WO2018103230A1 - 一种新能源微电网电动汽车充电站 - Google Patents
一种新能源微电网电动汽车充电站 Download PDFInfo
- Publication number
- WO2018103230A1 WO2018103230A1 PCT/CN2017/077709 CN2017077709W WO2018103230A1 WO 2018103230 A1 WO2018103230 A1 WO 2018103230A1 CN 2017077709 W CN2017077709 W CN 2017077709W WO 2018103230 A1 WO2018103230 A1 WO 2018103230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- electric vehicle
- power distribution
- vehicle charging
- new energy
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
Definitions
- the utility model relates to a new energy micro-grid electric vehicle charging station.
- the power supply of a conventional electric vehicle charging (replacement) power station is taken from a public distribution network, and after being stepped down, power is supplied to an electric vehicle charging pile (charger). It has the following shortcomings:
- the photovoltaic charging station can access and absorb photovoltaic power generation, but the energy source is single and the scope of application is narrow;
- the first object of the utility model is to provide a new energy micro-grid electric vehicle charging station, which solves the problems that the current charging (changing) power station has a large area, the construction period of the non-modular installation is long, and the expansion is not flexible and convenient;
- the second object of the utility model is to provide a new energy micro-grid electric vehicle charging station, which solves the problem that the current charging (changing) power station does not provide the access and management functions of distributed new energy power generation and energy storage devices, and the new energy power generation varieties single.
- a new energy micro-grid electric vehicle charging station including at least one new energy micro-grid electric vehicle
- the charging station unit module the new energy micro-grid electric vehicle charging station unit module comprises a power distribution module, an energy storage module, a distributed new energy power generation unit, a load and a micro-grid control management system, wherein the load is an electric vehicle a charging pile or an electric vehicle charger
- the power distribution module comprises a high voltage power distribution device, a distribution transformer and a low voltage power distribution device, and an input end of the high voltage power distribution device is connected to an external high voltage power grid
- the The primary side of the electric transformer is connected to the output end of the high voltage power distribution device
- the secondary side is connected to the input end of the low voltage power distribution device
- the low voltage power distribution device provides the low voltage main bus line with the rated voltage of LM (kV)
- the module, the distributed new energy power generation unit and the load are all connected to the low voltage main bus of the low voltage power distribution device, and the micro power grid control management
- the above high-voltage power distribution device comprises a high-voltage electric main bus, a high-voltage power grid access switch, a transformer connection switch and a module cascade switch, and one end of the high-voltage power grid access switch, the transformer connection switch and the module cascade switch are respectively connected to the high voltage power On the main busbar, the input end of the high-voltage power grid access switch is connected to the external high-voltage power grid, the output end of the transformer connection switch is connected to the primary side of the distribution transformer, and the lead-out end of the module cascade switch is used to connect the next-level new energy micro-grid electric High voltage grid access switch for the car charging station unit module.
- a new energy micro-grid electric vehicle charging station unit module is selected as the first stage, and the input end of the high-voltage power grid access switch is connected to the external high-voltage power grid.
- the module cascade switch is connected with the high-voltage grid access switch of the second-stage new energy micro-grid electric vehicle charging station unit module, and the other levels of the new energy micro-grid electric vehicle charging station unit module are also connected in series according to the above manner. Obtain high voltage power supplied by the high voltage power grid with a rated voltage of HM(kV).
- the above-mentioned high-voltage electric main bus, high-voltage power grid access switch, transformer connection switch and module cascade switch are installed in one cabinet to form a high-voltage power distribution cabinet;
- the low-voltage power distribution device includes a low-voltage main bus line connection and a plurality of low-voltage wiring switches, and several One end of the low-voltage switch is connected to the low-voltage main bus, and the other end is connected to the built-in equipment or lead-out.
- the low-voltage main bus connection and several low-voltage switch are installed in one cabinet to form a low-voltage power distribution cabinet.
- the above-mentioned high-voltage power distribution device, distribution transformer and low-voltage power distribution device are integrated and installed in a box to form a box-type complete power distribution equipment.
- the high-voltage power distribution device has a rated voltage of HM(kV) of 6kV, or 10kV, or 20kV or 35kV according to the capacity of the charging station and the external high-voltage power grid.
- the rated voltage of the low-voltage power distribution device is LM(kV). 0.4KV.
- the energy storage module comprises a power distribution cabinet, a energy storage bidirectional converter and a battery pack, and the power distribution cabinet, the energy storage bidirectional converter and the battery pack are integrally installed to form a box type complete device.
- the distributed new energy power generation unit is photovoltaic power generation, or wind power generation, or a fuel cell, or a hydroelectric power generation, or an internal combustion engine generator set, or a gas turbine generator set, or two or more of the above two or more types of power generation equipment. combination.
- the low-voltage power distribution device provides a low-voltage main bus connection with rated voltage of LM (kV) and a reactive power compensation device SVG.
