WO2018103765A1 - 一种基于光学反馈产生的重复频率可调光频梳 - Google Patents

一种基于光学反馈产生的重复频率可调光频梳 Download PDF

Info

Publication number
WO2018103765A1
WO2018103765A1 PCT/CN2018/070001 CN2018070001W WO2018103765A1 WO 2018103765 A1 WO2018103765 A1 WO 2018103765A1 CN 2018070001 W CN2018070001 W CN 2018070001W WO 2018103765 A1 WO2018103765 A1 WO 2018103765A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
laser
optical
output
fiber coupler
Prior art date
Application number
PCT/CN2018/070001
Other languages
English (en)
French (fr)
Inventor
徐善辉
赵齐来
杨中民
冯洲明
杨昌盛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/315,114 priority Critical patent/US10901247B2/en
Publication of WO2018103765A1 publication Critical patent/WO2018103765A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/113Circuit or control arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0912Electronics or drivers for the pump source, i.e. details of drivers or circuitry specific for laser pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/0933Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094065Single-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/02Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 fibre
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/25Frequency chirping of an optical modulator; Arrangements or methods for the pre-set or tuning thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking

Definitions

  • the present invention relates to optical frequency combs, and more particularly to a repeatable frequency tunable optical frequency comb based on optical feedback.
  • Optical frequency comb is a kind of light source with comb frequency spectrum, which is important in high precision frequency scale, precision ranging, microwave photonics arbitrary wave generator, microwave photonic signal processing, dense wavelength division multiplexing and other related fields.
  • Applications, optical clocks based on optical frequency combs can increase the accuracy of atomic clocks by more than two orders of magnitude. In view of its important theoretical significance and application value, optical frequency comb is becoming a hot topic in related fields.
  • optical comb production schemes There are several conventional optical comb production schemes: one is to use a mode-locked laser to output a periodic pulse sequence in the time domain, and to perform a Fourier transform on a periodic pulse to obtain an optical frequency with equal frequency intervals in the frequency domain. comb.
  • the dispersion existing inside the laser causes a fixed difference between the phase accumulation of the envelope and the carrier phase accumulation, so calibration is required.
  • the advantage of the scheme is that the structure is simple, and the number of generated carriers is large, but there are disadvantages such as difficulty in controlling the number of carriers, poor flatness, and uncertain carrier spacing.
  • the second is a nonlinear fiber.
  • Such a scheme utilizes nonlinear effects in a highly nonlinear fiber such as self-phase modulation and cascaded four-wave mixing to obtain a large bandwidth optical frequency comb.
  • the number of optical frequency combs generated in this way is large, but there are disadvantages such as poor carrier flatness and uncontrollable carrier number.
  • the third is Single / Cascaded electro-optic modulator. This method is a relatively easy to implement, widely used optical frequency comb generation solution.
  • Common cascaded electro-optic modulator schemes include intensity modulator cascade phase modulators, polarization modulator cascade phase modulator phase modulator cascade phase modulators, polarization modulator cascade polarization modulators, and the like.
  • the main idea is to change the performance of the output optical frequency comb by controlling the parameters of the RF source amplitude, bias voltage, frequency and so on.
  • the scheme has the advantages of stable wavelet spacing and simple generation mode. However, if the RF drive voltage is required to obtain a larger carrier number, the flatness of the carrier is not ideal.
  • Cyclic frequency shifter-based generation schemes include single sideband cyclic frequency shifter (SSB-RFS), phase modulator combined with cyclic frequency shifter (PM-RFS), multiple cyclic frequency shifter (MC-RFS), polarization modulation
  • SSB-RFS single sideband cyclic frequency shifter
  • PM-RFS phase modulator combined with cyclic frequency shifter
  • MC-RFS multiple cyclic frequency shifter
  • polarization modulation In combination with a cyclic frequency shifter (PolM-RFS) scheme, the basic principle is to use cyclic frequency shift to increase the number of carriers generated.
  • the advantage of this method is that the number of optical frequency combs generated is large and the flatness is good, but there are disadvantages such as that the carrier phase relationship is not obvious and the carrier noise is large.
  • the optical frequency comb based on the optical feedback mechanism can effectively suppress the problem of large carrier noise, and can generate more optical frequency combs, change the delay time in the optical feedback device, and can also obtain different Repeat the frequency of the frequency comb.
  • the object of the present invention is to overcome the above deficiencies in the prior art and to provide a repeatable frequency tunable optical frequency comb based on optical feedback.
  • the laser optical feedback device is combined with the frequency locking function to generate a laser optical frequency comb with adjustable repetition frequency.
  • a repetition frequency tunable optical frequency comb based on optical feedback including Single frequency laser cavity, wavelength division multiplexer, single mode semiconductor pump source, optical circulator, first fiber coupler, second fiber coupler, photodetector, high stability signal source, error signal processing system, laser Frequency modulation device, adjustable laser delay module;
