WO2018099379A1 - 流量控制装置及其控制系统、控制方法 - Google Patents

流量控制装置及其控制系统、控制方法 Download PDF

Info

Publication number
WO2018099379A1
WO2018099379A1 PCT/CN2017/113452 CN2017113452W WO2018099379A1 WO 2018099379 A1 WO2018099379 A1 WO 2018099379A1 CN 2017113452 W CN2017113452 W CN 2017113452W WO 2018099379 A1 WO2018099379 A1 WO 2018099379A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
component
detecting
power output
circuit board
Prior art date
Application number
PCT/CN2017/113452
Other languages
English (en)
French (fr)
Inventor
姜华远
龚雪霞
张瑶瑶
吴智
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to EP17876312.4A priority Critical patent/EP3550395B1/en
Priority to US16/465,075 priority patent/US11207945B2/en
Publication of WO2018099379A1 publication Critical patent/WO2018099379A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/24Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an electromagnetically-operated valve, e.g. for washing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/042Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves with electric means, e.g. for controlling the motor or a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/046Actuating devices; Operating means; Releasing devices electric; magnetic using a motor with electric means, e.g. electric switches, to control the motor or to control a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • F16K31/535Mechanical actuating means with toothed gearing for rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0033Electrical or magnetic means using a permanent magnet, e.g. in combination with a reed relays
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the invention relates to an electronically controlled flow control device, a control system thereof and a control method thereof.
  • the electric vehicle thermal management system includes a coolant circulation system composed of a heat exchanger, a power electronics, a drive motor, a car charger, a water storage kettle, an electric water pump, a reversing valve, a high temperature zone of a radiator tank, a high pressure PTC, and an air conditioner radiator.
  • the reversing device is cyclically connected through the pipeline and can be used to switch the flow direction of the coolant; for example, the hybrid vehicle usually also increases the PTC heating device to compensate for the lack of residual heat of the engine. At this time, it may be necessary to switch the coolant to the PTC heating device. In the process of switching the PTC heating device, it is also necessary to use a reversing valve to switch the flow direction of the coolant.
  • coolant reversing devices have a wide range of applications in the hybrid and pure electric vehicle industries, such as motor-driven piston valves, which are installed in their valve bodies by a spool assembly that passes through the spool
  • the gear reduction mechanism is connected with the gear reduction mechanism, and the gear reduction mechanism drives the valve core assembly to realize the reciprocating linear motion and change the sealing position.
  • the sealing ring used in the piston valve is made of rubber material, which is easily deformed or damaged under the squeeze of the movable valve core. Therefore, after a period of use, the movable spool is prone to blockage and stop moving, which affects the normal operation of the piston valve in the system. use.
  • a flow control device including a housing, a valve body assembly, and a drive control member, the housing including a first interface and a second interface, the valve body assembly portion Storing in the outer casing; the valve body assembly is at least
  • the movable valve member includes a movable valve member and a transmission portion, the movable valve member is connected to the transmission portion, and the movable valve member is movably disposed relative to the outer casing, and the driving control component comprises a control unit and a power output portion.
  • the power output portion is connected to the transmission portion, the power output portion provides a driving force for the transmission portion and the movable valve member, and the detecting component is electrically connected to the control unit a magnetic connection, the magnetic element is assembled and relatively fixed to the power output portion, the sensing portion of the detecting element is located within a magnetic field sensing range of the magnetic element, and the sensing portion is opposite to an outer peripheral side of the magnetic element It is provided that the detecting element is capable of sensing a change in the magnetic pole generated by the rotation of the magnetic element.
  • the invention also discloses a control system for a flow control device, comprising at least: a magnetic element capable of performing circular motion under the power output portion of the flow control device, the magnetic element comprising at least one pair of magnetic poles, each pair of magnetic poles comprising N a pole and an S pole, the N pole and the S pole are spaced apart in a circumferential direction of the power output portion, and when the magnetic element moves in a circular motion, the magnetic pole sequentially passes through the sensing region of the detecting element; the detecting component can The magnetic poles of the magnetic element interact to detect a feedback signal; the control unit is provided with a set contrast upper limit, and compares the detected feedback signal with the set contrast upper limit to determine whether the power output unit is in a normal working state, And controlling the power output unit to perform adjustment.
  • the invention also discloses a control method of a flow control device, which detects and/or controls a flow control device by setting a control unit, a power output portion, a magnetic component and a detecting component, the magnetic component and The power output portion is relatively fixedly disposed, the magnetic element includes at least two magnetic poles, and the control method includes the following steps:
  • the motor operates, and the magnetic element rotates
  • the detecting element senses a magnetic pole change of the magnetic element and forms a feedback signal
  • the control unit collects the feedback signal in real time and obtains a running duration of the feedback signal
  • the control unit determines whether the stepping motor is blocked or not according to the running duration of each of the collected feedback signals, and if so, sends a stalling alarm signal, and if not, determines that the stepping motor is working normally, and continues One of the above steps is performed: the detecting element senses a magnetic pole change of the magnetic element and forms a feedback signal.
  • the technical solution of the present application is assembled and relatively fixed by the magnetic component and the power output part, and then the magnetic component is driven to rotate by the power output part, and the detecting component is opposite to the magnetic component, and the detection is performed.
  • the sensing portion of the measuring component is located within a magnetic field sensing range of the magnetic component, and the sensing portion is disposed opposite the outer peripheral side of the magnetic component, the detecting component being capable of sensing a magnetic pole change of the magnetic component, so that the control unit can acquire the operating condition of the movable valve member .
  • FIG. 1 is a schematic perspective view of a flow control device
  • Figure 2 is a partial cross-sectional view showing the flow control device shown in Figure 1;
  • Figure 3 is a perspective view of a part of the components of the flow control device shown in Figure 1, and schematically shows a combination of the drive control member and the transmission system;
  • Figure 4 is a perspective view of the valve body assembly, power output portion and transmission system of the flow control device shown in Figure 1;
  • Figure 5 is a perspective view of a part of the components of the flow control device shown in Figure 1, and schematically shows a combination of the drive control member and the transmission system;
  • Figure 6 is a partial cross-sectional view of the flow control device of Figure 5, mainly schematically showing the relationship of the drive control components;
  • Figure 7 is a perspective view of a part of the components of the flow control device shown in Figure 5, and schematically shows a combination of the drive control components;
  • Figure 8 is a schematic view showing the combination of the printed circuit board shown in Figure 3 and related electronic components;
  • Figure 9 is a partially enlarged schematic view showing the printed circuit board and the detecting element shown in Figure 8.
  • FIG. 10 is a schematic view showing the positional relationship between the magnetic element and the detecting element shown in FIG. 7, and schematically showing the correspondence relationship between the rotation angle of the magnetic element and the rotation angle of the movable valve piece;
  • FIG. 11 is a schematic diagram of a partial feedback signal provided by a detecting component of a flow control device to a control unit;
  • Fig. 12 is a flow chart showing a control method of the flow rate control device.
  • the flow control device 100 can be applied to a heat exchange system, such as a vehicle air conditioning system or a home air conditioning system.
  • the flow medium of the flow control device can be water, water, and the like. a mixed medium of other liquids or other cooling medium having thermal conductivity,
  • the flow control device 100 controls the distribution of the flow medium and exchanges heat between the flow medium and other working medium of the heat exchange system, and then controls the medium flow rate of the flow path of the heat exchange system by adjusting the medium outlet flow rate of the flow control device. It can improve the control performance of optimizing the flow path of the heat exchange system.
  • the flow control device 100 when the flow control device 100 can be used in a new energy automobile air conditioner such as a HVAC, a battery cooling, or a battery heating system, the flow control device distributes the working medium from the inlet to different outlets through a multi-pass configuration. Or switching between different inlets and outlets, the flow control device 100 may be located in two or more heat exchange system circuits, capable of switching flow paths in conjunction with the heat exchange system, and/or causing flow rates of different flow paths of the heat exchange system according to The proportion is assigned.
  • a new energy automobile air conditioner such as a HVAC, a battery cooling, or a battery heating system
  • the flow control device 100 includes a housing 1, a valve body assembly 2, and a drive control member 3, the valve body assembly 2 being at least partially housed in a mounting cavity of the housing 1, the valve body assembly 2 including a movable valve member 21 and a transmission portion 22, the movable valve member 21 is movably disposed relative to the outer casing.
  • the valve body assembly 2 further includes a fixed valve member.
  • the fixed valve member 23 is relatively fixed and sealed with the outer casing, and the movable valve member 21 and the fixed valve are fixed.
