WO2018101001A1 - Infrared sensor - Google Patents

Infrared sensor Download PDF

Info

Publication number
WO2018101001A1
WO2018101001A1 PCT/JP2017/040418 JP2017040418W WO2018101001A1 WO 2018101001 A1 WO2018101001 A1 WO 2018101001A1 JP 2017040418 W JP2017040418 W JP 2017040418W WO 2018101001 A1 WO2018101001 A1 WO 2018101001A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
infrared
receiving element
lenses
lens
Prior art date
Application number
PCT/JP2017/040418
Other languages
French (fr)
Japanese (ja)
Inventor
久也 小林
橋本 裕介
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018101001A1 publication Critical patent/WO2018101001A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver

Definitions

  • the present invention relates generally to infrared detection devices, and more particularly, to an infrared detection device including a light receiving system that receives infrared light from a detection area.
  • Patent Document 1 a heat ray type human sensor that detects the presence or absence of a person in a predetermined detection area by detecting heat rays (infrared rays) emitted from a human body is known (Patent Document 1) ).
  • the hot-wire type human sensor described in Patent Document 1 includes a sensor element and a light receiving lens (hereinafter referred to as "multi-lens").
  • the sensor element detects the heat radiation emitted from the human body and generates an output according to the time change of the incident heat dose.
  • the multi-lens consists of an assembly of a large number of lens bodies (hereinafter referred to as "lens”) that cause heat rays in each area in the detection area to converge on the sensor element.
  • the multi-lens is formed in a hemispherical shape surrounding the light receiving surface of the sensor element.
  • the multiple lenses in the multi-lens are arranged in a triple circle, with 4 lenses on the innermost circle, 8 lenses on the next largest circle, and 12 on the outermost circle The lens is formed.
  • the heat dose incident on the sensor element through the lenses arranged on the outermost circle is the heat ray incident on the sensor element through the lenses arranged on the inner circle Less than amount. Therefore, in the above-mentioned hot-wire type human sensor, the sensitivity in the region corresponding to the lenses arranged on the outermost circle may be lowered.
  • An object of the present invention is to provide an infrared detection device capable of suppressing variation in sensitivity in a detection area.
  • the infrared detection device includes a light receiving system that receives infrared light from the detection area.
  • the light receiving system includes a first light receiving unit and a plurality of second light receiving units.
  • the first light receiving unit includes a first light receiving element and a first multi lens.
  • the first multi lens has a plurality of first lenses for condensing infrared light on the first light receiving element.
  • Each of the plurality of second light receiving units includes a second light receiving element and a second multi lens.
  • the second multi lens includes a plurality of second lenses that condense infrared light on the second light receiving element.
  • each of the plurality of small detection areas obtained by dividing the detection area is associated with one of the first light receiving unit and the plurality of second light receiving units.
  • one small detection area of the plurality of small detection areas is associated with each of the plurality of first lenses of the first light receiving unit.
  • one small detection area of the plurality of small detection areas is associated with each of the plurality of second lenses of each of the plurality of second light receiving units.
  • the optical axes of the second light receiving elements of the plurality of second light receiving units are inclined in directions different from each other with respect to the optical axis of the first light receiving element.
  • the number of the first group of small detection areas associated with the first light receiving unit among the plurality of small detection areas is associated with each of the plurality of second light receiving units among the plurality of small detection areas It is more than the number of small detection areas in the second group.
  • FIG. 1 is an exploded perspective view of an infrared detection device according to an embodiment of the present invention.
  • FIG. 2A is a perspective view from above of the infrared ray detection device of the same.
  • FIG. 2B is a perspective view of the lower side of the infrared detection device of the same.
  • FIG. 3A is a bottom view of a light receiving system in the above infrared detecting device.
  • FIG. 3B is a bottom view through the left half of the light receiving system in the above infrared detecting device.
  • FIG. 4 is a cross-sectional view of the above infrared detection device.
  • FIG. 5 is a perspective view of an infrared sensor including a light receiving element in the above infrared detecting device.
  • FIG. 6A is a plan view of a light receiving system in the above infrared detecting device.
  • FIG. 6B is an explanatory diagram of a detection area of the above infrared detection device.
  • FIG. 7 is an explanatory view of a small detection area in the detection area of the above infrared detection device.
  • FIG. 8 is an explanatory view of a first multi lens and a second multi lens in the infrared detection device of the same.
  • FIG. 9 is an explanatory view of a detection area of the above infrared detection device.
  • each drawing described in the following embodiment is a schematic drawing, and the ratio of the size and thickness of each component in the drawing does not necessarily reflect the actual dimensional ratio. .
  • the infrared detection device 100 is used, for example, for human body detection to detect the presence or absence of a person (detection target) in the detection area 11 (see FIGS. 4 and 6B). That is, the infrared detection device 100 is an infrared human-body detection device that detects a human body in the detection area 11.
  • the infrared detection device 100 includes a light receiving system 1 that receives infrared light from the detection area 11.
  • the light receiving system 1 includes a first light receiving unit 2a and a plurality of (four) second light receiving units 2b.
  • the first light receiving unit 2a includes a first infrared sensor 3a having a first light receiving element 30a (see FIGS. 4 and 6A), and a first optical member 6a having a first multi-lens 5a.
  • the first multi lens 5a has a plurality of (30) first lenses 50a (see FIGS. 6A and 8) for condensing infrared light on the first light receiving element 30a.
  • Each of the plurality of second light receiving units 2b includes a second infrared sensor 3b having a second light receiving element 30b (see FIGS. 4 and 6A) and a second optical member 6b having a second multi lens 5b.
  • the second multi lens 5 b has a plurality (15) of second lenses 50 b (see FIGS. 6A and 8) for condensing infrared light on the second light receiving element 30 b.
  • the infrared detection device 100 further includes a circuit board 7.
  • the first infrared sensor 3a and the plurality of second infrared sensors 3b are mounted on the circuit board 7.
  • the first infrared sensor 3a is mounted on the circuit board 7 such that the optical axis 39a (see FIG. 4) of the first light receiving element 30a is substantially parallel to the thickness direction of the circuit board 7.
  • each of the plurality of (four) second infrared sensors 3b is mounted on the circuit board 7 so that the optical axis 39b (see FIG. 4) of the second light receiving element 30b is inclined with respect to the thickness direction of the circuit board 7.
  • the plurality of second infrared sensors 3b are inclined in different directions.
  • the infrared detection device 100 further includes a base 8.
  • the base 8 holds the first light receiving unit 2 a, the plurality of second light receiving units 2 b, and the circuit board 7.
  • the infrared detection device 100 the relative position of the first light receiving element 30a of the first infrared sensor 3a mounted on the circuit board 7 and the first multi-lens 5a is determined.
  • the second multi-lens 5b corresponding to one-to-one of the second light receiving elements 30b of the plurality of second infrared sensors 3b mounted on the circuit board 7 and the plurality of second multi-lenses 5b. The relative position with is determined.
  • the infrared detection device 100 further includes a signal processing unit 9.
  • the signal processing unit 9 determines whether or not a person is present in the detection area 11 based on the output signals of the first light receiving element 30a and the plurality of second light receiving elements 30b.
  • the signal processing unit 9 is configured to output a determination result as to whether or not a person is present in the detection area 11 to an external device (external circuit).
  • the infrared detection device 100 includes the first infrared sensor 3 a, the plurality of second infrared sensors 3 b, the first multi lens 5 a, the plurality of second multi lenses 5 b, the circuit board 7, and the base 8. And the signal processing unit 9.
  • the first light receiving element 30a and the second light receiving element 30b have the same configuration, and therefore, in the following, for convenience of description, when the two are not distinguished from each other, they are simply referred to as the light receiving element 30.
  • the optical axis 39a of the first light receiving element 30a and the optical axis 39b of the second light receiving element 30b are described without distinction, they are simply referred to as the optical axis 39.
  • the first infrared sensor 3a and the second infrared sensor 3b have the same configuration, for convenience of explanation, when the two are not distinguished without being distinguished from each other, they will be referred to simply as the infrared sensor 3.
  • the infrared sensor 3 has a light receiving element 30.
  • the light receiving element 30 is a thermal infrared detection element. More specifically, the light receiving element 30 is a quad type pyroelectric element, and four detection units are arranged in a 2 ⁇ 2 array (matrix) in one pyroelectric substrate. Each of the four detection units includes a first electrode disposed on the first surface of the pyroelectric substrate, a second electrode disposed on the second surface opposite to the first surface, and pyroelectric It is a capacitor including the part between the 1st electrode and the 2nd electrode among body substrates.
  • the first electrode is composed of a conductive film (for example, a NiCr film) that absorbs infrared light.
  • the optical axis 39 of the light receiving element 30 is a normal which is erected at the center of a polygon (for example, a square) including the light receiving surface of each of the four detection portions when the light receiving element 30 is viewed from one direction in the thickness direction. .
  • the light receiving element 30 receives infrared light, and outputs a current signal according to the change in the amount of the received infrared light.
  • the infrared sensor 3 includes an IC (Integrated Circuit) element including a conversion circuit that converts a current signal output from the light receiving element 30 into a voltage signal.
  • the conversion circuit includes, for example, a current-voltage conversion circuit and a voltage amplification circuit.
  • the current-voltage conversion circuit is a circuit that converts a current signal, which is an output signal output from the light receiving element 30, into a voltage signal and outputs the voltage signal.
  • the voltage amplification circuit is a circuit that amplifies and outputs a voltage signal of a predetermined frequency band (for example, 0.1 Hz to 10 Hz) among voltage signals converted by the current-voltage conversion circuit.
  • the voltage amplification circuit has a function as a band pass filter.
  • the function as a band pass filter is a function of passing the component of the predetermined frequency band out of the voltage signal output from the current-voltage conversion circuit and removing an unnecessary frequency component which becomes noise.
  • the infrared sensor 3 includes a mounting substrate on which the light receiving element 30 and the IC element are mounted.
  • the mounting substrate is, for example, a molded substrate.
  • the infrared sensor 3 also includes a package 33 (see FIG. 5) that accommodates a circuit module including the light receiving element 30, the IC element, and the mounting substrate.
  • the package 33 is a so-called can package (Can Package).
  • the can package is also called a metal package (Metal Package).
  • the package 33 as shown in FIG. 5, includes a pedestal 331, a cap 332, a window member 333 and three lead terminals 334.
  • the pedestal 331 has conductivity.
  • the pedestal 331 is made of metal.
  • the pedestal 331 has a disk shape, and supports the mounting substrate on one side in the thickness direction.
  • the cap 332 is conductive.
  • the cap 332 is made of metal.
  • the cap 332 is cylindrical with a bottom, and is fixed to the pedestal 331 so as to cover the circuit module.
  • the window member 333 is an infrared transmitting member that transmits infrared light.
  • the window member 333 preferably has conductivity.
  • the window material 333 includes, for example, a silicon substrate.
  • the window member 333 preferably includes an infrared optical filter stacked on the silicon substrate in addition to the silicon substrate.
  • the infrared optical filter is an optical multilayer film that transmits infrared light in the wavelength region of the detection target of the infrared detection device 100.
  • the window member 333 is arranged to close the window hole 3322 formed in the front wall 3321 of the cap 332.
  • the window member 333 is bonded to the cap 332 by a conductive material, and is electrically connected to the cap 332.
  • the window member 333 is disposed in front of the light receiving surface of the light receiving element 30. In the infrared sensor 3, it is preferable that the light receiving element 30 be disposed such that the optical axis 39 of the light receiving element 30 passes through the center of the window member 333.
  • the three lead terminals 334 are held by the pedestal 331. Each of the three lead terminals 334 is pin-shaped. Each of the three lead terminals 334 penetrates the pedestal 331 in the thickness direction of the pedestal 331.
  • the three lead terminals 334 are a power supply lead terminal, a signal output lead terminal, and a ground lead terminal.
  • the five infrared sensors 3 are mounted on a rectangular plate-shaped circuit board 7.
  • the circuit board 7 is, for example, a printed circuit board.
  • the circuit board 7 has a first surface 71 intersecting in the thickness direction, and a second surface 72 opposite to the first surface 71.
  • the four second light receiving elements 30b are arranged on the first surface 71 side of the circuit board 7 so as to be arranged at substantially equal intervals on one virtual circle, and the first light receiving elements 30a are It is arranged at the center of the above virtual circle.
  • each second light receiving element 30b is disposed one by one at four corners of the virtual square on the first surface 71 side of the circuit board 7, and the first light receiving element 30a Is located at the center of the virtual square.
  • the optical axis 39 a (see FIG. 4) of the first light receiving element 30 a is orthogonal to the first surface 71 of the circuit board 7.
  • the optical axis 39 b (see FIG. 4) in each of the plurality of second light receiving elements 30 b intersects with the first surface 71 of the circuit board 7.
  • the angle between the normal line erected at the center of the virtual circle and the optical axis 39b of the second light receiving element 30b is the same.
  • the plurality of second infrared sensors 3b are mounted on the circuit board 7 such that the optical axes 39b of the second light receiving elements 30b are inclined in different directions with respect to the normal line erected at the center of the virtual circle. .
  • the circuit board 7 is provided with a plurality of sets (five sets) of three pin insertion holes 74 (see FIGS. 1 and 4) for passing the three lead terminals 334 in each of the plurality (five) infrared sensors 3 one by one. ing.
  • the circuit board 7 is disposed on the upper surface of the central portion 801 expanded upward in the disk-like base 8, and is held by the base 8.
  • the plurality of infrared sensors 3 mounted on the circuit board 7 are disposed on the lower surface side of the central portion 801 of the base 8.
  • the base 8 has electrical insulation.
  • the material of the base 8 is, for example, a synthetic resin.
  • the base 8 includes a first spacer portion 81a interposed between the first infrared sensor 3a and the circuit board 7, and a plurality of pedestals interposed between the pedestals 331 of the plurality of second infrared sensors 3b and the circuit board 7. And a second spacer portion 81b.
  • the first spacer portion 81a is formed with a plurality of holes 82a through which each of the three lead terminals 334 of the first infrared sensor 3a passes one by one.
  • the surface 811 a facing the pedestal 331 of the infrared sensor 3 is orthogonal to the optical axis 39 a of the first light receiving element 30 a and parallel to the first surface 71 of the circuit board 7.
  • the surface 811 b facing the pedestal 331 of the infrared sensor 3 is orthogonal to the optical axis 39 b of the second light receiving element 30 b and with respect to the first surface 71 of the circuit board 7 It is inclined.
  • the infrared detection device 100 preferably further includes a plurality of (four) light blocking walls 83 (see FIG. 4).
  • Each of the plurality of light blocking walls 83 is semi-cylindrical.
  • Each of the plurality of light shielding walls 83 surrounds the pedestal 331 of the second infrared sensor 3b corresponding to one to one of the plurality of second infrared sensors 3b and the substantially half circumference of the cap 332, and the second infrared sensor 3b and the first infrared It is arranged between the sensor 3a.
  • the plurality of light shielding walls 83 may be integrally formed with the base 8 or may be separately formed and fixed to the base 8.
  • the base 8 includes four first walls 84 on the lower surface side of the central portion 801, in which the first optical member 6a is disposed.
  • each of the four first walls 84 has an arc shape, and is disposed at substantially equal intervals in the circumferential direction of the first optical member 6a.
  • the first optical member 6a is fixed to two first walls 84 of the four first walls 84 of the base 8 by two first screws (not shown).
  • the base 8 is provided with four second walls 85 on the lower surface side of the peripheral portion 802, in which each of the plurality of second optical members 6b is disposed.
  • Each of the four second walls 85 has a C shape in which the first optical member 6 a side is opened as viewed from the lower surface side of the base 8.
  • each of the plurality of second optical members 6b is fixed to the second wall 85 of the base 8 by two second screws (not shown).
  • the first optical member 6a has a bottomed cylindrical first optical member main body 60a and a first flange 62a projecting outward from the upper end of the first optical member main body 60a all around. And.
  • the first multi lens 5a is formed on the bottom wall 61a of the lower end of the first optical member main body 60a.
  • the first optical member 6 a is disposed such that the first flange 62 a overlaps the lower end surfaces of the four first walls 84 of the base 8.
  • each of the second optical members 6b has a box-shaped second optical member body 60b with a bottom and a second flange 62b protruding outward from the upper end of the second optical member body 60b.
  • the peripheral wall of the second optical member main body 60b has a C shape in which the first optical member 6a side is opened as viewed from the base 8 side.
  • the second multi lens 5b is formed on the bottom wall 61b of the lower end of the second optical member main body 60b.
  • the second optical member 6 b is disposed such that the second flange 62 b overlaps the lower end surface of the second wall 85 of the base 8.
