WO2017163760A1 - Infrared detection device - Google Patents

Infrared detection device Download PDF

Info

Publication number
WO2017163760A1
WO2017163760A1 PCT/JP2017/007267 JP2017007267W WO2017163760A1 WO 2017163760 A1 WO2017163760 A1 WO 2017163760A1 JP 2017007267 W JP2017007267 W JP 2017007267W WO 2017163760 A1 WO2017163760 A1 WO 2017163760A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared detection
infrared
detection element
lens
mirror
Prior art date
Application number
PCT/JP2017/007267
Other languages
French (fr)
Japanese (ja)
Inventor
智宏 上津
橋本 裕介
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780019514.3A priority Critical patent/CN108780005B/en
Publication of WO2017163760A1 publication Critical patent/WO2017163760A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts

Definitions

  • the present invention relates to an infrared detection device, and more particularly to an infrared detection device including a multi-lens.
  • an infrared detection device for example, an infrared human body detector that detects presence or absence of a person in a detection area by detecting infrared radiation emitted from a human body is known (Patent Document 1).
  • the infrared human body detector described in Patent Document 1 is arranged in one row with an infrared sensor that detects infrared rays emitted from the human body, a plurality of lenses arranged in front of the light receiving surface of the infrared sensor, and the infrared sensor.
  • An object of the present invention is to provide an infrared detection device capable of expanding a detection area while suppressing a decrease in sensitivity.
  • An infrared detection device includes an infrared detection element and a multilens.
  • the multi-lens has a plurality of lenses each collecting infrared rays on the infrared detection element.
  • the infrared detection device further includes a first mirror unit and a second mirror unit.
  • the first mirror unit is disposed above the infrared detection element between the infrared detection element and the multi-lens.
  • the first mirror part reflects a part of infrared light that passes through the multi-lens and does not directly enter the infrared detection element.
  • the second mirror unit is disposed below the infrared detection element between the infrared detection element and the multi-lens. The second mirror part reflects the infrared light reflected by the first mirror part toward the infrared detection element.
  • FIG. 1 is a longitudinal sectional view of an infrared detecting device according to an embodiment of the present invention.
  • FIG. 2 is a front view of an essential part of the above infrared detecting device.
  • FIG. 3A is a perspective view of the main part of the above infrared detection device as viewed from below.
  • FIG. 3B is a perspective view of the main part of the above infrared detection device as seen from above.
  • FIG. 4 is a perspective view of the main part of the above infrared detecting device as seen from a direction different from FIG. 3B.
  • FIG. 5A is a front view of an infrared detecting element in the above infrared detecting device.
  • 5B is a cross-sectional view taken along the line GG in FIG. 5A.
  • FIG. 6 is a schematic explanatory view of a light receiving surface of an infrared detecting element in the above infrared detecting device.
  • FIG. 7A is a front view of a multi-lens in the above infrared detecting device.
  • FIG. 7B is a rear view of the multi-lens in the above infrared detection device.
  • 8A is a cross-sectional view taken along line XX of FIG. 7A.
  • 8B is a cross-sectional view taken along line YY of FIG. 7A.
  • FIG. 9 is a cross-sectional view of a main part of the above infrared detecting device.
  • FIG. 10 is a circuit block diagram of the above infrared detection apparatus.
  • FIG. 11A is a front view of an essential part of the above infrared detecting device.
  • FIG. 11B is a cross-sectional view seen from below.
  • FIG. 12 is a perspective view of the above infrared
  • the infrared detection device 100 includes an infrared detection element 2 and a multilens 30.
  • the multi-lens 30 includes a plurality of lenses 31 that each collect infrared rays on the infrared detection element 2.
  • the infrared detecting device 100 further includes a first mirror unit 4 and a second mirror unit 5.
  • the first mirror unit 4 is disposed above the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30.
  • the first mirror unit 4 reflects a part of infrared rays that pass through the multi-lens 30 and are not directly incident on the infrared detection element 2.
  • the second mirror unit 5 is disposed below the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30.
  • the second mirror unit 5 reflects the infrared light reflected by the first mirror unit 4 toward the infrared detection element 2.
  • the infrared detection apparatus 100 can increase the viewing angle on the lower side in the vertical direction among the viewing angles.
  • Viewing angle means the spread angle of the detection area of the infrared detecting device 100.
  • the infrared detecting device 100 preferably includes a package 6 in which the infrared detecting element 2 is housed.
  • the package 6 includes a window material 63 that transmits infrared rays.
  • the window material 6 is disposed in front of the infrared detection element 2.
  • the multi-lens 30 is preferably configured such that infrared light transmitted through each of the plurality of lenses 31 is directly incident on the window member 63.
  • the package 6 includes a package main body 60 in which the infrared detection element 2 is housed, a window material 63 that closes the window hole 601 formed in front of the infrared detection element 2 in the package main body 60, and a plurality (for example, three). Provide terminals.
  • the package 6 is a so-called can package.
  • the can package is also called a metal package.
  • the window material 63 is an infrared transmitting member.
  • As the infrared transmitting member for example, a silicon substrate, a germanium substrate, or the like can be used.
  • the infrared transmitting member preferably includes an appropriate optical filter film, antireflection film, and the like.
  • the infrared detection device 100 can be used as, for example, a human body detection device that detects infrared rays emitted from a human body and outputs a human body detection signal.
  • the infrared detection device 100 preferably includes a signal processing circuit 7 in addition to the infrared detection element 2.
  • the signal processing circuit 7 preferably includes, for example, an amplification circuit 71, a band filter 72, a comparison circuit 73, and an output circuit 74.
  • the amplifier circuit 71, the band filter 72, the comparison circuit 73, and the output circuit 74 are preferably integrated in one IC element.
  • a substrate on which the infrared detecting element 2 and the component parts of the signal processing circuit 7 (for example, the above-described IC element) are mounted is accommodated in the package 6.
  • the substrate can be configured by, for example, a MID (Molded Interconnect Device) substrate, a component built-in substrate, a printed circuit board, or the like.
  • the amplification circuit 71 is a circuit that amplifies the output signal of the infrared detection element 2.
  • the amplifier circuit 71 can be constituted by, for example, a current-voltage conversion circuit and a voltage amplifier circuit.
  • the current-voltage conversion circuit is a circuit that converts a current signal that is an output signal output from the infrared detection element 2 into a voltage signal and outputs the voltage signal.
  • the voltage amplification circuit is a circuit that amplifies and outputs a voltage signal in a predetermined frequency band (for example, 0.1 Hz to 10 Hz) among the voltage signals output from the current-voltage conversion circuit.
  • the band filter 72 is a filter that removes unnecessary frequency components that become noise from the voltage signal amplified by the amplifier circuit 71.
  • the comparison circuit 73 is a circuit that compares the voltage signal amplified by the amplification circuit 71 with a preset threshold value and determines whether or not the voltage signal exceeds the threshold value.
  • the comparison circuit 73 can be configured using, for example, a comparator.
  • the output circuit 74 is a circuit that outputs a human body detection signal as an output signal when the comparison circuit 73 determines that the voltage signal has exceeded a threshold value.
  • the “human body detection signal” is, for example, a pulse signal that is at a high level for a certain time. Therefore, the output of the output circuit 74 is at a low level when the human body detection signal is not output, and is at a high level when the human body detection signal is output.
  • the infrared detection apparatus 100 is not limited to the example in which the component parts of the signal processing circuit 7 are housed in the package 6, and part or all of the component parts of the signal processing circuit 7 are mounted on the circuit board outside the package 6. It is good also as a structure.
  • the circuit board can be constituted by, for example, a printed board.
  • the infrared detection device 100 can be applied to, for example, a wiring device.
  • the wiring apparatus includes, for example, a power terminal, a load terminal, and a switching element connected between the power terminal and the load terminal, and is used by connecting an external circuit between the power terminal and the load terminal. It is an embedded wiring apparatus.
  • the external circuit is, for example, a series circuit of a power source (for example, a commercial power source) and a control target load.
  • the wiring device can control the on / off of the load by controlling the on / off of the switching element based on the presence / absence of the human body detection signal from the infrared detecting device 100. Examples of the control target load include an illumination load and a ventilation fan.
  • the load to be controlled by the wiring apparatus is, for example, an illumination load
  • the detection area of the infrared detection device 100 is set in a room, a hallway, an entrance, or the like where the illumination load is installed.
  • the wiring apparatus can turn on and off the lighting load depending on whether a person is present in the room, hallway, entrance, or the like.
  • the height from the floor surface to the wiring device is, for example, 1.2 m. In the infrared detecting device 100, it is possible to detect not only the front direction but also a person who is directly below.
  • the infrared detection element 2 is, for example, a quad-type pyroelectric element.
  • this infrared detection element 2 for example, as shown in FIGS. 5A, 5B, and 6, four detection units 24 are formed on one pyroelectric substrate 23.
  • the infrared detection element 2 four detection units 24 are arranged in a 2 ⁇ 2 array form (matrix form) on one pyroelectric substrate 23. In other words, in the infrared detection element 2, the four detection units 24 are arranged in a 2 ⁇ 2 matrix.
  • the plan view shape of the pyroelectric substrate 23 is a square shape.
  • the pyroelectric substrate 23 is a substrate having pyroelectric properties.
  • the pyroelectric substrate 23 is made of, for example, a single crystal LiTaO 3 substrate.
  • the planar view shape of each of the plurality of detection units 24 is a square shape.
  • the center of the detection unit 24 is located at each of the four corners of the virtual square VR ⁇ b> 1 (see FIG. 6) inside the pyroelectric substrate 23 at the center of the pyroelectric substrate 23. ing.
  • Each of the four detection units 24 includes a front electrode 25 formed on the front surface 231 of the pyroelectric substrate 23, a back electrode 26 formed on the rear surface 232 of the pyroelectric substrate 23, and the pyroelectric substrate 23.
  • the capacitor includes a portion 233 sandwiched between the front electrode 25 and the back electrode 26.
  • the polarity of the surface electrode 25 located on the multi-lens 30 side in each of the four detection units 24 is indicated by the signs “+” and “ ⁇ ”.
  • the light receiving surface 24 a of each of the four detection units 24 is the surface of the surface electrode 25.
  • the infrared detection element 2 has a rectangular light receiving surface 20 (see FIG. 6) including the surface electrodes 25 of the four detection units 24 in plan view.
  • “rectangular” means a right-angled quadrilateral, and means a rectangle or a square.
  • a square light receiving surface 20 is illustrated as a rectangular light receiving surface 20.
  • the light receiving surface 20 of the infrared detecting element 2 means the surface of the region surrounded by the outer periphery of the convex polygon VR2 that includes the light receiving surfaces 24a of the four detectors 24.
  • the convex polygon VR2 in FIG. 6 is a rectangle.
  • a normal passing through the center 200 of the light receiving surface 20 of the infrared detection element 2 can be regarded as the optical axis of the infrared detection element 2.
  • the two detection units 24 arranged in the direction along the first diagonal line 201 of the rectangular light receiving surface 20 among the four detection units 24 arranged in a 2 ⁇ 2 array are arranged. Are connected in parallel.
  • the two detection units 24 arranged in the direction along the second diagonal 202 of the rectangular light receiving surface 20 are connected in parallel.
  • the two detection units 24 arranged in the row direction are connected in antiparallel, and the two detection units 24 arranged in the column direction are connected in antiparallel.
  • the “row direction” means a first direction (left and right direction in FIG. 6) along one of the four sides of the rectangular light receiving surface 20.
  • the “row direction” means a second direction (vertical direction in FIG. 6) perpendicular to the thickness direction of the infrared detection element 2 and the first direction.
  • the polarities of the surface electrodes 25 of the two detection units 24 arranged in the direction along the first diagonal line 201 are the same.
  • the polarities of the surface electrodes 25 of the two detection units 24 arranged in the row direction are different from each other.
  • the polarities of the surface electrodes 25 of the two detection units 24 arranged in the column direction are different from each other.
  • the infrared detecting element 2 is preferably arranged with the direction along the first diagonal line 201 of the rectangular light receiving surface 20 as the left-right direction.
  • the infrared detection element 2 faces the multi-lens 30 in a state where the infrared detection element 2 is rotated by 45 ° in the clockwise direction when viewed from the front of the light receiving surface 20 with reference to the state shown in FIGS. 5A and 6 (see FIG. 2). It is out.
  • the multi-lens 30 is disposed in front of the infrared detection element 2 as shown in FIG. 5A.
  • “Front of the infrared detection element 2” means the front in the direction along the normal passing through the center 200 of the light receiving surface 20 of the infrared detection element 2.
  • the multi-lens 30 is preferably designed so that the focal points of each of the plurality of lenses 31 on the infrared detection element 2 side are at the same position.
  • the traveling path of infrared rays that enter the infrared detection element 2 through the multi-lens 30 is schematically shown by dotted lines.
  • Infrared light to be controlled by each of the plurality of lenses 31 in the multi-lens 30 is, for example, infrared light having a wavelength range of 5 ⁇ m to 25 ⁇ m.
  • the material of the multi lens 30 is, for example, polyethylene. More specifically, the material of the multi lens 30 is polyethylene to which a white pigment or a black pigment is added.
  • a white pigment for example, an inorganic pigment such as titanium oxide or zinc white (zinc oxide) is preferably employed.
  • the black pigment for example, it is preferable to employ fine particles such as carbon black.
  • the multi lens 30 can be formed by a molding method, for example. As the molding method, for example, an injection molding method, a compression molding method, or the like can be employed.
  • Each of the plurality of lenses 31 in the multi-lens 30 is a condensing lens and is configured by a convex lens.
  • each of the plurality of lenses 31 is configured by an aspheric lens.
  • Each of the plurality of lenses 31 may be composed of a Fresnel lens.
  • the first surface 301 on which infrared rays are incident in the multi-lens 30 is configured by a group of incident surfaces of the plurality of lenses 31.
  • the second surface 302 from which infrared rays are emitted from the multi-lens 30 is configured by a group of emission surfaces of the plurality of lenses 31.
  • a plurality of lenses 31 are arranged vertically and horizontally.
  • 15 lenses 31 are arranged in a row on the upper side, and 13 lenses 31 are arranged in a row on the lower side.
  • the infrared detecting device 100 includes an optical member 10 having a first mirror part 4 and a second mirror part 5.
  • the optical member 10 is, for example, a member provided with a plating film on the surface of a synthetic resin molded product.
  • the material of the synthetic resin molded product is, for example, ABS resin.
  • the material of the plating film is preferably a material having a high reflectance with respect to infrared rays.
  • the material of the plating film is, for example, aluminum, but is not limited thereto, and may be chromium or the like.
  • the optical member 10 includes a cylindrical body portion 11, an upper protrusion piece 12, and a lower protrusion piece 13.
  • the cylindrical part 11 has a cylindrical shape surrounding the package 6.
