WO2018101699A2 - Method for treating flue gas-desulfurization wastewater using electrolysis device - Google Patents

Method for treating flue gas-desulfurization wastewater using electrolysis device Download PDF

Info

Publication number
WO2018101699A2
WO2018101699A2 PCT/KR2017/013664 KR2017013664W WO2018101699A2 WO 2018101699 A2 WO2018101699 A2 WO 2018101699A2 KR 2017013664 W KR2017013664 W KR 2017013664W WO 2018101699 A2 WO2018101699 A2 WO 2018101699A2
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
gas desulfurization
electrolysis device
ions
waste water
Prior art date
Application number
PCT/KR2017/013664
Other languages
French (fr)
Korean (ko)
Other versions
WO2018101699A3 (en
Inventor
박규원
김성태
이해돈
김대원
권재형
Original Assignee
(주) 테크로스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크로스 filed Critical (주) 테크로스
Publication of WO2018101699A2 publication Critical patent/WO2018101699A2/en
Publication of WO2018101699A3 publication Critical patent/WO2018101699A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to a method for treating flue gas desulfurized wastewater using an electrolysis device, and specifically, to treating effluent desulfurized waste water, wherein the raw water is electrolyzed to supply ions required for the reaction without using harmful chemicals. It is about a method.
  • Flue gas emitted from coal or petroleum-fired power plants includes nitrogen oxides and sulfur oxides, and various methods are used to remove them.
  • nitrogen oxides are removed using a selective catalytic reduction device, and sulfur oxides are removed using a wet absorption tower, which is called a wet desulfurization process.
  • waste water containing a large amount of inorganic N-S COD component and ammonia nitrogen is discharged.
  • the chemical oxygen demand (COD) component generated in the desulfurization process is largely composed of NS-based COD component composed of NO 2 and SO 2 compounds, COD component by dithio acid ion (S 2 O 8 -2 ), and limestone as a desulfurization absorber. It is classified as COD and COD components due to organic substances - which is generated CaCO 3.
  • COD components contained in the wastewater generated in the desulfurization process most of the NS-based COD components produced by the NS-based components are used. These are generated by the reaction of NO 2 and SO 2 in the exhaust gas of the desulfurization process under acidic conditions and aqueous solutions in the absorption tower.
  • Korean Laid-Open Patent Publication No. 2006-0026510 describes an apparatus and method for removing nitrogen components such as nitrate and nitrogen at the same time by removing sludge from desulfurized wastewater and directly electrolyzing to remove the bonds of the hardly decomposable NS compounds. .
  • the above task is to remove the NS-based COD component in the flue gas desulfurization waste water; And a method for treating flue gas desulfurization wastewater comprising the step of removing heavy metals and fluorine, wherein an aqueous solution containing chlorine ions is passed through an electrolysis device including an anode portion and a cathode portion, thereby generating hydrogen ions (H + ) and hypochlorous acid at the anode portion. It is achieved by the method for treating flue gas desulfurization waste water, wherein the ion (OCl ⁇ ) is added to the NS-based COD component removal step to remove the NS COD component.
  • the pH of the flue gas desulfurization waste water may be neutralized to 6.5 to 8.0 by adding hydroxide ions (OH ⁇ ) generated at the cathode part to a heavy metal and fluorine removal step.
  • hydroxide ions OH ⁇
  • the pH in the N-S-based COD component removal step may be 4 to 4.5.
  • the chlorine ion-containing aqueous solution may include final discharged water or seawater of flue gas desulfurization waste water.
  • the electrolysis device may be a diaphragm type or a diaphragm type.
  • the chlorine ion-containing aqueous solution may have a chloride concentration of 10,000 to 15,000 mg / L.
  • Flue gas desulfurization treatment method of the present invention can effectively remove the N-S-based COD components without injecting HCl or NaOCl used in the existing chemical treatment process, it can significantly reduce the injection amount of the neutralizing chemical in the subsequent process.
  • the present invention can significantly reduce the use of strong acids or strong alkaline chemicals, and can reduce the risk of safety accidents.
  • FIG. 1 schematically illustrates a method for treating flue gas desulfurization wastewater according to the present invention.
  • the term "about” means 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, by reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length. By amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by 4, 3, 2 or 1%.
  • N-S-based COD component refers to an inorganic or organic compound comprising nitrogen (N) and sulfur (S).
  • FIG. 1 schematically illustrates a method for treating flue gas desulfurization wastewater according to the present invention.
  • Flue gas desulfurization wastewater is discharged through an N-S-based COD component removal step, heavy metal and fluorine removal step, calcium removal step, residual COD removal and biological denitrification step and third advanced treatment step.
  • Waste water discharged from a flue gas desulfurization process NS-based COD components, TN type component (NH 4 +, NO 3 - ) are and the like, heavy metals, fluorine, calcium.
  • the wastewater is introduced into a first reactor for removing the NS-based COD component.
  • NaOCl and HCl are added and pH 4 to 4.5 is maintained while removing NS-based COD components present in the flue gas desulfurization wastewater as shown in Scheme 1 below.