- the reactive power compensation device SVG is controlled by the micro-grid control management system.
- the low-voltage power distribution device provides a low-voltage main bus connection with a rated voltage of LM (kV) and is also connected to a socket, which can be directly connected to the 380V mains with load operation.
- LM rated voltage
- the above-mentioned low-voltage power distribution cabinet can also be installed with a built-in electric vehicle charging pile, and the built-in electric vehicle charging pile is connected with the low-voltage main bus; the low-voltage main bus is also connected with an external electric vehicle charging pile, and the external electric vehicle charging pile is located at a low voltage.
- the energy storage module can also be installed with a built-in electric vehicle charging pile, and the built-in electric vehicle charging pile is directly powered by the energy storage module on the tank of the energy storage module.
- the new energy micro-grid electric vehicle charging station of the utility model includes at least one new energy micro-grid electric vehicle charging station unit module, and the new energy micro-grid electric vehicle charging station unit module includes a power distribution module and a storage Energy module, distributed new energy power generation unit, load and microgrid control management system form modularization, save floor space, short installation and construction period, flexible expansion and expansion;
- the high-voltage power distribution device includes a high-voltage power grid access switch and a module cascade switch.
- the output end of the high-voltage power grid access switch is connected to the input end of the module cascade switch, and the high-voltage power grid access switch is connected to the external high-voltage power grid, which is convenient.
- Multiple new energy micro-grid electric vehicle charging station unit modules are connected in series, Easy to expand and install.
- the power distribution device mainly includes some high-voltage switches, which are installed in a cabinet to form a high-voltage power distribution cabinet; the low-voltage power distribution device includes some low-voltage switches, and these low-voltage switches are installed in one cabinet to form a low-voltage power distribution cabinet.
- the structure layout is more reasonable and convenient to manage;
- the energy storage module includes a power distribution cabinet, a energy storage bidirectional converter and a battery pack, and integrates the power distribution cabinet, the energy storage bidirectional converter and the battery pack into a box-type complete set of equipment, which can be flexibly and integrally transported, and saves land occupation. Area, simplified installation;
- the distributed new energy power generation unit is photovoltaic power generation, or wind power generation, or fuel cell, or hydroelectric power generation, or internal combustion engine generator set, or gas turbine generator set, which can access and consume multiple groups and multiple types. Distributed new energy generation, with a wide range of adaptation.
- the low-voltage power distribution device provides a low-voltage main bus connection with rated voltage of LM(kV). It is also connected to a socket.
- the connector can be directly connected to the 380V mains with load operation, and the working mode is more flexible and diversified.
- the distributed new energy power generation unit is photovoltaic power generation, or wind power generation, or fuel cell, or hydroelectric power generation, or internal combustion engine generator set, or gas turbine generator set, or two or more of the above two or more types of power generation equipment.
- the energy type and quantity range are wide, and the scope of application is wide, which can adapt to different working environments.
- FIG. 1 is a schematic view of the principle of the first embodiment of the present invention
- FIG. 2 is a schematic block diagram of a specific embodiment of the present invention.
- FIG. 3 is a block diagram of a new energy microgrid electric vehicle charging station unit module of the present invention.
- Figure 5 is a schematic diagram of a specific wiring of the second embodiment of the present invention.
- Figure 6 is a schematic diagram of the principle of the third embodiment of the present invention.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- this embodiment provides a new energy micro-grid electric vehicle charging station, including a new energy micro-grid electric vehicle charging station unit module, and the new energy micro-grid electric vehicle charging.
- the station unit module comprises a power distribution module, an energy storage module, a distributed new energy power generation unit, a load and a micro grid control management system, wherein the load is an electric vehicle charging pile or an electric vehicle charger, wherein: the variation
- the electric module comprises a high-voltage power distribution device, a distribution transformer and a low-voltage power distribution device, wherein an input end of the high-voltage power distribution device is connected to an external high-voltage power network, and the distribution transformer is connected to the output end of the high-voltage power distribution device at one time,
- the secondary side is connected to the input of the low-voltage power distribution device, and the low-voltage power distribution device provides a low-voltage main bus with a rated voltage of LM (kV).
- the energy storage module, the distributed new energy power generation unit, and the load are all connected to the low-voltage power distribution.
- the low-voltage main bus of the device, the micro-grid control management system controls the operation of the entire new energy micro-grid electric vehicle charging station unit module.
- the above high-voltage power distribution device comprises a high-voltage electric main bus, a high-voltage power grid access switch, a transformer connection switch and a module cascade switch, and one end of the high-voltage power grid access switch, the transformer connection switch and the module cascade switch are respectively connected to the high voltage power On the main busbar, the input end of the high-voltage power grid access switch is connected to the external high-voltage power grid, the output end of the transformer connection switch is connected to the primary side of the distribution transformer, and the lead-out end of the module cascade switch is used to connect the next-level new energy micro-grid electric High voltage grid access switch for the car charging station unit module.
