WO2018098803A1 - 吸液性复合非织造织物及其制品 - Google Patents

吸液性复合非织造织物及其制品 Download PDF

Info

Publication number
WO2018098803A1
WO2018098803A1 PCT/CN2016/108354 CN2016108354W WO2018098803A1 WO 2018098803 A1 WO2018098803 A1 WO 2018098803A1 CN 2016108354 W CN2016108354 W CN 2016108354W WO 2018098803 A1 WO2018098803 A1 WO 2018098803A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polymer
nonwoven fabric
melt
composite nonwoven
Prior art date
Application number
PCT/CN2016/108354
Other languages
English (en)
French (fr)
Inventor
荣浩明
肖尔茨⋅马修
齐利希⋅丹尼尔
罗马诺⋅米夏埃尔
帕塔萨拉蒂⋅蓝雅尼
科亨⋅汉娜
恩格勒⋅阿曼达
查克拉瓦蒂⋅杰严特
陈瑞
Original Assignee
3M创新有限公司
荣浩明
肖尔茨⋅马修
齐利希⋅丹尼尔
罗马诺⋅米夏埃尔
帕塔萨拉蒂⋅蓝雅尼
科亨⋅汉娜
恩格勒⋅阿曼达
查克拉瓦蒂⋅杰严特
陈瑞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M创新有限公司, 荣浩明, 肖尔茨⋅马修, 齐利希⋅丹尼尔, 罗马诺⋅米夏埃尔, 帕塔萨拉蒂⋅蓝雅尼, 科亨⋅汉娜, 恩格勒⋅阿曼达, 查克拉瓦蒂⋅杰严特, 陈瑞 filed Critical 3M创新有限公司
Priority to US16/465,925 priority Critical patent/US20190390382A1/en
Priority to PCT/CN2016/108354 priority patent/WO2018098803A1/zh
Publication of WO2018098803A1 publication Critical patent/WO2018098803A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/36Surgical swabs, e.g. for absorbency or packing body cavities during surgery
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/0203Adhesive plasters or dressings having a fluid handling member
    • A61F13/0206Adhesive plasters or dressings having a fluid handling member the fluid handling member being absorbent fibrous layer, e.g. woven or nonwoven absorbent pad, island dressings
    • A61F13/05
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/02Bandages, dressings or absorbent pads
    • D10B2509/026Absorbent pads; Tampons; Laundry; Towels

