WO2018101690A1 - 다중 내부 반사를 이용한 광학적 가스 센서 - Google Patents

다중 내부 반사를 이용한 광학적 가스 센서 Download PDF

Info

Publication number
WO2018101690A1
WO2018101690A1 PCT/KR2017/013610 KR2017013610W WO2018101690A1 WO 2018101690 A1 WO2018101690 A1 WO 2018101690A1 KR 2017013610 W KR2017013610 W KR 2017013610W WO 2018101690 A1 WO2018101690 A1 WO 2018101690A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
absorption
irradiator
gas sensor
detector
Prior art date
Application number
PCT/KR2017/013610
Other languages
English (en)
French (fr)
Inventor
이병수
Original Assignee
주식회사 템퍼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 템퍼스 filed Critical 주식회사 템퍼스
Publication of WO2018101690A1 publication Critical patent/WO2018101690A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection

Definitions

  • the present invention relates to a gas sensor, and more particularly to an optical gas sensor.
  • the gas sensor is a sensor for measuring the concentration of a specific gas or the like.
  • the method of measuring the concentration of a specific gas is an electrochemical method for measuring a change in electrical conductivity of a thin film by an electrochemical reaction and an optical method for measuring a gas concentration by measuring characteristic absorption lines and measuring the amount of absorbed light (NDIR, Non -Dispersive Infra-Red), and the electrochemical method is inexpensive and can be miniaturized, but it is low in reliability due to the large change according to temperature and humidity, and the optical method is composed of infrared irradiation part, sensor part, and waveguide part. There is a problem in that it is difficult to implement a gas sensor capable of implementing low-cost and rapid measurement due to a long time and high power consumption.
  • the present invention is directed to a light irradiator generated due to a problem of increasing the size of the gas concentration meter due to the long optical path required by the gas concentration meter using the optical method and a response time of the light absorber used to increase the absorption rate of the light detector.
  • an object of the present invention is to provide a gas sensor that can realize a low-cost, compact and rapid measurement.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • an optical gas sensor using multiple internal reflections includes a light irradiator capable of emitting light; A light detector capable of absorbing at least a portion of the light emitted from the light irradiator; A multiple internal reflecting structure disposed between the light irradiator and the light detector, the light emitted from the light irradiator being configured to reflect multiple light reflected back outside the light detector without being absorbed by the light detector and reenter and absorb into the light detector; And a housing part housing the light irradiator, the light detector, and the multiple internal reflection structures therein, and having a reflective layer reflecting light on an inner surface thereof.
  • the multiple internal reflection structure further comprises: an absorbing combined reflecting plate disposed closer to the light detector than the light irradiator such that a portion of the light is absorbed and the other portion of the light may reflect; And a re-reflecting plate disposed closer to the light irradiator than the light detector and configured to re-reflect light reflected from the absorption reflecting plate to be incident on the light detector.
  • the absorbing dual reflector and the re-reflecting plate may be configured by using the multi-absorption reflecting plate and the re-reflecting plate or by using the absorbing dual reflecting plate, the re-reflecting plate, and the housing part. It can be configured to make.
  • the light irradiator and the light detector may be arranged to face each other in the housing part.
  • the light irradiator and the light detector may be arranged so that the light path irradiated by the light irradiator and the light path detected by the light detector do not parallel with each other in the housing part. .
  • the optical gas sensor using the multiple internal reflections may include: a window unit disposed between the absorption reflector and the re-reflection plate and disposed adjacent to the light irradiator than the light detector to transmit light having a relatively broad wavelength; And an optical filter disposed between the absorbing dual reflector and the re-reflective plate, the optical filter being disposed adjacent to the light detector than the light irradiator to transmit light having a relatively narrow selective wavelength band.
  • the reflectance and the absorptivity of the absorption combined reflector may be designed according to the concentration of the gas to be measured and the absorption coefficient of light in the relatively narrow selective wavelength band.
  • the concentration of the gas to be measured the higher the reflectance of the absorbing dual reflector and the lower the absorptance of the absorbing dual reflector.
  • the reflectance of the absorption combined reflector may be relatively high and the absorption of the combined reflector may be relatively low.
  • the absorbing combined reflecting plate comprises at least one material selected from the group consisting of BiTe, SbTe and W, wherein the absorbing reflecting plate and the reflecting reflecting plate of the combined absorbing reflecting plate It can be adjusted by the thickness and composition of.
  • the housing unit may further include a gas inlet configured to allow the outside air to flow into the interior.
  • the light detector may include a thermopile sensor.
  • FIG. 1A and 1B illustrate a configuration of an optical gas sensor using multiple internal reflections according to various embodiments of the present disclosure.
  • FIG. 2 is a diagram illustrating an arrangement and a light path of a light irradiator, a light detector, a multiple internal reflection structure, and the like constituting an optical gas sensor using multiple internal reflections according to an embodiment of the present invention.
  • FIG. 3A illustrates a planar configuration of a light irradiator constituting an optical gas sensor using multiple internal reflections according to an exemplary embodiment of the present invention
  • FIG. 3B illustrates optical using multiple internal reflections according to an exemplary embodiment of the present invention. It is a figure which shows the planar structure of the re-reflective plate arrange
  • FIG. 4A is a diagram illustrating a planar configuration of a part of an optical detector constituting an optical gas sensor using multiple internal reflections according to an exemplary embodiment of the present invention
  • FIG. 4B illustrates multiple internal reflections according to an exemplary embodiment of the present invention. It is a figure which shows the planar structure of the absorption combined reflection plate arrange
