JPH0894438A - Infrared sensor - Google Patents

Infrared sensor

Info

Publication number
JPH0894438A
JPH0894438A JP25297394A JP25297394A JPH0894438A JP H0894438 A JPH0894438 A JP H0894438A JP 25297394 A JP25297394 A JP 25297394A JP 25297394 A JP25297394 A JP 25297394A JP H0894438 A JPH0894438 A JP H0894438A
Authority
JP
Japan
Prior art keywords
infrared
infrared sensor
dimensional
lens
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25297394A
Other languages
Japanese (ja)
Inventor
Hirohito Hayashi
浩仁 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP25297394A priority Critical patent/JPH0894438A/en
Publication of JPH0894438A publication Critical patent/JPH0894438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an infrared sensor whose detection performance of infrared rays is high and whose detection region of the infrared rays is wide. CONSTITUTION: The main constitution part of an infrared sensor 1 is provided with an infrared lens 3 and with an infrared detection part 4. The infrared lens 3 takes into infrared rays radiated from a heat source 8, and its forms the infrared image of the heat source 8 on a three-dimensional curved-surface image-formation face due to the astigmatism of the infrared lens 3. The three- dimensional light-receiving face of the infrared detection part 4 is formed by combining and arranging a plurality of sensor element substrates 6 along the three-dimensional curved-surface image-formation face. A plurality of infrared sensor elements 5 which detect and output infrared detection signals according to the irradiation amount of the infrared rays are arranged and installed in a two-dimensional array shape on the substrates 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火災報知器や防犯装置
等に使用される赤外線センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor used for fire alarms, crime prevention devices and the like.

【0002】[0002]

【従来の技術】図4には、火災報知器や防犯装置等のシ
ステムに組み込み使用される従来の赤外線センサ1の模
式構成例が示されている。赤外線センサ1は、赤外線レ
ンズ3と、赤外線検出部4とを有して構成されている。
2. Description of the Related Art FIG. 4 shows a schematic configuration example of a conventional infrared sensor 1 used by being incorporated in a system such as a fire alarm or a crime prevention device. The infrared sensor 1 includes an infrared lens 3 and an infrared detecting section 4.

【0003】赤外線レンズ3は、赤外線検出領域内の火
災や人間等の熱源8から放射される赤外線(熱)を取り
込んで、赤外線検出部4の受光面に熱源8の赤外線像を
照射結像するものである。
The infrared lens 3 takes in infrared rays (heat) radiated from a heat source 8 such as a fire or a person in the infrared detection area, and irradiates and forms an infrared image of the heat source 8 on the light receiving surface of the infrared detecting section 4. It is a thing.

【0004】赤外線検出部4の受光面は、前記照射され
た赤外線を検出する複数の赤外線センサ素子5が1次元
又は2次元のアレイ状に配設された平坦なセンサ素子基
板6で形成されている。前記赤外線センサ素子5は、赤
外線照射量に応じて自発分極を起こす焦電素子や、赤外
線照射量に応じて起電力を生じるサーモパイルや、赤外
線照射量に応じて熱抵抗が変化するボロメータ等で形成
され、照射された赤外線量に応じた赤外線検出信号を検
出出力する。
The light receiving surface of the infrared detecting section 4 is formed by a flat sensor element substrate 6 on which a plurality of infrared sensor elements 5 for detecting the applied infrared rays are arranged in a one-dimensional or two-dimensional array. There is. The infrared sensor element 5 is formed by a pyroelectric element that causes spontaneous polarization according to the infrared irradiation amount, a thermopile that generates an electromotive force according to the infrared irradiation amount, or a bolometer whose thermal resistance changes according to the infrared irradiation amount. Then, an infrared detection signal corresponding to the amount of infrared rays emitted is detected and output.