Definitions

  • the present invention relates to a liquid-absorbent composite nonwoven fabric and articles thereof.
  • the present invention discloses a composite nonwoven fabric, an article comprising the composite nonwoven fabric, and a method of making the composite nonwoven fabric.
  • the composite nonwoven fabric may have a set of melt spun fibers, and the set of melt spun fibers may include a first melt spun fiber comprising a first polymer and a second polymer.
  • the first polymer is a hydrophilic thermoplastic polymer comprising from 65% (weight/weight) to 90% (weight/weight) hydrophilic segments, inclusive.
  • the second polymer is a hydrophobic thermoplastic polymer.
  • the first melt spun fiber comprises from 3% (weight/weight) to 95% (weight/weight) of the first polymer, inclusive.
  • Porous fiber webs are widely used in applications such as filtering particles and removing oil from water, absorbing fluid excretion from the body, and as sound insulation or insulation.
  • the Naval Research Laboratories published by Van A. Wente et al., May 25, 1954, entitled “Manufacture of Super Fine Organic Fibers", has been used.
  • a meltblown technique of the type described in 4364 which is made of a thermoplastic resin to form a plurality of porous webs.
  • the composite fiber web may be formed using a mixture of melt-spun fiber webs and other polymer fibers (e.g., staple fibers), as disclosed in International Patent Publication No. WO 2015/100088 A1, issued to Springett et al., U.S. Patent No. 6,827,764. U.S. Patent No. 4,118, 531 to Hauser, U.S. Patent No. 4,908,263 to Reed et al., and U.S. Patent Application Publication No. 2008/0318024.
  • other polymer fibers e.g., staple fibers
  • Body fluids typically have multiple solutes (eg, proteins, carbohydrates, salts) dissolved therein.
  • a lavage fluid for moistening and/or rinsing the wound site eg, saline, Buffered saline, Ringer's solution
  • solutes eg, sodium chloride, sodium lactate
  • Articles for surgical applications require balancing the "sliding and gripping" (e.g., coefficient of friction) characteristics of the article.
  • Articles that absorb aqueous liquids and have high slidability can be problematic when applied to soft tissue areas because the articles may be too slippery to manipulate soft tissue areas.
  • articles with high grip may also be problematic when applied to soft tissue areas because the article may scratch the soft tissue area.
  • the composite nonwoven fabric can have a set of melt spun fibers.
  • the set of melt spun fibers can include a first melt spun fiber comprising a first polymer and a second polymer.
  • the first polymer is a hydrophilic thermoplastic polymer comprising from 65% (w/w) to 90% (w/w) inclusive of hydrophilic segments.
  • the second polymer is a hydrophobic thermoplastic polymer.
  • the first melt spun fiber comprises from 20% (weight/weight) to 80% (w/w) of the first polymer, inclusive.
  • the composite nonwoven fabric can have a set of melt spun fibers comprising a first melt spun fiber and a second melt spun fiber.
  • the first melt spun fiber comprises a first polymer which is an aliphatic polyether thermoplastic polyurethane polymer comprising from 65% (weight/weight) to 90% (w/w) polyalkylene oxide.
  • the set of melt spun fibers comprises from 5% (weight/weight) to 100% (weight/weight), including the end melt, of the first melt spun fiber.
  • the second melt spun fiber comprises a second polymer selected from the group consisting of hydrophobic thermoplastic resins such as polyester based thermoplastic polyurethanes, polyether based thermoplastic polyurethanes, ethylene-octene copolymers, linear low density Polyethylene, or a combination thereof.
  • the first melt-spun fiber and the second melt-spun fiber are mixed together.
  • the composite nonwoven fabric can include a set of staple fibers that are intermingled with one another and entangled.
  • the set of staple fibers comprises from 25% (weight/weight) to 75% (weight/weight) by weight of the composite nonwoven fabric.
  • aspects of the present disclosure also relate to articles made from composite nonwoven fabrics and methods of making composite nonwoven fabrics and articles.
  • "an," and "at least one," and "one or more" are used interchangeably.
  • "a" fiber can be interpreted to mean “one or more(s)" fibers.
  • FIG. 1 is a schematic illustration of one embodiment of a system for making a fibrous web comprising melt spun fibers and optional staple fibers in accordance with the present disclosure.
  • FIG. 2 is a perspective view of one embodiment of an article according to the present disclosure comprising a composite melt spun nonwoven fabric.
  • FIG 3 is a perspective view of one embodiment of an article according to the present disclosure comprising a plurality of composite melt spun nonwoven fabric layers.
  • FIG. 4 is a perspective view of one embodiment of an article according to the present disclosure comprising a composite melt-spun nonwoven fabric layer bonded to a sheet.
  • FIG. 5 is a perspective view of one embodiment of an article according to the present disclosure comprising a plurality of composite melt-spun nonwoven fabric layers bonded to a sheet.
  • terms such as “front”, “back”, “top”, “bottom” and the like are used to describe elements only when the elements are related to each other, and are not intended to state the specific orientation of the device to indicate or imply the necessity of the device. Or the desired orientation, or specify how the invention described herein will be used, installed, displayed or positioned in use.
  • melt spinning refers to a process for making a web directly from a strand spun from a plastic in liquid form.
  • the polymer particles are melted and extruded through a spinneret (mold) having one or more holes.
  • the molten fibers are allowed to cool, harden and collect on a collector such as a collecting belt or drum.
  • Melt spinning can include meltblowing or spunbonding.
  • Fusion spun fiber means a fiber prepared by a melt spinning process.
  • meltblown refers to a process in which molten material is extruded through a plurality of orifices to form a strand, while the strand is contacted with heated high velocity air or other refining fluid to The raw silk is refined into fibers, and thereafter the fine fiber layer is collected.
  • spunbond refers to a process similar to the meltblowing process except that: i) the temperature and volume of the air used to refine the strand, and ii) the application of the strand drafting or refining The location of the force.
  • the spunbond fibers can have a larger diameter than the meltblown fibers (e.g., generally having a diameter of at least 0.1 microns and less than 15 microns) (e.g., typically between 1 and 50 microns, preferably between 15 and 35 microns, Including the end value).
  • Hydrophilic in the context of a copolymer segment means that the hydrophilic segment precursor is significantly soluble in deionized water to at least 10% by weight, more preferably at least 20% and most preferably at least 40%, And an optically clear solution having an optical path length of 6 cm is preferably formed.
  • Diameter when used with respect to a fiber means the diameter of a fiber having a circular cross section, or in the case of a non-round fiber, means the longest cross section of a cross section that can be constructed over the entire fiber cross section. (ie, the length of a straight line segment where both endpoints are on a circle).
  • Effective fiber diameter when used with respect to a collection of fibers means that for any web of circular or non-circular cross-sectional shape, according to Davies, CN "The Separation of Airborne Dust and Particles" The value determined by the method shown in Institution of Mechanical Engineers, London, Proceedings 1B, 1952 (Institute of Mechanical Engineers, 1B, London, 1952).
  • self-supporting means a web that is sufficiently strong that it can be processed by itself using a roll-to-roll manufacturing apparatus without significant tearing or cracking.
  • short fiber refers to a fiber having a defined length generally between 5 and 200 mm and a fiber diameter of between about 0.5 and 100 microns. Synthetic staple fibers are typically cut to specific lengths. Natural staple fibers typically have a range of lengths in each sample. These fibers can have a degree of crimp imparted thereto.
  • the present disclosure generally relates to liquid absorbent fabrics and articles comprising the liquid absorbent fabrics.
  • the present disclosure relates to compositions and articles that absorb aqueous liquids.
  • the present disclosure relates to a composite nonwoven fabric having a balance of sliding and grip properties.
  • the articles of the invention comprising the composition are particularly suitable for contact with soft tissue regions.
  • At least one of the compositions includes a composite nonwoven fabric.
  • the composite nonwoven fabric can be formed using a melt spinning process.
  • the composite nonwoven fabric comprises at least one set of melt spun fibers comprising a first fiber and optionally a second fiber.
  • the first melt spun fiber has a hydrophilic character.
  • the first melt spun fiber may comprise at least a hydrophilic thermoplastic polymer (ie, a first polymer), and the hydrophilic thermoplastic polymer is generally packaged Contains hydrophilic polymer segments.
  • the first melt spun fiber can also comprise a second polymer.
  • Hydrophilic thermoplastic polymer can refer to a water soluble polymer, which means that the polymer can form a substantially transparent homogeneous solution in deionized water at 5% w/w polymer in water. Hydrophilic polymers can also refer to polymers that are water swellable and capable of absorbing at least 200%, at least 400%, or at least 1000% of their weight in water.
  • Preferred thermoplastic hydrophilic polymers are aliphatic thermoplastic polyurethane polymers such as those having a hydrophilic segment of at least about 60% (weight/weight) of the hydrophilic polymer.
  • hydrophilic segments include polyethylene glycol groups, polypropylene glycol groups, polybutylene oxide groups, random poly(C 2 -C 4 ) alkylene oxide groups, polyester groups (such as Derived from hydrophilic polyesters (eg, polyPEG400 succinate), amine terminated polyester groups, amine terminated polyamide groups (such as those disclosed by Patel in Rasayan J. Chem. Amine-terminated unsaturated polyamides (see those of http://rasayanjournal.co.in/vol-3/issue-1/20.pdf), polyester-amide groups (such as derived from hydrophilic poly Amides (eg, those of polyPEG400 diamine succinate), polycarbonate groups, or combinations thereof.
  • polyester groups such as Derived from hydrophilic polyesters (eg, polyPEG400 succinate), amine terminated polyester groups, amine terminated polyamide groups (such as those disclosed by Patel in Rasayan J. Chem. Amine-terminated unsaturated polyamides (see those of http://rasayanjournal
  • the hydrophilic thermoplastic polymer comprises at least 50%, preferably at least 60%, more preferably at least 70% and most preferably at least 80% polyalkylene oxide by weight.
  • the hydrophilic thermoplastic polymer comprises no more than 90% by weight of polyalkylene oxide.
  • polyethylene oxide is specifically mentioned throughout the disclosure, various hydrophilic segments such as polyalkylene oxides (described further herein) can be used.
  • the thermoplastic polymer has one or more hydrophilic segments to render the thermoplastic polymer generally hydrophilic.
  • the hydrophilic segments can be linked by amide, oxalic acid amide, urea and/or urethane linkages.
  • the hydrophilic thermoplastic polymer is an aliphatic thermoplastic polyurethane (TPU) polymer (such as a polyether based or polyester based TPU polymer) and has at least about 60% (weight/weight) pro Water-based segment.
  • TPU thermoplastic polyurethane
  • a polyester-based TPU polymer can also be utilized, for example, by incorporating a small portion of a polyester polyol, such as polysuccinate (hydrophilic) .
  • the nonwoven fabric comprises a set of melt spun fibers and a set of staple fibers intermixed with one another and entangled together, the set of melt spun fibers comprising no greater than about 85% (weight/weight) Aliphatic polyether thermoplastic polyurethane polymer of polyalkylene oxide.
  • the nonwoven fabric comprises a set of melt spun fibers comprising an aliphatic polyether thermoplastic polyurethane (TPU) polymer having at least about 65% (w/w) polyalkylene oxide. Things.
  • TPU aliphatic polyether thermoplastic polyurethane
  • the aliphatic polyether thermoplastic can have from 65% (weight/weight) to 90% (weight/weight), 70% (weight/weight) to 90% (weight/weight), and 80% (weight/weight) to 90% (w/w), or even 80% (w/w) to 85% (w/w) polyalkylene oxide.
  • Aliphatic polyether TPU polymers are known in the art. Aliphatic polyether TPU polymers suitable for use in preparing the nonwoven fabrics of the present disclosure include polymers comprising polyalkylene oxide block subunits. Suitable polyalkylene oxides include, for example, polyethylene oxide (PEO) (i.e., polyethylene glycol), polypropylene oxide (PPO), polybutylene oxide, or mixtures thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • polybutylene oxide polybutylene oxide
  • the polymer used to form the nonwoven fabric is a medical grade TPU polymer.
  • a non-limiting example of a medical grade TPU polymer suitable for use in forming the nonwoven fabric of the present disclosure is the TECOPHILIC hydrogel TPU sold by The Lubrizol Corporation (Wickliffe, OH).
  • the polyalkylene oxide block subunits in the TPU polymer can have an amount of at least about 1,000, 2000, 3000, 4000, and 5000 Daltons, and preferably less than about 20,000, 18,000, 16000. Or 14,000 daltons. In at least one embodiment, the polyalkylene oxide block subunits in the TPU polymer can have an amount of about 6,000 Daltons. In at least one embodiment, the polyalkylene oxide block subunits in the TPU polymer can have an amount of about 8,000 Daltons. In at least one embodiment, the polyalkylene oxide block subunits in the TPU polymer can have an amount of about 12,000 Daltons.
  • the polyalkylene oxide block subunits in the TPU polymer can have a formula amount of about 6,000 Daltons, a formula amount of about 8,000 Daltons, an amount of about 12,000 Daltons, about A mixture of 6,000 Daltons, or a mixture of block subunits having any two or more of the above formulas. It should be understood that these molecular weight values are average values and refer to weight average molecular weight.
  • the first melt spun fiber may also optionally comprise a second polymer.
  • the second polymer modifies the structural features of the first melt spun fiber.
  • the second polymer can improve the wet tensile strength or dry tensile strength of the resulting composite nonwoven fabric.
  • the second polymer can generally include a thermoplastic polymer that can be used in a meltblowing process.
  • the thermoplastic polymer can be an elastomer.
  • the thermoplastic polymer can be hydrophobic to a large extent (ie, water insoluble) and relatively elastic.
  • the thermoplastic polymer can generally have an elastic modulus of from 8 MPa to 113 MPa under the conditions established in ASTM 638.
  • the second polymer may be selected from the group consisting of polyester-based thermoplastic polyurethanes, polyether-based thermoplastic polyurethanes, ethylene-octene copolymers, linear low density polyethylenes, ethylene copolymers such as having at least 8, 10, 15, 20% acetic acid.
  • Ethylene-vinyl acetate polymer of vinyl ester ethylene-acrylate copolymer (for example, ethylene-methacrylate) having at least 8, 10, 15, 20% acrylate such as C1-C8 acrylate, acrylic intercalation Segment copolymer elastomer, or a combination thereof.
  • Thermoplastic polymers can include a variety of classes such as styrenic block copolymers, thermoplastic olefins, elastomeric alloys, thermoplastic polyurethanes, thermoplastic copolyesters, and thermoplastic polyamides.
  • Thermoplastic polyurethanes and thermoplastic olefins are particularly useful for composite nonwoven fabrics because of their pilling resistance.
  • thermoplastic copolyester can be used as the second polymer because of its high elasticity.
  • One example includes polyether polyesters such as those commercially available under the trade designation Hytrel from Du Pont Company (Wilmington, Deleware) of Wilmington, Delaware. Particularly useful are thermoplastic aliphatic polyesters which may further comprise polylactic acid.
  • the polylactic acid may be an L-lactic acid or a D-lactic acid homopolymer; or it may be a copolymer such as a copolymer comprising an L-lactic acid monomer unit and a D-lactic acid monomer unit.
  • the homopolymer or copolymer designation will be based on the stereoregularity of the monomer units rather than the "stereo" nomenclature based on chemical composition.
  • such monomer units can be derived from copolymers.
  • the chain is doped with L-lactic acid, D-lactic acid, L-lactide, D-lactide, meso-lactide or the like.
  • the polylactic acid can be An L-D copolymer mainly composed of an L-lactic acid monomer unit and a small amount of D-lactic acid monomer unit which can, for example, improve melt processability of the polymer.
  • the polylactic acid copolymer can comprise at least about 85, 90, 95, 96, 97, 98, 99, 99.5, or 99.7% by weight of L-lactic acid monomer units. In other embodiments, the polylactic acid copolymer can comprise up to about 15, 10, 5, 4, 3, 2, 1, 0.5, or 0.3 weight percent D-lactic acid monomer units.
  • substantially all (ie, 99.5% by weight or greater) polylactic acid content of the second polymer (and/or the total polymer content of the melt-spun strand) may be provided by a polylactic acid (stereo) copolymer.
  • substantially all of the polylactic acid content of the strands may be in the form of an L-lactic acid homopolymer.
  • Polylactic acid Polylactic acid.
  • the addition of such additional amounts of D-lactic acid homopolymer may, in some cases, enhance certain properties of the polylactic acid material (eg, melt processing) Sex, nucleation rate, etc.).
  • the polylactic acid used for example, for melt spinning, can comprise at least about 0.5, 1, 2, 3, 5, or 8 weight percent D-lactic acid homopolymer additive.
  • such polylactic acid materials can comprise up to about 15, 10, 8, 5, 3, 2, 1, or 0.5 weight percent D-lactic acid homopolymer.
  • the balance of the polylactic acid precursor forming material may be, for example, an L-D stereo copolymer as described above.
  • the polylactic acid present in the second polymer can be a (component) copolymer comprising one or more additional (non-lactic acid) monomer units.
  • Such monomer units may include, for example, glycolic acid, hydroxypropionic acid, hydroxybutyric acid, and the like.
  • the lactic acid monomer unit (either L or D, and derived from any source) can comprise at least about 80, 85, 90, 95, 97, 99, or 99.5 weight of the melt-spun polylactic acid strand. %.
  • melt-processible polylactic acid polymer materials are commercially available, for example, from Natureworks LLC (Minnetonka, MN) under the tradenames INGEO 6100D, 6202D, and 6260D, Minnesota, Minnesota. obtain.
  • the melt processible polylactic acid polymer material (for example, D-lactic acid homopolymer) can be, for example, under the trade name SYNTERRA PDLA 1010 is commercially available from Synbra Technologies, The Netherlands, The Netherlands. Many other potentially suitable polylactic acid materials are also commercially available.
  • TPU can be used as the second polymer because of its high elasticity and transparency.
  • the TPU polymer can be characterized by a block copolymer composed of a soft segment and a hard segment. Modification of the soft segments allows the TPU to be divided into two groups, a polyester based TPU and a polyether based TPU (discussed herein).
  • a polyester based TPU due to its high abrasion resistance and adhesion strength compared to polyether based TPU.
  • a non-limiting example of a polyester-based thermoplastic polyurethane is commercially available from the trade name IROGRAN (Model PS 440-200) sold by Huntsman Corporation (The Woodlands, Texas).
  • IROGRAN Model PS 440-200
  • polyether TPU resins such as those commercially available from BF Goodrich Company (Cleveland, Ohio) under the trade name Estane, Cleveland, Ohio, may also be used. .
  • olefin monomers include propylene, ethylene, 1-butene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, polymethylpentane, and 1- Octadecene, of which ethylene is generally preferred.
  • polyolefins derived from such olefin monomers include polyethylene, polypropylene, polybutene-1, poly(3-methylbutene), poly(4-methylpentene), and discussed herein. a copolymer of an olefin monomer.
  • the thermoplastic olefin can optionally comprise a copolymer derived from an olefin monomer and one or more additional comonomers copolymerizable with the olefin monomer. These comonomers may be present in the thermoplastic olefin in an amount ranging from about 1% to 10% by weight, based on the total weight of the thermoplastic olefin. Such comonomers which may be used include, for example, vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl chloroacetate, vinyl chloropropionate; acrylic acid and alpha-alkyl acrylic monomers.