- the above-mentioned high-voltage electric main bus, high-voltage power grid access switch, transformer connection switch and module cascade switch are installed in one cabinet to form a high-voltage power distribution cabinet;
- the low-voltage power distribution device includes a low-voltage main bus line connection and a plurality of low-voltage wiring switches, and several One end of the low-voltage switch is connected to the low-voltage main bus, and the other end is connected to the built-in equipment or lead-out.
- the low-voltage main bus connection and several low-voltage switch are installed in one cabinet to form a low-voltage power distribution cabinet.
- High-voltage power distribution equipment, distribution transformers and low-voltage power distribution units are integrated and installed in a box to form a box Complete set of power distribution equipment.
- the high-voltage power distribution device is rated for the HM (kV) of 6kV, or 10kV, or 20kV or 35kV according to the capacity of the charging station and the external high-voltage power grid.
- the rated voltage of the low-voltage power distribution device is LM(kV) 0.4. KV.
- the energy storage module comprises a power distribution cabinet, a energy storage bidirectional converter and a battery pack, and the power distribution cabinet, the energy storage bidirectional converter and the battery pack are integrally installed to form a box type complete device, and the energy storage module is one or more.
- N is an integer, that is, the energy storage module may have a range of 1-N. Since the area of the chart is limited, only the energy storage module 1 is drawn.
- the energy storage module N in fact, the energy storage module can have 1, 2, 3, 4, 5, or even N.
- the distributed new energy power generation unit is photovoltaic power generation, or wind power generation, or a fuel cell, or a hydroelectric power generation, or an internal combustion engine generator set, or a gas turbine generator set, and the distributed new energy power generation unit may have one or more,
- N are integers, that is, the distributed distributed new energy power generation unit may have a range of 1-N, because the chart area is limited. Therefore, only the distributed new energy power generation unit 1 and the distributed new energy power generation unit N are drawn. In fact, the distributed new energy power generation unit may have one, two, three, four, five, or even N.
- the low-voltage power distribution device described above provides a low-voltage main bus with a rated voltage of LM (kV) and a reactive power compensation device SVG.
- the reactive power compensation device SVG is controlled by the micro-grid control management system, and the reactive power compensation device SVG is installed at a low voltage. In the electric cabinet.
- the low-voltage power distribution device provides a low-voltage main bus connection with a rated voltage of LM (kV) and is also connected to a socket, which can be directly connected to the 380V mains with load operation.
- LM rated voltage
- the above-mentioned low-voltage power distribution cabinet can also be installed with a built-in electric vehicle charging pile, and the built-in electric vehicle charging pile is connected with the low-voltage main bus; the low-voltage main bus is also connected with an external electric vehicle charging pile, and the external electric vehicle charging pile is located at a low voltage.
- the energy storage module can also be installed with a built-in electric vehicle charging pile, and the built-in electric vehicle charging pile is directly powered by the energy storage module on the tank of the energy storage module.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the present embodiment provides a new energy micro-grid electric vehicle charging station, which includes two new energy micro-grid electric vehicle charging station unit modules, which are respectively a first-level new energy micro.
- Grid electric vehicle charging station unit module and second-level new energy micro-grid electric vehicle charging station unit module, first-level new energy micro-grid electric vehicle charging station unit module and second-level new energy micro-grid electric vehicle charging station unit module are and examples
- a new energy microgrid electric vehicle charging station unit module is described as being identical.
- the input end of the high-voltage grid access switch of the first-level new energy micro-grid electric vehicle charging station unit module is connected to the external high-voltage power grid, the module cascade switch of the first-level new energy micro-grid electric vehicle charging station unit module and the second-level
- the high-voltage power grid access switch of the new energy micro-grid electric vehicle charging station unit module is connected to obtain the high-voltage power provided by the high-voltage power grid with a rated voltage of HM(kV).
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- the embodiment provides a new energy micro-grid electric vehicle charging station, comprising four new energy micro-grid electric vehicle charging station unit modules, respectively charging a first-class new energy micro-grid electric vehicle.
- Station unit module two-level new energy micro-grid electric vehicle charging station unit module, three-level new energy micro-grid electric vehicle charging station unit module and four-level new energy micro-grid electric vehicle charging station unit module; first-level new energy micro-grid electric
- the input end of the high-voltage grid access switch of the car charging station unit module is connected to the external high-voltage power grid, the module cascade switch of the first-level new energy micro-grid electric vehicle charging station unit module and the second-level new energy micro-grid electric vehicle charging station.
