WO2018101139A1 - Hatching egg inspection system and hatching egg inspection program - Google Patents

Hatching egg inspection system and hatching egg inspection program Download PDF

Info

Publication number
WO2018101139A1
WO2018101139A1 PCT/JP2017/041957 JP2017041957W WO2018101139A1 WO 2018101139 A1 WO2018101139 A1 WO 2018101139A1 JP 2017041957 W JP2017041957 W JP 2017041957W WO 2018101139 A1 WO2018101139 A1 WO 2018101139A1
Authority
WO
WIPO (PCT)
Prior art keywords
egg
eggs
day
unit
state information
Prior art date
Application number
PCT/JP2017/041957
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 藤谷
Original Assignee
株式会社ナベル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナベル filed Critical 株式会社ナベル
Priority to CN201780063660.6A priority Critical patent/CN109862783B/en
Priority to JP2018553805A priority patent/JP6822691B2/en
Publication of WO2018101139A1 publication Critical patent/WO2018101139A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K43/00Testing, sorting or cleaning eggs ; Conveying devices ; Pick-up devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the present invention relates to an egg inspection system that acquires information on eggs and sorts the eggs.
  • a chicken line raised on a poultry farm for the production of edible eggs is called a layered chicken.
  • Producers of edible eggs purchase commercial chicks from a breeding company that keeps a breeding flock that is the parent of a practical hen for egg collection and grow the chicks into large chicks for use in producing edible eggs. is doing.
  • the breeding farm In the breeding company, the farm where the breeding group of parents of the practical chicken is raised is called the breeding farm. As shown in FIG. 1, the eggs laid on this breeding farm are once collected in the egg storage place, and then passed through a process called pre-heating to enter the setter in the incubation place to start incubation. . On the 18th or 19th day after entering the setter, the eggs are transferred to the hatchery in the incubation place, and the chicks hatch about 21 days after the entry.
  • a seed egg inspection apparatus shown in Patent Document 1 has been considered as a means for rapidly and non-invasively sorting viable eggs and non-viable eggs.
  • This egg inspection apparatus irradiates the egg with light at a time when a predetermined number of days have passed since the entrance (for example, 18th day), and whether or not there is a fluctuation component in the time-series data of the light intensity of the transmitted light obtained at that time
  • the living egg and the non-viable egg are determined using the control amount of the light source light amount when the LED light amount is controlled for each individual egg so that the light intensity of the transmitted light falls within an appropriate range.
  • the conventional egg inspection apparatus is to discriminate based on the information at the time of the transfer or at the intermediate time with the main purpose of discriminating between the viable egg and the non-viable egg.
  • an object of the present invention is to select seed eggs at high speed and non-invasively from various viewpoints.
  • the egg inspection apparatus which separates the day which measures data, and the selection day which moves an egg between trays, and can sort an egg avoiding the unstable time peculiar to a seed egg is provided.
  • the egg inspection system includes a measuring unit that measures state information indicating the state of the egg, a recording unit that records state information obtained by the measuring unit in association with each individual egg, and And an egg sorting unit that sorts the eggs based on a record associated with each individual egg of the state information recorded on the plurality of days recorded in the recording unit.
  • the “state information” may be any information as long as it indicates the state of the egg, such as an embryo, a state indicating blood vessels or blood, egg weight, the major axis of the egg, Examples include a minor axis, an egg volume such as an egg volume, and an eggshell color.
  • Multiple days refers to two or more time points until the eggs hatch, and not only after entering the incubator (after entering) but also at least one day before entering the incubator (entering) (Before the egg).
  • Such an egg inspection system can sort eggs from various viewpoints using state information on different days. For example, temporal changes such as embryo growth rate can be grasped from state information on different days. This temporal change is related to attributes such as sex of chicks, hatching time, chick growth, cease of embryo development, timing of cessation, etc.
  • the present inventor will pay attention to the fact that the growth of the embryo and the generation and elongation of blood vessels are progressing momentarily in the egg that has survived and developed.
  • the seed eggs could be separated from various viewpoints by using temporal changes in the state of the embryo, blood vessels and blood in the seed eggs.
  • the present inventor has hypothesized that there is a significant difference between a male embryo and a female embryo in the degree of blood vessel growth (growth rate) inside the egg. Then, the inventor of the present application can estimate the degree of blood vessel growth from the amount of blood accompanying blood vessel growth, that is, the transmittance at 578 nm, which is one of the peak wavelengths of absorption of hemoglobin in blood. Paying attention to the above, the light having a wavelength of 578 nm was irradiated to the egg and the change in transmittance at a wavelength of 578 nm was measured.
  • the inventor of the present application also hypothesized that there is a significant difference in the growth degree (growth rate) of the egg embryo between the male embryo and the female embryo. Then, the inventor of the present application pays attention to the fact that the degree of growth of the embryo can be estimated from the opacity at a wavelength of 870 nm, which is difficult to absorb hemoglobin and water in the blood. The change in opacity at 870 nm was measured.
  • the growth information of the embryos inside the seed eggs and the growth information of the blood vessels obtained from the state information indicating the state of the embryos, blood vessels and blood inside the seed eggs in multiple days Can be used to sort eggs.
  • the recording unit since the status information for a plurality of days is recorded in the recording unit, it is possible to easily manage the status information measured on different days.
  • the seed eggs at the early stage of incubation have small embryos and are sensitive to external stimuli such as vibrations. If the eggs are transferred to different trays to sort the eggs at this time, the hatching rate may be reduced. There is.
  • the status information for a plurality of days is recorded in the recording unit, after waiting until the time when the hatching rate is not affected, it is possible to perform the selection and transfer of eggs.
  • the seed egg sorting unit sorts the seed eggs based on the growth state of the embryo inside the seed eggs obtained from the state information of the plurality of days.
  • the seed egg sorting unit sorts the seed eggs based on the growth state of the embryo inside the seed eggs obtained from the state information of the plurality of days.
  • the seed egg sorting unit sorts the seed eggs based on the sex of the chicks hatched from the seed eggs predicted from the state information of the plurality of days. With this configuration, it is possible to select a collection of eggs that have a high proportion of eggs hatched by male chicks and use or sell them as vaccine eggs. In addition, the limited capacity of the hatchery can be preferentially assigned to eggs hatched by female chicks. In addition, the bioethical problem of killing male chicks can be alleviated.
  • the egg inspection program includes a recording unit that records the state information of the plurality of days obtained by a measurement unit that measures state information indicating the state of the egg for each individual egg, and the recording unit
  • the computer is provided with a function as an egg sorting unit that sorts the eggs based on the records associated with each individual egg of the state information recorded on the plurality of days.
  • Day 0 Immediately before entering the incubator (hereinafter referred to as Day 0), light from a halogen lamp light source is irradiated from the side of the egg every 24 hours after 48 hours, and the transmitted light from the egg is dispersed by the spectrometer. Spectroscopic data of light was measured. The measuring apparatus is shown in FIG. These data are referred to as Day N data for the Nth day for the purpose of identifying the day of the data after being placed in the incubator.
  • the spectral data of the seed eggs was divided by the spectral data of the synthetic resin block in 1 nm increments, and a spectrum of relative transmittance with the synthetic resin block as a reference was obtained for each egg.
  • Relative transmittance T ( ⁇ ) Spectral data of wavelength ⁇ of egg / Spectral data of wavelength ⁇ of synthetic resin block
  • FIG. 3 shows a relative transmittance spectrum from Day 0 to Day 8 of the egg. As shown in FIG. 3, the egg of the relative transmittance spectrum of the egg having an embryo growing therein changes daily.
  • FIG. 4 shows this change separately for each wavelength of 578 nm, 623 nm, 750 nm, 810 nm, and 870 nm.
  • the change in relative transmittance from Day 4 to Day 5 is remarkable for all wavelengths, but the decrease rate calculated by the ratio of the relative transmittance at 578 nm on both days is particularly different for other wavelengths. Is significantly larger than
  • the reason for this is as follows.
  • the formation of blood vessels is seen around the scutellum of egg yolk from Day 3.
  • the amount of hemoglobin that is a component of blood increases.
  • light absorption increases in the vicinity of the peak wavelength of light absorption by hemoglobin. This is because the peak wavelength of hemoglobin absorption is known to be around 578 nm, 540 nm, and 410 nm in the visible region, and 578 nm is one of them.
  • the temporal change in the relative transmittance at 578 nm corresponds to the generation and elongation of blood vessels.
  • FIG. 5 shows the relative transmittance of 578 nm in Day 7 divided by sex of chicks in 76 eggs hatched by chicks.
  • the white diamond-shaped symbols in FIG. 5 indicate the eggs that have been identified as males as a result of the sex determination of the chicks, and the black circles indicate the eggs that have been identified as females.
  • the proper use of the two types of symbols in the sex discrimination results in other scatter diagrams is based on this. From FIG. 5, it can be seen that the relative transmittance of the female at 578 nm is significantly smaller than that of the male (t-test p-value ⁇ 0.002).
  • FIG. 5 shows the relative transmittance of 578 nm in Day 7 divided by sex of chicks in 76 eggs hatched by chicks.
  • the white diamond-shaped symbols in FIG. 5 indicate the eggs that have been identified as males as a result of the sex determination of the chicks, and the black circles indicate the eggs that have been
  • FIG. 6 is a scatter diagram with the initial egg weight on the horizontal axis and the relative transmittance of 578 nm on Day 7 on the vertical axis. In FIG. 6, the separation of the male distribution and the female distribution is more prominent.
  • the ratio to the relative transmittance of 578 nm at Day 0 was obtained.
  • the ratio of the relative transmittance of 578 nm in Day 7 to the relative transmittance of 578 nm in Day 0 is simply referred to as the ratio of the relative transmittance of Day 7 to Day 0.
  • FIG. 7 shows the ratio (decrease rate) of the relative transmittance of Day 7 with respect to Day 0 divided by chick sex. It can be seen from FIG. 7 that the relative transmittance ratio of the female is significantly smaller than that of the male.
  • FIG. 7 for example, if eggs with a relative transmittance ratio of Day 7 to Day 0 greater than 0.022 are extracted, 29 eggs are extracted. This is 38% of the total 76 pieces. Of the 29, 21 are male, and the male ratio is 72%.
  • the degree of blood vessel and blood production is estimated, If a value whose value is larger than a predetermined threshold is extracted, an egg with a high probability of male hatching is extracted. Compared with the case of only Day7, the male rate does not change and the extraction rate is improved.
  • FIG. 8 is a scatter diagram in which the horizontal axis represents the initial egg weight and the vertical axis represents the ratio of the relative transmittance of Day 7 to Day 0. In FIG. 8, the separation of the male distribution and the female distribution is more prominent. is there.
  • FIG. 9 shows the relative transmittance at 578 nm in Day 6.
  • FIG. 10 is a ratio of the relative transmittance of 578 nm in Day 6 to the relative transmittance of 578 nm in Day 0. From these FIG. 9 and FIG. 10, the difference between the live egg and the unfertilized egg is remarkable.
  • an unfertilized egg for example, Day 6 shown in FIGS. 9 and 10 and before and after (around the first time point described later), blood vessels and / or blood formation in the seed egg is not formed unlike fertilized eggs. is there.
  • the difference between the live egg and the unfertilized egg is Day 6 at the earliest stage and when the difference is clear, but Day 7 can also obtain a result according to Day 6.
  • variable X1 initial egg weight
  • variable X2 ratio of the relative transmittance of Day 7 to Day 0
  • sex (male The discriminant was obtained by logistic regression analysis with 1 as the objective variable.
  • the distribution of the male / female discriminant value Y in the logistic regression analysis is shown in FIG.
  • the male / female discrimination value Y has a higher probability of being male as the value of Y is closer to 1, and conversely, the probability of being female is higher as it is closer to 0. Therefore, if Y ⁇ 0.5 is determined to be a male and Y ⁇ 0.5 is determined to be a female, the eggs are divided into two groups, an M determination group and an F determination group. That is, the M determination group is a group that includes eggs that have a high probability of male chicks hatching, and the F determination group is a group that includes eggs that have a high probability of female chicks hatching. This classification is called dichotomy.
  • the discrimination results by the bisection method are shown in Table 1 below.
  • the blade discrimination male and the blade discrimination female in Table 1 are the numbers of chicks in which males and females were discriminated by blade discrimination after the chicks hatched.
  • the M determination and the F determination are the numbers of eggs that have been determined as the M determination group and the F determination group, respectively.
  • the number of extractions is the number of eggs categorized into each group, and the extraction rate is the ratio of each group to the whole.
  • the male rate is the percentage of males hatching in each group.
  • the eggs are divided into three groups, M determination group, G determination group, and F determination group. 3 minutes.
  • the M determination group is a group including eggs that have a high probability that male chicks will hatch
  • the F determination group is a group that includes eggs that have a high probability that female chicks will hatch
  • the G determination group is This is a group in which the probabilities of males and females antagonize. This classification is called the trichotomy.
  • the discrimination results by the trisection method are shown in Table 2 below.
  • the blade discrimination male and the blade discrimination female in Table 2 are the numbers of chicks in which males and females were discriminated by blade discrimination after the chicks hatched.
  • M determination, G determination, and F determination are the numbers of eggs determined as M determination group, G determination group, and F determination group, respectively.
  • the number of extractions is the number of eggs categorized into each group, and the extraction rate is the ratio of each group to the whole.
  • the male rate is the percentage of males hatching in each group.
  • the sex difference in the ratio of the relative transmittance of Day 7 to Day 0 and the combination of these with the initial egg weight predicts the sex of chicks hatched from the seed eggs, and 42% of eggs are divided into M judgment groups by the trisection method. It was found that males hatched from about 84% of eggs. Compared with the case of only the ratio of the relative transmittance of Day 7 to Day 0 described above, both the extraction rate and the male rate are improved.
  • the sex discrimination result by logistic regression analysis using the variable X1 on the horizontal axis and the variable X2 on the vertical axis in the scatter diagram of FIG. 8 as explanatory variables and the gender as an objective variable is shown.
  • the sex X is determined by logistic regression analysis using the variable X1 on the horizontal axis and the variable X2 on the vertical axis (relative transmittance of 578 nm of Day 7) in the scatter diagram of FIG.
  • the same result as that based on FIG. 8 is obtained.
  • the egg weight is added to the sex determination variable, so that the discrimination performance can be improved.
  • the egg weight is used as a variable to be added to the determination, but any variable that indicates the size of the egg such as the major axis or minor axis of the egg other than the egg weight or the volume of the egg may be used.
  • the egg inspection system 100 of the present embodiment is a non-destructive selection method for the sex of chicks that hatch from the seed egg by estimating the degree of blood vessel and / or blood formation in the egg during the incubation stage of the egg. .
  • the egg inspection system 100 is configured to be able to inspect a plurality of eggs placed on the setter tray 200 at once, and is setter conveyed by a conveyance mechanism (not shown).
  • the light irradiation part 2 which irradiates light toward the egg from the lower part of the tray 200, and the light detection part 3 which is provided above the setter tray 200 and detects the intensity of the light transmitted through the egg.
  • the light irradiation unit 2 and the light detection unit 3 serve as measurement units that respectively measure state information indicating the state of the embryo, blood vessel, and blood inside the egg.
  • the state information indicating the state of the embryo, blood vessel, and blood inside the seed egg is the intensity of light that has passed through the seed egg or a value (for example, transmittance) obtained using the intensity.
  • FIG. 12 has shown the conveyance state of the setter tray 200
  • FIG. 13 has shown the measurement state of several eggs.
  • the setter tray 200 has a plurality of, for example, regular hexagonal egg seats 201 on which eggs are placed on the same plane.
  • a total of 42 egg seats are provided in 6 rows ⁇ 7 columns, and 42 eggs are configured to be placed.
  • each egg seat 201 has one or a plurality of protrusions 202 that hold the seed eggs while the bottom surface opens downward. As shown in FIG. 15, each egg seat 201 is configured such that there is nothing to block light in addition to the protrusions 202 in the vertical direction.
  • the setter tray 200 used in the incubation ground has various shapes other than those illustrated here, but each egg seat 201 blocks light in addition to the protrusion 202 that holds the egg. The requirements necessary for optical measurement, which will be described later, such as not existing, are satisfied in common, and the present embodiment is not limited to the shape of the setter tray 200.
  • the setter tray 200 is transported along a predetermined tray transport direction by a transport mechanism (not shown) (see FIG. 12), temporarily stopped at a predetermined detection position, and irradiated with light from the light irradiation unit 2.
  • the light that has passed through the egg is detected by the light detector 3 (see FIG. 13).
  • the light irradiation unit 2 irradiates light having a wavelength that is absorbed by blood vessels and blood.
  • the wavelength absorbed by blood vessels and blood is the wavelength absorbed by hemoglobin and myoglobin.
  • it is a plurality of light emitting diodes (LEDs) 21 provided corresponding to a plurality of eggs placed on the setter tray 200 at the detection position.
  • the plurality of LEDs 21 are LEDs having an emission center wavelength in the vicinity of 578 nm, and in the present embodiment, have an emission center wavelength at 574 nm.
  • the light irradiation unit 2 may be a laser having an emission center wavelength near 578 nm.
  • the light detection unit 3 is a plurality of photodiodes (PD) 31 provided so as to face each LED 21.
  • PD 31 is housed in a suction cup 32 made of a material having independent black light shielding properties and flexibility, and is fixed to the head 33 together with each suction cup 32.
  • the head 33 includes a measurement position M (see FIGS. 13 and 15) where the suction cup 32 is in close contact with the egg by a lifting mechanism (not shown), and a retreat position N where the setter tray 200 is conveyed away from the measurement position M. (See FIG. 12).
  • the light irradiation unit 2 of the present embodiment is an LED having an emission center wavelength at 574 nm, but even with this 574 nm, the same result as the relative transmittance of 578 nm in the verification experiment described above can be obtained.
  • the results are shown in FIGS. In this case, it is possible to obtain a relative transmittance of 574 nm by placing simulated eggs of the same shape made of synthetic resin on the setter tray 200 and measuring the intensity of the transmitted light before measuring the eggs. it can.
  • FIG. 16 shows the ratio (decrease rate) of the relative transmittance of Day 7 with respect to Day 0 divided by chick sex. It can be seen from FIG. 16 that the relative transmittance ratio of the female is significantly smaller than that of the male.
  • FIG. 17 is a scatter diagram in which the horizontal axis represents the initial egg weight and the vertical axis represents the ratio of the relative transmittance of Day 7 to Day 0. In FIG. 17, the separation of the male distribution and the female distribution is more prominent. is there.
  • the egg test system 100 of this embodiment is the state information obtained by the light irradiation part 2 and the light detection part 3 which are measurement parts for every individual egg.
  • the position of the egg seat 201 is specified by designating the column number and the row number in the setter tray 200, and the seed egg above it is specified.
  • the tray can be identified by giving a tray ID for identifying the setter tray 200 by means such as a barcode. Therefore, by recording the status information in association with the recording order information such as the recording date, the tray ID, the row number of the constellation, and the row number, the status information for a plurality of days is recorded in association with each individual egg. Can do.
  • searching records based on the record order information, the tray ID, the column number of the constellation, and the row number it is possible to refer to the state information for the same egg for a plurality of days in association with each other.
  • the recording unit 4 and the egg sorting unit 5 are configured by a dedicated or general-purpose computer such as a CPU, an internal memory, an input / output interface, and an AD conversion unit. Then, the CPU and other peripheral devices cooperate with each other according to the egg inspection program stored in the internal memory, so that the functions as the recording unit 4 and the egg sorting unit 5 are exhibited. Further, the recording unit 4 and the egg sorting unit 5 may be configured by a physically integrated computer, or may be configured by a physically separate computer.
  • the recording unit 4 is a voltage value obtained by the PD 31 of the light detection unit 3 or a ratio between a voltage value obtained by the PD 31 and a voltage value in a simulated egg such as a synthetic resin block obtained in advance.
  • the transmittance value is recorded in association with each individual egg.
  • the voltage value in the simulated egg is obtained by placing the simulated egg on the setter tray 200, as in the case of the seed egg.
  • the recording unit 4 also includes position information (egg position) of the eggs placed on the setter tray 200 together with an identifier of the setter tray 200 (for example, barcode information provided on the setter tray 200; not shown). ) And the intensity signal (voltage value) of the light transmitted through the egg.
  • position information egg position
  • identifier of the setter tray 200 for example, barcode information provided on the setter tray 200; not shown.
  • intensity signal voltage value
  • the following (1) and (2) are recorded as state information for a plurality of days.
  • the initial egg weight measured before entering the egg is also recorded in the recording unit 4 as the state information of the egg.
  • the acquisition of voltage values on the first set date and the second set date is performed by conveying the same setter tray 200 to the detection position, irradiating a plurality of eggs on the setter tray 200 with light by the plurality of LEDs 21, respectively. This is performed by detecting the light transmitted through the egg of each of the plurality of PDs 31.
  • the first set date is not limited to the seventh day of incubation and may be before or after that (for example, any one of the fifth to eighth days of incubation).
  • the first set date that is optimal for gender discrimination varies depending on the type of chicken and the pre-warming conditions prior to egg entry, and is determined separately by the same method as in the verification experiment of the present invention.
  • the second set date is not limited to the 0th day of incubation, but preferably may be before or just after the 0th day of incubation.
  • the second set date that is optimal for gender discrimination varies depending on the chicken species and the pre-warming conditions before entering the eggs, and is determined separately by the same method as in the verification experiment of the present invention.
  • the egg sorting part 5 Based on the record associated with each individual egg of the state information (voltage value or relative transmittance of PD 31) recorded in the recording part 4 for the individual eggs, the egg sorting part 5 has blood vessels and / or blood in the egg.
  • a formation degree estimation unit 51 that estimates the degree of formation of the chicks
  • a sex determination unit 52 that determines the sex of the chick that hatches from the eggs from the estimated value of the formation degree.
  • the formation degree estimation unit 51 sets the ratio between the voltage value, which is the state information of the first setting date, and the voltage value, which is the state information of the second setting day, as an estimated value of the formation degree. By taking the ratio of the two, in addition to the effects of instrument differences and tray types, the effects of egg attributes such as egg size and color can be reduced. It is possible to save the time and labor of measurement.
  • the sex discriminating unit 52 acquires the estimated value obtained by the formation degree estimating unit 51, and discriminates the sex of the chick that hatches from the seed egg based on the estimated value.
  • the sex determination unit 52 of the present embodiment is configured to be able to determine unfertilized eggs based on the estimated value.
  • the egg test system 100 includes an unfertilized determination unit that determines whether the egg is an unfertilized egg based on the intensity of light transmitted through the egg on the first set date.
  • the gender discriminating unit 52 is either a bisection method for selecting an M determination group and an F determination group or a trisection method for selecting an M determination group, a G determination group, and an F determination group by setting a threshold. Configured as
  • the M determination group is a group including eggs that have a high probability of male chicks hatching.
  • the F determination group is a group including eggs that have a high probability of female chicks hatching.
  • the G determination group is a group including eggs that do not belong to either the M determination group or the F determination group.
  • the G determination group is an intermediate group between the M determination group and the F determination group, and cannot be said to have a high probability that either male or female chicks hatch.
  • the M / F threshold value for selecting the M determination group and the F determination group is set.
  • the M / F threshold value is input in advance to the sex determination unit.
  • the selection for the M determination group and the G determination group is performed.
  • the M / G threshold value and the G / F threshold value for selecting the G determination group and the F determination group are set.
  • the M / G threshold and the G / F threshold are input to the gender determination unit 52 in advance.
  • determination part 52 has set the unfertilized egg threshold value for selecting an unfertilized egg in any of the above-mentioned bisection method and trisection method. This unfertilized egg threshold is set to a value larger than the M / F threshold and the M / G threshold.
  • the sex determination unit 52 can perform sex discrimination using the estimated value obtained by the formation degree estimation unit 51 in the egg sorting unit 5.
  • temporal changes such as the growth rate of an embryo are grasped from state information on different days (Day 0 and Day 7, but not limited to this). can do.
  • This temporal change represents the degree of blood vessel and / or blood formation in the seed egg, and since it differs between male and female embryos, the sex of chicks that hatch from the seed egg can be determined, Eggs can be sorted out.
  • the approximate yield of chicks can be predicted at an early stage. Specifically, a group containing a large number of males is selected from the lot and diverted to a vaccine egg. If the predicted quantity of chicks that can be sold is greater than the number of orders received, a resale destination is found. Can take actions such as procuring chicks from other companies in the same industry to make up for the shortfall.
  • the status information for a plurality of days is recorded in the recording unit 4, the status information measured on different days can be easily managed. Furthermore, since the status information for a plurality of days is recorded in the recording unit 4, after waiting until a time when the hatching rate is not affected, it is possible to perform selection and transfer of eggs.
  • the egg inspection system 100 of the present embodiment is different from the above-described embodiment in the configuration of the recording unit 4 and the configuration of writing data in the recording unit 4.
  • the recording unit 4 of the present embodiment is a non-contact IC tag such as an RFID provided on the setter tray 200 as shown in FIG.
  • the egg inspection system 100 includes a light intensity writing unit 6 that writes the light intensity (voltage value) obtained by the light detection unit 3 in the non-contact IC tag 4 and a non-contact IC tag 4.
  • a light intensity reading unit 7 for reading the recorded light intensity and a determination result writing unit 8 for writing the determination result obtained by the gender determination unit 52 to the non-contact IC tag 4 are provided.
  • the light intensity writing unit 6, the light intensity reading unit 7, and the discrimination result writing unit 8 are configured by a reader / writer that writes and reads data to and from the non-contact IC tag 4.
  • the procedure for nondestructive inspection of eggs in this case is as follows.
  • the setter tray 200 In Day 0 before entering the egg, the setter tray 200 is transported to a detection position, and a plurality of LEDs 21 irradiate a plurality of eggs on the setter tray 200, and light transmitted through each egg is detected by a plurality of PDs 31. To do.
  • the egg inspection system 100 acquires the voltage value of the PD 31.
  • the voltage value of Day 0 is written to the non-contact IC tag 4 provided on the setter tray 200 by the light intensity writing unit 6 of the egg inspection system 100 together with the position information (egg position) of the egg.
  • the non-contact IC tag 4 also records the initial egg weight.
  • the setter tray 200 On the seventh day from the start of incubation (Day 7), the setter tray 200 is transported to the detection position again, and the plurality of LEDs 21 irradiate the plurality of eggs on the setter tray 200 with light, and the light transmitted through each egg is transmitted. Detection is performed by a plurality of PDs 31.
  • the egg inspection system 100 acquires the voltage value of the PD 31.
  • the voltage value of Day 7 is written to the non-contact IC tag 4 provided on the setter tray 200 together with the position information (egg position) of the egg by the light intensity writing unit 6 of the egg inspection system 100.
  • the light intensity reading unit 7 of the egg inspection system 100 acquires the voltage value of Day 0 and the voltage value of Day 7 from the non-contact IC tag 4. Then, the formation degree estimating unit 51 calculates an estimated value using the voltage value of Day 0 and the voltage value of Day 7, and the gender determining unit 52 compares the estimated value with a predetermined threshold value for each egg. Determine the sex of the chicks that hatch. This discrimination result is written together with the position information (egg position) of the egg by the discrimination result writing unit 8 of the egg test system 100 to the non-contact IC tag 4 of the setter tray 200.
  • the setter tray 200 is conveyed to the sorting device 400.
  • the discrimination result recorded in the non-contact IC tag 4 is read by the discrimination result reading unit (specifically reader / writer) 401 provided in the sorting device 400, and the sorting device 400 has at least M eggs. Sorted into judgment groups and F judgment groups.
  • FIG. 19 shows a case where the G determination group and the unfertilized egg (discard) are sorted.
  • the egg inspection system 100 of the present embodiment writes the discrimination result obtained by the light intensity obtained by the light detection unit 3 and the sex discrimination unit 52 on the non-contact IC tag 4 provided on the setter tray 200. Since it is comprised, the data management of the egg for every setter tray 200 becomes easy. Moreover, the discrimination result obtained by the sex discrimination unit 52 can be written in the non-contact IC tag 4 provided on the setter tray 200, and the eggs can be sorted using the discrimination result at a later date. Even in the early incubation period, the transfer of seed eggs can be waited until the hatching rate is not affected.
  • FIG. 20 shows an egg sorting system incorporating the egg inspection system 100.
  • the light irradiation unit 2 and the light detection unit 3 and the egg sorting unit 5 are physically separated.
  • the egg sorting system includes a light intensity writing unit 6 that writes the light intensity obtained by the light detection unit 3 to the non-contact IC tag 4.
  • an apparatus for example, a sorting apparatus 400
  • a light intensity reading unit 7 that reads the light intensity recorded on the non-contact IC tag 4, a formation degree estimating unit 51, and a gender determining unit 52.
  • the light intensity writing unit 6 and the light intensity reading unit 7 are configured by a reader / writer, either the same or separately.
  • the procedure for nondestructive inspection of eggs in this case is as follows.
  • the setter tray 200 In Day 0 before entering the egg, the setter tray 200 is transported to a detection position, and a plurality of LEDs 21 irradiate a plurality of eggs on the setter tray 200, and light transmitted through each egg is detected by a plurality of PDs 31. To do.
  • the egg inspection system 100 acquires the voltage value of the PD 31.
  • the voltage value of Day 0 is written to the non-contact IC tag 4 of the setter tray 200 by the light intensity writing unit 6 of the egg inspection system 100 together with the position information (egg position) of the egg.
  • the non-contact IC tag 4 also records the initial egg weight.
  • the setter tray 200 On the seventh day from the start of incubation (Day 7), the setter tray 200 is transported to the detection position again, and the plurality of LEDs 21 irradiate the plurality of eggs on the setter tray 200 with light, and the light transmitted through each egg is transmitted. Detection is performed by a plurality of PDs 31.
  • the egg inspection system 100 acquires the voltage value of the PD 31.
  • the voltage value of Day 7 is written to the non-contact IC tag 4 of the setter tray 200 together with the position information (egg seat position) of the setter tray 200 by the light intensity writing unit 6 of the egg inspection system 100.
  • the setter tray 200 is conveyed to the sorting device 400.
  • the light intensity reading unit 7 provided in the sorting device 400 reads the voltage values of Day 0 and Day 7 recorded on the non-contact IC tag 4.
  • the formation degree estimation unit 4 of the sorting apparatus 400 calculates an estimated value using the voltage value of Day 0 and the voltage value of Day 7, and the gender determination unit 5 compares the estimated value with a predetermined threshold value. Determine the sex of chicks that hatch for each egg.
  • the sorting apparatus 400 sorts the plurality of eggs into at least the M determination group and the F determination group.
  • the recording unit 20 shows a case where the G determination group and unfertilized eggs (discarded) are sorted.
  • the recording unit is not limited to recording all information on the non-contact IC tag. While only a part of information such as a tray ID and an identification code is stored in the IC tag, a second recording unit is provided in a place different from the non-contact IC tag to record individual information related to the part of information. You may do it.
  • the permeability of the seed egg depends on the egg weight, the major axis, the minor axis, and the like.
  • the gender determination unit 52 may perform determination by a bisection method, for example, Y ⁇ 0.5 is male and Y ⁇ 0.5 is female, for example, Y ⁇ 0.6 is male, Y ⁇ You may perform the discrimination by the trisection method which used 0.4 as the female.
  • the formation degree estimation unit 51 may further use the second set date before the first set date or the size information of the seed egg before the start of incubation, and the variable X1 described above is the initial egg.
  • the major axis and minor axis of the egg, the volume of the egg, and the like can be considered, and the measurement timing of the size information can be variously changed.
  • the size information of the egg that is appropriate to be measured before entering the egg and the other information that is appropriate to be measured for Day 0 and Day 7 are used in combination. It is possible to improve the accuracy of gender and other judgments by using multiple evidence measured on the optimal date before or after implantation, and for each individual egg of the status information of multiple days. It can be said that this is an example of effectively utilizing the egg inspection system that selects eggs based on the associated records. Similarly, the relationship between the initial egg weight as shown in FIG. 6 and the relative transmittance of 578 nm on Day 7 (single measurement day) can also take advantage of this egg inspection system. Of course.
  • variable X2 is not limited to the ratio of the relative transmittance of Day 7 to Day 0, and may be the difference in the relative transmittance of Day 0 and Day 7. Needless to say, Day 0 and Day 7 are examples of the first set date and the second set date. Furthermore, when the predicted value Y is obtained, it can be variously changed without being limited to logistic regression analysis as long as the relationship between the variable X1 and the variable X2 can be obtained.
  • the light irradiation unit 2 of the above embodiment uses an LED that emits light (574 nm) having a wavelength absorbed by blood vessels and blood.
  • the heart rate measurement of the embryo in the late incubation stage It may include an LED that emits light having a wavelength suitable for (for example, 870 nm).
  • the 574-nm LED is used to discriminate between male and female eggs and unfertilized eggs
  • the 870-nm LED is used to identify non-viable eggs (development aborted eggs and unfertilized eggs). A determination can be made.
  • the voltage value of the 574 nm PD is measured during the egg insertion operation, and the voltage value of the 574 nm PD is measured during the intermediate egg inspection operation.
  • Eggs can be sorted and removed.
  • Incubation of female eggs is continued, and non-viable eggs can be selected and removed by measuring the voltage value of PD at 870 nm during egg inspection at the time of egg transfer. Eggs can be hatched.
  • the formation degree estimation unit 51 of the embodiment estimates the degree of formation of blood vessels and / or blood in the eggs based on the first set date and the second set date or the light intensity before the start of incubation.
  • the ratio of the light intensity on each setting day is used, various changes can be made such as using the difference in light intensity on each setting day.
  • the egg sorting unit of the above embodiment sorts the eggs based on the sex of the chicks hatched from the eggs predicted from the state information of blood vessels and blood.
  • the seed eggs may be selected based on the growth state of the embryo (for example, the growth rate level).
  • the following (1) and (2) are recorded in the recording unit 4 as state information for a plurality of days.
  • the sex is determined using the relative transmittance on the seventh day (Day 7) from the start of incubation, but in the inspection apparatus shown in FIG.
  • the sex may be discriminated.
  • the LED in this case emits near-infrared light that is difficult to absorb hemoglobin and water in blood, and specifically has an emission center wavelength at 870 nm.
  • the coefficient K can be eliminated by obtaining the ratio of the opacity of different measurement days at the same locus.
  • initial egg weight the egg weight of all the egg eggs
  • FIG. 22 is a scatter diagram with the initial egg weight on the horizontal axis and the ratio of Day 8 opacity to Day 3 on the vertical axis in 76 eggs hatched with chicks.
  • FIG. 23 shows the hatched chicks. In 76 eggs, the ratio of the opacity of Day 8 to Day 3 is shown separately for each sex of chicks. From FIG. 22 and FIG. 23, it can be seen that the ratio of the opacity of Day 8 to Day 3 of female is significantly larger than that of male (t-test p value ⁇ 0.037).
  • FIG. 24 is a scatter diagram in which the horizontal axis represents the ratio of the opacity of Day 8 to Day 3 and the vertical axis represents the ratio of the relative transmittance of 574 nm of Day 7 to Day 0.
  • FIG. 25 shows the distribution of the male / female discrimination value Y in the logistic regression analysis. Note that the male / female discrimination value Y in logistic regression analysis has a higher probability of being male as the value of Y is closer to 1, and conversely, the probability of being female is higher as it is closer to 0.
  • the eggs are divided into two groups, M determination group and F determination group (dichotomy).
  • the eggs are divided into three groups, M determination group, G determination group, and F determination group. 3 minutes (3 minutes method).
  • the sex of the relative transmittance ratio of Day 7 to Day 0 and the sex difference of the ratio of opacity of Day 8 to Day 3 are predicted to predict the sex of chicks hatched from the seed eggs. % Of eggs were extracted as M judgment groups, and it was found that males hatched from about 80% of eggs. Compared to the case of only the sex difference in the ratio of opacity of Day 8 to Day 3 described above, both the extraction rate and the male rate are improved.
  • opacity is used to estimate the degree of embryo growth, but “embryo status information” may also be metabolic strength (eg, heart rate strength). .
  • the egg sorting unit sorts the seed eggs based on the sex of the chicks that hatch from the seed eggs, but the growth state of the embryo inside the seed eggs obtained from the state information of multiple days (for example, the level of the growth rate) ) Based on other than males and females.
  • state information of multiple days for example, the level of the growth rate
  • application examples other than sex determination of the opacity ratio of different days will be described. Even if it is determined that the eggs are viable by observing the movement of the heart and the activity of the embryo in the test for viability determination at the time of transfer on the 18th day (Day 18) after the start of incubation, not all the live eggs are hatched.
  • N 3 to 18
  • the acquisition of the voltage values on the first set date and the second set date is performed by transferring the same setter tray 200 to the detection position and using a plurality of LEDs 21 to a plurality of eggs on the setter tray 200, as in the above embodiment. This is performed by irradiating light and detecting the light transmitted through each egg with a plurality of PDs 31.
  • the first set date is not limited to the 14th day of incubation, but may be before or after (for example, any one of the 12th to 15th days of incubation).
  • the second set date is not limited to the 18th day of incubation, and may be before or after (for example, any one of the 16th to 19th days of incubation).
  • the first set date and the second set date that are optimal for discriminating the growth rate of the embryo vary depending on the chicken species and pre-warming conditions before entering the eggs, and are determined separately by the same method as the verification experiment of the present invention.
  • the seed egg sorting unit predicts the hatching time of the seed eggs and sorts the seed eggs for each hatching time, or predicts attributes such as chick growth You can sort eggs for each attribute.
  • the optimal incubation condition can also be set for every seed egg by classifying a seed egg for every attribute.
  • a light source having a broad wavelength such as a halogen lamp may be used as the light irradiation unit 2.
  • the light detection unit 3 has a configuration using a spectroscope for obtaining a multi-wavelength spectrum.
  • the light intensity means a spectral intensity spectrum.
  • the following (1) and (2) are recorded in the recording unit 4 as state information for a plurality of days.
  • (1) The value of 578 nm of the spectral intensity spectrum on the first set date from the start of incubation (seventh day in the present embodiment, according to the above-described embodiment), or an average value in the vicinity thereof, or incubation
  • the value of 578 nm in the transmittance spectrum which is the ratio of each wavelength between the spectral intensity spectrum for the egg on the first setting date from the start and the spectral intensity spectrum of the simulated egg such as a synthetic resin block obtained in advance, or Average value of neighboring values
  • Spectral intensity spectra on the first set date and the second set date are obtained by transporting the same setter tray 200 to a detection position and irradiating a plurality of eggs on the setter tray 200 with light by the light irradiation unit 2.
  • the light detection unit 3 detects the light transmitted through each egg.
  • the egg inspection system 100 has a formation degree estimated value writing unit that writes the formation degree obtained by the formation degree estimation unit 51 to the non-contact IC tag 4. You may comprise so that an estimated value may be written in the contact IC tag 4.
  • FIG. In this case, the estimated value written in the non-contact IC tag 4 is read by the egg inspection system 100 provided with the formation degree estimated value reading unit or the sorting device, and used for sex determination by the sex determining unit 52.
  • the egg inspection system 100 may further include a discrimination result writing unit and a discrimination result reading unit.
  • the seed eggs are selected from the state information acquired on each of the two setting days or on the three setting days, but the seed eggs are selected from the state information acquired on each of four or more setting days. It may be. By comparing four or more pieces of state information in this manner, it is possible to accurately predict attributes such as chick sex, hatching time, chick gain, and the like, cessation of embryo development, and the timing of termination.
  • the eggs that are stationary on the setter tray are irradiated with light, and the inspection is performed.
  • the present invention is not limited to this. Of course you may.
  • the measurement unit for obtaining the state information is not limited to the measurement using the transmitted light. Furthermore, it is needless to say that a plurality of types of measuring units may be used to obtain state information for a plurality of days.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • an egg inspection system for selecting eggs at high speed and non-invasively from various viewpoints.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The present invention sorts hatching eggs from various perspectives at high speed and non-invasively, and is provided with measurement units (light irradiation unit 2, light detection unit 3) for measuring state information indicating a state of a hatching egg, a recording unit 4 for correlating a plurality of days of state information obtained by the measurement units 2, 3 with each individual hatching egg and recording the state information, and a hatching egg sorting unit 5 for sorting hatching eggs on the basis of records correlated with each individual hatching egg of the plurality of days of state information recorded by the recording unit 4.