  • 5A and 5B illustrate a light irradiator and a light detector constituting an optical gas sensor according to a comparative example of the present invention.
  • FIG. 1A is a diagram illustrating a configuration of an optical gas sensor 100 using multiple internal reflections according to an embodiment of the present invention
  • FIG. 2 illustrates an optical gas sensor using multiple internal reflections according to an embodiment of the present invention. It is a figure which shows the arrangement
  • an optical gas sensor 100 using multiple internal reflections includes a light irradiator 110 capable of emitting light; A photo detector 130 capable of absorbing at least some of the light emitted from the light irradiator; Disposed between the light irradiator and the light detector, and the light emitted from the light irradiator 110 is not absorbed by the light detector 130, but multi-reflects the light traveling outside the light detector 130 and re-enters the light detector 130.
  • a housing unit 150 housing the light irradiator 110, the light detector 130, and the multiple internal reflection structures 117 and 137 therein and having a reflective layer reflecting light on an inner surface thereof.
  • the housing unit 150 may include a gas inlet 170 configured to allow external air to enter therein.
  • the housing unit 150 may be mirror-processed so that light is completely reflected except for a path through which gas is introduced.
  • the multiple internal reflecting structures 117, 137 include an absorbing combined reflecting plate 137 disposed closer to the light detector 130 than the light irradiator 110 so that some of the light is absorbed and other portions of the light may be reflected; And a re-reflective plate 117 disposed closer to the absorbing and reflecting plate 137 than the light detector 130 and configured to reflect back the light reflected from the absorbing and reflecting plate 137 and enter the light detector 130. have.
  • the optical gas sensor 100 using multiple internal reflections is disposed between the absorption double reflecting plate 137 and the re-reflecting plate 117, and is closer to the light irradiator 110 than the light detector 130.
  • a window unit 119 disposed to transmit light having a relatively wide wavelength;
  • an optical filter unit 139 disposed between the absorption double reflecting plate 137 and the re-reflecting plate 117 and disposed adjacent to the light detector 130 than the light irradiator 110 to transmit light having a relatively narrow selective wavelength band. It may be further provided.
  • the optical filter unit 139 may include a band pass filter for transmitting light of an optional wavelength band.
  • the absorbing dual reflector 137 and the re-reflective plate 117 are formed using the multi-reflective dual reflector 137 and the re-reflective plate 117, or the dual reflector 137, the re-reflective plate 117, and the housing 150. It can be configured to be made using).
  • the reflectance and absorptivity of the absorption combined reflection plate 137 may be designed according to the concentration of the gas to be measured and the absorption coefficient of light having a relatively narrow selective wavelength band passing through the optical filter unit 139. For example, as the concentration of the gas to be measured is lower, the reflectance of the absorption combined reflection plate 137 may be relatively high and the absorption ratio of the absorption combined reflection plate 137 may be relatively low. In addition, as the absorption coefficient of the light having a relatively narrow selective wavelength passing through the optical filter unit 139 is lower, the reflectance of the absorption combined reflection plate 137 is relatively high and the absorption ratio of the absorption combined reflection plate 137 is relatively low. Can be.
  • Absorption dual reflector 137 is composed of at least one material selected from the group consisting of BiTe, SbTe, and W, the absorption and reflectance of the dual-absorbing reflector 137 is dependent on the thickness and composition of the absorber dual reflector 137 Can be adjusted.
  • 1B is a diagram illustrating a configuration of an optical gas sensor 100 using multiple internal reflections according to another exemplary embodiment of the present invention.
  • the light irradiator 110 and the light detector 130 may not parallel the light path irradiated by the light irradiator 110 and the light path detected by the light detector 130. May be arranged so as not to.
  • the light irradiator 110 and the light detector 130 are disposed in the direction perpendicular to each other in the housing unit 150 to detect the light path irradiated from the light irradiator 110 and the light detector 130.
  • the light paths may be perpendicular to each other.
  • the multiple internal reflections may be configured by using the absorption combined reflection plate 137, the re-reflection plate 117, and the housing part 150.
  • FIG. 3A illustrates a planar configuration of a light irradiator constituting an optical gas sensor using multiple internal reflections according to an exemplary embodiment of the present invention
  • FIG. 3B illustrates optical using multiple internal reflections according to an exemplary embodiment of the present invention. It is a figure which shows the planar structure of the re-reflective plate arrange
  • the filament 113 constituting the light irradiator 110 is a light source of the optical gas sensor, for example, a structure capable of emitting infrared light.
  • the filament 113 may be composed of a diaphragm and a metal resistance pattern formed on the diaphragm.
  • the light irradiator 110 may be a MEMS structure, and may be disposed, for example, on the bridge structures 111 and 112 extending perpendicular to the substrate.
  • the retroreflective plate 117 may be disposed on the filament 113 but may include a mirror structure.
  • FIG. 4A is a diagram illustrating a planar configuration of a part of an optical detector constituting an optical gas sensor using multiple internal reflections according to an exemplary embodiment of the present invention
  • FIG. 4B illustrates multiple internal reflections according to an exemplary embodiment of the present invention. It is a figure which shows the planar structure of the absorption combined reflection plate arrange
  • the light detector 130 constituting the optical gas sensor 100 using multiple internal reflections may be a heat-sensitive light detector.
  • the thermopile sensor 133 which is a thermoelectric element measuring a temperature difference generated by the light energy may be included.
  • the thermopile sensor 133 may include a plurality of thermocouples 133a and 133b and conductive connectors 135 connected in series with each other to detect infrared rays.