- the high-voltage power grid access switch of the unit module is connected, and the new energy micro-grid electric vehicle charging station unit modules of the remaining levels are connected in series according to the above manner, and the high-voltage power provided by the high-voltage power grid with the rated voltage of HM(k
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种新能源微电网电动汽车充电站,至少包括有一个新能源微电网电动汽车充电站单元模块,包括变配电模块、储能模块、分布式新能源发电单元、负荷、分布式新能源发电单元和微电网控制管理系统,变配电模块包含高压配电装置、配电变压器和低压配电装置,高压配电装置的输入端接入外部的高压电网,所述的配电变压器一次侧连接于高压配电装置的输出端,二次侧连接于低压配电装置的输入端,低压配电装置提供额定低压主母线,所述的储能模块、分布式新能源发电单元以及负荷均连接于低压配电装置的低压主母线上,它占地面积小,模块化安装建设工期短,扩建灵活方便。
Description
本实用新型涉及一种新能源微电网电动汽车充电站。
随着以电池为动力的电动车辆不断面世并快速走向市场,能否解决好这些车辆的动力电池的充电问题,已经成为这类新能源车辆能否推广应用的关键之一。
常规的电动汽车充(换)电站的电源取自于公共配电网,经降压后向电动汽车充电桩(充电机)提供电源。其存在如下的不足:
1)常规电动汽车充(换)电站不提供分布式新能源发电、储能装置的接入与管理功能,当市电失电时充电站亦停运,而且在电网未覆盖区域则无法建设。
2)常规电动汽车充(换)电站并非模块化集成,安装建设复杂,建设周期长;
3)目前出现的光伏充电站,虽然可以接入与消纳光伏发电,但能源品种单一,适用范围窄;
4)当因工作需要扩充电动汽车充(换)电站的容量时,操作困难,不方便。
发明内容:
本实用新型的第一目的是提供一种新能源微电网电动汽车充电站,解决目前充(换)电站占地面积大,非模块化安装建设工期长,扩建不灵活方便等问题;
本实用新型的第二目的是提供一种新能源微电网电动汽车充电站,解决目前充(换)电站不提供分布式新能源发电、储能装置的接入与管理功能,并且新能源发电品种单一。
本实用新型的目的是通过下述技术方案予以实现的。
一种新能源微电网电动汽车充电站,至少包括有一个新能源微电网电动汽车
充电站单元模块,所述的新能源微电网电动汽车充电站单元模块包括变配电模块、储能模块、分布式新能源发电单元、负荷和微电网控制管理系统,所述的负荷是电动汽车充电桩或电动汽车充电机,其中:所述的变配电模块包含高压配电装置、配电变压器和低压配电装置,高压配电装置的输入端接入外部的高压电网,所述的配电变压器一次侧连接于高压配电装置的输出端,二次侧连接于低压配电装置的输入端,低压配电装置提供额定电压为LM(kV)的低压主母线接线,所述的储能模块、分布式新能源发电单元以及负荷均连接于低压配电装置的低压主母线上,微电网控制管理系统控制整个新能源微电网电动汽车充电站单元模块的工作。
上述高压配电装置包括高压电主母线、高压电网接入开关、变压器连接开关和模块级联开关,高压电网接入开关、变压器连接开关和模块级联开关的一端都分别连接在高压电主母线上,高压电网接入开关输入端接入外部的高压电网,变压器连接开关的输出端连接配电变压器一次侧,模块级联开关的引出端用于连接下一级的新能源微电网电动汽车充电站单元模块的高压电网接入开关。
上述当新能源微电网电动汽车充电站单元模块含有多个时,选择一个新能源微电网电动汽车充电站单元模块作为第一级,其高压电网接入开关的输入端接入外部的高压电网,其模块级联开关与第二级的新能源微电网电动汽车充电站单元模块的高压电网接入开关连接,其余各级的新能源微电网电动汽车充电站单元模块也按以上方式连接串联起来,获取高压电网提供的额定电压为HM(kV)的高压电。
上述高压电主母线、高压电网接入开关、变压器连接开关和模块级联开关安装在一个柜中形成高压配电柜;低压配电装置包括低压主母线接线和若干个低压接线开关,若干个低压接线开关的一端分别与低压主母线接线连接,另一端连接内置的设备或者引出,将低压主母线接线和若干个低压接线开关安装在一个柜中形成低压配电柜。
上述高压配电装置、配电变压器和低压配电装置是集成安装在一个箱体内形成箱式成套变配电设备。
上述高压配电装置按充电站容量以及外部高压电网,外部高压电网提供的额定电压为HM(kV)为6kV,或者10kV,或者20kV或35kV,低压配电装置提供额定电压为LM(kV)为0.4KV。
上述储能模块包含配电柜、储能双向变流器以及电池组,将配电柜、储能双向变流器以及电池组集成安装形成箱式成套设备。
上述分布式新能源发电单元是光伏发电、或者是风力发电、或者是燃料电池、或者是水力发电、或者是内燃机发电机组、或者是燃气轮机发电机组,或者是以上2种或者2种以上发电设备的组合。
上述低压配电装置提供额定电压为LM(kV)的低压主母线接线还连接无功补偿设备SVG,无功补偿设备SVG受微电网控制管理系统控制。
上述低压配电装置提供额定电压为LM(kV)的低压主母线接线还连接一个接插口,该接插口可直接接入380V市电中带负荷运行工作。