Description

種卵検査システム及び種卵検査プログラムEgg inspection system and egg inspection program
 本発明は、種卵の情報を取得して、その種卵を選別する種卵検査システムに関するものである。 The present invention relates to an egg inspection system that acquires information on eggs and sorts the eggs.
 食用卵の生産用に養鶏場で飼養される鶏の系統を採卵鶏(レイヤー)と呼ぶ。食用卵の生産者は、採卵用の実用鶏の親となる種鶏群を飼養する種鶏会社から実用鶏の雛を購入して、その雛を大雛まで育成して食用卵の生産に使用している。 A chicken line raised on a poultry farm for the production of edible eggs is called a layered chicken. Producers of edible eggs purchase commercial chicks from a breeding company that keeps a breeding flock that is the parent of a practical hen for egg collection and grow the chicks into large chicks for use in producing edible eggs. is doing.
 種鶏会社において、実用鶏の親の種鶏群が飼養されている農場を種鶏農場と言う。この種鶏農場で産まれた種卵は、図1に示すように、一旦貯卵場所に集められ、その後に予備加温と呼ばれる工程を経て、孵卵場のセッターに入卵されて孵卵が開始される。セッターに入卵してから18日目又は19日目に孵卵場のハッチャーに移卵されて、入卵から約21日目に雛が孵化する。 In the breeding company, the farm where the breeding group of parents of the practical chicken is raised is called the breeding farm. As shown in FIG. 1, the eggs laid on this breeding farm are once collected in the egg storage place, and then passed through a process called pre-heating to enter the setter in the incubation place to start incubation. . On the 18th or 19th day after entering the setter, the eggs are transferred to the hatchery in the incubation place, and the chicks hatch about 21 days after the entry.
 この孵卵工程では、種卵をセッターからハッチャーに移卵する際、又はその他の孵卵途中において、生存卵と非生存卵(内部の胚が死亡した種卵または未受精卵)とに分ける作業が行われている。 In this incubation process, when the seed eggs are transferred from the setter to the hatcher, or in the middle of other incubation, an operation is performed to divide the eggs into viable eggs and non-viable eggs (seed eggs in which internal embryos have died or unfertilized eggs). Yes.
 生存卵と非生存卵とを高速かつ非侵襲的に選別するものとして、特許文献1に示す種卵検査装置が考えられている。この種卵検査装置は、入卵から所定日数経過した時点(例えば、18日目)で種卵に光を照射し、その時点で得られた透過光の光強度の時系列データ中の変動成分の有無と、透過光の光強度が適切な範囲に入るように個別の卵毎にLED光量を制御したときの光源光量の制御量を用いて生存卵と非生存卵とを判定するものである。
 このような移卵時(18日目)に検査するのと同様な方法により、中間時(例えば11日目や14日目)に検査して、生存卵と非生存卵とを判定する場合もある。これは、検査時期を18日目よりも早めることにより、(1)移卵作業時点での腐敗卵の発生の可能性を減らす、(2)そのロット中の未受精卵や中止卵の数量を知り、おおよその雛の歩留まりを予測する、などの利用価値がある。
A seed egg inspection apparatus shown in Patent Document 1 has been considered as a means for rapidly and non-invasively sorting viable eggs and non-viable eggs. This egg inspection apparatus irradiates the egg with light at a time when a predetermined number of days have passed since the entrance (for example, 18th day), and whether or not there is a fluctuation component in the time-series data of the light intensity of the transmitted light obtained at that time The living egg and the non-viable egg are determined using the control amount of the light source light amount when the LED light amount is controlled for each individual egg so that the light intensity of the transmitted light falls within an appropriate range.
In the same way as inspecting at the time of such transfer (18th day), it is also possible to determine whether a live egg and a non-viable egg by checking at an intermediate time (for example, 11th day or 14th day). is there. This is because the inspection time is made earlier than the 18th day, (1) the possibility of the occurrence of spoiled eggs at the time of the transfer operation is reduced, and (2) the quantity of unfertilized and aborted eggs in the lot is reduced. It is useful to know and predict the approximate yield of chicks.
特許第4858863号公報Japanese Patent No. 4858863
 このように、従来の種卵検査装置は、生存卵と非生存卵とを判別したいという主目的のもと、移卵時または中間時の一時点での情報に基づいて判別するものであったが、本発明では、生存卵と非生存卵との判別以外にも、様々な観点から高速かつ非侵襲的に種卵を選別することを課題とする。 As described above, the conventional egg inspection apparatus is to discriminate based on the information at the time of the transfer or at the intermediate time with the main purpose of discriminating between the viable egg and the non-viable egg. In addition to the distinction between live and non-viable eggs, an object of the present invention is to select seed eggs at high speed and non-invasively from various viewpoints.
 具体的に言えば、単一の日での測定だけではわからない変化率の把握や、計測データの卵座に対する依存性の解消、また、複数の証拠の利用による性別判定精度の向上を図ることができる種卵検査装置を提供する。また、データを測定する日とトレイ間で卵を移動させる選別日とを分けて、種卵に特有な不安定な時期を避けて卵の仕分けが可能となる種卵検査装置を提供する。 Specifically, it is possible to grasp the rate of change that cannot be understood only by measuring on a single day, eliminate the dependency of measurement data on the locus, and improve gender determination accuracy by using multiple evidences. Provided egg inspection apparatus. Moreover, the egg test | inspection apparatus which separates the day which measures data, and the selection day which moves an egg between trays, and can sort an egg avoiding the unstable time peculiar to a seed egg is provided.
 すなわち本発明に係る種卵検査システムは、種卵の状態を示す状態情報を計測する計測部と、前記計測部により得られた複数日の状態情報を個別の種卵毎に関連づけて記録する記録部と、前記記録部に記録された前記複数日の状態情報の個別の種卵毎に関連づけられた記録に基づいて前記種卵を選別する種卵選別部とを備えることを特徴とする。 That is, the egg inspection system according to the present invention includes a measuring unit that measures state information indicating the state of the egg, a recording unit that records state information obtained by the measuring unit in association with each individual egg, and And an egg sorting unit that sorts the eggs based on a record associated with each individual egg of the state information recorded on the plurality of days recorded in the recording unit.
 ここで、「状態情報」とは、種卵の状態を示すものであればどのようなものであってもよく、例えば、胚や、血管又は血液の状態を示すもの、卵重、卵の長径並びに短径や、卵の体積など卵の大きさを示すものや卵殻色などが挙げられる。 Here, the “state information” may be any information as long as it indicates the state of the egg, such as an embryo, a state indicating blood vessels or blood, egg weight, the major axis of the egg, Examples include a minor axis, an egg volume such as an egg volume, and an eggshell color.
 また、「複数日」とは、種卵が孵化するまでの2時点以上を指し、孵卵器に入った後(入卵後)のみならず、それらのうち少なくとも1日は孵卵器に入る前(入卵前)でもかまわない。 “Multiple days” refers to two or more time points until the eggs hatch, and not only after entering the incubator (after entering) but also at least one day before entering the incubator (entering) (Before the egg).
 このような種卵検査システムであれば、異なる複数日における状態情報を用いて様々な観点から種卵を選別することができる。例えば、異なる複数日における状態情報から胚の成長速度などの時間的変化を把握することができる。この時間的変化は、雛の性別、孵化時間、雛の増体性などの属性、胚の発育の中止、中止時期などに関係を持つ。 Such an egg inspection system can sort eggs from various viewpoints using state information on different days. For example, temporal changes such as embryo growth rate can be grasped from state information on different days. This temporal change is related to attributes such as sex of chicks, hatching time, chick growth, cease of embryo development, timing of cessation, etc.
 以下、具体的に説明すれば、本願発明者は、胚が生存して発育が進んでいる種卵の内部では、胚の成長並びに血管の生成及び伸長が時々刻々と進行していることに着目し、種卵の内部の胚、血管や血液の状態の時間的変化を利用することで、生存卵と非生存卵との判別以外にも、様々な観点から種卵を分離できるのではないかと考えた。 In the following, the present inventor will pay attention to the fact that the growth of the embryo and the generation and elongation of blood vessels are progressing momentarily in the egg that has survived and developed. In addition to discriminating between live and non-viable eggs, we thought that the seed eggs could be separated from various viewpoints by using temporal changes in the state of the embryo, blood vessels and blood in the seed eggs.
 例えば、本願発明者は、種卵の内部の血管の成長度合い(成長速度)にオスの胚とメスの胚とで有意な差があるのではないかという仮説を立てた。
 そして、本願発明者は、血管の成長度合いが血管の成長に伴う血液の量から見積もれること、つまり、血管の成長度合いが血液中のヘモグロビンの吸収のピーク波長の一つである578nmにおける透過率から見積もれることに着目して、波長578nmを有する光を種卵に照射して、波長578nmにおける透過率の変化を計測した。
For example, the present inventor has hypothesized that there is a significant difference between a male embryo and a female embryo in the degree of blood vessel growth (growth rate) inside the egg.
Then, the inventor of the present application can estimate the degree of blood vessel growth from the amount of blood accompanying blood vessel growth, that is, the transmittance at 578 nm, which is one of the peak wavelengths of absorption of hemoglobin in blood. Paying attention to the above, the light having a wavelength of 578 nm was irradiated to the egg and the change in transmittance at a wavelength of 578 nm was measured.
 その結果、孵卵開始(入卵)から7日目の時点の波長578nmにおける透過率において、確かにオスの胚とメスの胚とで有意な差異が存在することを見出した。なお、詳細については後述する。
 つまり、本願発明者は、血管や血液の形成の進行の仕方に性差があり、血管の成長度合いからオスの胚とメスの胚が判別できるという新しい知見を得た。
As a result, it was found that there is a significant difference between male embryos and female embryos in the transmittance at a wavelength of 578 nm on the seventh day from the start of incubation (introduction). Details will be described later.
That is, the inventor of the present application has a new finding that there is a gender difference in the way blood vessels and blood are formed, and male embryos and female embryos can be distinguished from the degree of blood vessel growth.
 また、本願発明者は、種卵の胚の成長度合い(成長速度)にオスの胚とメスの胚とで有意な差があるのではないかという仮説を立てた。
 そして、本願発明者は、胚の成長度合いが血液中のヘモグロビンや水分の吸収を受けにくい波長870nmにおける不透明度から見積もれることに着目して、波長870nmを有する光を種卵に照射して、波長870nmにおける不透明度の変化を計測した。
The inventor of the present application also hypothesized that there is a significant difference in the growth degree (growth rate) of the egg embryo between the male embryo and the female embryo.
Then, the inventor of the present application pays attention to the fact that the degree of growth of the embryo can be estimated from the opacity at a wavelength of 870 nm, which is difficult to absorb hemoglobin and water in the blood. The change in opacity at 870 nm was measured.
 その結果、孵卵開始から7日目、8日目の時点の波長870nmにおける不透明度において、確かにオスの胚とメスの胚とで有意な差異が存在することを見出した。なお、詳細については後述する。
 つまり、本願発明者は、胚の形成の進行の仕方に性差があり、胚の成長度合いからオスの胚とメスの胚が判別できるという新しい知見を得た。
As a result, it was found that there is a significant difference between male embryos and female embryos in opacity at a wavelength of 870 nm on the seventh and eighth days from the start of incubation. Details will be described later.
That is, the inventor of the present application has obtained a new finding that there is a gender difference in the way the embryo formation proceeds, and that a male embryo and a female embryo can be distinguished from the degree of embryo growth.
 上記の新しい知見に基づいてなされた本発明によれば、複数日における種卵の内部の胚、血管や血液の状態を示す状態情報から得られる種卵の内部の胚の成長情報や血管の成長情報を用いて種卵を選別することができる。 According to the present invention made based on the above-mentioned new findings, the growth information of the embryos inside the seed eggs and the growth information of the blood vessels obtained from the state information indicating the state of the embryos, blood vessels and blood inside the seed eggs in multiple days Can be used to sort eggs.
 また、複数日の状態情報を記録部に記録させているので、異なる日に計測された状態情報の管理を容易にすることができる。 In addition, since the status information for a plurality of days is recorded in the recording unit, it is possible to easily manage the status information measured on different days.
 さらに、孵卵初期の種卵は、胚が小さく外部からの振動等の刺激に鋭敏であり、この時期の卵を仕分けるために卵を別々のトレイに移し変える作業を行うと孵化率の低下を招く恐れがある。種卵を移し変える作業を行うときに種卵の選別を行う場合には、前記移し変える作業は孵化率に影響を与えない時期まで待つことが望ましい。本発明では、複数日の状態情報を記録部に記録させているので、孵化率に影響を与えない時期まで待った後に、種卵の選別及び移し変える作業を行うことができる。 Furthermore, the seed eggs at the early stage of incubation have small embryos and are sensitive to external stimuli such as vibrations. If the eggs are transferred to different trays to sort the eggs at this time, the hatching rate may be reduced. There is. When selecting the seed eggs when performing the work of transferring the seed eggs, it is desirable to wait until the transfer work does not affect the hatching rate. In the present invention, since the status information for a plurality of days is recorded in the recording unit, after waiting until the time when the hatching rate is not affected, it is possible to perform the selection and transfer of eggs.
 具体的に種卵選別部は、前記複数日の状態情報により求まる前記種卵の内部の胚の成長状態に基づいて前記種卵を選別するものであることが望ましい。
 このように胚の成長状態に基づいて種卵を選別することにより、雛の性別、孵化時間、雛の増体性などの属性、胚の発育の中止、中止時期の予測を行うことができる。
Specifically, it is desirable that the seed egg sorting unit sorts the seed eggs based on the growth state of the embryo inside the seed eggs obtained from the state information of the plurality of days.
Thus, by selecting the seed eggs based on the growth state of the embryo, it is possible to predict the sex of the chick, the hatching time, the chick's growth, and other attributes, the cessation of embryo development, and the timing of cessation.
 採卵鶏の場合は、オスの雛の経済的価値は乏しい。採卵鶏のオスの雛は、採卵の目的に使用できないのは勿論のこと、食肉用としても増体性が肉用鶏に比較して劣るからである。したがって、孵化したオスの雛は、雌雄鑑別の後に廃棄されており、オスの孵卵コストなど経済的な損失のみならず、生命倫理上の観点からも問題視されている。
 この状況を考えれば、仮に孵卵中の種卵であっても、ワクチン卵(ワクチン製造に使用される種卵)に転用可能な日限である孵卵開始から9日目以前に孵化する雛の性別が高い確率で予測できれば、オスの孵化する確率の高い種卵をワクチン卵に転用することが可能であり、経済的な損失を少なくし、新たな収益を確保できるとともに、生命倫理上の問題も緩和できる。
 このため、前記種卵選別部は、前記複数日の状態情報により予想される前記種卵から孵化する雛の性別に基づいて前記種卵を選別するものであることが望ましい。
 この構成であれば、オスの雛が孵化する種卵の割合が高い種卵の集まりを選抜して、ワクチン卵として活用又は販売することができる。さらに、限られた孵卵場の収容能力をメスの雛が孵化する種卵に優先的に割り当てることができる。その上、オスの雛を殺処分する生命倫理上の問題を緩和することができる。
In the case of laying hens, the economic value of male chicks is poor. This is because male chicks of egg-laying hens cannot be used for egg-collecting purposes, and are not as good for meat as for meat. Therefore, hatched male chicks are discarded after sex discrimination, and are regarded as a problem not only from an economic loss such as the cost of incubating males but also from the viewpoint of bioethics.
Considering this situation, even if it is a hatched egg, the sex of chicks that hatch before the 9th day from the start of incubation, which is the date that can be diverted to a vaccine egg (seed egg used for vaccine production), is high. If it can be predicted with probability, it is possible to divert a male egg with a high probability of hatching to a vaccine egg, reduce economic loss, secure new revenue, and alleviate bioethical problems.
For this reason, it is desirable that the seed egg sorting unit sorts the seed eggs based on the sex of the chicks hatched from the seed eggs predicted from the state information of the plurality of days.
With this configuration, it is possible to select a collection of eggs that have a high proportion of eggs hatched by male chicks and use or sell them as vaccine eggs. In addition, the limited capacity of the hatchery can be preferentially assigned to eggs hatched by female chicks. In addition, the bioethical problem of killing male chicks can be alleviated.
 また、本発明に係る種卵検査プログラムは、種卵の状態を示す状態情報を計測する計測部により得られた前記複数日の状態情報を個別の種卵毎に関連づけて記録する記録部と、前記記録部に記録された前記複数日の状態情報の個別の種卵毎に関連づけられた記録に基づいて前記種卵を選別する種卵選別部と、としての機能をコンピュータに備えさせることを特徴とする。 In addition, the egg inspection program according to the present invention includes a recording unit that records the state information of the plurality of days obtained by a measurement unit that measures state information indicating the state of the egg for each individual egg, and the recording unit The computer is provided with a function as an egg sorting unit that sorts the eggs based on the records associated with each individual egg of the state information recorded on the plurality of days.
 このように構成した本発明によれば、様々な観点から高速かつ非侵襲的に種卵を選別することができる。 According to the present invention configured as described above, it is possible to sort eggs at high speed and non-invasively from various viewpoints.
100・・・種卵検査システム
200・・・セッタートレイ
2・・・光照射部
3・・・光検出部
4・・・記録部
5・・・種卵選別部
DESCRIPTION OF SYMBOLS 100 ... Egg inspection system 200 ... Setter tray 2 ... Light irradiation part 3 ... Light detection part 4 ... Recording part 5 ... Egg selection part
一般的な孵卵場における雛の生産工程を示すフロー図である。It is a flowchart which shows the production process of the chick in a general incubation place. 検証実験に用いた種卵の非破壊検査装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the nondestructive inspection apparatus of the egg used for verification experiment. 孵卵0日目から8日目までの相対透過率スペクトルを示す図である。It is a figure which shows the relative transmittance | permeability spectrum from the 0th day of incubation to the 8th day. 特定波長毎の相対透過率の時間変化を示す図である。It is a figure which shows the time change of the relative transmittance | permeability for every specific wavelength. 種卵の雌雄別における孵卵7日目の578nmの相対透過率を示す図である。It is a figure which shows the relative transmittance | permeability of 578 nm on the 7th day of incubation in the sex of each egg. 種卵の雌雄別における初期卵重と孵卵7日目の578nmの相対透過率との関係を示す図である。It is a figure which shows the relationship between the initial egg weight and the relative transmittance | permeability of 578 nm on the 7th day of incubation in the sex of each egg. 種卵の雌雄別における孵卵0日目の578nmの相対透過率に対する孵卵7日目の578nmの相対透過率の比を示す図である。It is a figure which shows ratio of the relative transmittance | permeability of 578 nm on the 7th day of incubation with respect to the relative transmittance of 578 nm on the 0th day of incubation in the sex of each egg. 種卵の雌雄別における初期卵重と孵卵0日目の578nmの相対透過率に対する孵卵7日目の578nmの相対透過率の比との関係を示す図である。It is a figure which shows the relationship between the ratio of the relative transmittance | permeability of 578 nm on the 7th day of incubation with the initial egg weight and the relative transmittance | permeability of 578 nm on the 0th day of incubation in the sex of each egg. 種卵の雌雄及び未受精卵における孵卵6日目の578nmの相対透過率を示す図である。It is a figure which shows the relative transmittance | permeability of 578 nm on the 6th day of incubation in the male and female of a seed egg and an unfertilized egg. 種卵の雌雄及び未受精卵における孵卵0日目の578nmの相対透過率に対する孵卵6日目の相対透過率の比を示す図である。It is a figure which shows ratio of the relative transmittance | permeability on the 6th day of incubation with respect to the relative transmittance | permeability of 578 nm on the 0th day of incubation in the male and female of a seed egg and an unfertilized egg. 初期卵重と孵卵0日目の相対透過率に対する孵卵7日目の相対透過率の比とを説明変数とし、性別(オス=1、メス=0)を目的変数としたロジスティック回帰分布の判別値の分布を示す図である。Discrimination value of logistic regression distribution with initial egg weight and ratio of relative transmittance on day 7 of incubation to relative transmittance on day 0 of incubation as explanatory variables and gender (male = 1, female = 0) as objective variable FIG. 本実施形態の種卵の非破壊検査装置の構成(ヘッド退避位置N)を模式的に示す図である。It is a figure which shows typically the structure (head retraction position N) of the nondestructive test | inspection apparatus of the egg of this embodiment. 同実施形態の種卵の非破壊検査装置の構成(ヘッド計測位置M)を模式的に示す図である。It is a figure which shows typically the structure (head measurement position M) of the nondestructive test | inspection apparatus of the egg of the embodiment. 本実施形態の非破壊検査装置に用いるセッタートレイの平面図、及びセッタートレイの卵座に種卵を載置した状態の平面図である。It is the top view of the setter tray used for the nondestructive inspection apparatus of this embodiment, and the top view of the state which mounted the seed egg on the egg seat of the setter tray. 同実施形態の複数の種卵を同時に計測している状態を示す図である。It is a figure which shows the state which is measuring the several egg of the same embodiment simultaneously. 種卵の雌雄別の孵卵0日目の574nmの相対透過率に対する孵卵7日目の574nmの相対透過率の比を示す図である。It is a figure which shows the ratio of the relative transmittance | permeability of 574 nm on the 7th day of incubation with respect to the relative transmittance | permeability of 574 nm on the 0th day of incubation for each sex. 種卵の雌雄別の初期卵重と孵卵0日目の574nmの相対透過率に対する孵卵7日目の574nmの相対透過率の比との関係を示す図である。It is a figure which shows the relationship between the initial egg weight according to sex of a seed egg, and the ratio of the relative transmittance of 574 nm on the seventh day of incubation to the relative transmittance of 574 nm on the first day of incubation. 雌雄判別及び未受精卵の閾値を示す模式図である。It is a schematic diagram which shows the sex threshold and the threshold value of an unfertilized egg. RFIDを設けたセッタートレイを用いた種卵検査システムを示す模式図である。It is a mimetic diagram showing an egg inspection system using a setter tray provided with RFID. 変形実施形態の種卵の非破壊検査装置を組み込んだ種卵仕分けシステムを模式的に示す図である。It is a figure which shows typically the egg sorting system incorporating the nondestructive inspection apparatus of the egg of deformation | transformation embodiment. 変形実施形態の雛の生産工程を示すフロー図である。It is a flowchart which shows the production process of the chick of deformation | transformation embodiment. 種卵の雌雄別における初期卵重とDay3に対するDay8の不透明度の比との関係を示す図である。It is a figure which shows the relationship between the initial egg weight and sex ratio of Day8 with respect to Day3 in the sex of a seed egg. 種卵の雌雄別におけるDay3に対するDay8の不透明度の比を示す図である。It is a figure which shows ratio of the opacity of Day8 with respect to Day3 in the sex of each egg. 種卵の雌雄別におけるDay3に対するDay8の不透明度の比とDay0に対するDay7の574nmの相対透過率の比との関係を示す図である。It is a figure which shows the relationship between the ratio of the opacity of Day8 with respect to Day3 and the ratio of the relative transmittance | permeability of 574 nm of Day7 with respect to Day0 in the sex of each egg. Day3に対するDay8の不透明度の比と、Day0に対するDay7の相対透過率の比とを説明変数とし、性別(オス=1、メス=0)を目的変数としたロジスティック回帰分布の判別値の分布を示す図である。The distribution of discriminant values of the logistic regression distribution with the ratio of the opacity of Day 8 to Day 3 and the ratio of the relative transmittance of Day 7 to Day 0 as explanatory variables and the gender (male = 1, female = 0) as the objective variable is shown. FIG. Day3に対するDayN(N=3~18)の不透明度の比の変化を示す成長曲線を示す図である。It is a figure which shows the growth curve which shows the change of ratio of the opacity of DayN (N = 3-18) with respect to Day3.
