WO2018103103A1 - 一种基于3d打印技术制备的超轻结构太阳能电池 - Google Patents

一种基于3d打印技术制备的超轻结构太阳能电池 Download PDF

Info

Publication number
WO2018103103A1
WO2018103103A1 PCT/CN2016/109317 CN2016109317W WO2018103103A1 WO 2018103103 A1 WO2018103103 A1 WO 2018103103A1 CN 2016109317 W CN2016109317 W CN 2016109317W WO 2018103103 A1 WO2018103103 A1 WO 2018103103A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
ultra
photoresist
structure solar
Prior art date
Application number
PCT/CN2016/109317
Other languages
English (en)
French (fr)
Inventor
贺晓宁
Original Assignee
深圳摩方材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳摩方材料科技有限公司 filed Critical 深圳摩方材料科技有限公司
Publication of WO2018103103A1 publication Critical patent/WO2018103103A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • Ultra-light structure solar cell prepared based on 3D printing technology
  • the present invention belongs to the field of new materials and new energy, and relates to a thin film solar cell and a preparation method thereof, and particularly relates to an ultra-light structure solar cell prepared based on a 3D printing technology.
  • Ultra-light materials are a new class of materials that are rapidly developing. Ultra-light materials such as aerogels and foams have been used in many fields such as sound insulation, heat insulation, waste water, dust removal and the like. The operation of any device or equipment requires a power system first. Because the weight and size are much larger than ultra-light-structure nano-devices or equipment, conventional power cannot be used as a power source to drive ultra-light-structure nano-devices.
  • ultra-light devices based on ultra-light structural materials or micro-scale devices on a nanometer scale can be prepared.
  • Conventional batteries are overweight compared to ultra-light-structure devices and devices.
  • Driving power supplies with ultra-light structures, the ability to generate electrical energy, and the ability to combine with ultra-light-structure devices and devices are an urgent problem to be solved.
  • the present invention provides a method for preparing an ultra-light structure solar cell, comprising the following steps:
  • Step A selecting a substrate, and then uniformly coating the photosensitive photoresist on the surface of the substrate;
  • Step B determining an exposed area on the obtained photoresist-coated substrate by using a 3D printer, and curing the exposed area;
  • Step C developing and fixing the photoresist, and further curing and strengthening the cured portion. And cleaning and removing the uncured portion;
  • Step D depositing a thin film solar cell on a substrate on which a lithographic pattern is prepared
  • Step E According to the structural design, the above steps B to D are repeated, and all the cured photoresists are removed by cleaning to obtain an ultra-light structure solar cell.
  • step E the number of loop repetitions from step B to step D is determined according to different structural designs.
  • the present invention is implemented by a combination of photolithography, 3D printing, and vacuum coating.
  • the specific process is as follows: coating the photosensitive adhesive, controlling the photosensitive region by using a 3D printing system, removing the non-cured portion of the photoresist by using a solvent, depositing a film on the surface of the cured photoresist by vacuum coating, and repeating the above process according to the 3D output image.
  • a solar cell containing a cured photoresist is obtained, and the cured photoresist is removed by washing with a solvent capable of dissolving the cured photoresist to obtain an ultra-light structure solar cell system.
  • the photosensitive photoresist is uniformly coated by at least one of roll coating, blade coating and spray coating.
  • the step B includes: the photoresist-coated substrate obtained in the step A, controlling the output characteristics of the exposure light source by using a 3D printer to form a required exposure area, or using a mask to control the exposure area, Or the two together act to control the exposure; and the exposure period of the photoresist is controlled by the 3D printer to control the light source, or the light source is directly set to the daytime control.
  • the specific steps of depositing the thin film solar cell are:
  • D1 deposited by vacuum coating method to obtain a transparent conductive film -Tp;
  • D2 depositing a hole conductive semiconductor film - a ruthenium layer
  • D3 depositing an intrinsic semiconductor film-I-type layer
  • D4 depositing an electronically conductive semiconductor film - a germanium layer
  • D5 depositing a transparent conductive film - ⁇ .
  • Tp and Tn are formed in a mutually connected or independent manner to form a photovoltaic conversion film, which adopts one of a single junction, a double junction and a multi-junction.
  • each layer of the film defect is deposited, and a scanning or deposition method is performed by using a mask or a dot-like or linear deposition coating source to ensure transparent conductive connection with the germanium layer in the solar cell unit.