  • the sealing member is disposed between the members 23, specifically, the movable valve member is a movable valve piece, and the fixed valve member is formed by a fixed valve piece or a part of the outer casing.
  • the housing 1 also has at least two interfaces, in particular, the housing of the present embodiment comprises three interfaces: a first interface 102, a second interface 103, and a third interface 104.
  • the movable valve member 21 can conduct or cut off the flow passage between the first and second interfaces, and one of the first interface 102 and the second interface 103 is an inlet and the other is an outlet.
  • the control mode can also have more than three interfaces to realize a control mode of one-in, two-out, two-in and two-out, and/or two-in-one-out three-in and two-out, and the drive control component 3 drives the transmission part 22, the transmission part 22
  • the movable valve member 21 is driven to rotate, and during the rotation of the movable valve member, the communication port of the movable valve member 21 is used to realize the conduction of the adjacent interface, and the circulation of the movable valve member can also be controlled to control the circulation of the interface.
  • the quantity, so that the flow control and the commutation of the working medium can be realized by rotating the movable valve member, which is multi-purpose and convenient for general use.
  • the driving control unit 3 includes a power output unit 31 , a magnetic element 32 , a detecting element 33 , a control unit 34 , and a printed circuit board 35 .
  • the power output unit 31 is connected to the transmission portion 22 .
  • the power output portion provides a driving force for the transmission portion and the movable valve member.
  • the detecting component 33 and the control unit 34 are electrically connected.
  • the flow control device 100 includes a driving housing 30, specifically including a first housing and a second housing. , the two can be sealed by welding,
  • the driving housing 30 is formed with a mounting space 300.
  • the driving control component 3 is located in the mounting space 300 to facilitate waterproofing and dustproofing of the driving control component.
  • the detecting component 33 and the control unit 34 are electrically connected to the printed circuit board 35, specifically, detecting Element 33 and control unit 34 are soldered to printed circuit board 35, respectively.
  • the magnetic component 32 is assembled and relatively fixed to the power output portion 31.
  • the power output portion can drive the magnetic component to rotate.
  • the detecting component 33 is disposed opposite to the magnetic component 32.
  • the detecting component is located within the magnetic field range of the magnetic component.
  • the magnetic pole change occurring in the rotation of the magnetic element can be sensed, and the feedback signal corresponding to the magnetic pole change is, for example, a pulse signal or other signals periodically changing, so that the control unit can acquire the operating condition of the movable valve member.
  • the detecting element 33 obtains a feedback signal by sensing a magnetic pole change of the magnetic element 32, the feedback signal corresponding to the position change amount of the magnetic element to provide a detected signal to the control unit, and the control unit can receive Go to the feedback signal and determine whether the power output unit is in a normal working state.
  • the printed circuit board 35 includes a main body base 351 and an overhanging portion 352. The overhanging portion is protruded from one end of the main body base.
  • the outer casing 1 includes a first positioning convex portion 11 and a second positioning convex portion 12, and the first positioning convex portion is located at the first positioning convex portion.
  • the second positioning convex portion 12 is assembled with the main body base portion 351 of the printed circuit board; the detecting element 33 is welded and assembled on one side of the overhanging portion 352, and The magnetic element 32 faces the arrangement, and the control unit 34 of the drive control unit is welded and assembled with the main body base 351.
  • the control unit and the detecting element are arranged on the same side of the printed circuit board to facilitate the manufacture of the printed circuit board. Or the control unit and the detecting element are disposed on different sides of the printed circuit board, and the printed circuit board assembly volume can be relatively reduced, and the printed circuit board 35 is provided with a printed circuit (not shown), the printed circuit is electrically
  • the control unit 34 is connected to the detection element 33.
  • the flow control device further includes a signal docking portion 36.
  • the signal terminal 361 of the signal docking portion is electrically connected to the printed circuit board 35.
  • the printed circuit board 35 includes a first end portion 353 and a second end portion 354.
  • the overhanging portion 352 extends outwardly from the first end portion and is overhanging.
  • the signal terminal of the signal abutting portion is assembled and welded to the second end portion 354, between the signal abutting portion and the printed circuit board. Electrical signal transmission is performed to establish a power path.
  • the flow control device includes a power component.
  • the power component of the present embodiment adopts a stepping motor 4, which is located in the installation space 300 of the drive housing 30, and collects a stepping motor running signal through the control unit 34, according to the collected stepping step.
  • the running signal of the motor sends different control signals to the stepping motor, so that the control unit forms a control for the stepping motor.
  • the control unit may be disposed in the flow control device or not in the flow control device, but in the main control system applied to the flow control device, and the flow control device is provided with a driver that receives the control signal and converts the control signal into a drive signal. This also enables control of the flow control device.
  • the stepping motor includes a motor stator assembly 40 and a motor output shaft.
  • the motor output shaft protrudes outward from one side of the motor stator assembly, and the motor output shaft forms the power output portion 31, that is, the stepping motor 4 provides The power output portion 31 extends along a direction of the output shaft of the motor, and the overhang portion 352 is located at one side of the motor stator assembly 40.
  • the overhang portion 352 is located on one side of the outer circumference of the magnetic element, and
  • the detecting element 33 is fixed to a side of the overhanging portion facing the magnetic element 32, and further has an inductive spacing between the detecting element 33 and an outer peripheral side of the magnetic element, so that the detecting element can sense a magnetic pole change of the magnetic element, and the detecting element 33
  • the sensing portion is located within the magnetic field sensing range of the magnetic component 32, and the sensing portion is disposed opposite to the outer peripheral side of the magnetic component, and the projection of the sensing portion on the printed circuit board and the magnetic component are perpendicular to a direction perpendicular to a plane of the printed circuit board (specific The projection of the magnetic ring on the printed circuit board at least partially coincides.
  • the projection of the extending direction of the motor output shaft intersects with the extending direction of the overhanging portion 352, or the projection of the extending direction of the motor output shaft and the extending direction of the overhanging portion 352 may be parallel.
  • the spatial arrangement requirements of the components in the drive controller housing of the flow control device are met.
  • the flow control device further includes a motor assembly further including a first grounding member 41 and a second grounding member 42, the first and second grounding members being assembled and fixed, and the second grounding member 42 being soldered to the printed circuit board 35 and
  • the stepping motor 4 further includes a signal transmission terminal 43. The end of the signal transmission terminal is inserted into the mounting hole of the printed circuit board, and the electrical control signal can be transmitted to the stepping motor.
  • the power unit drives the power output unit 31 to rotate, the magnetic element 32 rotates with the power output unit, and the detecting element 33 induces a magnetic pole change of the magnetic element 32 to obtain a pulse.
  • the signal enables the control unit to acquire the operating condition of the movable valve member by detecting whether the pulse time width of the pulse signal is within a normal working range, specifically detecting whether the pulse time width is greater than an upper limit of the normal working range; or detecting element 33 sensing
  • the magnetic pole of the magnetic element is changed to obtain a periodic change signal, and it is determined whether the movable valve member of the flow control device is blocked by detecting whether the cycle time width of the periodic change signal is within a normal operating range.
  • the stepping motor 4 is provided with a power output portion, and the magnetic element 32 is mounted on the power output portion.
  • the power output portion 31 rotates
  • the magnetic member 32 rotates with the power output portion 31, and the detecting member 33 and the magnetic portion
  • the element 32 interacts, the detecting element 33 is used to induce a change in the magnetic field of the magnetic element 32 and form a pulse signal, and the detecting element can obtain a pulse signal.
  • the control unit 34 includes a microprocessor, and the microprocessor is fixedly disposed with the printed circuit board 35.
  • the microprocessor is configured to collect the feedback signal and determine whether the feedback signal is normal.
  • the detecting component 33 can be a Hall sensor or a position sensor or other position detector.
  • the feedback signal of the Hall sensor is a Hall signal
  • the feedback signal of the position sensor is a Hall signal.
  • the magnetic element 32 includes at least one pair of magnetic poles, each pair of magnetic poles respectively including an N pole and an S pole, and the N pole and the S pole are spaced apart in the circumferential direction of the power output portion 31, and each magnetic pole (N pole or S pole) of the magnetic element When the Hall sensor is passed, the magnetic pole interacts with the Hall sensor to generate a level signal, and the detection accuracy is relatively high by the combination of the Hall sensor and the magnetic pole.
  • the Hall sensor includes a main body portion 331 which is a sensing portion for detection, a solder leg 332 electrically connected to the printed circuit board 35, and a solder tail 332 soldered to the printed circuit board 35, specifically, a printed circuit.
  • the plate 35 is formed with a soldering portion 3511 or a connecting via hole.