  • the upper protruding piece 12 protrudes along the axial direction from the upper part of the first end of the cylindrical portion 11 in the axial direction.
  • the lower protruding piece 13 protrudes along the axial direction from the lower portion of the first end of the cylindrical portion 11.
  • the package 6 is fitted in the optical member 10.
  • the first mirror portion 4 is formed at the center in the left-right direction on the lower surface of the upper protruding piece 12. Accordingly, the first mirror unit 4 is disposed above the infrared detection element 2. More specifically, the first mirror unit 4 is disposed obliquely above the light receiving surface 20 of the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30.
  • the second mirror unit 5 is formed on the upper surface of the lower protruding piece 13. Accordingly, the second mirror unit 5 is disposed below the infrared detection element 2. More specifically, the second mirror portion 5 is disposed obliquely below the light receiving surface 20 of the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30.
  • the optical member 10 includes an upper protrusion 17 protruding upward and a lower protrusion 18 protruding downward from the outer peripheral surface at the second end in the axial direction of the cylindrical portion 11. It is preferable.
  • the infrared detection device 100 preferably includes a dome-shaped cover 3 (see FIG. 12) that has the multi-lens 30 and covers the optical member 10. In this case, it is preferable that an upper slit 317 into which the upper protrusion 17 is fitted and a lower slit into which the lower protrusion 18 is fitted are formed at the rear end edge of the cover 3. Thereby, in the infrared detection device 100, it is possible to improve the relative positional accuracy of the multi-lens 30, the infrared detection element 2, and the optical member 10.
  • the multi-lens 30 is C-shaped when viewed from above (see FIGS. 8A and 9), and preferably covers the infrared detection element 2. Thereby, in the infrared detection apparatus 100, the horizontal viewing angle of the detection area can be further increased. Further, in the infrared detection device 100, the temperature change of the package 6 due to wind or the like is less likely to occur, and fluctuations in the output signal of the infrared detection element 2 can be suppressed. Since the infrared detection device 100 includes the dome-shaped cover 3 (see FIG. 12) that includes the multi-lens 30 and covers the optical member 10, the temperature change of the package 6 due to wind or the like is less likely to occur, and the infrared detection element The fluctuation of the output signal 2 can be further suppressed.
  • the detection area of the infrared detection device 100 is defined by a plurality of (for example, 28) lenses 31 and a plurality of (for example, four) detection units 24. It is determined by a plurality of (for example, 112) infrared light receiving paths. Each of the plurality of infrared light receiving paths is a three-dimensional region formed when an infrared bundle incident on the detection unit 24 of the infrared detecting element 2 through the lens 31 is extended in a direction opposite to the direction in which the infrared rays travel.
  • the infrared ray receiving path means an infrared ray passing region through which an infrared ray bundle used for forming an image on the light receiving surface 24a of the detecting unit 24 of the infrared ray detecting element 2 can pass.
  • the infrared light receiving path is an effective area for detecting infrared rays from the human body.
  • the plurality of infrared light receiving paths are optically defined paths and are not actually visible paths. The farther the infrared light receiving path is from the detection unit 24, the larger the cross-sectional area through which the infrared ray bundle can pass.
  • Each of the plurality of infrared light receiving paths can be regarded as having a one-to-one correspondence with the detection unit 24.
  • the plurality of infrared light receiving paths in the detection area can be substantially determined by the infrared detecting element 2 and the multi-lens 30.
  • the size and shape of the window member 63, the opening shape of the window hole 601, and the like. May also depend on.
  • the infrared detection device 100 is used by being arranged so that the normal direction of the center 200 of the light receiving surface 20 of the infrared detection element 2 is one horizontal direction.
  • FIG. 1 schematically shows the optical axis OA1 of the lens 31 located in the center among the lenses 31 of the 15 lenses 31 arranged in a line on the upper side in the multi-lens 30.
  • FIG. 1 In the infrared detection device 100, infrared rays that have passed through the lens 31 along the optical axis OA ⁇ b> 1 are directly incident on the infrared detection element 2. “Directly incident” means that the light passes through the multi-lens 30 and is incident on the infrared detection element 2 without being reflected by the reflecting member. For example, between the multi-lens 30 and the infrared detection element 2 It also includes entering through a window material 63.
  • the optical axis OA2 of the lens 31 located in the center among the 13 lenses 31 arranged in a line on the lower side in the multi-lens 30 is schematically shown.
  • infrared detection device 100 of the present embodiment a part of infrared rays that pass through the multi-lens 30 and do not directly enter the infrared detection element 2 from below the infrared detection device 100 are reflected by the first mirror unit 4 and further second. The light is reflected by the mirror unit 5 and enters the infrared detection element 2. More specifically, in the infrared detection device 100, infrared rays that have entered the first mirror unit 4 through at least the central lens 31 among the 15 lenses 31 aligned in a row on the upper side in the multi-lens 30 are The light is reflected by the first mirror part 4 and further reflected by the second mirror part 5 and enters the infrared detection element 2.
  • the infrared detection apparatus 100 the first mirror unit 4 is disposed above the infrared detection element 2, and the second mirror unit 5 is disposed below the infrared detection element 2, so that the first mirror unit 4 and the 2nd mirror part 5 do not overlap with the above-mentioned several infrared rays light reception path
  • the first mirror unit 4 includes a plurality of (for example, two) first mirror surfaces 40 arranged along the direction in which the infrared detection element 2 and the multi-lens 30 are arranged. Is preferred.
  • the second mirror unit 5 includes a plurality of (for example, two) second mirror surfaces 50 arranged along the direction in which the infrared detection element 2 and the multi-lens 30 are arranged. It is preferable.
  • the infrared detection device 100 in the combination of the plurality of first mirror surfaces 40 and the plurality of second mirror surfaces 50, there are a plurality of pairs of the first mirror surface 40 and the second mirror surface 50 arranged in the vertical direction.
  • the first mirror surface 40 close to the multi-lens 30 out of the two first mirror surfaces 40 aligned along the direction in which the infrared detection element 2 and the multi-lens 30 are aligned is referred to as a first mirror surface 41.
  • the first mirror surface 40 far from the multi lens 30 may be referred to as a first mirror surface 42.
  • similar to the multi lens 30 is called the 2nd mirror surface 51 among the two 2nd mirror surfaces 50 located in a line with the direction where the infrared rays detection element 2 and the multi lens 30 are located in a line
  • the second mirror surface 50 far from the multi-lens 30 may be referred to as a second mirror surface 52.
  • the infrared detection device 100 there are a pair of the first mirror surface 41 and the second mirror surface 51 and a pair of the first mirror surface 42 and the second mirror surface 52.
  • different optical axes for each pair of the first mirror surface 40 and the second mirror surface 50, different optical axes (for example, the optical axis OA3 and the two-dot chain line schematically shown by the one-dot chain line in FIG. 1).
  • An optical axis OA4 schematically shown is defined.
  • the optical axis OA3 is an optical axis defined by the lens 31, the first mirror surface 41, and the second mirror surface 51 located at the center of the upper row in the multi-lens 30.
  • the optical axis OA4 is an optical axis defined by the lens 31, the first mirror surface 42, and the second mirror surface 52 located in the center of the upper row in the multi-lens 30.
  • the angle formed between the optical axis OA3 and the normal line set at the center 200 of the light receiving surface 20 of the infrared detection element 2, and the angle formed between the optical axis OA4 and the normal line set at the center 200 of the light receiving surface 20 of the infrared detection element 2. are different from each other on the first surface 301 side of the multi-lens 30.
  • the angle formed by the optical axis OA1 and the normal line is 6 °, for example.
  • the angle formed between the optical axis OA2 and the normal line is 21 °, for example.
  • the angle formed by the optical axis OA3 and the normal is, for example, 60 °.
  • the angle formed by the optical axis OA4 and the normal line is, for example, 45 °.
  • a plurality of first optical surfaces OA3 and OA4 defined for each pair of the first mirror surface 40 and the second mirror surface 50 are substantially parallel on the first surface 301 side of the multi-lens 30.
  • One mirror surface 40 (first mirror surfaces 41 and 42) and a plurality of second mirror surfaces 50 (second mirror surfaces 51 and 52) may be designed.
  • the amount of infrared rays reflected by the first mirror unit 4 and further reflected by the second mirror unit 5 and incident on the infrared detection element 2 is increased (the amount of infrared light received by the detection unit 24 is increased).
  • the sensitivity can be improved.
  • substantially parallel is preferably completely parallel, but is not limited to this, and the angle between the two may be about 2 to 3 °.
  • the size of the first mirror unit 4 and the second mirror unit 5 is such that the infrared ray bundle reflected by the first mirror unit 4 and the second mirror unit 5 and incident on the infrared detection element 2 is opposite to the direction in which the infrared rays travel. It is preferable that the three-dimensional region formed when extended is set so as to pass only the central lens 31 among a plurality (15) of lenses 31 arranged in a line on the upper side in the multi-lens 30. Thereby, in the infrared detection apparatus 100, generation
  • “Stray light” means infrared rays that are undesirable for image formation and are generated by reflection at the first mirror unit 4 and the second mirror unit 5.
  • the first mirror surface 40 is preferably a concave curved surface.
  • the second mirror surface 50 is preferably a concave curved surface.
  • the concave curved surface is preferably an aspherical surface.
  • the infrared detection device 100 further includes a third mirror unit 8.
  • the third mirror unit 8 is disposed above the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30.
  • the third mirror unit 8 reflects a part of infrared rays that pass through the multi-lens 30 and do not directly enter the infrared detection element 2 from the side of the infrared detection element 2 toward the infrared detection element 2.
  • the infrared detection apparatus 100 it is possible to further widen the horizontal viewing angle of the detection area without blocking the path of infrared rays that pass through the multi lens 30 and directly enter the infrared detection element 2. Therefore, in the infrared detection device 100, it is possible to widen the detection area while suppressing a decrease in sensitivity.
  • the third mirror portion 8 is formed on a pentagonal hanging piece 14 that protrudes downward from the lower surface of the upper protruding piece 12.
  • the third mirror unit 8 is formed on two surfaces adjacent to each other on the lower side of the hanging piece 14.
  • the optical member 10 includes two third mirror portions 8.
  • the optical member 10 since the optical member 10 includes the third mirror unit 8, it is possible to improve the relative positional accuracy between the third mirror unit 8 and the infrared detection element 2.
  • the third mirror unit 8 is disposed above the infrared detection element 2.
  • the third mirror unit 8 is disposed obliquely above the light receiving surface 20 of the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30.
  • the third mirror unit 8 is inclined so as to face the light receiving surface 20 of the infrared detection element 2.
  • infrared rays that have passed through the multi-lens 30 and entered the third mirror unit 8 are likely to enter the light receiving surface 20 of the infrared detecting element 2, and stray light. Can be suppressed.
  • the third mirror unit 8 is a flat surface, but is not limited thereto, and may be a curved surface.
  • the optical axis defined by the lens 31 located at the end of the upper fifteen lenses 31 and the third mirror unit 8 is schematically shown by a one-dot chain line for each third mirror unit 8. It is.
  • the infrared detecting device 100 further includes a fourth mirror unit 9 (see FIGS. 2, 3A and 4).
  • the fourth mirror unit 9 is disposed above the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30.
  • the fourth mirror unit 9 reflects the infrared light that has passed through the multi-lens 30 toward the infrared detection element 2.
  • the infrared detection apparatus 100 can increase the optical axis for making infrared rays enter the infrared detection element 2 while suppressing a decrease in sensitivity.
  • the infrared detection device 100 In the infrared detection device 100, a part of the infrared light that passes through the multi-lens 30 and does not directly enter the infrared detection element 2 from below the infrared detection device 100 is reflected by the fourth mirror unit 9 and enters the infrared detection element 2.
  • the fourth mirror portion 9 is formed on both sides of the first mirror portion 4 in the left-right direction on the lower surface of the upper projecting piece 12. As a result, the fourth mirror unit 9 is disposed obliquely above the infrared detection element 2 so as not to interfere with the first mirror unit 4 between the infrared detection element 2 and the multi-lens 30.
  • the optical member 10 includes two fourth mirror portions 9. In the infrared detection device 100, since the optical member 10 includes the fourth mirror unit 9, it is possible to improve the relative positional accuracy between the fourth mirror unit 9 and the infrared detection element 2.
  • the 4th mirror part 9 is not restricted to the case where it is constituted by one 4th mirror surface, for example, two 4th mirror surfaces arranged along with the direction where infrared detecting element 2 and multi lens 30 are located in a line. May be included.
  • the optical axis for making infrared rays from the outside incident on the infrared detection element 2 is defined by the combination of each of the two fourth mirror surfaces and the multi-lens 30.
  • the infrared detecting device 100 can further increase the optical axis for making the infrared ray incident on the infrared detecting element 2 while suppressing a decrease in sensitivity.
  • a predetermined number for example, four
  • lenses 31 out of a plurality of (15) lenses 31 arranged in a line on the upper side of the fourth mirror surface and the multi-lens 30 is predetermined.
  • a number (eg, four) of optical axes are defined.
  • Each of the two fourth mirror surfaces is preferably a concave curved surface.
  • the fourth mirror unit 9 may include one or more fourth mirror surfaces in addition to the two fourth mirror surfaces along the direction in which the infrared detection element 2 and the multi-lens 30 are arranged.
  • the light defined by the fourth mirror unit 9 and the lens 31 is an angle formed by the optical axis (for example, OA3, OA4) defined by the first mirror unit 4 and the lens 31 and the horizontal plane. It can be made larger than the angle between the axis and the horizontal plane.
  • the two fourth mirror surfaces may be designed so that the optical axis defined by the side lens 31 is substantially parallel.
  • each of the plurality of lenses 31 may be composed of a Fresnel lens.
  • the infrared detection element 2 is not limited to a pyroelectric element that is used in the current detection mode and outputs a current signal as an output signal, but may be a pyroelectric element that is used in the voltage detection mode and outputs a voltage signal as an output signal.
  • the signal processing circuit 7 determines whether or not the number of times that the voltage level of the analog voltage signal exceeds the specified value within a predetermined time is a predetermined multiple times or more. And a determination circuit that outputs a human body detection signal when it is determined that the number of times is more than once.
  • the infrared detection element 2 is not limited to a quad-type pyroelectric element, but may be a dual-type pyroelectric element, for example.
  • the infrared detection element 2 is not limited to the pyroelectric element, and may be a thermopile, a photodiode, or the like.
  • the infrared detecting device 100 is not limited to an example applied to a wiring device, and can be applied to various devices. Examples of the device include a television, a digital signage (electronic signboard), a lighting device, an air cleaner, an air conditioner, a copy machine, a facsimile (facsimile: FAX), and a security device.
  • the device is not limited to a device arranged indoors but may be a device arranged outdoors.