  • the wastewater discharged from the first reactor is sent to the second reactor to remove heavy metals and fluorine.
  • Alum hydrate is added to the second reactor to coprecipitate and remove fluorine ions, and a chelating agent is added to form a metal complex to remove heavy metals.
  • the pH of the reactor should be maintained at 6.5-8.0, for which NaOH is added.
  • the present invention is characterized by generating and supplying materials used in the N-S-based COD component removal step and heavy metal and fluorine removal step using an electrolysis device. That is, raw water is electrolyzed to separate anode water and cathode water, and the anode water is added to the first reactor to participate in the removal reaction of ions contained in the anode water, and the cathode water is added to the second reactor to pH Neutralize
  • the electrolytic apparatus may be a diaphragm-type or non-diaphragm-type including an anode portion and a cathode portion, and preferably may be a membrane-free electrolysis apparatus.
  • the electrolysis device is a diaphragm type, since there is a diaphragm between the anode and the cathode, the diaphragm acts as an electrical resistance, thereby increasing power consumption, and periodic cleaning or maintenance is required due to the scale problem of the diaphragm.
  • the power consumption is lower than that of the diaphragm type. However, it is important to maintain the laminar flow between the anode and the cathode.
  • Both the anode portion and the cathode portion may use an insoluble electrode, or only an anode may use an insoluble electrode.
  • the insoluble electrode is prepared by mixing one or more platinum groups (Pt, Ir, Ru, Pd) by plating or by thermal decomposition at high temperature.
  • the anode may be manufactured using CVD (chemical vapor deposition) or PVD.
  • the electrolytic apparatus arranges the positive and negative electrode portions 1: 1, and separates the positive and negative water by passing an aqueous solution containing chlorine ions therebetween.
  • the raw water used in the electrolysis device may be the final effluent or seawater after treatment of the aqueous solution containing chlorine ions, flue gas desulfurization wastewater in the treatment steps.
  • the final effluent may be recycled and added to the electrolysis device.
  • the final effluent all the waste water of flue gas desulfurization waste water treatment process via a chlorine ion (Cl -) - it is possible to smoothly generate the ion OCl using the electrolysis because the concentration is very high.
  • the process of treating flue gas desulfurization waste water includes a process of removing calcium contained in the waste water, there is an advantage that scale is not generated at the cathode during electrolysis. Therefore, it is more preferable to recycle and use the final discharged water.
  • the OCl ⁇ ions and H + ions prepared in the anode part may be introduced into the removal step of the NS-based COD component (first reaction tank) without mixing with the OH ⁇ ions generated in the cathode part.
  • the pH is maintained at 4 to 4.5, and removes the NS-based COD components as shown in Scheme 3 below.
  • the injection amount of anode water generated at the anode part and the current applied to the electrolysis device can be controlled by measuring the flow rate of raw water and oxidation-reduction potential (ORP) installed in the NS-based COD removal process. Is measured at the outlet of the first reactor. If the ORP is measured with a negative number, it is determined that the N-S-based COD component is remaining to increase the current applied to the electrolysis device, and if the ORP is measured with a positive number, it is determined that most of the N-S-based COD component is removed.
  • ORP oxidation-reduction potential
  • Injecting excessive amounts of OCl - ions in the NS-based COD component removal step may affect the microorganisms in the biological denitrification step during the wastewater treatment step, thus neutralizing agents such as sodium thiosulfate (Na 2 S 2 O 3 ) Sodium bisulfate (NaHSO 4 ), sulfur dioxide (SO 2 ), C, etc. are added to remove the excessively injected OCl - ions.
  • the redox potential (ORP) can be measured to control the dose of the neutralizing agent, and the ORP measurement can be controlled to be a negative number.
  • ORP redox potential
  • periodic polarity inversion may be performed to remove scale formed on the cathode portion. This allows Mg (OH) 2 , the scale attached to the cathode. Alternatively, the scale may be cleaned by anodizing and dissolving CaCO 3 and anodizing again.
  • the OH - ions generated in the cathode portion are introduced into the second reactor of the heavy metal and fluorine removal step to serve as a neutral pH.
  • This reaction can be represented as in Scheme 6 below.
  • the conventional drug treatment method has a disadvantage in that the amount of HCl injection increases.
  • the present invention also has the advantage of significantly reducing the HCl injection amount by H + , OCl - is injected in the positive water.
  • OH - ions required for neutralization are also manufactured and injected by using an electrolysis device in the field, there is an advantage that the amount of conventional caustic soda (NaOH) can be significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention relates to a method for treating flue gas-desulfurization wastewater using an electrolysis device, and specifically, provides a method for treating flue gas-desulfurization wastewater, wherein the method is characterized in that ions needed in a reaction are supplied by electrolyzing raw water without using hazardous chemical substances.