【0005】赤外線センサ1は、各赤外線センサ素子5
の赤外線検出信号に基づいて、赤外線検出部4の受光面
における熱源8の赤外線像を検出するものである。
The infrared sensor 1 includes each infrared sensor element 5
The infrared image of the heat source 8 on the light receiving surface of the infrared detecting section 4 is detected based on the infrared detection signal.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、赤外線
が、熱源8から放射され、赤外線レンズ3を介して赤外
線検出部4の受光面に照射される際に、以下のようにし
て、赤外線レンズ3による非点収差等が生じ、平坦なセ
ンサ素子基板6の上に熱源8の赤外線像を結ぶのではな
く、図4の点線で示されるような湾曲をした面(立体湾
曲結像面)上に像を結ぶ。
However, when infrared rays are radiated from the heat source 8 and irradiate the light-receiving surface of the infrared detection section 4 through the infrared lens 3, the infrared lens 3 is used as follows. Astigmatism or the like occurs, and the infrared image of the heat source 8 is not formed on the flat sensor element substrate 6, but an image is formed on a curved surface (solid curved image forming surface) as shown by a dotted line in FIG. Tie

【0007】例えば、図5の(a)に示すように、熱源
8から放射された赤外線が、赤外線レンズ3の光軸と角
度θを成す方向から赤外線レンズ3の点Cに入射したと
する。ここで、この赤外線の光路と、赤外線レンズ3の
光軸とを含む平面を平面mとし、赤外線の光路を含み、
かつ、平面mに垂直な平面を平面sとする。また、図5
の(b)に示すように、平面mで切り取られた赤外線レ
ンズ3の断面を切断面Mとし、平面sで切り取られた赤
外線レンズ3の断面を切断面Sとする。
For example, as shown in FIG. 5A, it is assumed that the infrared rays emitted from the heat source 8 enter the point C of the infrared lens 3 from a direction forming an angle θ with the optical axis of the infrared lens 3. Here, a plane including the infrared optical path and the optical axis of the infrared lens 3 is defined as a plane m, and the infrared optical path is included.
A plane perpendicular to the plane m is defined as a plane s. Also, FIG.
2B, the cross section of the infrared lens 3 cut along the plane m is taken as the cut surface M, and the cross section of the infrared lens 3 taken along the plane s is taken as the cut surface S.

【0008】赤外線レンズ3に入射した赤外線は、赤外
線レンズ3の屈折率に基づいて、点Cで光路が屈折され
る。しかし、図5の(b)に示すように、切断面Mの曲
率半径Rと切断面Sの曲率半径rは異なることから、各
切断面M,Sでの赤外線の屈折率が異なって非点収差が
生じる。この非点収差によって、図4に示すように、赤
外線の結像面は湾曲した立体湾曲面になる。この非点収
差が生じない場合であっても、前記屈折率の異なりによ
って結像面は湾曲面となる。
The infrared ray incident on the infrared lens 3 is refracted in its optical path at a point C based on the refractive index of the infrared lens 3. However, as shown in FIG. 5B, since the radius of curvature R of the cut surface M and the radius of curvature r of the cut surface S are different, the refractive indices of infrared rays at the cut surfaces M and S are different, and the astigmatism is different. Aberration occurs. Due to this astigmatism, the image plane of infrared rays becomes a curved solid curved surface as shown in FIG. Even if this astigmatism does not occur, the image plane becomes a curved surface due to the difference in the refractive index.

【0009】上記非点収差等により、実際には、赤外線
検出部4の平坦な受光面と、熱源8の赤外線像の湾曲し
た立体湾曲結像面とは合致しておらず、赤外線検出部4
の受光面(センサ素子基板6)には、受光面と立体湾曲
結像面のずれ量(距離)に応じて、ピントのずれた熱源
8の赤外線像が照射される。つまり、受光面の中央部分
と、受光面の周縁部分とには、ピントのずれ具合の異な
る熱源8の赤外線像が照射される。このことから、平坦
な受光面を全面に渡って均一にピントの合った赤外線像
が照射されるように、設置することは不可能であり、感
度の良い赤外線センサ素子5を設置しても、赤外線セン
サ1は、熱源8の赤外線像を精度良く検出できないとい
う問題がある。
Due to the above-mentioned astigmatism and the like, the flat light receiving surface of the infrared detecting portion 4 and the curved solid curved image forming surface of the infrared image of the heat source 8 do not actually coincide with each other, and the infrared detecting portion 4
The light receiving surface (sensor element substrate 6) is irradiated with an infrared image of the heat source 8 which is out of focus according to the amount of displacement (distance) between the light receiving surface and the three-dimensional curved image forming surface. That is, the central portion of the light receiving surface and the peripheral portion of the light receiving surface are irradiated with the infrared images of the heat source 8 having different focus shifts. For this reason, it is impossible to install so that a flat infrared receiving surface is uniformly illuminated with an infrared image in focus, and even if an infrared sensor element 5 with high sensitivity is installed, The infrared sensor 1 has a problem that the infrared image of the heat source 8 cannot be detected accurately.