  • a first surface 501a (see FIG. 4) on which infrared light from the outside (detection area 11) is incident is constituted by a group of incident surfaces of the plurality of first lenses 50a.
  • the second surface 502a (see FIG. 4) from which infrared light is emitted in the first multi-lens 5a is formed of a group of emission surfaces of the plurality of first lenses 50a.
  • Each of the plurality of first lenses 50a in the first multi lens 5a is a condensing lens, and is configured by a convex lens.
  • the convex lens which comprises each of the some 1st lens 50a is an aspherical lens from a viewpoint of making an aberration smaller.
  • the plurality of (30) first lenses 50a are divided into a plurality of (3) different rows from the optical axis 39a of the first light receiving element 30a.
  • the plurality of (30) first lenses 50a are on the first virtual circle C1, the second virtual circle C2 and the third virtual circle C3 having different radii. It is divided and arranged. The radiuses of the first virtual circle C1, the second virtual circle C2 and the third virtual circle C3 increase in this order.
  • the four first lenses 50a are arranged on the first virtual circle C1
  • the ten first lenses 50a are arranged on the second virtual circle C2
  • the third lenses are arranged on the third virtual circle C3.
  • Sixteen first lenses 50a are arranged.
  • the first multi lens 5a is preferably designed such that the focal points of the plurality of first lenses 50a on the first light receiving element 30a side are at the same position.
  • the first multi-lens 5a is preferably configured such that the infrared rays transmitted through each of the plurality of first lenses 50a directly enter the window member 333 of the first infrared sensor 3a.
  • the infrared rays to be controlled by each of the plurality of first lenses 50a in the first multi-lens 5a are, for example, infrared rays in a wavelength range of 5 ⁇ m to 25 ⁇ m.
  • a first surface 501b (see FIG. 4) to which infrared light from the outside (detection area 11) is incident is constituted by a group of incident surfaces of the plurality of second lenses 50b.
  • the second surface 502b (see FIG. 4) from which infrared light is emitted in the second multi lens 5b is configured by a group of emission surfaces of the plurality of second lenses 50b.
  • Each of the plurality of second lenses 50b in the second multi lens 5b is a condensing lens, and is configured by a convex lens.
  • the convex lenses that constitute each of the plurality of second lenses 50b are aspheric lenses.
  • Each of the plurality of second lenses 50b is preferably a Fresnel lens from the viewpoint of reducing the thickness.
  • the plurality of (15) second lenses 50b are divided into a plurality of (three) rows in which the distances from the optical axis 39a of the first light receiving element 30a are different from each other.
  • a plurality of (15) second lenses 50b are on the fourth virtual circle C4, the fifth virtual circle C5, and the sixth virtual circle C6 having mutually different radii. It is divided and arranged.
  • the radiuses of the fourth virtual circle C4, the fifth virtual circle C5, and the sixth virtual circle C6 increase in this order.
  • the radius of the fourth virtual circle C4 is larger than the radius of the third virtual circle C3.
  • the centers of the first virtual circle C1 to the sixth virtual circle C6 are the same.
  • five second lenses 50b are arranged on the fourth virtual circle C4, and seven second lenses 50b are arranged on the fifth virtual circle C5, and on the sixth virtual circle C6.
  • Three second lenses 50b are arranged.
  • the first virtual circle C1 to the sixth virtual circle C1 to the sixth virtual circle 50 can be seen from the second to third second lenses 50b arranged in the one radial direction common to the first virtual circle C1 to the sixth virtual circle C6.
  • the lens area is larger as the second lens 50b is farther from the center common to the circle C6.
  • the second multi lens 5 b is designed such that the focal points of the plurality of second lenses 50 b on the second light receiving element 30 b side are at the same position.
  • the second multi lens 5b is preferably configured such that the infrared rays transmitted through each of the plurality of second lenses 50b directly enter the window member 333 of the second infrared sensor 3b.
  • the infrared rays to be controlled by each of the plurality of second lenses 50b in the second multi-lens 5b are, for example, infrared rays in a wavelength range of 5 ⁇ m to 25 ⁇ m.
  • the material of the first multi-lens 5a and the second multi-lens 5b is, for example, polyethylene. More specifically, the material of the first multi-lens 5a is polyethylene to which a white pigment or a black pigment is added. As the white pigment, for example, it is preferable to use an inorganic pigment such as titanium oxide. As the black pigment, for example, fine particles of carbon black or the like are preferably employed.
  • the first multi lens 5a and the second multi lens 5 b can be formed, for example, by a molding method. As a molding method, an injection molding method, a compression molding method, etc. are employable, for example.
  • the infrared detection device 100 is disposed on a ceiling or the like so that the center line 110 (see FIG. 4) of the detection area 11 is directed vertically downward.
  • the infrared detection device 100 is arranged such that the light receiving surface of the first light receiving element 30a is directed vertically downward in one usage pattern.
  • the detection area 11 is a square pyramidal three-dimensional area.
  • the detection area 11 is square in a horizontal plane perpendicular to the center line 110.
  • the solid angle of the detection area 11 of the infrared detection device 100 is defined by the first light receiving unit 2a and the plurality of second light receiving units 2b.
  • each of a plurality of (90) small detection areas 13 obtained by dividing the detection area 11 is a first light receiving unit 2a and a plurality of (four) second light receiving units 2b.
  • Is associated with one of the FIG. 6B is a diagram schematically showing the detection area 11 of the infrared detection device 100 on a virtual plane 120 (for example, a floor surface) orthogonal to the center line 110 of the detection area 11.
  • a virtual plane 120 for example, a floor surface
  • the detection area 11 includes a plurality of (90) small detection areas 13.
  • Each of the plurality of (90) small detection areas 13 includes a plurality of (four) minute detection areas 14 (see FIG. 7) corresponding to the plurality of (four) detection portions of the light receiving element 30 one by one.
  • the plurality of minute detection areas 14 are in different directions as viewed from the light receiving element 30.
  • Each of the plurality of minute detection areas 14 has an oblique square pyramid shape.
  • the solid angle of each of the plurality of minute detection areas 14 is smaller than the solid angle of the small detection area 13.
  • the minute detection area 14 is narrower than the small detection area 13.
  • the minute detection area 14 is a three-dimensional area formed when the infrared ray bundle incident on the detection unit of the first light receiving element 30a through the first lens 50a is extended in the direction opposite to the advancing direction of the infrared rays, or the second lens 50b The three-dimensional region is formed when the infrared ray bundle incident on the detection portion of the second light receiving element 30b is extended in the direction opposite to the advancing direction of the infrared ray.
  • the minute detection area 14 is a three-dimensional area through which an infrared ray bundle used to form an image on the light receiving surface of the detection unit of the light receiving element 30 can pass.
  • the minute detection area 14 can be estimated, for example, by the result of simulation using ray tracing analysis software.
  • Each of the plurality of minute detection areas 14 can be regarded as having a polarity corresponding to the first electrode of the detection unit in a one-to-one manner.
  • the detection area 11, each small detection area 13, and each minute detection area 14 are optically defined three-dimensional areas, not actually visible three-dimensional areas.
  • the small detection area 13 may also depend on the size and shape of the window member 333 of the infrared sensor 3 (see FIG. 5), the opening shape of the window hole 3322 and the like.
  • one small detection area 13 of the plurality of (90) small detection areas 13 is associated with each of the plurality of (30) first lenses 50a of the first light receiving unit 2a. There is. In other words, 30 small detection areas 13 out of 90 small detection areas 13 are associated with the first light receiving unit 2a. Further, in the infrared detection device 100, one of the plurality (90) of the small detection areas 13 is provided for each of the plurality of (15) second lenses 50b of each of the plurality of (four) second light receiving units 2b. The small detection area 13 is associated. In other words, 15 small detection areas 13 out of 90 small detection areas 13 are associated with each of the four second light receiving units 2b. That is, in the infrared detection device 100, the small detection area 13 in which the number (30) of the small detection areas 13 associated with the first light receiving unit 2a is associated with each of the plurality of second light receiving units 2b. More than the number of (15).
  • the infrared detection device 100 determines the signal processing unit 9 which determines whether or not a person is present in the detection area 11 based on the output signal of each of the first light receiving element 30a and the plurality of second light receiving elements 30b.
  • the signal processing unit 9 performs synchronous detection for extracting synchronous components of the output signals of the plurality of light receiving elements 30, and determines whether or not a person is present in the detection area 11 based on the result of the synchronous detection.
  • the signal processing unit 9 can be configured using, for example, a multiplier for performing synchronous detection, a comparator, and the like.
  • the component parts of the signal processing unit 9 are mounted on the circuit board 7.
  • the component parts of the signal processing unit 9 are disposed on the second surface 72 side of the circuit board 7.
  • the signal processing unit 9 may include an IC element in each of the plurality of infrared sensors 3 described above.
  • the detection area 11 is divided into a central area 11a and a peripheral area 11b.
  • the central area 11 a corresponds to the first light receiving unit 2 a, and includes 30 small detection areas 13 out of 90 small detection areas 13.
  • the peripheral area 11 b corresponds to the plurality of second light receiving units 2 b, and includes 60 small detection areas 13 out of 90 small detection areas 13.
  • the central area 11a is a circular area on the virtual plane 120 as shown in FIG. 6B.
  • the peripheral area 11b is, as shown in FIG.
  • the defined direction in the small detection area 13 of the central area 11a As shown in FIG. 4, when the direction along the direction in which the first light receiving element 30a and the second light receiving element 30b are arranged is defined as the defined direction D1, in FIG. 9, the defined direction in the small detection area 13 of the central area 11a.
  • the distance between the small detection areas 13 determined for each combination of two adjacent small detection areas 13 in D1 is a distance L1. Further, in FIG. 9, the distance between the small detection areas 13 determined for each combination of two small detection areas 13 adjacent in the specified direction D1 among the small detection areas 13 of the peripheral area 11b is a distance L2.
  • the average value of the distances L2 of a plurality (the number of combinations of two small detection areas 13 adjacent in the defined direction D1 in the peripheral area 11b) is two (small) adjacent in the defined direction D1 in the central area 11a. It is larger than the average value of the distance L1 of the number of combinations of the detection areas 13).
  • the infrared detection device 100 of the present embodiment described above includes the light receiving system 1 that receives infrared light from the detection area 11.
  • the light receiving system 1 includes a first light receiving unit 2a and a plurality of second light receiving units 2b.
  • the first light receiving unit 2a includes a first light receiving element 30a and a first multi lens 5a.
  • the first multi lens 5a has a plurality of first lenses 50a for condensing infrared light on the first light receiving element 30a.
  • Each of the plurality of second light receiving units 2b includes a second light receiving element 30b and a second multi lens 5b.
  • the second multi lens 5 b has a plurality of second lenses 50 b for condensing infrared light on the second light receiving element 30 b.
  • each of the plurality of small detection areas 13 obtained by dividing the detection area 11 is associated with one of the first light receiving unit 2a and the plurality of second light receiving units 2b.
  • one small detection area 13 of the plurality of small detection areas 13 is associated with each of the plurality of first lenses 50a of the first light receiving unit 2a.
  • one small detection area 13 out of the plurality of small detection areas 13 is associated with each of the plurality of second lenses 50b of each of the plurality of second light receiving units 2b.
  • the optical axes 39b of the second light receiving elements 30b of the plurality of second light receiving units 2b are inclined in directions different from each other with respect to the optical axis 39a of the first light receiving element 30a.
  • the number of small detection areas 13 of the first group corresponding to the first light receiving unit 2a among the plurality of small detection areas 13 corresponds to each of the plurality of second light receiving units 2b among the plurality of small detection areas 13 The number is smaller than the number of small detection areas 13 of the second group attached.
  • the infrared detection device 100 can suppress variations in sensitivity in the detection area 11.
  • the lens area of the second lens 50b corresponding to the small detection area 13 having a large inclination relative to the optical axis 39a of the first light receiving element 30a is This can be larger than the lens area of the first lens 50a having a small inclination relative to the optical axis 39a of the element 30a.
  • the detection area 11 is larger than the case where the detection area is expanded by enlarging the diameter of the hemispherical multi lens and increasing the number of rows in which the lenses are arranged in the heat ray type human sensor described above. It is possible to suppress the decrease in sensitivity on the outermost side of the lens. In other words, the infrared detection device 100 can suppress the decrease in sensitivity on the outermost peripheral side of the detection area 11 while increasing the viewing angle, and the sensitivity in the detection area 11 while increasing the viewing angle. It is possible to suppress the variation.
  • the “viewing angle” means the spread angle of the detection area 11 of the infrared detection device 100.
  • the infrared detection device 100 it is preferable that the plurality of second multi lenses 5b be arranged in the outer peripheral direction of the first multi lens 5a so as to surround the first multi lens 5a.
  • the infrared detection device 100 can make the detection area 11 wider in substantially all directions orthogonal to the optical axis 39a of the first light receiving element 30a.
  • the plurality of second light receiving units 2b are preferably at least three second light receiving units 2b.
  • the detection area 11 is a quadrangular pyramid area, compared to the case where only one first light receiving unit 2a and two second light receiving units 2b are provided, Design of each second light receiving unit 2b is facilitated.
  • the plurality of first lenses 50a are arranged in at least two rows different in distance from the optical axis 39a of the first light receiving element 30a, and the plurality of second lenses 50b are It is preferable that the distance from the optical axis 39 of the one light receiving element 30a be divided into at least two different rows.
  • the infrared detection device 100 can increase the lens area of the second lens 50b by reducing the number of the small detection areas 13 associated with each of the second light receiving units 2b. It is possible to further suppress variations in sensitivity.
  • each of the first light receiving element 30a and the second light receiving element 30b be a pyroelectric element.
  • the movement of an object for example, a human body
  • the first light receiving element 30a and the second light receiving element 30b are a thermopile, a resistance bolometer, or the like.
  • the infrared detection device 100 preferably further includes a signal processing unit 9.
  • the signal processing unit 9 preferably determines whether a person is present in the detection area 11 based on the output signals of the first light receiving element 30a and the plurality of second light receiving elements 30b.
  • the infrared detection device 100 can be used as a human body detection device.
  • the first light receiving element 30a and the second light receiving element 30b described above are not limited to quad type pyroelectric elements, but may be, for example, dual type pyroelectric elements, single type pyroelectric elements, or the like. Further, the shape, the arrangement, and the like of the detection unit in the pyroelectric element are not particularly limited.
  • the pyroelectric element may have a configuration in which four detection units are arranged in a 1 ⁇ 4 array on one pyroelectric substrate. In this case, the plan view shape of each of the four detection units is a rectangle. Further, adjacent detection units are connected in reverse parallel.
  • the pyroelectric element is not limited to the configuration provided with the pyroelectric substrate, and for example, the back electrode, the pyroelectric thin film, and the surface electrode are arranged in this order on the electrical insulating film on the surface of the silicon substrate. It may be a chip on which a detection unit is formed. Such a chip can be formed, for example, using micromachining technology and pyroelectric thin film forming technology.
  • the infrared detection device 100 is not limited to human body detection, and may be used in other applications such as gas detection.
  • the infrared detection device 100 can be used for, for example, a wiring apparatus, an apparatus, and the like.
  • the devices include, for example, lighting fixtures, lighting devices, televisions, personal computers, air conditioners, humidifiers, refrigerators, copy machines, digital signage, digital photo frames, urinals, vending machines, ticket vending machines, automatic teller machines, There are gas sensors, gas analyzers, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The present invention addresses the problem of providing an infrared sensor with which it is possible to suppress variation in sensitivity within a detection area. One small detection area (13) among a plurality of small detection areas (13) is associated with each of a plurality of first lenses (50a) of a first light-receiving unit (2a), and one small detection area (13) among the plurality of small detection areas (13) is associated with each of a plurality of second lenses (50b) of each of a plurality of second light-receiving units (2b). The optical axis of a second light-receiving element (30b) of each of the plurality of second light-receiving units (2b) is inclined, in a mutually different orientation, with respect to the optical axis of a first light-receiving element (30a) of the first light-receiving unit (2a). The number of a first group of small detection areas (13) associated with the first light-receiving unit (2a) from among the plurality of small detection areas (13) is greater than the number of a second group of small detection areas (13) associated with each of the plurality of second light-receiving units (2b) from among the plurality of small detection areas (13).