  • alkyl esters, amides and nitriles such as acrylic acid, methacrylic acid, ethacrylic acid, methyl acrylate, ethyl acrylate, N,N-dimethyl acrylamide, methacrylamide, acrylonitrile; vinyl Aryl monomers such as styrene, o-methoxybenzene Ethylene, p-methoxystyrene and vinyl naphthalene; halogenated ethylene and vinylidene halide monomers such as vinyl chloride, vinylidene chloride and vinylidene bromide; alkyl esters of maleic acid and fumaric acid Body, such as dimethyl maleate and diethyl maleate; vinyl alkyl ether monomers such as vinyl methyl ether, vinyl ethyl ether, vinyl isobutyl ether, and 2-chloroethyl Vinyl ether; vinyl pyridine monomer; N-vinyl carbazole monomer and N-viny
  • the thermoplastic olefin may also be in the form of a metal salt of a polyolefin comprising free carboxylic acid groups, or a blend thereof.
  • Illustrative metals useful for providing salts of the carboxylic acid polymers are monovalent, divalent, and trivalent metals such as sodium, lithium, potassium, calcium, magnesium, aluminum, cerium, zinc, zirconium, hafnium, iron, nickel. And cobalt.
  • the ruthenium can be particularly useful as a metal salt for forming radiopaque melt-spun fibers that can be used to detect articles left over from surgery.
  • thermoplastic olefins are melt processable or extrudable and include homopolymers and copolymers of polypropylene, homopolymers and copolymers of polyethylene, and homopolymers and copolymers of poly-1-butene. Things.
  • the thermoplastic olefin of the second polymer is a homopolymer or copolymer of polypropylene.
  • the thermoplastic olefin of the second polymer is a homopolymer or copolymer of polyethylene.
  • thermoplastic olefin of the second polymer can be the same polymer as the polymer of the second component.
  • thermoplastic olefins can include a variety of commercially available materials such as polypropylene, polyethylene (such as low density polyethylene or linear low density polyethylene), block copolymer polypropylene, and the like.
  • thermoplastic olefins suitable for use in forming melt spun fibers include those sold under the trade name Engage (Model 8402) by Dow Chemical Company (Midland, Michigan).
  • Engage Model 8402
  • DNDB-1077NT 7 by The Dow Chemical Company of Midland, Michigan.
  • thermoplastic olefin may also comprise a blend of the mentioned polyolefins with other polyolefins, or a multilayer structure having two or more of the same or different polyolefins.
  • they may contain conventional adjuvants such as antioxidants, light stabilizers, acid neutralizers, fillers, antiblocking agents, pigments, primers, and other adhesion promoters.
  • the second polymer may also include materials other than thermoplastic olefins, such as monomers, oligomers, polymers, or even natural materials (eg, cotton, rayon, or rubber).
  • the second polymer can include exemplary monomers such as lactide, glycolide, and the like, and combinations thereof.
  • Exemplary oligomers useful in the second materials disclosed herein include lactic acid oligomers, glycolic acid oligomers, co-oligomers of lactic acid and glycolic acid.
  • these exemplary co-oligomers may be prepared from other functional monomers, such as [ ⁇ ]-caprolactone, 1,5-dioxepane-2-one, trimethylene carbonate or other suitable Monomers to obtain oligomers having a different degradation rate than the first material.
  • Exemplary materials that can be used for the second polymer include oligomeric copolymers of lactic acid and glycolic acid, amine terminated polypropylene glycol, polylactic acid, and combinations thereof.
  • the second polymer can have a
  • the second polymer may also comprise a polyamide, such as a polyether polymer commercially available under the trade name Pebax from ELF Atochem, North America, Inc. (Philadelphia, Pa.). Amide.
  • the second polymer may also include an acrylic block copolymer such as those commercially available under the trade name Kurarity, marketed by Kuraray Company (Japan).
  • first component or the second component e.g., as an additive and/or coating
  • desired characteristics such as handleability, processability, and Dispersibility.
  • other materials include plasticizers, antimicrobial agents, fluid repellents, surfactants, dispersants, antioxidants, fillers, nucleating agents, crosslinking agents, and antistatic agents, blowing agents, colorants , pharmaceutical compositions, waxes and talc.
  • Non-limiting examples of plasticizers include triethyl citrate, alkyl lactate, triacetin, alkyl diols, and oligomers of base polymers, and may comprise from about 1 to about 50 weight percent of the final composition. Amounts within the ranges are present, and are preferably present in an amount ranging from about 5 to about 30 weight percent.
  • Plasticizers useful as materials disclosed herein may include, but are not limited to, polyethylene glycol; polyethylene oxide; citric acid esters (such as tributyl citrate oligomers, lemon Triethyl citrate, acetyl tributyl citrate, acetyl triethyl citrate); glucose monoester; partial fatty acid ester; PEG monolaurate; triacetin; poly([ ⁇ ]-caprolactone) ; poly(hydroxybutyrate); glycerol-1-benzoate-2,3-dilaurate; glycerol-2-benzoate-1,3-dilaurate; starch; Diethylene glycol) adipate; diacetin monocaprylate; diacetyl monoacylglycerol; polypropylene glycol (and their epoxy derivatives); polypropylene glycol dibenzoate, dipropylene glycol Benzoate; glycerin; ethylphthalate ethyl glycolate
  • Antimicrobial agents are known to those skilled in the art. While it is not currently known which specific antimicrobial, antifungal, etc. will be compatible in these configurations and compositions of the present invention, many antimicrobial agents can be applied to the fabric of the present invention and can be Some thermally stable antimicrobial agents are added to the melt, although carriers may be required to float them to the surface. Suitable non-limiting examples of antimicrobial agents include silver compounds, chlorhexidine salts such as acetate, lactate and gluconate, iodophor, pyrithione, isothiazoline or benzimidazole. These agents may be present in an amount ranging from about 0.05% to about 5% by weight, depending on the reagents and based on the total composition.
  • Surfactants can be used to improve the hydrophilicity of the fibers.
  • Useful surfactants also known as emulsifiers
  • Preferred surfactants are anionic, zwitterionic and nonionic.
  • Surfactants include anionic surfactants such as alkyl aryl ether sulfates and sulfonates such as sodium alkyl aryl ether sulfates (e.g., those available from Rohm and Haas, Philadelphia, PA).
  • alkylaryl polyether sulfates and sulfonates for example, alkylaryl poly(ethylene oxide) sulfates and sulphur Acid salt, preferably having Up to about 4 ethyleneoxy repeating units
  • alkyl sulfates and sulfonates such as sodium lauryl sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate and sodium cetyl sulfate
  • alkyl ethers Sulfates and sulfonates eg, ammonium lauryl ether sulfate and alkyl polyether sulfates and sulfonates (eg, alkyl poly(ethylene oxide) sulfates and sulfonates, preferably having up to about 4 Alkyl sulfates, alkyl ether sulfates, and alkyl
  • Additional anionic surfactants may include alkyl aryl sulfates and sulfonates (eg, ten) Sodium dialkyl benzene sulfonate and sodium dodecyl benzene sulfonate), sodium alkyl sulfate salts and ammonium alkyl sulfate salts (for example, sodium lauryl sulfate and ammonium lauryl sulfate); nonionic surfactants (for example, An ethoxylated oleoyl alcohol and an octylphenyl polyoxyethylene ether); and a cationic surfactant (for example, a mixture of alkyl dimethyl benzyl ammonium chlorides wherein the alkyl chain contains 10 to 18 Carbon atom). Zwitterionic surfactants can also be used and contain sulfobetaine, N- Alkylaminopropionic acid and N-alkyl betaine.
  • Optional additives may also include an auxiliary crosslinking agent that crosslinks the first component and/or the second component. Crosslinking the first component and/or the second component produces a higher wet tensile strength.
  • the auxiliary crosslinking agent may include a peroxide or a polyisocyanate. The auxiliary crosslinking agent can be added together with the first component or the second component. However, the auxiliary crosslinking agent is not necessary for cross-linking, as discussed herein.
  • multicomponent refers to fibers (eg, bicomponent fibers) formed from at least two polymers extruded from the same extruder. These polymers are not aligned in different cross-sections of the fibers at substantially constant locations.
  • Various multi-component fibers are described in U.S. Patent No. 5,108,827 to Gessner.
  • the first melt spun fiber can be formed from any ratio of the first polymer and the second polymer sufficient to produce a composite melt woven fabric having a balance between slip and grip.
  • the first polymer can optionally be contacted with a second polymer to form a mixture that can form the first melt spun fiber.
  • the first melt spun fiber comprises from 3% (weight/weight) to 95% (w/w) of the first polymer.
  • the first melt spun fiber comprises from 20% (weight/weight) to 80% (weight/weight), from 20% (weight/weight) to 60% (weight/weight) Amount), 25% (weight/weight) to 60% (weight/weight) (including the end value), or 45% (weight/weight) to 55% (weight/weight) of the first polymer.
  • the first melt-spun fiber comprises 5% (weight/weight) to 97% (weight/weight), 40% (weight/weight) to 80% (weight/weight), 45% (weight/weight) to 75%. (Weight/weight), or even 45% (w/w) to 55% (w/w) (including end values) of the second polymer.
  • the set of melt-spun fibers may comprise from 5% (weight/weight) to 100% (weight/weight), or from 10% (weight/weight) to 40% (weight/weight) (including end values) a polymer. In some embodiments, the set of melt spun fibers comprises from 10% (weight/weight) to 15% (weight/weight) of the first polymer, inclusive. In other embodiments, the set of melt spun fibers comprises from 15% (weight/weight) to 40% (weight/weight) of the first polymer, inclusive.
  • the meltblown fabric can also include a second melt spun fiber, which further comprises a second polymer as discussed herein.
  • the melt-blend fabric comprises 0% (weight/weight) to 80% (weight/weight), 20% (weight/weight) to 80% (weight/weight), 20% (weight/weight) relative to the melted fabric. Up to 60% (w/w), or even 20% (w/w) to 55% (w/w) of second melt spun fibers.
  • the composite nonwoven fabric of the present disclosure can optionally include a set of staple fibers intertwined with the melt spun fibers.
  • Short fibers can be blended into the melt spun fibers to enhance the flexibility, conformability and absorbency of the composite nonwoven fabric. Short fibers also increase the coefficient of friction. Excess short fibers in the composite melt fabric can cause excessive pilling or lint.
  • the difference between staple fibers and melt-spun fibers may be that short fibers are added after extrusion of the melt-spun fibers (thus creating different characteristics of the melt-blend). Short fibers are characterized by a defined length.
  • staple fibers typically have a length of from 5 mm to 200 mm
  • the individual staple fibers can have a preferred length of from about 25 mm to about 100 mm, inclusive.
  • the set of staple fibers in the composite nonwoven fabric can have an even more preferred average fiber length of from about 38 mm to about 64 mm, inclusive.
  • the staple fibers are further characterized by having an average diameter of from about 5 microns to about 30 microns, depending on the material of the staple fibers.
  • a composite nonwoven fabric comprising rayon fibers can have an average rayon fiber diameter of from about 9 microns to about 30 microns.
  • a composite nonwoven fabric comprising nylon fibers can have an average nylon fiber diameter of from about 13 microns to about 19 microns.
  • the staple fibers used in the composite nonwoven fabric of the present disclosure may be selected from a variety of suitable materials.
  • suitable staple fibers include cellulosic fibers, regenerated cellulosic fibers, polyester fibers, polypeptide fibers, hemp fibers, flax fibers, nylon fibers, and mixtures of any two or more of the foregoing fibers.
  • the staple fibers comprise a portion (i.e., a percentage) of the total weight of the composite nonwoven fabric.
  • the dry weight percentage of melt spun fibers to staple fibers is between about 25:75 and about 75:25, inclusive.
  • the dry weight percentage of melt spun fiber to staple fiber is between about 45:55 and about 55:45, inclusive.
  • the dry weight percent portion of the staple fibers in the composite nonwoven fabric of the present disclosure is about 15%, about 25%, about 30%, about 40%, or about 50%.
  • the composite nonwoven fabric of the present disclosure can be prepared using the melt spinning process described in U.S. Patent No. 4,118,531.
  • FIG. 1 illustrates one embodiment of an apparatus 200 for making an article in accordance with the present disclosure.
  • the molten fiber-forming polymeric material such as the first polymer and/or the second polymer, is fed from the hopper 202, and the extruder 204 enters the mold 206 via the inlet 208 (which may be a meltblown mold or a spunbond mold) Flowing through the mold cavity 210 and exiting the mold cavity 210 through the spinneret holes, the spinneret holes are aligned in a row along the front end of the mold cavity 210 and in fluid communication with the mold cavity 210 (in one embodiment) The mold cavity 210 is in fluid communication with the spinneret orifice through one or more conduits (not shown in Figure 1).
  • the molten fiber-forming polymeric material fed from the hopper 202 can form a first melt-spun fiber.
  • a second molten fiber-forming polymeric material such as a second polymer
  • extruder 205 enters mold 206 via inlet 207, flows through mold cavity 209, and exits through the orifice
  • the mold cavities 209 are lined up along the front end of the mold cavity 209.
  • the second molten fiber-forming polymeric material can form a second melt-spun fiber.
  • the single layer melt spun fiber web is formed from two or more polymer fibers.
  • the two or more polymeric fibers are entangled together and may or may not be bonded to the overlapping locations.
  • Mold 206 can be any ABAB co-extrusion die that alternates the first melt-spun fibers with the second melt-spun fibers.
  • Other mold configurations are possible, including AABB, ABBB, AAAB, to achieve the desired properties of the melt spun material.
  • the length of the first melt spun fiber and the second melt spun fiber may be varied or continuous depending on the characteristics of the desired composite nonwoven fabric.
  • the molten fiber-forming material is thus extruded from the orifice to form the strand 212.
  • a set of openings that force a gas (typically heated air) to pass therethrough at a very high rate is provided to refine the strands 212 into fibers to form an airborne stream 214 of melt spun fibers.
  • Short fibers 12 can be introduced into stream 214 of melt spun fibers by using the exemplary apparatus 220 shown in FIG.
  • This apparatus provides a licker roll 36 (i.e., a roll that receives fibers from the feed roll) disposed adjacent to the meltblowing apparatus.
  • a collection 38 of staple fibers typically a loose nonwoven web, such as a nonwoven web prepared on a wire-returning machine or a Rando-Webber) along the platform 40 below the drive roll 42 Advance, wherein the leading edge engages the licker roller 36 at the drive roller.
  • the licker rolls 36 are rotated in the direction of the arrows and the fibers are rolled up from the leading edge of the set 38 to separate the fibers from each other.
  • the rolled fibers are conveyed in a stream of air through a built-in tank or conduit 45 and into a melt-spun fiber stream 214 which becomes mixed with the melt-spun fibers in the melt-spun fiber stream.
  • the air flow may be naturally generated by the rotation of the licker roller, or an auxiliary ventilator or blower operated through conduit 44 may be used to increase the air flow.
  • the mixed entangled stream 215 of staple fibers and melt spun fibers then continues into the collector 216.
  • the hybrid fibers form a self-supporting web (i.e., a nonwoven fabric) therein.
  • the collector 216 is typically a fine mesh screen that may include a closed loop belt, a flat screen or a cylinder or cylinder.
  • An exhaust device can be placed behind the screen to help deposit the fibers and remove the gases.
  • the web 218 can also be subjected to an optional hot stamper 232 process.
  • the web 218 is hot stamped.
  • the embossing can generally be a geometric pattern selected from the group consisting of diamonds, circles, hexagons, squares, elliptical pillows, corrugations, lines, cross hatching, petals, or combinations thereof.
  • the web 218 can be subjected to an optional downstream irradiation process.
  • the first fiber and the second fiber can be chemically modified by the irradiation device 230.
  • Irradiation device 230 can emit ultraviolet UV, electron beam, gamma or other types of radiation.
  • the irradiation device can expose the web 218 to an electron beam of at least 1, at least 5, at least 10, at least 15, at least 17, at least 20 megarads of radiation.
  • the irradiation apparatus can also expose the web 218 to radiation of no more than 25 megarads or no more than 20 megarads. Irradiation can be used to strengthen the resulting composite nonwoven fabric, reduce the coefficient of friction, or sterilize the device, or any combination thereof.
  • the resulting web 218 can be peeled from the collector and wound into a storage reel which can then be processed by cutting, processing, or molding operations.
  • the inventors have discovered that blending a first polymer with a second polymer prior to meltblowing produces an appropriate balance with "sliding and gripping" (i.e., tensile strength and coefficient of friction between the device and the soft tissue).
  • "sliding and gripping” i.e., tensile strength and coefficient of friction between the device and the soft tissue.
  • a melted fabric that can be used in surgical applications.
  • the inventors have discovered that the addition of a second melt spun fiber, staple fiber, embossing, and cross-linking can also result in a suitably balanced melt woven fabric having "sliding and gripping.”
  • the composite nonwoven fabric of the present disclosure absorbs water and various aqueous solutions having solutes dissolved therein.
  • the nonwoven fabric is capable of absorbing body fluids (eg, blood, serum, urine, and wound exudates), for example, comprising salts, sugars, and/or proteins dissolved or suspended therein.
  • the nonwoven fabric is capable of absorbing other aqueous liquids, Such as lavage fluid for moistening and/or rinsing the wound site (eg, saline, saline, buffered saline, Ringer's solution).
  • the lavage fluid typically contains solutes (eg, sodium chloride, sodium lactate) dissolved therein.
  • the composite nonwoven fabric of the present disclosure absorbs an aqueous liquid (eg, deionized water and physiological saline (0.9% w/w sodium chloride in water)).
  • the absorbency of the nonwoven fabric to deionized water can be measured using a method comprising the steps of: determining the quality of the dried fabric; dipping the fabric into deionized water to allow the fabric to absorb water until it is saturated; removing any excess water; The quality of saturated fabrics.
  • a complete description of the absorbency test is set forth in the water absorption test disclosed herein.
  • the nonwoven fabric absorbs at least about 3 grams, at least about 2 grams, or at least 1 gram of deionized water per gram of fabric, in accordance with the water absorption test disclosed herein.
  • the present disclosure provides an article of manufacture comprising at least one embodiment of the composite nonwoven fabric disclosed herein.
  • Articles comprising nonwoven fabrics can be used in a variety of applications including, for example, soft tissue treatment, dressing wounds, treating wound sites, smearing surfaces (eg, inanimate surfaces or tissue surfaces, such as skin).
  • an article comprising a composite nonwoven fabric can be used to absorb a plurality of aqueous liquids present on the surface in the balance of sliding and grip properties.
  • FIG. 2 illustrates one embodiment of an article 100 including a composite nonwoven fabric 152 in accordance with the present disclosure.
  • the composite nonwoven fabric 152 can be formed as a single layer.
  • the thickness of the composite nonwoven fabric 152 will vary from application to application, but may be at least 0.5 mm thick.
  • FIG. 3 illustrates one embodiment of an article 211 comprising a plurality of layers in accordance with the present disclosure.
  • Article 211 includes a first layer 150 comprising a first composite nonwoven fabric 152 and a second layer 160 comprising a second composite nonwoven fabric 162.
  • the first layer 150 is coupled to the second layer 160 by any suitable means, such as thermal bonding, hot spot bonding, ultrasonic welding, adhesive bonding, stitching, stapling, needling, calendering, or combinations thereof.