【0010】また、図4に示されるように、赤外線検出
領域を広く取る程、受光面の周縁部分と立体湾曲結像面
間の距離、つまり、赤外線像のピントのずれ量が大きく
なり、赤外線センサ1の検出性能が悪化するという問題
がある。したがって、赤外線センサ1の検出性能を悪化
させないために、赤外線センサ1の赤外線検出領域は狭
く限定されてしまうという問題がある。
Further, as shown in FIG. 4, the wider the infrared detection area is, the greater the distance between the peripheral edge of the light receiving surface and the three-dimensional curved image forming surface, that is, the amount of focus shift of the infrared image becomes. There is a problem that the detection performance of the sensor 1 deteriorates. Therefore, there is a problem that the infrared detection area of the infrared sensor 1 is limited to be narrow in order not to deteriorate the detection performance of the infrared sensor 1.

【0011】そこで、赤外線センサ1の赤外線検出領域
を広くする手段として、例えば、赤外線センサ素子5を
1次元アレイ状に配設した赤外線検出用部材を回転させ
て、赤外線を検出する赤外線センサ1がある。しかし、
この赤外線センサ1は、モジュールの可動部が多いため
に、構造が複雑であり、価格も高価格となり、さらに、
可動部が円滑に動作しない等のトラブルを生じ易く、信
頼性が低いという問題がある。
Therefore, as a means for widening the infrared detection area of the infrared sensor 1, for example, an infrared sensor 1 for detecting infrared rays by rotating an infrared detection member in which the infrared sensor elements 5 are arranged in a one-dimensional array is rotated. is there. But,
This infrared sensor 1 has a complicated structure due to the large number of movable parts of the module, and the price becomes high.
There is a problem that the movable portion is apt to cause troubles such as not operating smoothly and the reliability is low.

【0012】本発明は、上記課題を解決するためになさ
れたものであり、その目的は、赤外線レンズの非点収差
等によって湾曲した面に結像する赤外線を精度良く検出
でき、また、赤外線検出領域を広く取っても検出性能の
悪化しない赤外線センサを提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to detect infrared rays imaged on a curved surface due to astigmatism of an infrared lens with high accuracy and to detect infrared rays. An object is to provide an infrared sensor whose detection performance does not deteriorate even if a large area is taken.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次のように構成されている。すなわち、第
1の発明の赤外線センサは、熱源から放射される赤外線
を結像する赤外線レンズと、結像された赤外線を検出す
る複数の赤外線センサ素子とを有する赤外線センサにお
いて、前記複数の赤外線センサ素子は赤外線レンズの立
体湾曲結像面に沿った面位置に配置されていることを特
徴として構成されている。
In order to achieve the above object, the present invention is constructed as follows. That is, the infrared sensor of the first invention is an infrared sensor having an infrared lens that forms an image of infrared rays emitted from a heat source, and a plurality of infrared sensor elements that detect the formed infrared rays. The element is characterized in that it is arranged at a surface position along the three-dimensional curved image forming surface of the infrared lens.

