WO2018103087A1 - 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法 - Google Patents

一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法 Download PDF

Info

Publication number
WO2018103087A1
WO2018103087A1 PCT/CN2016/109268 CN2016109268W WO2018103087A1 WO 2018103087 A1 WO2018103087 A1 WO 2018103087A1 CN 2016109268 W CN2016109268 W CN 2016109268W WO 2018103087 A1 WO2018103087 A1 WO 2018103087A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
nitrogen
casting
stainless steel
austenitic stainless
Prior art date
Application number
PCT/CN2016/109268
Other languages
English (en)
French (fr)
Inventor
孙瑞涛
李永栋
Original Assignee
孙瑞涛
李永栋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孙瑞涛, 李永栋 filed Critical 孙瑞涛
Priority to PCT/CN2016/109268 priority Critical patent/WO2018103087A1/zh
Publication of WO2018103087A1 publication Critical patent/WO2018103087A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/08Shaking, vibrating, or turning of moulds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting

Definitions

  • the invention relates to the technical field of propeller casting, and a method for manufacturing a propeller casting for a high nitrogen austenitic stainless steel ship.
  • An object of the present invention is to provide a method of manufacturing a high-nitrogen austenitic stainless steel ship propeller casting to solve the problems set forth in the above background art.
  • the present invention provides the following technical solution: a method for manufacturing a high-nitrogen austenitic stainless steel ship propeller casting, the method comprising the following steps:
  • S1 selecting a molten steel of austenitic stainless steel prepared by refining to be poured as a base steel raw material, selecting a high nitrogen alloy as an additive, and selecting nitrogen as a shielding gas;
  • the additive molten steel prepared in the step S2 and the base molten steel are convectively added to the vacuum induction furnace, and the flow speed of the base molten steel is set between 1-1.5 m/s, and the flow speed of the additive molten steel Set at 2-3m/s, set the temperature of the vacuum induction furnace between 1350 and 1600 °C, and perform high temperature refining for 15-35 minutes. During the convection process, keep the nitrogen gas filled continuously to obtain the formed molten steel. ;
  • Step S6 is repeated 2-4 times, and the treated propeller blade and its components are placed in the oscillating device, and the mutual propeller blades and their components are not in contact with each other, and the oscillation is oscillated up and down to remove surface condensation impurities.
  • the high-pressure air spray gun purifies the original, and places the processed original in the environment of step S4, and fills the environment with nitrogen gas, and applies the anti-corrosion layer on the original, the high-nitrogen austenitic stainless steel ship propeller The casting is completed.
  • the content of Cr, Mn, and V in the additive molten steel in the S2 step is not more than 3%.
  • the flow angle of the additive molten steel in the step S3 is symmetrically arranged with the horizontal flow line of the base molten steel.
  • the cooling liquid is composed of alcohol and dry ice, and real-time nitrogen gas is introduced into the cooling liquid, and dry ice is added periodically to keep the temperature of the cooling liquid below minus 15 °C.
  • the micro-vibration of the mold is left-right vibration
  • the vibration frequency is once every 1 second
  • the vibration amplitude is between 0.1 mm and 1 mm.
  • the invention has the beneficial effects that the invention is more scientific and reasonable, and can effectively stabilize the nitrogen element in the base steel liquid in the protection process of the additive and the nitrogen gas, thereby reducing the molten steel.
  • the amount of emission during the casting process greatly improves the overall structural stability and integrity of the cast part, has greater stability than the conventional casting method, and can be greatly processed by repeated casting processes.