  • the layer ⁇ ⁇ , the transparent conductive layer ⁇ connected to the ⁇ layer, are non-conducting; and the correct series-parallel structure between different solar cells.
  • the transparent conductive film adopts one of ITO, ruthenium and FTO films.
  • the coating thickness of the photoresist is from 1 nm to 10 mm.
  • the exposure light source is a light source or an electron beam source that emits at least one of ultraviolet light or blue light.
  • the UV curable gel is dissolved and removed by using acetone.
  • the ultra-light structure solar cell and the preparation method thereof provided by the invention have the characteristics of extremely low density of ultra-light materials on the one hand and the ability of solar cells to convert solar energy into electric energy on the other hand. In the future, it will play an important role in nanometer and larger scale devices, instruments, and devices made up of ultra-light materials with nanometer fine structure features.
  • FIG. 1 is a cross-sectional view of an ultra-light-structure solar cell of the present invention in which a substrate or a photoresist has not been removed, wherein the solar cell units are in a parallel manner.
  • FIG. 2 is a cross-sectional view of an ultra-light-structure solar cell of the present invention in which a substrate or a photoresist has not been removed.
  • FIG 3 is a schematic structural view of a single junction solar cell unit of the present invention.
  • FIG. 4 is a schematic structural view of a double junction solar cell unit of the present invention.
  • FIG. 5 is a schematic structural view of a solar cell system in which a solar cell unit of the present invention is a blade structure.
  • FIG. 6 is a schematic structural view of a solar cell system in which a solar cell unit of the present invention has a cubic structure.
  • FIG. 1 and 2 are respectively cross-sectional views of a parallel, series-connected ultra-light-structure solar cell without removing a substrate and a photoresist
  • FIG. 3 and FIG. 4 are constituting an ultra-light-structure solar cell.
  • the solar cell unit of the system FIG. 5 and FIG. 6 are schematic cross-sectional views of the ultra-light structure solar cell system with different three-dimensional structures.
  • the ultra-light structure solar cell system is composed of a solar cell unit 6, conductive leads 5 and 7 between the solar cell units, a hollowed out region 8, and a hollow cell of different solar cell units. composition.
  • the utility model is characterized in that: 1.
  • a plurality of solar cell units are combined to form an ultra-light structure solar cell, wherein the solar cell units are hollow regions without any solid matter.
  • the solar cell unit constitutes a three-dimensional ultra-light structure, which can be a fan blade structure, a spider web structure, a regular or an irregular three-dimensional structure.
  • the ultra-light structure thin film solar cell unit, 1, constitutes a solar cell unit! 5
  • I, N and electrodes are films prepared by vacuum coating, and the substrate required for film deposition has been removed.
  • the size of the battery unit is in the order of nanometers and the maximum is no more than 10mm.
  • All materials having photovoltaic properties which can be prepared as a film by a vacuum coating method may be materials constituting the solar cell unit.
  • the present invention provides a method for preparing an ultra-light structure solar cell, comprising the following steps:
  • Step 1 Select a solid material of a plane, a curved surface or a certain stereo configuration as the substrate 0, and the geometrical features of the top surface of the substrate 0 are designed and selected according to the configuration of the required ultra-light structure solar cell.
  • Step 2 uniformly coating the photosensitive photoresist on the surface of the substrate 0 by roll coating, blade coating, spraying or other methods.
  • the photoresist may be a photocurable adhesive, or a glue that is cured in a non-light-receiving region and that does not cure in the light-receiving region.
  • the coating thickness of the photoresist ranges from a few nanometers to several millimeters.
  • Step 3 For the photoresist-coated substrate obtained above, use a 3D printer to control the output characteristics of the exposure light source to form a desired exposure area, or use a reticle to control the exposure area, or both to control exposure
  • the exposure time of the photoresist is controlled by a 3D printer, or the light source is directly set to the daytime control.
  • the exposed photoresist may be fully cured with the exposed portion (or non-exposed portion, depending on the photoresist characteristics), or partially cured.
  • the light source used for exposure can be various wavelengths such as ultraviolet light and blue light.
  • the method by which the light source produces light can be an LED, or an arc lamp.