  • the structural relationship of each component is: the single-frequency laser cavity is connected with the common end of the wavelength division multiplexer, the pumping end of the wavelength division multiplexer is connected with the single-mode semiconductor pumping light source, and the signal terminal of the wavelength division multiplexer a 2-port connection of the optical circulator, the input end of the first fiber coupler is connected to the 3-port of the optical circulator, and an output end of the first fiber coupler is connected to the input end of the second fiber coupler,
  • the input end of the laser frequency modulation device is connected to the other output end of the first fiber coupler
  • the adjustable laser delay module is respectively connected to the output of the laser frequency modulation device and One port of the optical circulator, one output of the
  • the repetition frequency is in the range of less than 10 MHz.
  • the output of the single-frequency laser cavity is a single-frequency laser with continuous single-frequency, frequency-modulated output at any wavelength.
  • the high stability signal source includes, but is not limited to, a crystal oscillator, a signal generator, an atomic clock, and the like.
  • the laser frequency modulating device includes, but is not limited to, a fiber stretcher, an acousto-optic modulator, an electro-optic modulator, and the like.
  • the tunable laser delay module includes, but is not limited to, a fiber delay line, a high reflectivity laser cavity, and the like.
  • the output laser of the single-frequency laser cavity passes through the tunable laser delay module, and optical feedback is injected through the optical circulator to In a single-frequency laser cavity, a series of laser longitudinal modes with equal frequency intervals are produced.
  • a high-stability signal source, an error signal processing system and a laser frequency modulation device are combined to realize laser frequency locking, and a laser optical frequency comb is generated.
  • the present invention has the following advantages and technical effects:
  • the pump light output from the single-mode semiconductor pumping source is pumped to the single-frequency fiber laser cavity by the wavelength division multiplexer, and the laser signal output from the fiber resonator through the wavelength division multiplexer passes through the optical circulator and enters the A fiber coupler achieves laser splitting.
  • a part of the light is re-injected into the single-frequency fiber laser cavity through the laser frequency modulation device and the adjustable laser delay module into the optical circulator to realize optical feedback.
  • the present invention combines optical feedback and frequency locking in comparison to conventional lock mode lasers or optical microcavities to produce optical frequency combs, providing an efficient solution that is simpler and has adjustable frequency spacing.
  • FIG. 1 is a schematic diagram of a repetition frequency tunable optical frequency comb based on optical feedback according to an embodiment of the present invention.
  • 1 - single frequency laser cavity 1 - single frequency laser cavity, 2 - wavelength division multiplexer, 3 - single mode semiconductor pump light source, 4 - optical circulator, 5 - first fiber coupler, 6 - second fiber coupler, 7 - photodetector, 8 - high stable signal source, 9 - error signal processing system, 10 - laser frequency modulation device, 11 - Adjustable laser delay module.
  • a 980 nm single-mode semiconductor laser is used as a single-mode semiconductor pumping source 3, after 980/1550 nm.
  • the polarization-maintaining wavelength division multiplexer 2 implements backward pumping of the single-frequency laser cavity 1 .
  • Single-frequency laser cavity 1 is a single-frequency fiber distributed Bragg reflection type (DBR) with an output laser wavelength of 1550.52 nm. ) Resonant cavity. After passing through the 1550 nm polarization-maintaining fiber circulator 4, the output laser enters the first fiber coupler with a split ratio of 50:50.
  • the high stable signal source 8 in this example is a highly stable frequency.
  • the 50MHz temperature-compensated crystal oscillator, the laser frequency modulation device 10 is an acousto-optic modulator, and the adjustable laser delay module 11 is a 1km long fiber delay line.
  • the part of the output is connected to two second fiber couplers 6 with a split ratio of 10:90, of which 10% of the light enters the photodetector 7, 90%
  • the port acts as an output port for the optical comb.
  • the photodetector obtains the 50MHz standard signal of the electrical signal and the temperature-compensated crystal oscillator and simultaneously inputs it into the error signal processing system.
  • the error signal processing system can adopt an existing signal processing system.
  • the error signal processing system 9 performs band-pass filtering on the electrical signal measured by the photodetector to obtain 50MHz. A comb signal is nearby, and the temperature-compensated crystal signal is band-pass filtered to eliminate harmonic signals of other frequency components. The two signals are then effectively amplified, mixed into the mixer and a low pass filter is added to obtain the low frequency error signal. This low frequency error signal carries both the frequency fluctuation information of the optical frequency comb and the amplitude fluctuation information.
  • PID Differential
  • the obtained signal is loaded into the laser frequency modulation device 10, achieve After the frequency is locked, the laser frequency comb with stable frequency is output.
  • the present invention combines optical feedback and frequency locking in comparison to conventional lock mode lasers or optical microcavities to produce optical frequency combs, providing an efficient solution that is simpler and has adjustable frequency spacing.