Abstract

The present invention addresses the problem of providing an infrared detection device enabling to further expand a detection area, while suppressing sensitivity deterioration. An infrared detection device (100) is provided with an infrared detection element (2) and a multilens (30), and furthermore, a first mirror section (4) and a second mirror section (5). The first mirror section (4) is disposed above the infrared detection element (2), said first mirror section being between the infrared detection element (2) and the multilens (30), and reflects an infrared portion, which has passed through the multilens (30), and which is not going to be directly inputted to the infrared detection element (2). The second mirror section (5) is disposed below the infrared detection element (2), said second mirror section being disposed between the infrared detection element (2) and the multilens (30), and reflects, toward the infrared detection element (2), the infrared reflected by the first mirror section (4).

Description

赤外線検出装置Infrared detector
 本発明は、赤外線検出装置に関し、より詳細には、マルチレンズを備える赤外線検出装置に関する。 The present invention relates to an infrared detection device, and more particularly to an infrared detection device including a multi-lens.
 従来、赤外線検出装置としては、例えば、人体から放射される赤外線を検知することによって検知エリア内の人の存否を検出する赤外線式人体検知器が知られている(特許文献1)。 Conventionally, as an infrared detection device, for example, an infrared human body detector that detects presence or absence of a person in a detection area by detecting infrared radiation emitted from a human body is known (Patent Document 1).
 特許文献1に記載された赤外線式人体検知器は、人体から放射される赤外線を検出する赤外線センサと、赤外線センサの受光面の前方で列設された複数個のレンズと、1つの列に並ぶレンズの両端に位置するレンズを通る赤外線のうち赤外線センサの受光面に直接入射しない赤外線の一部を赤外線の受光面に向かって変向させるミラーと、を備える。 The infrared human body detector described in Patent Document 1 is arranged in one row with an infrared sensor that detects infrared rays emitted from the human body, a plurality of lenses arranged in front of the light receiving surface of the infrared sensor, and the infrared sensor. A mirror that changes a part of the infrared ray that does not directly enter the light receiving surface of the infrared sensor among the infrared rays passing through the lenses located at both ends of the lens toward the infrared light receiving surface.
 上述の赤外線式人体検知器では、レンズを通過して赤外線センサへ直接向かう赤外線の一部がミラーにより遮られてしまい、感度が低下してしまう。 In the above-described infrared type human body detector, a part of the infrared ray that passes through the lens and goes directly to the infrared sensor is blocked by the mirror, and the sensitivity is lowered.
特開2000-234955号公報JP 2000-234955 A
 赤外線検出装置の分野においては、感度を低下させることなく検知エリアをより広げることが望まれる場合がある。 In the field of infrared detection devices, it may be desired to expand the detection area without reducing sensitivity.
 本発明の目的は、感度の低下を抑制しつつ検知エリアをより広げることが可能な赤外線検出装置を提供することにある。 An object of the present invention is to provide an infrared detection device capable of expanding a detection area while suppressing a decrease in sensitivity.
 本発明に係る一態様の赤外線検出装置は、赤外線検出素子と、マルチレンズと、を備える。前記マルチレンズは、各々が前記赤外線検出素子に赤外線を集光する複数のレンズを有する。赤外線検出装置は、第1ミラー部と、第2ミラー部と、を更に備える。前記第1ミラー部は、前記赤外線検出素子と前記マルチレンズとの間において前記赤外線検出素子の上方に配置される。前記第1ミラー部は、前記マルチレンズを通過しかつ前記赤外線検出素子に直接入射しない赤外線の一部を反射する。前記第2ミラー部は、前記赤外線検出素子と前記マルチレンズとの間において前記赤外線検出素子の下方に配置される。前記第2ミラー部は、前記第1ミラー部で反射された赤外線を前記赤外線検出素子へ向けて反射する。 An infrared detection device according to an aspect of the present invention includes an infrared detection element and a multilens. The multi-lens has a plurality of lenses each collecting infrared rays on the infrared detection element. The infrared detection device further includes a first mirror unit and a second mirror unit. The first mirror unit is disposed above the infrared detection element between the infrared detection element and the multi-lens. The first mirror part reflects a part of infrared light that passes through the multi-lens and does not directly enter the infrared detection element. The second mirror unit is disposed below the infrared detection element between the infrared detection element and the multi-lens. The second mirror part reflects the infrared light reflected by the first mirror part toward the infrared detection element.
図1は、本発明の一実施形態に係る赤外線検出装置の縦断面図である。FIG. 1 is a longitudinal sectional view of an infrared detecting device according to an embodiment of the present invention. 図2は、同上の赤外線検出装置の要部正面図である。FIG. 2 is a front view of an essential part of the above infrared detecting device. 図3Aは、同上の赤外線検出装置の要部を下側から見た斜視図である。図3Bは、同上の赤外線検出装置の要部を上側から見た斜視図である。FIG. 3A is a perspective view of the main part of the above infrared detection device as viewed from below. FIG. 3B is a perspective view of the main part of the above infrared detection device as seen from above. 図4は、同上の赤外線検出装置の要部を図3Bとは異なる方向から見た斜視図である。FIG. 4 is a perspective view of the main part of the above infrared detecting device as seen from a direction different from FIG. 3B. 図5Aは、同上の赤外線検出装置における赤外線検出素子の正面図である。図5Bは、図5AのG-G線断面図である。FIG. 5A is a front view of an infrared detecting element in the above infrared detecting device. 5B is a cross-sectional view taken along the line GG in FIG. 5A. 図6は、同上の赤外線検出装置における赤外線検出素子の受光面の模式的な説明図である。FIG. 6 is a schematic explanatory view of a light receiving surface of an infrared detecting element in the above infrared detecting device. 図7Aは、同上の赤外線検出装置におけるマルチレンズの正面図である。図7Bは、同上の赤外線検出装置におけるマルチレンズの背面図である。FIG. 7A is a front view of a multi-lens in the above infrared detecting device. FIG. 7B is a rear view of the multi-lens in the above infrared detection device. 図8Aは、図7AのX-X線断面図である。図8Bは、図7AのY-Y線断面図である。8A is a cross-sectional view taken along line XX of FIG. 7A. 8B is a cross-sectional view taken along line YY of FIG. 7A. 図9は、同上の赤外線検出装置の要部の横断面図である。FIG. 9 is a cross-sectional view of a main part of the above infrared detecting device. 図10は、同上の赤外線検出装置の回路ブロック図である。FIG. 10 is a circuit block diagram of the above infrared detection apparatus. 図11Aは、同上の赤外線検出装置の要部正面図である。図11Bは、下側から見た横断面図である。FIG. 11A is a front view of an essential part of the above infrared detecting device. FIG. 11B is a cross-sectional view seen from below. 図12は、同上の赤外線検出装置の斜視図である。FIG. 12 is a perspective view of the above infrared detecting device.
 下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 The drawings described in the following embodiments are schematic diagrams, and the ratios of the sizes and thicknesses of the constituent elements in the drawings do not necessarily reflect actual dimensional ratios.
 (実施形態)
 以下では、本実施形態の赤外線検出装置100について、図1~12に基づいて説明する。
(Embodiment)
Hereinafter, the infrared detection apparatus 100 of the present embodiment will be described with reference to FIGS.
 赤外線検出装置100は、赤外線検出素子2と、マルチレンズ30と、を備える。マルチレンズ30は、各々が赤外線検出素子2に赤外線を集光する複数のレンズ31を有する。赤外線検出装置100は、第1ミラー部4と、第2ミラー部5と、を更に備える。第1ミラー部4は、赤外線検出素子2とマルチレンズ30との間において赤外線検出素子2の上方に配置される。第1ミラー部4は、マルチレンズ30を通過しかつ赤外線検出素子2に直接入射しない赤外線の一部を反射する。第2ミラー部5は、赤外線検出素子2とマルチレンズ30との間において赤外線検出素子2の下方に配置される。第2ミラー部5は、第1ミラー部4で反射された赤外線を赤外線検出素子2へ向けて反射する。以上説明した構成の赤外線検出装置100では、感度の低下を抑制しつつ検知エリアをより広げることが可能となる。より詳細には、赤外線検出装置100では、赤外線検出装置100の下方からマルチレンズ30を通過しかつ赤外線検出素子2に直接入射しない赤外線の一部が、第1ミラー部4で反射され更に第2ミラー部5で反射されて赤外線検出素子2へ入射する。これにより、赤外線検出装置100は、第1ミラー部4及び第2ミラー部5を備えていない場合に比べて、検知エリアを下方へ、より広げることが可能となる。言い換えれば、赤外線検出装置100は、視野角のうち垂直方向下側の視野角をより大きくすることが可能となる。「視野角」とは、赤外線検出装置100の検知エリアの広がり角を意味する。また、赤外線検出装置100では、マルチレンズ30を通過して赤外線検出素子2に直接入射しようとする赤外線が第1ミラー部4及び第2ミラー部5により遮られないので、感度の低下を抑制することが可能となる。 The infrared detection device 100 includes an infrared detection element 2 and a multilens 30. The multi-lens 30 includes a plurality of lenses 31 that each collect infrared rays on the infrared detection element 2. The infrared detecting device 100 further includes a first mirror unit 4 and a second mirror unit 5. The first mirror unit 4 is disposed above the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30. The first mirror unit 4 reflects a part of infrared rays that pass through the multi-lens 30 and are not directly incident on the infrared detection element 2. The second mirror unit 5 is disposed below the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30. The second mirror unit 5 reflects the infrared light reflected by the first mirror unit 4 toward the infrared detection element 2. In the infrared detection apparatus 100 having the above-described configuration, it is possible to further expand the detection area while suppressing a decrease in sensitivity. More specifically, in the infrared detection device 100, a part of infrared rays that pass through the multi-lens 30 and do not directly enter the infrared detection element 2 from below the infrared detection device 100 are reflected by the first mirror unit 4 and further second. The light is reflected by the mirror unit 5 and enters the infrared detection element 2. Thereby, compared with the case where the infrared detection apparatus 100 is not provided with the 1st mirror part 4 and the 2nd mirror part 5, it becomes possible to expand a detection area further below. In other words, the infrared detection apparatus 100 can increase the viewing angle on the lower side in the vertical direction among the viewing angles. “Viewing angle” means the spread angle of the detection area of the infrared detecting device 100. Further, in the infrared detecting device 100, since the infrared rays that pass through the multi-lens 30 and directly enter the infrared detecting element 2 are not blocked by the first mirror portion 4 and the second mirror portion 5, the reduction in sensitivity is suppressed. It becomes possible.
 赤外線検出装置100は、赤外線検出素子2が収納されたパッケージ6を備えるのが好ましい。パッケージ6は、赤外線を透過する窓材63を備える。窓材6は、赤外線検出素子2の前方に配置される。マルチレンズ30は、複数のレンズ31の各々を透過した赤外線が窓材63に直接入射するように構成されているのが好ましい。 The infrared detecting device 100 preferably includes a package 6 in which the infrared detecting element 2 is housed. The package 6 includes a window material 63 that transmits infrared rays. The window material 6 is disposed in front of the infrared detection element 2. The multi-lens 30 is preferably configured such that infrared light transmitted through each of the plurality of lenses 31 is directly incident on the window member 63.
 パッケージ6は、赤外線検出素子2が収納されるパッケージ本体60と、パッケージ本体60における赤外線検出素子2の前方に形成された窓孔601を塞ぐ窓材63と、複数個(例えば、3個)の端子を備える。パッケージ6は、所謂キャンパッケージ(can package)である。キャンパッケージは、メタルパッケージ(metal package)とも呼ばれている。窓材63は、赤外線透過部材である。赤外線透過部材としては、例えば、シリコン基板、ゲルマニウム基板等を用いることができる。赤外線透過部材は、適宜の光学フィルタ膜、反射防止膜等を備えているのが好ましい。 The package 6 includes a package main body 60 in which the infrared detection element 2 is housed, a window material 63 that closes the window hole 601 formed in front of the infrared detection element 2 in the package main body 60, and a plurality (for example, three). Provide terminals. The package 6 is a so-called can package. The can package is also called a metal package. The window material 63 is an infrared transmitting member. As the infrared transmitting member, for example, a silicon substrate, a germanium substrate, or the like can be used. The infrared transmitting member preferably includes an appropriate optical filter film, antireflection film, and the like.
 赤外線検出装置100は、例えば、人体から放射される赤外線を検出して人体検知信号を出力する人体検知装置として用いることができる。 The infrared detection device 100 can be used as, for example, a human body detection device that detects infrared rays emitted from a human body and outputs a human body detection signal.
 赤外線検出装置100は、例えば、図10に示すように、赤外線検出素子2の他に、信号処理回路7を備えているのが好ましい。信号処理回路7は、例えば、増幅回路71と、帯域フィルタ72と、比較回路73と、出力回路74と、を備えているのが好ましい。 For example, as shown in FIG. 10, the infrared detection device 100 preferably includes a signal processing circuit 7 in addition to the infrared detection element 2. The signal processing circuit 7 preferably includes, for example, an amplification circuit 71, a band filter 72, a comparison circuit 73, and an output circuit 74.
 信号処理回路7は、増幅回路71と、帯域フィルタ72と、比較回路73と、出力回路74と、が1つのIC素子に集積化されているのが好ましい。赤外線検出装置100では、赤外線検出素子2と信号処理回路7の構成部品(例えば、上述のIC素子)とが実装された基板が、パッケージ6内に収納されているのが好ましい。基板は、例えば、MID(Molded Interconnect Devices)基板、部品内蔵基板、プリント基板等により構成することができる。 In the signal processing circuit 7, the amplifier circuit 71, the band filter 72, the comparison circuit 73, and the output circuit 74 are preferably integrated in one IC element. In the infrared detecting device 100, it is preferable that a substrate on which the infrared detecting element 2 and the component parts of the signal processing circuit 7 (for example, the above-described IC element) are mounted is accommodated in the package 6. The substrate can be configured by, for example, a MID (Molded Interconnect Device) substrate, a component built-in substrate, a printed circuit board, or the like.
 増幅回路71は、赤外線検出素子2の出力信号を増幅する回路である。増幅回路71は、例えば、電流電圧変換回路と、電圧増幅回路と、で構成することができる。電流電圧変換回路は、赤外線検出素子2から出力される出力信号である電流信号を電圧信号に変換して出力する回路である。電圧増幅回路は、電流電圧変換回路から出力された電圧信号のうち所定の周波数帯域(例えば、0.1Hz~10Hz)の電圧信号を増幅して出力する回路である。 The amplification circuit 71 is a circuit that amplifies the output signal of the infrared detection element 2. The amplifier circuit 71 can be constituted by, for example, a current-voltage conversion circuit and a voltage amplifier circuit. The current-voltage conversion circuit is a circuit that converts a current signal that is an output signal output from the infrared detection element 2 into a voltage signal and outputs the voltage signal. The voltage amplification circuit is a circuit that amplifies and outputs a voltage signal in a predetermined frequency band (for example, 0.1 Hz to 10 Hz) among the voltage signals output from the current-voltage conversion circuit.
 帯域フィルタ72は、増幅回路71で増幅された電圧信号から、雑音となる不要な周波数成分を除去するフィルタである。 The band filter 72 is a filter that removes unnecessary frequency components that become noise from the voltage signal amplified by the amplifier circuit 71.
 比較回路73は、増幅回路71で増幅された電圧信号と予め設定された閾値とを比較し電圧信号が閾値を超えたか否かを判断する回路である。比較回路73は、例えば、コンパレータ等を用いて構成することができる。 The comparison circuit 73 is a circuit that compares the voltage signal amplified by the amplification circuit 71 with a preset threshold value and determines whether or not the voltage signal exceeds the threshold value. The comparison circuit 73 can be configured using, for example, a comparator.