  • Step 4 After the above exposure is completed, the photoresist is developed and fixed, that is, the portion 04 where the photoresist is cured is left, and the uncured portion is removed by cleaning. Depending on the characteristics of the photoresist, or directly washed with a liquid that can be washed away to remove the uncured adhesive, or the curing portion 4 is further cured and strengthened by a fixing agent, and then the uncured portion is cleaned and removed.
  • Step 5 depositing a thin film solar cell on the substrate on which the lithographic pattern is prepared.
  • the specific steps of depositing a thin film solar cell are as follows: 1. Depositing a transparent conductive film 1 (Tp), such as an ITO, A ZO or FTO film, by a vacuum coating method; 2. Depositing a hole conductive semiconductor film 2P (P type layer) 3. Depositing an intrinsic semiconductor film 21 (I-type layer); 4. Depositing an electroconductive semiconductor film 2N; 5. Depositing a transparent conductive film 3 (Tn); and continuing to deposit other films which contribute to improving photovoltaic efficiency.
  • Tp transparent conductive film 1
  • I-type layer an intrinsic semiconductor film 21
  • electroconductive semiconductor film 2N depositing a transparent conductive film 3 (Tn); and continuing to deposit other films which contribute to improving photovoltaic efficiency.
  • the structure of the thin film solar cell needs to be designed in advance, and the main points of the design are as follows: 1.
  • the electrode ⁇ is incapable of conduction between the two; 2.
  • different solar battery cells may be connected in series or in parallel, that is, Tp, Tn of different solar battery cells, which may be solar cells.
  • the Tpk of the unit k is connected (in series) with the Tn1 of the solar cell unit 1, or is connected (in parallel) with the Tp 1; 3.
  • the PIN film may be a single junction, that is, only A layer of PIN can also be multi-junction, that is, there are multiple layers of PIN.
  • Step 6 According to the final ultra-light structure solar cell system design, the above steps 1 to 5 are repeated cyclically to obtain an ultra-light structure solar cell system with a cured photoresist.
  • the step 316 is repeated to form a lithographic pattern ⁇ , and the pattern outputted by the 3D printer is changed each time; the step 5 is repeated to deposit the thin film solar cell ⁇ , and the front and back Tp and Tn may be connected to each other or may be independent.
  • inter-connectivity ensure that the front and back Tp, Tn are not covered by the photoresist and cannot be deposited in accordance with the required output power characteristics, and that the correct connection is achieved.
  • Step 7 using a solvent that dissolves the cured photoresist 4, cleaning and removing all of the cured photoresist 4 to obtain an ultra Lightweight solar cell system.
  • Step 1 Select the display glass as the substrate 0;
  • Step 2 The coating method uniformly coats the UV photosensitive adhesive on the substrate 0, and the thickness of the photosensitive adhesive is about 50 micrometers;
  • Step 3 Using the 3D printing system to control the uniform output of the UV light of the UV light source, the whole photosensitive The glue is uniformly exposed and cured to form a curing glue 4; the uncured portion is removed by washing with deionized water;
  • Step 4 using a magnetron sputtering method, uniformly depositing AZO transparent conductive film 1 on the cured adhesive 4;
  • Step 5 PECVD (plasma-assisted chemical vapor deposition) method, deposited on the AZO transparent conductive film in sequence! 5 , I, N type amorphous silicon film, forming a solar cell unit 2;
  • PECVD plasma-assisted chemical vapor deposition
  • Step 6 Using a magnetron sputtering method, a transparent conductive film 3 is deposited on the solar cell unit 2; Note that 1 and 3 are not in contact with each other, in order to ensure that 1 and 3 are not inter-connected, in deposition 1, 2 3 in the process, by reducing the deposition area;
  • Step 7 On the upper surface of the transparent conductive film 3, the photoresist is coated and cured by exposure to obtain a cured layer 4; a schematic view of the embodiment is shown in FIG. 2, in order to ensure electrode lead connection, attention is paid to the exposure pattern and The previous time there is a difference, as shown in Figure 2;
  • Step 8 further repeating the above magnetron sputtering, PECVD process, and finally obtaining a sample as shown in FIG. 2 in a cross-sectional view;
  • Step 9 using an organic solvent such as acetone, the UV-curable gel is dissolved and removed to obtain a peeling from the glass substrate.
  • an organic solvent such as acetone
  • a Si-based self-supporting ultra-light-structure solar cell without residual curing glue is provided.
  • Table 1 shows the comparative advantages of ultra-light solar cells and conventional thin film solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种基于3D打印技术制备的超轻结构太阳能电池。包括以下步骤:步骤A:选择基板,再在基板表面均匀涂布感光光刻胶;步骤B:利用3D打印机在得到的涂布有光刻胶的基板上确定曝光区域,对曝光区域进行固化;步骤C:对光刻胶进行显影、定影处理,对固化部分进行进一步固化、强化,并对未固化部分清洗去除;步骤D:在制备有光刻图案的基板上沉积薄膜太阳能电池;步骤E:循环重复上述步骤B到步骤D过程,清洗去除所有固化光刻胶,得到超轻结构太阳能电池。该电池一方面具有超轻材料密度极低的特征,另一方面具有太阳能电池将太阳能转换为电能的能力。