上述在低压配电柜中还可以安装一个内置电动汽车充电桩,该内置电动汽车充电桩与低压主母线连接;低压主母线还连接外置电动汽车充电桩,该外置电动汽车充电桩位于低压配电柜外,储能模块还可以安装内置电动汽车充电桩,该内置电动汽车充电桩安装储能模块的箱体上由储能模块直接供电。
本实用新型与现有技术相比,具有如下效果:
1)本实用新型的新能源微电网电动汽车充电站,至少包括有一个新能源微电网电动汽车充电站单元模块,所述的新能源微电网电动汽车充电站单元模块包括变配电模块、储能模块、分布式新能源发电单元、负荷和微电网控制管理系统,形成模块化,节约占地面积,安装建设工期短,扩建扩容灵活方便;
2)高压配电装置包括高压电网接入开关和模块级联开关,高压电网接入开关的输出端连接模块级联开关的输入端,高压电网接入开关接入外部的高压电网,这样可以方便多个新能源微电网电动汽车充电站单元模块的相互串联起来,
方便扩容安装。
3)上述高压配电装置、配电变压器和低压配电装置是集成安装在一个箱体内形成箱式成套变配电设备,可以灵活整体搬运,节约占地面积,简化安装;
4)压配电装置主要包括一些高压开关,将这些高压开关安装在一个柜中形成高压配电柜;低压配电装置包括一些低压开关,将这些低压开关安装在一个柜中形成低压配电柜,结构布局更加合理,方便管理;
5)储能模块包含配电柜、储能双向变流器以及电池组,将配电柜、储能双向变流器以及电池组集成安装形成箱式成套设备,可以灵活整体搬运,节约占地面积,简化安装;
6)分布式新能源发电单元是光伏发电、或者是风力发电、或者是燃料电池、或者是水力发电、或者是内燃机发电机组、或者是燃气轮机发电机组,能接入与消纳多组、多种分布式新能源发电,适应范围广。
7)低压配电装置提供额定电压为LM(kV)的低压主母线接线还连接一个接插口,该接插口可直接接入380V市电中带负荷运行工作,工作方式更加灵活和多样化。
8)分布式新能源发电单元是光伏发电、或者是风力发电、或者是燃料电池、或者是水力发电、或者是内燃机发电机组、或者是燃气轮机发电机组,或者是以上2种或者2种以上发电设备的组合。能源种类、数量选择范围宽,适用范围广,可以适应不同的工作环境。
图1是本实用新型实施例一的原理示意图;
图2是本实用新型实施例一具体方框原理图;
图3是本实用新型的新能源微电网电动汽车充电站单元模块的方框图;
图4是本实用新型实施例二的原理示意图;
图5是本实用新型实施例二的具体的接线示意图;
图6是本实用新型实施例三的原理示意图。
下面通过具体实施例并结合附图对本实用新型作进一步详细的描述。
实施例一:
如图1至图3所示,本实施例提供的是一种新能源微电网电动汽车充电站,包括有一个新能源微电网电动汽车充电站单元模块,所述的新能源微电网电动汽车充电站单元模块包括变配电模块、储能模块、分布式新能源发电单元、负荷和微电网控制管理系统,所述的负荷是电动汽车充电桩或电动汽车充电机,其中:所述的变配电模块包含高压配电装置、配电变压器和低压配电装置,高压配电装置的输入端接入外部的高压电网,所述的配电变压器一次侧连接于高压配电装置的输出端,二次侧连接于低压配电装置的输入端,低压配电装置提供额定电压为LM(kV)的低压主母线,所述的储能模块、分布式新能源发电单元以及负荷均连接于低压配电装置的低压主母线上,微电网控制管理系统控制整个新能源微电网电动汽车充电站单元模块的工作。
上述高压配电装置包括高压电主母线、高压电网接入开关、变压器连接开关和模块级联开关,高压电网接入开关、变压器连接开关和模块级联开关的一端都分别连接在高压电主母线上,高压电网接入开关输入端接入外部的高压电网,变压器连接开关的输出端连接配电变压器一次侧,模块级联开关的引出端用于连接下一级的新能源微电网电动汽车充电站单元模块的高压电网接入开关。
上述高压电主母线、高压电网接入开关、变压器连接开关和模块级联开关安装在一个柜中形成高压配电柜;低压配电装置包括低压主母线接线和若干个低压接线开关,若干个低压接线开关的一端分别与低压主母线接线连接,另一端连接内置的设备或者引出,将低压主母线接线和若干个低压接线开关安装在一个柜中形成低压配电柜。
高压配电装置、配电变压器和低压配电装置是集成安装在一个箱体内形成箱
式成套变配电设备。高压配电装置按充电站容量以及外部高压电网,外部高压电网提供的额定电压为HM(kV)为6kV,或者10kV,或者20kV或35kV,低压配电装置提供额定电压为LM(kV)为0.4KV。
上述储能模块包含配电柜、储能双向变流器以及电池组,将配电柜、储能双向变流器以及电池组集成安装形成箱式成套设备,储能模块是1个或者多个,图3中只画出储能模块1和储能模块N,N是整数,即储能模块可能有1-N的个数范围,因图表述面积有限,所以只画出储能模块1和储能模块N,其实储能模块可以有1个、2个、3个、4个、5个、甚至N个。
分布式新能源发电单元是光伏发电、或者是风力发电、或者是燃料电池、或者是水力发电、或者是内燃机发电机组、或者是燃气轮机发电机组,分布式新能源发电单元可以1个或者多个,图3中只画出分布式新能源发电单元1和分布式新能源发电单元N,N是整数,即储分布式新能源发电单元可能有1-N的个数范围,因图表述面积有限,所以只画出分布式新能源发电单元1和分布式新能源发电单元N,其实分布式新能源发电单元可以有1个、2个、3个、4个、5个、甚至N个。
上述所述的低压配电装置提供额定电压为LM(kV)的低压主母线还连接无功补偿设备SVG,无功补偿设备SVG受微电网控制管理系统控制,无功补偿设备SVG安装在低压配电柜中。
上述低压配电装置提供额定电压为LM(kV)的低压主母线接线还连接一个接插口,该接插口可直接接入380V市电中带负荷运行工作。