  • the soldering leg 332 is soldered and electrically connected to the printed circuit board by surface mounting (SMT), or the soldering leg can also pass through the connecting via hole of the printed circuit board.
  • SMT surface mounting
  • the printed circuit board is soldered and electrically connected by a punching installation.
  • the flow control device adopts a stepping motor
  • the magnetic component is a magnetic ring or a columnar magnet
  • the magnetic component includes two N poles and two S poles
  • the power output portion 31 of the stepping motor is a shaft shaft setting. It can also be called a motor output shaft, which extends outwardly from the outer casing of the stepping motor
  • the magnetic element is assembled with the power output portion.
  • the magnetic element includes four magnetic poles and is arranged along the circumference of the power output portion.
  • the Hall sensor is located at the periphery of the magnetic element and is disposed close to the magnetic element. When the magnetic element rotates with the power output of the motor, the N and S poles of the magnetic element alternately pass through the Hall sensor, and the Hall sensor generates periodic feedback.
  • the feedback signal is a square wave
  • the magnetic pole of the magnetic element passing through the Hall sensor changes once, from the N pole to the S pole or from the S pole to the N pole, generating a feedback signal, that is, the feedback signal is from a low level to The high level changes or changes from low level to high level.
  • the stepping motor runs one turn, that is, the magnetic element rotates one turn, four feedback signals are generated, and the elapsed time of the Hall sensor corresponding to one magnetic pole is the feedback signal. The duration of the run.
  • the control unit collects the above feedback signal and judges the step by the state of the feedback signal In the running state of the motor, the running state of the stepping motor includes at least the normal running state of the stepping motor and the stalling state of the stepping motor.
  • the flow control device includes a transmission system 44 having a worm drive portion 311, the worm drive portion 311 and/or the magnetic member 32 being integrally formed with the power output portion 31; or, the worm drive portion 311 and/or the magnetic member 32
  • the power output unit 31 has a mounting portion 312 that is coaxially fitted to the outer periphery of the power output unit 31.
  • the mounting portion 312 is assembled with the magnetic member 32.
  • the magnetic member 32 has a mounting hole 321 that cooperates with the mounting portion.
  • the mounting portion 312 passes through the mounting hole, and the worm drive portion 311 is provided in a cylindrical shape and fitted to the outer peripheral side of the power output portion.
  • the worm drive portion 311 and the transmission system 44 form an engagement mechanism, and the power output portion 31 drives the movable valve member through the transmission system.
  • the movable valve member rotates by a working angle, and each time the magnetic component 32 changes, the detecting component 33 generates a corresponding one.
  • the level signal enables the control unit to obtain the operating condition of the movable valve member.
  • the transmission system 44 is specifically a gear transmission system, and transmits the driving force of the stepping motor to the movable valve member 21.
  • the magnetic component is a magnetic ring or a columnar magnet, and the power output portion of the stepping motor is provided.
  • the mounting shaft portion 313 is inserted into the mounting hole 321, the worm driving portion 311 is assembled with the mounting shaft portion 313, or the worm driving portion 311 is
  • the mounting shaft portion 313 can also be integrally formed.
  • the detection accuracy of the flow control device is equal to less than two degrees (2°), further optimized to 1°, specifically less than 0.57 degrees and greater than 0.14 degrees.
  • the transmission ratio i of the gear train is 312.
  • the Hall sensor can detect the transmission loss.
  • the moving valve member can move 0.29° per movement, and the Hall sensor feeds back a level signal to the printed circuit board control unit, that is, the position change of the moving valve member is 0.29°, and the six-pole magnetic ring is used.
  • the number of magnetic ring poles may also be 8 ⁇ .
  • the movement angle of the valve member is 0.14°-0.57°, then the movement of the movable valve member is 0.14°-0.57°, and the Hall sensor generates a level signal correspondingly, so that the movable valve member generates two degrees or less.
  • the position change is detected, and the Hall sensor interacts with the magnetic ring mounted on the peripheral side of the output shaft of the stepping motor to greatly improve the position detection accuracy of the movable valve member.
  • the sensing element 33 has an inductive spacing between the outer peripheral side of the magnetic element 32, and in particular, an inductive spacing is provided between the main body portion 331 of the detecting element 33 and the magnetic element 32.
  • the sensing pitch is less than 5 mm.
  • the main body portion is located between the printed circuit board and the output shaft of the motor, effectively utilizing the spatial position between the components and having less influence on the original structure, which is advantageous for cost saving; specifically, in the radial direction of the magnetic component, magnetic
  • the distance from the outer circumference of the element 32 to the top side of the detecting element 33 is greater than or equal to 2 mm and less than or equal to 3 mm, which reduces the overall height dimension of the printed circuit board and the motor output shaft, and simultaneously raises the detecting element. 33 sensitivity.
  • the magnetic pole of the corresponding magnetic ring of the sensor rotates from one end of the N pole to the intersection of the N pole and the S pole, and the corresponding feedback signal Low level
  • the magnetic pole of the sensor corresponding to the magnetic ring changes from the N pole to the S pole
  • the feedback signal jumps to the high level
  • the stepping motor continues to run
  • the sensor corresponds to the magnetic ring magnetic pole from the S pole Rotating to the junction of the N pole and the S pole, the feedback signal continues to maintain a high level.
  • the sensor corresponding magnetic ring magnetic pole changes from the S pole to the N pole, and the feedback signal jumps to a low level.
  • the magnetic ring rotates once, generating 4 feedback signals, setting the running duration of each feedback signal to the normal working pulse time width T; when the flow control scheme is blocked, usually the magnetic ring does not rotate, so the feedback The signal will remain in the current state, and the time t1 of continuous high level or low level exceeds the set normal pulse time T, the controller
  • the set normal pulse time T can be twice or other multiples as the set comparison upper limit compared with the working pulse time t1.
  • the invention also provides a control system capable of controlling a flow control device, the control system comprising at least:
  • the magnetic element 32 is capable of performing a circular motion in synchronization with the power output portion 31 of the flow control device, the magnetic element including at least one pair of magnetic poles, each pair of magnetic poles including an N pole and an S pole, and the N pole and the S pole along the power output
  • the circumferential direction of the portion 31 is spaced apart, and when the magnetic element moves in a circular motion, the magnetic pole sequentially passes through the sensing region of the detecting element;
  • the detecting component 33 is capable of interacting with the magnetic pole of the magnetic component to detect a feedback signal, specifically, the feedback signal is a high or low level signal or a pulse signal or other periodic change signal;
  • the control unit 34 is provided with a set contrast upper limit, compares the detected feedback signal with the set contrast upper limit, determines whether the power output unit is in a normal working state, and controls the power output unit to perform adjustment when the flow rate When the movable valve member of the control device is blocked, the magnetic ring does not move, the pulse cannot be generated, and the detection potential does not change any more. At this time, the abnormality can be judged.
  • the feedback signal is a high-low signal/pulse signal or Other periodic change signals
  • the time width of the feedback signal is greater than the upper limit of the comparison
  • an abnormal condition of the movable valve member is abnormal, such as blocking
  • the power output portion 31 can be controlled to be adjusted; for example, the feedback detected by the Hall sensor
  • the actual working pulse time width t1 corresponding to the signal is greater than twice the normal pulse time T. At this time, it is judged that the working condition is abnormal and the stalling occurs.
  • the present invention further provides a control method of a control system
  • the control system includes a stepping motor, a control unit, and a sensor
  • a power ring of the stepping motor is mounted with a magnetic ring
  • the magnetic ring The method includes the following steps: including a plurality of magnetic poles, specifically at least two pairs of magnetic poles, and the control method includes the following steps:
  • the sensor senses a magnetic pole change of the magnetic ring and forms a feedback signal
  • the control unit collects the feedback signal in real time and obtains a running duration of the feedback signal.
  • the control unit determines whether the stepping motor is blocked or not according to the running duration of each of the collected feedback signals. If yes, a stalling alarm signal is issued, and if not, determining that the stepping motor is working normally. , continue with S2 and cycle work.
  • control unit prestores a set time period T, and the control unit determines whether the running duration of each feedback signal is greater than 2 times the set time period, and if yes, determines that the flow control scheme is blocked.
  • the control unit sends a stall warning signal.
  • the flow control device 100 can be applied to a HVAC, battery cooling or battery heating system of a new energy vehicle, in particular to a movable valve member moving position detection and blocking detection of the flow control device, and the detecting component adopts a Hall sensor and The magnetic ring cooperates, the detecting component and the power output of the motor move synchronously, and the installation is relatively simple, and the accuracy of the position detection can be effectively improved, and the change of the transmission ratio of the transmission system and the accuracy of the position detection of the movable valve member can be further utilized. Further improvement can reduce the number of magnetic poles of the magnetic ring, reduce the outer diameter of the magnetic ring, and relatively reduce the volume of the magnetic ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Abstract

