 25 support spring, 32, 42, 52 support member, 33 load detection part, 32a recess, 32b through hole, 34, 44 load sensor, 38, 45 sensor plate 39,46 strain gauge, 40 eyenut (rod connector), 41, 61 detection spring (elastic body), 45a stationary part, 45b movable part, 45c connecting part, 47 S-shaped bracket (rod connector), 53 adjustment bolt (Drive mechanism), 54 inspection bolt (load addition mechanism), 55 weight connection, 56 inspection weight (load addition mechanism), 57 support spring connector.

Claims (14)

  1.  かごと、前記かごを吊る複数の懸架体と、前記懸架体の端部にそれぞれ設けられており、前記かご内の荷重に応じて伸縮する複数の支持ばねとを備えているエレベータに設けられている秤装置であって、
     支持部材、
     前記支持部材に支持されている荷重検出部、
     前記荷重検出部に接続されており、対応する前記支持ばねの伸縮に応じて伸縮し、前記荷重検出部に力を与える複数の弾性体
     を備え、
     各前記弾性体のばね定数は、前記支持ばねのばね定数よりも小さいエレベータの秤装置。
    A car, a plurality of suspension bodies for suspending the car, and a plurality of support springs provided at end portions of the suspension body and extending and contracting according to a load in the car; A weighing device,
    Support member,
    A load detector supported by the support member;
    A plurality of elastic bodies connected to the load detection unit, extending and contracting according to expansion and contraction of the corresponding support spring, and applying force to the load detection unit;
    An elevator scale device in which a spring constant of each elastic body is smaller than a spring constant of the support spring.
  2.  前記荷重検出部は、複数の荷重センサを有しており、
     前記弾性体と前記荷重センサとは1:1で接続されている請求項1記載のエレベータの秤装置。
    The load detection unit has a plurality of load sensors,
    The elevator scale device according to claim 1, wherein the elastic body and the load sensor are connected at a ratio of 1: 1.
  3.  前記荷重検出部は、複数の前記弾性体が接続されている荷重センサを有している請求項1記載のエレベータの秤装置。 The elevator scale device according to claim 1, wherein the load detection unit includes a load sensor to which a plurality of the elastic bodies are connected.
  4.  前記荷重センサは、前記弾性体が接続されているセンサ板と、前記センサ板に設けられている歪みゲージとを有している請求項2又は請求項3に記載のエレベータの秤装置。 The elevator scale device according to claim 2 or 3, wherein the load sensor includes a sensor plate to which the elastic body is connected, and a strain gauge provided on the sensor plate.
  5.  前記支持部材の前記弾性体とは反対側の面には、凹部が設けられており、
     前記凹部の底部の一部には、貫通孔が設けられており、
     前記センサ板は、
     前記貫通孔の底部に載せられている定置部と、
     前記貫通孔に臨んでおり、前記弾性体からの力を受ける可動部と、
     前記可動部を前記定置部に接続している繋ぎ部とを有しており、
     前記歪みゲージは、前記繋ぎ部に設けられている請求項4記載のエレベータの秤装置。
    A concave portion is provided on a surface of the support member opposite to the elastic body,
    A through hole is provided in a part of the bottom of the recess,
    The sensor plate is
    A stationary part placed on the bottom of the through hole;
    A movable part that faces the through hole and receives a force from the elastic body;
    A connecting portion connecting the movable portion to the stationary portion,
    The elevator strain device according to claim 4, wherein the strain gauge is provided in the connecting portion.
  6.  前記複数の懸架体が接続されている複数のシャックルロッドにそれぞれ接続されている複数のロッド接続具をさらに備え、
     各前記弾性体は、対応する前記ロッド接続具にそれぞれ接続されている請求項1から請求項5までのいずれか1項に記載のエレベータの秤装置。
    A plurality of rod connectors connected respectively to a plurality of shackle rods to which the plurality of suspensions are connected;
    The elevator scale device according to any one of claims 1 to 5, wherein each elastic body is connected to the corresponding rod connector.