 出力回路74は、比較回路73において電圧信号が閾値を超えたと判断されたときに人体検知信号を出力信号として出す回路である。「人体検知信号」は、一例として一定時間だけハイレベルとなるパルス信号としてある。したがって、出力回路74の出力は、人体検知信号が出力されていないときはローレベルであり、人体検知信号が出力されているときはハイレベルである。 The output circuit 74 is a circuit that outputs a human body detection signal as an output signal when the comparison circuit 73 determines that the voltage signal has exceeded a threshold value. The “human body detection signal” is, for example, a pulse signal that is at a high level for a certain time. Therefore, the output of the output circuit 74 is at a low level when the human body detection signal is not output, and is at a high level when the human body detection signal is output.
 赤外線検出装置100は、信号処理回路7の構成部品がパッケージ6内に収納された例に限らず、信号処理回路7の構成部品の一部もしくは全部がパッケージ6の外で回路基板に実装された構成としてもよい。回路基板は、例えば、プリント基板により構成することができる。 The infrared detection apparatus 100 is not limited to the example in which the component parts of the signal processing circuit 7 are housed in the package 6, and part or all of the component parts of the signal processing circuit 7 are mounted on the circuit board outside the package 6. It is good also as a structure. The circuit board can be constituted by, for example, a printed board.
 赤外線検出装置100は、例えば、配線器具に適用することができる。配線器具は、例えば、電源端子と、負荷端子と、電源端子と負荷端子との間に接続されたスイッチング素子と、を備え、電源端子と負荷端子との間に、外部回路を接続して使用する埋込型配線器具である。外部回路は、例えば、電源(例えば、商用電源)と制御対象負荷との直列回路である。配線器具は、赤外線検出装置100からの人体検知信号の有無に基づいてスイッチング素子をオン、オフ制御することで、負荷のオン、オフを制御することができる。制御対象負荷としては、例えば、照明負荷、換気扇等が挙げられる。 The infrared detection device 100 can be applied to, for example, a wiring device. The wiring apparatus includes, for example, a power terminal, a load terminal, and a switching element connected between the power terminal and the load terminal, and is used by connecting an external circuit between the power terminal and the load terminal. It is an embedded wiring apparatus. The external circuit is, for example, a series circuit of a power source (for example, a commercial power source) and a control target load. The wiring device can control the on / off of the load by controlling the on / off of the switching element based on the presence / absence of the human body detection signal from the infrared detecting device 100. Examples of the control target load include an illumination load and a ventilation fan.
 配線器具の制御対象負荷が例えば照明負荷であるとすれば、照明負荷の設置されている室内、廊下、玄関等に赤外線検出装置100の検知エリアが設定されているのが好ましい。これにより、配線器具は、室内、廊下、玄関等に人が存在するか存在しないかに応じて照明負荷を点灯、消灯させることが可能になる。床面から配線器具までの高さは、例えば、1.2mである。赤外線検出装置100では、正面方向だけでなく、直近真下にいる人を検知することが可能である。 Suppose that the load to be controlled by the wiring apparatus is, for example, an illumination load, it is preferable that the detection area of the infrared detection device 100 is set in a room, a hallway, an entrance, or the like where the illumination load is installed. Thereby, the wiring apparatus can turn on and off the lighting load depending on whether a person is present in the room, hallway, entrance, or the like. The height from the floor surface to the wiring device is, for example, 1.2 m. In the infrared detecting device 100, it is possible to detect not only the front direction but also a person who is directly below.
 赤外線検出装置100の各構成要素については、以下に、より詳細に説明する。 Each component of the infrared detecting device 100 will be described in more detail below.
 赤外線検出素子2は、例えば、クワッドタイプの焦電素子である。この赤外線検出素子2では、例えば、図5A、5B及び6に示すように、1枚の焦電体基板23に4個の検出部24が形成されている。 The infrared detection element 2 is, for example, a quad-type pyroelectric element. In this infrared detection element 2, for example, as shown in FIGS. 5A, 5B, and 6, four detection units 24 are formed on one pyroelectric substrate 23.
 赤外線検出素子2では、1枚の焦電体基板23に、4個の検出部24が2×2のアレイ状(マトリクス状)に配列されている。言い換えれば、赤外線検出素子2では、4個の検出部24が2×2のマトリクス状に配列されている。 In the infrared detection element 2, four detection units 24 are arranged in a 2 × 2 array form (matrix form) on one pyroelectric substrate 23. In other words, in the infrared detection element 2, the four detection units 24 are arranged in a 2 × 2 matrix.
 焦電体基板23の平面視形状は、正方形状である。焦電体基板23は、焦電性を有する基板である。焦電体基板23は、例えば単結晶のLiTaO基板により構成されている。 The plan view shape of the pyroelectric substrate 23 is a square shape. The pyroelectric substrate 23 is a substrate having pyroelectric properties. The pyroelectric substrate 23 is made of, for example, a single crystal LiTaO 3 substrate.
 複数の検出部24それぞれの平面視形状は、正方形状である。赤外線検出素子2では、焦電体基板23の中央部において焦電体基板23の外周線230よりも内側の仮想正方形VR1(図6参照)の4つの角それぞれに検出部24の中心が位置している。 The planar view shape of each of the plurality of detection units 24 is a square shape. In the infrared detection element 2, the center of the detection unit 24 is located at each of the four corners of the virtual square VR <b> 1 (see FIG. 6) inside the pyroelectric substrate 23 at the center of the pyroelectric substrate 23. ing.
 4個の検出部24の各々は、焦電体基板23の表面231に形成された表面電極25と、焦電体基板23の裏面232に形成された裏面電極26と、焦電体基板23において表面電極25と裏面電極26とで挟まれた部分233と、を含むコンデンサである。図5Aでは、4個の検出部24それぞれにおいてマルチレンズ30側に位置する表面電極25の極性を、“+”、“-”の符号で示してある。4個の検出部24それぞれの受光面24aは、表面電極25の表面である。 Each of the four detection units 24 includes a front electrode 25 formed on the front surface 231 of the pyroelectric substrate 23, a back electrode 26 formed on the rear surface 232 of the pyroelectric substrate 23, and the pyroelectric substrate 23. The capacitor includes a portion 233 sandwiched between the front electrode 25 and the back electrode 26. In FIG. 5A, the polarity of the surface electrode 25 located on the multi-lens 30 side in each of the four detection units 24 is indicated by the signs “+” and “−”. The light receiving surface 24 a of each of the four detection units 24 is the surface of the surface electrode 25.
 赤外線検出素子2は、平面視において4個の検出部24の各々の表面電極25を包含する矩形の受光面20(図6参照)を有する。ここで、「矩形」とは、直角四辺形を意味し、長方形又は正方形を意味する。図6では、矩形の受光面20として、正方形の受光面20を例示してある。赤外線検出素子2の受光面20は、4個の検出部24それぞれの受光面24aを包含する凸多角形VR2の外周線で囲まれた領域の表面を意味する。図6における凸多角形VR2は、矩形である。赤外線検出素子2の受光面20の中心200を通る法線は、赤外線検出素子2の光軸とみなすことができる。 The infrared detection element 2 has a rectangular light receiving surface 20 (see FIG. 6) including the surface electrodes 25 of the four detection units 24 in plan view. Here, “rectangular” means a right-angled quadrilateral, and means a rectangle or a square. In FIG. 6, a square light receiving surface 20 is illustrated as a rectangular light receiving surface 20. The light receiving surface 20 of the infrared detecting element 2 means the surface of the region surrounded by the outer periphery of the convex polygon VR2 that includes the light receiving surfaces 24a of the four detectors 24. The convex polygon VR2 in FIG. 6 is a rectangle. A normal passing through the center 200 of the light receiving surface 20 of the infrared detection element 2 can be regarded as the optical axis of the infrared detection element 2.
 赤外線検出素子2では、2×2のアレイ状に配列された4個の検出部24のうち矩形の受光面20の第1対角線201に沿った方向に並んでいる2個の検出部24同士が、並列接続されている。また、赤外線検出素子2では、矩形の受光面20の第2対角線202に沿った方向に並んでいる2個の検出部24同士が、並列接続されている。また、赤外線検出素子2では、行方向に並んでいる2個の検出部24同士が、逆並列に接続され、列方向に並んでいる2個の検出部24同士が、逆並列に接続されている。本明細書において、「行方向」とは、矩形の受光面20における4辺のうちの1辺に沿った第1方向(図6では、左右方向)を意味する。「列方向」とは、赤外線検出素子2の厚さ方向と第1方向とに直交する第2方向(図6では、上下方向)を意味する。 In the infrared detection element 2, the two detection units 24 arranged in the direction along the first diagonal line 201 of the rectangular light receiving surface 20 among the four detection units 24 arranged in a 2 × 2 array are arranged. Are connected in parallel. In the infrared detection element 2, the two detection units 24 arranged in the direction along the second diagonal 202 of the rectangular light receiving surface 20 are connected in parallel. In the infrared detection element 2, the two detection units 24 arranged in the row direction are connected in antiparallel, and the two detection units 24 arranged in the column direction are connected in antiparallel. Yes. In this specification, the “row direction” means a first direction (left and right direction in FIG. 6) along one of the four sides of the rectangular light receiving surface 20. The “row direction” means a second direction (vertical direction in FIG. 6) perpendicular to the thickness direction of the infrared detection element 2 and the first direction.
 赤外線検出素子2では、第1対角線201に沿った方向に並んでいる2個の検出部24それぞれの表面電極25の極性が同じである。また、赤外線検出素子2では、行方向に並んでいる2個の検出部24それぞれの表面電極25の極性が互いに異なる。赤外線検出素子2では、列方向に並んでいる2個の検出部24それぞれの表面電極25の極性が互いに異なる。 In the infrared detection element 2, the polarities of the surface electrodes 25 of the two detection units 24 arranged in the direction along the first diagonal line 201 are the same. In the infrared detection element 2, the polarities of the surface electrodes 25 of the two detection units 24 arranged in the row direction are different from each other. In the infrared detection element 2, the polarities of the surface electrodes 25 of the two detection units 24 arranged in the column direction are different from each other.
 赤外線検出素子2は、矩形の受光面20の第1対角線201に沿った方向を左右方向として配置されているのが好ましい。この場合、赤外線検出素子2は、図5A及び6に示した状態を基準として受光面20の前方から見て時計回り方向に45°だけ回転させた状態(図2参照)でマルチレンズ30に臨んでいる。 The infrared detecting element 2 is preferably arranged with the direction along the first diagonal line 201 of the rectangular light receiving surface 20 as the left-right direction. In this case, the infrared detection element 2 faces the multi-lens 30 in a state where the infrared detection element 2 is rotated by 45 ° in the clockwise direction when viewed from the front of the light receiving surface 20 with reference to the state shown in FIGS. 5A and 6 (see FIG. 2). It is out.
 マルチレンズ30は、図5Aに示すように、赤外線検出素子2の前方に配置される。「赤外線検出素子2の前方」とは、赤外線検出素子2の受光面20の中心200を通る法線に沿った方向における前方を意味する。 The multi-lens 30 is disposed in front of the infrared detection element 2 as shown in FIG. 5A. “Front of the infrared detection element 2” means the front in the direction along the normal passing through the center 200 of the light receiving surface 20 of the infrared detection element 2.
 マルチレンズ30は、複数のレンズ31それぞれの赤外線検出素子2側での焦点が同じ位置となるように設計してあるのが好ましい。図9では、マルチレンズ30を通って赤外線検出素子2に入射する赤外線の進行経路を点線で模式的に示してある。 The multi-lens 30 is preferably designed so that the focal points of each of the plurality of lenses 31 on the infrared detection element 2 side are at the same position. In FIG. 9, the traveling path of infrared rays that enter the infrared detection element 2 through the multi-lens 30 is schematically shown by dotted lines.
 マルチレンズ30における複数のレンズ31の各々で制御する制御対象の赤外線は、例えば、5μm~25μmの波長域の赤外線である。 Infrared light to be controlled by each of the plurality of lenses 31 in the multi-lens 30 is, for example, infrared light having a wavelength range of 5 μm to 25 μm.
 マルチレンズ30の材料は、例えば、ポリエチレンである。より詳細には、マルチレンズ30の材料は、白色顔料又は黒色顔料が添加されたポリエチレンである。白色顔料としては、例えば、酸化チタン、亜鉛華(酸化亜鉛)等の無機顔料を採用するのが好ましい。黒色顔料としては、例えば、カーボンブラック等の微粒子を採用するのが好ましい。マルチレンズ30は、例えば、成形法により形成することができる。成形法としては、例えば、射出成形法、圧縮成形法等を採用することができる。 The material of the multi lens 30 is, for example, polyethylene. More specifically, the material of the multi lens 30 is polyethylene to which a white pigment or a black pigment is added. As the white pigment, for example, an inorganic pigment such as titanium oxide or zinc white (zinc oxide) is preferably employed. As the black pigment, for example, it is preferable to employ fine particles such as carbon black. The multi lens 30 can be formed by a molding method, for example. As the molding method, for example, an injection molding method, a compression molding method, or the like can be employed.
 マルチレンズ30における複数のレンズ31の各々は、集光レンズであり、凸レンズにより構成されている。ここで、複数のレンズ31の各々は、非球面レンズにより構成されている。複数のレンズ31の各々は、フレネルレンズにより構成されていてもよい。 Each of the plurality of lenses 31 in the multi-lens 30 is a condensing lens and is configured by a convex lens. Here, each of the plurality of lenses 31 is configured by an aspheric lens. Each of the plurality of lenses 31 may be composed of a Fresnel lens.
 マルチレンズ30において赤外線が入射する第1面301は、複数のレンズ31それぞれの入射面の一群により構成されている。マルチレンズ30において赤外線が出射する第2面302は、複数のレンズ31それぞれの出射面の一群により構成されている。マルチレンズ30では、複数のレンズ31が上下左右に並んでいる。マルチレンズ30では、一例として、上側において15個のレンズ31が一列に並び、下側において13個のレンズ31が一列に並んでいる。 The first surface 301 on which infrared rays are incident in the multi-lens 30 is configured by a group of incident surfaces of the plurality of lenses 31. The second surface 302 from which infrared rays are emitted from the multi-lens 30 is configured by a group of emission surfaces of the plurality of lenses 31. In the multi-lens 30, a plurality of lenses 31 are arranged vertically and horizontally. In the multi-lens 30, as an example, 15 lenses 31 are arranged in a row on the upper side, and 13 lenses 31 are arranged in a row on the lower side.
 赤外線検出装置100は、第1ミラー部4と第2ミラー部5とを有する光学部材10を備えている。光学部材10は、例えば、合成樹脂成形品の表面にめっき膜を設けた部材である。合成樹脂成形品の材料は、例えば、ABS樹脂である。めっき膜の材料は、赤外線に対する反射率の高い材料が好ましい。めっき膜の材料は、例えば、アルミニウムであるが、これに限らず、クロム等でもよい。 The infrared detecting device 100 includes an optical member 10 having a first mirror part 4 and a second mirror part 5. The optical member 10 is, for example, a member provided with a plating film on the surface of a synthetic resin molded product. The material of the synthetic resin molded product is, for example, ABS resin. The material of the plating film is preferably a material having a high reflectance with respect to infrared rays. The material of the plating film is, for example, aluminum, but is not limited thereto, and may be chromium or the like.
