WO2018099346A1 - 采用低热值煤气发电的方法及系统 - Google Patents

采用低热值煤气发电的方法及系统 Download PDF

Info

Publication number
WO2018099346A1
WO2018099346A1 PCT/CN2017/113102 CN2017113102W WO2018099346A1 WO 2018099346 A1 WO2018099346 A1 WO 2018099346A1 CN 2017113102 W CN2017113102 W CN 2017113102W WO 2018099346 A1 WO2018099346 A1 WO 2018099346A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
low
steam
pressure
water
Prior art date
Application number
PCT/CN2017/113102
Other languages
English (en)
French (fr)
Inventor
李社锋
艾庆文
康梅强
刘子豪
Original Assignee
武汉都市环保工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉都市环保工程技术股份有限公司 filed Critical 武汉都市环保工程技术股份有限公司
Priority to RU2018145127A priority Critical patent/RU2713554C1/ru
Publication of WO2018099346A1 publication Critical patent/WO2018099346A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/08Installation of heat-exchange apparatus or of means in boilers for heating air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • F22G5/123Water injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G7/00Steam superheaters characterised by location, arrangement, or disposition
    • F22G7/12Steam superheaters characterised by location, arrangement, or disposition in flues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention belongs to the technical field of energy conservation and environmental protection, and particularly relates to a method and system for generating electricity by using low calorific value gas.
  • China is a big steel producer in the world.
  • Iron and steel enterprises produce a large amount of by-product gas in the smelting process, such as blast furnace gas, converter gas and coke oven gas.
  • blast furnace gas has the largest output, lowest calorific value, toxic and harmful, and easy Burning and explosive features.
  • China's energy shortage has become increasingly prominent, and environmental protection requirements have been increasing.
  • Blast furnace gas power generation has been gradually applied in iron and steel enterprises.
  • the patent No. 201320444475.0 discloses a flue gas waste heat recovery and utilization system for all-fired blast furnace gas boilers.
  • the application number is The patent of 201320446384.0 discloses a deep recovery and utilization system for flue gas waste heat of a fully-fired blast furnace gas boiler, but the above-mentioned blast furnace gas power generation system only focuses on improving the recovery and utilization of waste heat on the flue gas side, and does not consider how to improve the thermal efficiency on the steam water side; application number is 201510239804.1
  • the patent discloses a power generation method and system for burning metallurgical gas in a self-supplied power plant, but it merely provides a concept and method for gas power generation in a steel enterprise without a related power generation system.
  • blast furnace gas power generation has been gradually applied in iron and steel enterprises, there are still problems such as unstable combustion of boilers, unreasonable arrangement of heated surfaces, and low thermal efficiency.
  • Embodiments of the present invention relate to a method and system for power generation using low calorific value gas, which can at least solve some of the defects of the prior art.
  • Embodiments of the present invention relate to a method of generating electricity using low calorific value gas, comprising the following steps:
  • Step one the low-calorific value gas of LHV at 3100 kJ/Nm 3 or more is sent to a low-calorific value gas boiler for combustion, and the flue gas generated by the combustion exchanges heat with the heat exchange surface of the low-calorific value gas boiler; wherein, in the superheater Producing high temperature and super high pressure superheated steam of 13.7 MPa and 540 ° C, and superheated steam is sent to a high pressure cylinder of a steam turbine for power generation;
  • step two the steam coming out of the high pressure cylinder of the steam turbine enters the reheater for reheating, and the reheated steam from the reheater enters the low pressure cylinder for power generation;
  • Step 3 after the steam from the low pressure cylinder is condensed into condensed water, enter the economizer, and the water from the economizer enters the steam drum;
  • Step 4 In the steam drum, the water obtained by the steam-water separation enters the water-cooling wall of the low calorific value gas boiler, is heated to the steam or the steam-water mixture in the water-cooled wall, and then returns to the steam drum; the saturated steam obtained by the steam-water separation enters the superheater. Medium and heated to a high temperature and super high pressure superheated steam of 13.7 MPa and 540 ° C, and then sent to a high pressure cylinder of a steam turbine for power generation;
  • step five the above steps 2 to 4 are performed cyclically.
  • the main steam pressure is controlled by the high pressure bypass mechanism
  • the high-pressure bypass mechanism includes at least one high-pressure bypass arranged in parallel, and each of the high-pressure bypasses is provided with a high bypass pressure valve.
  • a high-pressure water spray line is connected to the desuperheating water inlet end of each of the high-side pressure valves, and each of the high-pressure water spray pipes is provided with a high side water spray regulating valve and a high side water spray isolation valve;
  • Each of the control methods of the high pressure bypass includes: calculating a required reduction by a corresponding opening degree of the high bypass pressure valve, a corresponding enthalpy of steam before and after the high bypass pressure valve, and a enthalpy value of the desuperheated water
  • the amount of warm water is calculated according to the pressure before and after the corresponding high side water spray regulating valve and the corresponding equal percentage characteristic curve of the high side water spray regulating valve to calculate the opening degree of the corresponding high side water spray regulating valve.
  • a low pressure bypass is bypassed on the outlet steam line of the reheater, and a steam outlet end of the low pressure bypass is connected to the outlet condensation line of the low pressure cylinder;
  • a low side pressure valve is disposed on the low pressure bypass, and a low pressure water injection line is connected to the desuperheating water inlet end of the low side pressure valve, and the low side water spray pipe is provided with a low side water spray regulating valve and a low side Water spray isolation valve.
  • control method of the low voltage bypass includes:
  • the low side water isolation valve is closed by a delay of 15 s.
  • the control method of the low pressure bypass includes: calculating the required reduction by the opening degree of the low bypass valve, the enthalpy of the steam before and after the low bypass valve, and the enthalpy of the desuperheated water.
  • the amount of warm water is calculated according to the pressure before and after the low side water spray regulating valve and the equal percentage characteristic curve of the low side water spray regulating valve.
  • Embodiments of the present invention relate to a system for generating electricity using low calorific value gas, including a boiler and a steam turbine,
  • the furnace body of the boiler comprises a combustion chamber, a horizontal flue and a vertical flue, the combustion chamber is provided with a burner structure, and an inner wall of the combustion chamber is at least partially a water-cooled wall;
  • a superheater is arranged in the horizontal flue, and a reheater and an economizer are arranged in the vertical flue from top to bottom;
  • the steam turbine includes a high pressure cylinder and a low pressure cylinder, and a steam inlet of the high pressure cylinder communicates with an outlet end of the superheater through a first steam line, and a steam outlet of the high pressure cylinder passes through a second steam line and the The inlet end of the heat exchanger is in communication, and the steam inlet of the low pressure cylinder communicates with the outlet end of the reheater through a third steam line.
  • the boiler is provided with a steam drum
  • the steam drum is provided with a steam-water separating device
  • the steam drum has a water outlet, a water inlet, a steam-water mixture inlet and a gas outlet, and the inlet end of each of the water-cooled walls All communicating with the water outlet, the outlet ends of each of the water-cooling walls are in communication with the inlet of the steam-water mixture, the water inlet is in communication with an outlet end of the economizer, the gas outlet and the superheater The entrance end is connected.
  • the steam outlet of the low pressure cylinder is connected with a condensing line
  • the condensing line is provided with a condenser and a condensing water pump, and an outlet end of the condensing line and an inlet end of the economizer Connected.
  • the condensation line is further provided with a low pressure heater and a high pressure heater, the condenser, the condensation
  • the water pump, the low pressure heater, and the high pressure heater are sequentially arranged in the flow direction of the condensed water.
  • the above system using low calorific value gas power generation further includes a high pressure bypass mechanism and a low pressure bypass mechanism;
  • the steam inlet end of the high pressure bypass mechanism is connected to the first steam line, and the steam outlet end of the high pressure bypass mechanism is connected to the second steam line;
  • a steam inlet end of the low-pressure bypass mechanism is connected to the third steam line, a steam outlet end of the low-pressure bypass mechanism is connected to the condensation line, and a bypass point is located at the condenser and the Between the low pressure cylinder steam outlets.
  • the high-pressure bypass mechanism includes at least one high-pressure bypass arranged in parallel, each of the high-pressure bypasses is provided with a high bypass pressure valve, and the desuperheating water inlet ends of each of the high bypass valves are connected There is a high-pressure water spray pipe, and each of the high-pressure water spray pipes is provided with a high side water spray regulating valve and a high side water spray isolation valve;
  • the low-pressure bypass mechanism includes at least one low-pressure bypass arranged in parallel, each of the low-pressure bypasses is provided with a low bypass pressure valve, and each of the low-pressure bypass valves has a low-pressure water injection pipe connected to the desuperheating water inlet end thereof.
  • Each of the low pressure water spray pipes is provided with a low side water spray regulating valve and a low side water spray isolation valve.
  • the burner structure includes a first combustor layer, the first combustor layer including at least one first combustor disposed on a front wall of the combustion chamber, or including a hedge disposed in the combustion a plurality of first burners of the front wall and the rear wall, each of the first burners comprises an ignition gas pipe, a first gas pipe and a first gas pipe, which are sequentially sleeved from the inside to the outside, the first gas pipe A low calorific value gas supply pipe is connected.
  • the first gas pipe and the outlet end of the first gas pipe are respectively provided with a swirling blade group, and each of the swirling blades of each swirling blade group is annularly arranged in the corresponding tracheal cavity.
  • Each of the swirling vanes is disposed along a radial direction of the corresponding air tube.
  • a first annular hub is disposed at the outlet end of the first gas pipe, and the first annular hub is located between the first gas pipe and the ignition gas pipe;
  • the swirling vane group includes a plurality of first swirling vanes and a plurality of second swirling vanes, each of the first swirling vanes being fixed between the first annular hub and the ignition gas pipe, each of the first The two swirling vanes are each fixed between the first annular hub and the first gas pipe.
  • a second annular hub is disposed at the outlet end of the first combustion gas pipe, and the second annular hub is located between the first combustion gas pipe and the first gas pipe;
  • the swirling vane group in the gas pipe includes a plurality of third swirling vanes, each of the third swirling vanes being fixed between the second annular hub and the first gas pipe.
  • the swirling vane group in the first combustion gas tube further includes a plurality of fourth swirling vanes, each of the fourth swirling vanes being fixed to the second annular hub and the first Between the gas pipes.
  • the burner structure further includes a second combustor layer, the second combustor layer being located above the first combustor layer; the second combustor layer including being disposed in the combustor At least one second burner of the front wall or a plurality of second burners arranged to impede the front and rear walls of the combustion chamber;
  • Each of the second burners includes a second gas pipe, a second gas pipe, a third gas pipe and a third gas pipe which are sequentially sleeved from the inside to the outside, and the outlet ends of each gas pipe are provided with a swirling vane group.
  • Each of the swirling vanes of each of the swirling vane sets is annularly disposed in a corresponding tracheal lumen, and each of the swirling vanes is disposed along a radial direction of the corresponding trachea.
  • an air preheater is disposed in the vertical flue, the air preheater is located below the economizer; the first gas line, the second gas line, and the The third combustion gas pipe is connected to the gas supply pipe, and the outlet end of the air preheater is in communication with at least one of the gas supply pipes.
  • the embodiment of the invention has at least the following beneficial effects: the arrangement structure of the heating surface of the low calorific value gas boiler and the one-time reheating of the steam medium can effectively improve the steam quality, and the low calorific value gas boiler is used for the LHV at 3100 kJ/Nm 3 When the above blast furnace gas is used for power generation, the power generation efficiency of the low calorific value gas can be effectively improved.
  • FIG. 1 is a schematic structural view of a burner provided in Embodiment 1 of the present invention.
  • Figure 2 is a schematic view showing the A-direction structure of the burner of Figure 1;
  • FIG. 3 is a schematic structural view of a burner provided in Embodiment 2 of the present invention.
  • Figure 4 is a schematic view showing the A-direction structure of the burner of Figure 3;
  • FIG. 5 is a schematic structural diagram of a low calorific value gas power generation system according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a high voltage bypass and a low voltage bypass according to an embodiment of the present invention.
  • an embodiment of the present invention relates to a burner including an ignition gas pipe 1111, a first gas pipe 1112, and a first gas pipe 1113 which are sequentially connected from the inside to the outside, the first gas pipe 1112 and The outlet ends of the first gas-assisting gas pipe 1113 are respectively provided with a swirling vane group, and each of the swirling vanes of each swirling vane group is annularly arranged in a corresponding tracheal inner cavity, and each of the swirling vanes is along a radial direction of the corresponding trachea Arrangement.
  • the ignition gas pipe 1111, the first gas pipe 1112 and the first gas pipe 1113 are preferably coaxially sleeved; further comprising an igniter 1116 disposed in the first gas pipe 1112, and preferably adjacent to the ignition gas pipe 1111