一种用于换热系统的流量控制装置(100),包括外壳(1)、可动阀件(21)以及驱动控制部件(3),外壳(1)形成有安装腔、第一接口(102)以及第二接口(103),驱动控制部件包括控制单元(34)、动力输出部(31)、磁性元件(32)以及检测元件(33),动力输出部(31)为可动阀件(21)提供动力,检测元件(33)与控制单元(34)电性连接,磁性元件(32)与动力输出部(31)相组装且相对固定,动力输出部(31)能够带动磁性元件(32)转动,检测元件(33)与磁性元件(32)相对设置,检测元件(33)位于磁性元件(32)的磁场范围内,检测元件(33)能够感应磁性元件(32)的磁极变化,可及时应对停转状况。

Description

流量控制装置及其控制系统、控制方法
本申请要求于2016年12月01日提交中国专利局、申请号为201611087286.7、发明名称为“流量控制装置及其控制系统、控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种电子控制的流量控制装置及其控制系统、控制方法。
背景技术
电动汽车热管理系统中包含冷却液循环系统,其由热转换器、功率电子、驱动电机、车载充电器、储水壶、电动水泵、换向阀、散热水箱高温区、高压PTC、空调散热器组成,换向装置通过管路循环连接,可用于切换冷却液的流向;比如混合动力汽车也通常增加PTC加热装置来弥补发动机余热的不足,此时可能需要将冷却液切换通向PTC加热装置,在切换PTC加热装置的过程中,也需要使用换向阀来切换冷却液流向。
目前冷却液换向装置在混合动力和纯电动汽车行业中有着十分广泛的应用,比如电机驱动活塞阀,所述活塞阀通过在其阀体中安装阀芯组件,该阀芯组件通过阀芯轴与齿轮减速机构连接,齿轮减速机构在电机驱动下带动阀芯组件实现往复直线运动,改变密封位置。然而活塞阀所采用的密封圈由橡胶材料制成,在活动阀芯的挤压下容易过分变形或损坏,因此使用一段时间后活动阀芯容易发生堵塞而停止运动,影响活塞阀在系统中正常使用。
发明内容
本发明的目的在于提供一种可及时检测运行状况的流量控制装置。
为实现上述目的,本发明流量控制装置采用如下技术方案:一种流量控制装置,包括外壳、阀体组件以及驱动控制部件,所述外壳包括第一接口以及第二接口,所述阀体组件部分收容于所述外壳;所述阀体组件至少 包括可动阀件以及传动部分,所述可动阀件与所述传动部分限位连接,且所述可动阀件相对于外壳可动设置,所述驱动控制部件包括控制单元、动力输出部、磁性元件以及检测元件,所述动力输出部与所述传动部分限位连接,所述动力输出部为该传动部分与该可动阀件提供驱动力,所述检测元件与所述控制单元电性连接,所述磁性元件与所述动力输出部相组装且相对固定,所述检测元件的感应部位于所述磁性元件的磁场感应范围内,所述感应部与所述磁性元件的外周侧相对设置,该检测元件能够感应所述磁性元件转动所产生的磁极变化。
本发明还公开一种流量控制装置的控制系统,至少包括:磁性元件,能够在所述流量控制装置的动力输出部带动下进行圆周运动,该磁性元件包括至少一对磁极,每对磁极包括N极和S极,N极和S极沿所述动力输出部的圆周方向间隔分布,当所述磁性元件圆周运动时,所述磁极依次通过所述检测元件的感应区域;检测元件,能够与所述磁性元件的磁极相互作用,而检测到反馈信号;控制单元,设置有设定对比上限,根据检测到的反馈信号与设定对比上限进行比较,判断所述动力输出部是否处于正常工作状态,并控制该动力输出部进行调整。
本发明还公开一种流量控制装置的控制方法,所述流量控制装置通过设置控制单元、动力输出部、磁性元件以及检测元件相配合对流量控制装置进行检测和/或控制,所述磁性元件与所述动力输出部相对固定设置,所述磁性元件包括至少两个磁极,所述控制方法包括以下步骤:
电机运行,所述磁性元件进行转动;
所述检测元件感应所述磁性元件的磁极变化并形成反馈信号;
所述控制单元实时采集所述反馈信号并得到反馈信号的运行持续时间;
所述控制单元根据采集到的每个反馈信号的运行持续时间判断所述步进电机是否发生堵转,如果是,发出堵转报警信号,如果否,判断所述步进电机为正常工作,继续进行以上其中一个步骤:所述检测元件感应所述磁性元件的磁极变化并形成反馈信号。
本申请技术方案通过磁性元件与动力输出部相组装且相对固定,再通过动力输出部带动该磁性元件转动,而检测元件与磁性元件相对设置,检 测元件的感应部位于磁性元件的磁场感应范围内,感应部与磁性元件的外周侧相对设置,该检测元件能够感应所述磁性元件的磁极变化,使得控制单元能够获取可动阀件的运行状况。
附图说明
图1是流量控制装置的立体组合示意图;
图2是图1所示流量控制装置的部分剖视示意图;
图3是图1所示流量控制装置的部分元件立体组合图,并示意地显示出驱动控制部件及传动系统的组合图;
图4是图1所示流量控制装置的阀体组件、动力输出部以及传动系统的立体示意图;
图5是图1所示流量控制装置的部分元件立体组合图,并示意地显示出驱动控制部件及传动系统的组合图;
图6是图5所示流量控制装置的部分剖视图,主要示意地显示出驱动控制部件的关系示意图;
图7是图5所示流量控制装置的部分元件立体组合图,并示意地显示出驱动控制部件的组合图;
图8是图3所示印刷电路板与相关电子元器件的组合示意图;
图9是图8所示印刷电路板与检测元件的局部放大示意图;
图10是图7所示磁性元件与检测元件的位置关系示意图,并示意地显示出磁性元件转动角度与可动阀片转动角度的对应关系;
图11是流量控制装置的检测元件提供给控制单元的部分反馈信号示意图;
图12是流量控制装置的控制方法的流程示意图。
具体实施方式
请参阅图1、图2所示,所述流量控制装置100可应用于换热系统,比如车用空调系统或者家用空调系统等,具体地所述流量控制装置的流通介质可为水、水与其他液体的混合介质或者其他具有导热能力的冷却介质, 流量控制装置100控制流通介质的分配并使流通介质与换热系统的其他工作介质进行热交换,再通过调节分配所述流量控制装置的介质出口流量来控制换热系统流路的介质流通量,能够提升优化该换热系统流路的控制性能。具体地,流量控制装置100能够用于新能源汽车空调如暖通空调、电池冷却或者电池加热系统时,通过多通结构的设置,该流量控制装置将来自进口的工作介质按照比例分配到不同出口或者在不同进出口之间切换,流量控制装置100可位于两个或多个换热系统回路,能够配合所述换热系统进行流路切换,和/或使得换热系统不同流路的流量按照比例进行分配。
所述流量控制装置100包括外壳1、阀体组件2以及驱动控制部件3,阀体组件2至少部分收容于所述外壳1的安装腔内,阀体组件2包括可动阀件21以及传动部分22,可动阀件21相对于外壳可动设置,本实施方式中阀体组件2还包括固定阀件,固定阀件23与外壳相对固定且密封设置,且该可动阀件21与固定阀件23之间密封设置,具体地,可动阀件为可动阀片、固定阀件为固定阀片或外壳的一部分形成,此处定义“固定”、“可动”均相对于外壳而言,“固定”情况下仍然允许微小晃动的情形;外壳1还具有至少两个接口,具体地本实施方式外壳包括三个接口:第一接口102、第二接口103以及第三接口104,在所述传动部分带动下,所述可动阀件21能够导通或截断所述第一、第二接口之间的流通通道,第一接口102与第二接口103中一个为进口、另一个为出口,实现一进一出的控制模式,也可具有三个以上接口,实现一进两出、两进多出和/或两进一出三进两出的控制模式,驱动控制部件3驱动传动部分22,该传动部分22带动可动阀件21转动,可动阀件旋转转动过程中,通过可动阀件21的连通口,实现相邻接口的导通,也可通过控制可动阀件的转角来控制接口的流通量,从而通过旋转可动阀件实现流量控制和工作介质换向,多用途、便于通用化使用。