Description

전기분해장치를 이용한 배연탈황폐수의 처리 방법Treatment method of flue gas desulfurization wastewater using electrolysis device
본 발명은 전기분해장치를 이용한 배연탈황폐수의 처리 방법에 관한 것으로서, 구체적으로는 유해한 화학물질을 사용하지 않고, 원수를 전기분해하여 반응에 필요한 이온을 공급하는 것을 특징으로 하는 배연탈황폐수의 처리 방법에 관한 것이다.The present invention relates to a method for treating flue gas desulfurized wastewater using an electrolysis device, and specifically, to treating effluent desulfurized waste water, wherein the raw water is electrolyzed to supply ions required for the reaction without using harmful chemicals. It is about a method.
전세계적으로 환경 보호에 대한 요구가 높아짐에 따라 화력발전소에서의 탈황폐수처리의 중요성이 대두되고 있다. 석탄이나 석유를 이용하는 화력발전소에서 배출되는 배연에는 질소 산화물 및 황 산화물이 포함되는데, 이들을 제거하기 위하여 다양한 방법들이 사용되고 있다. 일반적으로 질소 산화물의 경우에는 선택적 촉매환원 장치를 이용하여 제거하고, 황 산화물은 습식 흡수탑을 이용하여 제거하는데, 이를 습식 탈황 공정이라 한다. 습식 탈황 공정에서는 무기성 N-S COD 성분 및 암모니아성 질소가 다량 포함된 폐수가 배출되게 된다.As the demand for environmental protection increases around the world, the importance of desulfurization wastewater treatment in thermal power plants is emerging. Flue gas emitted from coal or petroleum-fired power plants includes nitrogen oxides and sulfur oxides, and various methods are used to remove them. In general, nitrogen oxides are removed using a selective catalytic reduction device, and sulfur oxides are removed using a wet absorption tower, which is called a wet desulfurization process. In the wet desulfurization process, waste water containing a large amount of inorganic N-S COD component and ammonia nitrogen is discharged.
탈황 공정에서 발생되는 COD(chemical oxygen demand) 성분은 크게 NO2와 SO2화합물로 이루어진 N-S계 COD 성분, 디티오산이온(S2O8 -2)에 의한 COD 성분, 탈황흡수제로 석회석을 사용함으로써 생성되는 CaCO3 - COD 및 유기물질에 의한 COD 성분으로 분류된다. 이 중 탈황 공정에서 발생한 폐수에 포함된 COD 성분은 N-S계 성분에 의해 생성된 N-S계 COD 성분이 대부분이다. 이들은 탈황공정의 배기가스 중의 NO2와 SO2가 흡수탑 내의 산성 조건과 수용액 상태에서 반응하여 발생된다.The chemical oxygen demand (COD) component generated in the desulfurization process is largely composed of NS-based COD component composed of NO 2 and SO 2 compounds, COD component by dithio acid ion (S 2 O 8 -2 ), and limestone as a desulfurization absorber. It is classified as COD and COD components due to organic substances - which is generated CaCO 3. Among the COD components contained in the wastewater generated in the desulfurization process, most of the NS-based COD components produced by the NS-based components are used. These are generated by the reaction of NO 2 and SO 2 in the exhaust gas of the desulfurization process under acidic conditions and aqueous solutions in the absorption tower.
N-S계 COD 성분을 제거하기 위하여, 수온 55~60℃, pH 2의 조건에서 NaNO2를 주입하여 처리하는 방법과, 수온 45℃, pH 4 조건에서 NaOCl를 주입하여 처리하는 약품처리 방법이 있다. 상기 방법은 다량의 약품을 사용하기 때문에 매번 약품을 운송, 저장해야 하는 단점이 있으며, NaOCl의 경우에는 주변 온도에 따라서 쉽게 농도가 감소되고 사람이 직접 조작해야 하기 때문에 안전사고의 위험성까지 내포하고 있다.In order to remove the NS-based COD components, there is a method of injecting and treating NaNO 2 under a water temperature of 55 to 60 ° C. and a pH of 2, and a method of treating chemicals by injecting NaOCl under a water temperature of 45 ° C. and a pH of 4. This method has a disadvantage in that the drug must be transported and stored every time because a large amount of the drug is used. In the case of NaOCl, the concentration is easily reduced according to the ambient temperature and the risk of a safety accident is included because a human must operate it directly. .
탈황 공정에서 배출되는 탈황폐수의 처리 방법과 관련하여 다양한 문헌들이 공개되어 있다. Various documents have been published regarding the method for treating the desulfurized wastewater discharged from the desulfurization process.
한국공개특허 제2006-0026510호에서는 탈황폐수의 슬러지를 제거한 후, 직접 전기분해하여 난분해성 N-S계 화합물의 결합을 제거함과 동시에서 질산성 질소 등의 질소 성분을 제거하는 장치 및 방법을 기술하고 있다. Korean Laid-Open Patent Publication No. 2006-0026510 describes an apparatus and method for removing nitrogen components such as nitrate and nitrogen at the same time by removing sludge from desulfurized wastewater and directly electrolyzing to remove the bonds of the hardly decomposable NS compounds. .
또한 한국공개특허 제2003-0478206호에서는 난처리성 COD 성분을 제거하기 위하여, 팔라듐 계통의 바이메탈 촉매에 탈황폐수 내에 다량 상존하는 질산성 이온을 접촉시킨 후, 폐수 내에 존재하는 활성 수소이온에 의하여 바이메탈에 흡착된 질산성 이용은 아질산염으로 환원시켜, 난처리성 COD 성분과 반응시키는 공정을 개시하고 있다. In addition, in Korean Patent Laid-Open Publication No. 2003-0478206, in order to remove a hardly-treated COD component, after contacting a palladium-based bimetallic catalyst with a large amount of nitrate ions present in the desulfurized wastewater, the bimetal is activated by active hydrogen ions present in the wastewater. The use of nitric acid adsorbed on to a nitrate discloses a process of reducing to nitrite and reacting with a hardly-treated COD component.
본 발명은 유해 약품을 사용하지 않으면서도 안전한 배연탈황폐수의 처리방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for treating flue gas desulfurization waste water safely without using harmful chemicals.