  • the operation is stable and reliable.
  • the ignition gas pipe 1111 is connected to the ignition gas supply pipe, and the ignition gas may be a coke oven gas, a converter gas, a natural gas, a liquefied petroleum gas or a fuel oil;
  • the first gas pipe 1112 is connected to the first gas supply pipe, in the embodiment, the above
  • the burner is a blow combustion for a low calorific value gas
  • the first gas supply pipe preferably supplies a low calorific value gas
  • the low calorific value gas is a blast furnace gas;
  • the first gas line 1113 is connected to a gas supply Pipes, gas, generally use air.
  • the swirling vane group By setting the swirling vane group, on the one hand, it is conducive to the strong mixing of gas and combustion gas, ensuring the continuous combustion of the gas, improving the stability of gas combustion; on the other hand, forming a high-temperature flue gas recirculation zone in the combustion area, which is favorable for gas
  • the burning of the fire improves the stability of combustion of the gas and the completeness of combustion.
  • the burner is used for the combustion of low calorific value gas, the combustion effect and efficiency of the low calorific value gas can be effectively improved.
  • each swirling vane group can be arranged in such a manner that the swirling vane group in the first gas pipe 1112 includes a plurality of first gas swirling vanes 1114, each of the first gas swirling flows.
  • One end of the blade 1114 is fixed on the ignition gas pipe 1111, and the other end is fixed on the first gas pipe 1112;
  • the swirling vane group in the first gas-assisting gas pipe 1113 includes a plurality of first gas-assisting swirling vanes 1115, each of the first combustion-supporting
  • One end of the cyclonic flow vane 1115 is fixed to the first gas pipe 1112, and the other end is fixed to the first gas pipe 1113.
  • the number of first gas swirling blades 1114 is less than the number of first combustion gas swirling vanes 1115; further, in the radial direction of the first gas pipe 1112, the first gas swirling vanes
  • the length of 1114 is greater than the length of the first combustion gas swirling vane 1115 to ensure the desired tangential velocity and mixing effect of the two gas swirls.
  • a first annular hub is disposed at the outlet end of the first gas pipe 1112, and the first annular hub is located at the first a gas pipe 1112 and the ignition gas pipe 1111;
  • the swirling vane group in the first gas pipe 1112 includes a plurality of first swirling vanes and a plurality of second swirling vanes, each of the first swirling vanes
  • Each of the first annular hubs is fixed between the first annular hub and the ignition gas pipe 1111, and each of the second swirling blades is fixed between the first annular hub and the first gas pipe 1112.
  • the number of the first swirling vanes is less than the number of the second swirling vanes; further, along the radial direction of the first gas pipe 1112, the length of the first swirling vane Greater than the length of the second swirling vanes, the flow rates of the two first gas swirls are substantially equalized.
  • the rotation direction of the first swirling vane may be the same as or different from the rotation direction of the second swirling vane; the inclination angle of the first swirling vane may be the same as the tilting angle of the second swirling vane, or
  • the rotation direction of each first swirling blade should ensure that a negative pressure zone can be formed at the center of the swirling flow, so as to facilitate high temperature flue gas recirculation, and the first gas and the combustion gas are heated by the high temperature flue gas to improve combustion efficiency.
  • the rotation direction of each of the first swirling vanes is preferably opposite to the direction of rotation of the second swirling vane, or the same in the direction of rotation but different in inclination angle, so that the two first gas swirls can collide with each other, preferably through two strands.
  • the first gas swirling collision facilitates the formation of turbulent flow and improves the mixing effect of the first gas and the combustion gas.
  • a second annular hub is disposed at the outlet end of the first gas-assisting gas tube 1113, and the second An annular hub is located between the first combustion gas tube 1113 and the first gas tube 1112;
  • the swirling vane group in the first combustion gas tube 1113 includes a plurality of third swirling vanes, each of the third swirling flow The vanes are each fixed between the second annular hub and the first gas pipe 1112.
  • the swirling vane may not be disposed between the second annular hub and the first gas-assisting gas pipe 1113, that is, the outlet of the first gas-assisting gas pipe 1113 forms two air flows, wherein the external jet is a direct current jet, and the internal jet is a swirling flow, and the structure is to some extent
  • the airflow of the integral jet ejected by the burner is elongated, but the rotation intensity of the airflow is weakened, and the flue gas recirculation zone is reduced; therefore, in this embodiment, it is further preferred to be in the second annular hub and the first combustion gas tube.
  • a swirling vane is disposed between 1113, that is, the swirling vane group in the first combustion gas tube 1113 further includes a plurality of fourth swirling vanes, each of the fourth swirling vanes being fixed to the second annular hub Between the first combustion gas tube 1113 and the first gas.
  • the direction of rotation of the third swirling vane may be the same as or different from the direction of rotation of the fourth swirling vane; the inclination angle of the third swirling vane may be the same as or different from the tilting angle of the fourth swirling vane.
  • the direction of rotation of the third swirling vane is opposite to the direction of rotation of the fourth swirling vane, wherein the swirling direction of the third swirling vane is preferably the same as the second swirling vane of the first gas pipe 1112
  • the opposite direction of swirling and swirling can increase the mixing effect of the first gas and the combustion gas to some extent, while the fourth swirling blade group ensures that the overall jet of the burner has a certain tangential velocity.
  • the mixing effect of the first gas and the combustion gas, and the flue gas recirculation zone should be considered.
  • the control and the swirling of each strand have a suitable tangential speed, which can be adjusted in the following ways, depending on the situation:
  • the gas characteristics of the gas should ensure that the gas is uniformly mixed with the air as the combustion gas, and it is better to burn the gas.
  • the volume ratio of the blast furnace gas to the combustion air can be adjusted within a range of 1:5 to 1:10.
  • the above adjustment method can select the corresponding parameters of each swirling vane group by corresponding calculation according to the characteristics of the low calorific value gas in the field before the installation of the burner, and select the corresponding burner for installation. More preferably, during the combustion process, the inclination angles of the respective swirling blades can be adjusted in real time to obtain a desired combustion condition; that is, both ends of each of the swirling blades are rotatably mounted on the corresponding mounting portions, respectively.
  • each swirling vane and the corresponding bearing may be lubricated with high temperature resistant grease or high temperature lubricating oil; each swirling vane of each swirling vane group preferably passes through Synchronous transmission for synchronization Rotation adjustment, the synchronous transmission mechanism can be a common synchronous transmission structure such as a gear mesh transmission mode, and the specific structure will not be described herein.
  • a monitoring mechanism can be further provided for real-time monitoring of the working condition of the burner to ensure safe and stable operation of the burner.
  • the monitoring mechanism mainly comprises a flame monitor, a pressure monitor and a temperature monitor, and a flame observation hole 1117 and a flame monitor hole 1118 can be disposed at an end of the burner away from the nozzle.
  • an embodiment of the present invention relates to a burner including a second gas pipe 1121, a second gas pipe 1122, a third gas pipe 1123, and a third gas pipe 1124 which are sequentially connected from the inside to the outside.
  • Each of the outlet ends of the air pipes is provided with a swirling vane group, and each of the swirling vanes of each swirling vane group is annularly arranged in a corresponding tracheal inner cavity, and each of the swirling vanes is arranged along a radial direction of the corresponding trachea.
  • the swirling vane group By setting the swirling vane group, on the one hand, it is conducive to the strong mixing of gas and combustion gas, ensuring the continuous combustion of the gas, improving the stability of gas combustion; on the other hand, forming a high-temperature flue gas recirculation zone in the combustion area, which is favorable for gas The burning of the fire improves the stability of combustion of the gas and the completeness of combustion.
  • the second gas pipe 1121, the second gas pipe 1122, the third gas pipe 1123, and the third gas pipe 1124 are preferably coaxially sleeved.
  • the second gas pipe 1121 is connected to the second gas supply pipe
  • the third gas pipe 1123 is connected to the third gas supply pipe
  • the second gas pipe 1122 and the third gas pipe 1124 are connected to the gas supply pipe and the gas. Air is generally used.
  • the second gas supply pipe is preferably a high calorific value gas such as a converter gas;
  • the third gas supply pipe is preferably a low calorific value gas, and further preferably, the low calorific value gas is a blast furnace gas;
  • the low calorific value gas mixed combustion can adjust the fuel ratio according to the surplus of the converter gas and the blast furnace gas of the steel plant; on the other hand, the combustion efficiency and efficiency can be improved by adjusting the ratio of the converter gas and the blast furnace gas, thereby effectively improving the low heat
  • the combustion effect of the value of gas is conducive to improving the quality of the flue gas.
  • the system for generating electricity using low calorific value gas of the present invention can realize stable combustion of purely burnt blast furnace gas and generate electricity.
  • the number of second gas swirling vanes 1126 is less than the number of second combustion gas swirling vanes 1127; further, in the radial direction of the second gas pipe 1121, the second gas swirling vane
  • the length of 1126 is greater than the length of the second combustion gas swirling vane 1127 to ensure the desired tangential velocity and mixing effect of the two gas swirls.
  • the number of third gas swirling vanes 1128 is less than the number of third combustion gas swirling vanes 1129; further, in the radial direction of the third gas pipe 1123, the third gas swirling vane 1128 has a length greater than the third assisted gas swirling vane
  • the length of 1129 is guaranteed to achieve the desired tangential velocity and mixing effect of the two gas swirls.
  • each swirling vane group it is preferable to adopt a preferred structure: a support hub 1125 and a third annular hub are provided at the outlet end of the second gas pipe 1121, and the support hub 1125 and the The third annular hub and the second gas pipe 1121 are sequentially sleeved from the inside to the outside; the swirling vane group in the second gas pipe 1121 includes a plurality of fifth swirling vanes and a plurality of sixth swirling vanes Each of the fifth swirling vanes is fixed between the third annular hub and the supporting hub 1125, and each of the sixth swirling vanes is fixed to the third annular hub and the second gas. Between the tubes 1121.
  • the number of the fifth swirling vanes is less than the number of the sixth swirling vanes; further, along the radial direction of the second gas pipe 1121, the length of the fifth swirling vane Greater than the length of the sixth swirl vane, the flow rates of the two second gas swirls are substantially equalized.
  • the rotation direction of the fifth swirling vane may be the same as or different from the rotation direction of the sixth swirling vane; the inclination angle of the fifth swirling vane may be the same as the inclination angle of the sixth swirling vane, or Different; wherein, the rotation direction of each fifth swirling vane should ensure that a negative pressure zone can be formed at the center of the swirling flow thereof to facilitate high temperature flue gas recirculation, and the second gas and the combustion gas are heated by the high temperature flue gas to improve combustion efficiency.
  • each of the fifth swirling vanes is preferably opposite to the direction of rotation of the sixth swirling vane, or the swirling direction is the same but the tilting angle is different, so that the two first gas swirls can collide with each other, preferably through two strands.
  • the second gas swirling collision facilitates the formation of turbulent flow and improves the mixing effect of the second gas and the combustion gas.
  • a fourth annular hub is disposed at the outlet end of the second combustion gas tube 1122, and the fourth annular hub is located between the second combustion gas tube 1122 and the second gas tube 1121;
  • the swirling vane group in the second combustion gas tube 1122 includes a plurality of seventh swirling vanes and a plurality of eighth swirling vanes, each of the seventh swirling vanes being fixed to the fourth annular hub and the second Between the gas tubes 1121, each of the eighth swirling vanes is fixed between the fourth annular hub and the second combustion gas tube 1122.
  • the direction of rotation of the seventh swirling vane may be the same as or different from the direction of rotation of the eighth swirling vane; the inclination angle of the seventh swirling vane may be the same as or different from the tilting angle of the eighth swirling vane;
  • the direction of rotation of the seventh swirling vane is opposite to the direction of rotation of the eighth swirling vane, wherein the swirling direction of the seventh swirling vane is preferably opposite to the direction of rotation of the sixth swirling vane in the second gas pipe 1121 And the swirling hedge,
  • the mixing effect of the second gas and the combustion gas may be improved to some extent, and the rotation direction of the eighth swirling vane is preferably opposite to the swirling direction of the swirling vane group in the third gas pipe 1123, and the swirling is opposed. To the extent that the mixing effect of the third gas and the combustion gas is improved.
  • a fifth annular hub is disposed at an outlet end of the third combustion gas tube 1124, and the fifth annular hub is located between the third combustion gas tube 1124 and the third gas tube 1123;
  • the swirling vane group in the third combustion gas pipe 1124 includes a plurality of ninth swirling vanes, and each of the ninth swirling vanes is fixed between the fifth annular hub and the third gas pipe 1123.
  • the swirling vane may not be disposed between the fifth annular hub and the third combustion gas tube 1124, that is, the outlet of the third combustion gas tube 1124 forms two air flows, wherein the external jet is a direct current jet, and the internal jet is a swirling flow, and the structure is to some extent
  • the airflow of the integral jet ejected by the burner is elongated, but the rotation intensity of the airflow is weakened, and the flue gas recirculation zone is reduced; therefore, in the embodiment, the fifth annular hub and the third combustion gas pipe are further preferably used.