  • the wear resistance of the casting and the coating quality of the coating are greatly improved.
  • the method has better functions than the traditional method and can effectively improve the high nitrogen
  • the application of stainless steel on ships is greatly improved in wear resistance, mechanical properties and corrosion resistance.
  • the invention provides a technical solution: a method for manufacturing a high-nitrogen austenitic stainless steel ship propeller casting, the method comprising the following steps:
  • S1 selecting a molten steel of austenitic stainless steel prepared by refining to be poured as a base steel raw material, selecting a high nitrogen alloy as an additive, and selecting nitrogen as a shielding gas;
  • the additive molten steel prepared in the step S2 and the base molten steel are convectively added to the vacuum induction furnace, the flow speed of the base molten steel is set at 1 m/s, and the flow speed of the additive molten steel is set at 2m / s, set the temperature of the vacuum induction furnace between 1350 ° C, high temperature refining for 15 min, in the process of convection addition, keep nitrogen filling continuously, to obtain the molding steel liquid;
  • step S6 The surface of the propeller blade and its components heat-treated in step S5 is flame-heated and quickly placed in the coolant, and the residence time of the propeller blade and its components in the air is 1.5 s, and immediately after staying in the coolant for 3 s. take out;
  • step S7 repeating the S6 step twice, and placing the treated propeller blade and its components in the oscillating device, the mutual propeller blades and their components are not in contact with each other, and the oscillation is oscillating up and down, removing surface condensation impurities, using high pressure gas.
  • the spray gun purges the original, and the processed original is placed in the environment of step S4, and the environment is filled with nitrogen gas, and the anti-corrosion layer is applied on the original, and the high-nitrogen austenitic stainless steel ship is made of propeller casting. carry out.
  • the content of Cr, Mn, and V in the additive steel solution in the S2 step is 1%.
  • the flow angle of the additive molten steel in the S3 step is symmetrically set with the horizontal flow line of the base molten steel, and the cooling liquid is composed of alcohol and dry ice, and the real-time nitrogen gas is introduced into the cooling liquid, and the dry ice is regularly added to keep cooling.
  • the liquid temperature is below 15 ° C.
  • the micro-vibration of the mold is vibrating left and right, the vibration frequency is once every 1 second, and the vibration amplitude is 0.3 mm.
  • the invention provides a technical solution: a method for manufacturing a high-nitrogen austenitic stainless steel ship propeller casting, the method comprising the following steps:
  • S1 selecting a molten steel of austenitic stainless steel prepared by refining to be poured as a base steel raw material, selecting a high nitrogen alloy as an additive, and selecting nitrogen as a shielding gas;
  • step S6 The surface of the propeller blade and its components heat-treated in the step S5 is flame-heated and quickly placed in the coolant, and the residence time of the propeller blade and its components in the air is 1.8 s, and immediately after staying in the coolant for 4 s. take out;
  • step S7 Repeat the S6 step 3 times, and place the treated propeller blade and its components in the oscillating device, the mutual propeller blades and their components are not in contact with each other, and the oscillation is oscillating up and down to remove surface condensation impurities, using high pressure gas.
  • the spray gun purges the original, and the processed original is placed in the environment of step S4, and the environment is filled with nitrogen gas, and the anti-corrosion layer is applied on the original, and the high-nitrogen austenitic stainless steel ship is made of propeller casting. carry out.