Abstract

一种基于光学反馈产生的重复频率可调光频梳,其包括单频激光谐振腔(1)、波分复用器(2)、单模半导体泵浦光源(3)、光环行器(4)、第一光纤耦合器(5)、第二光纤耦合器(6)、光电探测器(7)、高稳定信号源(8)、误差信号处理系统(9)、激光频率调制装置(10)和可调激光延迟模块(11);利用可调激光延迟模块(11)对单频激光进行延时处理,并通过光环形器(4)实现光学反馈注入到谐振腔中(1),产生一系列频率间隔相等并且可调的激光纵模,同时结合高稳定信号源(8)、误差信号处理系统(9)和激光频率调制装置(10)实现激光频率锁定,产生激光光频梳。

Description

一种基于光学反馈产生的重复频率可调光频梳
技术领域
本发明涉及光频梳,特别是涉及一种 基于光学反馈产生的重复频率可调光频梳 。
背景技术
光频梳是一种具有梳状频率谱的光源,其在高精度频标、精密测距、微波光子学任意波发生器、微波光子学信号处理、密集波分复用等相关领域有重要的应用,基于光频梳的光钟可以将原子钟的精度提高两个量级以上。鉴于其重要理论意义和应用价值,光频梳正成为相关领域研究的热点。
传统的光频梳产生方案有一下几种:一是利用锁模激光器在时域上的输出为周期性脉冲序列,针对周期性脉冲作傅里叶变换得到在频域上频率间隔相等的光学频率梳。但是激光器内部存在的色散会使包络的相位积累和载波相位积累存在固定的差值,因此需要进行校准。该方案的优点是结构简单,产生的载波数目较多,但是存在载波数目不易控制、平坦度差、载波间隔不确定等缺点。二是非线性光纤。此种方案是利用高非线性光纤中的非线性效应如自相位调制、级联四波混频来得到大带宽的光频梳。这种方式产生的光频梳数目较多,但是存在载波平坦度不好、载波数目不可控等缺点。三是 单个 / 级联的电光调制器。此方法是相对较容易实现、应用也较为广泛的光频梳产生方案。常见的级联的电光调制器方案包括强度调制器级联相位调制器、偏振调制器级联相位调制器相位调制器级联相位调制器、偏振调制器级联偏振调制器等方案。主要思想是通过控制射频源幅度、偏置电压、频率等参数来整改变输出光频梳的性能。该方案具有子波间隔稳定、产生方式较为简单等优点 , 但是若想获得较大的载波数目需要的射频驱动电压较高 , 载波的平坦度也不够理想。
另外基于循环频移器RFS结构(Recirculating frequency shifter)也可以产生光频梳。基于循环频移器的产生方案包括单边带循环频移器(SSB-RFS)、相位调制器结合循环频移器(PM-RFS)、多路循环频移器(MC-RFS)、偏振调制器结合循环频移器(PolM-RFS)等方案,其基本原理是利用循环频移来增大产生的载波数目。这种方式的优点是产生的光频梳数目较多、平坦度较好,但是存在载波相位关系不明显、载波噪声较大等缺点。
而基于光学反馈机制产生光频梳可以有效抑制载波噪声较大的问题,同时可以产生较多的光频梳数目,改变光学反馈装置中的延迟时间,还可以获得不同 重复频率的光频梳。
发明内容
本发明的目的在于克服现有技术上述中的不足,提供一种 基于光学反馈产生的重复频率可调光频梳 。通过激光光学反馈装置结合频率锁定作用,从而产生重复频率可调的激光光频梳。
本发明的目的通过如下技术方案实现。
一种 基于光学反馈产生的重复频率可调光频梳 , 包括 单频激光谐振腔、波分复用器、单模半导体泵浦光源、光环行器、第一光纤耦合器、第二光纤耦合器、光电探测器、高稳定信号源、误差信号处理系统、激光频率调制装置、可调激光延迟模块; 各部件的结构关系是:单频激光谐振腔与波分复用器的公共端连接,波分复用器的泵浦端与单模半导体泵浦光源连接,波分复用器的信号端与光环行器的2端口连接,第一光纤耦合器的输入端和光环形器的3端口连接,第一光纤耦合器的一个输出端连接第二光纤耦合器的输入端, 激光频率调制装置的输入端连接 第一光纤耦合器的另一个输出端, 可调激光延迟模块分别连接激光频率调制装置的输出端和 光环行器的1端口,第二光纤耦合器的一个输出端作为光频梳的输出, 光电探测器的输入端连接 第二光纤耦合器的另一个输出端, 高稳定信号源和光电探测器的输出端同时连接误差信号处理系统,误差信号处理系统的输出端连接激光频率调制装置的控制端。