【0014】また、第2の発明の赤外線センサは、第1
の発明の赤外線センサを構成する赤外線センサ素子が基
板上に、単体で、又はアレイ状に複数配列して形成さ
れ、この赤外線センサ素子が形成された複数の基板を赤
外線レンズの立体湾曲結像面に沿って組み合わせ配置す
ることで、複数の赤外線センサ素子を赤外線レンズの立
体湾曲結像面に沿って配置したことを特徴として構成さ
れている。
The infrared sensor of the second invention is the first sensor.
Infrared sensor elements constituting the infrared sensor of the invention of claim 1 are formed on a substrate individually or in a plurality of arrayed arrays, and the plurality of substrates on which the infrared sensor elements are formed are three-dimensional curved imaging planes of infrared lenses. A plurality of infrared sensor elements are arranged along the three-dimensionally curved image forming surface of the infrared lens by being combined and arranged along.

【0015】[0015]

【作用】上記構成の本発明において、赤外線センサの検
出領域内に火災や人間等の熱源が存在すると、赤外線レ
ンズは熱源から放射された赤外線を取り込み、この取り
込まれた赤外線は、赤外線レンズの非点収差等によっ
て、立体湾曲結像面、つまり、赤外線センサ素子の配置
位置で結像する。そして、各赤外線センサ素子は赤外線
照射量に応じた出力信号を検出し、赤外線センサは、各
赤外線センサ素子の出力信号に基づいて、熱源の赤外線
像を精度良く検出する。
In the present invention having the above structure, when a heat source such as a fire or a person is present within the detection area of the infrared sensor, the infrared lens takes in the infrared rays emitted from the heat source, and the taken infrared rays are not reflected by the infrared lens. Due to point aberration or the like, an image is formed on the three-dimensional curved image forming surface, that is, the position where the infrared sensor element is arranged. Then, each infrared sensor element detects an output signal corresponding to the amount of infrared irradiation, and the infrared sensor accurately detects the infrared image of the heat source based on the output signal of each infrared sensor element.

【0016】[0016]

【実施例】本発明の実施例を図面に基づいて説明する。
なお、本実施例の説明において、従来例と同一名称部分
には同一符号を付し、その詳細な説明は省略する。
Embodiments of the present invention will be described with reference to the drawings.
In the description of the present embodiment, the same reference numerals will be given to the same names as those in the conventional example, and detailed description thereof will be omitted.

【0017】図1には、本実施例の赤外線センサ1が示
されている。本実施例が従来例と異なる特徴的なこと
は、赤外線検出部4の受光面を平坦な平面上に形成する
のではなく、複数のセンサ素子基板6を赤外線レンズ3
の非点収差等によって生じる立体湾曲結像面に沿って組
み合わせ配置して赤外線検出部4の立体受光面を形成す
ることである。
FIG. 1 shows an infrared sensor 1 of this embodiment. This embodiment is different from the conventional example in that the light receiving surface of the infrared detecting section 4 is not formed on a flat plane, but a plurality of sensor element substrates 6 are formed on the infrared lens 3.
The three-dimensional curved surface formed by astigmatism and the like are combined and arranged to form the three-dimensional light receiving surface of the infrared detection unit 4.

【0018】上記センサ素子基板6は、図2に示すよう
に、赤外線レンズ3の立体湾曲結像面に沿って組み込み
可能な形状に形成されて、基板上に赤外線センサ素子5
が2次元アレイ状に配設される。そして、各センサ素子
基板6は立体湾曲結像面に沿って組み合わせ配置され、
立体湾曲結像面に沿った赤外線検出部4の立体受光面を
形成する。
As shown in FIG. 2, the sensor element substrate 6 is formed in a shape that can be incorporated along the three-dimensional curved image forming surface of the infrared lens 3, and the infrared sensor element 5 is formed on the substrate.
Are arranged in a two-dimensional array. Then, the respective sensor element substrates 6 are arranged in combination along the three-dimensional curved image forming plane,
The three-dimensional light receiving surface of the infrared detection unit 4 is formed along the three-dimensional curved image forming surface.