  • the content of Cr, Mn and V in the additive steel solution in the step S2 is 1.5%.
  • the flow angle of the additive molten steel in the S3 step is symmetrically set with the horizontal flow line of the base molten steel, and the cooling liquid is composed of alcohol and dry ice, and the real-time nitrogen gas is introduced into the cooling liquid, and the dry ice is regularly added to keep cooling.
  • the liquid temperature is below minus 16 ° C.
  • the micro-vibration of the mold is left and right, the vibration frequency is once every 1 second, and the vibration amplitude is 0.4 mm.
  • the invention provides a technical solution: a method for manufacturing a high-nitrogen austenitic stainless steel ship propeller casting, the method comprising the following steps:
  • S1 selecting a molten steel of austenitic stainless steel prepared by refining to be poured as a base steel raw material, selecting a high nitrogen alloy as an additive, and selecting nitrogen as a shielding gas;
  • the additive molten steel prepared in the step S2 and the base molten steel are convectively added to the vacuum induction furnace, the flow speed of the base molten steel is set at 1.5 m/s, and the flow speed of the additive molten steel is set at 3 m/ s, set the temperature of the vacuum induction furnace between 1600 ° C, and perform high temperature refining for 35 min.
  • the nitrogen gas is kept continuously to obtain the formed molten steel;
  • step S6 The surface of the propeller blade and its components heat-treated in the step S5 is flame-heated and quickly placed in the coolant, and the residence time of the propeller blade and its components in the air is 2 s, and is taken out immediately after staying in the coolant for 5 s. ;
  • step S7 Repeat step S6 four times, and place the treated propeller blade and its components in the oscillating device, the mutual propeller blades and their components are not in contact with each other, and the oscillation is oscillating up and down to remove surface condensation impurities, using high pressure gas.
  • the spray gun purges the original, and the processed original is placed in the environment of step S4, and the environment is filled with nitrogen gas, and the anti-corrosion layer is applied on the original, and the high-nitrogen austenitic stainless steel ship is made of propeller casting. carry out.
  • the content of Cr, Mn and V in the additive steel solution in the step S2 is 2%.
  • the flow angle of the additive molten steel in the S3 step is symmetrically set with the horizontal flow line of the base molten steel, and the cooling liquid is composed of alcohol and dry ice, and the real-time nitrogen gas is introduced into the cooling liquid, and the dry ice is regularly added to keep cooling.
  • the liquid temperature is at minus 17 ° C.
  • the micro-vibration of the mold is left and right, the vibration frequency is once every 1 second, and the vibration amplitude is 0.5 mm.
  • the corresponding propellers and their components were prepared in three sets of examples, and a high-pressure water flow impact test was set up to verify the performance of the high-nitrogen austenitic stainless steel.
  • the degree of corrosion of the stainless steel propeller is set to 100, the degree of rotational wear is 100, and the degree of impact wear is 100.
  • the stability of the nitrogen element in the propeller and its casting can be greatly improved, and the overall functionality of the propeller can be greatly improved by a reasonable structural arrangement, and the high nitrogen austenite can be made.
  • Body stainless steel is widely used on ships.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,该方法包括以下步骤:S1:选取精炼待浇注状态下制取奥氏体不锈钢的钢液为基础钢液原料;S2:将添加剂融化在熔融炉中;S3:将S2步骤中制得的添加剂钢液与基础钢液采用对流式加入到真空感应炉中;S4:制作螺旋桨叶及其组件的模具;S5:将S4步骤中的浇铸原件取出;S6:将S5步骤中热处理后的螺旋桨叶及其组件表面进行火焰加热;S7:重复S6步骤2‑4次。本方法相比传统的方式具有更好的功能,能够有效的提高高氮奥氏体不锈钢在船舰上的应用,并且耐磨性、机械性能、耐腐蚀性都有很大程度上的提高。