  • one thermocouple may include a contact structure of the p-type thermoelectric material 133a and the n-type thermoelectric material 133b.
  • thermoelectric effect which is a driving principle of the thermopile sensor 133, relates to a mutual relationship between heat and electricity in dissimilar metals, and is a method of measuring the amount of light using a Seebeck effect.
  • the thermopile sensor 133 is a photodetector device using a Seebeck effect in which an electromotive force proportional to the temperature difference occurs at both ends when a temperature difference occurs at both ends of the metal. If the electromotive force is generated in the same direction as the temperature gradient with respect to the electromotive force generated by the temperature difference, and the case in which the electromotive force is generated in the opposite direction to the temperature gradient is negative, the thermopile sensor 133 is positive.
  • the light output can also be maximized by alternating between the negative and negative types.
  • thermopile sensor 133 may be used to detect heat information radiated from the photo detector 130 accurately and quickly at low cost.
  • ROIC elements may be disposed on the side of the photo detector 130.
  • the absorption combined reflection plate 137 may be disposed on the thermopile sensor 133 constituting the photodetector 130 and include at least one material selected from the group consisting of BiTe, SbTe, and W.
  • FIGS. 5A and 5B illustrate a light irradiator 210 and a light detector 230 constituting an optical gas sensor according to a comparative example of the present invention.
  • the optical gas sensor according to the comparative example of the present invention does not adopt the configuration of the absorption combined reflection plate 137 and the re-reflection plate 117 disclosed in FIGS. 1 and 2.
  • the photo detector 230 includes a light absorber 237 to absorb light of a particular wavelength band well.
  • the characteristic absorption line is absorbed while the light emitted from the light irradiator 110 passes through the gas layer, and the light detector detects the amount of light absorbed by the characteristic absorption line.
  • the signal I detected by the photo detector 130 is expressed by Equation 1 below.
  • I 0 corresponds to a signal in a state where a specific gas is not inside the housing unit 150
  • n is a gas concentration
  • is an absorption coefficient
  • L is a cavity length shown in FIG. 2. Corresponds to the cavity length.
  • the signal I detected by the photodetector is converted into a concentration compared to the signal I 0 in a state in which there is no specific gas, and the absorption rate of the characteristic absorption line of the gas to be detected is low.
  • the concentration of the gas to be measured is low, a long light path is required in order to compare with a state in which there is no specific gas, which causes the size of the measuring instrument to be increased.
  • the photodetector uses a light absorber (237 in FIG.
  • the light absorber 237 absorbs light well but has a problem in that the response speed of the photodetector is slow.
  • the signal is displayed as a very small signal, thereby detecting only a state in which the gas concentration is high.
  • the signal when the specific gas has a constant concentration compared to the signal when there is no specific gas decreases exponentially with the specific gas concentration, the absorption coefficient of the characteristic absorption line band, and the length (light path) of the optical cavity. Therefore, if the concentration of the gas to be measured is lean (in case of toxic gas) or the absorption coefficient of the characteristic absorption line band is low, the light path becomes longer, which causes the size of the gas sensor to increase, and the light to be detected in the long light path Since the intensity of the irradiator must be high, there is a problem in that power consumption increases and heat generation becomes severe. In addition, if the heat generation is severe, accurate measurement values cannot be obtained until the gas sensor starts to operate and the thermal equilibrium has a long operation waiting time.
  • an absorbing film 237 is used on the upper part of the light detector. Since the light emitter needs to emit light for a sufficient time to obtain a stable signal value from the light detector, power consumption and heat generation are increased.
  • the optical gas sensor 100 using the multiple internal reflections is disposed to face the light irradiator 110 and the light irradiator 110 provided with the re-reflective plate 117, but is absorbed thereon.
  • the photodetector 130 provided with the combined reflection plate 137 is provided, the window part 119 arrange
  • the light reflected from the absorption combiner reflector 137 on the upper part of the photodetector 130 is reflected back by the re-reflective plate 117 installed on the light irradiator 110 to enter the photodetector 130, and the above process is performed at least. Repeated one or more times.
  • the reflectance R and the absorptance A of the absorption combined reflection plate 137 depend on the concentration of the gas to be measured and the absorption coefficient of light having a relatively narrow selective wavelength band passing through the optical filter unit 139. Can be designed accordingly. For example, as the concentration of the gas to be measured is lower, the reflectance R of the absorption combined reflection plate 137 may be relatively high, and the absorption rate A of the absorption combined reflection plate 137 may be relatively low. In addition, as the absorption coefficient of light in the relatively narrow selective wavelength band passing through the optical filter unit 139 is lower, the reflectance R of the absorption combined reflection plate 137 becomes relatively high and the absorption rate A of the absorption combined reflection plate 137. Can be designed to be relatively low.
  • the absorption combined reflection plate 137 may be composed of a semi-reflective plate and a partial absorption layer, and may be implemented as a metal thin film having a relatively low conductivity, so that an increase in heat capacity is small and thus an increase in response characteristics is insignificant.
  • the semi-reflective plate is suitably made of a metal material having low electrical conductivity such as BiTe, SbTe, and W.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명의 일 관점에 따른 다중 내부 반사를 이용한 광학적 가스 센서는 광을 방사할 수 있는 광 조사기; 광 조사기로부터 방사된 광의 적어도 일부를 흡수할 수 있는 광 검출기; 광 조사기와 광 검출기 사이에 배치되되, 광 조사기에서 방사된 광이 광 검출기에 흡수되지 않고 광 검출기 외부로 진행된 광을 다중 반사하여 광 검출기로 재입사하여 흡수되도록 구성된, 다중 내부 반사 구조체; 및 광 조사기, 광 검출기, 다중 내부 반사 구조체를 내부에 하우징하며, 내측면에 광을 반사하는 반사층이 형성된, 하우징부;를 구비한다.