上述在低压配电柜中还可以安装一个内置电动汽车充电桩,该内置电动汽车充电桩与低压主母线连接;低压主母线还连接外置电动汽车充电桩,该外置电动汽车充电桩位于低压配电柜外,储能模块还可以安装内置电动汽车充电桩,该内置电动汽车充电桩安装储能模块的箱体上由储能模块直接供电。
实施例二:
如图4、图5所示所示,本实施例提供的是一种新能源微电网电动汽车充电站,包括有2个新能源微电网电动汽车充电站单元模块,分别为一级新能源微电网电动汽车充电站单元模块和二级新能源微电网电动汽车充电站单元模块,一级新能源微电网电动汽车充电站单元模块和二级新能源微电网电动汽车充电站单元模块是与实施例一所描述的新能源微电网电动汽车充电站单元模块是相同的。图5中由于图片篇幅的关系,没有将一级新能源微电网电动汽车充电站单元模块和二级新能源微电网电动汽车充电站单元模块的结构全部画出来,只只是画出了变配电模块部分的电气原理图,因为一级新能源微电网电动汽车充电站单元模块和二级新能源微电网电动汽车充电站单元模块的连接只是在变配电模块的连接。
一级新能源微电网电动汽车充电站单元模块的高压电网接入开关的输入端接入外部的高压电网,一级新能源微电网电动汽车充电站单元模块的模块级联开关与第二级的新能源微电网电动汽车充电站单元模块的高压电网接入开关连接,获取高压电网提供的额定电压为HM(kV)的高压电。
实施例三:
图6所示所示,本实施例提供的是一种新能源微电网电动汽车充电站,包括有4个新能源微电网电动汽车充电站单元模块,分别为一级新能源微电网电动汽车充电站单元模块、二级新能源微电网电动汽车充电站单元模块、三级新能源微电网电动汽车充电站单元模块和四级新能源微电网电动汽车充电站单元模块;一级新能源微电网电动汽车充电站单元模块高压电网接入开关的输入端接入外部的高压电网,一级新能源微电网电动汽车充电站单元模块的模块级联开关与第二级的新能源微电网电动汽车充电站单元模块的高压电网接入开关连接,其余各级的新能源微电网电动汽车充电站单元模块也按以上方式连接串联起来,获取高压电网提供的额定电压为HM(kV)的高压电。
以上实施例为本发明的较佳实施方式,但本发明的实施方式不限于此,其
他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。
Claims (11)
- 一种新能源微电网电动汽车充电站,至少包括有一个新能源微电网电动汽车充电站单元模块,所述的新能源微电网电动汽车充电站单元模块包括变配电模块、储能模块、分布式新能源发电单元、负荷和微电网控制管理系统,所述的负荷是电动汽车充电桩或电动汽车充电机,其中:所述的变配电模块包含高压配电装置、配电变压器和低压配电装置,高压配电装置的输入端接入外部的高压电网,所述的配电变压器一次侧连接于高压配电装置的输出端,二次侧连接于低压配电装置的输入端,低压配电装置提供额定电压为LM(kV)的低压主母线,所述的储能模块、分布式新能源发电单元以及负荷均连接于低压配电装置的低压主母线上,微电网控制管理系统控制整个新能源微电网电动汽车充电站单元模块的工作。
- 根据权利要求1所述的新能源微电网电动汽车充电站,其特征在于:高压配电装置包括高压电主母线、高压电网接入开关、变压器连接开关和模块级联开关,高压电网接入开关、变压器连接开关和模块级联开关的一端都分别连接在高压电主母线上,高压电网接入开关输入端接入外部的高压电网,变压器连接开关的输出端连接配电变压器一次侧,模块级联开关的引出端用于连接下一级的新能源微电网电动汽车充电站单元模块的高压电网接入开关。
- 根据权利要求2所述的新能源微电网电动汽车充电站,其特征在于:当新能源微电网电动汽车充电站单元模块含有多个时,选择一个新能源微电网电动汽车充电站单元模块作为第一级,其高压电网接入开关的输入端接入外部的高压电网,其模块级联开关与第二级的新能源微电网电动汽车充电站单元模块的高压电网接入开关连接,其余各级的新能源微电网电动汽车充电站单元模块也按以上方式连接串联起来,获取高压电网提供的额定电压为HM(kV)的高压电。
- 根据权利要求2所述的新能源微电网电动汽车充电站,其特征在于:高压电主母线、高压电网接入开关、变压器连接开关和模块级联开关安装在一个 柜中形成高压配电柜;低压配电装置包括低压主母线接线和若干个低压接线开关,若干个低压接线开关的一端分别与低压主母线接线连接,另一端连接内置的设备或者引出,将低压主母线接线和若干个低压接线开关安装在一个柜中形成低压配电柜。
- 根据权利要求1或2或3或4所述的新能源微电网电动汽车充电站,其特征在于:高压配电装置、配电变压器和低压配电装置是集成安装在一个箱体内形成箱式成套变配电设备。
- 根据权利要求5所述的新能源微电网电动汽车充电站,其特征在于:高压配电装置按充电站容量以及外部高压电网,外部高压电网提供的额定电压为HM(kV)为6kV,或者10kV,或者20kV或35kV,低压配电装置提供额定电压为LM(kV)为0.4KV。
- 根据权利要求1或2或3或4所述的新能源微电网电动汽车充电站,其特征在于:储能模块包含配电柜、储能双向变流器以及电池组,将配电柜、储能双向变流器以及电池组集成安装形成箱式成套设备,储能模块是1个或者多个。
- 根据权利要求1或2或3所述的新能源微电网电动汽车充电站,其特征在于:分布式新能源发电单元是光伏发电、或者是风力发电、或者是燃料电池、或者是水力发电、或者是内燃机发电机组、或者是燃气轮机发电机组,分布式新能源发电单元可以1个或者多个。
- 根据权利要求1或2或3或4所述的新能源微电网电动汽车充电站,其特征在于:低压配电装置提供额定电压为LM(kV)的低压主母线还连接无功补偿设备SVG,无功补偿设备SVG受微电网控制管理系统控制,无功补偿设备SVG安装在低压配电柜中。