Description

一种基于 3D打印技术制备的超轻结构太阳能电池 技术领域
[0001] 本发明属于新材料及新能源领域, 涉及一种薄膜太阳能电池及其制备方法, 尤 其涉及一种基于 3D打印技术制备的超轻结构太阳能电池。
背景技术
[0002] 超轻材料是一类正在得到高速发展的新材料, 气凝胶、 泡沫材料等超轻材料已 经在隔音、 隔热、 废水废气、 除尘等领域得到诸多应用。 任何器件、 装备的运 行, 首先需要动力系统。 因为重量、 尺寸远大于超轻结构毫微米器件或装备, 常规的电力无法作为动力源驱动超轻结构毫微米器件运行。
[0003] 采用 3D打印技术, 制备具有精细微纳米三维结构的超轻材料, 使得材料具有超 轻质量、 同吋具有可比拟甚至超越块体材料的优秀机械性能, 如美国麻省理工 机械系方绚莱教授等, 制备了陶瓷基 3D打印超轻点阵结构材料, 在具有陶瓷材 料高强度基础上, 还具有非常优异的韧性, 在航空航天、 高铁、 汽车、 火箭、 导弹等方面具有重大应用前景。
技术问题
[0004] 在精细微纳米三维点阵结构超材料基础上, 可以制备得到基于超轻结构材料的 超轻器件或毫微米尺度的微型设备。 常规电池的重量与超轻结构器件、 设备相 比过重, 具有超轻结构、 同吋能够产生电能、 能够与超轻结构器件、 设备结合 起来的驱动电源是一个亟待解决的问题。
问题的解决方案
技术解决方案
[0005] 本发明提供了一种超轻结构太阳能电池的制备方法, 包括以下步骤:
[0006] 步骤 A:选择基板,再在基板表面均匀涂布感光光刻胶;
[0007] 步骤 B: 利用 3D打印机在得到的涂布有光刻胶的基板上确定曝光区域, 对曝光 区域进行固化;
[0008] 步骤 C: 对光刻胶进行显影、 定影处理, 对固化部分进行进一步固化、 强化, 并对未固化部分清洗去除;
[0009] 步骤 D: 在制备有光刻图案的基板上沉积薄膜太阳能电池;
[0010] 步骤 E: 根据结构设计, 重复上述步骤 B到步骤 D过程, 清洗去除所有固化光刻 胶,得到超轻结构太阳能电池。
[0011] 所述步骤 E中, 根据不同的结构设计来确定步骤 B到步骤 D的循环重复次数。
[0012] 本发明采用光刻、 3D打印、 真空镀膜相结合的方式实现。 具体过程为: 涂布感 光胶、 用 3D打印系统控制感光区域、 用溶剂去除光刻胶非固化部分、 采用真空 镀膜的方法在固化的光刻胶表面沉积薄膜, 根据 3D输出图像重复上述过程, 得 到含有固化光刻胶的太阳能电池, 用可溶解固化光刻胶的溶剂清洗去除固化的 光刻胶, 得到超轻结构太阳能电池系统。
[0013] 优选的, 所述步骤 A, 利用滚涂、 刮涂和喷涂中至少一种方法均匀涂布感光光 刻胶。
[0014] 优选的, 所述步骤 B包括: 对步骤 A得到的涂布有光刻胶的基板, 利用 3D打印 机控制曝光光源的输出特性形成所需要的曝光区域、 或者采用掩模板控制曝光 区域、 或者二者共同作用控制曝光; 且光刻胶的曝光吋间由 3D打印机控制光源 的幵关吋间、 或者对光源直接设定幵关吋间控制。
[0015] 优选的, 所述步骤 D中, 沉积薄膜太阳能电池吋的具体步骤为:
[0016] D1 : 采用真空镀膜方法沉积得到透明导电膜 -Tp;
[0017] D2: 沉积空穴导电性半导体薄膜 -Ρ型层;
[0018] D3: 沉积本征半导体薄膜 -I型层;
[0019] D4: 沉积电子导电性半导体薄膜 -Ν型层;
[0020] D5: 沉积透明导电薄膜 -Τη。
[0021] 优选的, 所述步骤 D中, Tp和 Τη采用相互连接或者独立的方式, 形成光伏转换 的薄膜, 采用单结、 双结和多结中的一种。
[0022] 优选的, 所述步骤 D中, 沉积每一层薄膜吋, 采用掩模或者采用点状或线性沉 积镀膜源移动扫描沉积的方法, 确保太阳能电池单元中, 与 Ρ层相连的透明导电 层 Τρ、 与 Ν层相连的透明导电层 Τη, 二者是不导通的; 以及不同太阳能电池之间 正确的串并联结构。 [0023] 优选的, 所述步骤 D1中, 透明导电膜采用 ITO、 ΑΖΟ和 FTO薄膜中的一种。