  • a swirling vane is disposed between 1124, that is, the swirling vane group in the third combustion gas tube 1124 further includes a plurality of tenth swirling vanes, each of the tenth swirling vanes being fixed to the fifth annular hub Between the third combustion gas tube 1124 and the third.
  • the rotation direction of the ninth swirling vane may be the same as or different from the rotation direction of the tenth swirl vane; the inclination angle of the ninth swirl vane may be the same as or different from the tilt angle of the tenth swirl vane.
  • the gas characteristics of the gas should ensure that the low calorific value gas is uniformly mixed with the high calorific value gas and the air as the combustion gas, and it is better to burn the gas.
  • the volume ratio of the blast furnace gas, the converter gas, and the combustion air can be adjusted within a range of 1:1:7 to 1:3:12.
  • the above adjustment method can be selected according to the characteristics of the low calorific value gas and the converter gas before the installation of the burner, and the corresponding parameters of each swirling vane group are obtained through corresponding calculation, and the corresponding burner is selected for installation.
  • a more preferred way is: during the combustion process, the inclination angle of each swirling vane can be adjusted in real time to obtain a desired combustion condition; that is, the two ends of each swirling vane can be respectively rotated.
  • each swirling vane group preferably has a synchronous rotation adjustment by a synchronous transmission mechanism, and the synchronous transmission mechanism may be a conventional synchronous transmission structure such as a gear meshing transmission mode, and the specific structure will not be described herein.
  • a monitoring mechanism can be further provided for real-time monitoring of the working condition of the burner to ensure safe and stable operation of the burner.
  • the monitoring mechanism mainly comprises a flame monitor, a pressure monitor and a temperature monitor, and a flame observation hole and a hole for the flame monitor can be arranged at an end of the burner away from the nozzle.
  • Embodiments of the present invention relate to a combustor structure 11 for placement on a combustion chamber of a boiler 1 that includes a first combustor layer, the first combustor layer including at least a front wall of the combustor a first burner, or a plurality of first burners arranged to impede the front wall and the rear wall of the combustion chamber, each of the first burners comprising an ignition gas tube 1111 that is sequentially sleeved from the inside out A gas pipe 1112 and a first gas pipe 1113.
  • each of the second burners includes a second gas pipe 1121 and a second gas pipe 1122 that are sequentially sleeved from the inside to the outside.
  • the third gas pipe 1123 and the third gas pipe 1124 are sequentially sleeved from the inside to the outside.
  • each of the first burners adopts the burner provided in the first embodiment
  • each of the second burners adopts the burner provided in the second embodiment
  • each of the first burners and each of the second burners The specific structure of the burner will not be described here.
  • an embodiment of the present invention relates to a low calorific value gas boiler 1 including a furnace body including a combustion chamber, a horizontal flue and a vertical flue, and a superheater 13 disposed in the horizontal flue.
  • a reheater 14 and an economizer 15 are disposed in the vertical flue in this order from top to bottom.
  • the outlet end of the superheater 13 is in communication with the steam inlet of the peripheral steam utilization mechanism, and the inlet end of the reheater 14 is in communication with the steam outlet end of the steam utilization mechanism, and the outlet end of the reheater 14 is
  • the steam inlet of the steam utilization mechanism is in communication, and the inlet end of the economizer 15 is connected to a condensing mechanism connected to the exhaust outlet end of the steam utilization mechanism.
  • the inner wall of the combustion chamber is at least partially a water-cooled wall 17; preferably, the inner wall of the combustion chamber is a water-cooled wall 17.
  • the low calorific value gas boiler 1 is further provided with a steam drum 12, and the steam drum 12 is provided with a steam water separation device, and the steam drum 12 has a water outlet, a water inlet, a steam and water mixture inlet and a gas outlet, and each of the water cooling An inlet end of the wall 17 is in communication with the water outlet, and an outlet end of each of the water-cooling walls 17 is in communication with the inlet of the soda mixture, the water inlet being in communication with an outlet end of the economizer 15, the gas The outlet is in communication with the inlet end of the superheater 13.
  • the above steam utilization mechanism is generally a power generation mechanism, that is, includes a steam turbine 2 and a generator 3.
  • the direction of the soda medium involved in the above low calorific value gas boiler 1 is as follows:
  • the low calorific value gas is combusted in the low calorific value gas boiler 1, and the flue gas generated by the combustion exchanges heat with the heat exchange surface in the low calorific value gas boiler 1; wherein the superheated steam is generated in the superheater 13, and the superheated steam is sent to the steam Use the institution for utilization;
  • the steam from the steam utilization mechanism enters the reheater 14 for reheating, and the reheated steam from the reheater 14 enters the steam utilization mechanism for utilization;
  • the spent steam from the steam utilization mechanism is condensed into condensed water by the condensing mechanism, and then enters the economizer 15, and the water from the economizer 15 enters the steam drum 12;
  • the water separated by the steam-water separation enters the water-cooling wall 17 of the low-calorific value gas boiler 1, and is heated to a steam or a steam-water mixture in the water-cooled wall 17 and returned to the steam drum 12; the saturated steam obtained by the steam-water separation enters The superheater 13 is heated to superheated steam and sent to a steam utilization mechanism for use.
  • an air preheater 16 is disposed in the vertical flue, and the air preheater 16 is located below the economizer 15; the air preheated by the air preheater 16 can be used as a combustion gas.
  • the low calorific value gas boiler 1 is used in a burner.
  • an embodiment of the present invention relates to a low calorific value gas boiler 1 having the same basic structure as that of the low calorific value gas boiler 1 of the fourth embodiment, and a burner structure 11 is disposed on the combustion chamber thereof.
  • the burner structure 11 is preferably a burner structure 11 provided by the third embodiment described above.
  • the above-mentioned boiler 1 heating surface arrangement and primary reheating of the steam medium make the boiler 1 suitable for LHV (low calorific value) at 3100 kJ/Nm. More than 3 blast furnace gas power generation can reach high temperature and high pressure parameters of 13.7MPa/540°C/540°C, and the power generation efficiency is more than 36%.
  • the embodiment of the present invention relates to a low calorific value gas power generation system, including a boiler 1 and a steam turbine 2.
  • the boiler 1 is preferably a low calorific value gas boiler 1 provided by the above embodiment 4 or the fifth embodiment, and the boiler 1 is The specific structure will not be described here; however, the steam utilization mechanism referred to in the above fourth embodiment adopts a power generation mechanism.
  • the steam turbine 2 includes a high pressure cylinder 21 and a low pressure cylinder 22, and a steam inlet of the high pressure cylinder 21 communicates with an outlet end of the superheater 13 through a first steam line, and a steam outlet of the high pressure cylinder 21 passes through a second steam pipe
  • the passage communicates with the inlet end of the reheater 14, and the steam inlet of the low pressure cylinder 22 communicates with the outlet end of the reheater 14 through a third steam line.
  • the steam outlet of the low pressure cylinder 22 is connected with a condensing line, and the condensing line is provided with a condenser 61 and a condensing water pump 62, and the outlet end of the condensing line and the coal saving
  • the inlet end of the device 15 is in communication.
  • a low-pressure heater 63 and a high-pressure heater 66 are further disposed on the condensing line, and the condenser 61, the condensate pump 62, the low-pressure heater 63, and the high-pressure heater 66 are condensed along The water circulation direction is arranged in order.
  • a deaerator can be arranged on the condensing line 64.
  • the deaerator 64 is preferably disposed between the low pressure heater 63 and the high pressure heater 66. Further, a feed water pump 65 may be further disposed on the condensing line, and the feed water pump 65 is preferably disposed on the deaerator 64 and is heated by high pressure. Between the 66.
  • the condenser 61 may be of a horizontal or vertical structure, preferably a double-flow, single-case condenser 61, which may be elastically supported; the low-pressure heater 63 may be one or two.
  • the above-mentioned high-pressure heater 66 may be one stage, two stages or more; the above-mentioned deaerator 64 should be able to satisfy the system sliding operation condition.
  • the low calorific value gas power generation system further includes a high pressure bypass mechanism and a low pressure bypass mechanism; the steam inlet end of the high pressure bypass mechanism is bypassed to the first steam a steam outlet end of the high pressure bypass mechanism is connected to the second steam line; a steam inlet end of the low pressure bypass mechanism is connected to the third steam line, the low pressure bypass A steam outlet end of the mechanism is bypassed to the condensing line and a bypass point is located between the condenser 61 and the steam outlet of the low pressure cylinder 22.
  • the high-pressure bypass mechanism includes at least one high-pressure bypass 4 arranged in parallel, and each of the high-pressure bypasses 4 is provided with a high bypass pressure valve 41, and each of the high-side pressure valves 41 is reduced.
  • a high-pressure water spray line is connected to the inlet end of the warm water, and each of the high-pressure water spray pipes is provided with a high side water spray regulating valve 42 and a high side water spray isolation valve 43.
  • the high-pressure bypass 4 wherein the maximum flow rate of each high-side pressure valve 41 is 25% of the main steam flow of the boiler 1 under the full-power (VWO) condition of the steam turbine 2 regulating valve.
  • the low-pressure bypass mechanism includes at least one low-pressure bypass 5 arranged in parallel, and each of the low-pressure bypasses 5 is provided with a low bypass pressure valve 51, and the desuperheating water inlet ends of each of the low bypass pressure valves 51 are connected to each other.
  • a low-pressure water spray pipe each of which is provided with a low side water spray regulating valve 52 and a low side water spray isolation valve 53; in this embodiment, only one of the above-mentioned low pressure bypass 5 can be used, of course The number of low pressure bypasses 5 can be increased depending on the actual situation.
  • the above-mentioned high-pressure bypass mechanism and low-pressure bypass mechanism function to: (1) improve the cold, hot and warm start performance of the unit.
  • the start-up time is shortened, the steam flow path is formed, and the limit on the amount of fuel for the boiler 1 is reduced. Reduce the thermal stress of the unit, especially the hot start, improve the life of the unit and recover the working fluid.
  • the main function of the high-pressure bypass mechanism is to control the main steam pressure by adjusting the opening degree of the high bypass valve 41 during the start-up of the unit to meet the requirements of the main steam pressure at each stage of the unit start-up.
  • the high-pressure bypass mechanism has three control modes: the unit is ignited, heated, and boosted from the boiler 1 to the full load of the unit, and the high-pressure bypass mechanism undergoes three control stages: the valve position mode, the constant pressure mode, and the sliding pressure mode.
  • Each of the control methods of the high voltage bypass 4 includes:
  • the high pressure bypass desuperheating water cut-off door is also linked with the high side pressure valve 41.
  • the high side pressure valve 41 has the safety function of the superheater 13 and can be quickly opened.
  • the high-pressure bypass mechanism has a quick-opening function. When the deviation between the main steam pressure and the set value is greater than the set deviation value, the turbine trips and the operator issues a quick-open command.
  • Each of the control methods of the low-pressure bypass 5 includes:
  • the corresponding low side pressure valve 51 When the corresponding low side pressure valve 51 is opened (opening degree > 3%), the interlocking opening corresponding corresponding low side water isolation valve 53; the corresponding low side pressure valve 51 is fully closed (opening degree ⁇ 2.5%) delay The low side water isolation valve 53 is closed for 15 seconds.
  • the low side water isolation valve 53 can also be switched according to an operator's command.
  • the low-voltage bypass mechanism has a fast opening and closing function.
  • the low pressure bypass 5 is opened quickly.
  • the low pressure bypass 5 fast closing mechanism operates: the condenser 61 has a low vacuum, the condenser 61 has a high temperature, the condenser 61 has a high water level, and the desuperheating water pressure is low.
  • Embodiments of the present invention relate to a method of generating electricity using low calorific value gas, comprising the following steps:
  • Step one the LHV low-calorific value gas of 3100 kJ/Nm 3 or more is sent into the low calorific value gas boiler 1 for combustion, and the flue gas generated by the combustion exchanges heat with the heat exchange surface of the low calorific value gas boiler 1;
  • the superheated steam of high temperature and ultrahigh pressure of 13.7 MPa and 540 ° C is generated in the device 13, and the superheated steam is sent to the high pressure cylinder 21 of the steam turbine 2 for power generation;
  • Step two the steam coming out of the high pressure cylinder 21 of the steam turbine 2 enters the reheater 14 for reheating, and the reheated steam from the reheater 14 enters the low pressure cylinder 22 for power generation;
  • Step 3 after the steam from the low pressure cylinder 22 is condensed into condensed water, it enters the economizer 15 and the water from the economizer 15 Enter the steam drum 12;
  • Step 4 in the steam drum 12, the water obtained by the steam-water separation enters the water-cooling wall 17 of the low-calorific value gas boiler 1, and is heated to the steam or steam-water mixture in the water-cooled wall 17 and returned to the steam drum 12;
  • the saturated steam enters the superheater 13 and is heated to a superheated steam of high temperature and ultrahigh pressure of 13.7 MPa and 540 ° C, and then sent to the high pressure cylinder 21 of the steam turbine 2 for power generation;
  • step five the above steps 2 to 4 are performed cyclically.
  • the low calorific value gas boiler 1 described above adopts the low calorific value gas boiler 1 provided in the fourth embodiment or the fifth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