请参考图3至图8所示,驱动控制部件3包括动力输出部31、磁性元件32、检测元件33、控制单元34以及印刷电路板35,动力输出部31与传动部分22限位连接,该动力输出部为该传动部分与该可动阀件提供驱动力,该检测元件33、控制单元34电性连接,流量控制装置100包括驱动壳体30,具体包括第一壳体、第二壳体,两者可通过焊接实现密封设置, 驱动壳体30形成有安装空间300,驱动控制部件3位于该安装空间300,有利于驱动控制部件的防水防尘;检测元件33、控制单元34分别与印刷电路板35电连接,具体地,检测元件33与控制单元34分别焊接到印刷电路板35。磁性元件32与动力输出部31相组装且相对固定,所述动力输出部能够带动该磁性元件转动,检测元件33与磁性元件32相对设置,该检测元件位于磁性元件的磁场范围内,该检测元件能够感应磁性元件转动所发生的磁极变化,该磁极变化所对应产生的反馈信号比如为脉冲信号或周期性变化的其他信号,使得控制单元能够获取可动阀件的运行状况。检测元件33通过感应所述磁性元件32的磁极变化而得到反馈信号,该反馈信号与所述磁性元件的位置变化量相对应,以提供检测到的信号提供给控制单元,所述控制单元能够收到所述反馈信号、并判断所述动力输出部是否处于正常工作状态。印刷电路板35包括主体基部351、悬伸部352,该悬伸部自主体基部一端凸伸设置,外壳1包括第一定位凸部11、第二定位凸部12,该第一定位凸部位于所述悬伸部352的两侧,所述第二定位凸部12与印刷电路板的主体基部351相组装;所述检测元件33焊接组装在该悬伸部352的一侧,且与所述磁性元件32面对设置,所述驱动控制部件的控制单元34与所述主体基部351相焊接进行组装固定,该控制单元与所述检测元件布置在印刷电路板的同一侧,便于印刷电路板制造,或该控制单元与所述检测元件布置在印刷电路板的不同侧,能够相对减小印刷电路板组件体积,所述印刷电路板35设置有印刷电路(未图示),该印刷电路电性连接所述控制单元34与所述检测元件33。所述流量控制装置还包括信号对接部36,所述信号对接部的信号端子361与所述印刷电路板35电性连接,具体地印刷电路板35包括第一端部353、第二端部354,所述悬伸部352自该第一端部向外延伸且成悬伸设置,该信号对接部的信号端子组装焊接到所述第二端部354,为信号对接部与印刷电路板之间进行电性信号传输建立电力路径。
流量控制装置包括动力部件,本实施方式动力部件采用步进电机4,该步进电机位于驱动壳体30的安装空间300内,通过控制单元34采集步进电机运行信号,根据采集到的步进电机的运行信号对步进电机发出不同的控制信号,这样控制单元对步进电机形成控制。电源向步进电机和控制 单元供电。控制单元可以设置在流量控制装置也可以不设置在流量控制装置,而是设置在流量控制装置应用的主控制系统中,流量控制装置设置有接收控制信号并将控制信号转化为驱动信号的驱动器,这样同样能实现对流量控制装置的控制。所述步进电机包括电机定子组件40、电机输出轴,该电机输出轴自电机定子组件的一侧向外凸伸,且该电机输出轴形成所述动力输出部31,即步进电机4提供所述动力输出部31,沿电机输出轴延伸方向,该悬伸部352位于电机定子组件40的一侧,沿电机输出轴的径向方向,悬伸部352位于磁性元件外周的一侧,且检测元件33固定于该悬伸部的朝向该磁性元件32的一侧,进一步该检测元件33与磁性元件的外周侧之间具有感应间距,从而检测元件能够感应磁性元件的磁极变化,检测元件33的感应部位于磁性元件32的磁场感应范围内,感应部与磁性元件的外周侧相对设置,沿垂直于印刷电路板所在平面的垂直方向,感应部在印刷电路板上的投影与磁性元件(具体为磁环)在印刷电路板上的投影至少部分重合。具体地在印刷电路板所在平面,电机输出轴的延伸方向的投影与悬伸部352延伸方向呈相交设置,或者电机输出轴的延伸方向的投影与悬伸部352延伸方向也可平行设置,从而满足流量控制装置的驱动控制器壳体内各元件的空间布置要求。
流量控制装置还包括电机组件,该电机组件还包括第一接地元件41、第二接地元件42,所述第一、第二接地元件相组装固定,第二接地元件42与印刷电路板35焊接且电性连接,步进电机4还包括信号传输端子43,该信号传输端子的末端尾部插接在印刷电路板的安装孔内,可将电性控制信号传输给步进电机。
请结合图9至图11所示,动力部件(步进电机)驱动所述动力输出部31进行转动,磁性元件32随该动力输出部转动,检测元件33感应磁性元件32的磁极变化而得到脉冲信号,使得控制单元能够获取可动阀件的运行状况,通过检测脉冲信号的脉冲时间宽度是否在正常工作范围内,具体地检测脉冲时间宽度是否大于正常工作范围的上限;或检测元件33感应所述磁性元件的磁极变化而得到周期性变化信号,通过检测所述周期性变化信号的周期时间宽度是否在正常工作范围内,来判断所述流量控制装置的可动阀件是否发生堵转。
步进电机4提供动力输出部,磁性元件32安装于该动力输出部,步进电机4运行时,该动力输出部31进行转动,磁性元件32随该动力输出部31转动,检测元件33与磁性元件32相互作用,检测元件33用于感应磁性元件32的磁场变化并形成脉冲信号,检测元件能够得到脉冲信号,通过检测脉冲信号的转换间隔时间可判断所述流量控制装置的可动阀件是否发生堵转;控制单元34包括微处理器,微处理器与印刷电路板35相固定设置,微处理器用于采集反馈信号、对反馈信号进行判断是否正常。其中,检测元件33可以为霍尔传感器或者位置传感器或者其他位置检测器,该霍尔传感器的反馈信号为霍尔信号,位置传感器的反馈信号为霍尔信号。磁性元件32包括至少一对磁极,每对磁极分别包括N极和S极,N极和S极沿动力输出部31的圆周方向间隔分布,该磁性元件的每个磁极(N极或S极)通过所述霍尔传感器时,该磁极与霍尔传感器相互作用而产生一个电平信号,通过霍尔传感器与磁极组合设置,检测精度相对较高。霍尔传感器包括主体部331和焊脚332,该主体部331为检测用的感应部,焊脚332与印刷电路板35电连接,焊脚332与印刷电路板35焊接固定,具体地,印刷电路板35形成有焊接部3511或连接导孔,焊脚332通过表面安装方式(SMT)与印刷电路板相焊接且电性连接,或者所述焊脚也可穿过印刷电路板的连接导孔,通过穿孔安装方式与印刷电路板相焊接且电性连接。
本实施例中,所述流量控制装置的采用步进电机,磁性元件为磁环或柱状磁体,磁性元件包括2个N极和2个S极,步进电机的动力输出部31为转轴状设置,也可称之为电机输出轴,向外伸出步进电机的外壳,磁性元件与动力输出部进行组装,磁性元件包括4个磁极并沿动力输出部的圆周排布。霍尔传感器位于磁性元件的外围并靠近磁性元件设置,当磁性元件随着电机的动力输出部旋转时,磁性元件的N极和S极交替经过霍尔传感器,霍尔传感器会产生周期性的反馈信号,该反馈信号为方波,经过霍尔传感器的磁性元件的磁极变化一次,从N极变化到S极或者从S极运行到N极,产生一个反馈信号,即反馈信号从低电平向高电平变化或者从低电平向高电平变化,当步进电机运行一圈,即磁性元件转动一圈,会产生4个反馈信号,霍尔传感器对应一个磁极的经过的时间为反馈信号的运行持续时间。控制单元采集上述反馈信号,并通过反馈信号的状态来判断步 进电机的运行状态,步进电机的运行状态至少包括步进电机正常运行状态、步进电机堵转状态。