【0019】本実施例によれば、赤外線検出部4の立体
受光面が、複数のセンサ素子基板6を赤外線レンズ3の
立体湾曲結像に沿って組み合わせ配置して形成されるの
で、赤外線検出部4の立体受光面と赤外線レンズ3の立
体湾曲結像面とがほぼ一致して、赤外線検出部4の立体
受光面には、熱源8の赤外線像が、従来例のように受光
面の周縁部分で大きなピントのずれを生じてぼやけるこ
ともなく、立体受光面の全面に渡って鮮明に映し出さ
れ、赤外線センサ1は精度良く熱源8の赤外線像を検出
することができ、赤外線センサ1の検出性能を高めるこ
とができる。
According to this embodiment, since the three-dimensional light receiving surface of the infrared detecting section 4 is formed by combining a plurality of sensor element substrates 6 along the three-dimensional curved image formation of the infrared lens 3, the infrared detecting section is formed. The stereoscopic light receiving surface of 4 and the stereoscopic curved image forming surface of the infrared lens 3 substantially coincide with each other, and the infrared image of the heat source 8 is displayed on the stereoscopic light receiving surface of the infrared detecting section 4 as in the conventional example. The image is clearly projected over the entire surface of the three-dimensional light receiving surface without causing a large focus shift and the infrared sensor 1 can detect the infrared image of the heat source 8 with high accuracy, and the detection performance of the infrared sensor 1 is high. Can be increased.

【0020】また、上記の如く、赤外線検出部4の立体
受光面を、立体湾曲結像面に沿うように形成するので、
従来例の平坦な受光面では、赤外線センサ1の検出性能
を低下させないために、赤外線検出領域が狭く限定され
たが、本実施例の立体受光面では、立体受光面の全面で
鮮明な赤外線像が映し出されるため、赤外線検出領域を
拡張しても、赤外線センサ1の検出性能が低下すること
はない。このことから、赤外線検出領域の広い赤外線セ
ンサ1を提供することが可能となる。
Further, as described above, since the three-dimensional light receiving surface of the infrared detecting section 4 is formed along the three-dimensional curved image forming surface,
With the flat light receiving surface of the conventional example, the infrared detection region is narrowly limited in order not to deteriorate the detection performance of the infrared sensor 1, but with the three-dimensional light receiving surface of this embodiment, a clear infrared image is formed on the entire surface of the three-dimensional light receiving surface. Therefore, even if the infrared detection area is expanded, the detection performance of the infrared sensor 1 does not deteriorate. From this, it becomes possible to provide the infrared sensor 1 having a wide infrared detection region.

【0021】さらに、上記の如く、本実施例のようにし
て、赤外線検出部4の立体受光面を形成することによ
り、従来例のように可動部の多い構造にしなくても上記
のように優れた効果を示し、可動部を設けない分、赤外
線センサ1を簡易、かつコンパクトな構造にすることが
でき、小型で高性能、かつ低価格な赤外線センサ1を提
供できる。
Further, as described above, by forming the three-dimensional light receiving surface of the infrared detecting section 4 as in the present embodiment, it is excellent as described above even without the structure having a large number of movable parts as in the conventional example. In addition, the infrared sensor 1 can have a simple and compact structure because a movable part is not provided, and the infrared sensor 1 having a small size, high performance, and low price can be provided.

【0022】さらにまた、上記の如く、本実施例の赤外
線センサ1は、トラブルの生じ易い可動部を有しておら
ず、信頼性の高い赤外線センサ1を提供することができ
る。
Furthermore, as described above, the infrared sensor 1 of the present embodiment does not have a movable portion which is likely to cause troubles, and thus the infrared sensor 1 having high reliability can be provided.