- 根据权利要求1或2或3或4所述的新能源微电网电动汽车充电站,其特征在于:低压配电装置提供额定电压为LM(kV)的低压主母线接线还连接一个接插口,该接插口可直接接入380V市电中带负荷运行工作。
- 根据权利要求4所述的新能源微电网电动汽车充电站,其特征在于:在低压配电柜中还可以安装一个内置电动汽车充电桩,该内置电动汽车充电桩与低压主母线连接;低压主母线还连接外置电动汽车充电桩,该外置电动汽车充电桩位于低压配电柜外,储能模块还可以安装内置电动汽车充电桩,该内置电动汽车充电桩安装储能模块的箱体上由储能模块直接供电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621343466.2 | 2016-12-08 | ||
CN201621343466.2U CN206623692U (zh) | 2016-12-08 | 2016-12-08 | 一种新能源微电网电动汽车充电站 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018103230A1 true WO2018103230A1 (zh) | 2018-06-14 |
Family
ID=60212960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/077709 WO2018103230A1 (zh) | 2016-12-08 | 2017-03-22 | 一种新能源微电网电动汽车充电站 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN206623692U (zh) |
WO (1) | WO2018103230A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112436595A (zh) * | 2020-11-12 | 2021-03-02 | 百度在线网络技术(北京)有限公司 | 低压模块、hvdc模块、ups模块、供电系统和数据中心 |
CN113690898A (zh) * | 2021-08-17 | 2021-11-23 | 国网安徽省电力有限公司 | 一种低频减载下识别负荷线路挂接母线的防误方法及装置 |
CN114084056A (zh) * | 2021-11-09 | 2022-02-25 | 深圳带电科技发展有限公司 | 多功能负荷转移车 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108155642A (zh) * | 2017-12-21 | 2018-06-12 | 中国联合网络通信集团有限公司 | 一种数据中心的配电系统 |
US11848562B2 (en) | 2017-12-22 | 2023-12-19 | Ren Serviços S A | Electric vehicle charging station for connecting to high or extra high voltage transmission line and operation method thereof |
CN113381455B (zh) * | 2021-06-09 | 2022-09-23 | 国网山东省电力公司莱芜供电公司 | 一种电动汽车充电管理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05207668A (ja) * | 1992-01-24 | 1993-08-13 | Nissan Motor Co Ltd | 充電装置 |
US20080040479A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green Inc. | Connection Locator in a Power Aggregation System for Distributed Electric Resources |
CN102361334A (zh) * | 2011-10-17 | 2012-02-22 | 广东电网公司深圳供电局 | 光伏储能电动汽车充电站系统及储能系统状态切换方法 |
CN105762803A (zh) * | 2016-04-20 | 2016-07-13 | 三峡大学 | 一种含有重要负荷的新能源与电动汽车接入的城市直流配电系统 |
CN106549406A (zh) * | 2016-12-08 | 2017-03-29 | 中山大洋电机股份有限公司 | 一种新能源微电网电动汽车充电站的控制方法 |
-
2016
- 2016-12-08 CN CN201621343466.2U patent/CN206623692U/zh active Active
-
2017
- 2017-03-22 WO PCT/CN2017/077709 patent/WO2018103230A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05207668A (ja) * | 1992-01-24 | 1993-08-13 | Nissan Motor Co Ltd | 充電装置 |
US20080040479A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green Inc. | Connection Locator in a Power Aggregation System for Distributed Electric Resources |