Description

다중 내부 반사를 이용한 광학적 가스 센서
본 발명은 가스 센서에 관한 것으로서, 더 상세하게는 광학적 가스 센서에 관한 것이다.
가스 센서는 특정 가스의 농도 등을 측정하는 센서이다. 특정 가스의 농도를 측정하는 방식은 전기화학적 반응에 의한 박막의 전기 전도도의 변화를 측정하는 전기화학 방식과 특성 흡수선을 조사하고, 흡수된 광량을 측정하여 가스 농도를 측정하는 광학방식(NDIR, Non-dispersive Infra-Red)이 있으며, 전기화학 방식이 저가이며 소형화 할 수 있지만 온도 및 습도에 따라 크게 변화하여 신뢰성이 낮으며, 광학방식은 적외선 조사부와 센서부, 도파관 부로 구성되어 크기가 크며, 측정하는데 걸리는 시간이 길고 소비전력이 큰 문제가 있어서, 저가이면서 신속한 측정을 구현할 수 있는 가스 센서를 구현하는 것이 어렵다는 문제점이 있다.
본 발명은 광학방식을 사용하는 가스 농도 측정기에서 필요로 하는 긴 광경로 때문에 가스 농도 측정기의 크기가 커지는 문제점 및 광 검출기의 흡수율을 높이기 위하여 사용되는 광 흡수체에 의한 응답 시간 때문에 발생하는 광 조사기에 의한 발열과 소비전력의 증가와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 저가이면서 소형이며 신속한 측정을 구현할 수 있는 가스 센서를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 제공한다. 상기 다중 내부 반사를 이용한 광학적 가스 센서는 광을 방사할 수 있는 광 조사기; 광 조사기로부터 방사된 광의 적어도 일부를 흡수할 수 있는 광 검출기; 광 조사기와 광 검출기 사이에 배치되되, 광 조사기에서 방사된 광이 광 검출기에 흡수되지 않고 광 검출기 외부로 진행된 광을 다중 반사하여 광 검출기로 재입사하여 흡수되도록 구성된, 다중 내부 반사 구조체; 및 광 조사기, 광 검출기, 다중 내부 반사 구조체를 내부에 하우징하며, 내측면에 광을 반사하는 반사층이 형성된, 하우징부;를 구비한다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 다중 내부 반사 구조체는, 상기 광 조사기 보다 상기 광 검출기에 인접 배치되어 광의 일부는 흡수되고 광의 다른 일부는 반사가 일어날 수 있는 흡수 겸용 반사판; 및 상기 광 검출기 보다 상기 광 조사기에 인접 배치되어 상기 흡수 겸용 반사판으로부터 반사된 광을 재반사하여 상기 광 검출기로 입사하도록 구성된 재반사판;을 구비할 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 흡수 겸용 반사판 및 상기 재반사판은 다중 반사가 상기 흡수 겸용 반사판 및 상기 재반사판을 이용하여 이루어지거나 상기 흡수 겸용 반사판, 상기 재반사판 및 상기 하우징부를 이용하여 이루어지도록 구성될 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 광 조사기와 상기 광 검출기는 상기 하우징부 내에서 서로 마주보도록 배치될 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 광 조사기와 상기 광 검출기는 상기 하우징부 내에서 상기 광 조사기에서 조사되는 광 경로와 상기 광 검출기에서 검출되는 광 경로가 서로 나란하지 않도록 배치될 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서는, 상기 흡수 겸용 반사판 및 상기 재반사판 사이에 배치되되, 상기 광 검출기 보다 상기 광 조사기에 인접 배치되어 상대적으로 넓은 파장대의 광을 투과시키는 윈도우부; 및 상기 흡수 겸용 반사판 및 상기 재반사판 사이에 배치되되, 상기 광 조사기 보다 상기 광 검출기에 인접 배치되어 상대적으로 좁은 선택적인 파장대의 광을 투과시키는 광 필터부;를 더 구비할 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 흡수 겸용 반사판의 반사율 및 흡수율은 측정하고자 하는 가스의 농도 및 상기 상대적으로 좁은 선택적인 파장대의 광의 흡수계수에 따라 설계될 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 측정하고자 하는 가스의 농도가 낮을수록 상기 흡수 겸용 반사판의 반사율은 상대적으로 높아지고 상기 흡수 겸용 반사판의 흡수율은 상대적으로 낮아지도록 설계될 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 상대적으로 좁은 선택적인 파장대의 광의 흡수계수가 낮을수록 상기 흡수 겸용 반사판의 반사율은 상대적으로 높아지고 상기 흡수 겸용 반사판의 흡수율은 상대적으로 낮아지도록 설계될 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 흡수 겸용 반사판은 BiTe, SbTe 및 W으로 이루어진 군에서 선택된 적어도 어느 하나의 물질을 포함하여 구성되되, 상기 흡수 겸용 반사판의 흡수율과 반사율은 상기 흡수 겸용 반사판의 두께 및 조성에 의하여 조절될 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 하우징부는 외부 공기가 내부로 유입되도록 구성된 가스 유입구;를 더 구비할 수 있다.
상기 다중 내부 반사를 이용한 광학적 가스 센서에서, 상기 광 검출기는 써모파일센서(thermopile sensor)를 포함할 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 소형이면서 신속한 측정을 구현할 수 있는 가스 센서를 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1a 및 도 1b는 본 발명의 다양한 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서의 구성을 도해한 도면이다.
도 2는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 조사기, 광 검출기, 다중 내부 반사 구조체 등의 배치 및 광 경로를 도해하는 도면이다.
도 3a는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 조사기의 평면 구성을 도해한 도면이고, 도 3b는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 조사기 상에 배치된 재반사판의 평면 구성을 도해한 도면이다.
도 4a는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 검출기 일부의 평면 구성을 도해한 도면이고, 도 4b는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 검출기 상에 배치된 흡수 겸용 반사판의 평면 구성을 도해한 도면이다.
도 5a 및 도 5b는 본 발명의 비교예에 따른 광학적 가스 센서를 구성하는 광 조사기 및 광 검출기를 도해하는 도면이다.