<検証実験>
 まず、本発明に至った仮説の1つに対する検証実験について説明する。
 採卵鶏(ジュリア・ライト)の種卵を90個入手した。なお、入手時に全ての種卵の卵重(以下、初期卵重という。)を測定した。また、本実験に用いた種卵は予備加温をしていない。
<Verification experiment>
First, a verification experiment for one of the hypotheses leading to the present invention will be described.
Ninety eggs of egg-collecting chickens (Julia Wright) were obtained. In addition, the egg weight of all the seed eggs (hereinafter referred to as initial egg weight) was measured at the time of acquisition. In addition, the eggs used in this experiment are not preheated.
 孵卵器に入卵する直前(以下、Day0という。)から48時間以降24時間毎にハロゲンランプ光源の光を種卵の側方から照射し、当該種卵からの透過光を分光器により分光して透過光の分光データを測定した。なお、測定装置を図2に示す。
 これらのデータは、孵卵器に入れてから何日目のデータかを識別する目的で、N日目のデータならDayNのデータとして参照する。
Immediately before entering the incubator (hereinafter referred to as Day 0), light from a halogen lamp light source is irradiated from the side of the egg every 24 hours after 48 hours, and the transmitted light from the egg is dispersed by the spectrometer. Spectroscopic data of light was measured. The measuring apparatus is shown in FIG.
These data are referred to as Day N data for the Nth day for the purpose of identifying the day of the data after being placed in the incubator.
 測定環境の校正の目的で、測定前に長さ30mm、直径45mmの円筒状の合成樹脂(ポリテトラフルオロエチレン)ブロックを種卵の代わりにブロックの底面が投光側に来るように測定台に置いて分光データを測定した。 For the purpose of calibrating the measurement environment, place a cylindrical synthetic resin (polytetrafluoroethylene) block 30 mm long and 45 mm in diameter before measurement on the measurement stand so that the bottom of the block is on the light projecting side instead of eggs. The spectroscopic data were measured.
 500nmから900nmの波長範囲において、1nm刻みで、種卵の分光データを合成樹脂ブロックの分光データで割って、合成樹脂ブロックをリファレンスにした相対透過率のスペクトルを各卵毎に求めた。 In the wavelength range of 500 nm to 900 nm, the spectral data of the seed eggs was divided by the spectral data of the synthetic resin block in 1 nm increments, and a spectrum of relative transmittance with the synthetic resin block as a reference was obtained for each egg.
  相対透過率T(λ)
  =種卵の波長λの分光データ/合成樹脂ブロックの波長λの分光データ
Relative transmittance T (λ)
= Spectral data of wavelength λ of egg / Spectral data of wavelength λ of synthetic resin block
 図3に、種卵のDay0からDay8までの相対透過率スペクトルを示す。この図3に示すように、内部で胚が成長している種卵は、相対透過率スペクトルの波形が毎日変化する。 FIG. 3 shows a relative transmittance spectrum from Day 0 to Day 8 of the egg. As shown in FIG. 3, the egg of the relative transmittance spectrum of the egg having an embryo growing therein changes daily.
 この変化を578nm、623nm、750nm、810nm、870nmの波長毎に分けて示したのが図4である。この図4に示すように、全ての波長に対して、Day4からDay5にかけての相対透過率の変化が著しいが、特に両日の578nmでの相対透過率の比で計算される減少率が他の波長に比較して著しく大きい。 FIG. 4 shows this change separately for each wavelength of 578 nm, 623 nm, 750 nm, 810 nm, and 870 nm. As shown in FIG. 4, the change in relative transmittance from Day 4 to Day 5 is remarkable for all wavelengths, but the decrease rate calculated by the ratio of the relative transmittance at 578 nm on both days is particularly different for other wavelengths. Is significantly larger than
 この理由は、次の通りである。
 Day3から卵黄の胚盤の周りに血管の生成が見られる。この血管が日々伸びることによって、血液の成分であるヘモグロビンの量が増える。そうすると、ヘモグロビンによる光の吸収のピーク波長の付近において、光の吸収が大きくなる。ヘモグロビンの吸収のピーク波長は、可視域では578nm、540nm、410nm付近であることが知られており578nmは、その一つであるからである。
The reason for this is as follows.
The formation of blood vessels is seen around the scutellum of egg yolk from Day 3. As the blood vessels grow daily, the amount of hemoglobin that is a component of blood increases. As a result, light absorption increases in the vicinity of the peak wavelength of light absorption by hemoglobin. This is because the peak wavelength of hemoglobin absorption is known to be around 578 nm, 540 nm, and 410 nm in the visible region, and 578 nm is one of them.
 したがって、578nmの相対透過率の時間変化は、血管の生成及び伸長に対応している。 Therefore, the temporal change in the relative transmittance at 578 nm corresponds to the generation and elongation of blood vessels.
 次に、この血管の成長にオスの胚とメスの胚とで違いがあるかを調べた。
 90個の種卵の孵卵を継続して、雛を孵化させた。90個の種卵から76羽の雛が孵化した。雌雄鑑別の結果、35羽がメスで41羽がオスであった。なお、5個が未受精卵であった。残りは、胚が孵化前に死んだ発育中止卵であった。
Next, we examined whether there is a difference in the growth of blood vessels between male and female embryos.
Incubation of 90 seed eggs was continued to hatch chicks. 76 chicks hatched from 90 eggs. As a result of sex discrimination, 35 were female and 41 were male. Five were unfertilized eggs. The rest were developmentally terminated eggs whose embryos died before hatching.
 図5は、雛が孵化した76個の種卵において、Day7における578nmの相対透過率を雛の性別に分けて図示したものである。図5中の白抜きのひし形のシンボルは、雛の雌雄鑑別の結果オスと鑑別された種卵を示すものであり、黒塗りの丸のシンボルはメスと鑑別された種卵を示すものである。以下、他の散布図における雌雄鑑別結果における2種のシンボルの使い分けはこれに準じている。
 この図5から、メスの578nmの相対透過率がオスのものより有意に小さいことがわかる(t検定 p値<0.002)。
 この図5において例えばDay7における578nmの相対透過率の値が、0.005より大きい種卵を抽出すれば、26個が抽出される。これは全体76個中の34%である。26個中19個がオスであり、オスの比率は、73%である。すなわち、特定時点(この場合はDay7)の578nmの相対透過率で血管や血液の生成の程度を推定し、その値が定められた閾値より大きいものを抽出すれば、オスの孵化する確率の高い卵が抽出される。
FIG. 5 shows the relative transmittance of 578 nm in Day 7 divided by sex of chicks in 76 eggs hatched by chicks. The white diamond-shaped symbols in FIG. 5 indicate the eggs that have been identified as males as a result of the sex determination of the chicks, and the black circles indicate the eggs that have been identified as females. In the following, the proper use of the two types of symbols in the sex discrimination results in other scatter diagrams is based on this.
From FIG. 5, it can be seen that the relative transmittance of the female at 578 nm is significantly smaller than that of the male (t-test p-value <0.002).
In FIG. 5, for example, if eggs with a relative transmittance of 578 nm in Day 7 are greater than 0.005, 26 eggs are extracted. This is 34% of the total 76 pieces. 19 out of 26 are male, and the male ratio is 73%. That is, if the degree of blood vessel or blood generation is estimated with a relative transmittance of 578 nm at a specific time point (Day 7 in this case), and a value whose value is larger than a predetermined threshold is extracted, the probability of male hatching is high. Eggs are extracted.
 図6は、横軸に初期卵重をとり、縦軸にDay7における578nmの相対透過率をとった散布図であり、この図6ではオスの分布とメスの分布の分離がより顕著である。 FIG. 6 is a scatter diagram with the initial egg weight on the horizontal axis and the relative transmittance of 578 nm on Day 7 on the vertical axis. In FIG. 6, the separation of the male distribution and the female distribution is more prominent.
 以上は、Day7における578nmの相対透過率のみを用いたが、578nmの相対透過率は、血管以外にも種卵の大きさなどの影響を受けている。そこで、この影響を除く目的で、Day0における578nmの相対透過率に対する比率を求めた。以下、Day0における578nmの相対透過率に対するDay7における578nmの相対透過率の比を、単にDay0に対するDay7の相対透過率の比という。 In the above, only the relative transmittance of 578 nm in Day 7 was used, but the relative transmittance of 578 nm is influenced by the size of the egg in addition to the blood vessels. Therefore, in order to eliminate this influence, the ratio to the relative transmittance of 578 nm at Day 0 was obtained. Hereinafter, the ratio of the relative transmittance of 578 nm in Day 7 to the relative transmittance of 578 nm in Day 0 is simply referred to as the ratio of the relative transmittance of Day 7 to Day 0.
 図7は、Day0に対するDay7の相対透過率の比(減少率)を雛の性別に分けて図示したものである。この図7から、メスの相対透過率の比がオスのものより有意に小さいことがわかる。
 この図7において例えばDay0に対するDay7の相対透過率の比が、0.022より大きい種卵を抽出すれば、29個が抽出される。これは全体76個中の38%である。29個中21個がオスであり、オスの比率は、72%である。すなわち、特定時点(この場合はDay7)の578nmの相対透過率とそれより前の時点(この場合はDay0)の578nmの相対透過率の比を用いて血管や血液の生成の程度を推定し、その値が定められた閾値より大きいものを抽出すれば、オスの孵化する確率の高い卵が抽出される。先のDay7のみの場合と比較して、オス率が変化せず、抽出率が向上している。
FIG. 7 shows the ratio (decrease rate) of the relative transmittance of Day 7 with respect to Day 0 divided by chick sex. It can be seen from FIG. 7 that the relative transmittance ratio of the female is significantly smaller than that of the male.
In FIG. 7, for example, if eggs with a relative transmittance ratio of Day 7 to Day 0 greater than 0.022 are extracted, 29 eggs are extracted. This is 38% of the total 76 pieces. Of the 29, 21 are male, and the male ratio is 72%. That is, using the ratio of the relative transmittance of 578 nm at a specific time point (Day 7 in this case) to the relative transmittance of 578 nm at a previous time point (Day 0 in this case), the degree of blood vessel and blood production is estimated, If a value whose value is larger than a predetermined threshold is extracted, an egg with a high probability of male hatching is extracted. Compared with the case of only Day7, the male rate does not change and the extraction rate is improved.
 図8は、横軸に初期卵重をとり、縦軸にDay0に対するDay7の相対透過率の比をとった散布図であり、この図8ではオスの分布とメスの分布の分離がより顕著である。 FIG. 8 is a scatter diagram in which the horizontal axis represents the initial egg weight and the vertical axis represents the ratio of the relative transmittance of Day 7 to Day 0. In FIG. 8, the separation of the male distribution and the female distribution is more prominent. is there.
 図9は、Day6における578nmの相対透過率である。また、図10は、Day0における578nmの相対透過率に対するDay6における578nmの相対透過率の比である。これらの図9及び図10から生存卵と未受精卵の差異が顕著である。未受精卵であれば、例えば、図9、図10で示したDay6やその前後(後述する第1時点付近)では、種卵内の血管及び/又は血液の形成が受精卵と異なり成されないからである。なお、生存卵と未受精卵の差異は、最も早い段階で、かつ、差異が明確となっている時点がDay6であるが、Day7でもDay6に準じた結果が得られる。 FIG. 9 shows the relative transmittance at 578 nm in Day 6. FIG. 10 is a ratio of the relative transmittance of 578 nm in Day 6 to the relative transmittance of 578 nm in Day 0. From these FIG. 9 and FIG. 10, the difference between the live egg and the unfertilized egg is remarkable. In the case of an unfertilized egg, for example, Day 6 shown in FIGS. 9 and 10 and before and after (around the first time point described later), blood vessels and / or blood formation in the seed egg is not formed unlike fertilized eggs. is there. The difference between the live egg and the unfertilized egg is Day 6 at the earliest stage and when the difference is clear, but Day 7 can also obtain a result according to Day 6.
 図8の散布図の横軸の変数X1(=初期卵重)と、縦軸の変数X2(=Day0に対するDay7の相対透過率の比)との2つの変数を説明変数とし、性別(オス=1、メス=0)を目的変数として、ロジスティック回帰分析で判別式を求めた。 The variable X1 (= initial egg weight) on the horizontal axis of the scatter diagram of FIG. 8 and the variable X2 (= ratio of the relative transmittance of Day 7 to Day 0) on the vertical axis are explanatory variables, and sex (male = The discriminant was obtained by logistic regression analysis with 1 as the objective variable.
 ロジスティック回帰分析におけるオスメス判別値Yの分布を図11に示す。
 ロジスティック回帰分析におけるオスメス判別値Yは、Yの値が1に近いほどオスである確率が高く、逆に0に近いほどメスである確率が高い。
 したがって、Y≧0.5をオスと判定し、Y<0.5をメスとした場合、種卵は2つのグループ、M判定グループとF判定グループに2分される。すなわちM判定グループは、オスの雛が孵化する確率が高い種卵が含まれるグループであり、F判定グループは、メスの雛が孵化する確率が高い種卵が含まれるグループである。この分類を2分法と言う。
The distribution of the male / female discriminant value Y in the logistic regression analysis is shown in FIG.
In the logistic regression analysis, the male / female discrimination value Y has a higher probability of being male as the value of Y is closer to 1, and conversely, the probability of being female is higher as it is closer to 0.
Therefore, if Y ≧ 0.5 is determined to be a male and Y <0.5 is determined to be a female, the eggs are divided into two groups, an M determination group and an F determination group. That is, the M determination group is a group that includes eggs that have a high probability of male chicks hatching, and the F determination group is a group that includes eggs that have a high probability of female chicks hatching. This classification is called dichotomy.
 2分法による判別結果を以下の表1に示す。
 表1の羽根鑑別オス、羽根鑑別メスは、雛が孵化したのちに羽根鑑別によりオスとメスが鑑別された雛の羽数である。M判定、F判定はそれぞれ、M判定グループとF判定グループに判定された種卵の数である。抽出数は、各グループに分類された種卵の個数であり、抽出率は全体に対する各グループが占める割合である。オス率は各グループ中でのオスが孵化した割合である。
The discrimination results by the bisection method are shown in Table 1 below.
The blade discrimination male and the blade discrimination female in Table 1 are the numbers of chicks in which males and females were discriminated by blade discrimination after the chicks hatched. The M determination and the F determination are the numbers of eggs that have been determined as the M determination group and the F determination group, respectively. The number of extractions is the number of eggs categorized into each group, and the extraction rate is the ratio of each group to the whole. The male rate is the percentage of males hatching in each group.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Y≧0.6をオスと判定し、Y<0.4をメスと判定し、それ以外を不明と判定した場合、種卵は、3つのグループ、M判定グループ、G判定グループ、F判定グループに3分される。ここでM判定グループは、オスの雛が孵化する確率が高い種卵が含まれるグループであり、F判定グループは、メスの雛が孵化する確率が高い種卵が含まれるグループであり、G判定グループは、オスとメスの確率が拮抗するグループである。この分類を3分法と言う。 If Y ≧ 0.6 is determined to be male, Y <0.4 is determined to be female, and the others are determined to be unknown, the eggs are divided into three groups, M determination group, G determination group, and F determination group. 3 minutes. Here, the M determination group is a group including eggs that have a high probability that male chicks will hatch, the F determination group is a group that includes eggs that have a high probability that female chicks will hatch, and the G determination group is This is a group in which the probabilities of males and females antagonize. This classification is called the trichotomy.
 3分法による判別結果を以下の表2に示す。
 表2の羽根鑑別オス、羽根鑑別メスは、雛が孵化したのちに羽根鑑別によりオスとメスが鑑別された雛の羽数である。M判定、G判定、F判定はそれぞれ、M判定グループ、G判定グループ、F判定グループに判定された種卵の数である。抽出数は、各グループに分類された種卵の個数であり、抽出率は全体に対する各グループが占める割合である。オス率は各グループ中でのオスが孵化した割合である。
The discrimination results by the trisection method are shown in Table 2 below.
The blade discrimination male and the blade discrimination female in Table 2 are the numbers of chicks in which males and females were discriminated by blade discrimination after the chicks hatched. M determination, G determination, and F determination are the numbers of eggs determined as M determination group, G determination group, and F determination group, respectively. The number of extractions is the number of eggs categorized into each group, and the extraction rate is the ratio of each group to the whole. The male rate is the percentage of males hatching in each group.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上より、Day0に対するDay7の相対透過率の比の性差、及び、これらと初期卵重との組み合わせにより、種卵から孵化する雛の性別を予測し、3分法で42%の卵をM判定グループとして抽出して、そこから約84%の卵からオスが孵化することが分かった。上述したDay0に対するDay7の相対透過率の比のみの場合と比較して、抽出率もオス率も向上している。 Based on the above, the sex difference in the ratio of the relative transmittance of Day 7 to Day 0 and the combination of these with the initial egg weight predicts the sex of chicks hatched from the seed eggs, and 42% of eggs are divided into M judgment groups by the trisection method. It was found that males hatched from about 84% of eggs. Compared with the case of only the ratio of the relative transmittance of Day 7 to Day 0 described above, both the extraction rate and the male rate are improved.
 以上、図8の散布図の横軸の変数X1と縦軸の変数X2を説明変数とし、性別を目的変数とするロジスティック回帰分析による雌雄の判別結果を示した。同様に図6の散布図の横軸の変数X1と縦軸の変数X2(Day7の578nmの相対透過率)を説明変数として、性別を目的変数とするロジスティック回帰分析により雌雄判別を行っても、図8に基づく場合と同様の結果が得られる。
 このようにDay0に対するDay7の578nmの相対透過率の比、又は、Day7の578nmの相対透過率に加えて、卵重を性別判定の変数に加えることにより、判別の性能の向上を図ることができる。
 ここでは、卵重を判定に追加する変数としたが、卵重以外の卵の長径又は短径や、卵の体積など卵の大きさを示す変数であれば良い。
As described above, the sex discrimination result by logistic regression analysis using the variable X1 on the horizontal axis and the variable X2 on the vertical axis in the scatter diagram of FIG. 8 as explanatory variables and the gender as an objective variable is shown. Similarly, even if the sex X is determined by logistic regression analysis using the variable X1 on the horizontal axis and the variable X2 on the vertical axis (relative transmittance of 578 nm of Day 7) in the scatter diagram of FIG. The same result as that based on FIG. 8 is obtained.
Thus, in addition to the ratio of the relative transmittance of Day 7 to Day 578 nm relative to Day 0 or the relative transmittance of Day 7 to 578 nm, the egg weight is added to the sex determination variable, so that the discrimination performance can be improved. .
Here, the egg weight is used as a variable to be added to the determination, but any variable that indicates the size of the egg such as the major axis or minor axis of the egg other than the egg weight or the volume of the egg may be used.
<第1実施形態>
 以下に、本発明に係る種卵検査システムの第1実施形態について、図面を参照して説明する。
<First Embodiment>
Below, 1st Embodiment of the egg test system which concerns on this invention is described with reference to drawings.
 本実施形態の種卵検査システム100は、種卵の孵卵段階において、種卵内の血管及び/又は血液の形成の程度を推定することにより、種卵から孵化する雛の性別を非破壊で選別するものである。 The egg inspection system 100 of the present embodiment is a non-destructive selection method for the sex of chicks that hatch from the seed egg by estimating the degree of blood vessel and / or blood formation in the egg during the incubation stage of the egg. .