一种采用低热值煤气发电的方法及系统,包括如下步骤:1、将低热值煤气送入锅炉(1)内燃烧,燃烧产生的烟气与锅炉(1)内的换热面换热;在过热器(13)内产生高温超高压的过热蒸汽,过热蒸汽送至汽轮机(2)的高压缸(21)中进行发电;2、高压缸(21)中出来的蒸汽进入再热器(14)中,再热蒸汽进入低压缸(22)进行发电;3、低压缸(22)出来的蒸汽经冷凝后,进入省煤器(15),省煤器(15)出来的水进入汽包(12);4、在汽包(12)中,水进入锅炉(1)的水冷壁(17)并被加热为蒸汽或汽水混合物后回到汽包(12);饱和蒸汽进入过热器(13)中。

Description

采用低热值煤气发电的方法及系统 技术领域
本发明属于节能环保技术领域,具体涉及一种采用低热值煤气发电的方法及系统。
背景技术
中国是世界上的钢铁生产大国,钢铁企业在冶炼过程中产生了大量的副产煤气,如高炉煤气、转炉煤气和焦炉煤气,其中,高炉煤气具有产量最大、热值最低、有毒有害、易燃易爆等特点。近年来,我国能源紧缺日趋突出,环保要求日益提高,高炉煤气发电在钢铁企业得到逐步应用,如申请号为201320444475.0的专利公开了一种全烧高炉煤气锅炉烟气余热回收利用系统,申请号为201320446384.0的专利公开了一种全烧高炉煤气锅炉烟气余热深度回收利用系统,但是上述高炉煤气发电系统仅着重提高烟气侧余热的回收利用,而未考虑汽水侧如何提高热效率;申请号为201510239804.1的专利公开了一种自备电厂燃烧冶金煤气的发电方法及系统,但其仅仅提供了一种钢铁企业煤气发电的概念和方法,没有相关发电系统。虽然高炉煤气发电在钢铁企业得到逐步应用,但是目前仍然存在锅炉燃烧不稳定、受热面布置不合理、热效率低等问题。
发明内容
本发明实施例涉及一种采用低热值煤气发电的方法及系统,至少可解决现有技术的部分缺陷。
本发明实施例涉及一种采用低热值煤气发电的方法,包括如下步骤:
步骤一,将LHV在3100kJ/Nm3以上的低热值煤气送入低热值煤气锅炉内燃烧,燃烧产生的烟气与所述低热值煤气锅炉内的换热面换热;其中,在过热器内产生13.7MPa、540℃的高温超高压的过热蒸汽,过热蒸汽送至汽轮机的高压缸中进行发电;
步骤二,从汽轮机高压缸中出来的蒸汽进入再热器中进行再次加热,从再热器出来的再热蒸汽进入低压缸进行发电;
步骤三,从低压缸出来的蒸汽经冷凝为冷凝水后,进入省煤器,从省煤器出来的水进入汽包;
步骤四,在汽包中,经汽水分离得到的水进入低热值煤气锅炉的水冷壁,在水冷壁中被加热为蒸汽或汽水混合物后回到汽包;经汽水分离得到的饱和蒸汽进入过热器中,并被加热为13.7MPa、540℃的高温超高压的过热蒸汽,再送至汽轮机的高压缸进行发电;
步骤五,循环进行上述步骤二至步骤四。
作为实施例之一,发电机组启动过程中,通过高压旁路机构控制主蒸汽压力;
所述高压旁路机构包括并联布置的至少一个高压旁路,各所述高压旁路上均设有高旁压力阀, 各所述高旁压力阀的减温水入口端均连接有一高压喷水管路,各所述高压喷水管路上均设有高旁喷水调节阀和高旁喷水隔离阀;
各所述高压旁路的控制方法均包括:通过对应的所述高旁压力阀的开度、对应的所述高旁压力阀前后蒸汽的焓值及减温水的焓值计算出所需的减温水量,再根据对应的所述高旁喷水调节阀前后的压力、对应的所述高旁喷水调节阀的等百分比特性曲线计算出对应的所述高旁喷水调节阀的开度。
作为实施例之一,在再热器的出口蒸汽管路上旁接有低压旁路,所述低压旁路的蒸汽出口端旁接于所述低压缸的出口凝结管路上;
所述低压旁路上设有低旁压力阀,所述低旁压力阀的减温水入口端均连接有一低压喷水管路,所述低压喷水管路上设有低旁喷水调节阀和低旁喷水隔离阀。
作为实施例之一,所述低压旁路的控制方法包括:
所述低旁压力阀开启时,联锁开启所述低旁喷水隔离阀;
所述低旁压力阀全关时,延时15s关闭所述低旁喷水隔离阀。
作为实施例之一,所述低压旁路的控制方法包括:通过所述低旁压力阀的开度、所述低旁压力阀前后蒸汽的焓值及减温水的焓值计算出所需的减温水量,再根据所述低旁喷水调节阀前后的压力、所述低旁喷水调节阀的等百分比特性曲线计算出所述低旁喷水调节阀的开度。
本发明实施例涉及一种采用低热值煤气发电的系统,包括锅炉及汽轮机,
所述锅炉的炉体包括有燃烧室、水平烟道和竖直烟道,所述燃烧室上设有燃烧器结构,所述燃烧室的内壁至少部分为水冷壁;
所述水平烟道内布置有过热器,所述竖直烟道内自上而下依次布置有再热器和省煤器;
所述汽轮机包括高压缸和低压缸,所述高压缸的蒸汽入口通过第一蒸汽管路与所述过热器的出口端连通,所述高压缸的蒸汽出口通过第二蒸汽管路与所述再热器的入口端连通,所述低压缸的蒸汽入口通过第三蒸汽管路与所述再热器的出口端连通。
作为实施例之一,所述锅炉配置有汽包,所述汽包内设有汽水分离装置,所述汽包具有水出口、水入口、汽水混合物入口和气出口,各所述水冷壁的入口端均与所述水出口连通,各所述水冷壁的出口端均与所述汽水混合物入口连通,所述水入口与所述省煤器的出口端连通,所述气出口与所述过热器的入口端连通。
作为实施例之一,所述低压缸的蒸汽出口连接有冷凝管路,所述冷凝管路上设有凝汽器及凝结水泵,所述冷凝管路的出口端与所述省煤器的入口端连通。
作为实施例之一,所述冷凝管路上还设有低压加热器和高压加热器,所述凝汽器、所述凝结 水泵、所述低压加热器及所述高压加热器沿凝结水流通方向依次布置。
作为实施例之一,上述采用低热值煤气发电的系统还包括高压旁路机构和低压旁路机构;
所述高压旁路机构的蒸汽入口端旁接于所述第一蒸汽管路上,所述高压旁路机构的蒸汽出口端旁接于所述第二蒸汽管路上;
所述低压旁路机构的蒸汽入口端旁接于所述第三蒸汽管路上,所述低压旁路机构的蒸汽出口端旁接于所述冷凝管路上且旁接点位于所述凝汽器与所述低压缸蒸汽出口之间。
作为实施例之一,所述高压旁路机构包括并联布置的至少一个高压旁路,各所述高压旁路上均设有高旁压力阀,各所述高旁压力阀的减温水入口端均连接有一高压喷水管路,各所述高压喷水管路上均设有高旁喷水调节阀和高旁喷水隔离阀;
所述低压旁路机构包括并联布置的至少一个低压旁路,各所述低压旁路上均设有低旁压力阀,各所述低旁压力阀的减温水入口端均连接有一低压喷水管路,各所述低压喷水管路上均设有低旁喷水调节阀和低旁喷水隔离阀。
作为实施例之一,所述燃烧器结构包括第一燃烧器层,所述第一燃烧器层包括布置于所述燃烧室前墙的至少一个第一燃烧器,或包括对冲布置于所述燃烧室前墙和后墙的多个第一燃烧器,各所述第一燃烧器均包括由内而外依次套接的点火气管、第一燃气管和第一助燃气管,所述第一燃气管连接有低热值煤气供应管。
作为实施例之一,所述第一燃气管和所述第一助燃气管出口端均设置有旋流叶片组,每一旋流叶片组的各旋流叶片环形布置于对应的气管内腔中,各旋流叶片均沿对应的气管的径向布置。
作为实施例之一,所述第一燃气管出口端处设有第一环形毂,所述第一环形毂位于所述第一燃气管与所述点火气管之间;所述第一燃气管内的旋流叶片组包括多个第一旋流叶片和多个第二旋流叶片,各所述第一旋流叶片均固定于所述第一环形毂与所述点火气管之间,各所述第二旋流叶片均固定于所述第一环形毂与所述第一燃气管之间。
作为实施例之一,所述第一助燃气管出口端处设有第二环形毂,所述第二环形毂位于所述第一助燃气管与所述第一燃气管之间;所述第一助燃气管内的旋流叶片组包括多个第三旋流叶片,各所述第三旋流叶片均固定于所述第二环形毂与所述第一燃气管之间。
作为实施例之一,所述第一助燃气管内的旋流叶片组还包括多个第四旋流叶片,各所述第四旋流叶片均固定于所述第二环形毂与所述第一助燃气管之间。
作为实施例之一,所述燃烧器结构还包括第二燃烧器层,所述第二燃烧器层位于所述第一燃烧器层上方;所述第二燃烧器层包括布置于所述燃烧室前墙的至少一个第二燃烧器,或包括对冲布置于所述燃烧室前墙和后墙的多个第二燃烧器;
各所述第二燃烧器均包括自内而外依次套接的第二燃气管、第二助燃气管、第三燃气管和第三助燃气管,各气管的出口端均设置有旋流叶片组,每一旋流叶片组的各旋流叶片环形布置于对应的气管内腔中,各旋流叶片均沿对应的气管的径向布置。
作为实施例之一,所述竖直烟道内还布置有空气预热器,所述空气预热器位于所述省煤器下方;所述第一助燃气管、所述第二助燃气管及所述第三助燃气管均连接有助燃气供应管,所述空气预热器的出口端与至少其中一个所述助燃气供应管连通。
本发明实施例至少具有如下有益效果:通过低热值煤气锅炉受热面的布置结构以及采用蒸汽介质一次再热的方式,可有效提高蒸汽品质,将本低热值煤气锅炉用于LHV在3100kJ/Nm3以上的高炉煤气的发电时,可有效提高低热值煤气的发电效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例一中提供的燃烧器的结构示意图;
图2为图1中燃烧器的A向结构示意图;
图3为本发明实施例二中提供的燃烧器的结构示意图;
图4为图3中燃烧器的A向结构示意图;
图5为本发明实施例提供的低热值煤气发电系统的结构示意图;
图6为本发明实施例提供的高压旁路及低压旁路的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一
如图1-图2,本发明实施例涉及一种燃烧器,包括由内而外依次套接的点火气管1111、第一燃气管1112和第一助燃气管1113,所述第一燃气管1112和所述第一助燃气管1113出口端均设置有旋流叶片组,每一旋流叶片组的各旋流叶片环形布置于对应的气管内腔中,各旋流叶片均沿对应的气管的径向布置。上述点火气管1111、第一燃气管1112及第一助燃气管1113优选为同轴套接;进一步还包括点火器1116,该点火器1116布置于第一燃气管1112内,且优选为靠近点火气管1111 布置,进一步优选为与点火气管1111平行布置,其穿过布置于第一燃气管1112中的旋流叶片并靠近本燃烧器的喷口;该点火器1116优选为采用自动高能电子点火器1116,点火操作稳定可靠。上述点火气管1111连接有点火气供应管,点火气可采用焦炉煤气、转炉煤气、天然气、液化石油气或燃油等;上述第一燃气管1112连接有第一燃气供应管,本实施例中,上述燃烧器优选为用于低热值煤气的喷吹燃烧,上述第一燃气供应管优选为供应低热值煤气,进一步优选地,上述低热值煤气为高炉煤气;上述第一助燃气管1113连接有助燃气供应管,助燃气一般采用空气。
通过设置旋流叶片组,一方面,利于燃气与助燃气的强烈混合,保证燃气的燃烧持续进行,提高燃气燃烧的稳定性;另一方面,可在燃烧区域形成高温烟气回流区,利于燃气的着火燃烧,提高燃气燃烧的稳定性及燃烧完全性。将本燃烧器用于低热值煤气的燃烧时,可有效提高低热值煤气的燃烧效果及效率。