进一步地,所述的重复频率在小于10MHz范围内。
进一步地,所述的单频激光谐振腔的输出为连续单频、频率调制的任意波长输出的单频激光。
进一步地,所述的 高稳定信号源 包括但不限于晶振、信号发生器、原子钟等。
进一步地,所述的 激光频率调制装置 包括但不限于光纤拉伸器、声光调制器、电光调制器等。
进一步地,所述的 可调激光延迟模块 包括但不限于光纤延迟线、高反射率激光腔体等。
进一步地,所述的单频激光谐振腔的输出激光经过 可调激光延迟模块 后, 并通过光环形器实现光学反馈注入到 单频激光谐振腔 中,产生一系列频率间隔相等的激光纵模。同时结合高稳定信号源、误差信号处理系统和激光频率调制装置实现激光频率锁定,产生激光光频梳。
与现有技术相比,本发明具有如下优点和技术效果:
单模半导体泵浦光源输出的泵浦光经波分复用器对单频光纤激光谐振腔进行泵浦,从光纤谐振腔经波分复用器输出的激光信号经过光环行器后,进入第一光纤耦合器实现激光分束。其中一部分光经过激光频率调制装置、可调激光延迟模块进入光环行器重新注入单频光纤激光谐振腔中,实现光学反馈。而另一部分光进入另一个第二光纤耦合器,从第二光纤耦合器输出的一部分光进入光电探测器转化为电信号,该电信号携带了激光的幅度和频率波动信息,误差信号处理系统将改电信号与高稳定信号源的信号进行运算处理后,加载到激光频率调制装置上,实现激光频率锁定,产生激光光频梳。与传统的基于锁模激光器或者光学微腔产生光频梳的方案相比,本发明将光学反馈和频率锁定相结合,提供了一种在更为简易而且频率间隔可调的有效方案。
附图说明
图1为本发明实施例一种基于光学反馈产生的重复频率可调光频梳原理示意图。
图中: 1 -单频激光谐振腔、 2 -波分复用器、 3 -单模半导体泵浦光源、 4 -光环行器、 5 -第一光纤耦合器、 6 -第二光纤耦合器、 7 -光电探测器、 8 -高稳定信号源、 9 -误差信号处理系统、 10 -激光频率调制装置、 11 -可调激光延迟模块。
具体实施方式
下面结合附图和具体例子对本发明的具体实施方式作进一步描述,需要说明的是本发明要求保护的范围并不局限于实施例表述的范围,同时以下若有未特别详细说明的部分,均是本领域技术人员可参照现有技术实现的。
实施例 1
本例中利用 980nm 单模半导体激光器作为单模半导体泵浦光源 3 ,经过 980/1550nm 的保偏波分复用器 2 实现对单频激光谐振腔 1 进行后向泵浦。单频激光谐振腔 1 为输出激光波长为 1550.52nm 的单频光纤分布布拉格反射式( DBR )谐振腔。输出激光经过 1550nm 保偏光纤环形器 4 后,进入分光比为 50:50 的第一光纤耦合器 5 。此例中的高稳定信号源 8 为一个高稳定的频率为 50MHz 的温补晶振,激光频率调制装置 10 为声光调制器,可调激光延迟模块 11 为 1km 长的光纤延迟线。从 第一光纤耦合器 5 中输出的部分光接两一个分光比为 10:90 的第二光纤耦合器 6 ,其中 10% 的光进入光电探测器 7 , 90% 的端口作为光频梳的输出端口。光电探测器获得电信号和温补晶振的 50MHz 的标准信号同时输入到误差信号处理系统 9 中,误差信号处理系统可以采用现有的信号处理系统。误差信号处理系统 9 会对光电探测器测得电信号进行带通滤波获得 50MHz 附近的一个梳齿信号,同时对温补晶振信号进行带通滤波以消除其他频率成分的谐波信号。然后对两个信号进行有效放大,进入混频器混频并加上一个低通滤波器获得低频频率误差信号。这个低频误差信号既携带着光频梳的频率波动信息,也携带着幅度波动信息。通过对该误差信号进行比例 - 积分 - 微分( Proportion Integration Differentiation , PID )运算处理后,得到的信号加载到激光频率调制装置 10 ,实现 频率锁定后,输出频率稳定的激光光频梳。与传统的基于锁模激光器或者光学微腔产生光频梳的方案相比,本发明将光学反馈和频率锁定相结合,提供了一种在更为简易而且频率间隔可调的有效方案。