 光学部材10は、筒体部11と、上突片12と、下突片13と、を備える。筒体部11は、パッケージ6を囲む筒状の形状である。上突片12は、筒体部11の軸方向の第1端の上部から軸方向に沿って突出している。下突片13は、筒体部11の第1端の下部から軸方向に沿って突出している。赤外線検出装置100では、パッケージ6が光学部材10に嵌めこまれているのが好ましい。これにより、赤外線検出装置100では、光学部材10と赤外線検出素子2との相対的な位置精度を向上させることが可能となる。第1ミラー部4は、上突片12の下面において左右方向の中央に形成されている。これにより、第1ミラー部4は、赤外線検出素子2の上方に配置される。より詳細には、第1ミラー部4は、赤外線検出素子2とマルチレンズ30との間において、赤外線検出素子2の受光面20の斜め上方に配置される。第2ミラー部5は、下突片13の上面に形成されている。これにより、第2ミラー部5は、赤外線検出素子2の下方に配置される。より詳細には、第2ミラー部5は、赤外線検出素子2とマルチレンズ30との間において、赤外線検出素子2の受光面20の斜め下方に配置される。 The optical member 10 includes a cylindrical body portion 11, an upper protrusion piece 12, and a lower protrusion piece 13. The cylindrical part 11 has a cylindrical shape surrounding the package 6. The upper protruding piece 12 protrudes along the axial direction from the upper part of the first end of the cylindrical portion 11 in the axial direction. The lower protruding piece 13 protrudes along the axial direction from the lower portion of the first end of the cylindrical portion 11. In the infrared detection device 100, it is preferable that the package 6 is fitted in the optical member 10. Thereby, in the infrared detection apparatus 100, the relative positional accuracy of the optical member 10 and the infrared detection element 2 can be improved. The first mirror portion 4 is formed at the center in the left-right direction on the lower surface of the upper protruding piece 12. Accordingly, the first mirror unit 4 is disposed above the infrared detection element 2. More specifically, the first mirror unit 4 is disposed obliquely above the light receiving surface 20 of the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30. The second mirror unit 5 is formed on the upper surface of the lower protruding piece 13. Accordingly, the second mirror unit 5 is disposed below the infrared detection element 2. More specifically, the second mirror portion 5 is disposed obliquely below the light receiving surface 20 of the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30.
 光学部材10は、例えば、図2、3A及び3Bに示すように、筒体部11の軸方向の第2端における外周面から上方へ突出する上突起17及び下方へ突出する下突起18を備えているのが好ましい。また、赤外線検出装置100は、マルチレンズ30を有し光学部材10を覆うドーム状のカバー3(図12参照)を備えるのが好ましい。この場合、カバー3の後端縁に、上突起17が嵌め込まれる上スリット317及び下突起18が嵌め込まれる下スリットが形成されているのが好ましい。これにより、赤外線検出装置100では、マルチレンズ30と赤外線検出素子2と光学部材10との相対的な位置精度を向上させることが可能となる。 For example, as shown in FIGS. 2, 3A and 3B, the optical member 10 includes an upper protrusion 17 protruding upward and a lower protrusion 18 protruding downward from the outer peripheral surface at the second end in the axial direction of the cylindrical portion 11. It is preferable. The infrared detection device 100 preferably includes a dome-shaped cover 3 (see FIG. 12) that has the multi-lens 30 and covers the optical member 10. In this case, it is preferable that an upper slit 317 into which the upper protrusion 17 is fitted and a lower slit into which the lower protrusion 18 is fitted are formed at the rear end edge of the cover 3. Thereby, in the infrared detection device 100, it is possible to improve the relative positional accuracy of the multi-lens 30, the infrared detection element 2, and the optical member 10.
 マルチレンズ30は、上方から見てC字状であり(図8A及び9参照)、赤外線検出素子2を覆っているのが好ましい。これにより、赤外線検出装置100では、検知エリアの水平視野角をより広くすることが可能となる。また、赤外線検出装置100では、風等に起因したパッケージ6の温度変化が生じにくくなり、赤外線検出素子2の出力信号のゆらぎを抑制することが可能となる。赤外線検出装置100は、マルチレンズ30を有し光学部材10を覆うドーム状のカバー3(図12参照)を備えるので、風等に起因したパッケージ6の温度変化がより生じにくくなり、赤外線検出素子2の出力信号のゆらぎをより抑制することが可能となる。 The multi-lens 30 is C-shaped when viewed from above (see FIGS. 8A and 9), and preferably covers the infrared detection element 2. Thereby, in the infrared detection apparatus 100, the horizontal viewing angle of the detection area can be further increased. Further, in the infrared detection device 100, the temperature change of the package 6 due to wind or the like is less likely to occur, and fluctuations in the output signal of the infrared detection element 2 can be suppressed. Since the infrared detection device 100 includes the dome-shaped cover 3 (see FIG. 12) that includes the multi-lens 30 and covers the optical member 10, the temperature change of the package 6 due to wind or the like is less likely to occur, and the infrared detection element The fluctuation of the output signal 2 can be further suppressed.
 仮に赤外線検出装置100が光学部材10を備えていない場合、赤外線検出装置100の検知エリアは、複数(例えば、28個)のレンズ31と複数(例えば、4個)の検出部24とで規定されている複数(例えば、112個)の赤外線受光経路等により決まる。複数の赤外線受光経路の各々は、レンズ31を通して赤外線検出素子2の検出部24に入射する赤外線束を赤外線の進む方向と反対の方向に延長したときに形成される3次元領域である。言い換えれば、赤外線受光経路は、赤外線検出素子2の検出部24の受光面24a上に像をつくるために使われる赤外線束が通ることができる赤外線通過領域を意味する。更に言えば、赤外線受光経路は、人体からの赤外線を検出する有効領域である。複数の赤外線受光経路は、光学的に規定される経路であり、実際に目に見える経路ではない。赤外線受光経路は、検出部24から離れるほど、赤外線束が通ることのできる断面積が大きい。複数の赤外線受光経路のそれぞれには、検出部24に一対一で対応した極性があるとみなすことができる。検知エリアにおける複数の赤外線受光経路は、上述のように、赤外線検出素子2とマルチレンズ30とで略決めることが可能であるが、窓材63の大きさ及び形状、窓孔601の開口形状等にも依存することがある。 If the infrared detection device 100 does not include the optical member 10, the detection area of the infrared detection device 100 is defined by a plurality of (for example, 28) lenses 31 and a plurality of (for example, four) detection units 24. It is determined by a plurality of (for example, 112) infrared light receiving paths. Each of the plurality of infrared light receiving paths is a three-dimensional region formed when an infrared bundle incident on the detection unit 24 of the infrared detecting element 2 through the lens 31 is extended in a direction opposite to the direction in which the infrared rays travel. In other words, the infrared ray receiving path means an infrared ray passing region through which an infrared ray bundle used for forming an image on the light receiving surface 24a of the detecting unit 24 of the infrared ray detecting element 2 can pass. Furthermore, the infrared light receiving path is an effective area for detecting infrared rays from the human body. The plurality of infrared light receiving paths are optically defined paths and are not actually visible paths. The farther the infrared light receiving path is from the detection unit 24, the larger the cross-sectional area through which the infrared ray bundle can pass. Each of the plurality of infrared light receiving paths can be regarded as having a one-to-one correspondence with the detection unit 24. As described above, the plurality of infrared light receiving paths in the detection area can be substantially determined by the infrared detecting element 2 and the multi-lens 30. However, the size and shape of the window member 63, the opening shape of the window hole 601, and the like. May also depend on.
 赤外線検出装置100については、赤外線検出素子2の受光面20の中心200の法線方向が一水平方向となるように配置して使用されることを想定している。 It is assumed that the infrared detection device 100 is used by being arranged so that the normal direction of the center 200 of the light receiving surface 20 of the infrared detection element 2 is one horizontal direction.
 図1では、マルチレンズ30において上側で一列に並んでいる15個のレンズ31のレンズ31のうち中央に位置するレンズ31の光軸OA1を模式的に示してある。赤外線検出装置100では、光軸OA1に沿ってレンズ31を通過した赤外線が赤外線検出素子2に直接入射する。「直接入射する」とは、マルチレンズ30を通ってから反射用部材で反射されることなく赤外線検出素子2へ入射することを意味し、例えば、マルチレンズ30と赤外線検出素子2との間にある窓材63を通して入射することも含む。また、図1では、マルチレンズ30において下側で一列に並んでいる13個のレンズ31のうち中央に位置するレンズ31の光軸OA2を模式的に示してある。 1 schematically shows the optical axis OA1 of the lens 31 located in the center among the lenses 31 of the 15 lenses 31 arranged in a line on the upper side in the multi-lens 30. FIG. In the infrared detection device 100, infrared rays that have passed through the lens 31 along the optical axis OA <b> 1 are directly incident on the infrared detection element 2. “Directly incident” means that the light passes through the multi-lens 30 and is incident on the infrared detection element 2 without being reflected by the reflecting member. For example, between the multi-lens 30 and the infrared detection element 2 It also includes entering through a window material 63. In FIG. 1, the optical axis OA2 of the lens 31 located in the center among the 13 lenses 31 arranged in a line on the lower side in the multi-lens 30 is schematically shown.
 本実施形態の赤外線検出装置100では、赤外線検出装置100の下方からマルチレンズ30を通過しかつ赤外線検出素子2に直接入射しない赤外線の一部が、第1ミラー部4で反射され、更に第2ミラー部5で反射されて赤外線検出素子2へ入射する。より詳細には、赤外線検出装置100では、マルチレンズ30において上側で一列に並んでいる15個のレンズ31のうち少なくとも中央のレンズ31を通過して第1ミラー部4に入射した赤外線が、第1ミラー部4で反射され更に第2ミラー部5で反射されて赤外線検出素子2へ入射する。ここで、赤外線検出装置100では、第1ミラー部4が赤外線検出素子2の上方に配置され、かつ、第2ミラー部5が赤外線検出素子2の下方に配置されているので、第1ミラー部4及び第2ミラー部5は、上述の複数の赤外線受光経路に重ならない。よって、赤外線検出装置100は、第1ミラー部4及び第2ミラー部5を備えていない場合に比べて、感度の低下を抑制しつつ、検知エリアを下方へ、より広げることが可能となる。 In the infrared detection device 100 of the present embodiment, a part of infrared rays that pass through the multi-lens 30 and do not directly enter the infrared detection element 2 from below the infrared detection device 100 are reflected by the first mirror unit 4 and further second. The light is reflected by the mirror unit 5 and enters the infrared detection element 2. More specifically, in the infrared detection device 100, infrared rays that have entered the first mirror unit 4 through at least the central lens 31 among the 15 lenses 31 aligned in a row on the upper side in the multi-lens 30 are The light is reflected by the first mirror part 4 and further reflected by the second mirror part 5 and enters the infrared detection element 2. Here, in the infrared detection apparatus 100, the first mirror unit 4 is disposed above the infrared detection element 2, and the second mirror unit 5 is disposed below the infrared detection element 2, so that the first mirror unit 4 and the 2nd mirror part 5 do not overlap with the above-mentioned several infrared rays light reception path | route. Therefore, the infrared detection apparatus 100 can further expand the detection area downward while suppressing a decrease in sensitivity as compared with the case where the first mirror unit 4 and the second mirror unit 5 are not provided.
 赤外線検出装置100では、第1ミラー部4が、赤外線検出素子2とマルチレンズ30との並んでいる方向に沿って並んでいる複数(例えば、2つ)の第1ミラー面40を含んでいるのが好ましい。また、赤外線検出装置100では、第2ミラー部5が、赤外線検出素子2とマルチレンズ30との並んでいる方向に沿って並んでいる複数(例えば、2つ)の第2ミラー面50を含んでいるのが好ましい。そして、赤外線検出装置100では、複数の第1ミラー面40と複数の第2ミラー面50との組み合わせにおいて、上下方向に並んでいる第1ミラー面40と第2ミラー面50とのペアが複数(例えば、2つ)あるのが好ましい。以下では、赤外線検出素子2とマルチレンズ30との並んでいる方向に沿って並んでいる2つの第1ミラー面40のうちマルチレンズ30に近い第1ミラー面40を第1ミラー面41と称し、マルチレンズ30から遠い第1ミラー面40を第1ミラー面42と称することもある。また、赤外線検出素子2とマルチレンズ30との並んでいる方向に沿って並んでいる2つの第2ミラー面50のうちマルチレンズ30に近い第2ミラー面50を第2ミラー面51と称し、マルチレンズ30から遠い第2ミラー面50を第2ミラー面52と称することもある。赤外線検出装置100では、第1ミラー面41と第2ミラー面51とのペアと、第1ミラー面42と第2ミラー面52のペアと、がある。赤外線検出装置100では、第1ミラー面40と第2ミラー面50とのペアごとに、互いに異なる光軸(例えば、図1中に一点鎖線で模式的に示した光軸OA3及び二点鎖線で模式的に示した光軸OA4)が規定される。これにより、赤外線検出装置100では、赤外線検出素子2に対して、光軸OA3及びOA4それぞれに沿って赤外線が入射可能となっている。よって、赤外線検出装置100では、直近直下に座っている人を検知することが可能となる。 In the infrared detection device 100, the first mirror unit 4 includes a plurality of (for example, two) first mirror surfaces 40 arranged along the direction in which the infrared detection element 2 and the multi-lens 30 are arranged. Is preferred. In the infrared detection device 100, the second mirror unit 5 includes a plurality of (for example, two) second mirror surfaces 50 arranged along the direction in which the infrared detection element 2 and the multi-lens 30 are arranged. It is preferable. In the infrared detection device 100, in the combination of the plurality of first mirror surfaces 40 and the plurality of second mirror surfaces 50, there are a plurality of pairs of the first mirror surface 40 and the second mirror surface 50 arranged in the vertical direction. There are preferably (for example, two). Hereinafter, the first mirror surface 40 close to the multi-lens 30 out of the two first mirror surfaces 40 aligned along the direction in which the infrared detection element 2 and the multi-lens 30 are aligned is referred to as a first mirror surface 41. The first mirror surface 40 far from the multi lens 30 may be referred to as a first mirror surface 42. Moreover, the 2nd mirror surface 50 close | similar to the multi lens 30 is called the 2nd mirror surface 51 among the two 2nd mirror surfaces 50 located in a line with the direction where the infrared rays detection element 2 and the multi lens 30 are located in a line, The second mirror surface 50 far from the multi-lens 30 may be referred to as a second mirror surface 52. In the infrared detection device 100, there are a pair of the first mirror surface 41 and the second mirror surface 51 and a pair of the first mirror surface 42 and the second mirror surface 52. In the infrared detecting device 100, for each pair of the first mirror surface 40 and the second mirror surface 50, different optical axes (for example, the optical axis OA3 and the two-dot chain line schematically shown by the one-dot chain line in FIG. 1). An optical axis OA4) schematically shown is defined. Thereby, in the infrared detection apparatus 100, infrared rays can be incident on the infrared detection element 2 along the optical axes OA3 and OA4. Therefore, the infrared detection apparatus 100 can detect a person sitting immediately below.
 光軸OA3は、マルチレンズ30における上側の列の中央に位置するレンズ31と第1ミラー面41と第2ミラー面51とで規定される光軸である。光軸OA4は、マルチレンズ30における上側の列の中央に位置するレンズ31と第1ミラー面42と第2ミラー面52とで規定される光軸である。 The optical axis OA3 is an optical axis defined by the lens 31, the first mirror surface 41, and the second mirror surface 51 located at the center of the upper row in the multi-lens 30. The optical axis OA4 is an optical axis defined by the lens 31, the first mirror surface 42, and the second mirror surface 52 located in the center of the upper row in the multi-lens 30.
 光軸OA3と赤外線検出素子2の受光面20の中心200に立てた法線とのなす角度と、光軸OA4と赤外線検出素子2の受光面20の中心200に立てた法線とのなす角度と、がマルチレンズ30の第1面301側において互いに異なる。 The angle formed between the optical axis OA3 and the normal line set at the center 200 of the light receiving surface 20 of the infrared detection element 2, and the angle formed between the optical axis OA4 and the normal line set at the center 200 of the light receiving surface 20 of the infrared detection element 2. Are different from each other on the first surface 301 side of the multi-lens 30.
 上述の光軸OA1と法線とのなす角度は、例えば、6°である。また、光軸OA2と法線とのなす角度は、例えば、21°である。光軸OA3と法線とのなす角度は、例えば、60°である。光軸OA4と法線とのなす角度は、例えば、45°である。 The angle formed by the optical axis OA1 and the normal line is 6 °, for example. The angle formed between the optical axis OA2 and the normal line is 21 °, for example. The angle formed by the optical axis OA3 and the normal is, for example, 60 °. The angle formed by the optical axis OA4 and the normal line is, for example, 45 °.