상기한 과제는 배연탈황폐수 내의 N-S계 COD 성분 제거 단계; 및 중금속 및 불소 제거 단계를 포함하는 배연탈황폐수의 처리 방법으로서, 염소이온 포함 수용액을 양극부 및 음극부를 포함하는 전기분해장치에 통과시켜, 양극부에서 발생된 수소 이온(H+)과 차아염소산 이온(OCl-)을 상기 N-S계 COD 성분 제거 단계에 투입하여 N-S COD 성분을 제거하는 것을 특징으로 하는 배연탈황폐수의 처리 방법에 의해 달성된다.The above task is to remove the NS-based COD component in the flue gas desulfurization waste water; And a method for treating flue gas desulfurization wastewater comprising the step of removing heavy metals and fluorine, wherein an aqueous solution containing chlorine ions is passed through an electrolysis device including an anode portion and a cathode portion, thereby generating hydrogen ions (H + ) and hypochlorous acid at the anode portion. It is achieved by the method for treating flue gas desulfurization waste water, wherein the ion (OCl ) is added to the NS-based COD component removal step to remove the NS COD component.
바람직하게는, 상기 음극부에서 발생된 수산화이온(OH-)을 중금속 및 불소 제거 단계에 투입하여 배연탈황폐수의 pH를 6.5 내지 8.0으로 중화시킬 수 있다.Preferably, the pH of the flue gas desulfurization waste water may be neutralized to 6.5 to 8.0 by adding hydroxide ions (OH ) generated at the cathode part to a heavy metal and fluorine removal step.
또한 바람직하게는, 상기 N-S계 COD 성분 제거 단계에서 pH는 4 내지 4.5일 수 있다.Also preferably, the pH in the N-S-based COD component removal step may be 4 to 4.5.
또한 바람직하게는, 상기 염소이온 포함 수용액은 배연탈황폐수의 최종 방류수 또는 해수를 포함할 수 있다.Also preferably, the chlorine ion-containing aqueous solution may include final discharged water or seawater of flue gas desulfurization waste water.
바람직하게는, 상기 전기분해장치는 격막형 또는 무격막형일 수 있다.Preferably, the electrolysis device may be a diaphragm type or a diaphragm type.
또한 바람직하게는, 상기 염소이온 포함 수용액은 염화물 농도가 10,000 내지 15,000 mg/L일 수 있다.Also preferably, the chlorine ion-containing aqueous solution may have a chloride concentration of 10,000 to 15,000 mg / L.
본 발명의 배연탈황폐수의 처리방법은 기존 약품처리공정에서 사용되는 HCl이나 NaOCl을 주입하지 않고도 효과적으로 N-S계 COD 성분을 제거할 수 있고, 추후 공정에서 중화용 화학물질의 주입량을 현저히 줄일 수 있다. 본 발명은 강산이나 강알카리성 화학물질의 사용을 현저히 줄일 수 있고, 안전사고 위험을 낮출 수 있다.Flue gas desulfurization treatment method of the present invention can effectively remove the N-S-based COD components without injecting HCl or NaOCl used in the existing chemical treatment process, it can significantly reduce the injection amount of the neutralizing chemical in the subsequent process. The present invention can significantly reduce the use of strong acids or strong alkaline chemicals, and can reduce the risk of safety accidents.
도 1은 본 발명에 따른 배연탈황폐수의 처리 방법을 개략적으로 도시한 것이다.1 schematically illustrates a method for treating flue gas desulfurization wastewater according to the present invention.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 하기의 정의를 가지며 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미에 부합된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다.All technical terms used in the present invention, unless defined otherwise, have the following definitions and conform to the meanings commonly understood by those skilled in the art in the relevant field of the present invention. In addition, although a preferred method or sample is described herein, similar or equivalent things are included in the scope of the present invention.
용어 "약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.The term "about" means 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, by reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length. By amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by 4, 3, 2 or 1%.
본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군을 포함하나, 임의의 다른 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, the terms “comprises” and “comprising”, unless otherwise indicated in the context, include a given step or component, or group of steps or components, but any other step or component, or It is to be understood that it does not exclude a step or group of components.
본 발명에서 사용된 용어 “N-S계 COD 성분”은 질소(N) 및 황(S)을 포함하는 무기 또는 유기 화합물을 가리킨다.As used herein, the term "N-S-based COD component" refers to an inorganic or organic compound comprising nitrogen (N) and sulfur (S).
이하에서는 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
도 1은 본 발명에 따른 배연탈황폐수의 처리방법을 개략적으로 도시한 것이다.1 schematically illustrates a method for treating flue gas desulfurization wastewater according to the present invention.
배연탈황폐수는 N-S계 COD 성분 제거 단계, 중금속 및 불소 제거 단계, 칼슘 제거 단계, 잔류 COD 제거 및 생물학적 탈질 단계 및 3차 고도처리 단계를 거쳐 방류된다. Flue gas desulfurization wastewater is discharged through an N-S-based COD component removal step, heavy metal and fluorine removal step, calcium removal step, residual COD removal and biological denitrification step and third advanced treatment step.
배연탈황공정에서 배출되는 폐수는 N-S계 COD 성분, T-N계 성분(NH4 +, NO3 -), 중금속, 불소, 칼슘 등이 포함되어 있다. 먼저, 상기 폐수를 N-S계 COD 성분 제거를 위한 제1 반응조에 투입한다. 통상 제1 반응조에서는 NaOCl과 HCl을 첨가하고 pH 4~4.5로 유지하면서 다음의 반응식 1과 같이 배연탈황폐수 내에 존재하는 N-S계 COD 성분을 제거한다.Waste water discharged from a flue gas desulfurization process, NS-based COD components, TN type component (NH 4 +, NO 3 - ) are and the like, heavy metals, fluorine, calcium. First, the wastewater is introduced into a first reactor for removing the NS-based COD component. In the first reactor, NaOCl and HCl are added and pH 4 to 4.5 is maintained while removing NS-based COD components present in the flue gas desulfurization wastewater as shown in Scheme 1 below.