Claims (7)

  1. 一种基于光学反馈产生的重复频率可调光频梳,其特征在于包括 单频激光谐振腔( 1 )、波分复用器( 2 )、单模半导体泵浦光源( 3 )、光环行器( 4 )、第一光纤耦合器( 5 )、第二光纤耦合器( 6 )、光电探测器( 7 )、高稳定信号源( 8 )、误差信号处理系统( 9 )、激光频率调制装置( 10 )、可调激光延迟模块( 11 ) ; 各部件的结构关系是:单频激光谐振腔(1)与波分复用器(2)的公共端连接,波分复用器(2)的泵浦端与单模半导体泵浦光源(3)连接,波分复用器(2)的信号端与光环行器(4)的2端口连接,第一光纤耦合器(5)的输入端和光环形器(4)的3端口连接,第一光纤耦合器(5)的一个输出端连接第二光纤耦合器(6)的输入端, 激光频率调制装置( 10 )的输入端连接 第一光纤耦合器(5)的另一个输出端, 可调激光延迟模块( 11 )分别连接激光频率调制装置( 10 )的输出端和 光环行器(4)的1端口,第二光纤耦合器(6)的一个输出端作为光频梳的输出, 光电探测器( 7 )的输入端连接 第二光纤耦合器(6)的另一个输出端, 高稳定信号源( 8 )和光电探测器( 7 )的输出端同时连接误差信号处理系统( 9 ),误差信号处理系统( 9 )的输出端连接激光频率调制装置( 10 )的控制端。
  2. 根据权利要求1所述的一种基于光学反馈产生的重复频率可调光频梳,其特征在于:所述的重复频率小于10MHz。
  3. 根据权利要求1所述的一种基于光学反馈产生的重复频率可调光频梳,其特征在于:所述的单频激光谐振腔(1)的输出为连续单频、频率调制的任意波长输出的单频激光。
  4. 根据权利要求1所述的一种基于光学反馈产生的重复频率可调光频梳,其特征在于:所述的 高稳定信号源 (8)包括晶振、信号发生器或原子钟。
  5. 根据权利要求1所述的一种基于光学反馈产生的重复频率可调光频梳,其特征在于:所述的 激光频率调制装置( 10 ) 包括光纤拉伸器、声光调制器、电光调制器或磁光调制器。
  6. 根据权利要求1所述的一种基于光学反馈产生的重复频率可调光频梳,其特征在于:所述的 可调激光延迟模块( 11 ) 包括光纤延迟线或高反射率激光腔体。
  7. 根据权利要求1所述的一种基于光学反馈产生的重复频率可调光频梳,其特征在于:所述的单频激光谐振腔(1)的输出激光经过 可调激光延迟模块( 11 )
    后, 并通过光环形器( 4 )实现光学反馈注入到 单频激光谐振腔(1) 中,产生频率间隔相等的激光纵模;同时结合高稳定信号源 (8) 、误差信号处理系统( 9 )和激光频率调制装置( 10 )实现激光频率锁定,产生激光光频梳。
PCT/CN2018/070001 2016-12-05 2018-01-01 一种基于光学反馈产生的重复频率可调光频梳 WO2018103765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/315,114 US10901247B2 (en) 2016-12-05 2018-01-01 Optical feedback-based repetitive frequency adjustable optical frequency comb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611103512.6 2016-12-05
CN201611103512.6A CN106505403B (zh) 2016-12-05 2016-12-05 一种基于光学反馈产生的重复频率可调光频梳