 具体的に種卵検査システム100は、図12及び図13に示すように、セッタートレイ200に載置された複数の種卵を一挙に検査可能に構成されており、図示しない搬送機構により搬送されたセッタートレイ200の下方から種卵に向かって光を照射する光照射部2と、セッタートレイ200の上方に設けられて種卵を透過した光の強度を検出する光検出部3とを備えている。これら光照射部2及び光検出部3は、種卵の内部の胚、血管や血液の状態を示す状態情報をそれぞれ計測する計測部となる。つまり、種卵の内部の胚、血管や血液の状態を示す状態情報は、種卵を透過した光の強度又はそれを用いて求まる値(例えば透過率)である。なお、図12は、セッタートレイ200の搬送状態を示しており、図13は、複数の種卵の計測状態を示している。 Specifically, as shown in FIG. 12 and FIG. 13, the egg inspection system 100 is configured to be able to inspect a plurality of eggs placed on the setter tray 200 at once, and is setter conveyed by a conveyance mechanism (not shown). The light irradiation part 2 which irradiates light toward the egg from the lower part of the tray 200, and the light detection part 3 which is provided above the setter tray 200 and detects the intensity of the light transmitted through the egg. The light irradiation unit 2 and the light detection unit 3 serve as measurement units that respectively measure state information indicating the state of the embryo, blood vessel, and blood inside the egg. That is, the state information indicating the state of the embryo, blood vessel, and blood inside the seed egg is the intensity of light that has passed through the seed egg or a value (for example, transmittance) obtained using the intensity. In addition, FIG. 12 has shown the conveyance state of the setter tray 200, and FIG. 13 has shown the measurement state of several eggs.
 まず、セッタートレイ200について説明すると、このセッタートレイ200は、図14に示すように、種卵が載置される例えば正6角形の卵座201を同一平面上に複数有するものである。なお、図14には、計42個の卵座が6行×7列で設けられており、42個の種卵を載置可能に構成されたものを示している。 First, the setter tray 200 will be described. As shown in FIG. 14, the setter tray 200 has a plurality of, for example, regular hexagonal egg seats 201 on which eggs are placed on the same plane. In FIG. 14, a total of 42 egg seats are provided in 6 rows × 7 columns, and 42 eggs are configured to be placed.
 また、各卵座201は、その底面が下方に開口するとともに、種卵を保持する1又は複数の突起部202を有している。そして各卵座201は、図15に示すように、上下方向において突起部202のほかに光を遮るものが無いように構成されている。なお、孵卵場で用いられるセッタートレイ200には、ここに例示するもの以外に種々の形状のものが存在するが、各卵座201には卵を保持する突起部202のほかに光を遮るものは存在しないなど後述の光計測に必要な要件は、共通に満たされており、本実施形態は、このセッタートレイ200の形状に限定されるものではない。 Also, each egg seat 201 has one or a plurality of protrusions 202 that hold the seed eggs while the bottom surface opens downward. As shown in FIG. 15, each egg seat 201 is configured such that there is nothing to block light in addition to the protrusions 202 in the vertical direction. The setter tray 200 used in the incubation ground has various shapes other than those illustrated here, but each egg seat 201 blocks light in addition to the protrusion 202 that holds the egg. The requirements necessary for optical measurement, which will be described later, such as not existing, are satisfied in common, and the present embodiment is not limited to the shape of the setter tray 200.
 そして、このセッタートレイ200は、図示しない搬送機構により所定のトレイ搬送方向に沿って搬送され(図12参照)、所定の検出位置において一旦停止されて、光照射部2により光が照射されるとともに、種卵を透過した光が光検出部3により検出される(図13参照)。 The setter tray 200 is transported along a predetermined tray transport direction by a transport mechanism (not shown) (see FIG. 12), temporarily stopped at a predetermined detection position, and irradiated with light from the light irradiation unit 2. The light that has passed through the egg is detected by the light detector 3 (see FIG. 13).
 光照射部2は、血管や血液に吸収される波長を有する光を照射するものである。血管や血液に吸収される波長は、具体的にはヘモグロビンやミオグロビンに吸収される波長である。具体的には、検出位置にあるセッタートレイ200に載置された複数の種卵に対応して設けられた複数の発光ダイオード(LED)21である。複数のLED21は、578nm付近に発光中心波長を有するLEDであり、本実施形態では、574nmに発光中心波長を有するものである。なお、光照射部2としては、578nm付近に発光中心波長を有するレーザであっても良い。 The light irradiation unit 2 irradiates light having a wavelength that is absorbed by blood vessels and blood. Specifically, the wavelength absorbed by blood vessels and blood is the wavelength absorbed by hemoglobin and myoglobin. Specifically, it is a plurality of light emitting diodes (LEDs) 21 provided corresponding to a plurality of eggs placed on the setter tray 200 at the detection position. The plurality of LEDs 21 are LEDs having an emission center wavelength in the vicinity of 578 nm, and in the present embodiment, have an emission center wavelength at 574 nm. The light irradiation unit 2 may be a laser having an emission center wavelength near 578 nm.
 光検出部3は、各LED21に正対するように設けられた複数のフォトダイオード(PD)31である。各PD31は、個々に独立した黒色の遮光性と柔軟性を備えた素材でできた吸盤32内に収められ、各吸盤32とともにヘッド33に固定されている。このヘッド33は、図示しない昇降機構により吸盤32が種卵に密着する計測位置M(図13、図15参照)と、当該計測位置Mから上方に離間してセッタートレイ200が搬送される退避位置N(図12参照)との間を移動する。 The light detection unit 3 is a plurality of photodiodes (PD) 31 provided so as to face each LED 21. Each PD 31 is housed in a suction cup 32 made of a material having independent black light shielding properties and flexibility, and is fixed to the head 33 together with each suction cup 32. The head 33 includes a measurement position M (see FIGS. 13 and 15) where the suction cup 32 is in close contact with the egg by a lifting mechanism (not shown), and a retreat position N where the setter tray 200 is conveyed away from the measurement position M. (See FIG. 12).
 本実施形態の光照射部2は574nmに発光中心波長をもつLEDであるが、この574nmであっても、上述した検証実験における578nmの相対透過率とほぼ同様の結果が得られる。その結果を図16及び図17に示す。なおこの場合において、セッタートレイ200上に合成樹脂製の同一形状の模擬卵を載置して、種卵の計測前にその透過光の強度を計測することにより、574nmの相対透過率を求めることができる。 The light irradiation unit 2 of the present embodiment is an LED having an emission center wavelength at 574 nm, but even with this 574 nm, the same result as the relative transmittance of 578 nm in the verification experiment described above can be obtained. The results are shown in FIGS. In this case, it is possible to obtain a relative transmittance of 574 nm by placing simulated eggs of the same shape made of synthetic resin on the setter tray 200 and measuring the intensity of the transmitted light before measuring the eggs. it can.
 図16は、Day0に対するDay7の相対透過率の比(減少率)を雛の性別に分けて図示したものである。この図16から、メスの相対透過率の比がオスのものより有意に小さいことがわかる。 FIG. 16 shows the ratio (decrease rate) of the relative transmittance of Day 7 with respect to Day 0 divided by chick sex. It can be seen from FIG. 16 that the relative transmittance ratio of the female is significantly smaller than that of the male.
 図17は、横軸に初期卵重をとり、縦軸にDay0に対するDay7の相対透過率の比をとった散布図であり、この図17ではオスの分布とメスの分布の分離がより顕著である。 FIG. 17 is a scatter diagram in which the horizontal axis represents the initial egg weight and the vertical axis represents the ratio of the relative transmittance of Day 7 to Day 0. In FIG. 17, the separation of the male distribution and the female distribution is more prominent. is there.
 そして、本実施形態の種卵検査システム100は、図12及び図13に示すように、計測部である光照射部2及び光検出部3により得られた複数日の状態情報を個別の種卵毎に関連づけて記録する記録部4と、記録部4に記録された複数日の状態情報の個別の種卵毎に関連づけられた記録に基づいて種卵を選別する種卵選別部5とを備えている。 And as shown in FIG.12 and FIG.13, the egg test system 100 of this embodiment is the state information obtained by the light irradiation part 2 and the light detection part 3 which are measurement parts for every individual egg. The recording unit 4 for recording in association with each other, and the egg sorting unit 5 for sorting the eggs based on the recording associated with each individual egg of the status information recorded in the recording unit 4 for a plurality of days.
 同一セッタートレイ200上の個別の種卵は、卵座201の位置によって特定される。具体的には、セッタートレイ200内の列の番号と行の番号を指定することで卵座201の位置が特定され、その上の種卵が特定される。
 複数のセッタートレイ200が使用される場合は、セッタートレイ200を識別するトレイIDをバーコードなどの手段で付与することによりトレイを識別できる。
 したがって、記録日などの記録の順序情報、トレイID、卵座の列番号、行番号に対応づけて状態情報を記録することで、複数日の状態情報を個別の種卵毎に関連づけて記録することができる。
 また、記録の順序情報、トレイID、卵座の列番号、行番号をもとに記録を検索することで、同一の種卵に対する複数日にわたる状態情報を関連付けて参照できる。
Individual eggs on the same setter tray 200 are specified by the position of the egg seat 201. Specifically, the position of the egg seat 201 is specified by designating the column number and the row number in the setter tray 200, and the seed egg above it is specified.
When a plurality of setter trays 200 are used, the tray can be identified by giving a tray ID for identifying the setter tray 200 by means such as a barcode.
Therefore, by recording the status information in association with the recording order information such as the recording date, the tray ID, the row number of the constellation, and the row number, the status information for a plurality of days is recorded in association with each individual egg. Can do.
In addition, by searching records based on the record order information, the tray ID, the column number of the constellation, and the row number, it is possible to refer to the state information for the same egg for a plurality of days in association with each other.
 なお、この記録部4及び種卵選別部5は、CPU、内部メモリ、入出力インターフェース、AD変換部等の専用乃至汎用のコンピュータにより構成されている。そして、内部メモリに格納された種卵検査プログラムにしたがってCPUやその他の周辺機器が協働することによって、記録部4及び種卵選別部5としての機能が発揮される。また、記録部4及び種卵選別部5は、物理的に一体のコンピュータにより構成されたものであっても良いし、それぞれ物理的に別体をなすコンピュータにより構成されたものであっても良い。 The recording unit 4 and the egg sorting unit 5 are configured by a dedicated or general-purpose computer such as a CPU, an internal memory, an input / output interface, and an AD conversion unit. Then, the CPU and other peripheral devices cooperate with each other according to the egg inspection program stored in the internal memory, so that the functions as the recording unit 4 and the egg sorting unit 5 are exhibited. Further, the recording unit 4 and the egg sorting unit 5 may be configured by a physically integrated computer, or may be configured by a physically separate computer.
 以下、各部4、5について説明する。
 記録部4は、光検出部3のPD31により得られた電圧値、又は、PD31により得られた電圧値と事前に求めておいた合成樹脂ブロックなどの模擬卵における電圧値との比である相対透過率の値を個別の種卵毎に関連づけて記録するものである。なお、模擬卵における電圧値は、種卵と同様に、セッタートレイ200上に模擬卵を載置して取得する。
Hereinafter, each part 4 and 5 is demonstrated.
The recording unit 4 is a voltage value obtained by the PD 31 of the light detection unit 3 or a ratio between a voltage value obtained by the PD 31 and a voltage value in a simulated egg such as a synthetic resin block obtained in advance. The transmittance value is recorded in association with each individual egg. The voltage value in the simulated egg is obtained by placing the simulated egg on the setter tray 200, as in the case of the seed egg.
 また、記録部4は、セッタートレイ200の識別子(例えばセッタートレイ200に設けられたバーコード情報など。図示していない。)とともに当該セッタートレイ200に載置された種卵の位置情報(卵座位置)及びその種卵を透過した光の強度信号(電圧値)を記録する。 The recording unit 4 also includes position information (egg position) of the eggs placed on the setter tray 200 together with an identifier of the setter tray 200 (for example, barcode information provided on the setter tray 200; not shown). ) And the intensity signal (voltage value) of the light transmitted through the egg.
 本実施形態の記録部4には、複数日における状態情報として、以下の(1)及び(2)が記録される。なお、記録部4には、入卵前に測られた初期卵重も種卵の状態情報として併せて記録される。
(1)孵卵開始から第1設定日(本実施形態では7日目、以下、同じ)におけるPD31で検出した電圧値、又はそれにより得られた相対透過率
(2)第1設定日以前の第2設定日(本実施形態では孵卵器に入卵する直前(孵卵開始前)である0日目)におけるPD31で検出した電圧値、又はそれにより得られた相対透過率
In the recording unit 4 of the present embodiment, the following (1) and (2) are recorded as state information for a plurality of days. The initial egg weight measured before entering the egg is also recorded in the recording unit 4 as the state information of the egg.
(1) Voltage value detected by the PD 31 on the first set date (in this embodiment, the same applies hereinafter) from the start of incubation, or the relative transmittance obtained thereby (2) the first set date before the first set date Voltage value detected by PD31 on 2 setting days (0th day immediately before entering the incubator (before starting incubation) in this embodiment), or relative transmittance obtained thereby
 前記第1設定日及び第2設定日における電圧値の取得は、同じセッタートレイ200を検出位置に搬送して、複数のLED21により当該セッタートレイ200上の複数の種卵に光を照射して、それぞれの種卵を透過した光を複数のPD31で検出することにより行われる。 The acquisition of voltage values on the first set date and the second set date is performed by conveying the same setter tray 200 to the detection position, irradiating a plurality of eggs on the setter tray 200 with light by the plurality of LEDs 21, respectively. This is performed by detecting the light transmitted through the egg of each of the plurality of PDs 31.
 前記第1設定日は、孵卵7日目に限られず、その前後(例えば孵卵5日目~8日目のいずれか)であってもよい。性別判別に最適な第1設定日は、鶏種や入卵前の予備加温の条件で変化し、別途、本発明の検証実験と同様の方法で決定される。
 また、前記第2設定日は、孵卵0日目に限られないが好ましくは、孵卵0日目よりも前あるいは直後であればよい。性別判別に最適な第2設定日は、鶏種や入卵前の予備加温の条件で変化し、別途、本発明の検証実験と同様の方法で決定される。
The first set date is not limited to the seventh day of incubation and may be before or after that (for example, any one of the fifth to eighth days of incubation). The first set date that is optimal for gender discrimination varies depending on the type of chicken and the pre-warming conditions prior to egg entry, and is determined separately by the same method as in the verification experiment of the present invention.
Further, the second set date is not limited to the 0th day of incubation, but preferably may be before or just after the 0th day of incubation. The second set date that is optimal for gender discrimination varies depending on the chicken species and the pre-warming conditions before entering the eggs, and is determined separately by the same method as in the verification experiment of the present invention.
 種卵選別部5は、記録部4に記録された複数日の状態情報(PD31の電圧値又は相対透過率)の個別の種卵毎に関連づけられた記録に基づいて、種卵内の血管及び/又は血液の形成の程度を推定する形成程度推定部51と、形成程度の推定値から種卵から孵化する雛の性別を判別する性別判別部52とを有する。 Based on the record associated with each individual egg of the state information (voltage value or relative transmittance of PD 31) recorded in the recording part 4 for the individual eggs, the egg sorting part 5 has blood vessels and / or blood in the egg. A formation degree estimation unit 51 that estimates the degree of formation of the chicks, and a sex determination unit 52 that determines the sex of the chick that hatches from the eggs from the estimated value of the formation degree.
 形成程度推定部51は、第1設定日の状態情報である電圧値と第2設定日の状態情報である電圧値との比を形成程度の推定値とする。なお、両者の比を取ることにより、測定機器の機差及びトレイの種類などの影響に加えて、種卵のサイズや色などの種卵の属性の影響を低減することができ、また、模擬卵を用いた測定の手間を省くことができる。 The formation degree estimation unit 51 sets the ratio between the voltage value, which is the state information of the first setting date, and the voltage value, which is the state information of the second setting day, as an estimated value of the formation degree. By taking the ratio of the two, in addition to the effects of instrument differences and tray types, the effects of egg attributes such as egg size and color can be reduced. It is possible to save the time and labor of measurement.
 性別判別部52は、形成程度推定部51により得られた推定値を取得して、当該推定値に基づいて、種卵から孵化する雛の性別を判別するものである。また、本実施形態の性別判別部52は、推定値に基づいて、未受精卵も判別できるように構成されている。言い換えれば、この種卵検査システム100は、第1設定日の種卵を透過した光の強度に基づいて、未受精卵か否かを判別する未受精判別部を備えている。 The sex discriminating unit 52 acquires the estimated value obtained by the formation degree estimating unit 51, and discriminates the sex of the chick that hatches from the seed egg based on the estimated value. In addition, the sex determination unit 52 of the present embodiment is configured to be able to determine unfertilized eggs based on the estimated value. In other words, the egg test system 100 includes an unfertilized determination unit that determines whether the egg is an unfertilized egg based on the intensity of light transmitted through the egg on the first set date.
 ここで、性別判別部52は、閾値の設定により、M判定グループ及びF判定グループに選別する2分法、又は、M判定グループ、G判定グループ及びF判定グループに選別する3分法の何れかとして構成される。 Here, the gender discriminating unit 52 is either a bisection method for selecting an M determination group and an F determination group or a trisection method for selecting an M determination group, a G determination group, and an F determination group by setting a threshold. Configured as
 M判定グループは、オスの雛が孵化する確率が高い種卵が含まれるグループである。
 F判定グループは、メスの雛が孵化する確率が高い種卵が含まれるグループである。
 3分法にした場合、G判定グループは、M判定グループ、F判定グループの何れにも属さない種卵が含まれるグループである。なお、G判定グループは、M判定グループとF判定グループとの中間のグループであり、雌雄いずれの雛が孵化する確率が高いとは言えないグループである。
The M determination group is a group including eggs that have a high probability of male chicks hatching.
The F determination group is a group including eggs that have a high probability of female chicks hatching.
In the case of the trichotomy, the G determination group is a group including eggs that do not belong to either the M determination group or the F determination group. The G determination group is an intermediate group between the M determination group and the F determination group, and cannot be said to have a high probability that either male or female chicks hatch.
 つまり、性別判別部52が、M判定グループ及びF判定グループに選別する2分法の場合には、M判定グループとF判定グループとに選別するためのM/F閾値が設定される。なお、このM/F閾値は、予め性別判別部に入力されている。 That is, in the case of the bisection method in which the gender determination unit 52 selects the M determination group and the F determination group, the M / F threshold value for selecting the M determination group and the F determination group is set. The M / F threshold value is input in advance to the sex determination unit.
 一方、性別判別部52が、M判定グループ、G判定グループ及びF判定グループに選別する3分法の場合には、図18に示すように、M判定グループとG判定グループとに選別するためのM/G閾値、及び、G判定グループとF判定グループとに選別するためのG/F閾値が設定される。なおこれらのM/G閾値及びG/F閾値は、予め性別判別部52に入力されている。
 また、性別判別部52は、上記の2分法及び3分法のいずれにおいても、未受精卵を選別するための未受精卵閾値が設定されている。この未受精卵閾値は、M/F閾値及びM/G閾値よりも大きい値としてある。
On the other hand, in the case of the trisection method in which the gender determination unit 52 selects the M determination group, the G determination group, and the F determination group, as shown in FIG. 18, the selection for the M determination group and the G determination group is performed. The M / G threshold value and the G / F threshold value for selecting the G determination group and the F determination group are set. The M / G threshold and the G / F threshold are input to the gender determination unit 52 in advance.
Moreover, the sex discrimination | determination part 52 has set the unfertilized egg threshold value for selecting an unfertilized egg in any of the above-mentioned bisection method and trisection method. This unfertilized egg threshold is set to a value larger than the M / F threshold and the M / G threshold.
 以上により種卵選別部5において形成程度推定部51により得られた推定値を用いて性別判別部52により雌雄判別を行うことができる。 As described above, the sex determination unit 52 can perform sex discrimination using the estimated value obtained by the formation degree estimation unit 51 in the egg sorting unit 5.
<第1実施形態の効果>
 このように構成した本実施形態の種卵検査システム100によれば、異なる複数日(Day0及びDay7。ただし、これに限られない。)における状態情報から、胚の成長速度などの時間的変化を把握することができる。この時間的変化は、種卵内の血管及び/又は血液の形成の程度を表しており、オスの胚とメスの胚とで異なることから、種卵から孵化する雛の性別を判別することができ、種卵を選別することができる。
<Effects of First Embodiment>
According to the egg inspection system 100 of the present embodiment configured as described above, temporal changes such as the growth rate of an embryo are grasped from state information on different days (Day 0 and Day 7, but not limited to this). can do. This temporal change represents the degree of blood vessel and / or blood formation in the seed egg, and since it differs between male and female embryos, the sex of chicks that hatch from the seed egg can be determined, Eggs can be sorted out.