流量控制装置包括传动系统44,动力输出部31具有蜗杆传动部311,蜗杆传动部311和/或磁性元件32与所述动力输出部31一体形成;或者,蜗杆传动部311和/或磁性元件32以同轴方式套装在动力输出部31外周,动力输出部31具有安装部312,该安装部312与所述磁性元件32相组装,该磁性元件32具有与安装部相配合的安装孔321,所述安装部312穿过所述安装孔,蜗杆传动部311为筒状设置且套装在动力输出部外周侧。蜗杆传动部311与传动系统44形成啮合机构,动力输出部31通过传动系统驱动可动阀件,可动阀件对应转动一工作角度,磁性元件32每发生一个磁极变化,检测元件33对应产生一个电平信号,使得控制单元能够获取可动阀件的运行状况。具体地,该传动系统44具体为齿轮传动系,将步进电机的驱动力传递到可动阀件21,本实施方式该磁性元件为磁环状或柱状磁体设置,步进电机的动力输出部具有安装轴部313,蜗杆传动部311与所述传动系统形成啮合机构,所述安装轴部313插入所述安装孔321,蜗杆传动部311与安装轴部313相组装,或者蜗杆传动部311与安装轴部313也可一体形成。
磁环32的每一磁极通过霍尔传感器时,都会产生一个电平信号,流量控制装置100的位置检测精度s通过霍尔传感器可检测到的可动阀件转动角度a来表达,即就是可动阀件转动多少角度能够被霍尔传感器检测到,位置检测精度s包括两个影响参数:所述传动系的传动比i、磁环的极数M,那么位置检测精度s的表达公式为s=360/i/m,比如传动比i数值范围为312,磁环的极数M为2-10,当磁环极数不变、传动比i设置参数减小或增加,位置检测精度s对应增大或减小,结合这些参数,所述流量控制装置的检测精度等于小于两度(2°),进一步可优化至1°,具体地小于0.57度且大于0.14度。
以四极磁环为例,齿轮传动系的传动比i为312,磁环的每一磁极通过霍尔传感器时,都会产生一个电平信号,那么步进电机每运动一圈(360°),可动阀件转动角度为360°/312=1.15°,霍尔传感器产生4个电平信号,齿轮传动系的加工精度大致相同时,霍尔传感器能够检测到的所述传动输 出部或可动阀件的位置检测精度为:360°/4/312=0.29°,即霍尔传感器产生电平信号对应的磁环极数是1极(90°)时,对应可动阀件的运动角度为0.29°。也即可动阀件每运动0.29°,霍尔传感器对印刷电路板控制单元反馈一个电平信号,即可动阀件每产生0.29°位置变化就会被检测到;再以六极磁环为例,霍尔传感器能够检测到的所述传动输出部或可动阀件的位置检测精度为:360°/6/312=0.19°,当然其他实施方式中,磁环极数也可以为8~10,比如八极磁环,霍尔传感器的位置检测精度为:360°/8/312=0.14°;每个电平信号对应的磁环极数是1极时,对应于最终控制的可动阀件的运动角度为0.14°-0.57°,那么可动阀件每运动0.14°-0.57°,霍尔传感器会对应产生一个电平信号,从而可动阀件每产生两度或不到两度的位置变化就会被检测到,通过霍尔传感器与安装到步进电机输出轴周侧的磁环互相作用,可大幅提升对可动阀件的位置检测精度较高。
所述检测元件33与所述磁性元件32的外周侧之间具有感应间距,尤其是检测元件33的主体部331与所述磁性元件32之间设置感应间距,该感应间距小于5mm,该传感器的主体部位于印刷电路板与电机输出轴之间的区域,有效利用元件相互之间的空间位置且对原有结构的影响较小,有利于节省成本;具体地在磁性元件的径向方向,磁性元件32的外周至检测元件33顶侧之间具有距离L,该距离L取值大于等于2mm小于等于3mm,这样既降低印刷电路板与电机输出轴的整体高度尺寸,同时又可相对提升检测元件33的灵敏度。
具体地,参见图10至图12,流量控制方案正常工作时,步进电机运行过程中,传感器对应磁环的磁极自N极的一端转动到N极和S极的交界处,对应的反馈信号为低电平,随着步进电机的运行,传感器对应磁环的磁极自N极向S极变化,反馈信号跳变为高电平,步进电机继续运行,传感器对应磁环磁极自S极转动到N极和S极的交界处,反馈信号持续保持高电平,随着步进电机的运行,传感器对应磁环磁极自S极向N极变化,反馈信号跳变为低电平,如此往复运行,磁环转动一圈,产生4个反馈信号,将每个反馈信号运行持续时间设定为正常工作脉冲时间宽度T;当流量控制方案发生堵转时,通常磁环不转动,因此反馈信号会一直保持当前的状态,持续高电平或低电平的时间t1超过设定正常脉冲时间T,控制方 案中可定义该设定正常脉冲时间T的两倍或者其他倍数作为与工作脉冲时间t1进行比较的设定对比上限。
本发明还提供能够控制流量控制装置的控制系统,该控制系统至少包括:
磁性元件32,能够与所述流量控制装置的动力输出部31同步进行圆周运动,该磁性元件包括至少一对磁极,每对磁极包括N极和S极,N极和S极沿所述动力输出部31的圆周方向间隔分布,当所述磁性元件圆周运动时,所述磁极依次通过所述检测元件的感应区域;
检测元件33,能够与所述磁性元件的磁极相互作用,而检测到反馈信号,具体地该反馈信号为高低电平信号或脉冲信号或其他周期性变化信号;
控制单元34,设置有设定对比上限,根据检测到的反馈信号与设定对比上限进行比较,判断所述动力输出部是否处于正常工作状态,并控制该动力输出部进行调整,当所述流量控制装置的可动阀件产生堵转时,磁环不做运动,无法产生脉冲,检测电位不再发生变化,此时可判断异常,具体地,当反馈信号为高低电平信号/脉冲信号或其他周期性变化信号,且反馈信号的时间宽度大于所述对比上限,可判断可动阀件工况发生异常,比如堵转,可控制动力输出部31进行调整;比如霍尔传感器检测到的反馈信号所对应的实际工作脉冲时间宽度t1大于两倍正常脉冲时间T,此时判断为工况异常、发生堵转。
请再参见图12,本发明还提供一种控制系统的控制方法,所述控制系统包括步进电机、控制单元以及传感器,所述步进电机的动力输出部安装有磁环,所述磁环包括多个磁极,具体地至少两对磁极,所述控制方法包括以下步骤:
S1、所述步进电机运行,所述磁环进行转动(圆周运动);
S2、所述传感器感应所述磁环的磁极变化并形成反馈信号;
S3、所述控制单元实时采集所述反馈信号并得到反馈信号的运行持续时间;
S4、所述控制单元根据采集到的每个反馈信号的运行持续时间判断所述步进电机是否发生堵转,如果是,发出堵转报警信号,如果否,判断所述步进电机为正常工作,继续进行S2,并循环工作。
其中S4中,所述控制单元预存有设定时段T,所述控制单元判断每个反馈信号的运行持续时间是否大于2倍所述设定时段,如果是,判断所述流量控制方案发生堵转,所述控制单元发出堵转报警信号。
流量控制装置100可应用在新能源汽车的暖通空调、电池冷却或者电池加热系统,具体地涉及所述流量控制装置的可动阀件运动位置检测和堵转检测,检测元件采用霍尔传感器和磁环相配合,检测元件与电机的动力输出部同步运动,且安装较为简便,能够有效地提高位置检测的精度,进一步利用所述传动系统的传动比的变化,可动阀件位置检测的精度进一步提高,可减少磁环的磁极极数、减小磁环外径,可相对减小磁环体积。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (19)