Description

一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法 技术领域
本发明涉及螺旋桨铸造技术领域,一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法。
背景技术
随着社会的不断进步和发展,水上运输和旅游已经成为现代社会中一种重要的存在方式,同时必须要使用到的是螺旋桨铸件,通过螺旋桨及其组件提供动力。高氮奥氏体不锈钢作为一种较为熟知的新型材料,具有很强的韧性、耐磨性和抗疲劳性,被广泛的应用于各种工作强度大以及特殊的工作环境中,船舰上与水最为紧密接触的是螺旋桨,螺旋桨在转动的过程中未船舰提供前进的动力。
现有技术下的船舰用的大多为普通的不锈钢,通过在不锈钢表面喷涂防锈蚀层来达到防水流冲击、耐腐蚀以及耐撞击的作用,但是这种传统的方式存在严重的缺点,在国内,没有成熟的技术能够将高氮奥氏体不锈钢进行合理的铸造以及处理来为船舰服务的目的,并且现有技术下的高氮奥氏体不锈钢在铸造的过程中,由于氮气会喷出铸造件,会使铸造件内部结构出现微小的孔,很大程度上降低了铸造件的整体结构稳定性,应用在船舰上时,其耐用性极差。
发明内容
本发明的目的在于提供一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,该方法包括以下步骤:
S1:选取精炼待浇筑状态下制取奥氏体不锈钢的钢液为基础钢液原料,选取高氮合金作为添加剂,选用氮气作为保护气体;
S2:将添加剂融化在熔融炉中,并向其中依次加入微量的Cr、Mn、V,并通过电磁搅拌,向其中同时充入氮气,搅拌速率为60r/min,搅拌时间控制在2-6min;
S3:将S2步骤中制得的添加剂钢液与基础钢液采用对流式加入到真空感应炉中,基础钢液的流动速度设置在1-1.5m/s之间,且添加剂钢液的流动速度设置在2-3m/s之间,设定真空感应炉的温度在1350-1600℃之间,进行高温精炼15-35min,对流式加入的过程中,保持氮气充入不断,制得成型钢液;
S4:制作螺旋桨叶及其组件的模具,设置0.5MPa的工件铸造环境,并在此工作环境中实现浇筑的过程,浇筑的整个过程控制在60-85s以内,并且采用一体化热流道热浇口技术,在浇筑的过程中,使用超声波作用在浇筑模具上并同时微振模具;
S5:将S4步骤中的浇筑原件取出,对原件进行热处理;
S6:将S5步骤中热处理后的螺旋桨叶及其组件表面进行火焰加热,并迅速放置到冷却液中,且螺旋桨叶及其组件在空气中的停留时间不超过2s,在冷却液中停留3-5s后立即取出;
S7:重复S6步骤2-4次,并将处理后的螺旋桨叶及其组件放置在振荡装置中,相互的螺旋桨叶及其组件之间不接触,并且振荡为上下振荡,去除表面凝结杂质,使用高压气喷枪对原件进行吹扫,并将处理后的原件放置到S4步骤的环境中,并在此环境中充满氮气,同时在原件上涂抹防锈蚀层,高氮奥氏体不锈钢船舰用螺旋桨铸件制作完成。
优选的,所述S2步骤中Cr、Mn、V在添加剂钢液中的含量均不超过3%。
优选的,所述S3步骤中添加剂钢液流动角度与基础钢液流动角度延水平垂线呈对称设置。
优选的,所述冷却液由酒精、干冰组成,且冷却液中通入实时氮气,干冰定时添加,保持冷却液温度在零下15℃以下。
优选的,所述S4步骤中模具微振为左右振动,振动频率为1秒一次,振动幅度在0.1mm到1mm之间。