  7.  各前記ロッド接続具は、前記シャックルロッドがねじ込まれているアイナットを有している請求項6記載のエレベータの秤装置。 The elevator scale device according to claim 6, wherein each rod connector has an eyenut into which the shackle rod is screwed.
  8.  各前記ロッド接続具は、前記弾性体に対する前記シャックルロッドの回転を許容する請求項6又は請求項7に記載のエレベータの秤装置。 The elevator scale device according to claim 6 or 7, wherein each rod connector allows rotation of the shackle rod with respect to the elastic body.
  9.  各前記支持ばねの可動側の端部に接続されている複数の支持ばね接続具をさらに備え、
     各前記弾性体は、対応する前記支持ばね接続具に接続されている請求項1から請求項5までのいずれか1項に記載のエレベータの秤装置。
    A plurality of support spring connectors connected to the movable side end of each of the support springs;
    The elevator scale device according to any one of claims 1 to 5, wherein each of the elastic bodies is connected to the corresponding support spring connector.
  10.  各前記弾性体の前記支持ばね接続具に対する接続位置は、対応する前記懸架体が接続されている対応するシャックルロッドの真上から外れた位置であり、
     各前記弾性体は、傾いて配置されている請求項9記載のエレベータの秤装置。
    The connection position of each of the elastic bodies to the support spring connector is a position deviated from directly above the corresponding shackle rod to which the corresponding suspension body is connected,
    The elevator scale device according to claim 9, wherein each of the elastic bodies is inclined.
  11.  前記支持部材は、前記弾性体の伸縮方向へ移動可能であり、
     前記支持部材には、前記支持部材を移動させて前記複数の弾性体を同時に伸縮させる駆動機構が設けられている請求項1から請求項10までのいずれか1項に記載のエレベータの秤装置。
    The support member is movable in the expansion / contraction direction of the elastic body,
    The elevator scale device according to any one of claims 1 to 10, wherein the support member is provided with a drive mechanism that moves the support member and simultaneously expands and contracts the plurality of elastic bodies.
  12.  前記荷重検出部の検査時に、前記弾性体による力と同方向への荷重を前記荷重検出部に付加する荷重付加機構をさらに備えている請求項1から請求項11までのいずれか1項に記載のエレベータの秤装置。 The load adding mechanism for adding a load in the same direction as the force by the elastic body to the load detecting unit when the load detecting unit is inspected. Elevator scale device.
  13.  前記荷重付加機構は、前記弾性体による力と同方向へねじ込み可能な検査ボルトである請求項12記載のエレベータの秤装置。 13. The elevator scale device according to claim 12, wherein the load applying mechanism is an inspection bolt that can be screwed in the same direction as the force by the elastic body.
  14.  前記荷重付加機構は、検査おもりであり、
     前記荷重検出部には、前記検査おもりを接続するおもり接続部が設けられている請求項12記載のエレベータの秤装置。
    The load application mechanism is an inspection weight,
    The elevator scale device according to claim 12, wherein the load detection unit is provided with a weight connection unit for connecting the inspection weight.
PCT/JP2016/086755 2016-12-09 2016-12-09 Weighing device for elevator WO2018105110A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/086755 WO2018105110A1 (en) 2016-12-09 2016-12-09 Weighing device for elevator
JP2018555422A JP6742436B2 (en) 2016-12-09 2016-12-09 Elevator scale equipment
CN201680091315.9A CN110023225B (en) 2016-12-09 2016-12-09 Elevator scale device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086755 WO2018105110A1 (en) 2016-12-09 2016-12-09 Weighing device for elevator

Publications (1)

Publication Number Publication Date
WO2018105110A1 true WO2018105110A1 (en) 2018-06-14

Family

ID=62490982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086755 WO2018105110A1 (en) 2016-12-09 2016-12-09 Weighing device for elevator

Country Status (3)