 すなわち、早い段階で、おおよその雛の歩留まりを予測できる。具体的には、そのロット中からオスの多く含まれるグループを選別して、ワクチン卵へと転用したり、販売可能な雛の予測数量が受注数より多い場合は転売先を探したり、少ない場合は同業他社から雛を調達して不足分を補うなどの行動をとることができる。 That is, the approximate yield of chicks can be predicted at an early stage. Specifically, a group containing a large number of males is selected from the lot and diverted to a vaccine egg. If the predicted quantity of chicks that can be sold is greater than the number of orders received, a resale destination is found. Can take actions such as procuring chicks from other companies in the same industry to make up for the shortfall.
 なお、本実施形態では、推定値に基づいて、未受精卵も判別できるように構成されているので、早い段階で、未受精卵や中止卵を除くことにより、移卵作業時点での腐敗卵の発生の可能性を減らせたり、早い段階で、雛の歩留まり予測や未受精卵率を把握して、雛の過不足が生じないような最適な種卵の調達数量の決定や、種鶏農場の親鶏群の管理に役立てたりすることができる。 In this embodiment, since it is configured to be able to discriminate unfertilized eggs based on the estimated value, it is possible to remove spoiled eggs at the time of transfer by removing unfertilized eggs and aborted eggs at an early stage. Can be reduced, the yield of chicks can be predicted at an early stage, and the rate of unfertilized eggs can be determined to determine the optimal number of eggs to be laid so that chicks will not be overdeficient or insufficient. It can be used for the management of parent flocks.
 また、複数日の状態情報を記録部4に記録させているので、異なる日に計測された状態情報の管理を容易にすることができる。さらに、複数日の状態情報を記録部4に記録させているので、孵化率に影響を与えない時期まで待った後に、種卵の選別及び移し変える作業を行うことができる。 Also, since the status information for a plurality of days is recorded in the recording unit 4, the status information measured on different days can be easily managed. Furthermore, since the status information for a plurality of days is recorded in the recording unit 4, after waiting until a time when the hatching rate is not affected, it is possible to perform selection and transfer of eggs.
<第2実施形態>
 次に、本発明に係る種卵検査システムの第2実施形態について、図面を参照して説明する。
Second Embodiment
Next, 2nd Embodiment of the egg test system which concerns on this invention is described with reference to drawings.
 本実施形態の種卵検査システム100は、記録部4の構成及び記録部4にデータを書き込む構成が前記実施形態とは異なる。
 具体的に本実施形態の記録部4は、図19に示すように、セッタートレイ200に設けられたRFID等の非接触ICタグである。
The egg inspection system 100 of the present embodiment is different from the above-described embodiment in the configuration of the recording unit 4 and the configuration of writing data in the recording unit 4.
Specifically, the recording unit 4 of the present embodiment is a non-contact IC tag such as an RFID provided on the setter tray 200 as shown in FIG.
 図19に示す例では、種卵検査システム100は、光検出部3により得られた光の強度(電圧値)を非接触ICタグ4に書き込む光強度書込部6と、非接触ICタグ4に記録された光強度を読み取る光強度読取部7と、性別判別部52により得られた判別結果を非接触ICタグ4に書き込む判別結果書込部8とを備えている。なお、光強度書込部6、光強度読取部7及び判別結果書込部8は、非接触ICタグ4に対してデータの書き込み及び読み取りを行うリーダライタにより構成されている。この場合の種卵の非破壊検査の手順は以下である。 In the example shown in FIG. 19, the egg inspection system 100 includes a light intensity writing unit 6 that writes the light intensity (voltage value) obtained by the light detection unit 3 in the non-contact IC tag 4 and a non-contact IC tag 4. A light intensity reading unit 7 for reading the recorded light intensity and a determination result writing unit 8 for writing the determination result obtained by the gender determination unit 52 to the non-contact IC tag 4 are provided. The light intensity writing unit 6, the light intensity reading unit 7, and the discrimination result writing unit 8 are configured by a reader / writer that writes and reads data to and from the non-contact IC tag 4. The procedure for nondestructive inspection of eggs in this case is as follows.
 入卵前のDay0においてセッタートレイ200を検出位置に搬送して、複数のLED21により当該セッタートレイ200上の複数の種卵に光を照射して、それぞれの種卵を透過した光を複数のPD31で検出する。種卵検査システム100は、そのPD31の電圧値を取得する。このDay0の電圧値は、種卵検査システム100の光強度書込部6により、そのセッタートレイ200に設けられた非接触ICタグ4に、種卵の位置情報(卵座位置)とともに書き込まれる。なお、この非接触ICタグ4には、初期卵重も併せて記録される。 In Day 0 before entering the egg, the setter tray 200 is transported to a detection position, and a plurality of LEDs 21 irradiate a plurality of eggs on the setter tray 200, and light transmitted through each egg is detected by a plurality of PDs 31. To do. The egg inspection system 100 acquires the voltage value of the PD 31. The voltage value of Day 0 is written to the non-contact IC tag 4 provided on the setter tray 200 by the light intensity writing unit 6 of the egg inspection system 100 together with the position information (egg position) of the egg. The non-contact IC tag 4 also records the initial egg weight.
 孵卵開始から7日目(Day7)においてセッタートレイ200を再び検出位置に搬送して、複数のLED21により当該セッタートレイ200上の複数の種卵に光を照射して、それぞれの種卵を透過した光を複数のPD31で検出する。種卵検査システム100は、そのPD31の電圧値を取得する。このDay7の電圧値は、種卵検査システム100の光強度書込部6により、そのセッタートレイ200に設けられた非接触ICタグ4に、種卵の位置情報(卵座位置)とともに書き込まれる。 On the seventh day from the start of incubation (Day 7), the setter tray 200 is transported to the detection position again, and the plurality of LEDs 21 irradiate the plurality of eggs on the setter tray 200 with light, and the light transmitted through each egg is transmitted. Detection is performed by a plurality of PDs 31. The egg inspection system 100 acquires the voltage value of the PD 31. The voltage value of Day 7 is written to the non-contact IC tag 4 provided on the setter tray 200 together with the position information (egg position) of the egg by the light intensity writing unit 6 of the egg inspection system 100.
 種卵検査システム100の光強度読取部7は、非接触ICタグ4からDay0の電圧値及びDay7の電圧値を取得する。そして、形成程度推定部51は、Day0の電圧値及びDay7の電圧値を用いて推定値を算出し、性別判別部52は、その推定値と所定の閾値とを比較して、各種卵毎に孵化する雛の性別を判別する。この判別結果は、種卵検査システム100の判別結果書込部8により、そのセッタートレイ200の非接触ICタグ4に、種卵の位置情報(卵座位置)とともに書き込まれる。 The light intensity reading unit 7 of the egg inspection system 100 acquires the voltage value of Day 0 and the voltage value of Day 7 from the non-contact IC tag 4. Then, the formation degree estimating unit 51 calculates an estimated value using the voltage value of Day 0 and the voltage value of Day 7, and the gender determining unit 52 compares the estimated value with a predetermined threshold value for each egg. Determine the sex of the chicks that hatch. This discrimination result is written together with the position information (egg position) of the egg by the discrimination result writing unit 8 of the egg test system 100 to the non-contact IC tag 4 of the setter tray 200.
 その後、孵卵開始から例えば9日目(第1設定日以降の第3設定日の一例、9日目には限られない。)に、セッタートレイ200は、仕分け装置400に搬送される。この仕分け装置400に設けられた判別結果読取部(具体的にはリーダライタ)401により、非接触ICタグ4に記録された判別結果が読み取られて、仕分け装置400により複数の種卵は、少なくともM判定グループ及びF判定グループに仕分けされる。なお、図19では、G判定グループ及び未受精卵(廃棄)にも仕分ける場合を示している。 Thereafter, for example, on the ninth day from the start of incubation (an example of the third set date after the first set date, not limited to the ninth day), the setter tray 200 is conveyed to the sorting device 400. The discrimination result recorded in the non-contact IC tag 4 is read by the discrimination result reading unit (specifically reader / writer) 401 provided in the sorting device 400, and the sorting device 400 has at least M eggs. Sorted into judgment groups and F judgment groups. FIG. 19 shows a case where the G determination group and the unfertilized egg (discard) are sorted.
<第2実施形態の効果>
 本実施形態の種卵検査システム100は、セッタートレイ200に設けられた非接触ICタグ4に、光検出部3により得られた光の強度及び性別判別部52により得られた判別結果を書き込むように構成されているので、セッタートレイ200毎の種卵のデータ管理が容易となる。また、セッタートレイ200に設けられた非接触ICタグ4に性別判別部52により得られた判別結果を書き込み、後日、その判別結果を用いて種卵の仕分けを行うことができるので、雌雄判別の時期が孵卵初期の場合であっても、種卵の移し変える作業は孵化率に影響を与えない時期まで待つことができる。
<Effects of Second Embodiment>
The egg inspection system 100 of the present embodiment writes the discrimination result obtained by the light intensity obtained by the light detection unit 3 and the sex discrimination unit 52 on the non-contact IC tag 4 provided on the setter tray 200. Since it is comprised, the data management of the egg for every setter tray 200 becomes easy. Moreover, the discrimination result obtained by the sex discrimination unit 52 can be written in the non-contact IC tag 4 provided on the setter tray 200, and the eggs can be sorted using the discrimination result at a later date. Even in the early incubation period, the transfer of seed eggs can be waited until the hatching rate is not affected.
 なお、本発明は前記第1、第2実施形態に限られるものではない。
<種卵仕分けシステムの変形例(図20)>
 図20に種卵検査システム100を組み込んだ種卵仕分けシステムを示す。このシステムでは、光照射部2及び光検出部3と、種卵選別部5とが物理的に分離されて構成されている。この例では、種卵仕分けシステムは、光検出部3により得られた光の強度を非接触ICタグ4に書き込む光強度書込部6を備えている。また、非破壊検査装置100とは別の装置(例えば仕分け装置400)は、非接触ICタグ4に記録された光強度を読み取る光強度読取部7と、形成程度推定部51及び性別判別部52とを備えている。なお、光強度書込部6及び光強度読取部7は、同一又は別々にリーダライタにより構成されている。この場合の種卵の非破壊検査の手順は以下である。
The present invention is not limited to the first and second embodiments.
<Modification of the egg sorting system (FIG. 20)>
FIG. 20 shows an egg sorting system incorporating the egg inspection system 100. In this system, the light irradiation unit 2 and the light detection unit 3 and the egg sorting unit 5 are physically separated. In this example, the egg sorting system includes a light intensity writing unit 6 that writes the light intensity obtained by the light detection unit 3 to the non-contact IC tag 4. Further, an apparatus (for example, a sorting apparatus 400) different from the nondestructive inspection apparatus 100 includes a light intensity reading unit 7 that reads the light intensity recorded on the non-contact IC tag 4, a formation degree estimating unit 51, and a gender determining unit 52. And. The light intensity writing unit 6 and the light intensity reading unit 7 are configured by a reader / writer, either the same or separately. The procedure for nondestructive inspection of eggs in this case is as follows.
 入卵前のDay0においてセッタートレイ200を検出位置に搬送して、複数のLED21により当該セッタートレイ200上の複数の種卵に光を照射して、それぞれの種卵を透過した光を複数のPD31で検出する。種卵検査システム100は、そのPD31の電圧値を取得する。このDay0の電圧値は、種卵検査システム100の光強度書込部6により、そのセッタートレイ200の非接触ICタグ4に、種卵の位置情報(卵座位置)とともに書き込まれる。なお、この非接触ICタグ4には、初期卵重も併せて記録される。 In Day 0 before entering the egg, the setter tray 200 is transported to a detection position, and a plurality of LEDs 21 irradiate a plurality of eggs on the setter tray 200, and light transmitted through each egg is detected by a plurality of PDs 31. To do. The egg inspection system 100 acquires the voltage value of the PD 31. The voltage value of Day 0 is written to the non-contact IC tag 4 of the setter tray 200 by the light intensity writing unit 6 of the egg inspection system 100 together with the position information (egg position) of the egg. The non-contact IC tag 4 also records the initial egg weight.
 孵卵開始から7日目(Day7)においてセッタートレイ200を再び検出位置に搬送して、複数のLED21により当該セッタートレイ200上の複数の種卵に光を照射して、それぞれの種卵を透過した光を複数のPD31で検出する。種卵検査システム100は、そのPD31の電圧値を取得する。このDay7の電圧値は、種卵検査システム100の光強度書込部6により、そのセッタートレイ200の非接触ICタグ4に、種卵の位置情報(卵座位置)とともに書き込まれる。 On the seventh day from the start of incubation (Day 7), the setter tray 200 is transported to the detection position again, and the plurality of LEDs 21 irradiate the plurality of eggs on the setter tray 200 with light, and the light transmitted through each egg is transmitted. Detection is performed by a plurality of PDs 31. The egg inspection system 100 acquires the voltage value of the PD 31. The voltage value of Day 7 is written to the non-contact IC tag 4 of the setter tray 200 together with the position information (egg seat position) of the setter tray 200 by the light intensity writing unit 6 of the egg inspection system 100.
 その後、孵卵開始から例えば9日目に、セッタートレイ200は、仕分け装置400に搬送される。この仕分け装置400に設けられた光強度読取部7により、非接触ICタグ4に記録されたDay0及びDay7の電圧値が読み取られる。そして、仕分け装置400の形成程度推定部4は、Day0の電圧値及びDay7の電圧値を用いて推定値を算出し、性別判別部5は、その推定値と所定の閾値とを比較して、各種卵毎に孵化する雛の性別を判別する。この判定結果により、仕分け装置400は、複数の種卵を、少なくともM判定グループ及びF判定グループに仕分ける。なお、図20では、G判定グループ及び未受精卵(廃棄)にも仕分ける場合を示している。
 この変形例や前述した第2実施形態のように、記録部としてRFID等の非接触ICタグを用いる場合には、非接触ICタグに全ての情報を記録させるものに限らず、例えば、非接触ICタグにトレイIDや識別コードなど一部の情報のみを記憶させる一方、この非接触ICタグと別の場所に第2の記録部を設けて前記一部の情報に関連した個別情報を記録するようにしてもよい。
Thereafter, for example, on the ninth day from the start of incubation, the setter tray 200 is conveyed to the sorting device 400. The light intensity reading unit 7 provided in the sorting device 400 reads the voltage values of Day 0 and Day 7 recorded on the non-contact IC tag 4. Then, the formation degree estimation unit 4 of the sorting apparatus 400 calculates an estimated value using the voltage value of Day 0 and the voltage value of Day 7, and the gender determination unit 5 compares the estimated value with a predetermined threshold value. Determine the sex of chicks that hatch for each egg. Based on the determination result, the sorting apparatus 400 sorts the plurality of eggs into at least the M determination group and the F determination group. FIG. 20 shows a case where the G determination group and unfertilized eggs (discarded) are sorted.
In the case of using a non-contact IC tag such as RFID as the recording unit as in this modified example or the second embodiment described above, the recording unit is not limited to recording all information on the non-contact IC tag. While only a part of information such as a tray ID and an identification code is stored in the IC tag, a second recording unit is provided in a place different from the non-contact IC tag to record individual information related to the part of information. You may do it.
<サイズ情報をさらに利用して雛の性別を予測する変形例>
 種卵の透過率は種卵の卵重や長径、短径などのサイズにも依存する。このサイズの影響を考慮して、形成程度推定部51は、変数X1(=初期卵重)と、変数X2(=Day0に対するDay7の相対透過率の比)との2つの変数を説明変数とし、性別(オス=1、メス=0)の予測値Yを求めるロジスティック回帰分析を行うものであり、性別判別部52は、この予測値Yを用いて、種卵から孵化する雛の性別を判別するものであってもよい。この場合、性別判別部52は、例えばY≧0.5をオス、Y<0.5をメスとした2分法による判別を行ってもよいし、例えばY≧0.6をオス、Y<0.4をメスとした3分法による判別を行ってもよい。
<Modified example of predicting the sex of chicks by further using size information>
The permeability of the seed egg depends on the egg weight, the major axis, the minor axis, and the like. In consideration of the effect of this size, the formation degree estimation unit 51 uses two variables, a variable X1 (= initial egg weight) and a variable X2 (= ratio of relative transmittance of Day 7 to Day 0) as explanatory variables, Logistic regression analysis is performed to obtain the predicted value Y of the sex (male = 1, female = 0), and the sex determination unit 52 uses this predicted value Y to determine the sex of the chick that hatches from the egg. It may be. In this case, the gender determination unit 52 may perform determination by a bisection method, for example, Y ≧ 0.5 is male and Y <0.5 is female, for example, Y ≧ 0.6 is male, Y < You may perform the discrimination by the trisection method which used 0.4 as the female.
 このように、形成程度推定部51は、前記第1設定日以前の第2設定日又は孵卵開始前の前記種卵のサイズ情報をさらに用いるものであってもよく、上述した変数X1は、初期卵重以外に卵の長径や短径、又は卵の体積などが考えられ、そのサイズ情報の計測時期も種々変更可能である。 As described above, the formation degree estimation unit 51 may further use the second set date before the first set date or the size information of the seed egg before the start of incubation, and the variable X1 described above is the initial egg. In addition to the weight, the major axis and minor axis of the egg, the volume of the egg, and the like can be considered, and the measurement timing of the size information can be variously changed.
 この変形例では、入卵前に測定するのが適切な種卵のサイズ情報と、Day0とDay7に測定するのが適切な他の情報とを組み合わせて用いている。これは、入卵前または入卵後の最適な日にちに測定された複数の証拠の利用により、性別やその他の判定精度の向上を図ることができ、複数日の状態情報の個別の種卵毎に関連づけられた記録に基づいて種卵を選別するという種卵検査システムを有効に活用した例と言える。同様に、図6で示したような初期卵重とDay7(単一の測定日)における578nmの相対透過率との関係のようなものでも、この種卵検査システムの利点を活かすことができるのはもちろんである。 In this modified example, the size information of the egg that is appropriate to be measured before entering the egg and the other information that is appropriate to be measured for Day 0 and Day 7 are used in combination. It is possible to improve the accuracy of gender and other judgments by using multiple evidence measured on the optimal date before or after implantation, and for each individual egg of the status information of multiple days. It can be said that this is an example of effectively utilizing the egg inspection system that selects eggs based on the associated records. Similarly, the relationship between the initial egg weight as shown in FIG. 6 and the relative transmittance of 578 nm on Day 7 (single measurement day) can also take advantage of this egg inspection system. Of course.
 なお、変数X2についても、Day0に対するDay7の相対透過率の比に限られず、Day0とDay7の相対透過率の差であってもよい。Day0やDay7は、第1設定日や第2設定日の一例であることは言うまでもない。さらに、予測値Yを求める際には、変数X1と変数X2との関係性を求めることができるものであればロジスティック回帰分析に限られず種々変更可能である。 Note that the variable X2 is not limited to the ratio of the relative transmittance of Day 7 to Day 0, and may be the difference in the relative transmittance of Day 0 and Day 7. Needless to say, Day 0 and Day 7 are examples of the first set date and the second set date. Furthermore, when the predicted value Y is obtained, it can be variously changed without being limited to logistic regression analysis as long as the relationship between the variable X1 and the variable X2 can be obtained.
<複数の波長の光を利用する変形例>
 前記実施形態の光照射部2は、血管や血液に吸収される波長を有する光(574nm)を射出するLEDを用いたものであったが、このLEDに加えて、孵卵後期の胚の心拍測定に適した波長を有する光(例えば870nm)を射出するLEDを備えるものであってもよい。この場合、孵卵初期においては574nmのLEDを用いて種卵の雌雄判別及び未受精卵の判別を行うとともに、孵卵後期においては870nmのLEDを用いて非生存卵(発育中止卵および未受精卵)の判別を行うことができる。このような構成であれば、図21に示す雛の生産工程において、入卵作業時に574nmのPDの電圧値を測定し、中間検卵作業時に574nmのPDの電圧値を測定して、未受精卵を選別して取り除くことができる。また、その後の性別仕分け作業によりオスの種卵を取り除いてワクチン卵に回すことができる。メスの種卵はそのまま孵卵が継続されて、移卵時検卵作業時に870nmのPDの電圧値を測定して非生存卵を選別して取り除くことができ、移卵作業によりメスの生存卵をハッチャーに移卵して孵化させることができる。
<Modification using multiple wavelengths of light>
The light irradiation unit 2 of the above embodiment uses an LED that emits light (574 nm) having a wavelength absorbed by blood vessels and blood. In addition to this LED, the heart rate measurement of the embryo in the late incubation stage It may include an LED that emits light having a wavelength suitable for (for example, 870 nm). In this case, at the early stage of incubation, the 574-nm LED is used to discriminate between male and female eggs and unfertilized eggs, and at the late stage of incubation, the 870-nm LED is used to identify non-viable eggs (development aborted eggs and unfertilized eggs). A determination can be made. With such a configuration, in the chick production process shown in FIG. 21, the voltage value of the 574 nm PD is measured during the egg insertion operation, and the voltage value of the 574 nm PD is measured during the intermediate egg inspection operation. Eggs can be sorted and removed. In addition, it is possible to remove the male egg and turn it into a vaccine egg by subsequent sex sorting. Incubation of female eggs is continued, and non-viable eggs can be selected and removed by measuring the voltage value of PD at 870 nm during egg inspection at the time of egg transfer. Eggs can be hatched.