与现有技术相比,本发明的有益效果是:本发明的更加的科学合理,在设置的添加剂以及氮气的保护过程中,能够有效的将氮元素稳定在基础钢液中,进而减少钢液在铸造成型的过程中的散发量,很大程度上提高了铸造件的整体结构稳定性和完整性,相比传统的铸造方法,具有更强的稳定性,并且通过反复的铸造过程能够很大程度上降低铸造件表面的杂质含量,很大程度上提高了铸造件的耐磨性以及涂料的喷涂涂布质量,本方法相比传统的方式具有更好的功能,能够有效的提高高氮奥氏体不锈钢在船舰上的应用,并且耐磨性、机械性能、耐腐蚀性都有很大程度上的提高。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明提供一种技术方案:一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,该方法包括以下步骤:
S1:选取精炼待浇筑状态下制取奥氏体不锈钢的钢液为基础钢液原料,选取高氮合金作为添加剂,选用氮气作为保护气体;
S2:将添加剂融化在熔融炉中,并向其中依次加入微量的Cr、Mn、V,并通过电磁搅拌,向其中同时充入氮气,搅拌速率为60r/min,搅拌时间控制在2min;
S3:将S2步骤中制得的添加剂钢液与基础钢液采用对流式加入到真空感应炉中,基础钢液的流动速度设置在1m/s,且添加剂钢液的流动速度设置在 2m/s,设定真空感应炉的温度在1350℃之间,进行高温精炼15min,对流式加入的过程中,保持氮气充入不断,制得成型钢液;
S4:制作螺旋桨叶及其组件的模具,设置0.5MPa的工件铸造环境,并在此工作环境中实现浇筑的过程,浇筑的整个过程控制在55s,并且采用一体化热流道热浇口技术,在浇筑的过程中,使用超声波作用在浇筑模具上并同时微振模具;
S5:将S4步骤中的浇筑原件取出,对原件进行热处理;
S6:将S5步骤中热处理后的螺旋桨叶及其组件表面进行火焰加热,并迅速放置到冷却液中,且螺旋桨叶及其组件在空气中的停留时间1.5s,在冷却液中停留3s后立即取出;
S7:重复S6步骤2次,并将处理后的螺旋桨叶及其组件放置在振荡装置中,相互的螺旋桨叶及其组件之间不接触,并且振荡为上下振荡,去除表面凝结杂质,使用高压气喷枪对原件进行吹扫,并将处理后的原件放置到S4步骤的环境中,并在此环境中充满氮气,同时在原件上涂抹防锈蚀层,高氮奥氏体不锈钢船舰用螺旋桨铸件制作完成。
其中:所述S2步骤中Cr、Mn、V在添加剂钢液中的含量均为1%。,所述S3步骤中添加剂钢液流动角度与基础钢液流动角度延水平垂线呈对称设置,所述冷却液由酒精、干冰组成,且冷却液中通入实时氮气,干冰定时添加,保持冷却液温度在零下15℃,所述S4步骤中模具微振为左右振动,振动频率为1秒一次,振动幅度在0.3mm。
实施例二
本发明提供一种技术方案:一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,该方法包括以下步骤:
S1:选取精炼待浇筑状态下制取奥氏体不锈钢的钢液为基础钢液原料,选取高氮合金作为添加剂,选用氮气作为保护气体;
S2:将添加剂融化在熔融炉中,并向其中依次加入微量的Cr、Mn、V,并通过电磁搅拌,向其中同时充入氮气,搅拌速率为60r/min,搅拌时间控制在4min;
S3:将S2步骤中制得的添加剂钢液与基础钢液采用对流式加入到真空感应炉中,基础钢液的流动速度设置在1.3m/s,且添加剂钢液的流动速度设置在2.6m/s,设定真空感应炉的温度在1500℃之间,进行高温精炼30min,对流式加入的过程中,保持氮气充入不断,制得成型钢液;
S4:制作螺旋桨叶及其组件的模具,设置0.5MPa的工件铸造环境,并在此工作环境中实现浇筑的过程,浇筑的整个过程控制在80s,并且采用一体化热流道热浇口技术,在浇筑的过程中,使用超声波作用在浇筑模具上并同时微振模具;
S5:将S4步骤中的浇筑原件取出,对原件进行热处理;
S6:将S5步骤中热处理后的螺旋桨叶及其组件表面进行火焰加热,并迅速放置到冷却液中,且螺旋桨叶及其组件在空气中的停留时间1.8s,在冷却液中停留4s后立即取出;