 赤外線検出装置100では、第1ミラー面40と第2ミラー面50とのペアごとに規定される光軸OA3及びOA4がマルチレンズ30の第1面301側において略平行となるように複数の第1ミラー面40(第1ミラー面41、42)及び複数の第2ミラー面50(第2ミラー面51、52)が設計されていてもよい。これにより、赤外線検出装置100では、第1ミラー部4で反射され更に第2ミラー部5で反射されて赤外線検出素子2に入射する赤外線の量を増加させる(検出部24での赤外線受光量を多くする)ことが可能となり、感度の向上を図ることが可能となる。「略平行」とは、完全に平行が好ましいが、これに限らず、互いのなす角度が2~3°程度であってもよい。 In the infrared detecting device 100, a plurality of first optical surfaces OA3 and OA4 defined for each pair of the first mirror surface 40 and the second mirror surface 50 are substantially parallel on the first surface 301 side of the multi-lens 30. One mirror surface 40 (first mirror surfaces 41 and 42) and a plurality of second mirror surfaces 50 (second mirror surfaces 51 and 52) may be designed. Thereby, in the infrared detection device 100, the amount of infrared rays reflected by the first mirror unit 4 and further reflected by the second mirror unit 5 and incident on the infrared detection element 2 is increased (the amount of infrared light received by the detection unit 24 is increased). The sensitivity can be improved. The term “substantially parallel” is preferably completely parallel, but is not limited to this, and the angle between the two may be about 2 to 3 °.
 第1ミラー部4及び第2ミラー部5の大きさは、第1ミラー部4及び第2ミラー部5で反射されて赤外線検出素子2に入射する赤外線束を赤外線の進む方向と反対の方向に延長したときに形成される3次元領域がマルチレンズ30において上側で一列に並んでいる複数(15個)のレンズ31のうち中央のレンズ31のみを通るように設定されているのが好ましい。これにより、赤外線検出装置100では、不要な迷光の発生を抑制することが可能となり、感度の低下を抑制することが可能となる。「迷光」とは、第1ミラー部4及び第2ミラー部5での反射によって生じる、結像に望ましくない赤外線を意味する。 The size of the first mirror unit 4 and the second mirror unit 5 is such that the infrared ray bundle reflected by the first mirror unit 4 and the second mirror unit 5 and incident on the infrared detection element 2 is opposite to the direction in which the infrared rays travel. It is preferable that the three-dimensional region formed when extended is set so as to pass only the central lens 31 among a plurality (15) of lenses 31 arranged in a line on the upper side in the multi-lens 30. Thereby, in the infrared detection apparatus 100, generation | occurrence | production of an unnecessary stray light can be suppressed and it becomes possible to suppress the fall of a sensitivity. “Stray light” means infrared rays that are undesirable for image formation and are generated by reflection at the first mirror unit 4 and the second mirror unit 5.
 第1ミラー面40は、凹曲面であるのが好ましい。また、第2ミラー面50は、凹曲面であるのが好ましい。凹曲面は、非球面であるのが好ましい。これにより、赤外線検出装置100では、マルチレンズ30と第1ミラー部4と第2ミラー部5とを含む反射光学系によって赤外線検出素子2に結像される像の収差を小さくすることが可能となり、感度の向上を図ることが可能となる。 The first mirror surface 40 is preferably a concave curved surface. The second mirror surface 50 is preferably a concave curved surface. The concave curved surface is preferably an aspherical surface. Thereby, in the infrared detection apparatus 100, it is possible to reduce the aberration of the image formed on the infrared detection element 2 by the reflection optical system including the multi lens 30, the first mirror unit 4, and the second mirror unit 5. It becomes possible to improve the sensitivity.
 赤外線検出装置100は、第3ミラー部8を更に備えるのが好ましい。第3ミラー部8は、赤外線検出素子2とマルチレンズ30との間において赤外線検出素子2の上方に配置される。第3ミラー部8は、赤外線検出素子2の側方からマルチレンズ30を通過しかつ赤外線検出素子2に直接入射しない赤外線の一部を、赤外線検出素子2へ向けて反射する。これにより、赤外線検出装置100では、マルチレンズ30を通過して赤外線検出素子2に直接入射する赤外線の経路を遮らずに、検知エリアの水平視野角をより広げることが可能となる。よって、赤外線検出装置100では、感度の低下を抑制しつつ検知エリアを広げることが可能となる。 It is preferable that the infrared detection device 100 further includes a third mirror unit 8. The third mirror unit 8 is disposed above the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30. The third mirror unit 8 reflects a part of infrared rays that pass through the multi-lens 30 and do not directly enter the infrared detection element 2 from the side of the infrared detection element 2 toward the infrared detection element 2. Thereby, in the infrared detection apparatus 100, it is possible to further widen the horizontal viewing angle of the detection area without blocking the path of infrared rays that pass through the multi lens 30 and directly enter the infrared detection element 2. Therefore, in the infrared detection device 100, it is possible to widen the detection area while suppressing a decrease in sensitivity.
 第3ミラー部8は、上突片12の下面から下方に突出する五角形状の垂下片14に形成されている。赤外線検出装置100では、第3ミラー部8は、垂下片14における下側で互いに隣り合う2つの面に形成されている。要するに、光学部材10は、2つの第3ミラー部8を備えている。赤外線検出装置100では、光学部材10が第3ミラー部8を備えていることにより、第3ミラー部8と赤外線検出素子2との相対的な位置精度を向上させることが可能となる。ここで、第3ミラー部8は、赤外線検出素子2の上方に配置される。より詳細には、第3ミラー部8は、赤外線検出素子2とマルチレンズ30との間において、赤外線検出素子2の受光面20の斜め上方に配置される。第3ミラー部8は、赤外線検出素子2の受光面20に向かうように傾斜している。これにより、赤外線検出装置100では、図11A及び11Bに示すように、マルチレンズ30を通過して第3ミラー部8に入射した赤外線が赤外線検出素子2の受光面20に入射しやすくなり、迷光の発生を抑制することが可能となる。第3ミラー部8は、平面であるが、これに限らず、曲面でもよい。図11A及び11Bでは、上側の15個のレンズ31のうち端に位置するレンズ31と第3ミラー部8とで規定される光軸を、第3ミラー部8ごとに一点鎖線で模式的に示してある。 The third mirror portion 8 is formed on a pentagonal hanging piece 14 that protrudes downward from the lower surface of the upper protruding piece 12. In the infrared detecting device 100, the third mirror unit 8 is formed on two surfaces adjacent to each other on the lower side of the hanging piece 14. In short, the optical member 10 includes two third mirror portions 8. In the infrared detection device 100, since the optical member 10 includes the third mirror unit 8, it is possible to improve the relative positional accuracy between the third mirror unit 8 and the infrared detection element 2. Here, the third mirror unit 8 is disposed above the infrared detection element 2. More specifically, the third mirror unit 8 is disposed obliquely above the light receiving surface 20 of the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30. The third mirror unit 8 is inclined so as to face the light receiving surface 20 of the infrared detection element 2. As a result, in the infrared detecting device 100, as shown in FIGS. 11A and 11B, infrared rays that have passed through the multi-lens 30 and entered the third mirror unit 8 are likely to enter the light receiving surface 20 of the infrared detecting element 2, and stray light. Can be suppressed. The third mirror unit 8 is a flat surface, but is not limited thereto, and may be a curved surface. In FIGS. 11A and 11B, the optical axis defined by the lens 31 located at the end of the upper fifteen lenses 31 and the third mirror unit 8 is schematically shown by a one-dot chain line for each third mirror unit 8. It is.
 赤外線検出装置100は、第4ミラー部9(図2、3A及び4参照)を更に備えるのが好ましい。第4ミラー部9は、赤外線検出素子2とマルチレンズ30との間において赤外線検出素子2の上方に配置される。第4ミラー部9は、マルチレンズ30を通過した赤外線を赤外線検出素子2へ向けて反射する。これにより、赤外線検出装置100は、感度の低下を抑制しつつ赤外線検出素子2に赤外線を入射させるための光軸を増やすことが可能となる。赤外線検出装置100では、赤外線検出装置100の下方からマルチレンズ30を通過しかつ赤外線検出素子2に直接入射しない赤外線の一部が、第4ミラー部9で反射され赤外線検出素子2へ入射する。 It is preferable that the infrared detecting device 100 further includes a fourth mirror unit 9 (see FIGS. 2, 3A and 4). The fourth mirror unit 9 is disposed above the infrared detection element 2 between the infrared detection element 2 and the multi-lens 30. The fourth mirror unit 9 reflects the infrared light that has passed through the multi-lens 30 toward the infrared detection element 2. Thereby, the infrared detection apparatus 100 can increase the optical axis for making infrared rays enter the infrared detection element 2 while suppressing a decrease in sensitivity. In the infrared detection device 100, a part of the infrared light that passes through the multi-lens 30 and does not directly enter the infrared detection element 2 from below the infrared detection device 100 is reflected by the fourth mirror unit 9 and enters the infrared detection element 2.
 第4ミラー部9は、上突片12の下面で左右方向において第1ミラー部4の両側に形成されている。これにより、第4ミラー部9は、赤外線検出素子2とマルチレンズ30との間において、第1ミラー部4と干渉しないように、赤外線検出素子2の斜め上方に配置される。光学部材10は、2つの第4ミラー部9を備えている。赤外線検出装置100では、光学部材10が第4ミラー部9を備えていることにより、第4ミラー部9と赤外線検出素子2との相対的な位置精度を向上させることが可能となる。 The fourth mirror portion 9 is formed on both sides of the first mirror portion 4 in the left-right direction on the lower surface of the upper projecting piece 12. As a result, the fourth mirror unit 9 is disposed obliquely above the infrared detection element 2 so as not to interfere with the first mirror unit 4 between the infrared detection element 2 and the multi-lens 30. The optical member 10 includes two fourth mirror portions 9. In the infrared detection device 100, since the optical member 10 includes the fourth mirror unit 9, it is possible to improve the relative positional accuracy between the fourth mirror unit 9 and the infrared detection element 2.
 第4ミラー部9は、1つの第4ミラー面により構成される場合に限らず、例えば、赤外線検出素子2とマルチレンズ30との並んでいる方向に沿って並んでいる2つの第4ミラー面を含んでいてもよい。この場合、赤外線検出装置100では、2つの第4ミラー面それぞれとマルチレンズ30との組み合わせにより、外部からの赤外線を赤外線検出素子2へ入射させるための光軸が規定される。これにより、赤外線検出装置100は、感度の低下を抑制しつつ赤外線検出素子2に赤外線を入射させるための光軸をより増やすことが可能となる。赤外線検出装置100では、1つの第4ミラー面とマルチレンズ30において上側で一列に並んでいる複数の複数(15個)のレンズ31のうち所定数(例えば、4個)のレンズ31とで所定数(例えば、4個)の光軸が規定される。2つの第4ミラー面は、それぞれ凹曲面であるのが好ましい。第4ミラー部9は、赤外線検出素子2とマルチレンズ30との並んでいる方向に沿って2つの第4ミラー面の他に1以上の第4ミラー面を備えていてもよい。 The 4th mirror part 9 is not restricted to the case where it is constituted by one 4th mirror surface, for example, two 4th mirror surfaces arranged along with the direction where infrared detecting element 2 and multi lens 30 are located in a line. May be included. In this case, in the infrared detection device 100, the optical axis for making infrared rays from the outside incident on the infrared detection element 2 is defined by the combination of each of the two fourth mirror surfaces and the multi-lens 30. Thereby, the infrared detecting device 100 can further increase the optical axis for making the infrared ray incident on the infrared detecting element 2 while suppressing a decrease in sensitivity. In the infrared detecting device 100, a predetermined number (for example, four) of lenses 31 out of a plurality of (15) lenses 31 arranged in a line on the upper side of the fourth mirror surface and the multi-lens 30 is predetermined. A number (eg, four) of optical axes are defined. Each of the two fourth mirror surfaces is preferably a concave curved surface. The fourth mirror unit 9 may include one or more fourth mirror surfaces in addition to the two fourth mirror surfaces along the direction in which the infrared detection element 2 and the multi-lens 30 are arranged.
 赤外線検出装置100では、第1ミラー部4とレンズ31とにより規定される光軸(例えば、OA3、OA4)と水平面とのなす角度を、第4ミラー部9とレンズ31とにより規定される光軸と水平面とのなす角度よりも大きくできる。 In the infrared detecting device 100, the light defined by the fourth mirror unit 9 and the lens 31 is an angle formed by the optical axis (for example, OA3, OA4) defined by the first mirror unit 4 and the lens 31 and the horizontal plane. It can be made larger than the angle between the axis and the horizontal plane.
 赤外線検出装置100では、2つの第4ミラー面のうち一方の第4ミラー面とマルチレンズ30における上側のレンズ31とで規定される光軸と、他方の第4ミラー面とマルチレンズ30における下側のレンズ31とで規定される光軸とが略平行となるように2つの第4ミラー面が設計されていてもよい。これにより、赤外線検出装置100では、第4ミラー部9で反射されて赤外線検出素子2に入射する赤外線の量を増加させる(検出部24での赤外線受光量を多くする)ことが可能となり、感度の向上を図ることが可能となる。「略平行」とは、完全に平行が好ましいが、これに限らず、互いのなす角度が2~3°程度であってもよい。 In the infrared detecting device 100, the optical axis defined by one of the four fourth mirror surfaces and the upper lens 31 of the multi-lens 30, and the other fourth mirror surface and the lower of the multi-lens 30. The two fourth mirror surfaces may be designed so that the optical axis defined by the side lens 31 is substantially parallel. Thereby, in the infrared detection apparatus 100, it becomes possible to increase the amount of infrared rays reflected by the fourth mirror unit 9 and incident on the infrared detection element 2 (increase the amount of infrared light received by the detection unit 24). Can be improved. The term “substantially parallel” is preferably completely parallel, but is not limited to this, and the angle between the two may be about 2 to 3 °.
 上記の実施形態は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。 The above embodiment is only one of various embodiments of the present invention. The above-described embodiment can be variously changed according to the design or the like as long as the object of the present invention can be achieved.
 例えば、複数のレンズ31の各々は、フレネルレンズにより構成されていてもよい。 For example, each of the plurality of lenses 31 may be composed of a Fresnel lens.
 例えば、赤外線検出素子2は、電流検出モードで使用され出力信号として電流信号を出力する焦電素子に限らず、電圧検出モードで使用され出力信号として電圧信号を出力する焦電素子でもよい。この場合、図10に示した信号処理回路7の増幅回路71において、電流電圧変換回路は、不要である。 For example, the infrared detection element 2 is not limited to a pyroelectric element that is used in the current detection mode and outputs a current signal as an output signal, but may be a pyroelectric element that is used in the voltage detection mode and outputs a voltage signal as an output signal. In this case, in the amplifier circuit 71 of the signal processing circuit 7 shown in FIG.
 また、信号処理回路7は、上述の比較回路73と出力回路74との代わりに、アナログの電圧信号の電圧レベルが所定時間内に規定値を越える回数が所定の複数回以上であるか否かを判断し、複数回以上であると判断した場合に人体検知信号を出力する判断回路を備えてもよい。 In addition, instead of the comparison circuit 73 and the output circuit 74 described above, the signal processing circuit 7 determines whether or not the number of times that the voltage level of the analog voltage signal exceeds the specified value within a predetermined time is a predetermined multiple times or more. And a determination circuit that outputs a human body detection signal when it is determined that the number of times is more than once.
 また、赤外線検出素子2は、クワッドタイプの焦電素子に限らず、例えば、デュアルタイプの焦電素子でもよい。また、赤外線検出素子2は、焦電素子にかぎらず、例えば、サーモパイル、フォトダイオード等でもよい。 Further, the infrared detection element 2 is not limited to a quad-type pyroelectric element, but may be a dual-type pyroelectric element, for example. The infrared detection element 2 is not limited to the pyroelectric element, and may be a thermopile, a photodiode, or the like.
 赤外線検出装置100は、配線器具に適用する例に限らず、種々の機器に適用することができる。機器としては、例えば、テレビ、デジタルサイネージ(電子看板)、照明器具、空気清浄器、エアコンディショナ、コピー機、ファクシミリ(facsimile:FAX)、防犯機器等が挙げられる。機器は、屋内に配置される機器に限らず、屋外に配置される機器でもよい。 The infrared detecting device 100 is not limited to an example applied to a wiring device, and can be applied to various devices. Examples of the device include a television, a digital signage (electronic signboard), a lighting device, an air cleaner, an air conditioner, a copy machine, a facsimile (facsimile: FAX), and a security device. The device is not limited to a device arranged indoors but may be a device arranged outdoors.
 2 赤外線検出素子
 4 第1ミラー部
 5 第2ミラー部
 8 第3ミラー部
 9 第4ミラー部
 30 マルチレンズ
 31 レンズ
 40 第1ミラー面
 41 第1ミラー面
 42 第1ミラー面
 50 第2ミラー面
 51 第2ミラー面
 52 第2ミラー面
 100 赤外線検出装置
2 Infrared Detector 4 First Mirror Part 5 Second Mirror Part 8 Third Mirror Part 9 Fourth Mirror Part 30 Multi-lens 31 Lens 40 First Mirror Surface 41 First Mirror Surface 42 First Mirror Surface 50 Second Mirror Surface 51 Second mirror surface 52 Second mirror surface 100 Infrared detector