도 6은 수학식 1의 관계를 도해하는 그래프이다.
도 7은 가스 최대 농도에서의 광의 신호세기의 비(I/I0)를 나타낸 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
도 1a는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서(100)의 구성을 도해한 도면이고, 도 2는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 조사기, 광 검출기, 다중 내부 반사 구조체 등의 배치 및 광 경로를 도해하는 도면이다.
도 1a 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서(100)는 광을 방사할 수 있는 광 조사기(110); 광 조사기로부터 방사된 광의 적어도 일부를 흡수할 수 있는 광 검출기(130); 광 조사기와 광 검출기 사이에 배치되되, 광 조사기(110)에서 방사된 광이 광 검출기(130)에 흡수되지 않고 광 검출기(130) 외부로 진행된 광을 다중 반사하여 광 검출기(130)로 재입사하여 흡수되도록 구성된, 다중 내부 반사 구조체(117, 137); 및 광 조사기(110), 광 검출기(130), 다중 내부 반사 구조체(117, 137)를 내부에 하우징하며, 내측면에 광을 반사하는 반사층이 형성된, 하우징부(150);를 구비한다. 하우징부(150)는 외부 공기가 내부로 유입되도록 구성된 가스 유입구(170);를 포함할 수 있다. 하우징부(150)는 가스가 유입되는 경로를 제외하고 빛이 완전한 반사가 이루어지도록 경면으로 처리될 수 있다.
다중 내부 반사 구조체(117, 137)는,광 조사기(110) 보다 광 검출기(130)에 인접 배치되어 광의 일부는 흡수되고 광의 다른 일부는 반사가 일어날 수 있는 흡수 겸용 반사판(137); 및 광 검출기(130) 보다 흡수 겸용 반사판(137)에 인접 배치되어 흡수 겸용 반사판(137)으로부터 반사된 광을 재반사하여 광 검출기(130)로 입사하도록 구성된 재반사판(117);을 포함할 수 있다.
본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서(100)는 흡수 겸용 반사판(137) 및 재반사판(117) 사이에 배치되되, 광 검출기(130) 보다 광 조사기(110)에 인접 배치되어 상대적으로 넓은 파장대의 광을 투과시키는 윈도우부(119); 및 흡수 겸용 반사판(137) 및 재반사판(117) 사이에 배치되되, 상기 광 조사기(110) 보다 광 검출기(130)에 인접 배치되어 상대적으로 좁은 선택적인 파장대의 광을 투과시키는 광 필터부(139);를 더 구비할 수 있다. 광 필터부(139)는 선택적인 파장대의 광을 투과시키는 밴드 패스 필터를 포함할 수 있다.
흡수 겸용 반사판(137) 및 재반사판(117)은 다중 반사가 흡수 겸용 반사판(137) 및 재반사판(117)을 이용하여 이루어지거나 흡수 겸용 반사판(137), 재반사판(117) 및 하우징부(150)를 이용하여 이루어지도록 배치 구성될 수 있다.
흡수 겸용 반사판(137)의 반사율 및 흡수율은 측정하고자 하는 가스의 농도 및 광 필터부(139)를 통과한 상대적으로 좁은 선택적인 파장대의 광의 흡수계수에 따라 설계될 수 있다. 예를 들어, 측정하고자 하는 가스의 농도가 낮을수록 흡수 겸용 반사판(137)의 반사율은 상대적으로 높아지고 흡수 겸용 반사판(137)의 흡수율은 상대적으로 낮아지도록 설계될 수 있다. 또한, 광 필터부(139)를 통과한 상대적으로 좁은 선택적인 파장대의 광의 흡수계수가 낮을수록 흡수 겸용 반사판(137)의 반사율은 상대적으로 높아지고 흡수 겸용 반사판(137)의 흡수율은 상대적으로 낮아지도록 설계될 수 있다. 흡수 겸용 반사판(137)은 BiTe, SbTe 및 W으로 이루어진 군에서 선택된 적어도 어느 하나의 물질을 포함하여 구성되되, 흡수 겸용 반사판(137)의 흡수율과 반사율은 흡수 겸용 반사판(137)의 두께 및 조성에 의하여 조절될 수 있다.
도 1b는 본 발명의 다른 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서(100)의 구성을 도해한 도면이다.
도 1b를 참조하면, 하우징부(150) 내에서 광 조사기(110)와 광 검출기(130)는 광 조사기(110)에서 조사되는 광 경로와 광 검출기(130)에서 검출되는 광 경로가 서로 나란하지 않도록 배치될 수 있다. 예를 들어, 하우징부(150) 내에서 광 조사기(110)와 광 검출기(130)는 서로 수직한 방향으로 배치되어, 광 조사기(110)에서 조사되는 광 경로와 광 검출기(130)에서 검출되는 광 경로가 서로 수직할 수 있다. 이 경우, 다중 내부 반사는 흡수 겸용 반사판(137), 재반사판(117) 및 하우징부(150)를 이용하여 이루어지도록 구성될 수 있다.
도 3a는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 조사기의 평면 구성을 도해한 도면이고, 도 3b는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 조사기 상에 배치된 재반사판의 평면 구성을 도해한 도면이다.
도 2, 도 3a 및 도 3b를 참조하면, 광 조사기(110)를 구성하는 필라멘트(113)는 광학식 가스 센서의 광원(light source)으로서, 예를 들어, 적외광을 발광할 수 있는 구조체이다. 가령, 필라멘트(113)는 다이아프램 및 상기 다이아프램 상에 형성된 금속 저항 패턴으로 구성될 수 있다. 한편, 광 조사기(110)는 MEMS 구조체일 수 있으며, 예를 들어, 기판에 수직하게 신장하는 브릿지 구조체(111, 112) 상에 가로질러 배치될 수 있다. 재반사판(117)은 필라멘트(113)의 상에 배치되되 미러 구조체를 포함할 수 있다.
도 4a는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 검출기 일부의 평면 구성을 도해한 도면이고, 도 4b는 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서를 구성하는 광 검출기 상에 배치된 흡수 겸용 반사판의 평면 구성을 도해한 도면이다.
도 2, 도 4a 및 도 4b를 참조하면, 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서(100)를 구성하는 광 검출기(130)는 열 감지형 광 검출기일 수 있으며, 구체적으로, 광 에너지에 의해 발생하는 온도 차이를 측정하는 열전 소자인 써모파일센서(133)를 포함할 수 있다. 써모파일센서(133)는 적외선을 감지하기 위하여 서로 직렬로 연결된 다수의 열전쌍들(133a, 133b) 및 도전성 연결부(135)를 포함할 수 있다. 이때, 하나의 열전쌍은 p형 열전물질(133a)과 n형 열전물질(133b)의 접점 구조를 포함할 수 있다.