CN102361334A (zh) * | 2011-10-17 | 2012-02-22 | 广东电网公司深圳供电局 | 光伏储能电动汽车充电站系统及储能系统状态切换方法 |
CN105762803A (zh) * | 2016-04-20 | 2016-07-13 | 三峡大学 | 一种含有重要负荷的新能源与电动汽车接入的城市直流配电系统 |
CN106549406A (zh) * | 2016-12-08 | 2017-03-29 | 中山大洋电机股份有限公司 | 一种新能源微电网电动汽车充电站的控制方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112436595A (zh) * | 2020-11-12 | 2021-03-02 | 百度在线网络技术(北京)有限公司 | 低压模块、hvdc模块、ups模块、供电系统和数据中心 |
CN113690898A (zh) * | 2021-08-17 | 2021-11-23 | 国网安徽省电力有限公司 | 一种低频减载下识别负荷线路挂接母线的防误方法及装置 |
CN114084056A (zh) * | 2021-11-09 | 2022-02-25 | 深圳带电科技发展有限公司 | 多功能负荷转移车 |
CN114084056B (zh) * | 2021-11-09 | 2024-06-07 | 深圳带电科技发展有限公司 | 多功能负荷转移车 |
Also Published As
Publication number | Publication date |
---|---|
CN206623692U (zh) | 2017-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018103230A1 (zh) | 一种新能源微电网电动汽车充电站 | |
CN106549406B (zh) | 一种新能源微电网电动汽车充电站的控制方法 | |
WO2018103231A1 (zh) | 一种新能源微电网电动汽车充电站 | |
CN108923409B (zh) | 直流供电系统 | |
Madduri et al. | Design and verification of smart and scalable DC microgrids for emerging regions | |
Jia et al. | Architecture design for new AC-DC hybrid micro-grid | |
KR101836230B1 (ko) | 가변 전압 dc 마이크로그리드 시스템 및 이의 운전 방법 | |
CN103929115A (zh) | 并离网双模式船舶太阳能发电系统 | |
Huang et al. | Research on power control strategy of household-level electric power router based on hybrid energy storage droop control | |
CN201286019Y (zh) | 一种与电网互联式110kw风光互补发电系统 | |
CN103023155A (zh) | 大容量电池储能系统的模块化设计方法 | |
CN112769161A (zh) | 一种多模式储能的微电网系统 | |
Abdelsattar et al. | Analysis of Renewable Energy Sources and Electrical Vehicles Integration Into Microgrid | |
CN104052084A (zh) | 用于大型用电场所的110千伏变电站微网系统 | |
CN111463786A (zh) | 一种多配电变压器的用电企业内部柔性组网系统 | |
CN203722249U (zh) | 一种分布式光伏并网发电系统 | |
CN213185533U (zh) | 一种多模式储能的微电网 | |
CN115021262A (zh) | 一种新型风光储新能源一体化电源系统及其运行方法 | |
Ajaei et al. | Hybrid AC/DC microgrid configurations for a net-zero energy community | |
Weihua et al. | Research on High Voltage High Capacity Multi-port Energy Router | |
CN204046192U (zh) | 用于大型用电场所的110千伏变电站微网系统 | |
CN209805220U (zh) | 一种移动储能车式变电站 | |
KR20150025772A (ko) | 부유식 구조물의 배전시스템 및 배전방법 | |
CN221633479U (zh) | 一种光伏发电项目施工电源系统 | |
CN204046191U (zh) | 110千伏变电站微网的交直流一体化电源系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877441 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877441 Country of ref document: EP Kind code of ref document: A1 |