S7:重复S6步骤3次,并将处理后的螺旋桨叶及其组件放置在振荡装置中,相互的螺旋桨叶及其组件之间不接触,并且振荡为上下振荡,去除表面凝结杂质,使用高压气喷枪对原件进行吹扫,并将处理后的原件放置到S4步骤的环境中,并在此环境中充满氮气,同时在原件上涂抹防锈蚀层,高氮奥氏体不锈钢船舰用螺旋桨铸件制作完成。
其中:所述S2步骤中Cr、Mn、V在添加剂钢液中的含量均为1.5%。,所述S3步骤中添加剂钢液流动角度与基础钢液流动角度延水平垂线呈对称设置,所述冷却液由酒精、干冰组成,且冷却液中通入实时氮气,干冰定时添加,保持冷却液温度在零下16℃,所述S4步骤中模具微振为左右振动,振动频率为1秒一次,振动幅度在0.4mm。
实施例三
本发明提供一种技术方案:一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,该方法包括以下步骤:
S1:选取精炼待浇筑状态下制取奥氏体不锈钢的钢液为基础钢液原料,选取高氮合金作为添加剂,选用氮气作为保护气体;
S2:将添加剂融化在熔融炉中,并向其中依次加入微量的Cr、Mn、V,并通过电磁搅拌,向其中同时充入氮气,搅拌速率为60r/min,搅拌时间控制在6min;
S3:将S2步骤中制得的添加剂钢液与基础钢液采用对流式加入到真空感应炉中,基础钢液的流动速度设置在1.5m/s,且添加剂钢液的流动速度设置在3m/s,设定真空感应炉的温度在1600℃之间,进行高温精炼35min,对流式加入的过程中,保持氮气充入不断,制得成型钢液;
S4:制作螺旋桨叶及其组件的模具,设置0.5MPa的工件铸造环境,并在此工作环境中实现浇筑的过程,浇筑的整个过程控制在85s,并且采用一体化热流道热浇口技术,在浇筑的过程中,使用超声波作用在浇筑模具上并同时微振模具;
S5:将S4步骤中的浇筑原件取出,对原件进行热处理;
S6:将S5步骤中热处理后的螺旋桨叶及其组件表面进行火焰加热,并迅速放置到冷却液中,且螺旋桨叶及其组件在空气中的停留时间2s,在冷却液中停留5s后立即取出;
S7:重复S6步骤4次,并将处理后的螺旋桨叶及其组件放置在振荡装置中,相互的螺旋桨叶及其组件之间不接触,并且振荡为上下振荡,去除表面凝结杂质,使用高压气喷枪对原件进行吹扫,并将处理后的原件放置到S4步骤的环境中,并在此环境中充满氮气,同时在原件上涂抹防锈蚀层,高氮奥氏体不锈钢船舰用螺旋桨铸件制作完成。
其中:所述S2步骤中Cr、Mn、V在添加剂钢液中的含量均为2%。,所述S3步骤中添加剂钢液流动角度与基础钢液流动角度延水平垂线呈对称设置,所述冷却液由酒精、干冰组成,且冷却液中通入实时氮气,干冰定时添加,保持冷却液温度在零下17℃,所述S4步骤中模具微振为左右振动,振动频率为1秒一次,振动幅度在0.5mm。
将三组实施例分别制得对应的螺旋桨及其组件,设置高压水流冲击试验,通过实现来检验高氮奥氏体不锈钢的使用性能。
设置三组对比实验,且三组对比实验共同进行,外界环境因素完全相同,以普通不锈钢螺旋桨作为基础,得到四个实验数据,如下表所示:
组别 锈蚀程度 转动磨损 冲击磨损
实施例一 80 70 90
实施例二 75 70 80
实施例三 85 80 90
以普通的不锈钢螺旋桨作为基础数据,设定不锈钢螺旋桨锈蚀程度为100,转动磨损程度为100,冲击磨损程度为100。
由实验数据可知,三组实施例相比传统的不锈钢螺旋桨都具有较好的耐锈蚀、耐磨损的效果,其中实施例二效果最好。
通过加入微量的Cr、Mn、V,能够很大程度上提高螺旋桨及其铸件中的氮元素稳定性,并且通过合理的结构设置能够很大程度上提高螺旋桨整体功能性,能够使高氮奥氏体不锈钢在船舰上得到广泛的应用。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