Description

赤外線検出装置Infrared detector
 本発明は、一般に赤外線検出装置に関し、より詳細には、検知エリアからの赤外線を受光する受光系を備える赤外線検出装置に関する。 The present invention relates generally to infrared detection devices, and more particularly, to an infrared detection device including a light receiving system that receives infrared light from a detection area.
 従来、赤外線検出装置としては、例えば、人体から放射される熱線(赤外線)を検出することによって所定の検知エリア内の人の存否を検出する熱線式人感センサが知られている(特許文献1)。 Conventionally, as an infrared detection device, for example, a heat ray type human sensor that detects the presence or absence of a person in a predetermined detection area by detecting heat rays (infrared rays) emitted from a human body is known (Patent Document 1) ).
 特許文献1に記載された熱線式人感センサは、センサ素子と、受光レンズ(以下、「マルチレンズ」という)と、を備える。センサ素子は、人体から放射される熱線を検出するとともに入射する熱線量の時間変化に応じた出力を発生する。マルチレンズは、検知エリア内の各領域ごとの熱線をセンサ素子に収束させる多数個のレンズ小体(以下、「レンズ」という)の集合体からなる。 The hot-wire type human sensor described in Patent Document 1 includes a sensor element and a light receiving lens (hereinafter referred to as "multi-lens"). The sensor element detects the heat radiation emitted from the human body and generates an output according to the time change of the incident heat dose. The multi-lens consists of an assembly of a large number of lens bodies (hereinafter referred to as "lens") that cause heat rays in each area in the detection area to converge on the sensor element.
 マルチレンズは、センサ素子の受光面を囲む半球状に形成されている。マルチレンズにおける多数個のレンズは、3重円状に配列され、最も内側の円上には4個のレンズ、次に大きい円上には8個のレンズ、最も外側の円上には12個のレンズが形成されている。 The multi-lens is formed in a hemispherical shape surrounding the light receiving surface of the sensor element. The multiple lenses in the multi-lens are arranged in a triple circle, with 4 lenses on the innermost circle, 8 lenses on the next largest circle, and 12 on the outermost circle The lens is formed.
 上述の熱線式人感センサでは、最も外側の円上に配列されたレンズを通ってセンサ素子に入射する熱線量が、その内側の円上に配列されたレンズを通ってセンサ素子に入射する熱線量よりも少なくなる。そのため、上述の熱線式人感センサでは、最も外側の円上に配列されたレンズに対応する領域での感度が低下してしまうことがある。 In the heat ray type human sensor described above, the heat dose incident on the sensor element through the lenses arranged on the outermost circle is the heat ray incident on the sensor element through the lenses arranged on the inner circle Less than amount. Therefore, in the above-mentioned hot-wire type human sensor, the sensitivity in the region corresponding to the lenses arranged on the outermost circle may be lowered.
特開2000-131136号公報Japanese Patent Laid-Open No. 2000-131136
 本発明の目的は、検知エリア内の感度のばらつきを抑制することが可能な赤外線検出装置を提供することにある。 An object of the present invention is to provide an infrared detection device capable of suppressing variation in sensitivity in a detection area.
 本発明に係る一態様の赤外線検出装置は、検知エリアからの赤外線を受光する受光系を備える。前記受光系は、第1受光ユニットと、複数の第2受光ユニットと、を備える。前記第1受光ユニットは、第1受光素子と、第1マルチレンズと、を含む。前記第1マルチレンズは、前記第1受光素子に赤外線を集光する複数の第1レンズを有する。前記複数の第2受光ユニットの各々は、第2受光素子と、第2マルチレンズと、を含む。前記第2マルチレンズは、前記第2受光素子に赤外線を集光する複数の第2レンズを有する。赤外線検出装置では、前記検知エリアを区分した複数の小検知エリアの各々が前記第1受光ユニットと前記複数の第2受光ユニットとのいずれかに対応付けられている。赤外線検出装置では、前記第1受光ユニットの前記複数の第1レンズの各々について、前記複数の小検知エリアのうちの1つの小検知エリアが対応づけられている。赤外線検出装置では、前記複数の第2受光ユニットそれぞれの前記複数の第2レンズの各々について、前記複数の小検知エリアのうちの1つの小検知エリアが対応付けられている。前記複数の第2受光ユニットそれぞれの前記第2受光素子の光軸が、前記第1受光素子の光軸に対して互いに異なる向きに傾いている。前記複数の小検知エリアのうち前記第1受光ユニットに対応付けられている第1群の小検知エリアの数が、前記複数の小検知エリアのうち前記複数の第2受光ユニットの各々に対応づけられている第2群の小検知エリアの数よりも多い。 The infrared detection device according to one aspect of the present invention includes a light receiving system that receives infrared light from the detection area. The light receiving system includes a first light receiving unit and a plurality of second light receiving units. The first light receiving unit includes a first light receiving element and a first multi lens. The first multi lens has a plurality of first lenses for condensing infrared light on the first light receiving element. Each of the plurality of second light receiving units includes a second light receiving element and a second multi lens. The second multi lens includes a plurality of second lenses that condense infrared light on the second light receiving element. In the infrared detection device, each of the plurality of small detection areas obtained by dividing the detection area is associated with one of the first light receiving unit and the plurality of second light receiving units. In the infrared detection device, one small detection area of the plurality of small detection areas is associated with each of the plurality of first lenses of the first light receiving unit. In the infrared detection device, one small detection area of the plurality of small detection areas is associated with each of the plurality of second lenses of each of the plurality of second light receiving units. The optical axes of the second light receiving elements of the plurality of second light receiving units are inclined in directions different from each other with respect to the optical axis of the first light receiving element. The number of the first group of small detection areas associated with the first light receiving unit among the plurality of small detection areas is associated with each of the plurality of second light receiving units among the plurality of small detection areas It is more than the number of small detection areas in the second group.
図1は、本発明の一実施形態に係る赤外線検出装置の分解斜視図である。FIG. 1 is an exploded perspective view of an infrared detection device according to an embodiment of the present invention. 図2Aは、同上の赤外線検出装置の上側から見た斜視図である。図2Bは、同上の赤外線検出装置の下側から見た斜視図である。FIG. 2A is a perspective view from above of the infrared ray detection device of the same. FIG. 2B is a perspective view of the lower side of the infrared detection device of the same. 図3Aは、同上の赤外線検出装置における受光系の下面図である。図3Bは、同上の赤外線検出装置における受光系に関し、左半分を透視した下面図である。FIG. 3A is a bottom view of a light receiving system in the above infrared detecting device. FIG. 3B is a bottom view through the left half of the light receiving system in the above infrared detecting device. 図4は、同上の赤外線検出装置の断面図である。FIG. 4 is a cross-sectional view of the above infrared detection device. 図5は、同上の赤外線検出装置における受光素子を含む赤外線センサの斜視図である。FIG. 5 is a perspective view of an infrared sensor including a light receiving element in the above infrared detecting device. 図6Aは、同上の赤外線検出装置における受光系の平面図である。図6Bは、同上の赤外線検出装置の検知エリアの説明図である。FIG. 6A is a plan view of a light receiving system in the above infrared detecting device. FIG. 6B is an explanatory diagram of a detection area of the above infrared detection device. 図7は、同上の赤外線検出装置の検知エリアにおける小検知エリアの説明図である。FIG. 7 is an explanatory view of a small detection area in the detection area of the above infrared detection device. 図8は、同上の赤外線検出装置における第1マルチレンズ及び第2マルチレンズの説明図である。FIG. 8 is an explanatory view of a first multi lens and a second multi lens in the infrared detection device of the same. 図9は、同上の赤外線検出装置の検知エリアの説明図である。FIG. 9 is an explanatory view of a detection area of the above infrared detection device.
 以下に説明する実施形態は、本発明の様々な実施形態の一つに過ぎない。下記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。 The embodiments described below are only one of various embodiments of the present invention. The following embodiments can be variously modified according to the design and the like as long as the object of the present invention can be achieved.
 また、下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 Further, each drawing described in the following embodiment is a schematic drawing, and the ratio of the size and thickness of each component in the drawing does not necessarily reflect the actual dimensional ratio. .
 (実施形態)
 以下では、本実施形態の赤外線検出装置100について、図1~9に基づいて説明する。
(Embodiment)
Hereinafter, the infrared detection device 100 according to the present embodiment will be described based on FIGS.
 本実施形態の赤外線検出装置100は、一例として、検知エリア11(図4及び6B参照)内の人(検知対象)の存否を検知する人体検知に用いられる。つまり、赤外線検出装置100は、検知エリア11内の人体検知を行う赤外線式人体検知装置である。 The infrared detection device 100 according to the present embodiment is used, for example, for human body detection to detect the presence or absence of a person (detection target) in the detection area 11 (see FIGS. 4 and 6B). That is, the infrared detection device 100 is an infrared human-body detection device that detects a human body in the detection area 11.
 赤外線検出装置100は、検知エリア11からの赤外線を受光する受光系1を備える。受光系1は、第1受光ユニット2aと、複数(4個)の第2受光ユニット2bと、を備える。第1受光ユニット2aは、第1受光素子30a(図4及び6A参照)を有する第1赤外線センサ3aと、第1マルチレンズ5aを有する第1光学部材6aと、を含む。第1マルチレンズ5aは、第1受光素子30aに赤外線を集光する複数(30個)の第1レンズ50a(図6A及び8参照)を有する。複数の第2受光ユニット2bの各々は、第2受光素子30b(図4及び6A参照)を有する第2赤外線センサ3bと、第2マルチレンズ5bを有する第2光学部材6bと、を含む。第2マルチレンズ5bは、第2受光素子30bに赤外線を集光する複数(15個)の第2レンズ50b(図6A及び8参照)を有する。 The infrared detection device 100 includes a light receiving system 1 that receives infrared light from the detection area 11. The light receiving system 1 includes a first light receiving unit 2a and a plurality of (four) second light receiving units 2b. The first light receiving unit 2a includes a first infrared sensor 3a having a first light receiving element 30a (see FIGS. 4 and 6A), and a first optical member 6a having a first multi-lens 5a. The first multi lens 5a has a plurality of (30) first lenses 50a (see FIGS. 6A and 8) for condensing infrared light on the first light receiving element 30a. Each of the plurality of second light receiving units 2b includes a second infrared sensor 3b having a second light receiving element 30b (see FIGS. 4 and 6A) and a second optical member 6b having a second multi lens 5b. The second multi lens 5 b has a plurality (15) of second lenses 50 b (see FIGS. 6A and 8) for condensing infrared light on the second light receiving element 30 b.
 また、赤外線検出装置100は、回路基板7を更に備える。赤外線検出装置100では、回路基板7に、第1赤外線センサ3a及び複数の第2赤外線センサ3bが実装されている。ここにおいて、第1赤外線センサ3aは、第1受光素子30aの光軸39a(図4参照)が回路基板7の厚さ方向と略平行となるように、回路基板7に実装されている。また、複数(4個)の第2赤外線センサ3bの各々は、第2受光素子30bの光軸39b(図4参照)が回路基板7の厚さ方向に対して傾くように、回路基板7に実装されている。複数の第2赤外線センサ3bは、互いに異なる向きに傾いている。 The infrared detection device 100 further includes a circuit board 7. In the infrared detection device 100, the first infrared sensor 3a and the plurality of second infrared sensors 3b are mounted on the circuit board 7. Here, the first infrared sensor 3a is mounted on the circuit board 7 such that the optical axis 39a (see FIG. 4) of the first light receiving element 30a is substantially parallel to the thickness direction of the circuit board 7. Further, each of the plurality of (four) second infrared sensors 3b is mounted on the circuit board 7 so that the optical axis 39b (see FIG. 4) of the second light receiving element 30b is inclined with respect to the thickness direction of the circuit board 7. Has been implemented. The plurality of second infrared sensors 3b are inclined in different directions.
 また、赤外線検出装置100は、ベース8を更に備える。ベース8は、第1受光ユニット2aと複数の第2受光ユニット2bと回路基板7とを保持する。これにより、赤外線検出装置100では、回路基板7に実装されている第1赤外線センサ3aの第1受光素子30aと第1マルチレンズ5aとの相対的な位置が決まる。また、赤外線検出装置100では、回路基板7に実装されている複数の第2赤外線センサ3bそれぞれの第2受光素子30bと複数の第2マルチレンズ5bのうち一対一に対応する第2マルチレンズ5bとの相対的な位置が決まる。 In addition, the infrared detection device 100 further includes a base 8. The base 8 holds the first light receiving unit 2 a, the plurality of second light receiving units 2 b, and the circuit board 7. Thereby, in the infrared detection device 100, the relative position of the first light receiving element 30a of the first infrared sensor 3a mounted on the circuit board 7 and the first multi-lens 5a is determined. Further, in the infrared detection device 100, the second multi-lens 5b corresponding to one-to-one of the second light receiving elements 30b of the plurality of second infrared sensors 3b mounted on the circuit board 7 and the plurality of second multi-lenses 5b. The relative position with is determined.
 また、赤外線検出装置100は、信号処理部9を更に備える。信号処理部9は、第1受光素子30a及び複数の第2受光素子30bそれぞれの出力信号に基づいて検知エリア11に人が存在するか否かを判定する。信号処理部9は、検知エリア11に人が存在するか否かの判定結果を外部装置(外部回路)へ出力するように構成されている。 The infrared detection device 100 further includes a signal processing unit 9. The signal processing unit 9 determines whether or not a person is present in the detection area 11 based on the output signals of the first light receiving element 30a and the plurality of second light receiving elements 30b. The signal processing unit 9 is configured to output a determination result as to whether or not a person is present in the detection area 11 to an external device (external circuit).
 赤外線検出装置100の各構成要素については、以下に、より詳細に説明する。 Each component of the infrared detection device 100 will be described in more detail below.
 赤外線検出装置100は、上述のように、第1赤外線センサ3aと、複数の第2赤外線センサ3bと、第1マルチレンズ5aと、複数の第2マルチレンズ5bと、回路基板7と、ベース8と、信号処理部9と、を備える。第1受光素子30aと第2受光素子30bとは同じ構成なので、以下では、説明の便宜上、両者を区別しないで説明する場合には、単に受光素子30と称する。また、説明の便宜上、第1受光素子30aの光軸39aと第2受光素子30bの光軸39bとを区別しないで説明する場合には、単に光軸39と称する。また、第1赤外線センサ3aと第2赤外線センサ3bとは同じ構成なので、説明の便宜上、両者を区別しないで説明する場合には、単に赤外線センサ3と称する。 As described above, the infrared detection device 100 includes the first infrared sensor 3 a, the plurality of second infrared sensors 3 b, the first multi lens 5 a, the plurality of second multi lenses 5 b, the circuit board 7, and the base 8. And the signal processing unit 9. The first light receiving element 30a and the second light receiving element 30b have the same configuration, and therefore, in the following, for convenience of description, when the two are not distinguished from each other, they are simply referred to as the light receiving element 30. Further, for convenience of explanation, when the optical axis 39a of the first light receiving element 30a and the optical axis 39b of the second light receiving element 30b are described without distinction, they are simply referred to as the optical axis 39. Further, since the first infrared sensor 3a and the second infrared sensor 3b have the same configuration, for convenience of explanation, when the two are not distinguished without being distinguished from each other, they will be referred to simply as the infrared sensor 3.
 赤外線センサ3は、受光素子30を有する。受光素子30は、熱型赤外線検出素子である。より詳細には、受光素子30は、クワッドタイプの焦電素子であり、1枚の焦電体基板において4個の検出部が2×2のアレイ状(マトリクス状)に配列されている。4個の検出部の各々は、焦電体基板の第1面上に配置された第1電極と、第1面とは反対側の第2面上に配置された第2電極と、焦電体基板のうち第1電極と第2電極との間の部分と、を含むコンデンサである。第1電極は、赤外線を吸収する導電膜(例えば、NiCr膜)により構成されている。受光素子30の光軸39は、受光素子30を厚さ方向の一方向から見て4個の検出部それぞれの受光面を包含する多角形(例えば、正方形)の中心に立てた法線である。 The infrared sensor 3 has a light receiving element 30. The light receiving element 30 is a thermal infrared detection element. More specifically, the light receiving element 30 is a quad type pyroelectric element, and four detection units are arranged in a 2 × 2 array (matrix) in one pyroelectric substrate. Each of the four detection units includes a first electrode disposed on the first surface of the pyroelectric substrate, a second electrode disposed on the second surface opposite to the first surface, and pyroelectric It is a capacitor including the part between the 1st electrode and the 2nd electrode among body substrates. The first electrode is composed of a conductive film (for example, a NiCr film) that absorbs infrared light. The optical axis 39 of the light receiving element 30 is a normal which is erected at the center of a polygon (for example, a square) including the light receiving surface of each of the four detection portions when the light receiving element 30 is viewed from one direction in the thickness direction. .