【0023】なお、本発明は上記実施例に限定されるも
のではなく、様々な態様を採り得る。例えば、上記実施
例では、赤外線検出部4の立体受光面は、赤外線センサ
素子5を2次元アレイ状に配設した複数のセンサ素子基
板6を用いて形成されたが、1個の赤外線センサ素子5
を設置した複数の微小なセンサ素子基板6を、赤外線レ
ンズ3の立体湾曲結像面に沿って組み合わせ配置して、
赤外線検出部4の立体受光面を形成してもよい。このよ
うに、センサ素子基板6を微小にし(なお、センサ素子
基板6の大きさや形状に応じて、基板6上に赤外線セン
サ素子5が1次元又は2次元のアレイ状に、あるいは1
個設置されて)、多数のセンサ素子基板6(赤外線セン
サ素子5)を赤外線レンズ3の立体湾曲結像面に沿って
組み合わせ配置すれば、図3に示されるように、より立
体湾曲結像面と合致する赤外線検出部4の立体受光面を
形成できる。
The present invention is not limited to the above-mentioned embodiment, but various modes can be adopted. For example, in the above embodiment, the three-dimensional light receiving surface of the infrared detecting section 4 is formed by using the plurality of sensor element substrates 6 in which the infrared sensor elements 5 are arranged in a two-dimensional array, but one infrared sensor element is used. 5
A plurality of minute sensor element substrates 6 provided with are combined and arranged along the three-dimensional curved image forming surface of the infrared lens 3,
You may form the three-dimensional light-receiving surface of the infrared detection part 4. As described above, the sensor element substrate 6 is made minute (in accordance with the size and shape of the sensor element substrate 6, the infrared sensor elements 5 are arranged on the substrate 6 in a one-dimensional or two-dimensional array, or
If a large number of sensor element substrates 6 (infrared sensor elements 5) are arranged in combination along the three-dimensional curved image forming surface of the infrared lens 3, as shown in FIG. It is possible to form a three-dimensional light receiving surface of the infrared detection unit 4 that matches with.

【0024】また、フィルム状(フレキシブル基板を含
む)のセンサ素子基板6と、ポリフッ化ビニリデン(P
VDF)等で形成されたフィルム状の赤外線センサ素子
5を用いて上記同様に、立体湾曲結像面に沿って組み合
わせ配置すれば、立体湾曲結像面と非常によく合う赤外
線検出部4の立体受光面を形成できる。
In addition, a sensor element substrate 6 in the form of a film (including a flexible substrate) and polyvinylidene fluoride (P
If a film-like infrared sensor element 5 formed of VDF) or the like is used and arranged in combination along the three-dimensional curved image forming surface in the same manner as described above, the three-dimensional shape of the infrared detecting section 4 that fits the three-dimensional curved image forming surface very well. A light receiving surface can be formed.

【0025】また、立体湾曲結像面に沿った湾曲面ある
いは角面となるようにセンサ素子基板6自体を成型し、
この湾曲あるいは角面に成型したセンサ素子基板6上
に、赤外線センサ素子5をアレイ配置して、赤外線検出
部4の立体受光面を形成してもよい。このようにすれ
ば、図2に示すように複数のセンサ素子基板6を配列配
置する手間隙を省くことができる。
Further, the sensor element substrate 6 itself is molded so as to have a curved surface or a square surface along the three-dimensional curved image forming surface,
The infrared sensor elements 5 may be arranged in an array on the sensor element substrate 6 molded into the curved or square surface to form the three-dimensional light receiving surface of the infrared detecting section 4. By doing so, it is possible to omit a hand gap for arranging a plurality of sensor element substrates 6 as shown in FIG.

【0026】[0026]

【発明の効果】本発明によれば、赤外線センサ素子は、
従来例のように平坦な平面上に配置されるのではなく、
赤外線レンズの非点収差等によって生じる立体湾曲結像
面に沿った面位置に配置されるので、赤外線レンズの非
点収差等によって、熱源から放射される赤外線が立体湾
曲結像面に結像しても、それはつまり、赤外線センサ素
子の配置位置で結像することであるから、赤外線センサ
は、赤外線センサ素子の検出出力に基づいて、熱源の赤
外線像を精度良く検出することができ、赤外線センサの
赤外線検出性能を高めることができる。
According to the present invention, the infrared sensor element is
Instead of being placed on a flat plane like the conventional example,
The infrared rays emitted from the heat source are imaged on the three-dimensional curved image forming surface due to the astigmatism of the infrared lens, etc. However, that is because the image is formed at the arrangement position of the infrared sensor element, so the infrared sensor can accurately detect the infrared image of the heat source based on the detection output of the infrared sensor element. The infrared detection performance of can be improved.