Publications (1)

Publication Number Publication Date
WO2018103765A1 true WO2018103765A1 (zh) 2018-06-14

Family

ID=58330473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/070001 WO2018103765A1 (zh) 2016-12-05 2018-01-01 一种基于光学反馈产生的重复频率可调光频梳

Country Status (3)

Country Link
US (1) US10901247B2 (zh)
CN (1) CN106505403B (zh)
WO (1) WO2018103765A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383363A (zh) * 2020-10-29 2021-02-19 中国科学院半导体研究所 一种基于混频技术的大带宽相控阵接收装置
CN113391410A (zh) * 2021-05-25 2021-09-14 深圳中为思创科技有限公司 一种光纤模块信号采集系统
CN113483878A (zh) * 2021-06-18 2021-10-08 中国科学院上海技术物理研究所 一种基于双向声光频率梳的微多普勒振动测量系统及方法
CN113823991A (zh) * 2021-06-01 2021-12-21 中国科学院国家授时中心 光学频率梳的锁定方法及锁定电路
CN114024194A (zh) * 2021-11-04 2022-02-08 中国人民解放军国防科技大学 光纤激光相干合成系统
CN114447750A (zh) * 2021-12-23 2022-05-06 香港理工大学深圳研究院 一种基于微腔反馈锁定激光器的微波信号产生方法和系统
CN116722432A (zh) * 2023-08-08 2023-09-08 上海频准激光科技有限公司 一种基于超稳激光源频率参考的光梳系统及控制方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505403B (zh) * 2016-12-05 2023-04-25 华南理工大学 一种基于光学反馈产生的重复频率可调光频梳
CN106959388B (zh) * 2017-03-21 2019-08-09 哈尔滨工业大学 一种基于光学频率梳的微波频率测量方法及装置
CN107508137B (zh) * 2017-09-07 2019-05-03 电子科技大学 一种克尔光梳孤子锁模过程中微腔热效应补偿方法
CN108233162A (zh) * 2017-12-29 2018-06-29 横琴东辉科技有限公司 一种提高单频光纤激光在相干光测试中信噪比的装置
CN111025000B (zh) * 2019-12-24 2021-09-03 东南大学 一种相位调制器的半波电压测量方法和测试系统
KR102490843B1 (ko) 2020-04-17 2023-01-26 한국전자통신연구원 다중 채널 광 신호 생성 장치
CN111505766B (zh) * 2020-05-08 2021-08-06 电子科技大学 一种基于硅基集成磁光环行器的光学全双工收发组件
CN111555099A (zh) * 2020-06-15 2020-08-18 南京大学 一种微波产生系统
CN111901042B (zh) * 2020-08-11 2022-03-11 中国电子科技集团公司第四十四研究所 一种基于相位调制的大动态信号解调模型方法
CN114614907B (zh) * 2020-12-08 2024-03-12 军事科学院系统工程研究院网络信息研究所 基于光域傅立叶逆变换的微波波形编译方法
CN112858345B (zh) * 2021-01-22 2022-03-11 中国工程物理研究院激光聚变研究中心 一种随机移相的光学元件缺陷快速超分辨检测装置及检测方法
CN113242039B (zh) * 2021-05-06 2024-02-06 中国科学院国家授时中心 一种用于光纤光学频率传递信号的净化装置
CN113300780B (zh) * 2021-05-24 2022-07-19 中国人民解放军国防科技大学 双光频梳离散时间拉伸dft处理器装置及方法
CN113422648A (zh) * 2021-05-29 2021-09-21 西北工业大学 基于双光梳的微波光子频控阵信号产生装置及输出方法
CN113363794A (zh) * 2021-06-01 2021-09-07 中国电子科技集团公司第四十一研究所 一种双重复频率光学频率梳光源