[반응식 1] Scheme 1
NO(SO3)3 -3 + HOCl -> NO, NO3 - NO (SO 3) 3 -3 + HOCl -> NO, NO 3 -
다음으로 제1 반응조에서 배출된 폐수는 중금속 및 불소 제거를 위해 제2 반응조로 이송된다. 제2 반응조에 Alum 수화물을 첨가하여 불소이온을 공침 및 제거하고, 킬레이트제를 첨가하여 금속 착화합물을 형성하여 중금속을 제거한다. 본 반응시 반응조의 pH는 6.5~8.0로 유지되어야 하는데, 이를 위해 NaOH를 첨가한다. Next, the wastewater discharged from the first reactor is sent to the second reactor to remove heavy metals and fluorine. Alum hydrate is added to the second reactor to coprecipitate and remove fluorine ions, and a chelating agent is added to form a metal complex to remove heavy metals. In this reaction, the pH of the reactor should be maintained at 6.5-8.0, for which NaOH is added.
본 발명은 상기 N-S계 COD 성분 제거 단계 및 중금속 및 불소 제거 단계에서 사용되는 물질들을 전기분해장치를 이용하여 발생시켜 공급하는 것을 특징으로 한다. 즉, 원수를 전기분해하여 양극수와 음극수로 분리하고, 양극수를 상기 제1 반응조에 투입하여 양극수에 포함된 이온들을 제거 반응에 참여시키고, 또한 음극수를 제2 반응조에 투입하여 pH를 중화시킨다. The present invention is characterized by generating and supplying materials used in the N-S-based COD component removal step and heavy metal and fluorine removal step using an electrolysis device. That is, raw water is electrolyzed to separate anode water and cathode water, and the anode water is added to the first reactor to participate in the removal reaction of ions contained in the anode water, and the cathode water is added to the second reactor to pH Neutralize
본 발명에 따른 전기분해장치는 양극부 및 음극부를 포함하는 격막형 또는 무격막형일 수 있고, 바람직하게는 무격막형 전기분해장치일 수 있다. 전기분해장치가 격막형인 경우 양극과 음극 사이에 격막이 있기 때문에 격막이 전기적 저항으로 작용하여 전력 소비량이 증가되고, 격막의 스케일 문제 때문에 주기적인 청소 또는 유지보수가 필요하다. 전기분해장치가 무격막형인 경우에는 격막형과 대비하여 전력 소비량이 낮은 장점이 있지만, 양극과 음극 사이를 층류로 유지하는 것이 관건이다.The electrolytic apparatus according to the present invention may be a diaphragm-type or non-diaphragm-type including an anode portion and a cathode portion, and preferably may be a membrane-free electrolysis apparatus. When the electrolysis device is a diaphragm type, since there is a diaphragm between the anode and the cathode, the diaphragm acts as an electrical resistance, thereby increasing power consumption, and periodic cleaning or maintenance is required due to the scale problem of the diaphragm. In the case of the non-diaphragm type electrolysis device, the power consumption is lower than that of the diaphragm type. However, it is important to maintain the laminar flow between the anode and the cathode.
상기 양극부와 음극부는 모두 불용성 전극을 이용하거나 양극만 불용성 전극을 이용할 수 있다. 상기 불용성 전극은 백금족(Pt, Ir, Ru, Pd)을 하나 이상 혼합하여 도금하거나 고온에서 열소성(thermal decomposition)하여 제조한다. 또는 CVD(화학기상증착) 또는 PVD를 이용하여 양극을 제조할 수 있다. 상기 전기분해장치는 양극부와 음극부를 서로 1:1로 배열하고, 염소 이온을 포함하는 수용액을 그 사이로 통과시켜서 양극수와 음극수를 분리한다. Both the anode portion and the cathode portion may use an insoluble electrode, or only an anode may use an insoluble electrode. The insoluble electrode is prepared by mixing one or more platinum groups (Pt, Ir, Ru, Pd) by plating or by thermal decomposition at high temperature. Alternatively, the anode may be manufactured using CVD (chemical vapor deposition) or PVD. The electrolytic apparatus arranges the positive and negative electrode portions 1: 1, and separates the positive and negative water by passing an aqueous solution containing chlorine ions therebetween.
상기 전기분해장치에 사용되는 원수는 염소 이온을 포함하는 수용액, 배연탈황폐수를 상기 처리 단계들로 처리한 후의 최종 방류수 또는 해수일 수 있다. 바람직하게는 최종 방류수를 재활용하여 전기분해장치에 투입할 수 있다. 배연탈황폐수의 폐수처리 공정을 모두 거친 최종 방류수는 염소이온(Cl-) 농도가 매우 높기 때문에 전기분해를 이용하여 OCl- 이온을 원활하게 발생시킬 수 있다. 또한 배연탈황폐수의 처리공정에는 폐수에 포함된 칼슘을 제거하는 공정이 포함되어 있기 때문에 전기분해 시 음극에 스케일이 생성되지 않는 장점이 있다. 따라서, 최종 방류수를 재활용하여 이용하는 것이 보다 바람직하다.The raw water used in the electrolysis device may be the final effluent or seawater after treatment of the aqueous solution containing chlorine ions, flue gas desulfurization wastewater in the treatment steps. Preferably, the final effluent may be recycled and added to the electrolysis device. The final effluent all the waste water of flue gas desulfurization waste water treatment process via a chlorine ion (Cl -) - it is possible to smoothly generate the ion OCl using the electrolysis because the concentration is very high. In addition, since the process of treating flue gas desulfurization waste water includes a process of removing calcium contained in the waste water, there is an advantage that scale is not generated at the cathode during electrolysis. Therefore, it is more preferable to recycle and use the final discharged water.
상기 전기분해장치의 양극부(anode)에서는 하기의 반응식 2와 같이 OCl- 이온과 H+ 이온이 생성된다.In the anode part of the electrolysis device, OCl ions and H + ions are generated as shown in Scheme 2 below.
[반응식 2]Scheme 2
2Cl- -> Cl2 + 2e- 2Cl - -> Cl 2 + 2e -
Cl2 + H2O -> H+ + Cl- + HOCl- Cl 2 + H 2 O -> H + + Cl - + HOCl -
HOCl- <-> H+ + OCl- HOCl - <-> H + + OCl -