써모파일센서(133)의 구동원리인 열전 효과(thermo electric effect)는 이종 금속에 있어서 열과 전기 간의 상호 관계에 관한 것으로 지벡 효과(Seebeck effect)를 이용하여 광량을 측정하는 방식이다. 써모파일센서(133)에서는 금속 양단에 온도 차이가 발생하면 온도 차이에 비례하는 기전력이 양단에 발생하는 지벡 효과를 이용한 광 검출기 소자이다. 온도 차이에 의해 발생하는 기전력에 대해 온도의 기울기와 같은 방향으로 기전력이 발생하는 경우를 포지티브형, 온도 기울기와 반대 방향으로 기전력이 발생하는 경우를 네거티브형이라 한다면, 써모파일센서(133)는 포지티브형과 네거티브형을 번갈아 접합하여 광 출력을 극대화할 수도 있다. 따라서, 써모파일센서(133)는 광 검출기(130)로부터 방사되는 열정보를 낮은 비용으로 정확하고 빠르게 감지하는 데 이용될 수 있다. 광 검출기(130)의 측부에는 ROIC 소자가 배치될 수도 있다. 흡수 겸용 반사판(137)은 광 검출기(130)를 구성하는 써모파일센서(133) 상에 배치되되 BiTe, SbTe 및 W으로 이루어진 군에서 선택된 적어도 어느 하나의 물질을 포함하여 구성될 수 있다.
도 5a 및 도 5b는 본 발명의 비교예에 따른 광학적 가스 센서를 구성하는 광 조사기(210) 및 광 검출기(230)를 도해하는 도면이다. 본 발명의 비교예에 따른 광학적 가스 센서는, 도 1 및 도 2에서 개시된 흡수 겸용 반사판(137) 및 재반사판(117)의 구성을 채용하지 않는다. 대신에, 광 검출기(230)는 특정 파장대의 빛을 잘 흡수하기 위하여 광 흡수체(237)를 포함한다.
이하에서는, 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서의 구성과 동작을 상기 비교예와 대조하면서 설명한다.
본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서(100)는 광 조사기(110)에서 방출된 광이 가스 층을 통과하면서 특성 흡수선이 흡수되며, 흡수된 특성 흡수선의 광량을 광 검출기(130)를 통하여 감지함으로써 하우징부(150) 내의 가스의 양을 추정하는 방식을 사용한다. 광 검출기(130)에서 감지되는 신호(I)는 수학식 1과 같다.
Figure PCTKR2017013610-appb-M000001
여기에서, I0는 특정 가스가 하우징부(150) 내부에 없는 상태에서의 신호에 해당하며, n은 가스 농도이며, α는 흡수계수(absorption coefficient)이며, L은 도 2에 도시된 캐비티 길이(cavity length)에 해당한다.
도 6은 수학식 1의 관계를 도해하는 그래프이다. 도 6을 함께 참조하면, 일반적으로, 광 검출기에서 검출된 신호(I)는 특정 가스가 없는 상태의 신호(I0)와 비교되어 농도로 환산되는데, 검출하고자 하는 가스의 특성 흡수선의 흡수율이 낮거나 측정하고자 하는 가스의 농도가 낮은 경우, 특정 가스가 없는 상태와 비교하기 위하여 긴 광경로가 필요하게 되어 측정기의 크기를 크게 하는 원인이 된다. 또한 광 검출기는 특정 파장대의 빛을 잘 흡수하기 위하여 광 흡수체(도 5b의 237)를 사용하는데, 광 흡수체(237)는 빛을 잘 흡수하지만 열 용량이 커서 광 검출기의 응답속도가 늦은 문제가 있으며, 광 흡수체(237)를 사용하지 않을 경우 아주 작은 신호로 나타나서 가스의 농도가 높은 상태만을 검출하는 문제가 있다.
즉, 특정 가스가 없을 때의 신호 대비 특정 가스가 일정한 농도를 가질 때의 신호는 특정 가스 농도와 특성 흡수선 대역의 흡수계수, 광 공동의 길이(광경로)에 지수함수로 감소한다. 따라서 측정하고자 하는 가스의 농도가 희박하거나(유독성 가스의 경우), 특성 흡수선 대역의 흡수계수가 낮은 경우 광경로가 길어져서 가스센서의 크기가 커지는 원인이 되며, 긴 광경로에서 감지가 되기 위하여 광 조사기의 강도가 높아야 하므로 소비전력이 증가하고 발열이 심해지는 문제가 있다. 또한 발열이 심한 경우, 가스센서가 동작을 시작하여 열 평형이 될 때까지 정확한 측정값을 얻을 수 없으므로 긴 동작 대기시간을 갖게 된다. 또한 작은 광 신호를 감지하기위하여 광 감지기의 감도를 높이는 것이 필요한데, 도 5b와 같이 광 감지기 상부에 흡수필름(237)을 사용하게 되는데, 흡수필름(237)의 열용량이 커서 광 감지기의 응답속도가 느려지게 되므로 광 감지기로부터 안정된 신호값을 얻기위하여 광 조사기를 충분한 시간동안의 발광이 필요하므로 소비전력과 발열이 증가하는 문제가 있다.
이에 반하여, 본 발명의 일 실시예에 따른 다중 내부 반사를 이용한 광학적 가스 센서(100)는 재반사판(117)이 설치된 광 조사기(110)와, 광 조사기(110)와 마주보도록 배치되되 상부에 흡수 겸용 반사판(137)이 설치된 광 검출기(130), 그 사이에 배치되는 윈도우부(119)와 특정 파장만을 투과시키는 광 필터부(139)를 구비한다. 이에 따르면, 광 조사기(110)에서 복사된 광은 윈도우부(119)와 광 필터부(139)를 통과하여 광 검출기(130)에 도달하며, 광 검출기(130) 상부에 설치된 흡수 겸용 반사판(137)에서 일부의 흡수와 반사가 일어나게 된다. 광 검출기(130)의 상부의 흡수 겸용 반사판(137)에서 반사된 광은 광 조사기(110)에 설치된 재반사판(117)에 의하여 재반사되어 광 검출기(130)로 입사하게 되며, 위 과정이 적어도 1회 이상 반복된다.
도 7은 가스 최대 농도에서의 광의 신호세기의 비(I/I0)를 나타낸 그래프이다.
도 7을 참조하면, 흡수 겸용 반사판(137)의 반사율(R) 및 흡수율(A)은 측정하고자 하는 가스의 농도 및 광 필터부(139)를 통과한 상대적으로 좁은 선택적인 파장대의 광의 흡수계수에 따라 설계될 수 있다. 예를 들어, 측정하고자 하는 가스의 농도가 낮을수록 흡수 겸용 반사판(137)의 반사율(R)은 상대적으로 높아지고 흡수 겸용 반사판(137)의 흡수율(A)은 상대적으로 낮아지도록 설계될 수 있다. 또한, 광 필터부(139)를 통과한 상대적으로 좁은 선택적인 파장대의 광의 흡수계수가 낮을수록 흡수 겸용 반사판(137)의 반사율(R)은 상대적으로 높아지고 흡수 겸용 반사판(137)의 흡수율(A)은 상대적으로 낮아지도록 설계될 수 있다. 예를 들어, 반사율:0, 흡수율:1인 조건인 경우 보다 반사율:0.7, 흡수율:0.3인 조건인 흡수 겸용 반사판(137)에서 변별력이 더 높아짐을 확인할 수 있다. 흡수 겸용 반사판(137)은 반 반사판 및 부분 흡수층으로 구성될 수 있으며, 전도도가 비교적 낮은 금속 박막으로 구현할 수 있으므로 열 용량의 증가가 작아서 응답 특성의 증가가 미미하다. 반 반사판은 BiTe, SbTe, W 등의 전기 전도도가 낮은 금속재질이 적당하다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (12)