Country Link
JP (1) JP6742436B2 (en)
CN (1) CN110023225B (en)
WO (1) WO2018105110A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108639898A (en) * 2018-06-29 2018-10-12 湖州正鸣塑胶科技有限公司 The elevator rope head plate of vibration damping
WO2020115861A1 (en) * 2018-12-06 2020-06-11 三菱電機株式会社 Elevator tension measurement device
JP6997972B1 (en) * 2020-09-24 2022-01-18 フジテック株式会社 Elevator load detector and elevator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112357732A (en) * 2020-11-09 2021-02-12 山东奔速电梯股份有限公司 Anti-torsion wear-resisting device for household elevator steel wire rope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105648A1 (en) * 2004-04-30 2005-11-10 Mitsubishi Denki Kabushiki Kaisha Elevator apparatus
JP2011042481A (en) * 2009-08-24 2011-03-03 Mitsubishi Electric Corp Load detecting device of elevator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089802A1 (en) * 2003-04-07 2004-10-21 Mitsubishi Denki Kabushiki Kaisha Weighing device of elevator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105648A1 (en) * 2004-04-30 2005-11-10 Mitsubishi Denki Kabushiki Kaisha Elevator apparatus
JP2011042481A (en) * 2009-08-24 2011-03-03 Mitsubishi Electric Corp Load detecting device of elevator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108639898A (en) * 2018-06-29 2018-10-12 湖州正鸣塑胶科技有限公司 The elevator rope head plate of vibration damping
CN108639898B (en) * 2018-06-29 2019-09-10 湖州正鸣塑胶科技有限公司 The elevator rope head plate of vibration damping
WO2020115861A1 (en) * 2018-12-06 2020-06-11 三菱電機株式会社 Elevator tension measurement device
CN113165837A (en) * 2018-12-06 2021-07-23 三菱电机株式会社 Tension measuring device for elevator
JPWO2020115861A1 (en) * 2018-12-06 2021-09-02 三菱電機株式会社 Elevator tension measuring device
JP7031015B2 (en) 2018-12-06 2022-03-07 三菱電機株式会社 Elevator tension measuring device
CN113165837B (en) * 2018-12-06 2022-07-29 三菱电机株式会社 Tension measuring device for elevator
JP6997972B1 (en) * 2020-09-24 2022-01-18 フジテック株式会社 Elevator load detector and elevator

Also Published As

Publication number Publication date
JPWO2018105110A1 (en) 2019-03-22
CN110023225A (en) 2019-07-16
CN110023225B (en) 2020-11-13
JP6742436B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
WO2018105110A1 (en) Weighing device for elevator
JP6170810B2 (en) Elevator main rope tension measuring device and elevator control system
EP1741658B1 (en) Elevator apparatus
US6123176A (en) Rope tension monitoring assembly and method
JP6154730B2 (en) Elevator monitoring system
EP1855978A1 (en) Elevator motor brake torque measurement device
JP4102760B2 (en) measuring device
WO2017033322A1 (en) Elevator apparatus
JP6667659B2 (en) Elevator device and scale device calibration method
EP3321223B1 (en) Load cell
JP6939994B2 (en) Groove wear detector
US5172782A (en) Pivot mount of elevator load-weighing at car hitch
JPH0539181A (en) Rope tension device for elevator
CN108689274B (en) Weighing device of elevator
WO2020115860A1 (en) Elevator tension measurement device
EP3210924A1 (en) Elevator connection assembly with strain gauge
JP5007498B2 (en) Elevator Weigher Diagnosis Method
US20220363524A1 (en) Hoist
KR102058189B1 (en) Elevator safety plank reliability test apparatus
JPH061563A (en) Rope tension detecting device for elevator
WO2020115861A1 (en) Elevator tension measurement device
US11964850B2 (en) Crane
US20240059523A1 (en) Suspension device and use thereof in an elevator system, and method
WO2018190956A1 (en) Suspension member load sensor
JP5776424B2 (en) Elevator equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555422

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923404

Country of ref document: EP

Kind code of ref document: A1