[0024] 优选的, 所述步骤 Α中, 光刻胶的涂布厚度为 lnm至 10mm。
[0025] 优选的, 所述步骤 A中, 曝光光源为发出紫外光或者蓝光的至少一种的光源或 电子束源。
[0026] 优选的, 所述步骤 E中, 采用丙酮将 UV固化胶溶解去除。
发明的有益效果
有益效果
[0027] 本发明提供的超轻结构太阳能电池及其制备方法, 一方面具有超轻材料密度极 低的特征, 另一方面具有太阳能电池将太阳能转换为电能的能力。 未来将在具 有纳微米精细结构特征的超轻材料构成的毫微米及更大尺度的器件、 仪器、 设 备中发挥重要作用。
对附图的简要说明
附图说明
[0028] 图 1是本发明一种还没有去除基板、 光刻胶的超轻结构太阳能电池的剖面图, 其中的太阳能电池单元为并联方式。
[0029] 图 2是本发明一种还没有去除基板、 光刻胶的超轻结构太阳能电池的剖面图
, 其中的太阳能电池单元为串联方式。
[0030] 图 3是本发明单结太阳能电池单元结构示意图。
[0031] 图 4是本发明双结太阳能电池单元结构示意图。
[0032] 图 5是本发明太阳能电池单元为扇叶结构的太阳能电池系统结构示意图。
[0033] 图 6是本发明太阳能电池单元为立方结构的太阳能电池系统结构示意图。
本发明的实施方式
[0034] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明:
[0035] 图 1、 图 2分别是本发明公幵的一种没有去除基板、 光刻胶的并联、 串联方式超 轻结构太阳能电池的剖面图, 图 3和图 4是构成超轻结构太阳能电池系统的太阳 能电池单元, 图 5和图 6是不同立体结构的超轻结构太阳能电池系统剖面示意图 [0036] 如图 5和图 6所示, 超轻结构太阳能电池系统, 是由太阳能电池单元 6、 太阳能 电池单元之间的导电引线 5和 7、 镂空区 8、 以及不同太阳能电池单元镂空区域共 同组成。 其特征在于, 1、 多个太阳能电池单元组合形成超轻结构太阳能电池, 太阳能电池单元之间为没有任何固态物质的空心区。 2、 太阳能电池单元组成形 成立体的超轻结构吋, 可以扇叶结构、 蜘蛛网结构、 规则或不规则立体结构。 3 、 所有的太阳能电池单元形成的立体结构, 其中的电极线或电极膜的接触、 连 接方式, 满足太阳能电池的输出特性要求。 4、 形成立体结构的太阳能电池单元 的数量没有限制, 最少为 1个、 2个太阳能电池单元, 最多可不低于 10万、 百万 个。
[0037] 如图 3和图 4所示, 超轻结构的薄膜太阳能电池单元, 1、 组成太阳能电池单元 的!5、 I、 N及电极, 均为通过真空镀膜的方法制备的薄膜, 而薄膜沉积所需的基 片已经被去除。 2、 形成光伏转换的薄膜, 可以是单结 P、 I、 N层, 也可以是双 结、 或者多结。 3、 电池单元的大小为毫微米级, 最大也不超过 10mm。 4、 所有 可以采用真空镀膜方法制备为薄膜的、 具有光伏特性的材料, 均可以是组成该 太阳能电池单元的物质。
[0038] 本发明提供了一种超轻结构太阳能电池的制备方法, 包括以下步骤:
[0039] 步骤一: 选择平面、 曲面或一定立体构型的固体材料作为基板 0, 该基板 0的顶 视面的几何特征根据所需要的超轻结构太阳能电池的构型进行设计和选择。
[0040] 步骤二: 在基板 0表面利用滚涂、 刮涂、 喷涂或其它方法均匀涂布感光光刻胶 。 光刻胶可以是光固化胶, 或者非受光区域固化、 而受光区域不会固化的胶。 光刻胶的涂布厚度在数纳米到数毫米范围内。
[0041] 步骤三: 对上面得到的涂布有光刻胶的基板, 利用 3D打印机控制曝光光源的输 出特性形成所需要的曝光区域、 或者利用掩模版控制曝光区域、 或者二者共同 作用控制曝光, 光刻胶的曝光吋间, 由 3D打印机控制光源的幵关吋间、 或者对 光源直接设定幵关吋间控制。 根据光刻胶的曝光吋间、 以及光刻胶本身的性质 , 曝光后的光刻胶, 可以是曝光部分 (或非曝光部分, 视光刻胶特性) 完全固 化, 或者曝光部分部分固化。 曝光所用的光源, 可以是紫外、 蓝光等各种波长 的光源, 或者混合光源。 光源产生光的方法可以是 LED , 或者弧光灯。