 受光素子30は、赤外線を受光し、受光した赤外線量の変化に応じて電流信号を出力する。ここで、赤外線センサ3は、受光素子30から出力される電流信号を電圧信号に変換する変換回路を含むIC(Integrated Circuit)素子を備える。変換回路は、例えば、電流電圧変換回路と、電圧増幅回路と、を有する。電流電圧変換回路は、受光素子30から出力される出力信号である電流信号を電圧信号に変換して出力する回路である。電圧増幅回路は、電流電圧変換回路により変換された電圧信号のうち所定の周波数帯域(例えば、0.1Hz~10Hz)の電圧信号を増幅して出力する回路である。電圧増幅回路は、バンドパスフィルタとしての機能を有する。バンドパスフィルタとしての機能は、電流電圧変換回路から出力された電圧信号のうち上記所定の周波数帯域の成分を通過させ、かつ雑音となる不要な周波数成分を除去する機能である。 The light receiving element 30 receives infrared light, and outputs a current signal according to the change in the amount of the received infrared light. Here, the infrared sensor 3 includes an IC (Integrated Circuit) element including a conversion circuit that converts a current signal output from the light receiving element 30 into a voltage signal. The conversion circuit includes, for example, a current-voltage conversion circuit and a voltage amplification circuit. The current-voltage conversion circuit is a circuit that converts a current signal, which is an output signal output from the light receiving element 30, into a voltage signal and outputs the voltage signal. The voltage amplification circuit is a circuit that amplifies and outputs a voltage signal of a predetermined frequency band (for example, 0.1 Hz to 10 Hz) among voltage signals converted by the current-voltage conversion circuit. The voltage amplification circuit has a function as a band pass filter. The function as a band pass filter is a function of passing the component of the predetermined frequency band out of the voltage signal output from the current-voltage conversion circuit and removing an unnecessary frequency component which becomes noise.
 赤外線センサ3は、受光素子30とIC素子とが実装される実装基板を備えている。実装基板は、例えば、成形基板である。 The infrared sensor 3 includes a mounting substrate on which the light receiving element 30 and the IC element are mounted. The mounting substrate is, for example, a molded substrate.
 また、赤外線センサ3は、受光素子30とIC素子と実装基板とを含む回路モジュールを収納するパッケージ33(図5参照)を備えている。パッケージ33は、所謂キャンパッケージ(Can Package)である。キャンパッケージは、メタルパッケージ(Metal Package)とも呼ばれている。パッケージ33は、図5に示すように、台座331と、キャップ332と、窓材333と、3つのリード端子334と、を備える。 The infrared sensor 3 also includes a package 33 (see FIG. 5) that accommodates a circuit module including the light receiving element 30, the IC element, and the mounting substrate. The package 33 is a so-called can package (Can Package). The can package is also called a metal package (Metal Package). The package 33, as shown in FIG. 5, includes a pedestal 331, a cap 332, a window member 333 and three lead terminals 334.
 台座331は、導電性を有する。ここにおいて、台座331は、金属製である。台座331は、円盤状であり、厚さ方向の一面側において実装基板を支持する。 The pedestal 331 has conductivity. Here, the pedestal 331 is made of metal. The pedestal 331 has a disk shape, and supports the mounting substrate on one side in the thickness direction.
 キャップ332は、導電性を有する。ここにおいて、キャップ332は、金属製である。キャップ332は、有底円筒状であり、回路モジュールを覆うように台座331に固着される。 The cap 332 is conductive. Here, the cap 332 is made of metal. The cap 332 is cylindrical with a bottom, and is fixed to the pedestal 331 so as to cover the circuit module.
 窓材333は、赤外線を透過する赤外線透過部材である。窓材333は、導電性を有するのが好ましい。ここにおいて、窓材333は、例えば、シリコン基板を含む。窓材333は、シリコン基板に加えて、このシリコン基板に積層された赤外線光学フィルタを備えるのが好ましい。赤外線光学フィルタは、赤外線検出装置100の検出対象の波長領域の赤外線を透過させる光学多層膜である。 The window member 333 is an infrared transmitting member that transmits infrared light. The window member 333 preferably has conductivity. Here, the window material 333 includes, for example, a silicon substrate. The window member 333 preferably includes an infrared optical filter stacked on the silicon substrate in addition to the silicon substrate. The infrared optical filter is an optical multilayer film that transmits infrared light in the wavelength region of the detection target of the infrared detection device 100.
 窓材333は、キャップ332の前壁3321に形成された窓孔3322を塞ぐように配置される。窓材333は、キャップ332に対して導電性材料により接合されており、キャップ332と電気的に接続されている。窓材333は、受光素子30の受光面の前方に配置される。赤外線センサ3では、受光素子30の光軸39が窓材333の中心を通るように受光素子30が配置されているのが好ましい。 The window member 333 is arranged to close the window hole 3322 formed in the front wall 3321 of the cap 332. The window member 333 is bonded to the cap 332 by a conductive material, and is electrically connected to the cap 332. The window member 333 is disposed in front of the light receiving surface of the light receiving element 30. In the infrared sensor 3, it is preferable that the light receiving element 30 be disposed such that the optical axis 39 of the light receiving element 30 passes through the center of the window member 333.
 3つのリード端子334は、台座331に保持されている。3つのリード端子334の各々は、ピン状である。3つのリード端子334の各々は、台座331の厚さ方向において台座331を貫通している。3つのリード端子334は、給電用リード端子、信号出力用リード端子及びグラウンド用リード端子である。 The three lead terminals 334 are held by the pedestal 331. Each of the three lead terminals 334 is pin-shaped. Each of the three lead terminals 334 penetrates the pedestal 331 in the thickness direction of the pedestal 331. The three lead terminals 334 are a power supply lead terminal, a signal output lead terminal, and a ground lead terminal.
 赤外線検出装置100では、5個の赤外線センサ3は、矩形板状の回路基板7に実装されている。回路基板7は、例えば、プリント基板である。回路基板7は、厚さ方向に交差する第1面71と、第1面71とは反対側の第2面72と、を有する。赤外線検出装置100では、4個の第2受光素子30bが、回路基板7の第1面71側において、1つの仮想円上に略等間隔で並ぶように配置され、第1受光素子30aが、上記仮想円の中心に配置されている。見方を変えれば、赤外線検出装置100では、4個の第2受光素子30bが、回路基板7の第1面71側において、仮想正方形の4つの角に1つずつ配置され、第1受光素子30aが、上記仮想正方形の中心に配置されている。 In the infrared detection device 100, the five infrared sensors 3 are mounted on a rectangular plate-shaped circuit board 7. The circuit board 7 is, for example, a printed circuit board. The circuit board 7 has a first surface 71 intersecting in the thickness direction, and a second surface 72 opposite to the first surface 71. In the infrared detection device 100, the four second light receiving elements 30b are arranged on the first surface 71 side of the circuit board 7 so as to be arranged at substantially equal intervals on one virtual circle, and the first light receiving elements 30a are It is arranged at the center of the above virtual circle. From another point of view, in the infrared detection device 100, four second light receiving elements 30b are disposed one by one at four corners of the virtual square on the first surface 71 side of the circuit board 7, and the first light receiving element 30a Is located at the center of the virtual square.
 第1受光素子30aの光軸39a(図4参照)は、回路基板7の第1面71に直交する。複数の第2受光素子30bの各々における光軸39b(図4参照)は、回路基板7の第1面71に斜交する。複数の第2赤外線センサ3bの各々は、上記仮想円の中心に立てた法線と第2受光素子30bの光軸39bとのなす角度が互いに同じである。また、複数の第2赤外線センサ3bは、上記仮想円の中心に立てた法線に対して第2受光素子30bそれぞれの光軸39bが傾く方向が異なるように、回路基板7に実装されている。 The optical axis 39 a (see FIG. 4) of the first light receiving element 30 a is orthogonal to the first surface 71 of the circuit board 7. The optical axis 39 b (see FIG. 4) in each of the plurality of second light receiving elements 30 b intersects with the first surface 71 of the circuit board 7. In each of the plurality of second infrared sensors 3b, the angle between the normal line erected at the center of the virtual circle and the optical axis 39b of the second light receiving element 30b is the same. Further, the plurality of second infrared sensors 3b are mounted on the circuit board 7 such that the optical axes 39b of the second light receiving elements 30b are inclined in different directions with respect to the normal line erected at the center of the virtual circle. .
 回路基板7には、複数(5個)の赤外線センサ3の各々における3つのリード端子334を1つずつ通す3つのピン挿通孔74(図1及び4参照)が複数組(5組)設けられている。 The circuit board 7 is provided with a plurality of sets (five sets) of three pin insertion holes 74 (see FIGS. 1 and 4) for passing the three lead terminals 334 in each of the plurality (five) infrared sensors 3 one by one. ing.
 回路基板7は、円盤状のベース8において上方に膨らんだ中央部801の上面に配置され、ベース8に保持される。ここにおいて、回路基板7に実装される複数の赤外線センサ3は、ベース8の中央部801の下面側に配置される。ベース8は、電気絶縁性を有する。ベース8の材質は、例えば、合成樹脂である。 The circuit board 7 is disposed on the upper surface of the central portion 801 expanded upward in the disk-like base 8, and is held by the base 8. Here, the plurality of infrared sensors 3 mounted on the circuit board 7 are disposed on the lower surface side of the central portion 801 of the base 8. The base 8 has electrical insulation. The material of the base 8 is, for example, a synthetic resin.
 ベース8は、第1赤外線センサ3aと回路基板7との間に介在する第1スペーサ部81aと、複数の第2赤外線センサ3bの各々の台座331と回路基板7との間に介在する複数の第2スペーサ部81bと、を備えている。第1スペーサ部81aには、第1赤外線センサ3aの3つのリード端子334の各々を一つずつ通す複数の孔82aが形成されている。また、複数の第2スペーサ部81bそれぞれには、第2赤外線センサ3bの3つのリード端子334の各々を一つずつ通す複数の孔82bが形成されている。第1スペーサ部81aでは、赤外線センサ3の台座331に対向する表面811aが、第1受光素子30aの光軸39aに直交し、かつ、回路基板7の第1面71に平行となっている。複数の第2スペーサ部81bの各々では、赤外線センサ3の台座331に対向する表面811bが、第2受光素子30bの光軸39bに直交し、かつ、回路基板7の第1面71に対して傾いている。 The base 8 includes a first spacer portion 81a interposed between the first infrared sensor 3a and the circuit board 7, and a plurality of pedestals interposed between the pedestals 331 of the plurality of second infrared sensors 3b and the circuit board 7. And a second spacer portion 81b. The first spacer portion 81a is formed with a plurality of holes 82a through which each of the three lead terminals 334 of the first infrared sensor 3a passes one by one. Further, in each of the plurality of second spacer portions 81b, there are formed a plurality of holes 82b through which each of the three lead terminals 334 of the second infrared sensor 3b passes one by one. In the first spacer portion 81 a, the surface 811 a facing the pedestal 331 of the infrared sensor 3 is orthogonal to the optical axis 39 a of the first light receiving element 30 a and parallel to the first surface 71 of the circuit board 7. In each of the plurality of second spacer portions 81 b, the surface 811 b facing the pedestal 331 of the infrared sensor 3 is orthogonal to the optical axis 39 b of the second light receiving element 30 b and with respect to the first surface 71 of the circuit board 7 It is inclined.
 また、赤外線検出装置100は、複数(4個)の遮光壁83(図4参照)を更に備えるのが好ましい。複数の遮光壁83の各々は、半円筒状である。複数の遮光壁83の各々は、複数の第2赤外線センサ3bのうち一対一に対応する第2赤外線センサ3bの台座331及びキャップ332の略半周を囲むように第2赤外線センサ3bと第1赤外線センサ3aとの間に配置されている。複数の遮光壁83は、ベース8と一体に形成されていてもよいし、別体に形成されてベース8に固定されていてもよい。 The infrared detection device 100 preferably further includes a plurality of (four) light blocking walls 83 (see FIG. 4). Each of the plurality of light blocking walls 83 is semi-cylindrical. Each of the plurality of light shielding walls 83 surrounds the pedestal 331 of the second infrared sensor 3b corresponding to one to one of the plurality of second infrared sensors 3b and the substantially half circumference of the cap 332, and the second infrared sensor 3b and the first infrared It is arranged between the sensor 3a. The plurality of light shielding walls 83 may be integrally formed with the base 8 or may be separately formed and fixed to the base 8.
 ベース8は、その中央部801の下面側に、第1光学部材6aが配置される4つの第1壁84を備える。4つの第1壁84の各々は、ベース8の下面側から見て、円弧状であり、第1光学部材6aの周方向において略等間隔で配置されている。赤外線検出装置100では、第1光学部材6aは、2つの第1螺子(図示せず)によってベース8の4つの第1壁84のうちの2つの第1壁84に固定されている。 The base 8 includes four first walls 84 on the lower surface side of the central portion 801, in which the first optical member 6a is disposed. When viewed from the lower surface side of the base 8, each of the four first walls 84 has an arc shape, and is disposed at substantially equal intervals in the circumferential direction of the first optical member 6a. In the infrared detection device 100, the first optical member 6a is fixed to two first walls 84 of the four first walls 84 of the base 8 by two first screws (not shown).
 また、ベース8は、その周部802の下面側に、複数の第2光学部材6bの各々が配置される4つの第2壁85を備える。4つの第2壁85の各々は、ベース8の下面側から見て、第1光学部材6a側が開放されたC字状である。赤外線検出装置100では、複数の第2光学部材6bの各々が、2つの第2螺子(図示せず)によってベース8の第2壁85に固定されている。 Further, the base 8 is provided with four second walls 85 on the lower surface side of the peripheral portion 802, in which each of the plurality of second optical members 6b is disposed. Each of the four second walls 85 has a C shape in which the first optical member 6 a side is opened as viewed from the lower surface side of the base 8. In the infrared detection device 100, each of the plurality of second optical members 6b is fixed to the second wall 85 of the base 8 by two second screws (not shown).
 第1光学部材6aは、図1に示すように、有底円筒状の第1光学部材本体60aと、第1光学部材本体60aの上端から全周に亘って外方へ突出した第1フランジ62aと、を備える。第1光学部材6aでは、第1光学部材本体60aの下端の底壁61aに第1マルチレンズ5aが形成されている。第1光学部材6aは、第1フランジ62aがベース8の4つの第1壁84の下端面に重なるように配置されている。 As shown in FIG. 1, the first optical member 6a has a bottomed cylindrical first optical member main body 60a and a first flange 62a projecting outward from the upper end of the first optical member main body 60a all around. And. In the first optical member 6a, the first multi lens 5a is formed on the bottom wall 61a of the lower end of the first optical member main body 60a. The first optical member 6 a is disposed such that the first flange 62 a overlaps the lower end surfaces of the four first walls 84 of the base 8.
 第2光学部材6bの各々は、図1に示すように、有底箱状の第2光学部材本体60bと、第2光学部材本体60bの上端から外方へ突出した第2フランジ62bと、を備える。第2光学部材本体60bの周壁は、ベース8側から見て、第1光学部材6a側が開放されたC字状である。第2光学部材6bでは、第2光学部材本体60bの下端の底壁61bに第2マルチレンズ5bが形成されている。第2光学部材6bは、第2フランジ62bがベース8の第2壁85の下端面に重なるように配置されている。 As shown in FIG. 1, each of the second optical members 6b has a box-shaped second optical member body 60b with a bottom and a second flange 62b protruding outward from the upper end of the second optical member body 60b. Prepare. The peripheral wall of the second optical member main body 60b has a C shape in which the first optical member 6a side is opened as viewed from the base 8 side. In the second optical member 6b, the second multi lens 5b is formed on the bottom wall 61b of the lower end of the second optical member main body 60b. The second optical member 6 b is disposed such that the second flange 62 b overlaps the lower end surface of the second wall 85 of the base 8.
 第1マルチレンズ5aにおいて外部(検知エリア11)からの赤外線が入射する第1面501a(図4参照)は、複数の第1レンズ50aそれぞれの入射面の一群により構成されている。第1マルチレンズ5aにおいて赤外線が出射する第2面502a(図4参照)は、複数の第1レンズ50aそれぞれの出射面の一群により構成されている。 In the first multi-lens 5a, a first surface 501a (see FIG. 4) on which infrared light from the outside (detection area 11) is incident is constituted by a group of incident surfaces of the plurality of first lenses 50a. The second surface 502a (see FIG. 4) from which infrared light is emitted in the first multi-lens 5a is formed of a group of emission surfaces of the plurality of first lenses 50a.
 第1マルチレンズ5aにおける複数の第1レンズ50aの各々は、集光レンズであり、凸レンズにより構成されている。ここで、複数の第1レンズ50aの各々を構成する凸レンズは、収差をより小さくする観点から、非球面レンズであるのが好ましい。 Each of the plurality of first lenses 50a in the first multi lens 5a is a condensing lens, and is configured by a convex lens. Here, it is preferable that the convex lens which comprises each of the some 1st lens 50a is an aspherical lens from a viewpoint of making an aberration smaller.