如图1和图2,各旋流叶片组的设置方式可以采取如下结构:上述第一燃气管1112中的旋流叶片组包括多个第一煤气旋流叶片1114,每一第一煤气旋流叶片1114的一端固定在点火气管1111上,另一端固定在第一燃气管1112上;上述第一助燃气管1113中的旋流叶片组包括多个第一助燃气旋流叶片1115,每一第一助燃气旋流叶片1115的一端固定在第一燃气管1112上,另一端固定在第一助燃气管1113上。如图2中所示,优选地,第一煤气旋流叶片1114的数量少于第一助燃气旋流叶片1115的数量;进一步地,沿第一燃气管1112的径向,第一煤气旋流叶片1114的长度大于第一助燃气旋流叶片1115的长度,以保证获得所需的两股气体旋流的切向速度及混合效果。
本实施例中,对于各旋流叶片组的设置,优选为采取如下的优选结构:所述第一燃气管1112出口端处设有第一环形毂,所述第一环形毂位于所述第一燃气管1112与所述点火气管1111之间;所述第一燃气管1112内的旋流叶片组包括多个第一旋流叶片和多个第二旋流叶片,各所述第一旋流叶片均固定于所述第一环形毂与所述点火气管1111之间,各所述第二旋流叶片均固定于所述第一环形毂与所述第一燃气管1112之间。其中,优选地,所述第一旋流叶片的数量少于所述第二旋流叶片的数量;进一步地,沿所述第一燃气管1112的径向,所述第一旋流叶片的长度大于所述第二旋流叶片的长度,使得两股第一燃气旋流的流量大致均衡。上述第一旋流叶片的旋向与上述第二旋流叶片的旋向可相同,也可不同;上述第一旋流叶片的倾斜角与上述第二旋流叶片的倾斜角可相同,也可不同;其中,各第一旋流叶片的旋向应保证在其射出的旋流中心可形成负压区,以利于高温烟气回流,利用高温烟气加热第一燃气及助燃气,提高燃烧效率;各第一旋流叶片的旋向优选为与第二旋流叶片的旋向相反,或旋向相同但倾斜角不同,以便于两股第一燃气旋流能够相交碰撞为宜,通过两股第一燃气旋流碰撞,便于形成紊流,提高第一燃气与助燃气的混合效果。
进一步优化上述燃烧器的结构,所述第一助燃气管1113出口端处设有第二环形毂,所述第二 环形毂位于所述第一助燃气管1113与所述第一燃气管1112之间;所述第一助燃气管1113内的旋流叶片组包括多个第三旋流叶片,各所述第三旋流叶片均固定于所述第二环形毂与所述第一燃气管1112之间。第二环形毂与第一助燃气管1113之间可不设置旋流叶片,即第一助燃气管1113出口形成两股气流,其中外部射流为直流射流,内部射流为旋流,这种结构在一定程度上会使本燃烧器喷出的整体射流的气流拉长,但会使气流的旋转强度减弱、烟气回流区减小;因而,本实施例中,进一步优选在第二环形毂与第一助燃气管1113之间设置旋流叶片,即,所述第一助燃气管1113内的旋流叶片组还包括多个第四旋流叶片,各所述第四旋流叶片均固定于所述第二环形毂与所述第一助燃气管1113之间。同样地,第三旋流叶片的旋向与第四旋流叶片的旋向可相同,也可不同;第三旋流叶片的倾斜角与第四旋流叶片的倾斜角可相同,也可不同;优选为设置第三旋流叶片的旋向与第四旋流叶片的旋向相反,其中,第三旋流叶片的旋向优选为与上述第一燃气管1112中的第二旋流叶片的旋向相反且旋流对冲,可一定程度上提高第一燃气与助燃气的混合效果,而第四旋流叶片组则保证燃烧器喷出的整体射流具有一定的切向速度。
为获得所需的火焰特性(如方向、外形、刚性、铺展性等),以及保证煤气燃烧的完全性及燃烧的稳定性等,应兼顾第一燃气与助燃气的混合效果、烟气回流区的控制及各股旋流具有合适的切向速度,可视具体情况通过以下方式进行调节:
(1)调节第一旋流叶片组和第二旋流叶片组的数量比及叶片长度比;
(2)调节第一旋流叶片与第二旋流叶片的倾斜角;
(3)调节第三旋流叶片组和第四旋流叶片组的数量比及叶片长度比;
(4)调节第三旋流叶片与第四旋流叶片的倾斜角;
(5)调节第二旋流叶片与第三旋流叶片的倾斜角;
(6)调节第二旋流叶片组和第三旋流叶片组的数量比及叶片长度比;
更多的情况下,通过上述两种或两种以上的调节方式的结合来实现,以达到火焰刚性强、燃烧稳定、不脱火、不回火、火焰不发飘等特点为佳,针对低热值煤气的气体特性,应保证煤气与作为助燃气的空气混合均匀,以煤气能够燃烧完全为佳。本实施例中,可实现高炉煤气与助燃空气的体积比在1:5~1:10范围内调节。
上述调节方式,可通过在燃烧器安装前根据现场的低热值煤气的特性,通过对应的计算获得所需的各旋流叶片组的参数,选择相应的燃烧器进行安装。更为优选的方式是:在燃烧过程中,可实时调节各旋流叶片的倾斜角,以获得所需的燃烧状况;即每一旋流叶片的两端分别可转动安装于对应的安装部上,根据燃烧器工作环境的特点,每一旋流叶片两端的转轴与对应的轴承之间可采用耐高温润滑脂或耐高温润滑油润滑;每一旋流叶片组的各旋流叶片优选为通过同步传动机构实现同步 转动调节,同步传动机构可以是齿轮啮合传动方式等常用的同步传动结构,具体结构此处不再赘述。
另外,可进一步设置监测机构,用于实时监测燃烧器的工作状况,以保证燃烧器安全稳定运行。该监测机构主要包括火焰监测器、压力监测器和温度监测器,可在该燃烧器的远离喷头的一端设置火焰观测孔1117及火焰监测器用孔1118。
实施例二
如图3-图4,本发明实施例涉及一种燃烧器,包括由内而外依次套接的第二燃气管1121、第二助燃气管1122、第三燃气管1123和第三助燃气管1124,各气管的出口端均设置有旋流叶片组,每一旋流叶片组的各旋流叶片环形布置于对应的气管内腔中,各旋流叶片均沿对应的气管的径向布置。
通过设置旋流叶片组,一方面,利于燃气与助燃气的强烈混合,保证燃气的燃烧持续进行,提高燃气燃烧的稳定性;另一方面,可在燃烧区域形成高温烟气回流区,利于燃气的着火燃烧,提高燃气燃烧的稳定性及燃烧完全性。
上述第二燃气管1121、第二助燃气管1122、第三燃气管1123和第三助燃气管1124优选为同轴套接。上述第二燃气管1121连接有第二燃气供应管,上述第三燃气管1123连接有第三燃气供应管,上述第二助燃气管1122及第三助燃气管1124均连接有助燃气供应管,助燃气一般采用空气。通过采用双燃气管的结构,对于两燃气管采用相同燃气的方式,即上述第二燃气供应管与上述第三燃气供应管连接相同的气源,可有效提高燃气与助燃气混合的效果,提高燃烧效率;对于两燃气管采用不同燃气的方式,即上述第二燃气供应管与上述第三燃气供应管连接不同的气源,可实现不同燃气的不同配比,进行燃烧优化,提高燃烧效率;同时,在其中一种燃气品质发生波动或断供时,另一种燃气的存在保证燃烧的可持续性,提高燃烧的稳定性且保证燃烧安全。本实施例中,上述第二燃气供应管优选为供应转炉煤气等高热值煤气;第三燃气供应管优选为供应低热值煤气,进一步优选地,上述低热值煤气为高炉煤气;上述高热值煤气与低热值煤气混合燃烧,一方面可根据钢铁厂转炉煤气和高炉煤气的富余量调节燃料比;另一方面,可通过调节转炉煤气和高炉煤气的比例,提高燃烧的效果及效率,从而有效提高低热值煤气的燃烧效果,利于提高烟气的品质。进一步地,本发明的采用低热值煤气进行发电的系统可实现纯烧高炉煤气的稳定燃烧,进行发电。
如图3和图4,各旋流叶片组的设置方式可以采取如下结构:上述第二燃气管1121中的旋流叶片组包括多个第二煤气旋流叶片1126,每一第二煤气旋流叶片1126的一端固定在设于该第二燃气管1121中的支撑毂1125上,另一端固定在第二燃气管1121上;上述第二助燃气管1122中的旋流叶片组包括多个第二助燃气旋流叶片1127,每一第二助燃气旋流叶片1127的一端固定在第二燃气管1121上,另一端固定在第二助燃气管1122上;上述第三燃气管1123中的旋流叶片组包括多 个第三煤气旋流叶片1128,每一第三煤气旋流叶片1128的一端固定在第二助燃气管1122上,另一端固定在第三燃气管1123上;上述第三助燃气管1124中的旋流叶片组包括多个第三助燃气旋流叶片1129,每一第三助燃气旋流叶片1129的一端固定在第三燃气管1123上,另一端固定在第三助燃气管1124上。
如图4中所示,优选地,第二煤气旋流叶片1126的数量少于第二助燃气旋流叶片1127的数量;进一步地,沿第二燃气管1121的径向,第二煤气旋流叶片1126的长度大于第二助燃气旋流叶片1127的长度,以保证获得所需的两股气体旋流的切向速度及混合效果。第三煤气旋流叶片1128的数量少于第三助燃气旋流叶片1129的数量;进一步地,沿第三燃气管1123的径向,第三煤气旋流叶片1128的长度大于第三助燃气旋流叶片1129的长度,以保证获得所需的两股气体旋流的切向速度及混合效果。
本实施例中,对于各旋流叶片组的设置,优选为采取如下的优选结构:所述第二燃气管1121出口端处设有支撑毂1125和第三环形毂,所述支撑毂1125、所述第三环形毂及所述第二燃气管1121由内而外依次套接;所述第二燃气管1121内的旋流叶片组包括多个第五旋流叶片和多个第六旋流叶片,各所述第五旋流叶片均固定于所述第三环形毂与所述支撑毂1125之间,各所述第六旋流叶片均固定于所述第三环形毂与所述第二燃气管1121之间。其中,优选地,所述第五旋流叶片的数量少于所述第六旋流叶片的数量;进一步地,沿所述第二燃气管1121的径向,所述第五旋流叶片的长度大于所述第六旋流叶片的长度,使得两股第二燃气旋流的流量大致均衡。上述第五旋流叶片的旋向与上述第六旋流叶片的旋向可相同,也可不同;上述第五旋流叶片的倾斜角与上述第六旋流叶片的倾斜角可相同,也可不同;其中,各第五旋流叶片的旋向应保证在其射出的旋流中心可形成负压区,以利于高温烟气回流,利用高温烟气加热第二燃气及助燃气,提高燃烧效率;各第五旋流叶片的旋向优选为与第六旋流叶片的旋向相反,或旋向相同但倾斜角不同,以便于两股第一燃气旋流能够相交碰撞为宜,通过两股第二燃气旋流碰撞,便于形成紊流,提高第二燃气与助燃气的混合效果。
作为实施例之一,所述第二助燃气管1122出口端处设有第四环形毂,所述第四环形毂位于所述第二助燃气管1122与所述第二燃气管1121之间;所述第二助燃气管1122内的旋流叶片组包括多个第七旋流叶片及多个第八旋流叶片,各所述第七旋流叶片均固定于所述第四环形毂与所述第二燃气管1121之间,各所述第八旋流叶片均固定于所述第四环形毂与所述第二助燃气管1122之间。第七旋流叶片的旋向与第八旋流叶片的旋向可相同,也可不同;第七旋流叶片的倾斜角与第八旋流叶片的倾斜角可相同,也可不同;优选为设置第七旋流叶片的旋向与第八旋流叶片的旋向相反,其中,第七旋流叶片的旋向优选为与上述第二燃气管1121中的第六旋流叶片的旋向相反且旋流对冲, 可一定程度上提高第二燃气与助燃气的混合效果,而第八旋流叶片的旋向优选为与上述第三燃气管1123中的旋流叶片组的旋向相反且旋流对冲,可一定程度上提高第三燃气与助燃气的混合效果。