[0042] 步骤四, 上述曝光完成后, 对光刻胶进行显影、 定影处理, 即使得光刻胶固化 的部分 04留下, 未固化的部分被清洗去除。 根据光刻胶的特性, 或者直接采用 可冲洗除去未固化胶的液体进行冲洗去除, 或者先采用定影剂对固化部分 4进行 进一步固化、 强化, 然后对未固化部分清洗去除。
[0043] 步骤五, 在制备有光刻图案的基板上沉积薄膜太阳能电池。 沉积薄膜太阳能电 池吋的具体步骤为: 1、 采用真空镀膜方法沉积透明导电膜 1 (Tp) , 如 ITO、 A ZO或 FTO薄膜等; 2、 沉积空穴导电性半导体薄膜 2P (P型层) ; 3、 沉积本征半 导体薄膜 21 (I型层) ; 4、 沉积电子导电性半导体薄膜 2N ; 5、 接着沉积透明导 电薄膜 3 (Tn) ; 可以继续沉积其它有助于提高光伏效率的薄膜。
[0044] 在步骤五过程中, 薄膜太阳能电池的结构需要事先设计, 设计的要点为: 1、 同一个太阳能电池单元, 与 Ρ型层连接的导电薄膜电极 Τρ、 与 Ν型层连接的导电 薄膜电极 Τη, 二者之间是不能导通的; 2、 为了满足电性能输出需求, 不同太阳 能电池单元之间, 可以是串连或者并联, 即不同太阳能电池单元的 Tp、 Tn , 可 以是太阳能电池单元 k的 Tpk与太阳能电池单元 1的 Tnl连接 (串连) , 或者是与 Tp 1连接 (并联) ; 3、 为了提供太阳能电池单元的光伏效率, 其中的 PIN薄膜, 可 以是单结, 即只有一层 PIN, 也可以是多结, 即有多层 PIN。
[0045] 为满足上述设计要求, 在沉积每一层薄膜吋, 需要采用掩模或者其它屏蔽方法 、 或者采用点状或线性沉积镀膜源移动扫描沉积的方法, 确保太阳能电池单元 中, 与 P层相连的透明导电层 Tp、 与 Ν层相连的透明导电层 Τη, 二者是不导通的 ; 以及不同太阳能电池之间正确的串并联结构。
[0046] 步骤六: 根据最后超轻结构太阳能电池系统设计, 循环重复上述步骤一到步骤 五过程, 得到完整附有固化光刻胶的超轻结构太阳能电池系统。 其中, 重复步 骤三形成光刻图案吋, 每次 3D打印机输出的图案是变化的; 重复步骤五、 沉积 薄膜太阳能电池吋, 前后之间 Tp、 Tn可以是相互连接的, 也可以是独立的。 相 互连接吋, 要根据所需求的输出电源特性需求, 确保前后 Tp、 Tn不被光刻胶全 部覆盖而无法沉积连通, 以及实现正确的连接方式。
[0047] 步骤七: 采用可溶解固化光刻胶 4的溶剂, 清洗去除所有固化光刻胶 4, 得到超 轻结构的太阳能电池系统。
[0048] 实施例 1
[0049] 步骤一: 选择显示器玻璃作为基板 0;
[0050] 步骤二: 刮涂法在基板 0上面均匀涂布 UV感光胶, 感光胶厚度在 50微米左右; [0051] 步骤三: 利用 3D打印系统控制 UV光源的 UV光均匀输出, 对整个感光胶均匀曝 光固化, 形成固化胶 4; 未曝光固化的部分, 利用去离子水清洗去除;
[0052] 步骤四: 利用磁控溅射方法, 在固化胶 4上面, 均匀沉积 AZO透明导电薄膜 1 ;
[0053] 步骤五: 禾 PECVD (等离子体辅助化学气相沉积) 方法, 在 AZO透明导电 薄膜上面, 依次沉积!5、 I、 N型非晶硅薄膜, 形成太阳能电池单元 2;
[0054] 步骤六: 利用磁控溅射方法, 在太阳能电池单元 2上面, 沉积透明导电薄膜 3; 注意 1和 3是相互不接触的, 为保证 1和 3不互通, 在沉积 1、 2、 3过程中, 通过缩 减沉积面积实现;
[0055] 步骤七: 在透明导电薄膜 3的上面, 接着涂布感光胶, 并曝光固化, 得到固化 层 4; 本实施例的示意图如图 2所示, 为了保证电极引线连接, 注意曝光图案与 前一次有区别, 具体见图 2;