 第1マルチレンズ5aでは、複数(30個)の第1レンズ50aが、第1受光素子30aの光軸39aからの距離が互いに異なる複数(3つ)の列に分けて配置されている。ここにおいて、第1マルチレンズ5aでは、図8に示すように、複数(30個)の第1レンズ50aが互いに半径の異なる第1仮想円C1、第2仮想円C2及び第3仮想円C3上に分けて配置されている。第1仮想円C1、第2仮想円C2及び第3仮想円C3は、この順に半径が大きくなる。第1マルチレンズ5aでは、第1仮想円C1上に4個の第1レンズ50aが配列され、第2仮想円C2上に10個の第1レンズ50aが配列され、第3仮想円C3上に16個の第1レンズ50aが配列されている。 In the first multi-lens 5a, the plurality of (30) first lenses 50a are divided into a plurality of (3) different rows from the optical axis 39a of the first light receiving element 30a. Here, in the first multi-lens 5a, as shown in FIG. 8, the plurality of (30) first lenses 50a are on the first virtual circle C1, the second virtual circle C2 and the third virtual circle C3 having different radii. It is divided and arranged. The radiuses of the first virtual circle C1, the second virtual circle C2 and the third virtual circle C3 increase in this order. In the first multi-lens 5a, the four first lenses 50a are arranged on the first virtual circle C1, the ten first lenses 50a are arranged on the second virtual circle C2, and the third lenses are arranged on the third virtual circle C3. Sixteen first lenses 50a are arranged.
 第1マルチレンズ5aは、複数の第1レンズ50aそれぞれの第1受光素子30a側での焦点が同じ位置となるように設計されているのが好ましい。第1マルチレンズ5aは、複数の第1レンズ50aの各々を透過した赤外線が第1赤外線センサ3aの窓材333に直接入射するように構成されているのが好ましい。 The first multi lens 5a is preferably designed such that the focal points of the plurality of first lenses 50a on the first light receiving element 30a side are at the same position. The first multi-lens 5a is preferably configured such that the infrared rays transmitted through each of the plurality of first lenses 50a directly enter the window member 333 of the first infrared sensor 3a.
 第1マルチレンズ5aにおける複数の第1レンズ50aの各々で制御する制御対象の赤外線は、例えば、5μm~25μmの波長域の赤外線である。 The infrared rays to be controlled by each of the plurality of first lenses 50a in the first multi-lens 5a are, for example, infrared rays in a wavelength range of 5 μm to 25 μm.
 第2マルチレンズ5bにおいて外部(検知エリア11)からの赤外線が入射する第1面501b(図4参照)は、複数の第2レンズ50bそれぞれの入射面の一群により構成されている。第2マルチレンズ5bにおいて赤外線が出射する第2面502b(図4参照)は、複数の第2レンズ50bそれぞれの出射面の一群により構成されている。 In the second multi-lens 5b, a first surface 501b (see FIG. 4) to which infrared light from the outside (detection area 11) is incident is constituted by a group of incident surfaces of the plurality of second lenses 50b. The second surface 502b (see FIG. 4) from which infrared light is emitted in the second multi lens 5b is configured by a group of emission surfaces of the plurality of second lenses 50b.
 第2マルチレンズ5bにおける複数の第2レンズ50bの各々は、集光レンズであり、凸レンズにより構成されている。ここで、複数の第2レンズ50bの各々を構成する凸レンズは、非球面レンズである。複数の第2レンズ50bの各々は、肉厚を薄くする観点から、フレネルレンズであるのが好ましい。 Each of the plurality of second lenses 50b in the second multi lens 5b is a condensing lens, and is configured by a convex lens. Here, the convex lenses that constitute each of the plurality of second lenses 50b are aspheric lenses. Each of the plurality of second lenses 50b is preferably a Fresnel lens from the viewpoint of reducing the thickness.
 第2マルチレンズ5bでは、複数(15個)の第2レンズ50bが、第1受光素子30aの光軸39aからの距離が互いに異なる複数(3つ)の列に分けて配置されている。ここにおいて、第2マルチレンズ5bでは、図8に示すように、複数(15個)の第2レンズ50bが互いに半径の異なる第4仮想円C4、第5仮想円C5及び第6仮想円C6上に分けて配置されている。第4仮想円C4、第5仮想円C5及び第6仮想円C6は、この順に半径が大きくなる。第4仮想円C4の半径は、第3仮想円C3の半径よりも大きい。第1仮想円C1~第6仮想円C6の中心は同じである。第2マルチレンズ5bでは、第4仮想円C4上に5個の第2レンズ50bが配列され、第5仮想円C5上に7個の第2レンズ50bが配列され、第6仮想円C6上に3個の第2レンズ50bが配列されている。第2マルチレンズ5bでは、第1仮想円C1~第6仮想円C6に共通する一径方向において並んでいる2乃至3個の第2レンズ50bについて見れば、第1仮想円C1~第6仮想円C6に共通の中心から離れた第2レンズ50bほどレンズ面積が大きい。 In the second multi-lens 5b, the plurality of (15) second lenses 50b are divided into a plurality of (three) rows in which the distances from the optical axis 39a of the first light receiving element 30a are different from each other. Here, in the second multi lens 5b, as shown in FIG. 8, a plurality of (15) second lenses 50b are on the fourth virtual circle C4, the fifth virtual circle C5, and the sixth virtual circle C6 having mutually different radii. It is divided and arranged. The radiuses of the fourth virtual circle C4, the fifth virtual circle C5, and the sixth virtual circle C6 increase in this order. The radius of the fourth virtual circle C4 is larger than the radius of the third virtual circle C3. The centers of the first virtual circle C1 to the sixth virtual circle C6 are the same. In the second multi-lens 5b, five second lenses 50b are arranged on the fourth virtual circle C4, and seven second lenses 50b are arranged on the fifth virtual circle C5, and on the sixth virtual circle C6. Three second lenses 50b are arranged. In the second multi lens 5b, the first virtual circle C1 to the sixth virtual circle C1 to the sixth virtual circle 50 can be seen from the second to third second lenses 50b arranged in the one radial direction common to the first virtual circle C1 to the sixth virtual circle C6. The lens area is larger as the second lens 50b is farther from the center common to the circle C6.
 第2マルチレンズ5bは、複数の第2レンズ50bそれぞれの第2受光素子30b側での焦点が同じ位置となるように設計されているのが好ましい。第2マルチレンズ5bは、複数の第2レンズ50bの各々を透過した赤外線が第2赤外線センサ3bの窓材333に直接入射するように構成されているのが好ましい。 It is preferable that the second multi lens 5 b is designed such that the focal points of the plurality of second lenses 50 b on the second light receiving element 30 b side are at the same position. The second multi lens 5b is preferably configured such that the infrared rays transmitted through each of the plurality of second lenses 50b directly enter the window member 333 of the second infrared sensor 3b.
 第2マルチレンズ5bにおける複数の第2レンズ50bの各々で制御する制御対象の赤外線は、例えば、5μm~25μmの波長域の赤外線である。 The infrared rays to be controlled by each of the plurality of second lenses 50b in the second multi-lens 5b are, for example, infrared rays in a wavelength range of 5 μm to 25 μm.
 第1マルチレンズ5a及び第2マルチレンズ5bの材料は、例えば、ポリエチレンである。より詳細には、第1マルチレンズ5aの材料は、白色顔料又は黒色顔料が添加されたポリエチレンである。白色顔料としては、例えば、酸化チタン等の無機顔料を採用するのが好ましい。黒色顔料としては、例えば、カーボンブラック等の微粒子を採用するのが好ましい。第1マルチレンズ5a及び第2マルチレンズ5bは、例えば、成形法により形成することができる。成形法としては、例えば、射出成形法、圧縮成形法等を採用することができる。 The material of the first multi-lens 5a and the second multi-lens 5b is, for example, polyethylene. More specifically, the material of the first multi-lens 5a is polyethylene to which a white pigment or a black pigment is added. As the white pigment, for example, it is preferable to use an inorganic pigment such as titanium oxide. As the black pigment, for example, fine particles of carbon black or the like are preferably employed. The first multi lens 5a and the second multi lens 5 b can be formed, for example, by a molding method. As a molding method, an injection molding method, a compression molding method, etc. are employable, for example.
 赤外線検出装置100は、例えば、検知エリア11の中心線110(図4参照)が鉛直下方に向くように天井等に配置して使用されることを想定している。言い換えれば、赤外線検出装置100は、一使用形態において、第1受光素子30aの受光面が鉛直下方に向くように配置されることを想定している。検知エリア11は、四角錐状の3次元エリアである。検知エリア11は、中心線110に直交する水平面内では正方形状である。 For example, it is assumed that the infrared detection device 100 is disposed on a ceiling or the like so that the center line 110 (see FIG. 4) of the detection area 11 is directed vertically downward. In other words, it is assumed that the infrared detection device 100 is arranged such that the light receiving surface of the first light receiving element 30a is directed vertically downward in one usage pattern. The detection area 11 is a square pyramidal three-dimensional area. The detection area 11 is square in a horizontal plane perpendicular to the center line 110.
 赤外線検出装置100の検知エリア11の立体角は、第1受光ユニット2aと複数の第2受光ユニット2bとにより規定される。赤外線検出装置100では、検知エリア11を区分した複数(90個)の小検知エリア13(図6B及び7参照)の各々が第1受光ユニット2aと複数(4個)の第2受光ユニット2bとのいずれかに対応付けられている。図6Bは、赤外線検出装置100の検知エリア11を、検知エリア11の中心線110に直交する仮想平面120(例えば、床面)において模式的に表した図である。また、図7は、赤外線検出装置100の複数の小検知エリア13のうちの1つの小検知エリア13を仮想平面120(例えば、床面)において模式的に表した図である。検知エリア11は、複数(90個)の小検知エリア13を含んでいる。複数(90個)の小検知エリア13の各々は、受光素子30の複数(4つ)の検出部に一対一に対応する複数(4つ)の微小検知エリア14(図7参照)を含んでいる。複数の微小検知エリア14は、受光素子30から見てそれぞれ異なる方向にある。複数の微小検知エリア14の各々は、斜四角錐状である。複数の微小検知エリア14の各々の立体角は、小検知エリア13の立体角よりも小さい。言い換えれば、微小検知エリア14は、小検知エリア13よりも狭い。微小検知エリア14は、第1レンズ50aを通して第1受光素子30aの検出部に入射する赤外線束を赤外線の進む方向と反対の方向に延長したときに形成される3次元領域、又は第2レンズ50bを通して第2受光素子30bの検出部に入射する赤外線束を赤外線の進む方向と反対の方向に延長したときに形成される3次元領域である。言い換えれば、微小検知エリア14は、受光素子30の検出部の受光面上に像をつくるために使われる赤外線束が通ることができる3次元領域である。微小検知エリア14は、例えば、光線追跡解析ソフトを用いたシミュレーションの結果により推定することが可能である。複数の微小検知エリア14のそれぞれには、検出部の第1電極に一対一で対応した極性があるとみなすことができる。検知エリア11、各小検知エリア13及び各微小検知エリア14は、光学的に規定される3次元領域であり、実際に目に見える3次元領域ではない。小検知エリア13は、赤外線センサ3(図5参照)の窓材333の大きさ及び形状、窓孔3322の開口形状等にも依存することがある。 The solid angle of the detection area 11 of the infrared detection device 100 is defined by the first light receiving unit 2a and the plurality of second light receiving units 2b. In the infrared detection device 100, each of a plurality of (90) small detection areas 13 (see FIGS. 6B and 7) obtained by dividing the detection area 11 is a first light receiving unit 2a and a plurality of (four) second light receiving units 2b. Is associated with one of the FIG. 6B is a diagram schematically showing the detection area 11 of the infrared detection device 100 on a virtual plane 120 (for example, a floor surface) orthogonal to the center line 110 of the detection area 11. FIG. 7 is a view schematically showing one small detection area 13 of the plurality of small detection areas 13 of the infrared detection device 100 on a virtual plane 120 (for example, a floor surface). The detection area 11 includes a plurality of (90) small detection areas 13. Each of the plurality of (90) small detection areas 13 includes a plurality of (four) minute detection areas 14 (see FIG. 7) corresponding to the plurality of (four) detection portions of the light receiving element 30 one by one. There is. The plurality of minute detection areas 14 are in different directions as viewed from the light receiving element 30. Each of the plurality of minute detection areas 14 has an oblique square pyramid shape. The solid angle of each of the plurality of minute detection areas 14 is smaller than the solid angle of the small detection area 13. In other words, the minute detection area 14 is narrower than the small detection area 13. The minute detection area 14 is a three-dimensional area formed when the infrared ray bundle incident on the detection unit of the first light receiving element 30a through the first lens 50a is extended in the direction opposite to the advancing direction of the infrared rays, or the second lens 50b The three-dimensional region is formed when the infrared ray bundle incident on the detection portion of the second light receiving element 30b is extended in the direction opposite to the advancing direction of the infrared ray. In other words, the minute detection area 14 is a three-dimensional area through which an infrared ray bundle used to form an image on the light receiving surface of the detection unit of the light receiving element 30 can pass. The minute detection area 14 can be estimated, for example, by the result of simulation using ray tracing analysis software. Each of the plurality of minute detection areas 14 can be regarded as having a polarity corresponding to the first electrode of the detection unit in a one-to-one manner. The detection area 11, each small detection area 13, and each minute detection area 14 are optically defined three-dimensional areas, not actually visible three-dimensional areas. The small detection area 13 may also depend on the size and shape of the window member 333 of the infrared sensor 3 (see FIG. 5), the opening shape of the window hole 3322 and the like.
 赤外線検出装置100では、第1受光ユニット2aの複数(30個)の第1レンズ50aの各々について、複数(90個)の小検知エリア13のうちの1つの小検知エリア13が対応づけられている。言い換えれば、第1受光ユニット2aには、90個の小検知エリア13のうち30個の小検知エリア13が対応付けられている。また、赤外線検出装置100では、複数(4個)の第2受光ユニット2bそれぞれの複数(15個)の第2レンズ50bの各々について、複数(90個)の小検知エリア13のうちの1つの小検知エリア13が対応付けられている。言い換えれば、4個の第2受光ユニット2bの各々には、90個の小検知エリア13のうち15個の小検知エリア13が対応付けられている。つまり、赤外線検出装置100では、第1受光ユニット2aに対応付けられている小検知エリア13の数(30個)が、複数の第2受光ユニット2bの各々に対応付けられている小検知エリア13の数(15個)よりも多い。 In the infrared detection device 100, one small detection area 13 of the plurality of (90) small detection areas 13 is associated with each of the plurality of (30) first lenses 50a of the first light receiving unit 2a. There is. In other words, 30 small detection areas 13 out of 90 small detection areas 13 are associated with the first light receiving unit 2a. Further, in the infrared detection device 100, one of the plurality (90) of the small detection areas 13 is provided for each of the plurality of (15) second lenses 50b of each of the plurality of (four) second light receiving units 2b. The small detection area 13 is associated. In other words, 15 small detection areas 13 out of 90 small detection areas 13 are associated with each of the four second light receiving units 2b. That is, in the infrared detection device 100, the small detection area 13 in which the number (30) of the small detection areas 13 associated with the first light receiving unit 2a is associated with each of the plurality of second light receiving units 2b. More than the number of (15).
 赤外線検出装置100は、上述のように、第1受光素子30a及び複数の第2受光素子30bそれぞれの出力信号に基づいて検知エリア11に人が存在するか否かを判定する信号処理部9を備える。信号処理部9は、例えば、複数の受光素子30それぞれの出力信号の同期成分を抽出する同期検波を行い、同期検波の結果に基づいて、検知エリア11に人が存在するか否かを判定する。信号処理部9は、例えば、同期検波を行うための乗算器、コンパレータ等を用いて構成することができる。ここにおいて、信号処理部9の構成部品は、回路基板7に実装されている。信号処理部9の構成部品は、回路基板7の第2面72側に配置されている。信号処理部9は、上述の複数の赤外線センサ3の各々におけるIC素子を含んでいてもよい。 As described above, the infrared detection device 100 determines the signal processing unit 9 which determines whether or not a person is present in the detection area 11 based on the output signal of each of the first light receiving element 30a and the plurality of second light receiving elements 30b. Prepare. For example, the signal processing unit 9 performs synchronous detection for extracting synchronous components of the output signals of the plurality of light receiving elements 30, and determines whether or not a person is present in the detection area 11 based on the result of the synchronous detection. . The signal processing unit 9 can be configured using, for example, a multiplier for performing synchronous detection, a comparator, and the like. Here, the component parts of the signal processing unit 9 are mounted on the circuit board 7. The component parts of the signal processing unit 9 are disposed on the second surface 72 side of the circuit board 7. The signal processing unit 9 may include an IC element in each of the plurality of infrared sensors 3 described above.
 ところで、マルチレンズにおける複数のレンズの入射面の面積が一定の場合には、複数のレンズのうち受光素子の光軸とのなす角度の大きな光軸のレンズほど、入射した赤外線の損失が大きくなる傾向にある。そのため、特許文献1に記載された熱線式人感センサのように1つのマルチレンズのみで検知エリアを形成する赤外線検出装置では、検知エリアの最外周側での感度が低下してしまう傾向にある。 By the way, when the area of the incident surface of the plurality of lenses in the multi-lens is constant, the loss of the incident infrared radiation becomes larger as the lens of the optical axis having a larger angle with the light axis of the light receiving element among the plurality of lenses There is a tendency. Therefore, in the infrared detection device in which the detection area is formed by only one multi lens as in the heat ray type human sensor described in Patent Document 1, the sensitivity at the outermost periphery of the detection area tends to decrease. .