作为实施例之一,所述第三助燃气管1124出口端处设有第五环形毂,所述第五环形毂位于所述第三助燃气管1124与所述第三燃气管1123之间;所述第三助燃气管1124内的旋流叶片组包括多个第九旋流叶片,各所述第九旋流叶片均固定于所述第五环形毂与所述第三燃气管1123之间。第五环形毂与第三助燃气管1124之间可不设置旋流叶片,即第三助燃气管1124出口形成两股气流,其中外部射流为直流射流,内部射流为旋流,这种结构在一定程度上会使本燃烧器喷出的整体射流的气流拉长,但会使气流的旋转强度减弱、烟气回流区减小;因而,本实施例中,进一步优选在第五环形毂与第三助燃气管1124之间设置旋流叶片,即,所述第三助燃气管1124内的旋流叶片组还包括多个第十旋流叶片,各所述第十旋流叶片均固定于所述第五环形毂与所述第三助燃气管1124之间。同样地,第九旋流叶片的旋向与第十旋流叶片的旋向可相同,也可不同;第九旋流叶片的倾斜角与第十旋流叶片的倾斜角可相同,也可不同。
为获得所需的火焰特性(如方向、外形、刚性、铺展性等),以及保证煤气燃烧的完全性及燃烧的稳定性等,应兼顾各燃气与助燃气的混合效果、烟气回流区的控制及各股旋流具有合适的切向速度,可视具体情况通过以下方式进行调节:
(1)调节第五旋流叶片组和第六旋流叶片组的数量比及叶片长度比;
(2)调节第五旋流叶片与第六旋流叶片的倾斜角;
(3)调节第七旋流叶片组和第八旋流叶片组的数量比及叶片长度比;
(4)调节第七旋流叶片与第八旋流叶片的倾斜角;
(5)调节第六旋流叶片与第七旋流叶片的倾斜角;
(6)调节第三燃气管1123中的旋流叶片组的数量和叶片长度;
(7)调节第三燃气管1123中的旋流叶片组和第八旋流叶片组的数量比及叶片长度比;
(8)调节第九旋流叶片组和第十旋流叶片组的数量比及叶片长度比;
更多的情况下,通过上述两种或两种以上的调节方式的结合来实现,以达到火焰刚性强、燃烧稳定、不脱火、不回火、火焰不发飘等特点为佳,针对低热值煤气的气体特性,应保证低热值煤气与高热值煤气及作为助燃气的空气混合均匀,以煤气能够燃烧完全为佳。本实施例中,可实现高炉煤气、转炉煤气与助燃空气的体积比在1:1:7~1:3:12范围内调节。
上述调节方式,可通过在燃烧器安装前根据现场的低热值煤气及转炉煤气的特性,通过对应的计算获得所需的各旋流叶片组的参数,选择相应的燃烧器进行安装。更为优选的方式是:在燃烧过程中,可实时调节各旋流叶片的倾斜角,以获得所需的燃烧状况;即每一旋流叶片的两端分别可转 动安装于对应的安装部上,根据燃烧器工作环境的特点,每一旋流叶片两端的转轴与对应的轴承之间可采用耐高温润滑脂或耐高温润滑油润滑;每一旋流叶片组的各旋流叶片优选为通过同步传动机构实现同步转动调节,同步传动机构可以是齿轮啮合传动方式等常用的同步传动结构,具体结构此处不再赘述。
另外,可进一步设置监测机构,用于实时监测燃烧器的工作状况,以保证燃烧器安全稳定运行。该监测机构主要包括火焰监测器、压力监测器和温度监测器,可在该燃烧器的远离喷头的一端设置火焰观测孔及火焰监测器用孔。
实施例三
本实用新型实施例涉及一种燃烧器结构11,用于布置于锅炉1的燃烧室上,其包括第一燃烧器层,所述第一燃烧器层包括布置于所述燃烧室前墙的至少一个第一燃烧器,或包括对冲布置于所述燃烧室前墙和后墙的多个第一燃烧器,各所述第一燃烧器均包括由内而外依次套接的点火气管1111、第一燃气管1112和第一助燃气管1113。
进一步还包括第二燃烧器层,所述第二燃烧器层位于所述第一燃烧器层上方;所述第二燃烧器层包括布置于所述燃烧室前墙的至少一个第二燃烧器,或包括对冲布置于所述燃烧室前墙和后墙的多个第二燃烧器;各所述第二燃烧器均包括自内而外依次套接的第二燃气管1121、第二助燃气管1122、第三燃气管1123和第三助燃气管1124。
其中,优选地,上述各第一燃烧器均采用上述实施例一所提供的燃烧器,上述各第二燃烧器均采用上述实施例二所提供的燃烧器;各第一燃烧器及各第二燃烧器的具体结构此处不再赘述。
实施例四
如图5,本发明实施例涉及一种低热值煤气锅炉1,包括炉体,所述炉体包括有燃烧室、水平烟道和竖直烟道,所述水平烟道内布置有过热器13,所述竖直烟道内自上而下依次布置有再热器14和省煤器15。其中,过热器13的出口端可与外设的蒸汽利用机构的蒸汽入口连通,再热器14的入口端则与上述蒸汽利用机构的蒸汽出口端连通,再热器14的出口端则与该蒸汽利用机构的蒸汽入口连通,省煤器15的入口端则可与连接于上述蒸汽利用机构的乏汽出口端的凝汽机构连接。进一步地,所述燃烧室的内壁至少部分为水冷壁17;优选为该燃烧室的内壁均采用水冷壁17。进一步地,该低热值煤气锅炉1还配置有汽包12,所述汽包12内设有汽水分离装置,所述汽包12具有水出口、水入口、汽水混合物入口和气出口,各所述水冷壁17的入口端均与所述水出口连通,各所述水冷壁17的出口端均与所述汽水混合物入口连通,所述水入口与所述省煤器15的出口端连通,所述气出口与所述过热器13的入口端连通。
上述蒸汽利用机构一般为发电机构,即包括汽轮机2和发电机3。
上述低热值煤气锅炉1中涉及的汽水介质走向大致如下:
低热值煤气在该低热值煤气锅炉1内燃烧,燃烧产生的烟气与所述低热值煤气锅炉1内的换热面换热;其中,在过热器13内产生过热蒸汽,过热蒸汽送至蒸汽利用机构进行利用;
从蒸汽利用机构出来的蒸汽进入再热器14中进行再次加热,从再热器14出来的再热蒸汽进入该蒸汽利用机构进行利用;
从该蒸汽利用机构出来的乏汽经凝汽机构冷凝为冷凝水后,进入省煤器15,从省煤器15出来的水进入汽包12;
在汽包12中,经汽水分离得到的水进入低热值煤气锅炉1的水冷壁17,在水冷壁17中被加热为蒸汽或汽水混合物后回到汽包12;经汽水分离得到的饱和蒸汽进入过热器13中,并被加热为过热蒸汽,再送至蒸汽利用机构进行利用。
进一步优选地,所述竖直烟道内还布置有空气预热器16,所述空气预热器16位于所述省煤器15下方;经空气预热器16预热的空气可作为助燃气在该低热值煤气锅炉1的燃烧器中利用。
实施例五
如图5,本发明实施例涉及一种低热值煤气锅炉1,其基本结构与上述实施例四中的低热值煤气锅炉1的结构相同,在其燃烧室上布置有燃烧器结构11,该燃烧器结构11优选为采用上述实施例三所提供的燃烧器结构11。
通过上述的燃烧器结构11,可保证低热值煤气的稳定燃烧,同时结合上述的锅炉1受热面布置方式和蒸汽介质的一次再热,使得本锅炉1适用于LHV(低热值)在3100kJ/Nm3以上的高炉煤气的发电,可达到13.7MPa/540℃/540℃的高温超高压参数,发电效率达36%以上。
实施例六
如图5,本发明实施例涉及一种低热值煤气发电系统,包括锅炉1及汽轮机2,该锅炉1优选为采用上述实施例四或实施例五提供的低热值煤气锅炉1,该锅炉1的具体结构此处不再赘述;而上述实施例四中涉及的蒸汽利用机构即采用发电机构。上述汽轮机2包括高压缸21和低压缸22,所述高压缸21的蒸汽入口通过第一蒸汽管路与所述过热器13的出口端连通,所述高压缸21的蒸汽出口通过第二蒸汽管路与所述再热器14的入口端连通,所述低压缸22的蒸汽入口通过第三蒸汽管路与所述再热器14的出口端连通。
进一步地,如图5,所述低压缸22的蒸汽出口连接有冷凝管路,所述冷凝管路上设有凝汽器61及凝结水泵62,所述冷凝管路的出口端与所述省煤器15的入口端连通。其中,进一步在所述冷凝管路上还设有低压加热器63和高压加热器66,所述凝汽器61、所述凝结水泵62、所述低压加热器63及所述高压加热器66沿凝结水流通方向依次布置。进一步还可在冷凝管路上设置除氧器 64,该除氧器64优选为布置于低压加热器63与高压加热器66之间;进一步还可在冷凝管路上设置给水泵65,该给水泵65优选为布置于除氧器64与高压加热器66之间。上述结构中,凝汽器61可以为卧式或立式结构,优选为采用双流程、单壳体的凝汽器61,其可采用弹性支撑;上述的低压加热器63可以为一级、两级或两级以上;上述的高压加热器66可以为一级、两级或两级以上;上述的除氧器64应能满足系统滑压运行工况。
进一步优化上述系统的结构,如图5和图6,该低热值煤气发电系统还包括高压旁路机构和低压旁路机构;所述高压旁路机构的蒸汽入口端旁接于所述第一蒸汽管路上,所述高压旁路机构的蒸汽出口端旁接于所述第二蒸汽管路上;所述低压旁路机构的蒸汽入口端旁接于所述第三蒸汽管路上,所述低压旁路机构的蒸汽出口端旁接于所述冷凝管路上且旁接点位于所述凝汽器61与所述低压缸22蒸汽出口之间。其中,如图6,所述高压旁路机构包括并联布置的至少一个高压旁路4,各所述高压旁路4上均设有高旁压力阀41,各所述高旁压力阀41的减温水入口端均连接有一高压喷水管路,各所述高压喷水管路上均设有高旁喷水调节阀42和高旁喷水隔离阀43;本实施例中,优选为包括4个上述的高压旁路4,其中,每个高旁压力阀41的最大通流量为汽轮机2调节阀全开功率(VWO)工况下锅炉1主蒸汽流量的25%。所述低压旁路机构包括并联布置的至少一个低压旁路5,各所述低压旁路5上均设有低旁压力阀51,各所述低旁压力阀51的减温水入口端均连接有一低压喷水管路,各所述低压喷水管路上均设有低旁喷水调节阀52和低旁喷水隔离阀53;本实施例中,可仅采用一个上述的低压旁路5,当然可视实际情况增加低压旁路5的数量。
上述高压旁路机构和低压旁路机构的作用在于:(1)改善机组冷、热、温态启动性能。缩短启动时间,形成蒸汽流道,减小启动对于锅炉1燃料量的限制。减小机组热应力,特别是热态启动,提高机组寿命,回收工质。(2)冷却、保护再热器14。(3)锅炉1超压保护。(4)可实现停汽轮机2时甩锅炉1负荷。(5)可以实现停机不停炉,维持锅炉1最低稳燃负荷。具体地:
高压旁路机构的主要作用是在机组启动过程中,通过调整高旁压力阀41的开度来控制主蒸汽压力,以适应机组起动的各阶段对主蒸汽压力的要求。高压旁路机构具有三种控制模式:机组从锅炉1点火、升温、升压到机组带负荷运行至满负荷,高压旁路机构经历阀位方式、定压方式、滑压方式三个控制阶段。
各所述高压旁路4的控制方法均包括:
(1)通过对应的所述高旁压力阀41的开度、对应的所述高旁压力阀41前后蒸汽的焓值及减温水的焓值计算出所需的减温水量,再根据对应的所述高旁喷水调节阀42前后的压力、对应的所述高旁喷水调节阀42的等百分比特性曲线计算出对应的所述高旁喷水调节阀42的开度。
(2)高旁旁路对蒸汽的温度调节目标值的设定值可调,上限根据热力系统计算设置,下限为 高旁压力阀41后蒸汽过热度+30℃。
(3)高压旁路减温水截止门也随高旁压力阀41联动。这要在所有操作模式中进行精确的蒸汽温度控制,要求控制器能很好地匹配高压旁路4的各种运行情况(低负荷、高负荷下的快开等),在所有运行情况下进行精确的温度控制,对于保护承受强大压力的阀门和管道来说至关重要。