[0056] 步骤八: 进一步重复上述磁控溅射、 PECVD工艺, 最后得到剖面图如图 2所示 的样品;
[0057] 步骤九: 利用有机溶剂如丙酮, 将 UV固化胶溶解去除, 得到从玻璃基板剥离
、 没有固化胶残留的 Si基自支撑的超轻结构太阳能电池。
[0058] 表 1为超轻太阳能电池与常规薄膜太阳能电池对比优势
[0059] 表 1
[]
[表 1]
Figure imgf000009_0001
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种超轻结构太阳能电池的制备方法, 其特征在于, 包括以下步骤: 步骤 A: 选择基板,再在基板表面均匀涂布感光光刻胶;
步骤 B: 利用 3D打印机在得到的涂布有光刻胶的基板上确定曝光区域 , 对曝光区域进行固化;
步骤 C: 对光刻胶进行显影、 定影处理, 对固化部分进行进一步固化 、 强化, 并对未固化部分去除清洗;
步骤 D: 在制备有光刻图案的基板上沉积薄膜太阳能电池; 步骤 E: 循环重复上述步骤 B到步骤 D过程, 清洗去除所有固化光刻胶 ,得到超轻结构太阳能电池。
[权利要求 2] 如权利要求 1所述的超轻结构太阳能电池的制备方法, 其特征在于, 所述步骤 A, 利用滚涂、 刮涂和喷涂其中至少一种方法均匀涂布感光 光刻胶。
[权利要求 3] 如权利要求 1所述的超轻结构太阳能电池的制备方法, 其特征在于, 所述步骤 B包括: 对步骤 A得到的涂布有光刻胶的基板, 利用 3D打印 机控制曝光光源的输出特性形成所需要的曝光区域、 或者利用掩模板 控制曝光区域、 或者二者共同作用控制曝光, 光刻胶的曝光吋间, 由 3D打印机控制光源的幵关吋间、 或者对光源直接设定幵关吋间控制
[权利要求 4] 如权利要求 1所述的超轻结构太阳能电池的制备方法, 其特征在于, 步骤 D中, 沉积薄膜太阳能电池吋的具体步骤为:
D1 : 采用真空镀膜方法沉积得到透明导电膜 -Tp;
D2: 沉积空穴导电性半导体薄膜 -Ρ型层;
D3: 沉积本征半导体薄膜 -I型层;
D4: 沉积电子导电性半导体薄膜 -Ν型层;
D5: 沉积透明导电薄膜 -Τη。
[权利要求 5] 如权利要求 4所述的超轻结构太阳能电池的制备方法, 其特征在于, 所述步骤 D中, Tp和 Τη采用相互连接或者独立的方式, 形成光伏转换 的薄膜, 采用单结、 双结和多结中的一种。
[权利要求 6] 如权利要求 4所述的超轻结构太阳能电池的制备方法, 其特征在于, 所述步骤 D中, 沉积每一层薄膜吋, 采用掩模或者采用点状或线性沉 积镀膜源移动扫描沉积的方法, 使太阳能电池单元中, 与 P层相连的 透明导电层 Tp、 与 Ν层相连的透明导电层 Τη, 二者是不导通的; 以及 不同太阳能电池之间正确的串并联结构。
[权利要求 7] 如权利要求 4所述的超轻结构太阳能电池的制备方法, 其特征在于, 步骤 D1中, 透明导电膜采用 ΙΤΟ、 ΑΖΟ和 FTO薄膜中的一种。
[权利要求 8] 如权利要求 1所述的超轻结构太阳能电池的制备方法, 其特征在于, 所述步骤 Α中, 光刻胶的涂布厚度为 1微米至 1毫米。
[权利要求 9] 如权利要求 1所述的超轻结构太阳能电池的制备方法, 其特征在于, 所述步骤 A中, 曝光光源为发出紫外光或者蓝光的光源或电子束源。
[权利要求 10] 如权利要求 1所述的超轻结构太阳能电池的制备方法, 其特征在于, 所述步骤 E中, 采用丙酮将 UV固化胶溶解去除。
PCT/CN2016/109317 2016-12-07 2016-12-09 一种基于3d打印技术制备的超轻结构太阳能电池 WO2018103103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611117153.X 2016-12-07
CN201611117153.XA CN106784170B (zh) 2016-12-07 2016-12-07 一种基于3d打印技术制备的超轻结构太阳能电池