  • each of the plurality of layers (eg, first layer 150 and second layer 160) of the article (eg, article 211) can be substantially associated with composite nonwoven fabric 152 or composite nonwoven fabric 162
  • the same eg, compositionally the same (eg, chemical composition, ratio of binder fibers to staple fibers) and/or physically identical (eg, thickness, basis weight, area, average effective fiber diameter, average fiber length)).
  • the composite nonwoven fabric 152 of each of the plurality of layers (eg, the first layer 150 and the second layer 160) of the article (eg, article 211) can be substantially relative to the composite nonwoven fabric 162
  • the difference is (eg, compositionally different (eg, chemical composition, ratio of binder fibers to staple fibers) and/or physically different (eg, thickness, basis weight, area, average effective fiber diameter, average fiber length)).
  • Articles according to the present disclosure have a basis weight.
  • the articles of the present disclosure may have a basis weight of from about 20 g/m 2 to about 200 g/m 2 , inclusive.
  • an article of the present disclosure can have a basis weight of from about 50 g/m 2 to about 150 g/m 2 , inclusive.
  • an article of the present disclosure can have a basis weight of from about 80 g/m 2 to about 120 g/m 2 , inclusive.
  • the multilayer layer can have a basis weight of from about 20 g/m 2 to about 200 g/m 2 , inclusive. In at least one embodiment of the present disclosure of the article, wherein the article comprises a multilayer composite nonwoven fabric, the multilayer may have about 50g / m 2 to about yl 150g / m 2 (inclusive) weight. In at least one embodiment of the article according to the present disclosure, wherein the article comprises a multilayer composite nonwoven fabric, the multilayer can have a basis weight of from about 80 g/m 2 to about 120 g/m 2 , inclusive. In at least one embodiment of the article according to the present disclosure, wherein the article comprises a multilayer composite nonwoven fabric, the multilayer layer can have a basis weight of about 100 g/m 2 .
  • an article according to the present disclosure includes a sheet.
  • Sheet 170 is shown to be larger than composite nonwoven fabric 152 for illustrative purposes and can be of any size.
  • a sheet may refer to a variety of applications depending on the application of the nonwoven fabric. Construction, such as a carrier, barrier layer, tie layer or backing.
  • Figure 4 illustrates an article 300 comprising a composite nonwoven fabric 152 and a sheet 170 bonded thereto.
  • Sheet 170 includes a first major surface 172 and a second major surface 174 that is opposite the first major surface.
  • the composite nonwoven fabric 152 can be bonded to the sheet 170 (eg, the first major surface 172) by any means known in the art, such as thermal bonding, adhesive bonding, powder Binder, needling, calendering, sonic bonding or a combination thereof.
  • Composite nonwoven fabric 152 can be at least one embodiment of the composite nonwoven fabric disclosed herein.
  • the sheet 170 is bonded to the composite nonwoven fabric 152 via a pressure sensitive adhesive 180.
  • a pressure sensitive adhesive 180 As shown in FIG. 4, at least a portion of the first major surface 172 has an optional adhesive layer 180 disposed thereon (e.g., via a coating process well known in the art).
  • the adhesive layer 180 functions to bond the composite nonwoven fabric 152 to the sheet 170.
  • suitable adhesives 180 are described below.
  • the adhesive 180 is shown to cover a substantial portion of the sheet 170, the adhesive 180 can cover a portion of the area of the composite nonwoven fabric 152 that is sufficient to cause the composite nonwoven fabric 152 Adhered to the sheet 170.
  • the composite nonwoven fabric 152 can have an area size greater than or equal to the sheet 170.
  • FIG. 5 illustrates an article 400 that includes a sheet 170 and an article 211 (shown in FIG. 3).
  • Article 211 comprises a plurality of layers, both of which comprise the composite nonwoven fabric described above.
  • the nonwoven fabric article 211 is adhered to the sheet 170 via an optional adhesive 180 coated on a portion of the sheet 170.
  • Sheet 170 can be made from a variety of materials. Typically, sheet 170 is relatively thin (eg, from about 0.3 mm to about 3.0 mm thick). In at least one embodiment, the sheet can be made of a material that substantially blocks the passage of the aqueous liquid therethrough.
  • Materials suitable for sheet 170 include, for example, nonwoven webs, woven webs, woven materials, films, webs, composites, metals, polymers, and the like. These materials are typically translucent or transparent polymeric elastic films.
  • the sheet may be a high moisture vapor permeable film backing.
  • U.S. Patent No. 3,645,835 describes methods of preparing such films and methods of testing their permeability.
  • the material can be sufficiently transparent to allow visualization of the object through the sheet.
  • the sheet advantageously can pass through the wet steam at a rate equal to or greater than the human skin.
  • the adhesive coated sheet is passed through the wet steam at a rate of at least 300 g/m 2 /24 h / 37 ° C / 100-10% RH using a cupping method, in many cases at least The rate of 700 g/m 2 /24h/37 ° C / 100-10% RH is transmitted through the wet steam, most typically at a rate of at least 2000 g/m 2 /24h / 37 ° C / 100-10% RH.
  • Sheet 170 is generally conformable to the anatomical surface. Thus, when the sheet 170 is applied to the anatomical surface, it will conform to the surface even if the surface moves. Sheet 170 also conforms to the anatomical joints of the animal. When the joint is bent and then returned to its unbent position, the sheet 170 can be made such that it stretches to accommodate the bending of the joint and has sufficient resilience to continue the joint when it is restored to its non-bending condition. Shaped in the joints.
  • the sheet 170 can also have various attachments (such as malleable components, holes formed therein, or loops) that are coupled to various instruments, such as retractors or forceps.
  • various attachments such as malleable components, holes formed therein, or loops
  • the adhesive layer 180 may be formed on the sheet 170 using various pressure sensitive adhesives to make the sheet sticky.
  • Pressure sensitive adhesives are generally moderately compatible with the skin and "hypoallergenic" such as the acrylate copolymers described in U.S. Patent No. RE 24,906. Particularly useful are 97:3 isooctyl acrylate:acrylamide copolymers, and the 70:15:15 isooctyl acrylate:ethylene oxide acrylate:acrylic terpolymer as described in U.S. Patent No. 4,737,410 is also It is suitable. Additional useful adhesives are described in U.S. Patent Nos. 3,389,827; 4,112,213; 4,310,509 and 4,323,557. Such as U.S. Patent No. 4,310,509 and It is also contemplated to include a pharmaceutical or antimicrobial agent in the adhesive as described in 4,323,557.
  • the composite nonwoven fabric defines a first region and the sheet defines a second region that is larger than the first region.
  • the second region is shaped and dimensioned such that at least a portion (eg, a peripheral portion) of the second region extends outside of the first region.
  • the peripheral portion can be adhered to the surface (eg, the skin surface) via the adhesive layer to secure (eg, reversibly secure) the article to the surface (eg, a skin surface, not shown).
  • Embodiment 1 A composite nonwoven fabric comprising:
  • a set of melt spun fibers comprising
  • a first melt spun fiber comprising a first polymer
  • the first polymer is a hydrophilic thermoplastic polymer.
  • thermoplastic polyurethane polymer a thermoplastic polyurethane polymer
  • thermoplastic polyurethane polymer comprises from 65% (weight/weight) to 90% (weight/weight) hydrophilic segments, including The end value is included.
  • hydrophilic segment is selected from the group consisting of polyethylene glycol, polypropylene glycol, polybutylene oxide, random polymerization (C2-C4) alkylene oxide, polyester, amine terminated polyester, amine terminated polyamide, polyester-amide, polycarbonate, or combinations thereof.
  • thermoplastic polyurethane polymer is a grease comprising 65% (w/w) to 90% (w/w) polyalkylene oxide.
  • Group polyether based thermoplastic polyurethane polymer is a grease comprising 65% (w/w) to 90% (w/w) polyalkylene oxide.
  • first melt spun fiber further comprises a second polymer, wherein the second polymer is a hydrophobic thermoplastic polymer.
  • thermoplastic elastomer is selected from the group consisting of polyester-based thermoplastic polyurethanes, polyether-based thermoplastic polyurethanes, styrene copolymers, Ethylene-octene copolymer, linear low density polyethylene, or a combination thereof.
  • thermoplastic polymer is a polyester-based thermoplastic polyurethane
  • first melt spun fiber is a multicomponent fiber comprising the first polymer and the second polymer.
  • a second melt spun fiber comprising the second polymer.
  • Embodiment 5 The composite nonwoven fabric of any of the preceding embodiments, Wherein the first melt spun fiber comprises from 5% (weight/weight) to 60% (w/w) of the first polymer, inclusive.
  • Embodiment 14 The composite nonwoven fabric of any of the preceding embodiments, Wherein the set of melt spun fibers comprises from 10% (weight/weight) to 15% (weight/weight) of the first polymer, inclusive.
  • the composite nonwoven fabric of any of the preceding embodiments further comprising a set of staple fibers intermixed with the set of melt spun fibers and entangled together.
  • composite nonwoven fabric according to any one of the preceding embodiments, wherein the composite nonwoven fabric comprises from 25% (weight/weight) to 75% (weight/weight) of the set of staple fibers. .
  • composite nonwoven fabric according to any one of the preceding embodiments, wherein the composite nonwoven fabric comprises 45% (weight/weight) to 55% (weight/weight) of the set of staple fibers. .
  • thermoplastic polyurethane polymer comprises from 70% (weight/weight) to 90% (weight/weight) polycyclic ring Oxytomane.
  • thermoplastic polyurethane polymer comprises 80% (weight/weight) to 90% (weight/weight) polycyclic ring Oxytomane.
  • thermoplastic polyurethane polymer comprises 80% (w/w) to 85% (w/w) polycyclic ring Oxytomane.
  • composite nonwoven fabric according to any one of the preceding embodiments, wherein the second polymer is present such that the composite nonwoven fabric (wet) is relative to the tissue according to a nonwoven friction test method A coefficient of friction having from about 0.2 to about 0.5, inclusive.
  • composite nonwoven fabric according to any of the preceding embodiments, wherein the composite nonwoven fabric has a dry tensile strength of at least 0.1 Newtons per basis weight as tested in the longitudinal direction according to ISO 9073-3. .
  • composite nonwoven fabric according to any one of the preceding embodiments, wherein the composite nonwoven fabric has a dry tensile strength of at least 0.2 Newtons per basis weight as tested in the longitudinal direction according to ISO 9073-3. .
  • composite nonwoven fabric according to any of the preceding embodiments, wherein the composite nonwoven fabric has a dry tensile strength of at least 0.3 Newtons per basis weight as tested in the longitudinal direction according to ISO 9073-3. .
  • the aliphatic polyether-based thermoplastic polyurethane polymer comprises a block subunit of polyethylene oxide, wherein the block is The unit has an average amount of from about 6,000 Daltons to about 20,000 Daltons.
  • composite nonwoven fabric according to any one of the preceding embodiments, wherein the composite nonwoven fabric is further thermally bonded, chemically bonded, stitched, needled, ultrasonically bonded, radiation bonded, Or a combination of them to reinforce.
  • melt spun fibers are meltblown fibers.
  • Embodiment 32 An article comprising the composite nonwoven fabric of any of the preceding embodiments.
  • the article comprises a plurality of layers, wherein at least one of the plurality of layers comprises the composite nonwoven fabric.
  • the second layer is a cover layer having a lower coefficient of friction on the tissue than the cover layer of the first layer.
  • the article of any of the preceding embodiments further comprising a sheet having a first major surface and a second major surface opposite the first major surface, wherein the composite nonwoven The fabric is bonded to the first major surface.
  • the sheet comprises a material selected from the group consisting of a nonwoven fabric, a woven fabric, a knit fabric, a foam layer, a metal layer, a film, a paper layer, or a combination thereof s material.
  • thermo bonding chemical bonding, and mechanical bonding are used, including adhesive bonding, sonic bonding, powder bonding, hydroentanglement,
  • the sheet is bonded to the nonwoven fabric by needling, calendering, or a combination thereof.
  • the nonwoven fabric defines a first region and the sheet defines a second region, the second region being shaped and dimensioned such that At least a portion of the second region extends outside of the first region.
  • the geometric pattern is selected from the group consisting of: a diamond, a circle, a hexagon, a square, or a combination thereof.
  • Embodiment 44 A method of making a nonwoven fabric according to any of the preceding embodiments, comprising:
  • the intertwined melt spun fibers are collected into a nonwoven web.
  • the mixture is allowed to flow through the mold.
  • the composition comprises from 3% (weight/weight) to 60% (weight/weight) of the first polymer, inclusive.
  • the mixture comprises from 20% (weight/weight) to 60% (weight/weight) of the first polymer, including end values .
  • the mixture comprises from 5% (weight/weight) to 60% (weight/weight) of the first polymer, including end values .
  • the mixture comprises from 25% (weight/weight) to 60% (weight/weight) of the first polymer, including end values .
  • the mixture comprises from 10% (weight/weight) to 55% (weight/weight) of the first polymer, including end values .
  • the mold is an ABAB mold, wherein the A component comprises the first polymer and the B component comprises the second polymer.
  • the mold is an ABAB mold, wherein the A component forms the first melt spun fiber and the B component forms the second Melt spun fiber.
  • intertwined melt spun fibers comprise the first melt spun fiber and the second melt spun fiber.
  • the intertwined melt spun fibers comprise from 5% (weight/weight) to 100% (w/w) of the first melt spinning Fiber, including end values.
  • intertwined melt spun fibers comprise from 55% (weight/weight) to 100% (w/w) of the first melt spinning Fiber, including end values.
  • the intertwined melt spun fibers comprise 15% (w/w) to 85% (w/w) of the first melt spun Fiber, including end values.
  • the intertwined melt spun fibers comprise 65% (w/w) to 85% (w/w) of the first melt spun Fiber, including end values.
  • the intertwined melt spun fibers comprise from 25% (weight/weight) to 80% (weight/weight) of the first melt spinning Fiber, including end values.
  • the intertwined melt spun fibers comprise 70% (w/w) to 80% (w/w) of the first melt spun Fiber, including end values.
  • Electron beam doses from 1 megarad to 20 megarads are used, including end values.
  • a pattern is embossed on the nonwoven web.
  • a dry sample (about 7.6 cm x 7.6 cm) of the nonwoven fabric to be tested was cut, weighed, and placed in a petri dish. Distilled water was added to the petri dish to cover the nonwoven fabric sample. The nonwoven fabric sample was passively absorbed at room temperature for 30 minutes or more until completely hydrated. The distilled water was then taken out from the Petri dish. The nonwoven fabric sample was then removed from the Petri dish with tweezers and the water was blotted with absorbent paper while holding a corner and orienting the sample vertically. The liquid-saturated fabric was then reweighed and the % absorption ((grams of absorbed water/grams of dry nonwoven) x 100) was recorded. The average and standard deviation of the mass of each of the three identical nonwoven fabric samples were recorded.
  • the tensile strength of the samples was tested according to the International Organization for Standardization (ISO) 9073-3 using a Zwick Universal Benchtop Tester Model Z005 manufactured by Zwick GmbH & Co (Ulm, Germany). Samples (both longitudinal (MD) and transverse (CD)) were cut to a size of 0.5 x 5 inches (1.27 cm x 12.7 cm). The MD sample was oriented along the 5 inch end while the CD sample was oriented in the direction along the 0.5 inch end. Dry tensile testing was performed using a 0.5 inch (1.27 cm) gauge length and an elongation rate of 1000 mm/min.
  • ISO International Organization for Standardization
  • the wet tensile strength test was carried out as described above, except that after the cutting, the sample was hydrated by placing the cut sample in excess distilled water at room temperature for 30 minutes. Wet tensile strength testing was performed using a 0.5 inch (1.27 cm) gauge length, 1000 mm/min elongation rate.
  • the MD sample was cut into a size of 0.5 x 5 inches (1.27 cm x 12.7 cm), and after cutting, hydration was performed by placing the cut sample in excess distilled water for 30 minutes.
  • the test sample was compared to the wet sausage casing (natural pig casing) (ie, the submucosal layer of the pig intestine, available from The Sausage Maker, Inc., Buffalo, NY). .
  • Prepare a wet sausage casing by: cutting a piece of incense along the longitudinal direction The enteric casing (about 12 cm long and 3 cm wide) was rinsed with distilled sausage in distilled water to remove salt, and then the sausage casing was hydrated in lukewarm distilled water for at least 30 minutes.
  • the coefficient of friction was calculated by a two-dimensional force test system (trade name Forceboard, manufactured by Industrial Dynamics Sweden AB (Jarfalla, Sweden)). The results were analyzed using the ForceBoard Analyzer software (Industrial Dynamics, Sweden) and exported to Excel. The mean value ⁇ standard deviation of the friction coefficient obtained when the friction test substrate was rubbed with a target vertical force of 2.9 - 3.1 N was calculated using an algorithm in Excel.
  • the friction test substrate ie, sausage casing
  • an exemplary substrate ie, MD nonwoven sample
  • An exemplary substrate was tested under dry and wet conditions (soaked in 0.9% saline for at least 30 minutes at room temperature).
  • a nonwoven fabric is formed from PU using the apparatus described in connection with Figure 1 and a process substantially as described in U.S. Patent No. 4,118,531.
  • the PU polymer was melt blown at a rate of 0.75 lbs/hr/inch of mold width at a temperature of 210 °C.
  • Component A was extruded using a 20 mm steel twin screw extrusion line
  • component B was extruded using a 0.75 inch Killion extrusion line
  • a 20 inch meltblown ABAB mold was used.
  • composition of the A component of the polyurethane polymer was adjusted to produce the fiber web composition shown in Table 2.
  • the basis weight was recorded and the composition was determined mathematically as shown in Table 3.
  • Nonwoven fabrics were prepared using the equipment and conditions described in Examples 1-4.
  • Example 1 The total composition of the first polymer relative to the fabric Basis weight (g/m 2 ) EX1 25% 26.69 EX2 25% 53.39 EX3 12.5% 46.5 EX4 37.5% 49.94 CE1 18.75% 49.08 CE2 0% 91.28 CE3 50% 49.08 CE4 25% 46.5 CE5 50% 61.48
  • Example EX1-EX4 and Comparative Examples CE1-CE5 were cut into 5.1 cm x 5.1 cm pieces, and dry tensile strength test and wet tensile strength were performed in the above-mentioned machine direction (MD) and cross direction (CD). test. The results are shown in Table 5.
  • a nonwoven fabric is formed from PU using the apparatus described in connection with Figure 1 and a process substantially as described in U.S. Patent No. 4,118,531.
  • the PU polymer was melt blown at a rate of 1.0 lb/hr/inch mold width (1.15 kg/hr/cm/mold width) at a temperature of 210 °C.
  • the nonwoven fabric of EX5-EX7 was prepared using a 1.5 inch Davis-standard extrusion line, a 20 mm steel twin screw extrusion line, and a 20 inch meltblown ABAB mold.
  • the nonwoven fabric is coextruded in an ABAB structure comprising component A containing the first polymer extruded from a steel extruder, and a portion extruded from a Davis-standard extrusion line Component B of the dipolymer.
  • a staple fiber nonwoven web was added to the base nonwoven described in connection with Figure 1, and the basis weight of the resulting nonwoven fabric was measured and shown in Table 7.
  • the nonwoven fabric is thermally bonded.
  • the embossing rolls reach temperatures of 250 °F at various nip pressures and line speeds.
  • the thermally bonded nonwoven fabric was crosslinked using an electron beam dose of 5 megarads.
  • the coefficient of friction and dry tensile strength were determined using the above test methods. The results are shown in Table 7.
  • Nonwoven fabrics were prepared using the equipment and conditions described in Embodiments EX5-EX7 and are shown in Tables 7 and 8.