 これに対して、本実施形態の赤外線検出装置100では、図4及び6Bに示すように、検知エリア11が、中央エリア11aと、周辺エリア11bと、に区分されている。中央エリア11aは、第1受光ユニット2aに対応しており、90個の小検知エリア13のうち30個の小検知エリア13を含んでいる。周辺エリア11bは、複数の第2受光ユニット2bに対応しており、90個の小検知エリア13のうち60個の小検知エリア13を含んでいる。中央エリア11aは、図6Bに示すように仮想平面120上において円形状のエリアとなる。周辺エリア11bは、図6Bに示すように、仮想平面120上において中央エリア11aを内包する正方形のエリアから中央エリア11aを除いたエリア(外周が正方形で内周が円形である枠状のエリア)となる。赤外線検出装置100では、中央エリア11aに含まれる各小検知エリア13に対応する第1レンズ50aのレンズ面積よりも、周辺エリア11bに含まれる各小検知エリア13に対応する第2レンズ50bのレンズ面積が大きい。 On the other hand, in the infrared detection device 100 according to the present embodiment, as shown in FIGS. 4 and 6B, the detection area 11 is divided into a central area 11a and a peripheral area 11b. The central area 11 a corresponds to the first light receiving unit 2 a, and includes 30 small detection areas 13 out of 90 small detection areas 13. The peripheral area 11 b corresponds to the plurality of second light receiving units 2 b, and includes 60 small detection areas 13 out of 90 small detection areas 13. The central area 11a is a circular area on the virtual plane 120 as shown in FIG. 6B. The peripheral area 11b is, as shown in FIG. 6B, an area obtained by removing the central area 11a from a square area including the central area 11a on the virtual plane 120 (a frame-like area whose outer periphery is square and whose inner periphery is circular) It becomes. In the infrared detection device 100, the lens of the second lens 50b corresponding to each small detection area 13 included in the peripheral area 11b than the lens area of the first lens 50a corresponding to each small detection area 13 included in the central area 11a. The area is large.
 図4に示すように、第1受光素子30aと第2受光素子30bとの並ぶ方向に沿った方向を規定方向D1とするとき、図9では、中央エリア11aの小検知エリア13のうち規定方向D1において隣り合う2つの小検知エリア13の組み合わせごとに決まる小検知エリア13間の間隔を距離L1としてある。また、図9では、周辺エリア11bの小検知エリア13のうち規定方向D1において隣り合う2つの小検知エリア13の組み合わせごとに決まる小検知エリア13間の間隔を距離L2としてある。ここにおいて、複数(周辺エリア11b内で規定方向D1において隣り合う2つの小検知エリア13の組み合わせ数)の距離L2の平均値は、複数(中央エリア11a内で規定方向D1において隣り合う2つの小検知エリア13の組み合わせ数)の距離L1の平均値よりも大きい。 As shown in FIG. 4, when the direction along the direction in which the first light receiving element 30a and the second light receiving element 30b are arranged is defined as the defined direction D1, in FIG. 9, the defined direction in the small detection area 13 of the central area 11a. The distance between the small detection areas 13 determined for each combination of two adjacent small detection areas 13 in D1 is a distance L1. Further, in FIG. 9, the distance between the small detection areas 13 determined for each combination of two small detection areas 13 adjacent in the specified direction D1 among the small detection areas 13 of the peripheral area 11b is a distance L2. Here, the average value of the distances L2 of a plurality (the number of combinations of two small detection areas 13 adjacent in the defined direction D1 in the peripheral area 11b) is two (small) adjacent in the defined direction D1 in the central area 11a. It is larger than the average value of the distance L1 of the number of combinations of the detection areas 13).
 以上説明した本実施形態の赤外線検出装置100は、検知エリア11からの赤外線を受光する受光系1を備える。受光系1は、第1受光ユニット2aと、複数の第2受光ユニット2bと、を備える。第1受光ユニット2aは、第1受光素子30aと、第1マルチレンズ5aと、を含む。第1マルチレンズ5aは、第1受光素子30aに赤外線を集光する複数の第1レンズ50aを有する。複数の第2受光ユニット2bの各々は、第2受光素子30bと、第2マルチレンズ5bと、を含む。第2マルチレンズ5bは、第2受光素子30bに赤外線を集光する複数の第2レンズ50bを有する。赤外線検出装置100では、検知エリア11を区分した複数の小検知エリア13の各々が第1受光ユニット2aと複数の第2受光ユニット2bとのいずれかに対応付けられている。赤外線検出装置100では、第1受光ユニット2aの複数の第1レンズ50aの各々について、複数の小検知エリア13のうちの1つの小検知エリア13が対応づけられている。赤外線検出装置100では、複数の第2受光ユニット2bそれぞれの複数の第2レンズ50bの各々について、複数の小検知エリア13のうちの1つの小検知エリア13が対応付けられている。複数の第2受光ユニット2bそれぞれの第2受光素子30bの光軸39bが、第1受光素子30aの光軸39aに対して互いに異なる向きに傾いている。複数の小検知エリア13のうち第1受光ユニット2aに対応付けられている第1群の小検知エリア13の数が、複数の小検知エリア13のうち複数の第2受光ユニット2bの各々に対応づけられている第2群の小検知エリア13の数よりも多い。 The infrared detection device 100 of the present embodiment described above includes the light receiving system 1 that receives infrared light from the detection area 11. The light receiving system 1 includes a first light receiving unit 2a and a plurality of second light receiving units 2b. The first light receiving unit 2a includes a first light receiving element 30a and a first multi lens 5a. The first multi lens 5a has a plurality of first lenses 50a for condensing infrared light on the first light receiving element 30a. Each of the plurality of second light receiving units 2b includes a second light receiving element 30b and a second multi lens 5b. The second multi lens 5 b has a plurality of second lenses 50 b for condensing infrared light on the second light receiving element 30 b. In the infrared detection device 100, each of the plurality of small detection areas 13 obtained by dividing the detection area 11 is associated with one of the first light receiving unit 2a and the plurality of second light receiving units 2b. In the infrared detection device 100, one small detection area 13 of the plurality of small detection areas 13 is associated with each of the plurality of first lenses 50a of the first light receiving unit 2a. In the infrared detection device 100, one small detection area 13 out of the plurality of small detection areas 13 is associated with each of the plurality of second lenses 50b of each of the plurality of second light receiving units 2b. The optical axes 39b of the second light receiving elements 30b of the plurality of second light receiving units 2b are inclined in directions different from each other with respect to the optical axis 39a of the first light receiving element 30a. The number of small detection areas 13 of the first group corresponding to the first light receiving unit 2a among the plurality of small detection areas 13 corresponds to each of the plurality of second light receiving units 2b among the plurality of small detection areas 13 The number is smaller than the number of small detection areas 13 of the second group attached.
 以上の構成により、赤外線検出装置100は、検知エリア11内の感度のばらつきを抑制することが可能となる。ここにおいて、赤外線検出装置100では、上記構成により、第1受光素子30aの光軸39aに対して相対的に傾きの大きい小検知エリア13に対応する第2レンズ50bのレンズ面積を、第1受光素子30aの光軸39aに対して相対的に傾きの小さい第1レンズ50aのレンズ面積よりも大きくできる。これにより、赤外線検出装置100では、検知エリア11内の感度のばらつきを抑制することが可能となる。要するに、赤外線検出装置100では、検知エリア11内の感度の均一化を図ることが可能となる。 With the above configuration, the infrared detection device 100 can suppress variations in sensitivity in the detection area 11. Here, in the infrared detection device 100, with the above configuration, the lens area of the second lens 50b corresponding to the small detection area 13 having a large inclination relative to the optical axis 39a of the first light receiving element 30a is This can be larger than the lens area of the first lens 50a having a small inclination relative to the optical axis 39a of the element 30a. Thereby, in the infrared detection device 100, it becomes possible to suppress the variation in sensitivity in the detection area 11. In short, in the infrared detection device 100, it is possible to make the sensitivity in the detection area 11 uniform.
 また、赤外線検出装置100は、上記の熱線式人感センサにおいて半球状のマルチレンズの直径を大きくしてレンズを配列する列数を増やすことで検知エリアを広げた場合と比べて、検知エリア11の最外周側での感度の低下を抑制することが可能となる。言い換えれば、赤外線検出装置100は、視野角を大きくしながらも検知エリア11の最外周側での感度の低下を抑制することが可能となり、視野角を大きくしながらも検知エリア11内の感度のばらつきを抑制することが可能となる。「視野角」とは、赤外線検出装置100の検知エリア11の広がり角を意味する。 Further, in the infrared ray detection apparatus 100, the detection area 11 is larger than the case where the detection area is expanded by enlarging the diameter of the hemispherical multi lens and increasing the number of rows in which the lenses are arranged in the heat ray type human sensor described above. It is possible to suppress the decrease in sensitivity on the outermost side of the lens. In other words, the infrared detection device 100 can suppress the decrease in sensitivity on the outermost peripheral side of the detection area 11 while increasing the viewing angle, and the sensitivity in the detection area 11 while increasing the viewing angle. It is possible to suppress the variation. The “viewing angle” means the spread angle of the detection area 11 of the infrared detection device 100.
 赤外線検出装置100では、複数の第2マルチレンズ5bが、第1マルチレンズ5aを囲むように第1マルチレンズ5aの外周方向において並んでいるのが好ましい。これにより、赤外線検出装置100は、第1受光素子30aの光軸39aに直交する略全ての方向において検知エリア11をより広くすることが可能となる。 In the infrared detection device 100, it is preferable that the plurality of second multi lenses 5b be arranged in the outer peripheral direction of the first multi lens 5a so as to surround the first multi lens 5a. Thus, the infrared detection device 100 can make the detection area 11 wider in substantially all directions orthogonal to the optical axis 39a of the first light receiving element 30a.
 赤外線検出装置100では、複数の第2受光ユニット2bは、少なくとも3つの第2受光ユニット2bであるのが好ましい。これにより、赤外線検出装置100では、例えば、検知エリア11が四角錐状のエリアであるときに、1つの第1受光ユニット2aと2つの第2受光ユニット2bとしか備えていない場合と比べて、各第2受光ユニット2bの設計が容易になる。 In the infrared detection device 100, the plurality of second light receiving units 2b are preferably at least three second light receiving units 2b. Thereby, in the infrared detection device 100, for example, when the detection area 11 is a quadrangular pyramid area, compared to the case where only one first light receiving unit 2a and two second light receiving units 2b are provided, Design of each second light receiving unit 2b is facilitated.
 赤外線検出装置100では、複数の第1レンズ50aが、第1受光素子30aの光軸39aからの距離が互いに異なる少なくとも2つの列に分けて配置されており、複数の第2レンズ50bが、第1受光素子30aの光軸39からの距離が互いに異なる少なくとも2つの列に分けて配置されているのが好ましい。第1受光素子30aと第2受光素子30bとの並ぶ方向に沿った方向を規定方向D1とするとき、第2群の小検知エリア13のうち規定方向D1において隣り合う2つの小検知エリア13の組み合わせごとに決まる小検知エリア13間の距離L2の平均値が、第1群の小検知エリア13のうち規定方向D1において隣り合う2つの小検知エリア13の組み合わせごとに決まる小検知エリア13間の距離L1の平均値よりも大きいのが好ましい。これにより、赤外線検出装置100は、第2受光ユニット2bの各々に対応付ける小検知エリア13の数を少なくすることで第2レンズ50bのレンズ面積をより大きくすることが可能となり、検知エリア11内の感度のばらつきを、より抑制することが可能となる。 In the infrared detection device 100, the plurality of first lenses 50a are arranged in at least two rows different in distance from the optical axis 39a of the first light receiving element 30a, and the plurality of second lenses 50b are It is preferable that the distance from the optical axis 39 of the one light receiving element 30a be divided into at least two different rows. When a direction along the direction in which the first light receiving element 30a and the second light receiving element 30b are arranged is defined as a defined direction D1, of the two small detection areas 13 adjacent to each other in the defined direction D1 among the small detection areas 13 of the second group Among the small detection areas 13 of the first group, the average value of the distance L2 between the small detection areas 13 determined for each combination is determined between the small detection areas 13 for each combination of two small detection areas 13 adjacent in the specified direction D1. Preferably, it is larger than the average value of the distance L1. Thus, the infrared detection device 100 can increase the lens area of the second lens 50b by reducing the number of the small detection areas 13 associated with each of the second light receiving units 2b. It is possible to further suppress variations in sensitivity.
 赤外線検出装置100では、第1受光素子30a及び第2受光素子30bは、いずれも焦電素子であるのが好ましい。これにより、赤外線検出装置100では、第1受光素子30a及び第2受光素子30bがサーモパイル、抵抗ボロメータ等である場合に比べて、赤外線を放射する物体(例えば、人体)の動きを検知しやすくなる。 In the infrared detection device 100, it is preferable that each of the first light receiving element 30a and the second light receiving element 30b be a pyroelectric element. As a result, in the infrared detection device 100, the movement of an object (for example, a human body) that emits infrared light can be easily detected as compared with the case where the first light receiving element 30a and the second light receiving element 30b are a thermopile, a resistance bolometer, or the like. .
 赤外線検出装置100は、信号処理部9を更に備えるのが好ましい。信号処理部9は、第1受光素子30a及び複数の第2受光素子30bそれぞれの出力信号に基づいて検知エリア11に人が存在するか否かを判定するのが好ましい。これにより、赤外線検出装置100では、人体検知装置として利用することが可能となる。 The infrared detection device 100 preferably further includes a signal processing unit 9. The signal processing unit 9 preferably determines whether a person is present in the detection area 11 based on the output signals of the first light receiving element 30a and the plurality of second light receiving elements 30b. Thus, the infrared detection device 100 can be used as a human body detection device.
 上述の第1受光素子30a及び第2受光素子30bは、クワッドタイプの焦電素子に限らず、例えば、デュアルタイプの焦電素子、シングルタイプの焦電素子等でもよい。また、焦電素子における検出部の形状、配列等も特に限定されない。例えば、焦電素子は、1枚の焦電体基板に、4個の検出部が1×4のアレイ状に配列された構成でもよい。この場合、4つの検出部の各々の平面視形状は、長方形である。また、隣り合う検出部どうしが逆並列に接続されている。また、焦電素子は、焦電体基板を備えた構成に限らず、例えば、シリコン基板の表面上の電気絶縁膜上に、裏面電極、焦電体薄膜及び表面電極がこの順に並んで構成される検出部が形成されたチップでもよい。このようなチップは、例えば、マイクロマシニング技術及び焦電体薄膜の形成技術等を利用して形成することができる。 The first light receiving element 30a and the second light receiving element 30b described above are not limited to quad type pyroelectric elements, but may be, for example, dual type pyroelectric elements, single type pyroelectric elements, or the like. Further, the shape, the arrangement, and the like of the detection unit in the pyroelectric element are not particularly limited. For example, the pyroelectric element may have a configuration in which four detection units are arranged in a 1 × 4 array on one pyroelectric substrate. In this case, the plan view shape of each of the four detection units is a rectangle. Further, adjacent detection units are connected in reverse parallel. Further, the pyroelectric element is not limited to the configuration provided with the pyroelectric substrate, and for example, the back electrode, the pyroelectric thin film, and the surface electrode are arranged in this order on the electrical insulating film on the surface of the silicon substrate. It may be a chip on which a detection unit is formed. Such a chip can be formed, for example, using micromachining technology and pyroelectric thin film forming technology.
 赤外線検出装置100は、人体検知に限らず、例えばガス検知等の他の用途で用いられてもよい。 The infrared detection device 100 is not limited to human body detection, and may be used in other applications such as gas detection.
 赤外線検出装置100は、例えば、配線器具、機器等に利用することができる。機器としては、例えば、照明器具、照明装置、テレビ、パーソナルコンピュータ、空気調和機、加湿器、冷蔵庫、コピー機、デジタルサイネージ、デジタルフォトフレーム、小便器、自販機、券売機、現金自動預け払い機、ガスセンサ、ガス分析装置等がある。 The infrared detection device 100 can be used for, for example, a wiring apparatus, an apparatus, and the like. The devices include, for example, lighting fixtures, lighting devices, televisions, personal computers, air conditioners, humidifiers, refrigerators, copy machines, digital signage, digital photo frames, urinals, vending machines, ticket vending machines, automatic teller machines, There are gas sensors, gas analyzers, etc.
 100 赤外線検出装置
 1 受光系
 2a 第1受光ユニット
 2b 第2受光ユニット
 30a 第1受光素子
 30b 第2受光素子
 39a 光軸
 39b 光軸
 5a 第1マルチレンズ
 5b 第2マルチレンズ
 50a 第1レンズ
 50b 第2レンズ
 9 信号処理部
 11 検知エリア
 13 小検知エリア
 D1 規定方向
 L1 距離
 L2 距離
100 infrared detector 1 light receiving system 2a first light receiving unit 2b second light receiving unit 30a first light receiving element 30b second light receiving element 39a light axis 39b light axis 5a first multi lens 5 b second multi lens 50 a first lens 50 b second Lens 9 Signal processing unit 11 Detection area 13 Small detection area D1 Specified direction L1 distance L2 distance