Claims (5)

  1.  赤外線検出素子と、
     各々が前記赤外線検出素子に赤外線を集光する複数のレンズを有するマルチレンズと、を備え、
     前記赤外線検出素子と前記マルチレンズとの間において前記赤外線検出素子の上方に配置され、前記マルチレンズを通過しかつ前記赤外線検出素子に直接入射しない赤外線の一部を反射する第1ミラー部と、
     前記赤外線検出素子と前記マルチレンズとの間において前記赤外線検出素子の下方に配置され、前記第1ミラー部で反射された赤外線を前記赤外線検出素子へ向けて反射する第2ミラー部と、を更に備える、
     ことを特徴とする赤外線検出装置。
    An infrared detection element;
    Each having a plurality of lenses that focus infrared rays on the infrared detection element,
    A first mirror that is disposed above the infrared detection element between the infrared detection element and the multi-lens and reflects a part of infrared that passes through the multi-lens and does not directly enter the infrared detection element;
    A second mirror part disposed below the infrared detection element between the infrared detection element and the multi-lens and reflecting the infrared ray reflected by the first mirror part toward the infrared detection element; Prepare
    An infrared detector characterized by that.
  2.  前記第1ミラー部が、前記赤外線検出素子と前記マルチレンズとの並んでいる方向に沿って並んでいる複数の第1ミラー面を含み、
     前記第2ミラー部が、前記赤外線検出素子と前記マルチレンズとの並んでいる方向に沿って並んでいる複数の第2ミラー面を含み、
     前記複数の第1ミラー面と前記複数の第2ミラー面との組み合わせにおいて、上下方向に並んでいる第1ミラー面と第2ミラー面とのペアが複数ある、
     ことを特徴とする請求項1記載の赤外線検出装置。
    The first mirror unit includes a plurality of first mirror surfaces arranged along the direction in which the infrared detection element and the multi-lens are arranged,
    The second mirror portion includes a plurality of second mirror surfaces arranged along a direction in which the infrared detection element and the multi-lens are arranged;
    In the combination of the plurality of first mirror surfaces and the plurality of second mirror surfaces, there are a plurality of pairs of first mirror surfaces and second mirror surfaces arranged in the vertical direction.
    The infrared detection device according to claim 1.
  3.  第3ミラー部を更に備え、
     前記第3ミラー部は、前記赤外線検出素子と前記マルチレンズとの間において前記赤外線検出素子の上方に配置され、前記赤外線検出素子の側方から前記マルチレンズを通過しかつ前記赤外線検出素子に直接入射しない赤外線の一部を前記赤外線検出素子へ向けて反射する
     ことを特徴とする請求項1又は請求項2記載の赤外線検出装置。
    A third mirror part;
    The third mirror portion is disposed above the infrared detection element between the infrared detection element and the multi-lens, passes through the multi-lens from a side of the infrared detection element, and directly to the infrared detection element. The infrared detection apparatus according to claim 1, wherein a part of the infrared rays that are not incident are reflected toward the infrared detection element.
  4.  第4ミラー部を更に備え、
     前記第4ミラー部は、前記赤外線検出素子と前記マルチレンズとの間において前記赤外線検出素子の上方に配置され、前記マルチレンズを通過して入射した赤外線を前記赤外線検出素子へ向けて反射する
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の赤外線検出装置。
    A fourth mirror part;
    The fourth mirror unit is disposed above the infrared detection element between the infrared detection element and the multi-lens, and reflects the infrared rays incident through the multi-lens toward the infrared detection element. The infrared detection device according to any one of claims 1 to 3, wherein
  5.  前記マルチレンズは、上方から見てC字状であり、前記赤外線検出素子を覆っている、
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の赤外線検出装置。
    The multi-lens is C-shaped when viewed from above, and covers the infrared detection element.
    The infrared detection apparatus according to any one of claims 1 to 4, wherein the infrared detection apparatus is characterized in that
PCT/JP2017/007267 2016-03-22 2017-02-27 Infrared detection device WO2017163760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780019514.3A CN108780005B (en) 2016-03-22 2017-02-27 Infrared detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-057400 2016-03-22
JP2016057400A JP6685012B2 (en) 2016-03-22 2016-03-22 Infrared detector