Abstract

一种吸液性复合非织造织物及其制品。具体地,公开了一种复合非织造织物,所述复合非织造织物可具有一组熔纺纤维。所述一组熔纺纤维可包括含第一聚合物和第二聚合物的第一熔纺纤维。所述第一聚合物为包含65%(重量/重量)至90%(重量/重量)亲水性链段的亲水性热塑性聚合物,包括端值在内。所述第二聚合物为疏水性热塑性聚合物。所述第一熔纺纤维包含3%(重量/重量)至95%(重量/重量)的所述第一聚合物,包括端值在内。

Description

吸液性复合非织造织物及其制品 技术领域
本发明涉及吸液性复合非织造织物及其制品。具体地,本发明公开了一种复合非织造织物、包含所述复合非织造织物的制品以及制造所述复合非织造织物的方法。其中,所述复合非织造织物可具有一组熔纺纤维,所述一组熔纺纤维可包括含第一聚合物和第二聚合物的第一熔纺纤维。所述第一聚合物为包含65%(重量/重量)至90%(重量/重量)亲水性链段的亲水性热塑性聚合物,包括端值在内。所述第二聚合物为疏水性热塑性聚合物。所述第一熔纺纤维包含3%(重量/重量)至95%(重量/重量)的所述第一聚合物,包括端值在内。
背景技术
多孔纤维网广泛用于诸如过滤颗粒和从水中去除油、吸收人体的流体排泄物以及作为隔音或隔热之类的应用。已使用由Van A.Wente等人发表于1954年5月25日的、名称为“Manufacture of Super Fine Organic Fibers”(超细有机纤维的制造)的海军研究实验室(Naval Research Laboratories)报告No.4364中所述类型的熔喷技术,由热塑性树脂制成一些多孔纤维网。
另外,复合纤维网可使用熔纺纤维网和其他聚合物纤维(例如,短纤维)的混合物形成,如国际专利公开No.WO 2015/100088 A1、授予Springett等人的美国专利No.6,827,764、授予Hauser的美国专利No.4,118,531、授予Reed等人的美国专利No.4,908,263以及美国专利申请公开No.2008/0318024中所述。
体液通常具有溶解于其中的多种溶质(例如,蛋白质、碳水化合物、盐)。另外,用于湿润和/或冲洗伤口部位的灌洗液(例如,盐水、 缓冲盐水、林格氏溶液)通常含有溶解于其中的溶质(例如,氯化钠、乳酸钠)。需要吸收水性液体(例如体液和/或用于处理伤口部位的水溶液)的材料和制品。
用于外科应用的制品(诸如腹部手术巾)需要平衡制品的“滑动与抓持”(例如,摩擦系数)特性。吸收水性液体且具有高滑动性的制品在施加至软组织区域时可能有问题,因为制品可能太滑而无法操纵软组织区域。相反,具有高抓持性的制品在施加至软组织区域时也可能有问题,因为制品可能擦伤软组织区域。
发明内容
本公开的各方面涉及包括复合非织造织物的制品。在一个实施方案中,复合非织造织物可具有一组熔纺纤维。所述一组熔纺纤维可包括含第一聚合物和第二聚合物的第一熔纺纤维。第一聚合物为包含65%(重量/重量)至90%(重量/重量)(包括端值在内)亲水性链段的亲水性热塑性聚合物。第二聚合物为疏水性热塑性聚合物。第一熔纺纤维包含20%(重量/重量)至80%(重量/重量)(包括端值在内)的第一聚合物。
在另一个实施方案中,复合非织造织物可具有包括第一熔纺纤维和第二熔纺纤维的一组熔纺纤维。第一熔纺纤维包含第一聚合物,所述第一聚合物为包含65%(重量/重量)至90%(重量/重量)聚环氧烷的脂族聚醚热塑性聚氨酯聚合物。所述一组熔纺纤维包含5%(重量/重量)至100%(重量/重量)(包括端值在内)的第一熔纺纤维。第二熔纺纤维包含第二聚合物,所述第二聚合物选自以下物质:疏水性热塑性树脂,诸如聚酯基热塑性聚氨酯、聚醚基热塑性聚氨酯、乙烯-辛烯共聚物、线性低密度聚乙烯、或它们的组合。第一熔纺纤维和第二熔纺纤维相互混合在一起。复合非织造织物可包括与其相互混合并缠结在一起的一组短纤维。具体地讲,所述一组短纤维占复合非织造织物重量的25%(重量/重量)至75%(重量/重量)。
本公开的各方面还涉及由复合非织造织物制成的制品以及制备复合非织造织物和制品的方法。
词语“优选的”和“优选地”是指在某些情况下可提供某些有益效果的本发明实施方案。然而,在相同的情况下或其他情况下,其他实施方案也可能是优选的。此外,对一个或多个优选实施方案的表述并不暗示其他实施方案是不可用的,且并非意图将其他实施方案排除在本发明范围之外。
术语“包括”及其变型形式在说明书和权利要求中出现这些术语的地方不具有限制的含义。
本文所用的“一种(个)”、“所述(该)”、“至少一种(个)”以及“一种(个)或多种(个)”可互换使用。因此,例如“一种(个)”纤维可解释为意指“一种或多种(一个或多个)”纤维。
术语“和/或”意指所列要素的一个或全部,或者所列要素的任何两个或多个的组合。
另外,在本文中,通过端点表述的数值范围包括该范围内所含的所有数值(如,1至5包括1、1.5、2、2.75、3、3.80、4、5等)。
本发明的上述发明内容并非意图描述本发明的每一个公开的实施方案或本发明的每种实施方式。以下描述更具体地举例说明示例性实施方案。在本专利申请的全文的若干处,通过示例列表提供了指导,可以各种组合使用这些示例。在每种情况下,所引用的列表都只用作代表性的组,并且不应理解为排他性列表。
下面将结合附图和描述介绍上述及其他实施方案的更多细节。通 过具体实施方式、附图和权利要求书,其它特征、对象和优点将变得显而易见。
附图说明
图1是根据本公开的用于制备纤维网的系统的一个实施方案的示意图,所述纤维网包括熔纺纤维和任选的短纤维。
图2是根据本公开的制品的一个实施方案的透视图,所述制品包括复合熔纺非织造织物。
图3是根据本公开的制品的一个实施方案的透视图,所述制品包括多个复合熔纺非织造织物层。
图4是根据本公开的制品的一个实施方案的透视图,所述制品包括粘结到片材的复合熔纺非织造织物层。
图5是根据本公开的制品的一个实施方案的透视图,所述制品包括粘结到片材的多个复合熔纺非织造织物层。
尽管上述附图示出了本公开的若干个实施方案,但是如讨论所述,还可以想到其他实施方案。在所有情况下,本公开是示例性地而非限制性地介绍本发明。应当理解,本领域的技术人员可以设计出大量其它修改形式和实施方案,这些修改形式和实施方案均属于本发明的范围之内并符合本发明原理的精神。附图可能未按比例绘制。
具体实施方式
在详细解释本发明的任何实施方案之前,应当了解,本发明在其应用中不仅限于下文说明中所提及或下文附图中所示出的构造细节和部件布置方式。本发明容许其他实施方案并且容许以各种方式实施或执行。还应当理解,本文所用的措辞和术语用于描述目的,而不应被视为限制性的。本文使用的“包括”、“包含”或“具有”及其变型形式意在涵盖其后所列的项及其等同物以及另外的项。除非另外说明或限定,否则术语“连接”和“联接”及其变型形式是广义地使用的,并且涵盖直接 和间接的连接与联接两者。此外,“连接”和“联接”不限于物理或机械连接或联接。应当理解,可采用其他的实施方案,并且可以在不偏离本发明范围的情况下作出结构变化或逻辑变化。此外,例如“前”、“后”、“顶部”、“底部”等用语仅用于当元件彼此相关的时候描述元件,而决非意在陈述设备的具体取向,以指示或暗示设备的必要或所需取向,或指定在使用中将如何使用、安装、显示或定位本文所述发明。
如本文所用,“熔纺”是指直接利用由液体形式的塑料纺成的原丝制备纤维网的工艺。在熔纺中,将聚合物颗粒熔融并挤出穿过具有一个或多个孔的喷丝头(模具)。使熔化的纤维冷却、硬化并收集在收集器(诸如收集带或滚筒)上。熔纺可包括熔喷或纺粘。
“熔纺纤维”意指通过熔纺工艺制备的纤维。
如本文所用,“熔喷”是指这样的工艺:将熔化的材料穿过多个喷丝孔挤出以形成原丝,同时使原丝与受热的高速空气或其他细化用流体接触以将原丝细化成纤维,并在此后收集细化纤维层。
如本文所用,“纺粘”是指除以下方面存在差异以外与熔喷工艺相似的工艺:i)用于细化原丝的空气的温度和体积,以及ii)施加原丝牵伸或细化力的位置。纺粘纤维可具有比熔喷纤维(例如,一般具有至少0.1微米且小于15微米的直径)更大的直径(例如,一般在1与50微米之间,优选地在15与35微米之间,包括端值在内)。
共聚物链段语境中的“亲水性”意指亲水性链段前体明显可溶于去离子水,达到至少10重量%、更优选地至少20%并且最优选地至少40%,并且优选地形成光程长度为6cm的光学透明溶液。
“直径”当相对于纤维使用时,意指用于具有圆形横截面的纤维的直径,或就非圆形纤维而言,则意指在整个纤维横截面上可以构造的横截面最长弦(即,两个端点都位于圆上的直线段)的长度。
“有效纤维直径”当相对于纤维集合使用时,意指对于任何圆形或非圆形横截面形状的纤维网而言,根据Davies,C.N.的“The Separation of Airborne Dust and Particles(气载尘埃和粒子的分离)”(Institution of Mechanical Engineers,London,Proceedings 1B,1952(机械工程师协会会报1B,伦敦,1952年))中示出的方法所测定的值。
如本文所用,“自支承”意指这样的纤维网,该纤维网具有足够的强度,以至其自身可使用卷轴式制造设备进行处理,而无明显的撕裂或破裂。
如本文所用,“短纤维”是指这样的纤维,其具有一般在5-200mm之间的确定长度以及约0.5至100微米的纤维直径。合成短纤维一般被切成具体长度。天然短纤维通常在每种样品中具有一系列长度。这些纤维可具有其被赋予的卷曲度。
本公开整体涉及吸液性织物以及包括该吸液性织物的制品。具体地讲,本公开涉及吸收水性液体的组合物和制品。本公开涉及具有滑动与抓持特性的平衡的复合非织造织物。因此,包含所述组合物的本发明制品特别适用于与软组织区域接触。
所述组合物中的至少一者包括复合非织造织物。复合非织造织物可使用熔纺工艺形成。复合非织造织物包括至少一组熔纺纤维,所述熔纺纤维包括第一纤维和任选的第二纤维。
第一熔纺纤维具有亲水性特征。第一熔纺纤维可至少包含亲水性热塑性聚合物(即,第一聚合物),所述亲水性热塑性聚合物一般包 含亲水性聚合物链段。如本文所讨论,第一熔纺纤维还可包含第二聚合物。
亲水性热塑性聚合物可以指水溶性的聚合物,这意味着所述聚合物可按水中的5%重量/重量聚合物在去离子水中形成明显透明的均相溶液。亲水性聚合物还可以指这样的聚合物,其是水溶胀性的,并且能够在水中吸收其重量的至少200%、至少400%或至少1000%。优选的热塑性亲水性聚合物为脂族热塑性聚氨酯聚合物,诸如具有占亲水性聚合物至少约60%(重量/重量)的亲水性链段的那些。
示例性亲水性链段包括聚乙二醇基团、聚丙二醇基团、聚环氧丁烷基团、无规聚(C2-C4)环氧烷基团、聚酯基团(诸如衍生自亲水性聚酯(例如,聚PEG400琥珀酸酯)的那些)、胺封端的聚酯基团、胺封端的聚酰胺基团(诸如,衍生自Patel在Rasayan J.Chem.中公开的胺封端的不饱和聚酰胺(参见http://rasayanjournal.co.in/vol-3/issue-1/20.pdf)的那些)、聚酯-酰胺基团(诸如,衍生自亲水性聚酰胺(例如,聚PEG400二胺琥珀酸酯)的那些)、聚碳酸酯基团、或它们的组合。在至少一个实施方案中,亲水性热塑性聚合物包含按重量计至少50%、优选地至少60%、更优选地至少70%并且最优选地至少80%聚环氧烷。亲水性热塑性聚合物包含按重量计不大于90%聚环氧烷。虽然本公开通篇具体提及的是聚环氧乙烷,但可使用各种亲水性链段诸如聚环氧烷(本文进一步所述)。
在至少一个实施方案中,热塑性聚合物具有一个或多个亲水性链段,以使热塑性聚合物总体呈亲水性。亲水性链段可通过酰胺、草酰胺、脲和/或氨基甲酸酯键连接。在至少一个实施方案中,亲水性热塑性聚合物为脂族热塑性聚氨酯(TPU)聚合物(诸如,聚醚基或聚酯基TPU聚合物),并且具有至少约60%(重量/重量)亲水性链段。尽管本公开通篇提及的是聚醚基TPU聚合物,也可利用聚酯基TPU聚合物,例如,通过掺入少部分聚酯多元醇,诸如聚琥珀酸亚乙酯(亲水性)。
在至少一个实施方案中,非织造织物包括一组熔纺纤维和与其相互混合并缠结在一起的一组短纤维,所述一组熔纺纤维包含具有不大于约85%(重量/重量)聚环氧烷的脂族聚醚热塑性聚氨酯聚合物。在至少一个实施方案中,非织造织物包括一组熔纺纤维,所述一组熔纺纤维包含具有至少约65%(重量/重量)聚环氧烷的脂族聚醚热塑性聚氨酯(TPU)聚合物。例如,脂族聚醚热塑性塑料可具有65%(重量/重量)至90%(重量/重量)、70%(重量/重量)至90%(重量/重量)、80%(重量/重量)至90%(重量/重量)、或甚至80%(重量/重量)至85%(重量/重量)聚环氧烷。
脂族聚醚TPU聚合物是本领域已知的。适用于制备本公开非织造织物的脂族聚醚TPU聚合物包括包含聚环氧烷嵌段亚单元的聚合物。合适的聚环氧烷包括例如聚环氧乙烷(PEO)(即,聚乙二醇)、聚环氧丙烷(PPO)、聚环氧丁烷、或它们的混合物。在至少一个实施方案中,用于形成非织造织物的聚合物为医用级TPU聚合物。适用于形成本公开非织造织物的医用级TPU聚合物的非限制性示例为由俄亥俄州威克里夫的路博润公司(The Lubrizol Corporation(Wickliffe,OH))出售的TECOPHILIC水凝胶TPU(部件编号TG-2000或TG-500)。在至少一个实施方案中,TPU聚合物中的聚环氧烷嵌段亚单元可具有至少约1,000、2000、3000、4000和5000道尔顿的式量,并且优选地小于约20,000、18000、16000或14000道尔顿。在至少一个实施方案中,TPU聚合物中的聚环氧烷嵌段亚单元可具有约6,000道尔顿的式量。在至少一个实施方案中,TPU聚合物中的聚环氧烷嵌段亚单元可具有约8,000道尔顿的式量。在至少一个实施方案中,TPU聚合物中的聚环氧烷嵌段亚单元可具有约12,000道尔顿的式量。在至少一个实施方案中,TPU聚合物中的聚环氧烷嵌段亚单元可具有约6,000道尔顿的式量、约8,000道尔顿的式量、约12,000道尔顿的式量、约6,000道尔顿的式量、或具有上述式量中的任何两者或更多者的嵌段亚单元的混合物。应当理解,这些分子量值为平均值,并且是指重均分子量。
第一熔纺纤维还可任选地包含第二聚合物。第二聚合物修改第一熔纺纤维的结构特征。例如,第二聚合物可改善所得复合非织造织物的湿拉伸强度或干拉伸强度。第二聚合物一般可包括可用于熔喷工艺的热塑性聚合物。在至少一个实施方案中,热塑性聚合物可为弹性体。在至少一个实施方案中,热塑性聚合物在很大程度上可为疏水性的(即,水不溶性的)并且为相对弹性的。热塑性聚合物在ASTM 638中确立的条件下一般可具有8MPa至113MPa的弹性模量。
第二聚合物可选自以下物质:聚酯基热塑性聚氨酯、聚醚基热塑性聚氨酯、乙烯-辛烯共聚物、线性低密度聚乙烯、乙烯共聚物诸如具有至少8、10、15、20%乙酸乙烯酯的乙烯-乙酸乙烯酯聚合物;具有至少8、10、15、20%丙烯酸酯如C1-C8丙烯酸酯的乙烯-丙烯酸酯共聚物(例如,乙烯-甲基丙烯酸酯)、丙烯酸系嵌段共聚物弹性体、或它们的组合。
热塑性聚合物可包括多种类别,诸如苯乙烯嵌段共聚物、热塑性烯烃、弹性体合金、热塑性聚氨酯、热塑性共聚酯以及热塑性聚酰胺。热塑性聚氨酯和热塑性烯烃由于具有抗起球性,因此特别可用于复合非织造织物。
热塑性共聚酯由于具有高弹性,因此可用作第二聚合物。一个示例包括聚醚聚酯,诸如可以商品名Hytrel从特拉华州威尔明顿的杜邦公司(Du Pont Company(Wilmington,Deleware))商购获得的那些。特别可用的是热塑性脂族聚酯,其可进一步包括聚乳酸。聚乳酸可为L-乳酸或D-乳酸均聚物;或其可为共聚物,诸如包含L-乳酸单体单元和D-乳酸单体单元的共聚物。(在此类聚合物中,均聚物或共聚物命名将为基于单体单元的立构规整性而非基于化学组成的“立体”命名。)同样,此类单体单元可衍生自在共聚物链中掺入L-乳酸、D-乳酸、L-丙交酯、D-丙交酯、内消旋丙交酯等。在一些实施方案中,聚乳酸可为 主要由L-乳酸单体单元及少量D-乳酸单体单元(其可例如改善聚合物的熔体加工性)构成的L-D共聚物。在各种实施方案中,聚乳酸共聚物可包含至少约85、90、95、96、97、98、99、99.5或99.7重量%L-乳酸单体单元。在另外的实施方案中,聚乳酸共聚物可包含至多约15、10、5、4、3、2、1、0.5或0.3重量%D-乳酸单体单元。
在一些实施方案中,第二聚合物(和/或熔纺原丝的全部聚合物含量)的基本上所有(即,99.5重量%或更大)聚乳酸含量可由聚乳酸(立体)共聚物提供;例如,主要由L-乳酸单体单元及少量D-乳酸单体单元构成的共聚物。(在具体实施方案中,原丝的基本上所有聚乳酸含量可为L-乳酸均聚物的形式。)在其他实施方案中,可存在附加少量由D-乳酸(立体)均聚物组成的聚乳酸。添加这种附加量的D-乳酸均聚物(例如,作为物理共混物,例如在挤出期间作为熔体添加剂)在一些情况下可增强聚乳酸材料的某些特性(例如,熔体加工性、成核率等)。因此,在各种实施方案中,用于例如熔纺的聚乳酸可包含至少约0.5、1、2、3、5或8重量%的D-乳酸均聚物添加剂。在另外的实施方案中,这种聚乳酸材料可包含至多约15、10、8、5、3、2、1或0.5重量%的D-乳酸均聚物。(在此类情况下,聚乳酸原丝形成材料的余量可为例如如上所述的L-D立体共聚物。)
在一些实施方案中,存在于第二聚合物中的至少一些聚乳酸可为包含一个或多个附加(非乳酸)单体单元的(成分)共聚物。此类单体单元可能包括例如乙醇酸、羟基丙酸、羟基丁酸等等。在各种实施方案中,乳酸单体单元(或是L或是D,并且衍生自任何来源)可占熔纺聚乳酸原丝的至少约80、85、90、95、97、99或99.5重量%。
可熔融加工的聚乳酸聚合物材料(例如,L-D共聚物)可例如以商品名INGEO 6100D、6202D和6260D从明尼苏达州明尼通卡的诺哲沃公司(Natureworks LLC(Minnetonka,MN))商购获得。可熔融加工的聚乳酸聚合物材料(例如,D-乳酸均聚物)可例如以商品名SYNTERRA  PDLA 1010从荷兰的Synbra技术公司(Synbra Technologies,The Netherlands)商购获得。许多其他潜在合适的聚乳酸材料也可购得。
TPU由于具有高弹性和透明度,因此可用作第二聚合物。TPU聚合物的特征可在于由软链段和硬链段构成的嵌段共聚物。软链段的改性可使得TPU分成两组,即聚酯基TPU和聚醚基TPU(本文所讨论)。作为第二聚合物受到特别关注的是聚酯基TPU,这是由于与聚醚基TPU相比,其具有高耐磨性和粘附强度。聚酯基热塑性聚氨酯的非限制性示例可以由德克萨斯州伍德兰的亨斯迈公司(Huntsman Corporation(The Woodlands,Texas))出售的商品名IROGRAN(型号PS440-200)商购获得。虽然提及的是聚酯基TPU树脂,但也可使用聚醚TPU树脂,诸如可以商品名Estane从俄亥俄州克利夫兰的B.F.古德里奇公司(B.F.Goodrich Company(Cleveland,Ohio))商购获得的那些。
一般来讲,可用于多成分纤维的组合物中的热塑性烯烃包括衍生自通式CH2=CHR″的一个或多个烯烃单体的聚合物和共聚物,其中R″为氢或C1-18烷基。此类烯烃单体的示例包括丙烯、乙烯、1-丁烯、1-己烯、1-辛烯、1-癸烯、4-甲基-1-戊烯、聚甲基戊烷以及1-十八烯,其中乙烯一般是优选的。衍生自此类烯烃单体的聚烯烃的代表性示例包括聚乙烯、聚丙烯、聚丁烯-1、聚(3-甲基丁烯)、聚(4-甲基戊烯)以及本文所讨论的烯烃单体的共聚物。
热塑性烯烃可任选地包含衍生自烯烃单体和可与烯烃单体共聚的一种或多种另外的共聚单体的共聚物。基于热塑性烯烃的总重量计,这些共聚单体可以约1重量%至10重量%范围内的量存在于热塑性烯烃中。可用的此类共聚单体包括例如乙烯基酯单体,诸如乙酸乙烯酯、丙酸乙烯酯、丁酸乙烯酯、氯乙酸乙烯酯、氯丙酸乙烯酯;丙烯酸和α-烷基丙烯酸单体及它们的烷基酯、酰胺和腈,诸如丙烯酸、甲基丙烯酸、乙基丙烯酸、丙烯酸甲酯、丙烯酸乙酯、N,N-二甲基丙烯酰胺、甲基丙烯酰胺、丙烯腈;乙烯基芳基单体,诸如苯乙烯、邻甲氧基苯 乙烯、对甲氧基苯乙烯和乙烯基萘;卤代乙烯和偏二卤乙烯单体,诸如氯乙烯、偏二氯乙烯和偏二溴乙烯;马来酸和富马酸的烷基酯单体,诸如马来酸二甲酯和马来酸二乙酯;乙烯基烷基醚单体,诸如乙烯基甲基醚、乙烯基乙基醚、乙烯基异丁基醚以及2-氯乙基乙烯基醚;乙烯基吡啶单体;N-乙烯基咔唑单体和N-乙烯基吡咯烷单体。
热塑性烯烃还可含有包含游离羧酸基团的聚烯烃的金属盐形式,或它们的共混物。可用于提供所述羧酸聚合物的盐的例证性金属为一价、二价和三价金属,诸如钠、锂、钾、钙、镁、铝、钡、锌、锆、铍、铁、镍和钴。钡可特别用作形成不透射线的熔纺纤维的金属盐,所述不透射线的熔纺纤维可用于检测外科手术中遗留的制品。
合适的热塑性烯烃为可熔融加工的或可挤出的,并且包括聚丙烯的均聚物和共聚物、聚乙烯的均聚物和共聚物、以及聚-1-丁烯的均聚物和共聚物。在一个方面,第二聚合物的热塑性烯烃为聚丙烯的均聚物或共聚物。在另一个方面,第二聚合物的热塑性烯烃为聚乙烯的均聚物或共聚物。在又一个方面,第二聚合物的热塑性烯烃可为与第二组分的聚合物相同的聚合物。
热塑性烯烃可包括多种市售材料,诸如聚丙烯、聚乙烯(诸如低密度聚乙烯或线性低密度聚乙烯)、嵌段共聚物聚丙烯等。适用于形成熔纺纤维的热塑性烯烃的非限制性示例包括由密歇根州米德兰的陶氏化学公司(Dow Chemical Company(Midland,Michigan))出售的商品名Engage(型号8402)的聚合物,以及由密歇根州米德兰的陶氏化学公司出售的商品名DNDB-1077NT 7的聚合物。
热塑性烯烃还可包括所提及的聚烯烃与其他聚烯烃的共混物,或具有相同或不同聚烯烃中的两种或更多种的多层结构。此外,它们可包含常规佐剂,诸如抗氧化剂、光稳定剂、酸中和剂、填料、防粘连剂、颜料、底漆和其他粘合增进剂。