【0027】また、上記の如く、赤外線センサ素子は、
赤外線レンズの立体湾曲結像面に沿って配置されるの
で、従来例では、適宜な赤外線検出性能を示すために、
赤外線を検出する赤外線検出領域が狭く限定されていた
が、本発明では、赤外線検出領域を狭く限定しなくて
も、上記のような優れた赤外線検出性能を示すことがで
きる。このことから、赤外線検出領域の広い赤外線セン
サを提供することができる。
Further, as described above, the infrared sensor element is
Since it is arranged along the three-dimensional curved image forming plane of the infrared lens, in the conventional example, in order to show appropriate infrared detection performance,
Although the infrared detection area for detecting infrared rays is narrowly limited, the present invention can exhibit the above-described excellent infrared detection performance without narrowing the infrared detection area. Therefore, it is possible to provide an infrared sensor having a wide infrared detection area.

【0028】さらに、上記の如く、赤外線センサ素子を
立体湾曲結像面位置に配置することにより、従来例のよ
うな可動部を多く設けた構造でなくても、上記のような
優れた効果を示し、赤外線センサは、前記可動部を設け
ない分、簡易、かつコンパクトな構造となる。上記よ
り、小型で高性能、かつ低価格な赤外線センサを提供で
きる。
Further, as described above, by arranging the infrared sensor element at the position of the three-dimensionally curved image forming surface, the above-mentioned excellent effects can be obtained even if the structure is not provided with many movable parts as in the conventional example. The infrared sensor has a simple and compact structure because the infrared sensor is not provided. From the above, it is possible to provide a small-sized, high-performance, low-cost infrared sensor.

【0029】さらにまた、上記の如く、赤外線センサ
は、トラブルの生じ易い可動部を有しておらず、検出動
作における信頼性の高い赤外線センサを提供することが
できる。
Furthermore, as described above, the infrared sensor does not have a moving part which is likely to cause troubles, and thus an infrared sensor having high reliability in the detection operation can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の赤外線センサを示す説明図である。FIG. 1 is an explanatory diagram showing an infrared sensor of the present embodiment.

【図2】図1の赤外線検出部の立体受光面の一例を示す
説明図である。
FIG. 2 is an explanatory diagram showing an example of a three-dimensional light receiving surface of the infrared detection unit in FIG.

【図3】本発明の赤外線センサの他の実施例の構成を示
す説明図である。
FIG. 3 is an explanatory diagram showing the configuration of another embodiment of the infrared sensor of the present invention.

【図4】従来例を示す説明図である。FIG. 4 is an explanatory diagram showing a conventional example.

【図5】赤外線レンズによる赤外線の非点収差を示す説
明図である。
FIG. 5 is an explanatory diagram showing astigmatism of infrared rays by an infrared lens.

【符号の説明】[Explanation of symbols]

1 赤外線センサ 3 赤外線レンズ 5 赤外線センサ素子 6 センサ素子基板 8 熱源 1 infrared sensor 3 infrared lens 5 infrared sensor element 6 sensor element substrate 8 heat source

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01J 5/08 B G01V 8/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G01J 5/08 B G01V 8/20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱源から放射される赤外線を結像する赤
外線レンズと、結像された赤外線を検出する複数の赤外
線センサ素子とを有する赤外線センサにおいて、前記複
数の赤外線センサ素子は赤外線レンズの立体湾曲結像面
に沿った面位置に配置されていることを特徴とする赤外
線センサ。
1. An infrared sensor having an infrared lens for forming an infrared ray emitted from a heat source and a plurality of infrared sensor elements for detecting the formed infrared ray, wherein the plurality of infrared sensor elements are three-dimensional infrared lenses. An infrared sensor, which is arranged at a surface position along a curved image forming surface.
【請求項2】 赤外線センサ素子は基板上に、単体で、
又はアレイ状に複数配列して形成され、この赤外線セン
サ素子が形成された複数の基板を赤外線レンズの立体湾
曲結像面に沿って組み合わせ配置することで、複数の赤
外線センサ素子を赤外線レンズの立体湾曲結像面に沿っ
て配置した請求項1記載の赤外線センサ。
2. The infrared sensor element is a single element on a substrate,
Alternatively, by arranging a plurality of substrates, which are formed by arranging them in an array form and in which the infrared sensor elements are formed, in combination along the three-dimensional curved image forming surface of the infrared lens, the plurality of infrared sensor elements are arranged in the three-dimensional array The infrared sensor according to claim 1, wherein the infrared sensor is arranged along a curved image plane.
JP25297394A 1994-09-21 1994-09-21 Infrared sensor Pending JPH0894438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25297394A JPH0894438A (en) 1994-09-21 1994-09-21 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25297394A JPH0894438A (en) 1994-09-21 1994-09-21 Infrared sensor