Publications (1)

Publication Number Publication Date
WO2017163760A1 true WO2017163760A1 (en) 2017-09-28

Family

ID=59901145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007267 WO2017163760A1 (en) 2016-03-22 2017-02-27 Infrared detection device

Country Status (4)

Country Link
JP (1) JP6685012B2 (en)
CN (1) CN108780005B (en)
TW (1) TWI632531B (en)
WO (1) WO2017163760A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253728B2 (en) * 2018-09-21 2023-04-07 パナソニックIpマネジメント株式会社 Human detection system and program

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136672A (en) * 1982-12-30 1984-08-06 アメリカン・デイストリクト・テレグラフ・カンパニ− Intrusion detection system by infrared ray
JPS61102525A (en) * 1984-10-25 1986-05-21 Matsushita Electric Works Ltd Emergency detecting device
US4920268A (en) * 1989-01-31 1990-04-24 Detection Systems, Inc. Passive infrared detection system with substantially uniform sensitivity over multiple detection zones
JPH02124522U (en) * 1989-03-24 1990-10-15
US5103346A (en) * 1989-10-23 1992-04-07 Everspring Industry Detector with 180 detecting range
JPH0713087U (en) * 1993-07-26 1995-03-03 松下電工株式会社 Passive heat ray detector
US5717203A (en) * 1994-11-29 1998-02-10 Yung; Simon K. C. Infrared motion detector with 180 ° detecting range
JP2000234955A (en) * 1999-02-15 2000-08-29 Matsushita Electric Works Ltd Infrared human body detector
JP2001337178A (en) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd Heat ray sensor
US20020158204A1 (en) * 2001-04-25 2002-10-31 Interquartz (Malaysia) Bhd. Representative Office Detector with wide detecting range and method of extending the detecting range
US20090102648A1 (en) * 2007-10-19 2009-04-23 Everspring Industry Co., Ltd. Motion detector
US20120228477A1 (en) * 2011-03-10 2012-09-13 Siemens Aktiengesellschaft Detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2012045B (en) * 1977-12-22 1982-07-21 Carbocraft Ltd Infrared surveillance systems
JP3386187B2 (en) * 1993-06-29 2003-03-17 オリンパス光学工業株式会社 Rigid endoscope device
JPH09305871A (en) * 1996-05-10 1997-11-28 Tdk Corp Infrared detector
JP4042707B2 (en) * 2004-02-13 2008-02-06 株式会社デンソー Infrared detector
FR2876792B1 (en) * 2004-10-14 2007-02-23 Atral Soc Par Actions Simplifi DEVICE FOR DETECTING AND / OR TRANSMITTING MIRROR RADIATION, ESPECIALLY INFRARED RADIATION
JP6308460B2 (en) * 2014-03-31 2018-04-11 パナソニックIpマネジメント株式会社 Infrared sensor
CN104181607A (en) * 2014-08-26 2014-12-03 杨顺利 Infrared reflector

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136672A (en) * 1982-12-30 1984-08-06 アメリカン・デイストリクト・テレグラフ・カンパニ− Intrusion detection system by infrared ray
JPS61102525A (en) * 1984-10-25 1986-05-21 Matsushita Electric Works Ltd Emergency detecting device
US4920268A (en) * 1989-01-31 1990-04-24 Detection Systems, Inc. Passive infrared detection system with substantially uniform sensitivity over multiple detection zones
JPH02124522U (en) * 1989-03-24 1990-10-15
US5103346A (en) * 1989-10-23 1992-04-07 Everspring Industry Detector with 180 detecting range
JPH0713087U (en) * 1993-07-26 1995-03-03 松下電工株式会社 Passive heat ray detector
US5717203A (en) * 1994-11-29 1998-02-10 Yung; Simon K. C. Infrared motion detector with 180 ° detecting range
JP2000234955A (en) * 1999-02-15 2000-08-29 Matsushita Electric Works Ltd Infrared human body detector
JP2001337178A (en) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd Heat ray sensor
US20020158204A1 (en) * 2001-04-25 2002-10-31 Interquartz (Malaysia) Bhd. Representative Office Detector with wide detecting range and method of extending the detecting range
US20090102648A1 (en) * 2007-10-19 2009-04-23 Everspring Industry Co., Ltd. Motion detector
US20120228477A1 (en) * 2011-03-10 2012-09-13 Siemens Aktiengesellschaft Detector

Also Published As

Publication number Publication date
JP6685012B2 (en) 2020-04-22
CN108780005B (en) 2021-07-06
JP2017173050A (en) 2017-09-28
TW201734968A (en) 2017-10-01
CN108780005A (en) 2018-11-09
TWI632531B (en) 2018-08-11

Similar Documents

Publication Publication Date Title
TWI480598B (en) Optical detection device and apparatus using the same
KR102004074B1 (en) Human body detection device
JP5584870B2 (en) Infrared imaging optical system
JPH023150B2 (en)
JP6308460B2 (en) Infrared sensor
KR102518601B1 (en) infrared detection device
WO2017163760A1 (en) Infrared detection device
JP6601761B2 (en) Infrared detector
US7170060B2 (en) Passive infrared sensor
JP6681594B2 (en) Infrared detector
JP2015232506A (en) Array mirror system and infrared ray detection device
JP2016191611A (en) Human body detector and program used therefor
JP5914894B2 (en) Optical member and device provided with the same
KR101903031B1 (en) Omnidirectional optical system that can simultaneously use visible range and LWIR range
JP6709984B2 (en) Infrared detector
JP6154633B2 (en) Infrared detector, display equipped with the same, and personal computer
WO2019039498A1 (en) Infrared detection device
KR101785506B1 (en) Ultra wide angle lens module

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769805

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769805

Country of ref document: EP

Kind code of ref document: A1