H2O -> 1/2 O2 + 2H+ + 2e- H 2 O -> 1/2 O 2 + 2H + + 2e -
상기 양극부에서 제조된 OCl- 이온과 H+ 이온은 음극부에서 발생된 OH- 이온과 섞이지 않으면서 N-S계 COD 성분의 제거 단계(제1 반응조)로 유입될 수 있다. 이때 pH는 4 내지 4.5로 유지되며, 아래의 반응식 3과 같이 N-S계 COD 성분을 제거한다.The OCl ions and H + ions prepared in the anode part may be introduced into the removal step of the NS-based COD component (first reaction tank) without mixing with the OH ions generated in the cathode part. At this time, the pH is maintained at 4 to 4.5, and removes the NS-based COD components as shown in Scheme 3 below.
[반응식 3]Scheme 3
6 NO(SO3)3 -3 + 18 OCl- + 10 H2O→ 4 NO + 2 NO3 - + 18 HSO4 - + 18 Cl- + 2 H+ + 3 O2 6 NO (SO 3) 3 -3 + 18 OCl - + 10 H 2 O → 4 NO + 2 NO 3 - + 18 HSO 4 - + 18 Cl - + 2 H + + 3 O 2
양극부에서 발생된 양극수의 주입량, 전기분해장치에 인가되는 전류는 원수의 유량과 N-S계 COD 성분 제거 공정에 설치된 산화환원전위(Oxidation-reduction potential, ORP)를 측정하여 제어할 수 있고, ORP는 제1 반응조의 유출부에서 측정된다. ORP가 음의 수로 측정되면, N-S계 COD 성분이 잔류된 것으로 판단하여 전기분해장치에 인가되는 전류를 높이고, ORP가 양의 수로 측정되면, N-S계 COD 성분이 대부분 제거된 것으로 판단한다.The injection amount of anode water generated at the anode part and the current applied to the electrolysis device can be controlled by measuring the flow rate of raw water and oxidation-reduction potential (ORP) installed in the NS-based COD removal process. Is measured at the outlet of the first reactor. If the ORP is measured with a negative number, it is determined that the N-S-based COD component is remaining to increase the current applied to the electrolysis device, and if the ORP is measured with a positive number, it is determined that most of the N-S-based COD component is removed.
N-S계 COD 성분 제거 단계에서 OCl- 이온이 과량으로 주입되면, 이후 폐수 처리 단계 중 생물학적 탈질 단계에서 미생물에 영향을 미치기 때문에, 중화제, 예를 들면 티오황산나트륨(sodium thiosulfate, Na2S2O3), 황산수소나트륨(sodium bisulfate, NaHSO4), 이산화황(SO2), C 등을 투입하여 과량 주입된 OCl- 이온을 제거한다. 이 경우에도 산화환원전위(ORP)를 측정하여 중화제의 투여량을 제어할 수 있고, ORP 측정값이 음의 수가 되도록 제어할 수 있다. 중화 시 반응은 하기의 반응식 4와 같다.Injecting excessive amounts of OCl - ions in the NS-based COD component removal step may affect the microorganisms in the biological denitrification step during the wastewater treatment step, thus neutralizing agents such as sodium thiosulfate (Na 2 S 2 O 3 ) Sodium bisulfate (NaHSO 4 ), sulfur dioxide (SO 2 ), C, etc. are added to remove the excessively injected OCl - ions. In this case also, the redox potential (ORP) can be measured to control the dose of the neutralizing agent, and the ORP measurement can be controlled to be a negative number. The reaction upon neutralization is shown in Scheme 4 below.
[반응식 4]Scheme 4
OCl- + H+ + NaHSO3 → NaHSO4↓ + HCl OCl - + H + + NaHSO 3 → NaHSO 4 ↓ + HCl
본 발명의 일 실시형태에 따르면, 음극부에 형성된 스케일을 제거하기 위하여 주기적인 극성 반전을 실시할 수 있다. 이를 통해 음극부에 부착된 스케일인 Mg(OH)2 또는 CaCO3를 양극화하여 용해시키고 다시 음극화하여 스케일을 청소할 수 있다.According to one embodiment of the present invention, periodic polarity inversion may be performed to remove scale formed on the cathode portion. This allows Mg (OH) 2 , the scale attached to the cathode. Alternatively, the scale may be cleaned by anodizing and dissolving CaCO 3 and anodizing again.
상기 전기분해장치의 음극부에서는 하기의 반응식 5와 같이 OH- 이온이 발생한다. In the cathode portion of the electrolysis device, OH ions are generated as in Scheme 5 below.
[반응식 5]Scheme 5
2H2O + 2e- -> H2 + 2OH- 2H 2 O + 2e - -> H 2 + 2OH -
상기 음극부에서 발생된 OH- 이온은 중금속 및 불소 제거 단계의 제2 반응조에 투입되어 pH 중화 용도로 작용한다. 본 반응은 하기 반응식 6과 같이 나타낼 수 있다.The OH - ions generated in the cathode portion are introduced into the second reactor of the heavy metal and fluorine removal step to serve as a neutral pH. This reaction can be represented as in Scheme 6 below.
[반응식 6]Scheme 6
Metal2+ + OH- -> M(OH)2Metal 2+ + OH -- > M (OH) 2
기존 N-S계 COD 성분 제거 공정에서는 다량의 HCl, NaOCl이 주입된다. N-S계 COD 성분 제거 공정에서 효과적인 반응을 위해서는 반응조의 pH를 4~4.5로 유지하여야 하기 때문에 위해 HCl이 주입되었다. 그러나 시판되는 NaOCl의 pH는 강알칼리로 pH 12 이상이다. 따라서 기존 약품처리방법에서는 HCl 주입량이 많아지는 단점이 있다. 본 발명은 양극수에서 H+, OCl-가 주입됨으로 HCl 주입량을 현저히 줄일 수 있는 장점을 또한 가지고 있다. 또한, 중화에 필요한 OH- 이온 역시 현장에서 전기분해장치를 이용하여 제조되어 주입되기 때문에 기존 가성소다(NaOH) 주입량을 현저히 줄일 수 있는 장점이 있다.In the existing NS-based COD component removal process, a large amount of HCl and NaOCl are injected. HCl was injected to maintain the pH of the reactor at 4 ~ 4.5 for effective reaction in the NS-based COD removal process. However, commercially available NaOCl has a strong alkali pH above 12. Therefore, the conventional drug treatment method has a disadvantage in that the amount of HCl injection increases. The present invention also has the advantage of significantly reducing the HCl injection amount by H + , OCl - is injected in the positive water. In addition, since OH - ions required for neutralization are also manufactured and injected by using an electrolysis device in the field, there is an advantage that the amount of conventional caustic soda (NaOH) can be significantly reduced.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that such a specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims (6)