Publications (1)

Publication Number Publication Date
JPH0894438A true JPH0894438A (en) 1996-04-12

Family

ID=17244734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25297394A Pending JPH0894438A (en) 1994-09-21 1994-09-21 Infrared sensor

Country Status (1)

Country Link
JP (1) JPH0894438A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815687B1 (en) * 1999-04-16 2004-11-09 The Regents Of The University Of Michigan Method and system for high-speed, 3D imaging of optically-invisible radiation
US20120049067A1 (en) * 2009-05-18 2012-03-01 Masatake Takahashi Infrared sensor, electronic device, and manufacturing method of infrared sensor
JP2012108058A (en) * 2010-11-19 2012-06-07 Kobe Univ Infrared photo-detection apparatus
JP2017129573A (en) * 2015-12-15 2017-07-27 ジック アーゲー Photoelectronic sensor and object detection method
WO2018101001A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Infrared sensor
WO2018101002A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Infrared detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815687B1 (en) * 1999-04-16 2004-11-09 The Regents Of The University Of Michigan Method and system for high-speed, 3D imaging of optically-invisible radiation
US20120049067A1 (en) * 2009-05-18 2012-03-01 Masatake Takahashi Infrared sensor, electronic device, and manufacturing method of infrared sensor
US8530841B2 (en) * 2009-05-18 2013-09-10 Nec Corporation Infrared sensor, electronic device, and manufacturing method of infrared sensor
JP2012108058A (en) * 2010-11-19 2012-06-07 Kobe Univ Infrared photo-detection apparatus
JP2017129573A (en) * 2015-12-15 2017-07-27 ジック アーゲー Photoelectronic sensor and object detection method
WO2018101001A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Infrared sensor
WO2018101002A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Infrared detection device

Similar Documents

Publication Publication Date Title
US4717821A (en) Flat wide-angle lens array with a common focus
EP0865649B1 (en) Electrical device comprising an array of pixels
JP5285143B2 (en) Touch device and laser light source structure
US8624187B2 (en) Imaging detector array with optical readout
JPH0380282B2 (en)
GB2167206A (en) Apertured concave reflector optical system
JPH09297057A (en) Pyroelectric type infrared-ray sensor and pyroelectric type infrared-ray sensor system
US4258994A (en) High contrast optical fingerprint recorder
JPH0894438A (en) Infrared sensor
JPH08193881A (en) Infrared detector
US4855588A (en) Cylindrical wide field receiver element
JPH0451003B2 (en)
KR960015008B1 (en) Prevention apparatus of disasters having fire detection means
JP3500214B2 (en) Optical encoder
JPS5911083B2 (en) Scanning optical system with information beam detection optical system
JPH05100186A (en) Image sensor
JP3106796B2 (en) Pyroelectric infrared sensor
JPS63298127A (en) Image sensing camera using thermal infrared rays
JP3011211B1 (en) Infrared imaging method and infrared imaging device
JPH102791A (en) Pyroelectric infrared sensor
JPH06331435A (en) Simple infrared image forming device
JPH0772015A (en) Infrared sensor
JP3326645B2 (en) Detecting head flying height measuring device and measuring method
JPH09126899A (en) Thermal image detector
JPH05113367A (en) Infrared-ray human detection sensor