 前記実施形態の形成程度推定部51は、前記第1設定日と第2設定日又は孵卵開始前の光の強度に基づいて、前記種卵内の血管及び/又は血液の形成の程度を推定する際に、各設定日の光の強度の比を用いていたが、各設定日間の光の強度の差を用いるようにするなど種々変更可能である。 When the formation degree estimation unit 51 of the embodiment estimates the degree of formation of blood vessels and / or blood in the eggs based on the first set date and the second set date or the light intensity before the start of incubation. In addition, although the ratio of the light intensity on each setting day is used, various changes can be made such as using the difference in light intensity on each setting day.
<胚の成長状態から雛の雌雄を予測する変形例>
 前記実施形態の種卵選別部は、血管や血液の状態情報から予想される種卵から孵化する雛の性別に基づいて種卵を選別するものであったが、複数日の状態情報により求まる種卵の内部の胚の成長状態(例えば成長速度のレベル)に基づいて、種卵を選別するものであっても良い。
 このとき、記録部4には、複数日における状態情報として、以下の(1)及び(2)が記録される。
(1)孵卵開始から第1設定日(例えば14日目)におけるPD31で検出した電圧値、又はそれにより得られた相対透過率
(2)第1設定日以後の第2設定日(例えば18日目)におけるPD31で検出した電圧値、又はそれにより得られた相対透過率
<Modification of predicting sex of chick from embryo growth state>
The egg sorting unit of the above embodiment sorts the eggs based on the sex of the chicks hatched from the eggs predicted from the state information of blood vessels and blood. The seed eggs may be selected based on the growth state of the embryo (for example, the growth rate level).
At this time, the following (1) and (2) are recorded in the recording unit 4 as state information for a plurality of days.
(1) Voltage value detected by PD 31 on the first set date (eg, 14th day) from the start of incubation, or relative transmittance obtained thereby (2) Second set date after the first set date (eg, 18 days) Eye) voltage value detected by PD31 or relative transmittance obtained thereby.
 前記実施形態では、孵卵開始から7日目(Day7)の相対透過率を用いて雌雄判別をするものであったが、図12に示す検査装置において、セッタートレイ上の種卵を測定する際に個々の卵に対して得られるLED電流(測定時にLEDに流す電流値)と、PD受光電圧(PD受光電圧の時系列データの平均値)とを用いて、次式で計算される不透明度を用いて雌雄判別しても良い。なお、この場合のLEDは、血液中のヘモグロビンや水分の吸収を受けにくい近赤外光を照射するものであり、具体的には、870nmに発光中心波長を有するものである。 In the above embodiment, the sex is determined using the relative transmittance on the seventh day (Day 7) from the start of incubation, but in the inspection apparatus shown in FIG. Using the opacity calculated by the following equation using the LED current (current value flowing through the LED at the time of measurement) obtained for the egg and the PD light reception voltage (average value of the time series data of the PD light reception voltage) The sex may be discriminated. The LED in this case emits near-infrared light that is difficult to absorb hemoglobin and water in blood, and specifically has an emission center wavelength at 870 nm.
 不透明度=LED電流/PD受光電圧
     =LED電流/(卵の透過率×LED電流×LED発光効率×PD感度)
     =K×(1/卵の透過率)
     ただし、K=1/(LED発光効率×PD感度)
Opacity = LED current / PD light receiving voltage = LED current / (egg transmittance × LED current × LED luminous efficiency × PD sensitivity)
= K × (1 / egg permeability)
However, K = 1 / (LED luminous efficiency x PD sensitivity)
 なお、同一卵座での異なる測定日の不透明度の比を求めることにより、係数Kを消去することができる。 It should be noted that the coefficient K can be eliminated by obtaining the ratio of the opacity of different measurement days at the same locus.
 DayMに対するDayNの不透明度の比
     =DayNの不透明度/DayMの不透明度
     =DayMの卵の透過率/DayNの卵の透過率
Ratio of DayN opacity to DayM = DayN opacity / DayM opacity = DayM egg permeability / DayN egg permeability
 この式を用いることにより、測定に用いた卵座に依存しないので、卵固有の属性である透過率の比として、卵間で大小を論じることができる。 By using this formula, it does not depend on the locus used for the measurement, so the ratio between the transmittances, which is an attribute unique to eggs, can be discussed between eggs.
 以下の実施例においては、Day3から不透明度の測定を開始したので、Day3に対するDayNの不透明度の比を用いる。 In the following examples, since the measurement of opacity was started from Day 3, the ratio of Day N opacity to Day 3 is used.
 この実施例では、上述した検証実験と同様に、採卵鶏(ジュリア・ライト)の種卵を90個入手して、入手時に全ての種卵の卵重(以下、初期卵重という。)を測定した。 In this example, similarly to the verification experiment described above, 90 egg eggs (Julia Wright) were obtained and the egg weight of all the egg eggs (hereinafter referred to as initial egg weight) was measured at the time of acquisition.
 Day3からDay18まで24時間毎に、発光中心波長870nmのLEDの光を種卵に照射して、当該種卵からの透過光をPDにより受光した。なお、この検査装置は、卵毎にPDの受光電圧が所定の範囲になるように、LEDに流す電流値を変化させた。 Every 24 hours from Day 3 to Day 18, the eggs were irradiated with LED light having an emission center wavelength of 870 nm, and the transmitted light from the eggs was received by the PD. In addition, this test | inspection apparatus changed the electric current value sent through LED so that the light reception voltage of PD might become a predetermined range for every egg.
 図22は、雛が孵化した76個の種卵において、横軸に初期卵重をとり、縦軸にDay3に対するDay8の不透明度の比を取った散布図であり、図23は、雛が孵化した76個の種卵において、Day3に対するDay8の不透明度の比を雛の性別に分けて図示したものである。この図22及び図23から、メスのDay3に対するDay8の不透明度の比がオスのものより有意に大きいことがわかる(t検定 p値<0.037)。 FIG. 22 is a scatter diagram with the initial egg weight on the horizontal axis and the ratio of Day 8 opacity to Day 3 on the vertical axis in 76 eggs hatched with chicks. FIG. 23 shows the hatched chicks. In 76 eggs, the ratio of the opacity of Day 8 to Day 3 is shown separately for each sex of chicks. From FIG. 22 and FIG. 23, it can be seen that the ratio of the opacity of Day 8 to Day 3 of female is significantly larger than that of male (t-test p value <0.037).
 この図23において例えばDay3に対するDay8の不透明度の比が、2.25より小さい種卵を抽出すれば、37個が抽出される。これは全体76個中の49%である。37個中23個がオスであり、オスの比率は、62%である。このように、Day3に対するDay8の不透明度の比によっても性別判別することができる。 In FIG. 23, for example, if eggs having a opacity ratio of Day 8 to Day 3 of less than 2.25 are extracted, 37 eggs are extracted. This is 49% of the total 76 pieces. 23 out of 37 are males, and the male ratio is 62%. Thus, gender discrimination can also be performed by the ratio of Day 8 opacity to Day 3.
 図24は、横軸にDay3に対するDay8の不透明度の比をとり、縦軸にDay0に対するDay7の574nmの相対透過率の比をとった散布図である。
 図24の散布図の横軸の変数X1(=Day3に対するDay8の不透明度の比)と、縦軸の変数X2(=Day0に対するDay7の相対透過率の比)との2つの変数を説明変数とし、性別(オス=1、メス=0)を目的変数として、ロジスティック回帰分析で判別式を求めた。
FIG. 24 is a scatter diagram in which the horizontal axis represents the ratio of the opacity of Day 8 to Day 3 and the vertical axis represents the ratio of the relative transmittance of 574 nm of Day 7 to Day 0.
The variable X1 on the horizontal axis of the scatter diagram of FIG. 24 (= the ratio of the opacity of Day 8 to Day 3) and the variable X2 on the vertical axis (= the ratio of the relative transmittance of Day 7 to Day 0) are explanatory variables. The discriminant was obtained by logistic regression analysis with gender (male = 1, female = 0) as the objective variable.
 ロジスティック回帰分析におけるオスメス判別値Yの分布を図25に示す。なお、ロジスティック回帰分析におけるオスメス判別値Yは、Yの値が1に近いほどオスである確率が高く、逆に0に近いほどメスである確率が高い。 FIG. 25 shows the distribution of the male / female discrimination value Y in the logistic regression analysis. Note that the male / female discrimination value Y in logistic regression analysis has a higher probability of being male as the value of Y is closer to 1, and conversely, the probability of being female is higher as it is closer to 0.
 Y≧0.55をオスと判定し、Y<0.55をメスとした場合、種卵は2つのグループ、M判定グループとF判定グループに2分される(2分法)。 When Y ≧ 0.55 is determined as male and Y <0.55 as female, the eggs are divided into two groups, M determination group and F determination group (dichotomy).
 この2分法による判別結果を以下の表3に示す。 The discrimination results by this bisection method are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 Y≧0.62をオスと判定し、Y<0.42をメスと判定し、それ以外を不明と判定した場合、種卵は、3つのグループ、M判定グループ、G判定グループ、F判定グループに3分される(3分法)。 If Y ≧ 0.62 is determined to be male, Y <0.42 is determined to be female, and the other is determined to be unknown, the eggs are divided into three groups, M determination group, G determination group, and F determination group. 3 minutes (3 minutes method).
 この3分法による判別結果を以下の表4に示す。 The discrimination results by this trisection method are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上より、Day0に対するDay7の相対透過率の比の性差、及び、これらとDay3に対するDay8の不透明度の比の性差との組み合わせにより、種卵から孵化する雛の性別を予測し、3分法で33%の卵をM判定グループとして抽出して、そこから約80%の卵からオスが孵化することが分かった。上述したDay3に対するDay8の不透明度の比の性差のみの場合と比較して、抽出率もオス率も向上している。 Based on the above, the sex of the relative transmittance ratio of Day 7 to Day 0 and the sex difference of the ratio of opacity of Day 8 to Day 3 are predicted to predict the sex of chicks hatched from the seed eggs. % Of eggs were extracted as M judgment groups, and it was found that males hatched from about 80% of eggs. Compared to the case of only the sex difference in the ratio of opacity of Day 8 to Day 3 described above, both the extraction rate and the male rate are improved.
 なお、ここでは、胚の成長度合いを推定するために不透明度を用いていたが、「胚の状態情報」は他に、代謝の強さ(一例として心拍の強さ)などであってもよい。 Here, opacity is used to estimate the degree of embryo growth, but “embryo status information” may also be metabolic strength (eg, heart rate strength). .
<胚の成長状態から後期中止胚を予測し選別する変形例>
 前記実施形態の種卵選別部は、種卵から孵化する雛の性別に基づいて種卵を選別するものであったが、複数日の状態情報により求まる種卵の内部の胚の成長状態(例えば成長速度のレベル)に基づいて、雄雌以外の観点から種卵を選別するものであっても良い。
 以下、異なる日の不透明度の比の雌雄判別以外の応用例について説明する。
 孵卵開始18日目(Day18)の移卵時の生死判別の検査において、心臓の動きや胚の活動が観測されて生存卵と判断されても、その全ての生存卵が孵化するとは限らない。
<Modified example of predicting and selecting late-stage aborted embryos from embryo growth state>
In the embodiment, the egg sorting unit sorts the seed eggs based on the sex of the chicks that hatch from the seed eggs, but the growth state of the embryo inside the seed eggs obtained from the state information of multiple days (for example, the level of the growth rate) ) Based on other than males and females.
Hereinafter, application examples other than sex determination of the opacity ratio of different days will be described.
Even if it is determined that the eggs are viable by observing the movement of the heart and the activity of the embryo in the test for viability determination at the time of transfer on the 18th day (Day 18) after the start of incubation, not all the live eggs are hatched.
 通常、移卵後に呼吸が肺呼吸に変わると、卵内の雛は内側から卵殻を破り小さな穴を開ける。この穴を啄痕(たくこん)という。多くの場合、啄痕が出ると数時間以内に雛が孵化するが、中には孵化しない場合がある。
 これらの移卵時に生存していたにも関わらず孵化しなかった卵を「死籠り卵」という。死籠りになるか否かは、Day18のデータのみでは判別しづらい。
Usually, when breathing changes to pulmonary breathing after egg transfer, the chicks in the egg break the eggshell from the inside and make a small hole. This hole is called a scar. In many cases, chicks hatch within a few hours when scar marks appear, but some do not hatch.
Eggs that survived at the time of transfer but did not hatch are called “dead eggs”. It is difficult to determine whether or not death will occur from only the Day 18 data.
 一方、Day14に対するDay18の不透明度の比を見ることにより、孵卵後期の胚の急成長期の成長速度の違いを見ることができる。そして、本願発明者は、Day14に対するDay18の不透明度の比が小さい場合に「死籠り卵」になる可能性が高いことを見出した。 On the other hand, by looking at the ratio of the opacity of Day 18 to Day 14, it is possible to see the difference in the growth rate of the embryo in the late incubation stage during the rapid growth stage. The inventors of the present application have found that there is a high possibility of becoming a “dead egg” when the ratio of the opacity of Day 18 to Day 14 is small.
 図26に、Day3に対するDayN(N=3~18)の不透明度の比の変化を示す成長曲線を示す。この図26から分かるように、Day14に対するDay18の不透明度の比が小さい場合は、「死籠り卵」になる可能性が高い。また、Day14に対するDay18の不透明度の比が小さい場合は、「後期中止卵」の可能性が高い。なお、後期中止卵は、バイタルサインの存在でも識別可能であるが、不透明度の比を用いることで、判別精度の改善を図ることができる。 FIG. 26 shows a growth curve showing a change in the ratio of opacity of Day N (N = 3 to 18) to Day 3. As can be seen from FIG. 26, when the ratio of the opacity of Day 18 to Day 14 is small, there is a high possibility of becoming a “dead egg”. Moreover, when the ratio of the opacity of Day 18 to Day 14 is small, there is a high possibility of “late withdrawal egg”. Note that late-stage aborted eggs can be identified even in the presence of vital signs, but the discrimination accuracy can be improved by using the ratio of opacity.
 前記第1設定日及び第2設定日における電圧値の取得は、前記実施形態と同様に、同じセッタートレイ200を検出位置に搬送して、複数のLED21により当該セッタートレイ200上の複数の種卵に光を照射して、それぞれの種卵を透過した光を複数のPD31で検出することにより行われる。 The acquisition of the voltage values on the first set date and the second set date is performed by transferring the same setter tray 200 to the detection position and using a plurality of LEDs 21 to a plurality of eggs on the setter tray 200, as in the above embodiment. This is performed by irradiating light and detecting the light transmitted through each egg with a plurality of PDs 31.
 前記第1設定日は、孵卵14日目に限られず、その前後(例えば孵卵12日目~15日目のいずれか)であってもよい。また、第2設定日は、孵卵18日目に限られず、その前後(例えば孵卵16日目~19日目のいずれか)であってもよい。胚の成長速度の判別に最適な第1設定日及び第2設定日は、鶏種や入卵前の予備加温の条件で変化し、別途、本発明の検証実験と同様の方法で決定される。 The first set date is not limited to the 14th day of incubation, but may be before or after (for example, any one of the 12th to 15th days of incubation). Further, the second set date is not limited to the 18th day of incubation, and may be before or after (for example, any one of the 16th to 19th days of incubation). The first set date and the second set date that are optimal for discriminating the growth rate of the embryo vary depending on the chicken species and pre-warming conditions before entering the eggs, and are determined separately by the same method as the verification experiment of the present invention. The
 このように種卵選別部が成長速度のレベルに応じて種卵を選別することにより、種卵の孵化時間を予測して孵化時間ごとに種卵を仕分けたり、雛の増体性等の属性を予測して属性ごとに種卵を仕分けたりできる。また、種卵を属性ごとに仕分けることにより、種卵ごとに最適な孵卵条件を設定することもできる。 In this way, by selecting the seed eggs according to the growth rate level, the seed egg sorting unit predicts the hatching time of the seed eggs and sorts the seed eggs for each hatching time, or predicts attributes such as chick growth You can sort eggs for each attribute. Moreover, the optimal incubation condition can also be set for every seed egg by classifying a seed egg for every attribute.
<その他の変形例>
 例えば、光照射部2として、ハロゲンランプなどの広帯域の波長の光源を用いてもよい。この場合、光検出部3としては、多波長の分光スペクトルを求める分光器を用いた構成とする。この構成の場合、光の強度とは、分光強度スペクトルを意味する。
<Other variations>
For example, a light source having a broad wavelength such as a halogen lamp may be used as the light irradiation unit 2. In this case, the light detection unit 3 has a configuration using a spectroscope for obtaining a multi-wavelength spectrum. In the case of this configuration, the light intensity means a spectral intensity spectrum.
 このとき記録部4には、複数日における状態情報として、以下の(1)及び(2)が記録される。
(1)孵卵開始から第1設定日(本実施形態では7日目、上述した実施形態に準ずる。)での分光強度スペクトルの578nmの値、又は、その近傍の値の平均値、或いは、孵卵開始から第1設定日での種卵に対する分光強度スペクトルと事前に求めておいた合成樹脂ブロックなどの模擬卵の分光強度スペクトルとの各波長の比である透過率スペクトルにおける578nmの値、又は、その近傍の値の平均値
(2)第1設定日以前の第2設定日(本実施形態では孵卵器に入卵する直前(孵卵開始前)である0日目、上述した実施形態に準ずる。)での分光強度スペクトルの578nmの値、又は、その近傍の値の平均値、或いは、孵卵開始から第1設定日での種卵に対する分光強度スペクトルと事前に求めておいた合成樹脂ブロックなどの模擬卵の分光強度スペクトルとの各波長の比である透過率スペクトルにおける578nmの値、又は、その近傍の値の平均値
At this time, the following (1) and (2) are recorded in the recording unit 4 as state information for a plurality of days.
(1) The value of 578 nm of the spectral intensity spectrum on the first set date from the start of incubation (seventh day in the present embodiment, according to the above-described embodiment), or an average value in the vicinity thereof, or incubation The value of 578 nm in the transmittance spectrum, which is the ratio of each wavelength between the spectral intensity spectrum for the egg on the first setting date from the start and the spectral intensity spectrum of the simulated egg such as a synthetic resin block obtained in advance, or Average value of neighboring values (2) Second set date before the first set date (in this embodiment, on the 0th day, just before entering the incubator (before the start of incubation), according to the above-described embodiment) Of the spectral intensity spectrum at 578 nm, or an average value in the vicinity thereof, or a spectral intensity spectrum for the eggs on the first set date from the start of incubation and a synthetic resin block obtained in advance. The value of 578nm in transmittance spectrum is the ratio of each wavelength of the spectral intensity spectrum of an egg, or an average value of values in the vicinity thereof
 前記第1設定日及び第2設定日における分光強度スペクトルの取得は、同じセッタートレイ200を検出位置に搬送して、光照射部2により当該セッタートレイ200上の複数の種卵に光を照射して、それぞれの種卵を透過した光を光検出部3で検出することにより行われる。 Spectral intensity spectra on the first set date and the second set date are obtained by transporting the same setter tray 200 to a detection position and irradiating a plurality of eggs on the setter tray 200 with light by the light irradiation unit 2. The light detection unit 3 detects the light transmitted through each egg.
 また、種卵検査システム100は、形成程度推定部51により得られた形成程度を非接触ICタグ4に書き込む形成程度推定値書込部を有しており、当該形成程度推定値書込部により非接触ICタグ4に推定値を書き込むように構成してもよい。この場合、非接触ICタグ4に書き込まれた推定値は、形成程度推定値読取部が設けられた種卵検査システム100又は仕分け装置などにより読み取られて、性別判別部52による性別判別に利用される。さらに、種卵検査システム100は、判別結果書込部及び判別結果読取部をさらに備えてもよい。 In addition, the egg inspection system 100 has a formation degree estimated value writing unit that writes the formation degree obtained by the formation degree estimation unit 51 to the non-contact IC tag 4. You may comprise so that an estimated value may be written in the contact IC tag 4. FIG. In this case, the estimated value written in the non-contact IC tag 4 is read by the egg inspection system 100 provided with the formation degree estimated value reading unit or the sorting device, and used for sex determination by the sex determining unit 52. . Furthermore, the egg inspection system 100 may further include a discrimination result writing unit and a discrimination result reading unit.
 前記各実施形態では、2つの設定日又は3つの設定日それぞれで取得した状態情報から種卵を選別するものであったが、4つ以上の設定日それぞれで取得した状態情報から種卵を選別するものであっても良い。このように4つ以上の状態情報を比較することによって、雛の性別、孵化時間、雛の増体性などの属性、胚の発育の中止、中止時期などを精度よく予測することができる。 In each of the above embodiments, the seed eggs are selected from the state information acquired on each of the two setting days or on the three setting days, but the seed eggs are selected from the state information acquired on each of four or more setting days. It may be. By comparing four or more pieces of state information in this manner, it is possible to accurately predict attributes such as chick sex, hatching time, chick gain, and the like, cessation of embryo development, and the timing of termination.
 上述した実施形態では、セッタートレイ上に静止した状態の種卵に光を照射して検査を行うようにしていたが、これに限られず、搬送途中の種卵に光を照射して次々と検査するようにしてもよいのはもちろんである。 In the above-described embodiment, the eggs that are stationary on the setter tray are irradiated with light, and the inspection is performed. However, the present invention is not limited to this. Of course you may.
 また、状態情報を得るための計測部は、透過光を用いて計測するものには限られない。さらに、複数日の状態情報を得るために、複数種類の計測部を用いてもよいのはもちろんである。
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
Further, the measurement unit for obtaining the state information is not limited to the measurement using the transmitted light. Furthermore, it is needless to say that a plurality of types of measuring units may be used to obtain state information for a plurality of days.
In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 本発明によれば、様々な観点から高速かつ非侵襲的に種卵を選別する種卵検査システムを提供することができる。 According to the present invention, it is possible to provide an egg inspection system for selecting eggs at high speed and non-invasively from various viewpoints.