  1. 배연탈황폐수 내의 N-S계 COD 성분 제거 단계; 및 중금속 및 불소 제거 단계를 포함하는 배연탈황폐수의 처리 방법으로서, Removing the N-S-based COD component in the flue gas desulfurization waste water; And a method for treating flue gas desulfurization wastewater comprising the step of removing heavy metals and fluorine,
    염소이온 포함 수용액을 양극부 및 음극부를 포함하는 전기분해장치에 통과시켜, 양극부에서 발생된 수소 이온(H+)과 차아염소산 이온(OCl-)을 상기 N-S계 COD 성분 제거 단계에 투입하여 N-S계 COD 성분을 제거하는 것을 특징으로 하는 배연탈황폐수의 처리 방법.Pass the aqueous solution containing chlorine ions through an electrolysis device including an anode part and a cathode part, and introduce hydrogen ions (H + ) and hypochlorite ions (OCl ) generated at the anode part into the NS-based COD component removal step. A method for treating flue gas desulfurization waste, characterized by removing the system COD component.
  2. 제1항에 있어서, 상기 음극부에서 발생된 수산화이온(OH-)을 중금속 및 불소 제거 단계에 투입하여 배연탈황폐수의 pH를 6.5 내지 8.0으로 중화시키는 것을 특징으로 하는 배연탈황폐수의 처리 방법.The method for treating flue gas desulfurized wastewater according to claim 1, wherein the hydroxide ion (OH ) generated in the cathode portion is added to the heavy metal and fluorine removing step to neutralize the pH of the flue gas desulfurized waste water to 6.5 to 8.0.
  3. 제1항에 있어서, 상기 N-S계 COD 성분 제거 단계에서 pH는 4 내지 4.5인 것을 특징으로 하는 배연탈황폐수의 처리 방법.The method of claim 1, wherein the pH of the N-S-based COD component removal step is 4 to 4.5, characterized in that the treatment of flue gas desulfurization waste water.
  4. 제1항에 있어서, 상기 염소이온 포함 수용액은 배연탈황폐수의 최종 방류수 또는 해수를 포함하는 것을 특징으로 배연탈황폐수의 처리 방법.The method of claim 1, wherein the aqueous solution containing chlorine ions comprises final effluent or seawater of flue gas desulfurization waste water.
  5. 제1항에 있어서, 상기 전기분해장치는 격막형 또는 무격막형인 것을 특징으로 하는 배연탈황폐수의 처리 방법.The method of claim 1, wherein the electrolysis device is a diaphragm type or a diaphragm type.
  6. 제1항에 있어서, 상기 염소이온 포함 수용액은 염화물 농도가 10,000 내지 15,000 mg/L인 것을 특징으로 하는 배연탈황폐수의 처리 방법.The method according to claim 1, wherein the aqueous solution containing chlorine ions has a chloride concentration of 10,000 to 15,000 mg / L.
PCT/KR2017/013664 2016-11-30 2017-11-28 Method for treating flue gas-desulfurization wastewater using electrolysis device WO2018101699A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0162041 2016-11-30
KR1020160162041A KR101910635B1 (en) 2016-11-30 2016-11-30 Method for treating wastewater from flue gas desulfurization using electrolysis device