第二聚合物还可包括除热塑性烯烃之外的材料,诸如单体、低聚物、聚合物或甚至天然材料(例如,棉花、人造丝或橡胶)。例如,第二聚合物可包括示例性单体,诸如丙交酯、乙交酯等等以及它们的组合。可用于本发明所公开的第二材料的示例性低聚物包括乳酸低聚物、乙醇酸低聚物、乳酸和乙醇酸的共低聚物。此外,这些示例性共低聚物可由其他官能性单体制备,例如[ε]-己内酯、1,5-二氧杂环庚烷-2-酮、三亚甲基碳酸酯或其他合适的单体,以得到降解速率不同于第一材料的低聚物。可用于第二聚合物的示例性材料包括乳酸和乙醇酸的低聚共聚物、胺封端的聚丙二醇、聚乳酸以及它们的组合。第二聚合物可具有多种酸度水平。
第二聚合物还可包括聚酰胺,诸如可以商品名Pebax从宾夕法尼亚州费城的北美埃尔夫阿托公司(ELF Atochem,North America,Inc.(Philadelphia,Pa.))商购获得的聚醚聚酰胺。第二聚合物还可包括丙烯酸系嵌段共聚物,诸如可以由日本可乐丽公司(Kuraray Company(Japan))出售的商品名Kurarity商购获得的那些。
可将其他任选材料添加到本发明中所用的第一组分或第二组分(例如,作为添加剂和/或涂层),以便为所得制品赋予所需特性,诸如处理性、加工性和分散性。其他材料的非限制性示例包括增塑剂、抗微生物剂、流体驱除剂、表面活性剂、分散剂、抗氧化剂、填料、成核剂、交联剂以及抗静电剂、发泡剂、着色剂、药物组合物、蜡和滑石。
增塑剂的非限制性示例包括柠檬酸三乙酯、乳酸烷基酯、三醋精、烷基二醇以及基础聚合物的低聚物,并且可以占最终组合物约1至约50重量百分比范围内的量存在,且优选地以约5至约30重量百分比范围内的量存在。可用作本发明所公开的材料的增塑剂可包括但不限于,聚乙二醇;聚环氧乙烷;柠檬酸酯(诸如,柠檬酸三丁酯低聚物、柠 檬酸三乙酯、乙酰柠檬酸三丁酯、乙酰柠檬酸三乙酯);葡萄糖单酯;部分脂肪酸酯;PEG单月桂酸酯;三醋精;聚([ε]-己内酯);聚(羟基丁酸酯);甘油-1-苯甲酸酯-2,3-二月桂酸酯;甘油-2-苯甲酸酯-1,3-二月桂酸酯;淀粉;双(丁基二乙二醇)己二酸酯;甘油二乙酸酯单辛酸酯;二乙酰单酰基甘油;聚丙二醇(以及它们的环氧衍生物);聚丙二醇二苯甲酸酯、二丙二醇二苯甲酸酯;甘油;乙基邻苯二甲酰基乙基乙醇酸酯;聚(乙烯己二酸)二硬脂酸酯;己二酸二异丁酯;邻苯二甲酸二乙酯、对甲苯乙基磺酰胺、磷酸三苯酯、丙三羧酸三乙酯、甲基邻苯二甲酰乙基乙醇酸酯、蔗糖八乙酸酯、山梨醇六乙酸酯、甘露醇六乙酸酯、季戊四醇四乙酸酯、三亚乙基二乙酸酯、二亚乙基二丙酸酯、二亚乙基二乙酸酯、三丁酸甘油酯、三丙酸甘油酯以及它们的组合。在一些实施方案中,增塑剂的选择标准是其与第一和第二材料的相容性以及熔纺纤维所使用的条件。
抗微生物剂是本领域技术人员已知的。虽然目前还不知道哪些具体抗微生物剂、抗真菌剂等等将在本发明的这些构造和组合物中相容,但可将许多抗微生物剂涂布在本发明的织物上,并且可将某些热稳定的抗微生物剂添加到熔体中,尽管可能需要载体使它们浮散到表面。抗微生物剂的合适非限制性示例包括银化合物、氯己定盐,诸如乙酸盐、乳酸盐和葡糖酸盐、碘伏、羟基吡啶硫酮、异噻唑啉或苯并咪唑。这些试剂可以约0.05重量%至5重量%范围内的量存在,具体取决于试剂并基于总组成计。
表面活性剂可用来改善纤维的亲水性。可用的表面活性剂(也称为乳化剂)可涂布在织物上或掺入到聚合物熔体中。优选的表面活性剂为阴离子的、两性离子的和非离子的。表面活性剂包括阴离子表面活性剂,诸如烷基芳基醚硫酸盐和磺酸盐如烷基芳基醚硫酸钠(例如,那些可购自宾夕法尼亚州费城的罗门哈斯公司(Rohm and Haas)的商品名为“TRITON X200”的磺化壬基酚乙氧基化物),烷基芳基聚醚硫酸盐和磺酸盐(例如,烷基芳基聚(环氧乙烷)硫酸盐和磺酸盐,优选具有 多达约4个乙烯氧基重复单元的那些)和烷基硫酸盐和磺酸盐,如月桂基硫酸钠、月桂基硫酸铵、月桂基硫酸三乙醇胺和十六烷基硫酸钠、烷基醚硫酸盐和磺酸盐(例如,月桂醚硫酸铵以及烷基聚醚硫酸盐和磺酸盐(例如,烷基聚(环氧乙烷)硫酸盐和磺酸盐,优选具有多达约4个烷氧基单元的那些)。烷基硫酸盐、烷基醚硫酸盐和烷基芳香醚硫酸盐也是适合的。附加阴离子表面活性剂可包括烷基芳基硫酸盐和磺酸盐(例如,十二烷基苯硫酸钠和十二烷基苯磺酸钠)、烷基硫酸钠盐和烷基硫酸铵盐(例如,月桂基硫酸钠和月桂基硫酸铵);非离子表面活性剂(例如,乙氧基化的油酰基醇和辛基苯基聚氧乙烯醚);以及阳离子表面活性剂(例如,烷基二甲基苄基氯化铵的混合物,其中所述烷基链含有10到18个碳原子)。也可使用两性离子表面活性剂,并且包含磺基甜菜碱、N-烷基氨基丙酸和N-烷基甜菜碱。
任选添加剂还可包括使第一组分和/或第二组分交联的辅助交联剂。使第一组分和/或第二组分交联可产生更高的湿拉伸强度。辅助交联剂可包括过氧化物或多异氰酸酯。辅助交联剂可与第一组分或第二组分一起添加。然而,辅助交联剂并非发生交联必需的,如本文所讨论。
如本文所用,术语“多成分”是指由从相同挤出机挤出的至少两种聚合物形成的纤维(例如,双成分纤维)。这些聚合物并未在纤维的横截面上按照基本恒定位置的不同区域排列。各种多成分纤维描述于授予Gessner的美国专利No.5,108,827。
第一熔纺纤维可由足以产生具有滑动与抓持之间的平衡的复合熔纺织物的、任何比例的第一聚合物和第二聚合物形成。例如,第一聚合物可任选地与第二聚合物接触,以形成可使第一熔纺纤维得以形成的混合物。一般来讲,第一熔纺纤维包含3%(重量/重量)至95%(重量/重量)第一聚合物。在一些实施方案中,第一熔纺纤维包含20%(重量/重量)至80%(重量/重量)、20%(重量/重量)至60%(重量/重 量)、25%(重量/重量)至60%(重量/重量)(包括端值在内)、或45%(重量/重量)至55%(重量/重量)的第一聚合物。另外,第一熔纺纤维包含5%(重量/重量)至97%(重量/重量)、40%(重量/重量)至80%(重量/重量)、45%(重量/重量)至75%(重量/重量)、或甚至45%(重量/重量)至55%(重量/重量)(包括端值在内)的第二聚合物。
所述一组熔纺纤维可包含5%(重量/重量)至100%(重量/重量)、或10%(重量/重量)至40%(重量/重量)(包括端值在内)的第一聚合物。在一些实施方案中,所述一组熔纺纤维包含10%(重量/重量)至15%(重量/重量)(包括端值在内)的第一聚合物。在其他实施方案中,所述一组熔纺纤维包含35%(重量/重量)至40%(重量/重量)(包括端值在内)的第一聚合物。
熔纺织物还可包括第二熔纺纤维,所述第二熔纺纤维还包含本文所讨论的第二聚合物。熔纺织物包括相对于熔纺织物而言0%(重量/重量)至80%(重量/重量)、20%(重量/重量)至80%(重量/重量)、20%(重量/重量)至60%(重量/重量)、或甚至20%(重量/重量)至55%(重量/重量)的第二熔纺纤维。
本公开的复合非织造织物可任选地包括与熔纺纤维相互缠绕的一组短纤维。可将短纤维混合到熔纺纤维中,以增强复合非织造织物的弹性、适形性和吸收能力。短纤维还可提高摩擦系数。复合熔纺织物中过量的短纤维可导致过度的起球或掉毛。短纤维有别于熔纺纤维之处可在于短纤维是在挤出熔纺纤维之后添加的(从而产生熔纺织物的不同特征)。短纤维的特征在于具有确定长度。虽然短纤维一般具有5mm至200mm的长度,但单独的短纤维可具有约25mm至约100mm(包括端值在内)的优选长度。复合非织造织物中的所述一组短纤维可具有约38mm至约64mm(包括端值在内)的甚至更优选的平均纤维长度。
短纤维进一步的特征在于具有约5微米至约30微米的平均直径,具体取决于短纤维的材料。例如,包括人造丝纤维的复合非织造织物可具有约9微米至约30微米的平均人造丝纤维直径。在另一个示例中,包括尼龙纤维的复合非织造织物可具有约13微米至约19微米的平均尼龙纤维直径。
用于本公开复合非织造织物的短纤维可选自多种合适的材料。合适短纤维的非限制性示例包括纤维素纤维、再生纤维素纤维、聚酯纤维、多肽纤维、大麻纤维、亚麻纤维、尼龙纤维以及上述纤维中任何两种或更多种纤维的混合物。
短纤维占复合非织造织物总重量的一部分(即,百分比)。在至少一个实施方案中,熔纺纤维与短纤维的干重量百分比率在约25∶75与约75∶25之间,包括端值在内。优选地,熔纺纤维与短纤维的干重量百分比率在约45∶55与约55∶45之间,包括端值在内。在至少一个实施方案中,本公开复合非织造织物中的短纤维的干重量百分比部分为约15%、约25%、约30%、约40%或约50%。
在至少一个实施方案中,本公开的复合非织造织物可使用美国专利No.4,118,531中所述的熔纺工艺制备。图1示出了根据本公开的用于制备制品的设备200的一个实施方案。熔化的成纤聚合物材料(诸如,第一聚合物和/或第二聚合物)从料斗202进给,并且挤出机204经由入口208进入模具206(其可为熔喷模具或纺粘模具),流过模具腔体210,并且穿过喷丝孔离开模具腔体210,这些喷丝孔沿着模具腔体210的前端排成一行并与模具腔体210流体连通(在一个实施方案中,模具腔体210通过一个或多个管道(图1中未示出)与喷丝孔流体连通)。从料斗202进给的熔化的成纤聚合物材料可形成第一熔纺纤维。
任选第二熔化的成纤聚合物材料(诸如第二聚合物)从料斗203进给,并且挤出机205经由入口207进入模具206,流过模具腔体209,并且穿过喷丝孔离开模具腔体209,这些喷丝孔沿着模具腔体209的前端排成一行。第二熔化的成纤聚合物材料可形成第二熔纺纤维。在该实施方案中,单层熔纺纤维网由两种或更多种聚合物纤维形成。这两种或更多种的聚合物纤维缠结在一起,并且可结合于或可不结合于重叠位置。模具206可为使第一熔纺纤维与第二熔纺纤维交替布置的任何ABAB共挤出模具。其他模具构型是可能的,包括AABB、ABBB、AAAB,以实现熔纺材料的所需特性。第一熔纺纤维和第二熔纺纤维的长度可以是变化的或连续的,具体取决于所需的复合非织造织物的特性。
因此从喷丝孔挤出熔化的成纤材料以便形成原丝212。提供一组迫使气体(通常为受热的空气)以非常高的速度由其通过的开口,以将原丝212细化成纤维,从而形成熔纺纤维的气载流214。
可通过使用图1中所示的示例性设备220,将短纤维12引入熔纺纤维的料流214中。这种设备提供靠近熔喷设备设置的刺辊36(即,从进料辊接收纤维的辊)。短纤维的集合38(通常为松散的非织造纤维网,诸如在打回丝机或兰多成网机(”Rando-Webber”)上制备的非织造纤维网)在驱动辊42下方沿平台40推进,其中前沿在驱动辊处与刺辊36啮合。
刺辊36以箭头方向转动并且从集合38的前沿卷起纤维,使纤维彼此分离。卷起的纤维在空气流中被输送通过内置的槽或管道45并且进入熔纺纤维流214,该纤维在熔纺纤维流中变成与熔纺纤维混合。空气流可以是由刺辊的旋转自然产生,或可以使用通过管道44操作的辅助通风机或鼓风机来增加空气流。
然后短纤维和熔纺纤维的混合缠结流215继续进入收集器216, 混合纤维在此处形成自支承纤维网(即,非织造织物)。收集器216通常为细孔筛网,其可以包括闭环束带、平板筛网或筒或圆柱体。可以将排气设备设置在筛网后,以有助于沉积纤维并且移除气体。
还可对纤维网218进行任选的热压印机232处理。在一些实施方案中,纤维网218经过热压印。压印一般可为几何图案,所述几何图案选自以下项:菱形、圆形、六边形、正方形、椭圆枕形、波纹、线条、交叉影线、花瓣或它们的组合。
可对纤维网218进行任选的下游辐照工艺。例如,第一纤维和第二纤维可通过辐照装置230进行化学改性。辐照装置230可发出紫外UV、电子束、γ或其他类型的辐射。在一些实施方案中,辐照装置可使纤维网218暴露于至少1、至少5、至少10、至少15、至少17、至少20兆拉德辐射的电子束。辐照装置还可使纤维网218暴露于不大于25兆拉德或不大于20兆拉德的辐射。辐照可用于强化所得的复合非织造织物、降低摩擦系数、或对装置进行灭菌、或它们的任何组合。
可以将所得的纤维网218从收集器上剥离,并且卷绕成存储卷筒,随后可以通过切削、处理、或模制操作进行加工。
本发明人已经发现,在熔喷之前将第一聚合物与第二聚合物共混可产生具有“滑动与抓持”(即,装置与软组织之间的拉伸强度和摩擦系数)的适当平衡的熔纺织物,该熔纺织物可用于外科应用。另外,本发明人已经发现,添加第二熔纺纤维、短纤维、压印和交联也可产生具有“滑动与抓持”的适当平衡的熔纺织物。
本公开的复合非织造织物吸收水和多种具有溶解于其中的溶质的水溶液。在至少一个实施方案中,非织造织物能够吸收体液(例如,血液、血清、尿液和伤口渗出液),例如,其包含溶解或悬浮在其中的盐、糖和/或蛋白质。另外,非织造织物能够吸收其他水性液体,诸 如用于湿润和/或冲洗伤口部位的灌洗液(例如,盐水、生理盐水、缓冲盐水、林格氏溶液)。灌洗液通常含有溶解于其中的溶质(例如,氯化钠、乳酸钠)。
在至少一个实施方案中,本公开的复合非织造织物吸收水性液体(例如,去离子水和生理盐水(水中的0.9%重量/重量氯化钠))。非织造织物对去离子水的吸收性可使用包括以下步骤的方法进行测量:确定干燥织物的质量;将织物浸入去离子水中,使织物吸收水直至其饱和;去除任何过量的水;以及确定水饱和织物的质量。吸收性测试的完整描述在本文所公开的吸水性测试中有所阐述。在至少一个实施方案中,根据本文所公开的吸水性测试,按每克织物计,非织造织物吸收至少约3克、至少约2克、或至少1克的去离子水。
在另一个方面,本公开提供包括本文所公开的复合非织造织物的至少一个实施方案的制品。包括非织造织物的制品可用于多种用途,包括例如软组织处理、包扎伤口、处理伤口部位、涂搽表面(例如,无生命表面或组织表面,诸如皮肤)。有利地,包括复合非织造织物的制品可用于在滑动与抓持特性平衡的情况下吸收表面上存在的多种水性液体。
图2示出了根据本公开的包括复合非织造织物152的制品100的一个实施方案。复合非织造织物152可形成为单层。复合非织造织物152的厚度会随应用而变化,但可为至少0.5毫米厚。
图3示出了根据本公开的包括多个层的制品211的一个实施方案。制品211包括含第一复合非织造织物152的第一层150以及含第二复合非织造织物162的第二层160。第一层150通过任何合适的方式联接到第二层160,诸如热粘结、热点粘结、超声焊接、粘合剂粘结、缝合、订合、针刺、压延或它们的组合。
在至少一个实施方案中,制品(例如,制品211)的多层(例如,第一层150和第二层160)中的每个层可与复合非织造织物152或复合非织造织物162基本上相同(例如,组成上相同(例如,化学组成、粘结纤维与短纤维的比率)和/或物理上相同(例如,厚度、基重、面积、平均有效纤维直径、平均纤维长度))。在至少一个实施方案中,制品(例如,制品211)的多层(例如,第一层150和第二层160)中的每个层的复合非织造织物152可相对于复合非织造织物162基本上不同(例如,组成上不同(例如,化学组成、粘结纤维与短纤维的比率)和/或物理上不同(例如,厚度、基重、面积、平均有效纤维直径、平均纤维长度))。
根据本公开的制品具有基重。在上述实施方案中的任一项中,本公开的制品可具有约20g/m2至约200g/m2(包括端值在内)的基重。在至少一个实施方案中,本公开的制品可具有约50g/m2至约150g/m2(包括端值在内)的基重。在至少一个实施方案中,本公开的制品可具有约80g/m2至约120g/m2(包括端值在内)的基重。
在根据本公开的制品的至少一个实施方案中,其中制品包括多层复合非织造织物,该多层可具有约20g/m2至约200g/m2(包括端值在内)的基重。在根据本公开的制品的至少一个实施方案中,其中制品包括多层复合非织造织物,该多层可具有约50g/m2至约150g/m2(包括端值在内)的基重。在根据本公开的制品的至少一个实施方案中,其中制品包括多层复合非织造织物,该多层可具有约80g/m2至约120g/m2(包括端值在内)的基重。在根据本公开的制品的至少一个实施方案中,其中制品包括多层复合非织造织物,该多层可具有约100g/m2的基重。
在至少一个实施方案中,根据本公开的制品包括片材。出于举例说明目的,片材170被示出为比复合非织造织物152更大,并且可为任何尺寸。如本文所用,片材可以根据非织造织物的应用而指代多种 构造,诸如载体、阻挡层、连接层或背衬。
图4示出了制品300,该制品包括复合非织造织物152及粘结到其上的片材170。片材170包括第一主表面172和与第一主表面相背对的第二主表面174。在至少一个实施方案中,复合非织造织物152可以通过本领域中已知的任何方式粘结到片材170(例如,第一主表面172),诸如热粘结、粘合剂粘结、粉末粘结剂、针刺、压延、声波粘结或它们的组合。复合非织造织物152可为本文所公开的复合非织造织物的至少一个实施方案。
在优选实施方案中,片材170经由压敏粘合剂180粘结到复合非织造织物152。如图4中所示,第一主表面172的至少一部分具有设置(例如经由本领域熟知的涂布工艺)于其上的任选粘合剂层180。粘合剂层180起到将复合非织造织物152粘结到片材170的作用。
以下描述了合适粘合剂180的示例。在图4-5中,虽然粘合剂180被示出为覆盖片材170的大部分,但粘合剂180可覆盖复合非织造织物152的面积的一部分,该部分足以使复合非织造织物152粘附到片材170。在一些实施方案中,复合非织造织物152的面积大小可大于或等于片材170。
图5示出了包括片材170和制品211(图3所示)的制品400。制品211包括多层,这两层都包含上述的复合非织造织物。非织造织物制品211经由涂布在片材170一部分上的任选粘合剂180粘附到片材170。
片材170可由多种材料制成。通常,片材170相对较薄(例如,约0.3mm至约3.0mm厚度)。在至少一个实施方案中,片材可由基本上阻止水性液体从其中通过的材料制成。
适用于片材170的材料包括例如非织造纤维网、织造纤维网、机织材料、膜、网片、复合物、金属、聚合物等。这些材料通常是半透明的或透明的聚合物弹性膜。片材可以是高湿蒸汽可透过的膜背衬。例如,美国专利No.3,645,835描述了制备这样的膜的方法和测试它们的渗透性的方法。在至少一个实施方案中,该材料可足够透明,以允许透过该片材显现物体。
该片材有利地可以等于或大于人体皮肤的速率透过湿蒸汽。在一些实施方案中,采用倒杯法,所述粘合剂涂布的片材以至少300g/m2/24h/37℃/100-10%RH的速率透过湿蒸汽、很多情况下以至少700g/m2/24h/37℃/100-10%RH的速率透过湿蒸汽,最通常地,以至少2000g/m2/24h/37℃/100-10%RH的速率透过湿蒸汽。
片材170通常适形于解剖表面。因此,当将片材170施加至解剖表面时,即使在该表面移动的情况下它也会适形于该表面。片材170也适形于动物的解剖关节。当关节弯曲并随后恢复到其不弯曲的位置时,片材170可以制成使得它拉伸以适应关节的弯曲,并具有足够的回弹力,在关节恢复到其不弯曲条件时使其继续适形于关节。
在一些实施方案中,片材170还可具有各种附接件(诸如,延展性部件、其中形成的孔、或环),这些附接件联接到各种器械,诸如牵开器或镊子。
可以使用各种压敏粘合剂在片材170上形成粘合剂层180以使片材具有粘性。压敏粘合剂通常是与皮肤适度相容的和“低变应原性的”,诸如美国专利No.RE 24,906中描述的丙烯酸酯共聚物。特别可用的是97∶3丙烯酸异辛酯∶丙烯酰胺共聚物,而美国专利No.4,737,410中所述的70∶15∶15丙烯酸异辛酯∶环氧乙烷丙烯酸酯∶丙烯酸三元共聚物同样是合适的。附加可用的粘合剂在美国专利No.3,389,827;4,112,213;4,310,509和4,323,557中有所描述。如美国专利No.4,310,509和 4,323,557中所述,也设想了在粘合剂中含有药剂或抗微生物剂。
在至少一个实施方案中,复合非织造织物限定第一区域并且片材限定比第一区域大的第二区域。第二区域被成形和设定尺寸为使得第二区域的至少一部分(例如,周边部分)延伸到第一区域外部。因此,周边部分可经由粘合剂层粘附到表面(例如,皮肤表面),从而将该制品固定(例如,可逆地固定)到该表面上(例如,皮肤表面,未示出)。
示例性实施方案
实施方案1.一种复合非织造织物,包括:
一组熔纺纤维,所述一组熔纺纤维包括
包含第一聚合物的第一熔纺纤维;
其中所述第一聚合物为亲水性热塑性聚合物。
实施方案1a.根据前述实施方案中任一项所述的复合非织造织物,其中所述亲水性热塑性聚合物为热塑性聚氨酯聚合物。
实施方案1b.根据前述实施方案中任一项所述的复合非织造织物,其中所述热塑性聚氨酯聚合物包含65%(重量/重量)至90%(重量/重量)亲水性链段,包括端值在内。
实施方案1c.根据前述实施方案中任一项所述的复合非织造织物,其中所述亲水性链段选自以下物质:聚乙二醇、聚丙二醇、聚环氧丁烷、无规聚(C2-C4)环氧烷、聚酯、胺封端的聚酯、胺封端的聚酰胺、聚酯-酰胺、聚碳酸酯、或它们的组合。
实施方案1d.根据前述实施方案中任一项所述的复合非织造织物,其中所述热塑性聚氨酯聚合物为包含65%(重量/重量)至90%(重量/重量)聚环氧烷的脂族聚醚基热塑性聚氨酯聚合物。
实施方案2.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维还包含第二聚合物,其中所述第二聚合物为疏水性热塑性聚合物。
实施方案2a.根据前述实施方案中任一项所述的复合非织造织物,其中所述疏水性热塑性弹性体选自以下物质:聚酯基热塑性聚氨酯、聚醚基热塑性聚氨酯、苯乙烯共聚物、乙烯-辛烯共聚物、线性低密度聚乙烯、或它们的组合。
实施方案2b.根据前述实施方案中任一项所述的复合非织造织物,其中所述疏水性热塑性聚合物为聚酯基热塑性聚氨酯。
实施方案2c.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维为包含所述第一聚合物和所述第二聚合物的多成分纤维。
实施方案3.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维还包括:
包含所述第二聚合物的第二熔纺纤维。