Claims (4)

  1.  種卵の状態を示す状態情報を計測する計測部と、
     前記計測部により得られた複数日の状態情報を個別の種卵毎に関連づけて記録する記録部と、
     前記記録部に記録された前記複数日の状態情報の個別の種卵毎に関連づけられた記録に基づいて前記種卵を選別する種卵選別部とを備える種卵検査システム。
    A measuring unit for measuring state information indicating the state of the egg,
    A recording unit for recording the state information obtained by the measurement unit in association with each individual egg,
    An egg inspection system comprising: an egg sorting unit that sorts the egg based on a record associated with each individual egg of the state information recorded on the plurality of days recorded in the recording unit.
  2.  前記種卵選別部は、前記複数日の状態情報により求まる前記種卵の内部の胚の成長状態に基づいて前記種卵を選別するものである、請求項1記載の種卵検査システム。 The egg screening system according to claim 1, wherein the egg sorting unit sorts the egg seed based on a growth state of an embryo inside the egg obtained from the state information of the plurality of days.
  3.  前記種卵選別部は、前記複数日の状態情報により予想される前記種卵から孵化する雛の性別に基づいて前記種卵を選別するものである、請求項1記載の種卵検査システム。 The egg screening system according to claim 1, wherein the egg sorting unit sorts the seed eggs based on the sex of chicks hatched from the seed eggs expected from the state information of the plurality of days.
  4.  種卵の状態を示す状態情報を計測する計測部により得られた複数日の状態情報を個別の種卵毎に関連づけて記録する記録部と、
     前記記録部に記録された前記複数日の状態情報の個別の種卵毎に関連づけられた記録に基づいて前記種卵を選別する種卵選別部と、としての機能をコンピュータに備えさせることを特徴とする種卵検査プログラム。
    A recording unit that records the state information of a plurality of days obtained by a measurement unit that measures state information indicating the state of the egg for each individual egg;
    A seed egg characterized by having a computer function as an egg sorting unit that sorts the seed egg based on a record associated with each individual egg in the state information recorded on the plurality of days recorded in the recording unit. Inspection program.
PCT/JP2017/041957 2016-11-30 2017-11-22 Hatching egg inspection system and hatching egg inspection program WO2018101139A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780063660.6A CN109862783B (en) 2016-11-30 2017-11-22 Hatching egg inspection system and hatching egg inspection program
JP2018553805A JP6822691B2 (en) 2016-11-30 2017-11-22 Egg inspection system and egg inspection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-232265 2016-11-30
JP2016232265 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101139A1 true WO2018101139A1 (en) 2018-06-07