CN113394652B (zh) * 2021-06-09 2022-08-02 西安纳飞光电科技有限公司 一种光频梳重复频率的宽带大范围锁定方法及系统
CN114190974A (zh) * 2021-06-25 2022-03-18 暨南大学 一种超声成像系统及其成像方法
CN113759172B (zh) * 2021-08-26 2022-06-21 上海交通大学 基于微波频率梳的宽带、实时微波光子频率测量装置及方法
CN114268373B (zh) * 2021-11-23 2023-04-07 北京理工大学 基于双边带相位差分稳定的光频梳产生装置及方法
CN114205003B (zh) * 2021-12-09 2023-10-20 北京邮电大学 一种用于过光纤链路的信号光与本振光频差信号锁定的快慢环结合反馈控制系统与方法
CN114609888B (zh) * 2022-03-07 2022-10-25 电子科技大学 一种原子钟-腔光机械系统互锁型光生微波源
CN114914782A (zh) * 2022-04-15 2022-08-16 合肥工业大学 单频连续激光器的高效稳频装置
CN114825022B (zh) * 2022-06-27 2022-09-16 之江实验室 一种基于特种掺杂光纤的可调微腔孤子光频梳系统及方法
CN116937294B (zh) * 2023-07-27 2024-01-30 北京大学长三角光电科学研究院 一种微波产生装置及产生方法
CN117410822B (zh) * 2023-11-06 2024-04-16 哈尔滨工业大学 基于特征曲线重构的调谐光源稳频方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009116242A (ja) * 2007-11-09 2009-05-28 Nippon Telegr & Teleph Corp <Ntt> 光周波数コム安定化光源
CN105529607A (zh) * 2016-01-31 2016-04-27 华南理工大学 宽频带近肖特噪声极限的单频光纤激光强度噪声抑制装置
CN106505403A (zh) * 2016-12-05 2017-03-15 华南理工大学 一种基于光学反馈产生的重复频率可调光频梳
CN206272058U (zh) * 2016-12-05 2017-06-20 华南理工大学 一种基于光学反馈产生的重复频率可调光频梳

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917179A (en) * 1997-05-12 1999-06-29 California Institute Of Technology Brillouin opto-electronic oscillators
CN102749785A (zh) * 2012-07-26 2012-10-24 浙江师范大学 双泵浦傅立叶域锁模光纤光学参量振荡器
CN104755908B (zh) * 2012-07-27 2017-12-12 统雷有限公司 敏捷成像系统
CN104092088B (zh) * 2014-06-26 2017-10-20 华南理工大学 同时降低单频激光强度与频率噪声的装置及其工作方法
CN104993358B (zh) * 2015-07-07 2018-07-10 中国科学院半导体研究所 基于受激布里渊散射的单边带光载微波信号产生装置
CN205622038U (zh) * 2015-12-18 2016-10-05 华南理工大学 相干光正交频分复用系统用的宽可调谐单频光纤激光光源
CN105680301B (zh) * 2016-03-14 2018-12-14 中国科学院西安光学精密机械研究所 基于微环谐振腔的可调频率间隔的光频梳产生系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009116242A (ja) * 2007-11-09 2009-05-28 Nippon Telegr & Teleph Corp <Ntt> 光周波数コム安定化光源
CN105529607A (zh) * 2016-01-31 2016-04-27 华南理工大学 宽频带近肖特噪声极限的单频光纤激光强度噪声抑制装置
CN106505403A (zh) * 2016-12-05 2017-03-15 华南理工大学 一种基于光学反馈产生的重复频率可调光频梳
CN206272058U (zh) * 2016-12-05 2017-06-20 华南理工大学 一种基于光学反馈产生的重复频率可调光频梳