  1. 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,其特征在于,该方法包括以下步骤:
    S1:选取精炼待浇筑状态下制取奥氏体不锈钢的钢液为基础钢液原料,选取高氮合金作为添加剂,选用氮气作为保护气体;
    S2:将添加剂融化在熔融炉中,并向其中依次加入微量的Cr、Mn、V,并通过电磁搅拌,向其中同时充入氮气,搅拌速率为60r/min,搅拌时间控制在2-6min;
    S3:将S2步骤中制得的添加剂钢液与基础钢液采用对流式加入到真空感应炉中,基础钢液的流动速度设置在1-1.5m/s之间,且添加剂钢液的流动速度设置在2-3m/s之间,设定真空感应炉的温度在1350-1600℃之间,进行高温精炼15-35min,对流式加入的过程中,保持氮气充入不断,制得成型钢液;
    S4:制作螺旋桨叶及其组件的模具,设置0.5MPa的工件铸造环境,并在此工作环境中实现浇筑的过程,浇筑的整个过程控制在60-85s以内,并且采用一体化热流道热浇口技术,在浇筑的过程中,使用超声波作用在浇筑模具上并同时微振模具;
    S5:将S4步骤中的浇筑原件取出,对原件进行热处理;
    S6:将S5步骤中热处理后的螺旋桨叶及其组件表面进行火焰加热,并迅速放置到冷却液中,且螺旋桨叶及其组件在空气中的停留时间不超过2s,在冷却液中停留3-5s后立即取出;
    S7:重复S6步骤2-4次,并将处理后的螺旋桨叶及其组件放置在振荡装置中,相互的螺旋桨叶及其组件之间不接触,并且振荡为上下振荡,去除表面凝结杂质,使用高压气喷枪对原件进行吹扫,并将处理后的原件放置到S4步骤的环境中,并在此环境中充满氮气,同时在原件上涂抹防锈蚀层,高氮奥氏体不锈钢船舰用螺旋桨铸件制作完成。
  2. 根据权利要求1所述的一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件 的方法,其特征在于:所述S2步骤中Cr、Mn、V在添加剂钢液中的含量均不超过3%。
  3. 根据权利要求1所述的一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,其特征在于:所述S3步骤中添加剂钢液流动角度与基础钢液流动角度延水平垂线呈对称设置。
  4. 根据权利要求1所述的一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,其特征在于:所述冷却液由酒精、干冰组成,且冷却液中通入实时氮气,干冰定时添加,保持冷却液温度在零下15℃以下。
  5. 根据权利要求1所述的一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法,其特征在于:所述S4步骤中模具微振为左右振动,振动频率为1秒一次,振动幅度在0.1mm到1mm之间。
PCT/CN2016/109268 2016-12-09 2016-12-09 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法 WO2018103087A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109268 WO2018103087A1 (zh) 2016-12-09 2016-12-09 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109268 WO2018103087A1 (zh) 2016-12-09 2016-12-09 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法