Claims (6)

  1.  検知エリアからの赤外線を受光する受光系を備え、
     前記受光系は、第1受光ユニットと、複数の第2受光ユニットと、を備え、
     前記第1受光ユニットは、第1受光素子と、前記第1受光素子に赤外線を集光する複数の第1レンズを有する第1マルチレンズと、を含み、
     前記複数の第2受光ユニットの各々は、第2受光素子と、前記第2受光素子に赤外線を集光する複数の第2レンズを有する第2マルチレンズと、を含み、
     前記検知エリアを区分した複数の小検知エリアの各々が前記第1受光ユニットと前記複数の第2受光ユニットとのいずれかに対応付けられており、
     前記第1受光ユニットの前記複数の第1レンズの各々について、前記複数の小検知エリアのうちの1つの小検知エリアが対応づけられており、
     前記複数の第2受光ユニットそれぞれの前記複数の第2レンズの各々について、前記複数の小検知エリアのうちの1つの小検知エリアが対応付けられており、
     前記複数の第2受光ユニットそれぞれの前記第2受光素子の光軸が、前記第1受光素子の光軸に対して互いに異なる向きに傾いており、
     前記複数の小検知エリアのうち前記第1受光ユニットに対応付けられている第1群の小検知エリアの数が、前記複数の小検知エリアのうち前記複数の第2受光ユニットの各々に対応づけられている第2群の小検知エリアの数よりも多い
     ことを特徴とする赤外線検出装置。
    It has a light receiving system that receives infrared light from the detection area,
    The light receiving system includes a first light receiving unit and a plurality of second light receiving units,
    The first light receiving unit includes a first light receiving element, and a first multi-lens having a plurality of first lenses for condensing infrared light on the first light receiving element,
    Each of the plurality of second light receiving units includes a second light receiving element, and a second multi-lens having a plurality of second lenses for condensing infrared light on the second light receiving element,
    Each of the plurality of small detection areas obtained by dividing the detection area is associated with one of the first light receiving unit and the plurality of second light receiving units,
    One small detection area of the plurality of small detection areas is associated with each of the plurality of first lenses of the first light receiving unit,
    One small detection area of the plurality of small detection areas is associated with each of the plurality of second lenses of each of the plurality of second light receiving units,
    The optical axes of the second light receiving elements of the plurality of second light receiving units are inclined in directions different from each other with respect to the optical axis of the first light receiving element,
    The number of the first group of small detection areas associated with the first light receiving unit among the plurality of small detection areas is associated with each of the plurality of second light receiving units among the plurality of small detection areas An infrared detection device characterized by having more than the number of small detection areas in the second group.
  2.  前記複数の第2マルチレンズが、前記第1マルチレンズを囲むように前記第1マルチレンズの外周方向において並んでいる
     ことを特徴とする請求項1記載の赤外線検出装置。
    The infrared detection device according to claim 1, wherein the plurality of second multi lenses are arranged in the outer peripheral direction of the first multi lens so as to surround the first multi lens.
  3.  前記複数の第2受光ユニットは、少なくとも3つの第2受光ユニットである
     ことを特徴とする請求項2記載の赤外線検出装置。
    The infrared detection device according to claim 2, wherein the plurality of second light receiving units are at least three second light receiving units.
  4.  前記複数の第1レンズが、前記第1受光素子の光軸からの距離が互いに異なる少なくとも2つの列に分けて配置されており、
     前記複数の第2レンズが、前記第1受光素子の光軸からの距離が互いに異なる少なくとも2つの列に分けて配置されており、
     前記第1受光素子と前記第2受光素子との並ぶ方向に沿った方向を規定方向とするとき、
     前記第2群の小検知エリアのうち前記規定方向において隣り合う2つの小検知エリアの組み合わせごとに決まる小検知エリア間の距離の平均値が、前記第1群の小検知エリアのうち前記規定方向において隣り合う2つの小検知エリアの組み合わせごとに決まる小検知エリア間の距離の平均値よりも大きい
     ことを特徴とする請求項1乃至3のいずれか一項に記載の赤外線検出装置。
    The plurality of first lenses are arranged in at least two rows having mutually different distances from the optical axis of the first light receiving element,
    The plurality of second lenses are arranged in at least two rows different in distance from the optical axis of the first light receiving element,
    When a direction along the direction in which the first light receiving element and the second light receiving element are arranged is defined as:
    Among the small detection areas of the second group, an average value of the distance between the small detection areas determined for each combination of two small detection areas adjacent in the predetermined direction is the predetermined direction of the small detection areas of the first group The infrared detection device according to any one of claims 1 to 3, characterized in that it is larger than the average value of the distance between the small detection areas determined for each combination of two adjacent small detection areas.
  5.  前記第1受光素子及び前記第2受光素子は、いずれも焦電素子である
     ことを特徴とする請求項1乃至4のいずれか一項に記載の赤外線検出装置。
    The infrared detection device according to any one of claims 1 to 4, wherein each of the first light receiving element and the second light receiving element is a pyroelectric element.
  6.  信号処理部を更に備え、前記信号処理部は、前記第1受光素子及び複数の前記第2受光素子それぞれの出力信号に基づいて前記検知エリアに人が存在するか否かを判定する
     ことを特徴とする請求項1乃至5のいずれか一項に記載の赤外線検出装置。
    The signal processing unit is further provided, and the signal processing unit determines whether or not a person is present in the detection area based on an output signal of each of the first light receiving element and the plurality of second light receiving elements. The infrared detection device according to any one of claims 1 to 5, wherein
PCT/JP2017/040418 2016-11-30 2017-11-09 Infrared sensor WO2018101001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233475 2016-11-30
JP2016233475A JP6681594B2 (en) 2016-11-30 2016-11-30 Infrared detector