  1. 一种流量控制装置,包括外壳、阀体组件以及驱动控制部件,所述外壳包括第一接口以及第二接口,所述阀体组件部分收容于所述外壳;所述阀体组件至少包括可动阀件以及传动部分,所述可动阀件与所述传动部分限位连接,且所述可动阀件相对于外壳可动设置,
    所述驱动控制部件包括控制单元、动力输出部、磁性元件以及检测元件,所述动力输出部与所述传动部分限位连接,所述动力输出部为该传动部分与该可动阀件提供驱动力,所述检测元件与所述控制单元电性连接,所述磁性元件与所述动力输出部相组装且相对固定,所述检测元件的感应部位于所述磁性元件的磁场感应范围内,所述感应部与所述磁性元件的外周侧相对设置,该检测元件能够感应所述磁性元件转动所产生的磁极变化。
  2. 如权利要求1所述的流量控制装置,其特征在于,所述动力输出部能够带动所述传动部分转动,且在所述传动部分带动下,所述可动阀件能够导通所述第一、第二接口之间形成的流通通道;所述动力输出部能够带动所述磁性元件转动,所述检测元件与所述磁性元件的外周侧之间具有感应间距,所述检测元件通过感应所述磁性元件的磁极变化而得到反馈信号,所述控制单元能够收到所述反馈信号、并判断所述动力输出部是否处于正常工作状态;在所述传动部分带动下,所述可动阀件转动到关闭工作位置时,该可动阀件截断所述第一、第二接口之间的所述流通通道。
  3. 如权利要求2所述的流量控制装置,其特征在于,所述检测元件与所述磁性元件之间设置有感应间距,所述驱动控制部件包括印刷电路板,所述检测元件、控制单元分别与该印刷电路板电连接,所述流量控制装置包括动力部件,该动力部件驱动所述动力输出部进行转动,所述磁性元件随该动力输出部转动,所述检测元件感应所述磁性元件的磁极变化,所述控制单元根据所述检测元件感应到的磁极变化,得到与该磁极变化相对应的脉冲信号,通过检测所述脉冲信号的脉冲时间宽度是否在正常工作范围内;
    或所述检测元件感应所述磁性元件的磁极变化而得到周期性变化信号,通过检测所述周期性变化信号的周期时间宽度是否大于正常工作范围 的上限,来判断所述流量控制装置的可动阀件是否发生堵转;
    沿垂直于所述印刷电路板所在平面的垂直方向,所述感应部在印刷电路板上的投影与所述磁环在印刷电路板上的投影至少部分重合。
  4. 如权利要求1所述的流量控制装置,其特征在于,所述动力输出部能够带动所述传动部分转动,且在所述传动部分带动下,所述可动阀件转动;所述动力输出部能够带动所述磁性元件转动,所述检测元件与所述磁性元件的外周侧之间具有感应间距,所述检测元件通过感应所述磁性元件的磁极变化而得到反馈信号,所述控制单元能够收到所述反馈信号、并判断所述动力输出部是否处于正常工作状态;
    所述检测元件与所述磁性元件之间设置有感应间距,所述驱动控制部件包括印刷电路板,所述检测元件、控制单元分别与该印刷电路板电连接,所述流量控制装置包括动力部件,该动力部件驱动所述动力输出部进行转动,所述磁性元件随该动力输出部转动,所述检测元件感应所述磁性元件的磁极变化,所述控制单元根据所述检测元件感应到的磁极变化,得到与该磁极变化相对应的脉冲信号,通过检测所述脉冲信号的脉冲时间宽度是否在正常工作范围内;
    或所述检测元件感应所述磁性元件的磁极变化而得到周期性变化信号,通过检测所述周期性变化信号的周期时间宽度是否大于正常工作范围的上限,来判断所述流量控制装置的可动阀件是否发生堵转。
  5. 如权利要求2所述的流量控制装置,其特征在于,所述流量控制装置包括传动系统,所述动力输出部具有蜗杆传动部,该蜗杆传动部与所述传动系统的传动输入部形成啮合机构,所述传动系统的传动输出部与所述可动阀件形成机械啮合机构;
    所述蜗杆传动部和/或磁性元件与所述动力输出部一体形成;或者,所述动力输出部具有安装部,该安装部与所述磁性元件相组装,该磁性元件具有与该安装部相配合的安装孔,所述安装部部分位于所述安装孔。
  6. 如权利要求1所述的流量控制装置,其特征在于,所述动力输出部能够带动所述磁性元件转动,所述检测元件与所述磁性元件的外周侧之间具有感应间距,所述检测元件通过感应所述磁性元件的磁极变化而得到反馈信号,所述控制单元能够收到所述反馈信号、并判断所述动力输出部是 否处于正常工作状态;在所述传动部分带动下,所述可动阀件转动到关闭工作位置时,该可动阀件截断所述第一、第二接口之间的所述流通通道;
    所述流量控制装置包括传动系统,所述动力输出部具有蜗杆传动部,该蜗杆传动部与所述传动系统的传动输入部形成啮合机构,所述传动系统的传动输出部与所述可动阀件形成机械啮合机构;所述蜗杆传动部和/或磁性元件与所述动力输出部一体形成;或者,所述动力输出部具有安装部,该安装部与所述磁性元件相组装,该磁性元件具有与该安装部相配合的安装孔,所述安装部部分位于所述安装孔。
  7. 如权利要求5或6所述的流量控制装置,其特征在于,所述动力部件为步进电机,所述动力输出部带动所述磁性元件转动,所述动力输出部通过所述传动系统驱动所述可动阀件,所述可动阀件对应转动一个工作角度,所述磁性元件发生一个磁极变化,所述检测元件对应产生一个电平信号;所述驱动控制部件包括印刷电路板,所述检测元件、控制单元分别与该印刷电路板电连接,所述检测元件为霍尔传感器,该霍尔传感器包括主体部和焊脚,该霍尔传感器的主体部与所述磁性元件的感应间距小于5mm,所述焊脚与印刷电路板电连接,且该焊脚与印刷电路板焊接固定,所述流量控制装置的位置检测精度等于小于两度。
  8. 如权利要求7所述的流量控制装置,其特征在于,所述检测元件为霍尔传感器,磁性元件为环状磁体设置或柱状磁体设置,所述磁性元件包括至少一对磁极,每对磁极分别包括N极和S极,N极和S极沿动力输出部的圆周方向间隔分布,该磁性元件的每个磁极通过所述霍尔传感器时,该磁极与霍尔传感器相互作用而产生一个电平信号。
  9. 如权利要求2或4-8中任一项所述的流量控制装置,其特征在于,所述驱动控制部件包括印刷电路板,所述检测元件、控制单元分别与该印刷电路板焊接固定,所述印刷电路板包括主体基部、悬伸部,所述检测元件焊接组装在该悬伸部的一侧,且与所述磁性元件面对设置,所述驱动控制部件的控制单元与所述主体基部相焊接,该控制单元与所述检测元件布置在电路板的同一侧或不同侧,所述电路板设置有印刷电路,该印刷电路电性连接所述控制单元与所述检测元件,该检测元件为霍尔传感器。
  10. 如权利要求1所述的流量控制装置,其特征在于,所述动力输出 部能够带动所述传动部分转动,且在所述传动部分带动下,所述可动阀件能够导通所述第一、第二接口之间形成的流通通道;所述动力输出部能够带动所述磁性元件转动,所述检测元件与所述磁性元件的外周侧之间具有感应间距;
    所述驱动控制部件包括印刷电路板,所述检测元件、控制单元分别与所述印刷电路板焊接固定,所述印刷电路板包括主体基部、悬伸部,所述检测元件焊接组装在该悬伸部的一侧,且与所述磁性元件面对设置,所述驱动控制部件的控制单元与所述主体基部相焊接固定,该控制单元与所述检测元件布置在电路板的同一侧或不同侧,所述电路板设置有印刷电路,该印刷电路电性连接所述控制单元与所述检测元件,该检测元件为霍尔传感器;
    所述流量控制装置包括动力部件,该动力部件驱动所述动力输出部进行转动,所述磁性元件随该动力输出部转动,所述检测元件感应所述磁性元件的磁极变化,所述控制单元根据所述检测元件感应到的磁极变化,得到与该磁极变化相对应的脉冲信号,通过检测所述脉冲信号的脉冲时间宽度是否在正常工作范围内;
    或,所述检测元件感应所述磁性元件的磁极变化而得到周期性变化信号,通过检测所述周期性变化信号的周期时间宽度是否大于正常工作范围的上限,来判断所述流量控制装置的可动阀件是否发生堵转。
  11. 如权利要求2-8所述的流量控制装置,其特征在于,所述动力部件为步进电机,该步进电机包括电机定子组件、电机输出轴,该电机输出轴自电机定子组件的一侧向外凸伸,且该电机输出轴形成所述动力输出部,所述磁性元件与所述电机输出轴相对固定设置;
    所述驱动控制部件包括印刷电路板,该印刷电路板包括主体基部、悬伸部,所述悬伸部自所述主体基部一端凸伸设置,且沿所述电机输出轴延伸方向,该悬伸部位于所述电机定子组件的一侧,沿所述电机输出轴的径向方向,所述悬伸部位于所述磁性元件外周的一侧,且所述检测元件固定于该悬伸部的朝向该磁性元件的一侧,该检测元件与磁性元件的外周侧之间具有感应间距。
  12. 如权利要求1或2所述的流量控制装置,其特征在于,所述驱动 控制部件包括印刷电路板,所述检测元件、控制单元分别与该印刷电路板焊接固定,所述流量控制装置还包括电机组件,所述电机组件提供所述动力输出部,该电机组件还包括第一接地元件、第二接地元件,所述第一、第二接地元件相组装,第二接地元件与所述印刷电路板焊接且电性连接。
  13. 如权利要求3或4所述的流量控制装置,其特征在于,所述印刷电路板包括主体基部、悬伸部,所述检测元件焊接组装在该悬伸部的一侧,且与所述磁性元件面对设置,所述电路板包括第一端部、第二端部,所述悬伸部自该第一端部向外延伸且成悬伸设置,所述流量控制装置还包括信号对接部,所述信号对接部的信号端子与所述电路板电性连接,该信号对接部的信号端子组装焊接到所述第二端部。
  14. 如权利要求13所述的流量控制装置,其特征在于,其特征在于,所述检测元件、控制单元分别与所述印刷电路板焊接固定,所述印刷电路板包括主体基部、悬伸部,所述检测元件焊接组装在该悬伸部的一侧,且与所述磁性元件面对设置,所述驱动控制部件的控制单元与所述主体基部相焊接,该控制单元与所述检测元件布置在电路板的同一侧或不同侧,所述电路板设置有印刷电路,该印刷电路电性连接所述控制单元与所述检测元件,该检测元件为霍尔传感器。
  15. 如权利要求2-6中任一项所述的流量控制装置,其特征在于,所述驱动控制部件包括印刷电路板,所述检测元件、控制单元分别与该印刷电路板焊接固定,所述印刷电路板包括主体基部、悬伸部,所述检测元件焊接组装在该悬伸部的一侧,且与所述磁性元件面对设置,所述外壳包括第一定位凸部、第二定位凸部,该第一定位凸部位于所述悬伸部的两侧,所述第二定位凸部与所述印刷电路板的主体基部相组装。
  16. 如权利要求1所述的流量控制装置,其特征在于,所述动力输出部能够带动所述磁性元件转动,所述检测元件与所述磁性元件的外周侧之间具有感应间距,所述检测元件通过感应所述磁性元件的磁极变化而得到反馈信号,所述控制单元能够收到所述反馈信号、并判断所述动力输出部是否处于正常工作状态;在所述传动部分带动下,所述可动阀件转动到关闭工作位置时,该可动阀件截断所述第一、第二接口之间的所述流通通道;
    所述驱动控制部件包括印刷电路板,所述检测元件、控制单元分别与 该印刷电路板焊接固定,所述印刷电路板包括主体基部、悬伸部,所述检测元件焊接组装在该悬伸部的一侧,且与所述磁性元件面对设置,所述外壳包括第一定位凸部、第二定位凸部,该第一定位凸部位于所述悬伸部的两侧,所述第二定位凸部与所述印刷电路板的主体基部相组装。
  17. 如权利要求1-16中任一项所述的流量控制装置的控制系统,至少包括:
    磁性元件,能够在所述流量控制装置的动力输出部带动下进行圆周运动,该磁性元件包括至少一对磁极,每对磁极包括N极和S极,N极和S极沿所述动力输出部的圆周方向间隔分布,当所述磁性元件圆周运动时,所述磁极依次通过所述检测元件的感应区域;
    检测元件,能够与所述磁性元件的磁极相互作用,而检测到反馈信号;
    控制单元,设置有设定对比上限,根据检测到的反馈信号与设定对比上限进行比较,判断所述动力输出部是否处于正常工作状态,并控制该动力输出部进行调整。
  18. 如权利要求1-11中任一项所述的流量控制装置的控制方法,所述流量控制装置通过设置控制单元、动力输出部、磁性元件以及检测元件相配合对流量控制装置进行检测和/或控制,所述磁性元件与所述动力输出部相对固定设置,所述磁性元件包括至少两个磁极,所述控制方法包括以下步骤:
    电机运行,所述磁性元件进行转动;
    所述检测元件感应所述磁性元件的磁极变化并形成反馈信号;
    所述控制单元实时采集所述反馈信号并得到反馈信号的运行持续时间;
    所述控制单元根据采集到的每个反馈信号的运行持续时间判断所述步进电机是否发生堵转,如果是,发出堵转报警信号,如果否,判断所述步进电机为正常工作,继续进行以上其中一个步骤:所述检测元件感应所述磁性元件的磁极变化并形成反馈信号。
  19. 如权利要求18所述的流量控制装置的控制方法,进一步包括以下步骤:
    所述控制单元预存有设定时段T,所述控制单元判断每个反馈信号的 运行持续时间是否大于2倍所述设定时段,如果是,判断所述流量控制方案发生堵转,所述控制单元发出堵转报警信号。
PCT/CN2017/113452 2016-12-01 2017-11-29 流量控制装置及其控制系统、控制方法 WO2018099379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17876312.4A EP3550395B1 (en) 2016-12-01 2017-11-29 Flow control device, and control system and control method therefor
US16/465,075 US11207945B2 (en) 2016-12-01 2017-11-29 Flow control device, and control system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611087286.7 2016-12-01
CN201611087286.7A CN108132679B (zh) 2016-12-01 2016-12-01 流量控制装置及其控制系统、控制方法