Publications (2)

Publication Number Publication Date
WO2018101699A2 true WO2018101699A2 (en) 2018-06-07
WO2018101699A3 WO2018101699A3 (en) 2018-08-09

Family

ID=62242549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013664 WO2018101699A2 (en) 2016-11-30 2017-11-28 Method for treating flue gas-desulfurization wastewater using electrolysis device

Country Status (2)

Country Link
KR (1) KR101910635B1 (en)
WO (1) WO2018101699A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072112A (en) * 2020-01-09 2020-04-28 河北超绿节能环保科技有限公司 Wastewater treatment method and system for zero discharge of desulfurization wastewater
CN114656076A (en) * 2022-04-11 2022-06-24 重庆远达烟气治理特许经营有限公司科技分公司 Desulfurization wastewater treatment method and desulfurization wastewater treatment equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065713B1 (en) * 2018-07-19 2020-01-14 (주) 테크로스 Method for treating wastewater from flue gas desulfurization using electrolysis device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3821921B2 (en) * 1997-08-11 2006-09-13 株式会社東芝 Incinerator scrubber waste liquid treatment method and apparatus
JP2006320870A (en) * 2005-05-20 2006-11-30 Sanyo Electric Co Ltd Waste gas treatment system
KR100848286B1 (en) * 2007-01-09 2008-07-25 한국동서발전(주) Scale Preventer and Scale Preventing Method for Wastewater Disposal Facility in Flue Gas Desulfurization System Using Sodium Hypochlorite
JP6003245B2 (en) * 2011-06-24 2016-10-05 株式会社Ihi Exhaust gas treatment method and treatment apparatus
KR101544197B1 (en) * 2014-04-30 2015-08-13 (주) 테크윈 A exhaust gas treatment system
KR102110618B1 (en) * 2014-07-16 2020-05-13 한국조선해양 주식회사 Apparatus for purifying marine exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072112A (en) * 2020-01-09 2020-04-28 河北超绿节能环保科技有限公司 Wastewater treatment method and system for zero discharge of desulfurization wastewater
CN114656076A (en) * 2022-04-11 2022-06-24 重庆远达烟气治理特许经营有限公司科技分公司 Desulfurization wastewater treatment method and desulfurization wastewater treatment equipment

Also Published As

Publication number Publication date
KR20180062121A (en) 2018-06-08
KR101910635B1 (en) 2018-10-24
WO2018101699A3 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2018101699A2 (en) Method for treating flue gas-desulfurization wastewater using electrolysis device
US20070170122A1 (en) Wastewater treatment apparatus
Cotillas et al. Coupling UV irradiation and electrocoagulation for reclamation of urban wastewater
KR101269948B1 (en) Apparatus and method for nitrogen wastewater treatment
WO2013028004A2 (en) Scrubber system having an automatic generator for an oxidizing-absorbing agent
WO2018044001A1 (en) Nitrogen oxide reducing solution using aniline wastewater, and method for preparing same
JP2008080236A (en) Treatment method and treatment apparatus for ammoniacal nitrogen-containing wastewater
RU2615023C2 (en) Method for integrated wastewater treatment from cyanide, thiocyanate, arsenic, antimony and heavy metals
KR20170099616A (en) Electrodialysis coupled with electrochemical nitrogen removal Process for contaminated groundwater treatment, and Apparatus therefor
CN211664878U (en) Ammonia nitrogen wastewater treatment device
JP6146499B2 (en) Treatment of ammonia-containing wastewater
KR101046942B1 (en) Water treatment method using electrolysis
WO2020017689A1 (en) Method for processing flue gas desulfurization wastewater by using divided cell-type electrolysis apparatus
JP2007185579A (en) Water treatment method and system
KR20010104007A (en) Advanced Wastewater Treatment System Adding Dechlorination Process
KR20160069539A (en) Wet gas cleaning system using oxidizing agent produced from the wastewater
JP2012040524A (en) Electrolytic treatment apparatus and electrolytic treatment method
WO2015167083A1 (en) System for treating exhaust gas
JP2012024702A (en) Method of cleaning heavy metals or the like in soil
KR0180898B1 (en) Waste water disposing method using electrolytic wet oximetry
JPH06182344A (en) Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution
JP2006272060A (en) Continuous treatment method and device for waste water containing nitrate nitrogen
JP2019118852A (en) Water treatment method
WO2023282470A1 (en) Smart iot-controlled advanced oxidation process system using low-temperature microplasma-based ozone
JPS55104632A (en) Treating method of waste gas containing hydrogen chloride and sulfur oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877292

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877292

Country of ref document: EP

Kind code of ref document: A2