实施方案4.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维包含3%(重量/重量)至95%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案4a.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维包含20%(重量/重量)至80%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案5.根据前述实施方案中任一项所述的复合非织造织物, 其中所述第一熔纺纤维包含5%(重量/重量)至60%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案5a.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维包含25%(重量/重量)至60%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案5b.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维包含5%(重量/重量)至55%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案6.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维包含45%(重量/重量)至55%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案7.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维包含5%(重量/重量)至97%(重量/重量)的所述第二聚合物,包括端值在内。
实施方案7a.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维包含40%(重量/重量)至80%(重量/重量)的所述第二聚合物,包括端值在内。
实施方案8.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维包含5%(重量/重量)至75%(重量/重量)的所述第二聚合物,包括端值在内。
实施方案9.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括5%(重量/重量)至100%(重量/重量)的第一熔纺纤维,包括端值在内。
实施方案9a.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括10%(重量/重量)至100%(重量/重量)的第一熔纺纤维,包括端值在内。
实施方案9b.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括10%(重量/重量)至75%(重量/重量)的第一熔纺纤维,包括端值在内。
实施方案9c.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括20%(重量/重量)至100%(重量/重量)的第一熔纺纤维,包括端值在内。
实施方案10.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括55%(重量/重量)至100%(重量/重量)的第一熔纺纤维,包括端值在内。
实施方案11.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括65%(重量/重量)至85%(重量/重量)的第一熔纺纤维,包括端值在内。
实施方案12.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括70%(重量/重量)至80%(重量/重量)的第一熔纺纤维,包括端值在内。
实施方案13.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括10%(重量/重量)至50%(重量/重量)的第一聚合物,包括端值在内。
实施方案14.根据前述实施方案中任一项所述的复合非织造织物, 其中所述一组熔纺纤维包括10%(重量/重量)至15%(重量/重量)的第一聚合物,包括端值在内。
实施方案15.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维包括35%(重量/重量)至40%(重量/重量)的第一聚合物,包括端值在内。
实施方案16.根据前述实施方案中任一项所述的复合非织造织物,还包括与所述一组熔纺纤维相互混合并缠结在一起的一组短纤维。
实施方案17.根据前述实施方案中任一项所述的复合非织造织物,其中所述复合非织造织物包括25%(重量/重量)至75%(重量/重量)的所述一组短纤维。
实施方案17a.根据前述实施方案中任一项所述的复合非织造织物,其中所述复合非织造织物包括45%(重量/重量)至55%(重量/重量)的所述一组短纤维。
实施方案18.根据前述实施方案中任一项所述的复合非织造织物,其中所述脂族聚醚基热塑性聚氨酯聚合物包含70%(重量/重量)至90%(重量/重量)聚环氧烷。
实施方案19.根据前述实施方案中任一项所述的复合非织造织物,其中所述脂族聚醚基热塑性聚氨酯聚合物包含80%(重量/重量)至90%(重量/重量)聚环氧烷。
实施方案20.根据前述实施方案中任一项所述的复合非织造织物,其中所述脂族聚醚基热塑性聚氨酯聚合物包含80%(重量/重量)至85%(重量/重量)聚环氧烷。
实施方案21.根据前述实施方案中任一项所述的复合非织造织物,其中所述聚环氧烷为聚乙二醇。
实施方案21a.根据前述实施方案中任一项所述的复合非织造织物,其中存在所述第二聚合物,使得根据非织造物摩擦测试方法,所述复合非织造织物(湿)相对于组织具有约0.2至约0.5(包括端值在内)的摩擦系数。
实施方案22.根据前述实施方案中任一项所述的复合非织造织物,其中如根据ISO 9073-3沿纵向测试的,所述复合非织造织物具有至少0.1牛顿/基重的干拉伸强度。
实施方案23.根据前述实施方案中任一项所述的复合非织造织物,其中如根据ISO 9073-3沿纵向测试的,所述复合非织造织物具有至少0.2牛顿/基重的干拉伸强度。
实施方案24.根据前述实施方案中任一项所述的复合非织造织物,其中如根据ISO 9073-3沿纵向测试的,所述复合非织造织物具有至少0.3牛顿/基重的干拉伸强度。
实施方案25.根据前述实施方案中任一项所述的复合非织造织物,其中所述第二聚合物包含聚乳酸共聚单体。
实施方案26.根据前述实施方案中任一项所述的复合非织造织物,其中所述短纤维选自以下物质:粘胶纤维、聚丙烯、聚乙烯、人造丝、或它们的组合。
实施方案27.根据前述实施方案中任一项所述的复合非织造织物,其中所述短纤维选自以下物质:纤维素纤维、再生纤维素纤维、聚酯纤维、多肽纤维、大麻纤维、亚麻纤维、尼龙纤维、或它们的组合。
实施方案28.根据前述实施方案中任一项所述的复合非织造织物,其中所述短纤维的平均长度为约5mm至约30mm。
实施方案29.根据前述实施方案中任一项所述的复合非织造织物,其中所述第一熔纺纤维和所述第二熔纺纤维的平均直径为约2微米至约25微米。
实施方案30.根据前述实施方案中任一项所述的复合非织造织物,其中所述脂族聚醚基热塑性聚氨酯聚合物包含聚环氧乙烷的嵌段亚单元,其中所述嵌段亚单元具有约6,000道尔顿至约20,000道尔顿的平均式量。
实施方案31.根据前述实施方案中任一项所述的复合非织造织物,其中根据本文定义的吸水性测试,按每克所述复合非织造织物计,所述织物吸收至少约3克的去离子水。
实施方案31a.根据前述实施方案中任一项所述的复合非织造织物,其中所述复合非织造织物进一步经由热粘结、化学粘结、缝合、针刺、超声粘结、辐射粘结、或它们的组合来加固。
实施方案31b.根据前述实施方案中任一项所述的复合非织造织物,其中熔纺纤维为熔喷纤维。
实施方案31c.根据前述实施方案中任一项所述的复合非织造织物,其中熔纺纤维为防粘纤维。
实施方案31d.根据前述实施方案中任一项所述的复合非织造织物,其中来自所述一组熔纺纤维的至少一种熔纺纤维为连续的。
实施方案31e.根据前述实施方案中任一项所述的复合非织造织物,其中所述一组熔纺纤维未经切割。
实施方案32.一种制品,所述制品包含根据前述实施方案中任一项所述的复合非织造织物。
实施方案33.根据前述实施方案中任一项所述的制品,其中所述制品包括多层,其中所述多层中的至少一层包括所述复合非织造织物。
实施方案34.根据前述实施方案中任一项所述的制品,其中所述多层中的第一层联接到所述多层中的第二层。
实施方案34a.根据前述实施方案中任一项所述的制品,其中所述第二层是在组织上的摩擦系数低于所述第一层的覆盖层。
实施方案35.根据前述实施方案中任一项所述的制品,其中经由热粘结、化学粘结和机械粘结,包括粘合剂粘结、缝合、订合、超声粘结、针刺、压延、或它们的组合,将所述第一层联接到所述第二层。
实施方案36.根据前述实施方案中任一项所述的制品,其中所述制品具有约20g/m2至约200g/m2的基重。
实施方案37.根据前述实施方案中任一项所述的制品,还包括具有第一主表面和与所述第一主表面相背对的第二主表面的片材,其中所述复合非织造织物粘结到所述第一主表面。
实施方案38.根据前述实施方案中任一项所述的制品,其中所述片材包含选自非织造织物、织造织物、针织织物、泡沫层、金属层、膜、纸层、或它们的组合的材料。
实施方案39.根据前述实施方案中任一项所述的制品,其中使用热粘结、化学粘结和机械粘结,包括粘合剂粘结、声波粘结、粉末粘结剂、水刺、针刺、压延、或它们的组合,将所述片材粘结到所述非织造织物。
实施方案40.根据前述实施方案中任一项所述的制品,其中所述非织造织物限定第一区域并且所述片材限定第二区域,所述第二区域被成形和设定尺寸为使得所述第二区域的至少一部分延伸到所述第一区域外部。
实施方案41.根据前述实施方案中任一项所述的制品,其中包括所述非织造织物的所述层经过热压印。
实施方案42.根据前述实施方案中任一项所述的制品,其中所述压印图案为几何图案。
实施方案43.根据前述实施方案中任一项所述的制品,其中所述几何图案选自以下项:菱形、圆形、六边形、正方形、或它们的组合。
实施方案44.一种制备根据前述实施方案中任一项所述的非织造织物的方法,包括:
使所述第一聚合物和所述第二聚合物流过模具;
使用空气或其他流体将原丝细化成相互缠结的熔纺纤维流;
将所述相互缠结的熔纺纤维收集成非织造纤维网。
实施方案45.根据前述实施方案中任一项所述的方法,还包括:
使所述第一聚合物与所述第二聚合物接触以形成混合物;
使所述混合物流过所述模具。
实施方案46.根据前述实施方案中任一项所述的方法,其中所述混 合物包含3%(重量/重量)至60%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案46a.根据前述实施方案中任一项所述的方法,其中所述混合物包含20%(重量/重量)至60%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案47.根据前述实施方案中任一项所述的方法,其中所述混合物包含5%(重量/重量)至60%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案47a.根据前述实施方案中任一项所述的方法,其中所述混合物包含25%(重量/重量)至60%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案48.根据前述实施方案中任一项所述的方法,其中所述混合物包含10%(重量/重量)至55%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案48a.根据前述实施方案中任一项所述的方法,其中所述混合物包含45%(重量/重量)至55%(重量/重量)的所述第一聚合物,包括端值在内。
实施方案49.根据前述实施方案中任一项所述的方法,其中所述模具为ABAB模具,其中A组分包含所述第一聚合物并且B组分包含所述第二聚合物。
实施方案50.根据前述实施方案中任一项所述的方法,其中所述模具为ABAB模具,其中所述A组分形成所述第一熔纺纤维并且所述B组分形成所述第二熔纺纤维。
实施方案51.根据前述实施方案中任一项所述的方法,其中所述相互缠结的熔纺纤维包括所述第一熔纺纤维和所述第二熔纺纤维。
实施方案52.根据前述实施方案中任一项所述的方法,其中所述相互缠结的熔纺纤维包括5%(重量/重量)至100%(重量/重量)的所述第一熔纺纤维,包括端值在内。
实施方案52a.根据前述实施方案中任一项所述的方法,其中所述相互缠结的熔纺纤维包括55%(重量/重量)至100%(重量/重量)的所述第一熔纺纤维,包括端值在内。
实施方案53.根据前述实施方案中任一项所述的方法,其中所述相互缠结的熔纺纤维包括15%(重量/重量)至85%(重量/重量)的所述第一熔纺纤维,包括端值在内。
实施方案53a.根据前述实施方案中任一项所述的方法,其中所述相互缠结的熔纺纤维包括65%(重量/重量)至85%(重量/重量)的所述第一熔纺纤维,包括端值在内。
实施方案54.根据前述实施方案中任一项所述的方法,其中所述相互缠结的熔纺纤维包括25%(重量/重量)至80%(重量/重量)的所述第一熔纺纤维,包括端值在内。
实施方案54a.根据前述实施方案中任一项所述的方法,其中所述相互缠结的熔纺纤维包括70%(重量/重量)至80%(重量/重量)的所述第一熔纺纤维,包括端值在内。
实施方案55.根据前述实施方案中任一项所述的方法,其中所述A组分还包含所述第二聚合物。
实施方案56.根据前述实施方案中任一项所述的方法,还包括使一组短纤维相互混合。
实施方案57.根据前述实施方案中任一项所述的方法,还包括辐照所述非织造纤维网,使得根据非织造物摩擦测试,所得的非织造纤维网相对于组织具有至少0.2的摩擦系数。
实施方案58.根据前述实施方案中任一项所述的方法,其中所述辐照包括:
使用1兆拉德至20兆拉德的电子束剂量辐照,包括端值在内。
实施方案58a.根据前述实施方案中任一项所述的方法,其中所述辐照包括:
使用1兆拉德至5兆拉德的电子束剂量辐照,包括端值在内。
实施方案59.根据前述实施方案中任一项所述的方法,还包括:
在所述非织造纤维网上压印图案。
通过下面的实施例进一步说明了本发明的目的和优点,但这些实施例中列举的特定材料及其量以及其他条件和细节不应被解释为是对本发明不当的限制。
实施例
材料
实施例所用的材料示于表1中。
表1.材料列表
Figure PCTCN2016108354-appb-000001
测试方法
吸水性测试
切割、称量待测试的非织造织物的干燥样品(大约7.6cm×7.6cm),并放置在培养皿中。在培养皿中加入蒸馏水以覆盖非织造织物样品。使非织造织物样品在室温下被动地吸收测试溶液30分钟或更久,直到完全水合。接着从培养皿中滗出蒸馏水。随后用镊子将非织造织物样品从培养皿中取出,并且在夹住一角且使样品竖直地取向的同时,用吸水薄纸吸走水。然后重新称量液体饱和的织物,并且记录该吸收%((吸收的水的克数/干燥非织造物的克数)×100)。记录3片同样的非织造织物样品中每个样品的质量的平均值和标准偏差。
干拉伸强度测试
使用由德国乌尔姆的兹威克公司(Zwick GmbH&Co(Ulm,Germany))制造的Zwick通用台式测试机Z005型号,根据国际标准化组织(ISO)9073-3测试样品的拉伸强度。将样品(纵向(MD)和横向(CD)两者)切割成0.5×5英寸(1.27cm×12.7cm)的尺寸。MD样品沿着5英寸端部取向,而CD样品以沿着0.5英寸端部的方向取向。使用0.5英寸(1.27cm)标距、1000mm/min延伸速率进行干拉伸测试。
湿拉伸强度测试
如上述那样进行湿拉伸强度测试,不同的是在切割之后,通过在室温下将切割的样品放入过量蒸馏水中30分钟,使样品水合。使用0.5英寸(1.27cm)标距、1000mm/min延伸速率进行湿拉伸强度测试。
摩擦系数测试
将MD样品切割成0.5×5英寸(1.27cm×12.7cm)的尺寸,并且在切割之后,通过将切割的样品放入过量蒸馏水中30分钟进行水合。测试样品相对于湿香肠肠衣(天然猪肠衣)(即,猪肠的粘膜下层,可购自纽约州布法罗的香肠制造商公司(The Sausage Maker,Inc.,Buffalo,NY))的摩擦系数。通过以下方式制备湿香肠肠衣:沿纵向切割一块香 肠肠衣(约12cm长和3cm宽),在蒸馏水中冲洗香肠肠衣以去除盐,然后使香肠肠衣在微温蒸馏水中水合至少30分钟。
通过二维力测试系统(商品名Forceboard,由瑞典耶尔费拉的瑞典工业动态公司(Industrial Dynamics Sweden AB(Jarfalla,Sweden))制造)计算摩擦系数。使用ForceBoard分析仪软件(瑞典工业动态公司(Industrial Dynamics,Sweden))分析结果并导出到Excel。使用Excel中的算法计算以2.9-3.1N的目标垂直力对摩擦测试基底进行摩擦时获得的摩擦系数的平均值±标准偏差。
将香肠肠衣放在Forceboard安装板上并用装订夹固定。用示例性基底(即,MD非织造样品)以2.9-3.1N的目标垂直力手动地对摩擦测试基底(即,香肠肠衣)进行摩擦。在干燥和湿润的条件下(在室温下浸泡在0.9%盐水中至少30分钟)测试示例性基底。
非织造复合材料的制备
实施例EX1-EX4
使用结合图1所述的设备及基本上如美国专利No.4,118,531中所述的工艺,由PU制成非织造织物。在210℃的温度下以0.75磅/小时/英寸模具宽度的速率熔喷PU聚合物。使用20mm钢制双螺杆挤出线挤出组分A,使用0.75英寸Killion挤出线挤出组分B,并且使用20英寸熔喷ABAB模具。
调节聚氨酯聚合物的A组分的组成,以产生表2中所示的纤维网组合物。记录基重,并且在数学上确定组成,如表3中所示。
比较实施例CE1-CE5
使用实施例1-4中所述的设备和条件制备非织造织物。
表2-组成
Figure PCTCN2016108354-appb-000002
表3-基重
实施例 第一聚合物相对于织物的总组成 基重(g/m2)
EX1 25% 26.69
EX2 25% 53.39
EX3 12.5% 46.5
EX4 37.5% 49.94
CE1 18.75% 49.08
CE2 0% 91.28
CE3 50% 49.08
CE4 25% 46.5
CE5 50% 61.48
将实施例EX1-EX4和比较实施例CE1-CE5的非织造织物切割成5.1cm×5.1cm块,并进行上述吸水性测试。然后观察湿样品的触感和残留(即,一些水合聚合物脱落)。通过触感来测量滑度,中等抓持指 示感觉到轻微的摩擦量,而较低抓持意指几乎未感觉到任何摩擦。结果示于表4中。
表4-吸收容量
实施例 吸收容量 观察结果
EX1 459% 无残留,较低抓持
EX2 358% 无残留,较低抓持
EX3 340% 无残留,最低抓持
EX4 350% 无残留,较低抓持
CE1 450% 轻微残留,低抓持
CE2 73% 高抓持
CE3 911% 残留,中等抓持
CE4 572% 残留,低抓持
CE5 425% 残留,中等抓持
将实施例EX1-EX4和比较实施例CE1-CE5的非织造织物切割成5.1cm×5.1cm块,并且在上述纵向(MD)和横向(CD)上进行干拉伸强度测试和湿拉伸强度测试。结果示于表5中。
表5-湿拉伸强度和干拉伸强度
Figure PCTCN2016108354-appb-000003
将实施例EX1-EX4和比较实施例CE1-CE5的非织造织物切割成5.1cm×5.1cm块,并且在上述纵向(MD)上进行摩擦系数测试。结果示 于表6中。
表6-摩擦系数
Figure PCTCN2016108354-appb-000004
实施例EX5-EX7
使用结合图1所述的设备及基本上如美国专利No.4,118,531中所述的工艺,由PU制成非织造织物。在210℃的温度下以1.0磅/小时/英寸模具宽度(1.15千克/小时/厘米/模具宽度)的速率熔喷PU聚合物。
使用1.5英寸Davis-standard挤出线、20mm钢制双螺杆挤出线以及20英寸熔喷ABAB模具制备EX5-EX7中的非织造织物。将非织造织物以ABAB结构共挤出,所述ABAB结构包含从钢制挤出机中挤出的含第一聚合物的组分A,以及从Davis-standard挤出线中挤出的含第二聚合物的组分B。
将短纤维非织造纤维网加入到结合图1所述的基础非织造物中,并且测量所得非织造织物的基重并示于表7中。
使用具有六边形粘结图案的研究压印辊对实施例EX5-EX7中的 非织造织物进行热粘结。压印辊在各种辊隙压力和线速度下达到250°F的温度。使用5兆拉德的电子束剂量使热粘结的非织造织物交联。使用以上测试方法确定摩擦系数和干拉伸强度。结果示于表7中。
比较实施例CE6
使用实施方案EX5-EX7中所述的设备和条件制备非织造织物,并示于表7和表8中。
表7-组成
Figure PCTCN2016108354-appb-000005
表8-摩擦系数和拉伸强度
Figure PCTCN2016108354-appb-000006
本文引用的所有专利、专利申请和专利公开的全部公开内容以及 可供使用的电子版材料均以引用方式并入。在本专利申请和以引证方式并入本申请的任何文献的公开内容之间存在矛盾的情况下,应以本发明的公开内容为准。上述具体实施方式和实施例仅为清楚理解本发明而给出。而不应被理解为不必要的限制。本发明不限于示出的和描述的准确细节,对本领域专业人员而言显而易见的变型将包括在本发明由权利要求限定的范围内。
所有的标题是为了方便阅读,并且不应该用于限定标题下内容的意思,除非特指。
在不脱离本发明的实质和范围的前提下,可进行各种修改。这些以及其他实施方案均在如下权利要求书的范围内。