Publications (1)

Publication Number Publication Date
WO2018099379A1 true WO2018099379A1 (zh) 2018-06-07

Family

ID=62242042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113452 WO2018099379A1 (zh) 2016-12-01 2017-11-29 流量控制装置及其控制系统、控制方法

Country Status (4)

Country Link
US (1) US11207945B2 (zh)
EP (1) EP3550395B1 (zh)
CN (1) CN108132679B (zh)
WO (1) WO2018099379A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103591A1 (de) 2020-04-17 2021-10-21 ECO Holding 1 GmbH Antriebsvorrichtung zum Betätigen eines Drehschiebers
DE102022134219B3 (de) 2022-12-20 2023-12-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aktuator zum Steuern eines Verstellweges eines Ventils sowie Verfahren zum Messen des Toleranzausgleiches und Wassermischventil mit einem derartigen Aktuator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7331646B2 (ja) * 2019-11-07 2023-08-23 株式会社デンソー バルブ装置
DE102019218107A1 (de) * 2019-11-22 2021-05-27 Mack & Schneider Gmbh Drehventil
EP3904725A1 (en) * 2020-05-01 2021-11-03 Illinois Tool Works, Inc. Gear train for a valve actuator
CN114825757A (zh) * 2021-01-18 2022-07-29 浙江三花汽车零部件有限公司 驱动装置
CN115027196A (zh) * 2021-03-05 2022-09-09 法雷奥汽车空调湖北有限公司 一种电子膨胀阀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109416A (ja) * 1996-06-25 1998-01-13 Nichirin:Kk 四方切換え弁
US5992459A (en) * 1997-06-25 1999-11-30 Kabushiki Kaisha Saginomiya Seisakusho Rotary flow-path exchanging valve
JP2001004052A (ja) * 1999-06-21 2001-01-09 Pacific Ind Co Ltd 電磁パイロット式四方弁
CN103782074A (zh) * 2011-09-06 2014-05-07 丰田自动车株式会社 选择阀和冷却系统
CN204985849U (zh) * 2015-07-30 2016-01-20 浙江盾安禾田金属有限公司 电动切换阀

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745996B1 (en) * 1997-07-28 2004-06-08 Gaymar Industries, Inc. Alternating pressure valve system
FI108886B (fi) * 1998-01-23 2002-04-15 Metso Paper Automation Oy Menetelmä ja laitteisto toimilaitteen aseman määrittämiseksi
US6460567B1 (en) * 1999-11-24 2002-10-08 Hansen Technologies Corpporation Sealed motor driven valve
DE19960190A1 (de) * 1999-12-14 2001-07-05 Bosch Gmbh Robert Regelventil
JP4028291B2 (ja) * 2002-05-16 2007-12-26 株式会社鷺宮製作所 電動弁の駆動装置及び冷凍サイクル装置
DE102006026537A1 (de) 2006-06-07 2007-12-20 Siemens Ag Verfahren und System zur Schrittverlustermittlung eines Schrittmotors
JP2012247323A (ja) * 2011-05-30 2012-12-13 Hitachi Automotive Systems Ltd インダクタンス式回転角度検出装置及びそれを備えたモータ駆動式の絞り弁制御装置
US9052029B2 (en) * 2011-12-12 2015-06-09 Hyundai Motor Company Apparatus and method for controlling actuator that controls opening and closing of intake valve
CN103217320B (zh) * 2012-01-19 2016-12-14 深圳迈瑞生物医疗电子股份有限公司 一种气体处理装置及医疗设备
CA2872549C (en) * 2012-05-25 2021-04-13 Mueller International, Llc Position indicator for valves
DE102012022211A1 (de) 2012-11-07 2014-05-22 Mack & Schneider Gmbh Scheibenventil
ES1085929Y (es) 2013-06-21 2013-10-24 Bitron Ind Espana Sa Electrovalvula motorizada
US10140843B2 (en) * 2014-01-17 2018-11-27 Westlock Controls Corporation Visual valve position indicator with wireless transmitter
GB2525866A (en) 2014-05-06 2015-11-11 Johnson Electric Sa Controller for driving a stepper motor
DE102014106513A1 (de) * 2014-05-09 2015-11-12 Pierburg Gmbh Abgasturbolader mit einem Waste-Gate-Ventil
DE102015106673A1 (de) * 2015-04-29 2016-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fluiddrehregler
CN107763285B (zh) 2016-08-18 2021-02-02 杭州三花研究院有限公司 控制系统以及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109416A (ja) * 1996-06-25 1998-01-13 Nichirin:Kk 四方切換え弁
US5992459A (en) * 1997-06-25 1999-11-30 Kabushiki Kaisha Saginomiya Seisakusho Rotary flow-path exchanging valve
JP2001004052A (ja) * 1999-06-21 2001-01-09 Pacific Ind Co Ltd 電磁パイロット式四方弁
CN103782074A (zh) * 2011-09-06 2014-05-07 丰田自动车株式会社 选择阀和冷却系统
CN204985849U (zh) * 2015-07-30 2016-01-20 浙江盾安禾田金属有限公司 电动切换阀

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103591A1 (de) 2020-04-17 2021-10-21 ECO Holding 1 GmbH Antriebsvorrichtung zum Betätigen eines Drehschiebers
DE102022134219B3 (de) 2022-12-20 2023-12-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aktuator zum Steuern eines Verstellweges eines Ventils sowie Verfahren zum Messen des Toleranzausgleiches und Wassermischventil mit einem derartigen Aktuator

Also Published As

Publication number Publication date
EP3550395B1 (en) 2021-09-01
CN108132679B (zh) 2020-08-11
EP3550395A4 (en) 2020-07-22
US11207945B2 (en) 2021-12-28
US20190283534A1 (en) 2019-09-19
CN108132679A (zh) 2018-06-08
EP3550395A1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
WO2018099379A1 (zh) 流量控制装置及其控制系统、控制方法
CN107763285B (zh) 控制系统以及控制方法
CA2937558C (en) Electrical device with filter mesh blockage detection function
WO2017068881A1 (ja) 弁制御装置
CA2934585C (en) Air volume measurement method for fan motor
CN1050756A (zh) 动力传输装置
KR20070026622A (ko) 가변 흐름 밸브
CN106488830A (zh) 电动工具
KR20200085749A (ko) 소형 기어 모터
JP2007028861A (ja) ステッピングモータ及び弁装置
US10686395B2 (en) Brushless motor control device
US9868347B2 (en) Adjustment device and method for adjusting shutoff elements
CN110277939B (zh) 控制系统及控制方法、带有步进电机的冷媒阀
CN208442316U (zh) 一种电动阀
JP2008199872A (ja) ブラシレス直流モータ、圧縮機及びこれを有する空気調和機
JP2010091160A (ja) 空気調和機
CN109348693A (zh) 一种自动散热型伺服电机驱动器
EP4215750A1 (en) Electronic oil pump
CA2951319A1 (en) Automatic speed regulating ecm motor and freezer using same
CN110500422A (zh) 一种电动阀
JP2022014198A (ja) 電動弁およびロータの製造方法
JP2005178561A (ja) 電動アクチュエータシステム、及び車両用空調装置。
CN211779271U (zh) 一种阀门控制装置
CN110553078B (zh) 一种电子水阀的控制方法
JP7560119B2 (ja) 電動弁制御装置および電動弁制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017876312

Country of ref document: EP

Effective date: 20190701