  1. 광을 방사할 수 있는 광 조사기;
    광 조사기로부터 방사된 광의 적어도 일부를 흡수할 수 있는 광 검출기;
    광 조사기와 광 검출기 사이에 배치되되, 광 조사기에서 방사된 후 광 검출기에 흡수되지 않고 광 검출기 외부로 진행된 광을 다중 반사함으로써 광 검출기로 재입사하여 흡수되도록 구성된, 다중 내부 반사 구조체; 및
    광 조사기, 광 검출기, 다중 내부 반사 구조체를 내부에 하우징하며, 내측면에 광을 반사하는 반사층이 형성된, 하우징부;
    를 구비하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  2. 제 1 항에 있어서,
    상기 다중 내부 반사 구조체는, 상기 광 조사기 보다 상기 광 검출기에 인접 배치되어 광의 일부는 흡수되고 광의 다른 일부는 반사가 일어날 수 있는 흡수 겸용 반사판; 및 상기 광 검출기 보다 상기 광 조사기에 인접 배치되어 상기 흡수 겸용 반사판으로부터 반사된 광을 재반사하여 상기 광 검출기로 입사하도록 구성된 재반사판;을 구비하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  3. 제 2 항에 있어서,
    상기 흡수 겸용 반사판 및 상기 재반사판은 다중 반사가 상기 흡수 겸용 반사판 및 상기 재반사판을 이용하여 이루어지거나 상기 흡수 겸용 반사판, 상기 재반사판 및 상기 하우징부를 이용하여 이루어지도록 구성되는 것을 특징으로 하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  4. 제 3 항에 있어서,
    상기 광 조사기와 상기 광 검출기는 상기 하우징부 내에서 서로 마주보도록 배치된, 다중 내부 반사를 이용한 광학적 가스 센서.
  5. 제 3 항에 있어서,
    상기 광 조사기와 상기 광 검출기는 상기 하우징부 내에서 상기 광 조사기에서 조사되는 광 경로와 상기 광 검출기에서 검출되는 광 경로가 서로 나란하지 않도록 배치된, 다중 내부 반사를 이용한 광학적 가스 센서.
  6. 제 2 항에 있어서,
    상기 흡수 겸용 반사판 및 상기 재반사판 사이에 배치되되, 상기 광 검출기 보다 상기 광 조사기에 인접 배치되어 상대적으로 넓은 파장대의 광을 투과시키는 윈도우부; 및 상기 흡수 겸용 반사판 및 상기 재반사판 사이에 배치되되, 상기 광 조사기 보다 상기 광 검출기에 인접 배치되어 상대적으로 좁은 선택적인 파장대의 광을 투과시키는 광 필터부;를 더 구비하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  7. 제 6 항에 있어서,
    상기 흡수 겸용 반사판의 반사율 및 흡수율은 측정하고자 하는 가스의 농도 및 상기 상대적으로 좁은 선택적인 파장대의 광의 흡수계수에 따라 설계되는 것을 특징으로 하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  8. 제 7 항에 있어서,
    상기 측정하고자 하는 가스의 농도가 낮을수록 상기 흡수 겸용 반사판의 반사율은 상대적으로 높아지고 상기 흡수 겸용 반사판의 흡수율은 상대적으로 낮아지도록 설계되는 것을 특징으로 하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  9. 제 7 항에 있어서,
    상기 상대적으로 좁은 선택적인 파장대의 광의 흡수계수가 낮을수록 상기 흡수 겸용 반사판의 반사율은 상대적으로 높아지고 상기 흡수 겸용 반사판의 흡수율은 상대적으로 낮아지도록 설계되는 것을 특징으로 하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  10. 제 1 항에 있어서,
    상기 흡수 겸용 반사판은 BiTe, SbTe 및 W으로 이루어진 군에서 선택된 적어도 어느 하나의 물질을 포함하여 구성되되, 상기 흡수 겸용 반사판의 흡수율과 반사율은 상기 흡수 겸용 반사판의 두께 및 조성에 의하여 조절되는 것을 특징으로 하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  11. 제 1 항에 있어서,
    상기 하우징부는 외부 공기가 내부로 유입되도록 구성된 가스 유입구;를 더 구비하는, 다중 내부 반사를 이용한 광학적 가스 센서.
  12. 제 1 항에 있어서,
    상기 광 검출기는 써모파일센서(thermopile sensor)를 포함하는, 다중 내부 반사를 이용한 광학적 가스 센서.
PCT/KR2017/013610 2016-11-30 2017-11-27 다중 내부 반사를 이용한 광학적 가스 센서 WO2018101690A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0161787 2016-11-30
KR1020160161787A KR101935016B1 (ko) 2016-11-30 2016-11-30 다중 내부 반사를 이용한 광학적 가스 센서