Publications (1)

Publication Number Publication Date
WO2018103087A1 true WO2018103087A1 (zh) 2018-06-14

Family

ID=62490643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109268 WO2018103087A1 (zh) 2016-12-09 2016-12-09 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法

Country Status (1)

Country Link
WO (1) WO2018103087A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695180A (zh) * 2020-12-09 2021-04-23 鞍钢铸钢有限公司 一种超长船用件的热处理工艺
CN113996763A (zh) * 2021-11-08 2022-02-01 昆山莱捷有色金属有限公司 一种汽车底盘支架的铸造方法
CN114891951A (zh) * 2022-06-08 2022-08-12 南京宁宣机械制造有限公司 一种船用集装箱绑扎杆的加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057500B2 (ja) * 1980-10-18 1985-12-16 愛知精鋼株式会社 耐海水性に優れた省Moオ−ステナイト系ステンレス鋼
US5000801A (en) * 1986-08-30 1991-03-19 Aichi Steel Works, Limited Wrought stainless steel having good corrosion resistance and a good resistance to corrosion in seawater
JPH08209311A (ja) * 1994-12-02 1996-08-13 Sumitomo Metal Ind Ltd 耐硝酸性に優れたオーステナイト系ステンレス鋳鋼及びその表面処理方法
CN101285148A (zh) * 2008-06-04 2008-10-15 长春工业大学 一种高氮无镍奥氏体不锈钢的制造方法
WO2015196032A1 (en) * 2014-06-19 2015-12-23 The Ohio State University Cobalt-free, galling and wear resistant austenitic stainless steel hard-facing alloy
CN105562644A (zh) * 2015-12-18 2016-05-11 吉林常春高氮合金研发中心有限公司 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法
CN106636860A (zh) * 2016-12-02 2017-05-10 机械科学研究总院青岛分院 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057500B2 (ja) * 1980-10-18 1985-12-16 愛知精鋼株式会社 耐海水性に優れた省Moオ−ステナイト系ステンレス鋼
US5000801A (en) * 1986-08-30 1991-03-19 Aichi Steel Works, Limited Wrought stainless steel having good corrosion resistance and a good resistance to corrosion in seawater
JPH08209311A (ja) * 1994-12-02 1996-08-13 Sumitomo Metal Ind Ltd 耐硝酸性に優れたオーステナイト系ステンレス鋳鋼及びその表面処理方法
CN101285148A (zh) * 2008-06-04 2008-10-15 长春工业大学 一种高氮无镍奥氏体不锈钢的制造方法
WO2015196032A1 (en) * 2014-06-19 2015-12-23 The Ohio State University Cobalt-free, galling and wear resistant austenitic stainless steel hard-facing alloy
CN105562644A (zh) * 2015-12-18 2016-05-11 吉林常春高氮合金研发中心有限公司 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法
CN106636860A (zh) * 2016-12-02 2017-05-10 机械科学研究总院青岛分院 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695180A (zh) * 2020-12-09 2021-04-23 鞍钢铸钢有限公司 一种超长船用件的热处理工艺
CN113996763A (zh) * 2021-11-08 2022-02-01 昆山莱捷有色金属有限公司 一种汽车底盘支架的铸造方法
CN114891951A (zh) * 2022-06-08 2022-08-12 南京宁宣机械制造有限公司 一种船用集装箱绑扎杆的加工方法

Similar Documents

Publication Publication Date Title
CN104588572B (zh) 一种离心铸造用涂料及其制备方法
WO2018103087A1 (zh) 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法
CN104325073A (zh) 一种耐磨低气孔铸钢件的铸造工艺
CN105420454A (zh) 一种大型耐热高合金铸钢件的热处理方法
CN109811114A (zh) 一种钢的细晶强韧化淬火冷却方法
CN102814892A (zh) 环氧浇注件制造方法和环氧浇注绝缘子制造方法
CN102703652B (zh) 一种铝压铸模用热作模具钢的热处理工艺
CN100434544C (zh) 改变喷射角度防止淬火件的端面喷液淬火开裂的方法
CN103397151B (zh) 一种针对大型轴的专用淬火剂及其制造方法
US11193446B2 (en) Needle-shaped cylinder liner and preparation method therefor, and coating liquid for preparing needle-shaped cylinder liner
CN106834971A (zh) 一种耐腐蚀抗裂耐磨钢球
WO2018107314A1 (zh) 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺
CN110280729A (zh) 一种多源超声波辅助半连铸制备大规格7xxx系铝合金扁锭的方法
CN106636860B (zh) 一种制造高氮奥氏体不锈钢船舰用螺旋桨铸件的方法
CN108098062A (zh) 一种钢轨锯切机用金刚石锯片及其生产工艺
CN113199037A (zh) 一种感应辅助喷丸细化激光增材制造轻合金晶粒的方法和装置
CN103131824A (zh) 电渣熔铸大截面曲轴的快速冷却淬火技术
CN109454214B (zh) 一种超声波压铸制备高导热烤盘的方法
CN107201475A (zh) 一种阀体的铸造成型制备方法
CN110791621A (zh) 一种车用扭力梁的热处理方法
CN106756576A (zh) 一种汽车发动机排气系统支架的生产工艺
CN101982549B (zh) Asdo线夹产品的热处理工艺
CN106636749B (zh) 一种获得钛合金马氏体组织的方法
CN104328443A (zh) 一种用于金属非标准件的清洗工艺
CN101597728A (zh) 一种用固溶时效改善热浸镀镍基合金涂层性能的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923599

Country of ref document: EP

Kind code of ref document: A1