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383363A (zh) * 2020-10-29 2021-02-19 中国科学院半导体研究所 一种基于混频技术的大带宽相控阵接收装置
CN112383363B (zh) * 2020-10-29 2023-05-30 中国科学院半导体研究所 一种基于混频技术的大带宽相控阵接收装置
CN113391410A (zh) * 2021-05-25 2021-09-14 深圳中为思创科技有限公司 一种光纤模块信号采集系统
CN113823991A (zh) * 2021-06-01 2021-12-21 中国科学院国家授时中心 光学频率梳的锁定方法及锁定电路
CN113483878A (zh) * 2021-06-18 2021-10-08 中国科学院上海技术物理研究所 一种基于双向声光频率梳的微多普勒振动测量系统及方法
CN113483878B (zh) * 2021-06-18 2022-03-29 中国科学院上海技术物理研究所 一种基于双向声光频率梳的微多普勒振动测量系统及方法
CN114024194A (zh) * 2021-11-04 2022-02-08 中国人民解放军国防科技大学 光纤激光相干合成系统
CN114024194B (zh) * 2021-11-04 2023-12-22 中国人民解放军国防科技大学 光纤激光相干合成系统
CN114447750A (zh) * 2021-12-23 2022-05-06 香港理工大学深圳研究院 一种基于微腔反馈锁定激光器的微波信号产生方法和系统
CN114447750B (zh) * 2021-12-23 2024-01-09 香港理工大学深圳研究院 一种基于微腔反馈锁定激光器的微波信号产生方法和系统
CN116722432A (zh) * 2023-08-08 2023-09-08 上海频准激光科技有限公司 一种基于超稳激光源频率参考的光梳系统及控制方法

Also Published As

Publication number Publication date
US10901247B2 (en) 2021-01-26
CN106505403A (zh) 2017-03-15
CN106505403B (zh) 2023-04-25
US20190310498A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018103765A1 (zh) 一种基于光学反馈产生的重复频率可调光频梳
Lamb et al. Optical-frequency measurements with a Kerr microcomb and photonic-chip supercontinuum
Savchenkov et al. Low Threshold Optical Oscillations in a Whispering Gallery Mode C a F 2 Resonator
US10585332B2 (en) Periodic optical filter stabilized tunable comb generator
Wang et al. Tunable optical frequency comb generation based on an optoelectronic oscillator
CN109713552B (zh) 一种基于受激布里渊散射效应的高稳定微波信号生成方法
Bohlouli-Zanjani et al. Optical transfer cavity stabilization using current-modulated injection-locked diode lasers
CN114361931B (zh) 超低噪声电光频率梳产生装置
Gong et al. Monolithic Kerr and electro-optic hybrid microcombs
CN206272058U (zh) 一种基于光学反馈产生的重复频率可调光频梳
JP2016018124A (ja) 光周波数コム発生装置
Zhang et al. Stimulated Brillouin scattering-based microwave photonic filter with a narrow and high selective passband
Liang et al. Stabilized C-band Kerr frequency comb
Wang et al. Precise simultaneous multiwavelength tuning by electrical RF signals
JP2015200800A (ja) 波長変換素子および光周波数コム発生装置
US20110310919A1 (en) Laser System Provided With a Frequency Servo
CN115133387A (zh) 产生多频相干激光的装置及方法
Ilchenko et al. Miniature oscillators based on optical whispering gallery mode resonators
Zeng et al. Stabilizing a laser frequency by the Pound–Drever–Hall technique with an acousto-optic modulator
Rajasree et al. 1.6 GHz frequency scanning of a 482 nm laser stabilized using electromagnetically induced transparency
Trask et al. Hyperfine Filtering of an Electro-Optic Modulated Comb
Steier A push-pull optical amplitude modulator
Pantano et al. SILPLL based forced opto-electronic oscillator using a phase modulator in a Sagnac loop
CN220797412U (zh) 一种基于注入锁定的双光频梳源
Shah et al. Long-range synchronization of nanomechanical oscillators with light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18729015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18729015

Country of ref document: EP

Kind code of ref document: A1