(4)高旁压力阀41具有过热器13安全保护功能,能够快速开启,具有2种快速开启阀门方式:通过DCS控制逻辑快速开启高旁压力阀41,开启时间≤10s;通过控制台操作按钮及就地压力开关安全快速开启回路开启阀门,即当操作按钮按下或者压力开关动作时,安全快速开启回路开启高旁压力阀41,开启时间≤2s。
(5)高压旁路机构具有快开功能,主蒸汽压力与设定值偏差大于设定偏差值时,汽机跳闸,操作员发出快开指令。
各所述低压旁路5的控制方法均包括:
(1)对应的低旁压力阀51开启(开度>3%)时联锁开启对应的低旁喷水隔离阀53;对应的低旁压力阀51全关(开度<2.5%)时延时15秒关闭低旁喷水隔离阀53。低旁喷水隔离阀53也可以根据操作员的指令开关。
(2)在低旁压力阀投自动、低旁压力阀51快开或者快关时,低旁喷水调节阀52自动切为自动控制。
(3)通过对应的低旁压力阀51的开度、对应的低压旁路5前后蒸汽的焓值和减温水的焓值计算出所需的减温水量,再根据对应的低旁喷水调节阀52前后的压力、对应的低旁喷水调节阀52的等百分比特性曲线计算出对应的低旁喷水调节阀52的开度。
(4)低压旁路机构具有快开快关功能。当高压旁路4快开时,联动低压旁路5快开。当有至少一种如下情形发生时,低压旁路5快关机构动作:凝汽器61真空低、凝汽器61温度高、凝汽器61水位高、减温水压力低。
实施例七
本发明实施例涉及一种采用低热值煤气发电的方法,包括如下步骤:
步骤一,将LHV在3100kJ/Nm3以上的低热值煤气送入低热值煤气锅炉1内燃烧,燃烧产生的烟气与所述低热值煤气锅炉1内的换热面换热;其中,在过热器13内产生13.7MPa、540℃的高温超高压的过热蒸汽,过热蒸汽送至汽轮机2的高压缸21中进行发电;
步骤二,从汽轮机2高压缸21中出来的蒸汽进入再热器14中进行再次加热,从再热器14出来的再热蒸汽进入低压缸22进行发电;
步骤三,从低压缸22出来的蒸汽经冷凝为冷凝水后,进入省煤器15,从省煤器15出来的水 进入汽包12;
步骤四,在汽包12中,经汽水分离得到的水进入低热值煤气锅炉1的水冷壁17,在水冷壁17中被加热为蒸汽或汽水混合物后回到汽包12;经汽水分离得到的饱和蒸汽进入过热器13中,并被加热为13.7MPa、540℃的高温超高压的过热蒸汽,再送至汽轮机2的高压缸21进行发电;
步骤五,循环进行上述步骤二至步骤四。
其中,上述的低热值煤气锅炉1采用上述实施例四或实施例五所提供的低热值煤气锅炉1。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种采用低热值煤气发电的方法,其特征在于,包括如下步骤:
    步骤一,将LHV在3100kJ/Nm3以上的低热值煤气送入低热值煤气锅炉内燃烧,燃烧产生的烟气与所述低热值煤气锅炉内的换热面换热;其中,在过热器内产生13.7MPa、540℃的高温超高压的过热蒸汽,过热蒸汽送至汽轮机的高压缸中进行发电;
    步骤二,从汽轮机高压缸中出来的蒸汽进入再热器中进行再次加热,从再热器出来的再热蒸汽进入低压缸进行发电;
    步骤三,从低压缸出来的蒸汽经冷凝为冷凝水后,进入省煤器,从省煤器出来的水进入汽包;
    步骤四,在汽包中,经汽水分离得到的水进入低热值煤气锅炉的水冷壁,在水冷壁中被加热为蒸汽或汽水混合物后回到汽包;经汽水分离得到的饱和蒸汽进入过热器中,并被加热为13.7MPa、540℃的高温超高压的过热蒸汽,再送至汽轮机的高压缸进行发电;
    步骤五,循环进行上述步骤二至步骤四。
  2. 如权利要求1所述的采用低热值煤气发电的方法,其特征在于:发电机组启动过程中,通过高压旁路机构控制主蒸汽压力;
    所述高压旁路机构包括并联布置的至少一个高压旁路,各所述高压旁路上均设有高旁压力阀,各所述高旁压力阀的减温水入口端均连接有一高压喷水管路,各所述高压喷水管路上均设有高旁喷水调节阀和高旁喷水隔离阀;
    各所述高压旁路的控制方法均包括:通过对应的所述高旁压力阀的开度、对应的所述高旁压力阀前后蒸汽的焓值及减温水的焓值计算出所需的减温水量,再根据对应的所述高旁喷水调节阀前后的压力、对应的所述高旁喷水调节阀的等百分比特性曲线计算出对应的所述高旁喷水调节阀的开度。
  3. 如权利要求2所述的采用低热值煤气发电的方法,其特征在于:在再热器的出口蒸汽管路上旁接有低压旁路,所述低压旁路的蒸汽出口端旁接于所述低压缸的出口凝结管路上;
    所述低压旁路上设有低旁压力阀,所述低旁压力阀的减温水入口端均连接有一低压喷水管路,所述低压喷水管路上设有低旁喷水调节阀和低旁喷水隔离阀。
  4. 如权利要求3所述的采用低热值煤气发电的方法,其特征在于,所述低压旁路的控制方法包括:
    所述低旁压力阀开启时,联锁开启所述低旁喷水隔离阀;
    所述低旁压力阀全关时,延时15s关闭所述低旁喷水隔离阀。
  5. 如权利要求3所述的采用低热值煤气发电的方法,其特征在于,所述低压旁路的控制方法 包括:通过所述低旁压力阀的开度、所述低旁压力阀前后蒸汽的焓值及减温水的焓值计算出所需的减温水量,再根据所述低旁喷水调节阀前后的压力、所述低旁喷水调节阀的等百分比特性曲线计算出所述低旁喷水调节阀的开度。
  6. 一种采用低热值煤气发电的系统,包括锅炉及汽轮机,其特征在于:
    所述锅炉的炉体包括有燃烧室、水平烟道和竖直烟道,所述燃烧室上设有燃烧器结构,所述燃烧室的内壁至少部分为水冷壁;
    所述水平烟道内布置有过热器,所述竖直烟道内自上而下依次布置有再热器和省煤器;
    所述汽轮机包括高压缸和低压缸,所述高压缸的蒸汽入口通过第一蒸汽管路与所述过热器的出口端连通,所述高压缸的蒸汽出口通过第二蒸汽管路与所述再热器的入口端连通,所述低压缸的蒸汽入口通过第三蒸汽管路与所述再热器的出口端连通。
  7. 如权利要求6所述的采用低热值煤气发电的系统,其特征在于:所述锅炉配置有汽包,所述汽包内设有汽水分离装置,所述汽包具有水出口、水入口、汽水混合物入口和气出口,各所述水冷壁的入口端均与所述水出口连通,各所述水冷壁的出口端均与所述汽水混合物入口连通,所述水入口与所述省煤器的出口端连通,所述气出口与所述过热器的入口端连通。
  8. 如权利要求6所述的采用低热值煤气发电的系统,其特征在于:所述低压缸的蒸汽出口连接有冷凝管路,所述冷凝管路上设有凝汽器及凝结水泵,所述冷凝管路的出口端与所述省煤器的入口端连通。
  9. 如权利要求8所述的采用低热值煤气发电的系统,其特征在于:所述冷凝管路上还设有低压加热器和高压加热器,所述凝汽器、所述凝结水泵、所述低压加热器及所述高压加热器沿凝结水流通方向依次布置。
  10. 如权利要求8所述的采用低热值煤气发电的系统,其特征在于:还包括高压旁路机构和低压旁路机构;
    所述高压旁路机构的蒸汽入口端旁接于所述第一蒸汽管路上,所述高压旁路机构的蒸汽出口端旁接于所述第二蒸汽管路上;
    所述低压旁路机构的蒸汽入口端旁接于所述第三蒸汽管路上,所述低压旁路机构的蒸汽出口端旁接于所述冷凝管路上且旁接点位于所述凝汽器与所述低压缸蒸汽出口之间。
  11. 如权利要求10所述的采用低热值煤气发电的系统,其特征在于:所述高压旁路机构包括并联布置的至少一个高压旁路,各所述高压旁路上均设有高旁压力阀,各所述高旁压力阀的减温水入口端均连接有一高压喷水管路,各所述高压喷水管路上均设有高旁喷水调节阀和高旁喷水隔离阀;
    所述低压旁路机构包括并联布置的至少一个低压旁路,各所述低压旁路上均设有低旁压力阀,各所述低旁压力阀的减温水入口端均连接有一低压喷水管路,各所述低压喷水管路上均设有低旁喷水调节阀和低旁喷水隔离阀。
  12. 如权利要求6所述的采用低热值煤气发电的系统,其特征在于:所述燃烧器结构包括第一燃烧器层,所述第一燃烧器层包括布置于所述燃烧室前墙的至少一个第一燃烧器,或包括对冲布置于所述燃烧室前墙和后墙的多个第一燃烧器,各所述第一燃烧器均包括由内而外依次套接的点火气管、第一燃气管和第一助燃气管,所述第一燃气管连接有低热值煤气供应管。
  13. 如权利要求12所述的采用低热值煤气发电的系统,其特征在于:所述第一燃气管和所述第一助燃气管出口端均设置有旋流叶片组,每一旋流叶片组的各旋流叶片环形布置于对应的气管内腔中,各旋流叶片均沿对应的气管的径向布置。
  14. 如权利要求13所述的采用低热值煤气发电的系统,其特征在于:所述第一燃气管出口端处设有第一环形毂,所述第一环形毂位于所述第一燃气管与所述点火气管之间;所述第一燃气管内的旋流叶片组包括多个第一旋流叶片和多个第二旋流叶片,各所述第一旋流叶片均固定于所述第一环形毂与所述点火气管之间,各所述第二旋流叶片均固定于所述第一环形毂与所述第一燃气管之间。
  15. 如权利要求13所述的采用低热值煤气发电的系统,其特征在于:所述第一助燃气管出口端处设有第二环形毂,所述第二环形毂位于所述第一助燃气管与所述第一燃气管之间;所述第一助燃气管内的旋流叶片组包括多个第三旋流叶片,各所述第三旋流叶片均固定于所述第二环形毂与所述第一燃气管之间。
  16. 如权利要求15所述的采用低热值煤气发电的系统,其特征在于:所述第一助燃气管内的旋流叶片组还包括多个第四旋流叶片,各所述第四旋流叶片均固定于所述第二环形毂与所述第一助燃气管之间。
  17. 如权利要求12所述的采用低热值煤气发电的系统,其特征在于:所述燃烧器结构还包括第二燃烧器层,所述第二燃烧器层位于所述第一燃烧器层上方;所述第二燃烧器层包括布置于所述燃烧室前墙的至少一个第二燃烧器,或包括对冲布置于所述燃烧室前墙和后墙的多个第二燃烧器;
    各所述第二燃烧器均包括自内而外依次套接的第二燃气管、第二助燃气管、第三燃气管和第三助燃气管,各气管的出口端均设置有旋流叶片组,每一旋流叶片组的各旋流叶片环形布置于对应的气管内腔中,各旋流叶片均沿对应的气管的径向布置。
  18. 如权利要求17所述的采用低热值煤气发电的系统,其特征在于:所述竖直烟道内还布置有空气预热器,所述空气预热器位于所述省煤器下方;
    所述第一助燃气管、所述第二助燃气管及所述第三助燃气管均连接有助燃气供应管,所述空气预热器的出口端与至少其中一个所述助燃气供应管连通。
PCT/CN2017/113102 2016-11-29 2017-11-27 采用低热值煤气发电的方法及系统 WO2018099346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145127A RU2713554C1 (ru) 2016-11-29 2017-11-27 Способ и система выработки электроэнергии из газа с низкой теплотворной способностью