Family

ID=62241406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041957 WO2018101139A1 (en) 2016-11-30 2017-11-22 Hatching egg inspection system and hatching egg inspection program

Country Status (3)

Country Link
JP (1) JP6822691B2 (en)
CN (1) CN109862783B (en)
WO (1) WO2018101139A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204504A (en) * 2019-06-17 2020-12-24 株式会社ナベル Observation apparatus for egg being incubated
WO2021251490A1 (en) * 2020-06-12 2021-12-16 株式会社ナベル Chick production method and chick production system
WO2022129537A1 (en) * 2020-12-17 2022-06-23 Agri Advanced Technologies Gmbh Non-invasive method of determining properties of a chicken egg and/or properties of a chicken embryo inside the egg using near ir spectroscopy, respective system and uses thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7407189B2 (en) * 2019-06-28 2023-12-28 四国計測工業株式会社 Egg-checking equipment, egg-checking programs, and egg-checking methods
CN117256514B (en) * 2023-11-17 2024-04-23 河北玖兴农牧发展有限公司 Method for removing unqualified hatching eggs for sorting system
CN117502303B (en) * 2023-11-30 2024-06-04 重庆华裕耀新农业科技有限公司 Egg nondestructive detection method and fertilization information detection system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177309A (en) * 2002-11-28 2004-06-24 Naberu:Kk Activity measurement method of germ in developing bird's egg and apparatus for the same
JP2004520068A (en) * 2001-04-17 2004-07-08 エンブレクス,インコーポレイテッド Method and apparatus for selectively processing eggs having identified characteristics
JP2005532046A (en) * 2002-05-06 2005-10-27 エンブレクス,インコーポレイテッド Method and apparatus for identifying viable eggs by detecting the heart rate and / or movement of an embryo
JP2008516601A (en) * 2004-10-14 2008-05-22 エンブレクス,インコーポレイテッド Method and apparatus for identifying and diagnosing live eggs using heart rate and embryo movement
JP2011106892A (en) * 2009-11-14 2011-06-02 Naberu:Kk Hatching egg examination device
CN104316473A (en) * 2014-10-28 2015-01-28 南京农业大学 Gender determination method for chicken hatching egg incubation early embryo based on hyperspectral image
US9179651B2 (en) * 2012-08-31 2015-11-10 Mat Malta Advanced Technologies Limited Spectrophotometric analysis of embryonic chick feather color
WO2015195746A1 (en) * 2014-06-18 2015-12-23 Innopix, Inc. Spectral imaging system for remote and noninvasive detection of target substances using spectral filter arrays and image capture arrays
JP2017227471A (en) * 2016-06-20 2017-12-28 株式会社ナベル Nondestructive inspection device of hatching egg, and hatching egg inspection program used for the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692487B (en) * 2012-01-12 2015-10-28 河南科技大学 A kind of eggs divide to select takes pictures and sorting equipment
BR112014028563B1 (en) * 2012-05-18 2019-03-26 Nabel Co., Ltd. INCUBATION EGG INSPECTION APPARATUS
WO2014199773A1 (en) * 2013-06-14 2014-12-18 株式会社ナベル Hatching egg inspection device and hatching egg inspection method
CN103583413B (en) * 2013-11-06 2016-06-01 广东宏益鳄鱼产业有限公司 The purging method of a kind of crocodile kind egg

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520068A (en) * 2001-04-17 2004-07-08 エンブレクス,インコーポレイテッド Method and apparatus for selectively processing eggs having identified characteristics
JP2005532046A (en) * 2002-05-06 2005-10-27 エンブレクス,インコーポレイテッド Method and apparatus for identifying viable eggs by detecting the heart rate and / or movement of an embryo
JP2004177309A (en) * 2002-11-28 2004-06-24 Naberu:Kk Activity measurement method of germ in developing bird's egg and apparatus for the same
JP2008516601A (en) * 2004-10-14 2008-05-22 エンブレクス,インコーポレイテッド Method and apparatus for identifying and diagnosing live eggs using heart rate and embryo movement
JP2011106892A (en) * 2009-11-14 2011-06-02 Naberu:Kk Hatching egg examination device
US9179651B2 (en) * 2012-08-31 2015-11-10 Mat Malta Advanced Technologies Limited Spectrophotometric analysis of embryonic chick feather color
WO2015195746A1 (en) * 2014-06-18 2015-12-23 Innopix, Inc. Spectral imaging system for remote and noninvasive detection of target substances using spectral filter arrays and image capture arrays
CN104316473A (en) * 2014-10-28 2015-01-28 南京农业大学 Gender determination method for chicken hatching egg incubation early embryo based on hyperspectral image
JP2017227471A (en) * 2016-06-20 2017-12-28 株式会社ナベル Nondestructive inspection device of hatching egg, and hatching egg inspection program used for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204504A (en) * 2019-06-17 2020-12-24 株式会社ナベル Observation apparatus for egg being incubated
JP7198503B2 (en) 2019-06-17 2023-01-04 株式会社ナベル Observation device for eggs during hatching
WO2021251490A1 (en) * 2020-06-12 2021-12-16 株式会社ナベル Chick production method and chick production system
WO2022129537A1 (en) * 2020-12-17 2022-06-23 Agri Advanced Technologies Gmbh Non-invasive method of determining properties of a chicken egg and/or properties of a chicken embryo inside the egg using near ir spectroscopy, respective system and uses thereof

Also Published As

Publication number Publication date
CN109862783B (en) 2021-11-02
CN109862783A (en) 2019-06-07
JP6822691B2 (en) 2021-01-27
JPWO2018101139A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018101139A1 (en) Hatching egg inspection system and hatching egg inspection program
JP6723597B2 (en) Non-destructive inspection device for egg and egg inspection program used therefor
US6535277B2 (en) Methods and apparatus for non-invasively identifying conditions of eggs via multi-wavelength spectral comparison
JP4858863B2 (en) Egg inspection equipment
US11378565B2 (en) Method for in-ovo fertilisation determination and gender determination on a closed egg
JP2020204570A (en) Hatching egg inspection device, method for specification, and specification program
Smith et al. Fertility and embryo development of broiler hatching eggs evaluated with a hyperspectral imaging and predictive modeling system
Islam et al. Prediction of chick hatching time using visible transmission spectroscopy combined with partial least squares regression
Boga et al. Computer-assisted automatic egg fertility control
US20230217904A1 (en) Chick production method and chick production system
Zhao et al. Potential use of spectroscopic techniques for assessing table eggs and hatching eggs
US20240069000A1 (en) Non-invasive method of determining properties of a chicken egg and/or properties of a chicken embryo inside the egg using near ir spectroscopy, respective system and uses thereof
JP2023125036A (en) Hatching egg non-destructive inspection device and hatching egg inspection program used for the same
US20220196624A1 (en) System and method for determining a gender of an embryo in an egg
KR102526942B1 (en) Alphan Identification System and Associated Methods
Syduzzaman et al. Grading of Hatching Eggs
Dong et al. Influences of the feature extraction area of duck egg image for the identification accuracy on the unfertilized duck eggs on the hatching tray
Nahid et al. Evidence of egg polymorphism in a host of Klaas’s cuckoo
Schreuder et al. Non-destructive prediction of fertility and sex in chicken eggs using the short wave near-infrared region
Chalker II Noninvasive classification of embryonated poultry eggs using visible and near-infrared spectral analysis
Clarke et al. Methods for ageing and sexing the Black-eared Miner, Manorina melanotis, and the Yellow-throated Miner, M. flavigula
Mustafa et al. Computer-assisted automatic egg fertility control
Zlatev et al. Analysis of the applicability of a computer vision system for assessment of the quality of quail eggs
El Full GENETIC ANALYSIS OF PRODUCTIVE PERFORMANCE IN RELATION TO CERTAIN PLASMA CONSTITUENTS IN THREE GENETIC GROUPS OF LOCAL CHICKENS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876264

Country of ref document: EP

Kind code of ref document: A1