Publications (1)

Publication Number Publication Date
WO2018103103A1 true WO2018103103A1 (zh) 2018-06-14

Family

ID=58877146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109317 WO2018103103A1 (zh) 2016-12-07 2016-12-09 一种基于3d打印技术制备的超轻结构太阳能电池

Country Status (2)

Country Link
CN (1) CN106784170B (zh)
WO (1) WO2018103103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682395A (zh) * 2018-07-05 2020-01-14 张伟 一种用3d打印技术在光伏电池表面制备瓷釉涂层的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017384A1 (en) * 2001-08-16 2003-02-27 Midwest Research Institute Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique
CN1763977A (zh) * 2004-10-20 2006-04-26 三菱重工业株式会社 串联型薄膜太阳能电池
WO2010090383A1 (ko) * 2009-02-05 2010-08-12 주식회사 포인트엔지니어링 다공성 기판을 이용한 박막 태양전지 제조 방법 및 그에 따른 태양전지
CN103117333A (zh) * 2011-11-16 2013-05-22 常州光电技术研究所 一种提高器件良率的透明电极制作方法
CN103258881A (zh) * 2013-05-07 2013-08-21 杨立友 薄膜太阳能电池板及其制备方法
CN103631097A (zh) * 2013-12-11 2014-03-12 中国科学院光电技术研究所 一种光刻式的3d打印机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
CN103448366B (zh) * 2013-06-27 2016-12-28 北京大学深圳研究生院 一种喷墨打印系统及其应用
CN104576816B (zh) * 2013-10-23 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 一种太阳能电池基板用导线的制备方法
CN203721738U (zh) * 2013-12-30 2014-07-16 上海神舟新能源发展有限公司 一种3d打印的太阳能电池锥形渐变式电极结构
CN104752530B (zh) * 2013-12-30 2018-04-24 上海神舟新能源发展有限公司 一种3d打印制作太阳能电池电极
CN105489666B (zh) * 2016-01-12 2017-04-19 山东联星能源集团有限公司 一种喷墨3d打印制备太阳能电池电极的系统及方法
CN205420577U (zh) * 2016-03-14 2016-08-03 哈尔滨理工大学 一种3d打印太阳能电池薄膜制备装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017384A1 (en) * 2001-08-16 2003-02-27 Midwest Research Institute Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique
CN1763977A (zh) * 2004-10-20 2006-04-26 三菱重工业株式会社 串联型薄膜太阳能电池
WO2010090383A1 (ko) * 2009-02-05 2010-08-12 주식회사 포인트엔지니어링 다공성 기판을 이용한 박막 태양전지 제조 방법 및 그에 따른 태양전지
CN103117333A (zh) * 2011-11-16 2013-05-22 常州光电技术研究所 一种提高器件良率的透明电极制作方法
CN103258881A (zh) * 2013-05-07 2013-08-21 杨立友 薄膜太阳能电池板及其制备方法
CN103631097A (zh) * 2013-12-11 2014-03-12 中国科学院光电技术研究所 一种光刻式的3d打印机

Also Published As

Publication number Publication date
CN106784170A (zh) 2017-05-31
CN106784170B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
Guo et al. Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications
WO2017059745A1 (zh) 大面积微纳图形化的装置和方法
WO2019056586A1 (zh) 一种制备光学超构表面的方法
CN102243435B (zh) 一种通过正负光刻胶复合显影制备微纳米流体系统的方法
CN108162425B (zh) 一种大尺寸无拼接微纳软模具制造方法
CN102157642A (zh) 一种基于纳米压印的高出光效率led的制备方法
CN101823690B (zh) Su-8纳米流体系统的制作方法
CN113703081A (zh) 一种微透镜阵列结构的制作方法
CN111446358B (zh) 基于脉冲激光烧蚀的高精度快速薄膜热电器件及其制备方法
CN108684084B (zh) 石墨烯加热膜的制备工艺
CN103172019A (zh) 一种干粘附微纳复合两级倾斜结构的制备工艺
CN108153108A (zh) 一种大尺寸无拼接微纳模具制造方法
CN108054272B (zh) 一种低成本可快速大量制备集成化微型薄膜热电器件的制造方法
CN101837951B (zh) 图型化电极诱导和微波固化制作纳米结构的装置和方法
WO2018103103A1 (zh) 一种基于3d打印技术制备的超轻结构太阳能电池
CN101813884B (zh) 一种在非平整衬底表面制备纳米结构基质的方法
CN216671575U (zh) 一种激光转印装置
CN106098963B (zh) 具有随机金字塔形貌绒面的光学薄膜及其制备方法
CN111916524A (zh) 一种仿视网膜成像的硫化钼光探测器及其制备方法
JP2003298076A (ja) 太陽電池およびその製造方法
Dong et al. Bioinspired High‐Adhesion Metallic Networks as Flexible Transparent Conductors
CN104576261B (zh) 一种基于碳纳米管的冷阴极x射线管的制作工艺
CN114899275A (zh) 一种贵金属纳米线与二维二硫化钼复合结构的光电探测器及其制备方法
Zhan et al. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell
WO2021109211A1 (zh) 一种易于脱模的菲涅尔模具的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923460

Country of ref document: EP

Kind code of ref document: A1