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611068564.4A CN106838863B (zh) 2016-11-29 2016-11-29 采用低热值煤气发电的方法
CN201611068564.4 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018099346A1 true WO2018099346A1 (zh) 2018-06-07

Family

ID=59145936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113102 WO2018099346A1 (zh) 2016-11-29 2017-11-27 采用低热值煤气发电的方法及系统

Country Status (3)

Country Link
CN (1) CN106838863B (zh)
RU (1) RU2713554C1 (zh)
WO (1) WO2018099346A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108980949A (zh) * 2018-09-28 2018-12-11 中冶赛迪技术研究中心有限公司 一种供热蒸汽输送系统
CN109114537A (zh) * 2018-09-27 2019-01-01 哈尔滨四方锅炉有限公司 一种单锅筒横置式下进气燃气燃油角管锅炉
CN109854317A (zh) * 2019-02-13 2019-06-07 大唐绥化热电有限公司 汽轮机组集成型旁路系统及控制方法
CN110160033A (zh) * 2019-06-13 2019-08-23 西安热工研究院有限公司 一种电站锅炉高温蒸汽管道氧化皮吹扫结构
CN112127960A (zh) * 2020-09-07 2020-12-25 国网湖北省电力有限公司电力科学研究院 基于全自动甩负荷工况下的汽机旁路控制方法
CN112920817A (zh) * 2021-02-19 2021-06-08 常州江南冶金科技有限公司 焦炉上升管荒煤气显热回收自动控制系统及控制方法
CN113790088A (zh) * 2021-04-02 2021-12-14 南京凯盛开能环保能源有限公司 一种工业余热回收高效发电方法及其系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838863B (zh) * 2016-11-29 2020-05-08 中冶南方都市环保工程技术股份有限公司 采用低热值煤气发电的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181675A (ja) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 再熱ボイラ、舶用推進プラント、船舶、舶用推進プラントの制御方法
CN204987895U (zh) * 2015-05-13 2016-01-20 湖南中冶长天节能环保技术有限公司 带外置式过热补燃的烧结余热发电装置
CN204984507U (zh) * 2015-06-29 2016-01-20 华北电力大学(保定) 一种低成本超临界热力发电系统
CN105387729A (zh) * 2015-12-18 2016-03-09 成都成发科能动力工程有限公司 物料冷却余热发电系统
CN106642053A (zh) * 2016-11-29 2017-05-10 武汉都市环保工程技术股份有限公司 采用低热值煤气进行发电的系统
CN106838863A (zh) * 2016-11-29 2017-06-13 武汉都市环保工程技术股份有限公司 采用低热值煤气发电的方法
CN206398682U (zh) * 2016-11-29 2017-08-11 武汉都市环保工程技术股份有限公司 低热值煤气一次再热发电系统
CN206514276U (zh) * 2016-11-29 2017-09-22 武汉都市环保工程技术股份有限公司 低热值煤气锅炉

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889292B1 (fr) * 2005-07-26 2015-01-30 Optimise Procede et installation de combustion sans soutien de gaz combustible pauvre a l'aide d'un bruleur et bruleur associe
JP4999825B2 (ja) * 2008-11-12 2012-08-15 株式会社神戸製鋼所 蒸気発電装置およびプラント
US20110094228A1 (en) * 2009-10-22 2011-04-28 Foster Wheeler Energy Corporation Method of Increasing the Performance of a Carbonaceous Fuel Combusting Boiler System
WO2012052276A1 (en) * 2010-10-19 2012-04-26 Alstom Technology Ltd Method for operation of a combined-cycle power plant with cogeneration, and a combined-cycle power plant for carrying out the method
CN201954551U (zh) * 2011-01-20 2011-08-31 襄樊大力机电技术有限公司 回转窑用旋流式四通道气体燃烧器
KR20120131760A (ko) * 2011-05-26 2012-12-05 한국남부발전 주식회사 효율향상을 위한 발전 시스템
CN102364244A (zh) * 2011-10-28 2012-02-29 西安热工研究院有限公司 一种带二次再热的700℃以上参数超超临界锅炉
JP5931693B2 (ja) * 2012-10-25 2016-06-08 三菱日立パワーシステムズ株式会社 中小容量火力発電プラントのリプレース又はリノベーションの方法及び中小容量火力発電プラント用ボイラのリプレース又はリノベーションの方法
CN203068527U (zh) * 2012-11-29 2013-07-17 福建三能节能科技有限责任公司 一种回转窑用油气两用燃烧器
CN103133067A (zh) * 2013-03-15 2013-06-05 南京凯盛开能环保能源有限公司 钢厂富余高炉煤气及富余饱和蒸汽综合利用发电系统
CN104266171A (zh) * 2014-08-28 2015-01-07 国电龙源节能技术有限公司 火电厂烟气余热利用系统
CN204987008U (zh) * 2015-09-08 2016-01-20 武汉锅炉集团工程技术有限公司 一种双旋流式低热值燃气燃烧器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181675A (ja) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 再熱ボイラ、舶用推進プラント、船舶、舶用推進プラントの制御方法
CN204987895U (zh) * 2015-05-13 2016-01-20 湖南中冶长天节能环保技术有限公司 带外置式过热补燃的烧结余热发电装置
CN204984507U (zh) * 2015-06-29 2016-01-20 华北电力大学(保定) 一种低成本超临界热力发电系统
CN105387729A (zh) * 2015-12-18 2016-03-09 成都成发科能动力工程有限公司 物料冷却余热发电系统
CN106642053A (zh) * 2016-11-29 2017-05-10 武汉都市环保工程技术股份有限公司 采用低热值煤气进行发电的系统
CN106838863A (zh) * 2016-11-29 2017-06-13 武汉都市环保工程技术股份有限公司 采用低热值煤气发电的方法
CN206398682U (zh) * 2016-11-29 2017-08-11 武汉都市环保工程技术股份有限公司 低热值煤气一次再热发电系统
CN206514276U (zh) * 2016-11-29 2017-09-22 武汉都市环保工程技术股份有限公司 低热值煤气锅炉

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109114537A (zh) * 2018-09-27 2019-01-01 哈尔滨四方锅炉有限公司 一种单锅筒横置式下进气燃气燃油角管锅炉
CN108980949A (zh) * 2018-09-28 2018-12-11 中冶赛迪技术研究中心有限公司 一种供热蒸汽输送系统
CN108980949B (zh) * 2018-09-28 2024-02-23 中冶赛迪技术研究中心有限公司 一种供热蒸汽输送系统
CN109854317A (zh) * 2019-02-13 2019-06-07 大唐绥化热电有限公司 汽轮机组集成型旁路系统及控制方法
CN110160033A (zh) * 2019-06-13 2019-08-23 西安热工研究院有限公司 一种电站锅炉高温蒸汽管道氧化皮吹扫结构
CN112127960A (zh) * 2020-09-07 2020-12-25 国网湖北省电力有限公司电力科学研究院 基于全自动甩负荷工况下的汽机旁路控制方法
CN112127960B (zh) * 2020-09-07 2022-06-24 国网湖北省电力有限公司电力科学研究院 基于全自动甩负荷工况下的汽机旁路控制方法
CN112920817A (zh) * 2021-02-19 2021-06-08 常州江南冶金科技有限公司 焦炉上升管荒煤气显热回收自动控制系统及控制方法
CN113790088A (zh) * 2021-04-02 2021-12-14 南京凯盛开能环保能源有限公司 一种工业余热回收高效发电方法及其系统

Also Published As

Publication number Publication date
CN106838863B (zh) 2020-05-08
CN106838863A (zh) 2017-06-13
RU2713554C1 (ru) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2018099346A1 (zh) 采用低热值煤气发电的方法及系统
CA2633277C (en) Steam temperature control in a boiler system using reheater variables
JP6749780B2 (ja) 追い焚きガスタービンコンバインドサイクルプラントの改良された温度が比較的低い状態の蒸気タービンを起動する方法
JP5665621B2 (ja) 排熱回収ボイラおよび発電プラント
CN113756898A (zh) 一种火电厂停炉的汽机定速备用运行方法
CN206514276U (zh) 低热值煤气锅炉
CN113586188B (zh) 一种火电厂两机协调深度调峰方法
CN106642053B (zh) 采用低热值煤气进行发电的系统
CN206398682U (zh) 低热值煤气一次再热发电系统
CN201218519Y (zh) 煤、气混烧锅炉再热减温辅助调节装置
CN104214794A (zh) 煤粉锅炉燃烧器喷嘴上摆角度值确定方法及燃烧控制方法
CN116336450A (zh) 灵活高效新型燃煤发电机组
CN103528047B (zh) 一种用于火力发电厂塔式直流锅炉的蒸汽吹灰调节再热汽温的方法
CN207795326U (zh) 汽轮机发电机组
CN114383124A (zh) 用于火电机组热能耗散的保温节能方法
CN105157004B (zh) 预防1000mw八角切圆锅炉氧化皮生成及尾部烟道二次燃烧事故的锅炉启动方法
US10344627B2 (en) Heat recovery steam generator and power plant
CN206347546U (zh) 低热值煤气燃烧器及低热值煤气锅炉
Shen et al. Design of Boiler Steam Temperature Control System
CN206347567U (zh) 燃烧器及锅炉
CN106556001A (zh) 一种火力发电机组的准东煤锅炉无油停炉的方法
CN113586184B (zh) 一种基于火电厂主再热汽联通的深度调峰方法
CN115682016A (zh) 一种适应煤粉汽包锅炉快速启停的热辅助系统及控制方法
CN111594816B (zh) 基于双层等离子设计的超临界锅炉启动方法
JP7150670B2 (ja) ボイラ及びこれを備えた発電プラント並びにボイラの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876703

Country of ref document: EP

Kind code of ref document: A1