Claims (15)

  1. 一种复合非织造织物,包括:
    一组熔纺纤维,所述一组熔纺纤维包括
    包含第一聚合物和第二聚合物的第一熔纺纤维;
    其中所述第一聚合物为包含65%(重量/重量)至90%(重量/重量)亲水性链段的亲水性热塑性聚合物,包括端值在内;
    其中所述第二聚合物为疏水性热塑性聚合物;
    其中所述第一熔纺纤维包含3%(重量/重量)至95%(重量/重量)的所述第一聚合物,包括端值在内。
  2. 根据权利要求1所述的复合非织造织物,其中所述第一熔纺纤维包含5%(重量/重量)至55%(重量/重量)的所述第一聚合物,包括端值在内。
  3. 根据权利要求1所述的复合非织造织物,其中所述第一熔纺纤维包含5%(重量/重量)至97%(重量/重量)的所述第二聚合物,包括端值在内。
  4. 根据权利要求1所述的复合非织造织物,其中所述一组熔纺纤维包括5%(重量/重量)至100%(重量/重量)的所述第一熔纺纤维,包括端值在内。
  5. 根据权利要求1所述的复合非织造织物,其中所述一组熔纺纤维还包括:
    包含所述第二聚合物的第二熔纺纤维。
  6. 根据权利要求5所述的复合非织造织物,其中所述疏水性热塑性聚合物选自以下物质:聚酯基热塑性聚氨酯、聚醚基热塑性聚氨酯、苯乙烯共聚物、乙烯-辛烯共聚物、线性低密度聚乙烯、或它们的组合。
  7. 根据权利要求1所述的复合非织造织物,其中所述亲水性热塑性聚合物为热塑性聚氨酯聚合物。
  8. 根据权利要求7所述的复合非织造织物,其中所述亲水性链段包含聚环氧烷。
  9. 根据权利要求7所述的复合非织造织物,其中所述亲水性链段选自以下物质:聚乙二醇、聚丙二醇、聚环氧丁烷、无规聚(C2-C4)环氧烷、聚酯、胺封端的聚酯、胺封端的聚酰胺、聚酯-酰胺、聚碳酸酯、或它们的组合。
  10. 一种制品,其包括根据权利要求1所述的复合非织造织物。
  11. 根据权利要求10所述的制品,其中所述制品包括多层,其中所述多层中的至少一层包括根据权利要求1所述的复合非织造织物。
  12. 根据权利要求10所述的制品,其中所述制品具有约20g/m2至约200g/m2的基重。
  13. 根据权利要求10所述的制品,还包括具有第一主表面和与所述第一主表面相背对的第二主表面的片材,其中所述复合非织造织物粘结到所述第一主表面。
  14. 一种复合非织造织物,包括
    一组熔纺纤维,所述一组熔纺纤维包括
    包含第一聚合物的第一熔纺纤维;
    其中所述第一聚合物为包含65%(重量/重量)至90%(重量/重量)聚环氧烷的脂族聚醚热塑性聚氨酯聚合物;
    包含第二聚合物的第二熔纺纤维,所述第二聚合物选自以下 物质:聚酯基热塑性聚氨酯、聚醚基热塑性聚氨酯、苯乙烯共聚物、乙烯-辛烯共聚物、线性低密度聚乙烯、或它们的组合;
    其中所述一组熔纺纤维包含5%(重量/重量)至100%(重量/重量)的所述第一熔纺纤维,包括端值在内;
    与所述熔纺纤维相互混合并缠结在一起的一组短纤维;
    其中所述复合非织造织物包括10%(重量/重量)至75%(重量/重量)的所述一组短纤维。
  15. 一种制备根据权利要求14所述的复合非织造织物的方法,包括:
    使所述第一聚合物与所述第二聚合物接触以形成混合物;
    使所述混合物流过模具;
    使用空气或其他流体将原丝细化成相互缠结的熔纺纤维流;
    将所述相互缠结的熔纺纤维收集成非织造纤维网;
    用至少1兆拉德且不大于20兆拉德的电子束剂量辐照所述非织造纤维网。
PCT/CN2016/108354 2016-12-02 2016-12-02 吸液性复合非织造织物及其制品 WO2018098803A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/465,925 US20190390382A1 (en) 2016-12-02 2016-12-02 Moisture-absorbent composite nonwoven fabric and article thereof
PCT/CN2016/108354 WO2018098803A1 (zh) 2016-12-02 2016-12-02 吸液性复合非织造织物及其制品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108354 WO2018098803A1 (zh) 2016-12-02 2016-12-02 吸液性复合非织造织物及其制品

Publications (1)

Publication Number Publication Date
WO2018098803A1 true WO2018098803A1 (zh) 2018-06-07

Family

ID=62241124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108354 WO2018098803A1 (zh) 2016-12-02 2016-12-02 吸液性复合非织造织物及其制品

Country Status (2)

Country Link
US (1) US20190390382A1 (zh)
WO (1) WO2018098803A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016000A (ja) * 2018-07-26 2020-01-30 東レ株式会社 積層不織布
US10639021B2 (en) 2016-11-03 2020-05-05 3M Innovative Properties Company Shapeable articles and methods of making and using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023220261A1 (en) * 2022-05-11 2023-11-16 Lear Corporation Method and apparatus for producing a cushion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118531A (en) * 1976-08-02 1978-10-03 Minnesota Mining And Manufacturing Company Web of blended microfibers and crimped bulking fibers
CN1369027A (zh) * 1999-08-02 2002-09-11 纳幕尔杜邦公司 复合非织造片材
CN101333282A (zh) * 2007-06-25 2008-12-31 财团法人工业技术研究院 防水透湿材料、薄膜及织品
CN102197060A (zh) * 2008-09-24 2011-09-21 路博润高级材料公司 用于熔体涂覆工艺的tpu组合物
CN102471967A (zh) * 2009-08-05 2012-05-23 三井化学株式会社 混纤纺粘非织造布、其制造方法以及其用途
CN105848616A (zh) * 2013-12-27 2016-08-10 3M创新有限公司 吸液性复合非织造织物及其制品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118531A (en) * 1976-08-02 1978-10-03 Minnesota Mining And Manufacturing Company Web of blended microfibers and crimped bulking fibers
CN1369027A (zh) * 1999-08-02 2002-09-11 纳幕尔杜邦公司 复合非织造片材
CN101333282A (zh) * 2007-06-25 2008-12-31 财团法人工业技术研究院 防水透湿材料、薄膜及织品
CN102197060A (zh) * 2008-09-24 2011-09-21 路博润高级材料公司 用于熔体涂覆工艺的tpu组合物
CN102471967A (zh) * 2009-08-05 2012-05-23 三井化学株式会社 混纤纺粘非织造布、其制造方法以及其用途
CN105848616A (zh) * 2013-12-27 2016-08-10 3M创新有限公司 吸液性复合非织造织物及其制品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10639021B2 (en) 2016-11-03 2020-05-05 3M Innovative Properties Company Shapeable articles and methods of making and using the same
JP2020016000A (ja) * 2018-07-26 2020-01-30 東レ株式会社 積層不織布
JP7059850B2 (ja) 2018-07-26 2022-04-26 東レ株式会社 積層不織布

Also Published As

Publication number Publication date
US20190390382A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
AU2014396148B2 (en) Hollow porous fibers
RU2624303C2 (ru) Усовершенствованные волокна из полимолочной кислоты
CN102762370B (zh) 尺寸稳定的非织造纤维幅材及其制造和使用方法
DK2627813T3 (en) Hydrogelling FIBER AND FIBER STRUCTURES
CN104780875A (zh) 多层制品
KR101720439B1 (ko) 부직포 적층체
JP5213495B2 (ja) 医療用積層布帛、これを用いた医療用ドレープ、これを用いた医療用被服
JP2010508961A (ja) 嵩高化フィラメントトウから製造される創傷治癒製品
ES2864644T3 (es) Tela de fibra de celulosa no tejida con distribución de diámetro de fibra
CN102753745A (zh) 尺寸稳定的非织造纤维幅材、熔喷细旦纤维及其制备和使用方法
BR112013003313B1 (pt) método para formar uma fibra de poli(ácido láctico), fibra de poli(ácido láctico), e, trama não tecida
WO2018098803A1 (zh) 吸液性复合非织造织物及其制品
WO2002022933A1 (fr) Non-tisse multicouche et ses utilisations
WO2015187198A1 (en) Hollow porous fibers
ES2857849T3 (es) Tejidos no tejidos que comprenden ácido poliláctico que tienen una resistencia y una tenacidad mejoradas
JP2017502180A (ja) 液体吸収複合材不織布帛及びそれから成る物品
EP2903656B1 (en) Absorbent materials
JP2006299425A (ja) 吸水性不織布積層体
CN113832607B (zh) 一种医用非织造纱布及其制备方法和应用
KR102587469B1 (ko) 다공성 섬유를 형성하기 위한 다단계 연신 기술
WO2013118605A1 (ja) 刺激応答性材料およびそれを用いた医療材料
KR101960236B1 (ko) 다공성 섬유를 형성하기 위한 방법
ES2382791T3 (es) Tela no tejida biodegradable de copoliéster
JP2015059285A (ja) 不織繊維構造体
JP6351943B2 (ja) 不織繊維構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922673

Country of ref document: EP

Kind code of ref document: A1