Publications (1)

Publication Number Publication Date
WO2018101690A1 true WO2018101690A1 (ko) 2018-06-07

Family

ID=62242545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013610 WO2018101690A1 (ko) 2016-11-30 2017-11-27 다중 내부 반사를 이용한 광학적 가스 센서

Country Status (2)

Country Link
KR (1) KR101935016B1 (ko)
WO (1) WO2018101690A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102144267B1 (ko) * 2018-08-13 2020-08-14 주식회사 템퍼스 가스 센싱 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861809A (en) * 1973-04-06 1975-01-21 Perkin Elmer Corp Confocal cavity optical gas sensor
JPS6148735A (ja) * 1984-08-16 1986-03-10 Nippon Steel Corp 気体の濃度および分圧測定装置
JPH095233A (ja) * 1995-06-15 1997-01-10 Nippon Sanso Kk ガスの分光分析装置
KR20090105757A (ko) * 2008-04-03 2009-10-07 (주)맨 텍 광학적 가스 센서 및 광 공동
US20140319352A1 (en) * 2012-05-22 2014-10-30 Los Gatos Research Long-path infrared spectrometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070010847A (ko) 2005-07-20 2007-01-24 삼성전자주식회사 잉크젯 배향막 인쇄 장치 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861809A (en) * 1973-04-06 1975-01-21 Perkin Elmer Corp Confocal cavity optical gas sensor
JPS6148735A (ja) * 1984-08-16 1986-03-10 Nippon Steel Corp 気体の濃度および分圧測定装置
JPH095233A (ja) * 1995-06-15 1997-01-10 Nippon Sanso Kk ガスの分光分析装置
KR20090105757A (ko) * 2008-04-03 2009-10-07 (주)맨 텍 광학적 가스 센서 및 광 공동
US20140319352A1 (en) * 2012-05-22 2014-10-30 Los Gatos Research Long-path infrared spectrometer

Also Published As

Publication number Publication date
KR101935016B1 (ko) 2019-01-04
KR20180061995A (ko) 2018-06-08

Similar Documents

Publication Publication Date Title
KR102214389B1 (ko) 온도를 측정하거나 가스를 검출하기 위한 서모파일 적외선 개별 센서
KR101339076B1 (ko) 돔 가스 센서
US7652767B2 (en) Optical sensor with chemically reactive surface
EP3076141A1 (en) Thermal sensor with infrared absorption membrane including metamaterial structure
JP5149997B2 (ja) ナノワイヤボロメータ光検出器
US6989549B2 (en) Optical gas sensor
JP5663565B2 (ja) 検知システムおよび方法
US7602496B2 (en) Optical sensor with biologically reactive surface
US20100157306A1 (en) Apparatus and method for detecting surface plasmon resonance
US9791366B2 (en) Gas detector, gas detection method and optical component
JPH04505967A (ja) 流体の組成例えば内燃機関の排気ガスの成分を測定するための装置
WO2018101690A1 (ko) 다중 내부 반사를 이용한 광학적 가스 센서
CN109673168A (zh) 多结型探测器装置和使用方法
TWI291021B (en) Apparatus for sensing plural gases
WO2018066930A1 (ko) 일체형 가스 센서 구조체 및 적외광 발광 모듈
WO2021040247A1 (ko) 산란광 측정 방식의 가스 센싱 시스템
JPH09229853A (ja) 赤外線ガス分析計用検出器
KR102223821B1 (ko) 다종 가스 측정 장치
WO2011065627A1 (ko) 표면 플라즈몬 공진 센서 및 표면 플라즈몬 공진을 이용한 센싱 방법
JP2002506968A (ja) 光学センサ
JPS61231422A (ja) 放射温度計
Saarikoski Integration of a heat flux sensor and an infrared filter for fire detection
CN115060682A (zh) 一种背孔式片上集成微型红外气体传感器
Lamprecht et al. Integrated waveguide sensor platform utilizing organic photodiodes
US7518113B2 (en) Pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877290

Country of ref document: EP

Kind code of ref document: A1