Publications (1)

Publication Number Publication Date
WO2018101001A1 true WO2018101001A1 (en) 2018-06-07

Family

ID=62242238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040418 WO2018101001A1 (en) 2016-11-30 2017-11-09 Infrared sensor

Country Status (3)

Country Link
JP (1) JP6681594B2 (en)
TW (1) TWI681173B (en)
WO (1) WO2018101001A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474614B (en) * 2020-05-14 2022-07-01 上海优周电子科技有限公司 Plane infrared detection lens
CN114910163A (en) * 2021-02-08 2022-08-16 名硕电脑(苏州)有限公司 Infrared performance testing device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311280A (en) * 1994-05-19 1995-11-28 Mitsubishi Electric Corp Human body detector
JPH0882548A (en) * 1994-09-13 1996-03-26 Mitsubishi Electric Corp Body detector
JPH0894438A (en) * 1994-09-21 1996-04-12 Murata Mfg Co Ltd Infrared sensor
JPH09230060A (en) * 1996-02-26 1997-09-05 Matsushita Electric Works Ltd Human body detecting sensor
JPH103817A (en) * 1996-06-17 1998-01-06 Matsushita Electric Works Ltd Human body detecting sensor
JPH10213478A (en) * 1997-01-30 1998-08-11 Matsushita Electric Works Ltd Multilens
JP2000131136A (en) * 1998-10-26 2000-05-12 Matsushita Electric Works Ltd Heat ray type human body sensor
JP2000283839A (en) * 1999-03-31 2000-10-13 Matsushita Electric Works Ltd Infrared human body detector
JP2004021506A (en) * 2002-06-14 2004-01-22 Yazaki Corp Intruder sensing device
JP2008164432A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Human body detector
US20140103214A1 (en) * 2011-04-21 2014-04-17 Antoine Yvon Messiou Passive infra red detector
JP2014085321A (en) * 2012-10-26 2014-05-12 Nippon Ceramic Co Ltd Infrared detector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311572A (en) * 1998-04-28 1999-11-09 Matsushita Electric Works Ltd Infrared sensor
JP4092438B2 (en) * 1999-08-19 2008-05-28 オプテックス株式会社 Intrusion detection method and apparatus
DE10019999A1 (en) * 2000-04-22 2001-10-25 Abb Patent Gmbh Passive infrared movement detector for increasing the number of zones in a room under surveillance has detector/lens structures with an infrared detector having sensitive elements and convergent lenses
JP2001349787A (en) * 2000-06-06 2001-12-21 Seiko Epson Corp Infrared detecting element and thermometer
TW476007B (en) * 2000-11-24 2002-02-11 Interquartz Taiwan Ltd Wide range detector and method for enlarging the detecting range
JP2010276598A (en) * 2009-04-28 2010-12-09 Toshiba Lighting & Technology Corp Infrared ray detector and electrical apparatus
JP2011002414A (en) * 2009-06-22 2011-01-06 Toshiba Lighting & Technology Corp Infrared detector
DE102010013663A1 (en) * 2010-04-01 2011-10-06 Perkinelmer Technologies Gmbh & Co. Kg radiation sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311280A (en) * 1994-05-19 1995-11-28 Mitsubishi Electric Corp Human body detector
JPH0882548A (en) * 1994-09-13 1996-03-26 Mitsubishi Electric Corp Body detector
JPH0894438A (en) * 1994-09-21 1996-04-12 Murata Mfg Co Ltd Infrared sensor
JPH09230060A (en) * 1996-02-26 1997-09-05 Matsushita Electric Works Ltd Human body detecting sensor
JPH103817A (en) * 1996-06-17 1998-01-06 Matsushita Electric Works Ltd Human body detecting sensor
JPH10213478A (en) * 1997-01-30 1998-08-11 Matsushita Electric Works Ltd Multilens
JP2000131136A (en) * 1998-10-26 2000-05-12 Matsushita Electric Works Ltd Heat ray type human body sensor
JP2000283839A (en) * 1999-03-31 2000-10-13 Matsushita Electric Works Ltd Infrared human body detector
JP2004021506A (en) * 2002-06-14 2004-01-22 Yazaki Corp Intruder sensing device
JP2008164432A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Human body detector
US20140103214A1 (en) * 2011-04-21 2014-04-17 Antoine Yvon Messiou Passive infra red detector
JP2014085321A (en) * 2012-10-26 2014-05-12 Nippon Ceramic Co Ltd Infrared detector

Also Published As

Publication number Publication date
JP6681594B2 (en) 2020-04-15
JP2018091664A (en) 2018-06-14
TW201821775A (en) 2018-06-16
TWI681173B (en) 2020-01-01

Similar Documents

Publication Publication Date Title
TWI480598B (en) Optical detection device and apparatus using the same
JP2021523502A (en) Compact optical sensor for fingerprint detection
JP2017083470A (en) Radiation sensor
US11408765B2 (en) Optical detector and system therefor
US11408773B2 (en) On-board radiation sensing apparatus
WO2018101001A1 (en) Infrared sensor
TWI729375B (en) Infrared detector
WO2018101002A1 (en) Infrared detection device
US20170059398A1 (en) Detector systems having stray light suppression using a retro-reflector shield and negative luminescence
JP2018004490A (en) Infrared ray detection device
JP6601761B2 (en) Infrared detector
US8124925B2 (en) Simulation detector having multiple sensor surfaces for detecting incident radiation
US4644164A (en) Compact passive infrared intrusion sensor
CN111290061B (en) Optical diffusion sheet, light source device, and distance measuring device
WO2017163760A1 (en) Infrared detection device
US20090102648A1 (en) Motion detector
JP2018091797A (en) Infrared sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875103

Country of ref document: EP

Kind code of ref document: A1