WO2018098684A1 - 一种无源光网络的通信方法、及设备 - Google Patents

一种无源光网络的通信方法、及设备 Download PDF

Info

Publication number
WO2018098684A1
WO2018098684A1 PCT/CN2016/108022 CN2016108022W WO2018098684A1 WO 2018098684 A1 WO2018098684 A1 WO 2018098684A1 CN 2016108022 W CN2016108022 W CN 2016108022W WO 2018098684 A1 WO2018098684 A1 WO 2018098684A1
Authority
WO
WIPO (PCT)
Prior art keywords
data frame
frame
channel
sublayer
ethernet
Prior art date
Application number
PCT/CN2016/108022
Other languages
English (en)
French (fr)
Inventor
殷锦蓉
赵殿博
景磊
吴徐明
高波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/108022 priority Critical patent/WO2018098684A1/zh
Publication of WO2018098684A1 publication Critical patent/WO2018098684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method and device for a passive optical network.
  • Ethernet Passive Optical Network (EPON) related technologies and standards are developed on the basis of IEEE802.3 of the Institute of Electrical and Electronics Engineers (IEEE), compatible with Ethernet ( Ethernet, ETH) technology and equipment, can reuse mature devices and circuits, design and implementation of low risk, relatively low cost of technology and industry chain. Therefore, it is loved by telecom operators.
  • the IEEE standard organization proposes the standard requirements for 100G EPON based on the original 10G EPON in order to meet the future greater bandwidth requirements.
  • the 100G EPON is the next EPON system for 10G EPON, which provides greater bandwidth capacity.
  • the current physical layer can only achieve a rate of 25 Gbps, resulting in insufficient system bandwidth and failing to meet the standard requirements of the 100G EPON proposed by the IEEE standard.
  • the embodiments of the present invention provide a communication method and device for a passive optical network, which are used to effectively improve the system bandwidth of a passive optical network (PON).
  • PON passive optical network
  • An embodiment of the present invention provides a communication method for a passive optical network.
  • the solution may be applied to a transmitting side of a data frame.
  • the transmitting side of the data frame may be an optical network unit (ONU) or a light.
  • An optical line terminal (OLT) includes: receiving a data frame, assigning a number to the data frame; determining a correspondence between the data frame and the channel, and determining the data frame according to the corresponding relationship between the data frame and the channel Corresponding channel; sending the data frame and the number of the data frame to the receiving side through the determined channel.
  • the steps of receiving a data frame and assigning a number to the data frame are completed in the first sublayer, and the first sublayer allocates the data frame to the corresponding channel, and the data frame and its number are located in the second subsection of the physical layer.
  • the layer is sent to the receiving side, and since at least two channels are used on the transmitting side and the receiving side, the transmitting side
  • the single width between the receiving side and the receiving side will be a multiple of the single channel single width, for example: four 25 Gbps rate channels, which can reach a system rate of 100 Gbps. Therefore, the EPON bandwidth can be effectively improved.
  • the embodiment of the present invention does not need to change the format of the data frame, so the original structure is not changed, and the bandwidth utilization can be improved.
  • the embodiment of the present invention further provides an implementation of the data frame number: the allocating the number for the data frame includes: adding the data according to a cyclic shift increment or a cyclic shift decrement. Frame assignment number.
  • the cyclic shift increment method can pre-specify a fixed number maximum value, for example, : 16-bit number, which can be numbered from 0 to 65535, that is, 65536 data frames, and the 65537th data frame will be numbered as 0.
  • the first sub-layer and the second sub-layer may be respectively named as: a channel binding layer and a binding transmission layer, where the receiving data frame, the data frame is assigned a number including: The sublayer receives the data frame and assigns a number to the data frame;
  • the method further includes: the first sublayer transmitting the data frame and the number of the data frame to a second sublayer;
  • Transmitting the data frame and the number of the data frame to the receiving side by using the determined channel includes:
  • the second sublayer transmits the data frame and the number of the data frame to the receiving side through the determined channel.
  • the embodiment of the present invention further provides that the first sublayer and the second sublayer are implemented by maintaining a correspondence between a channel and a data frame or a channel and a frame number of the data frame.
  • the scheme for the numbering of the data frame is as follows: the determining the corresponding relationship between the data frame and the channel, and determining the channel corresponding to the data frame according to the corresponding relationship between the data frame and the channel, including: the first The sub-layer reads a correspondence table between the data frame number and the channel, and determines a channel corresponding to the data frame according to the correspondence table between the data frame number and the channel;
  • the sending, by the second sublayer, the number of the data frame and the data frame to the receiving side by using the determined channel includes:
  • the second sublayer After receiving the data frame, the second sublayer according to the data frame number and the corresponding channel The system determines a frame number of the data frame, and sends the data frame and the number of the data frame to the receiving side by using the determined channel.
  • the embodiment of the present invention further provides a scheme for transmitting a number of a data frame by using a primitive in a first sublayer, as follows: in the second sublayer, the determined Before the channel sends the data frame and the number of the data frame to the receiving side, the method further includes:
  • the first sublayer generates a primitive including the data frame and the data frame number
  • Sending, by the first sublayer, the data frame and the number of the data frame to the second sublayer includes:
  • the first sublayer sends a primitive including the data frame and the data frame number to the second sublayer.
  • the embodiment of the present invention further provides a protocol followed by the first sub-layer and the second sub-layer, and a numbering manner of the data frame: the first sub-
  • the layer is a Multi-Link Control Protocol (MLCP) layer or a Multi-Point Control Protocol (MPCP) layer or a Media Access Control (MAC) layer or a reconciliation layer.
  • Sub-layer (Reconciliation sublayer, RS) in the EPON, the second sub-layer is a harmonic sub-layer RS or a physical coding sublayer (PCS); or, in a Gigabit Passive Optical Network (Gigabit Passive Optical Network)
  • the second sublayer in the GPON) is a Transmission Convergence (TC) layer.
  • TC Transmission Convergence
  • the embodiment of the present invention further provides a specific format of a data frame, and a corresponding numbering format, as follows: the data frame is an Ethernet frame or an Ethernet frame.
  • the number of the data frame is a Frame Sequence Number (FSN) or an Ethernet frame fragment number.
  • FSN Frame Sequence Number
  • the embodiment of the present invention further provides a specific implementation scheme for transmitting the data frame and the corresponding number to the receiving side, where the second sub- Transmitting the data frame and the number of the data frame to the receiving side by using the determined channel includes:
  • the second sublayer adds an identifier of an Ethernet frame for marking the Ethernet frame as a channel binding, and sends the Ethernet frame and the identifier to the receiving side in the determined channel. Transmitting the frame number FSN in a frame interval of the Ethernet frame and an adjacent Ethernet frame;
  • the second sublayer generates a preamble including the frame sequence number FSN, and sends the preamble and the Ethernet frame to the receiving side in the determined channel;
  • the second sublayer adds, to the Ethernet frame fragment, an identifier for marking an Ethernet frame fragmentation of the Ethernet frame fragmentation, and sends the identifier to the receiving side in the determined channel.
  • the Ethernet frame fragment and the identifier are sent, and the frame sequence number FSN is sent in a frame interval of the Ethernet frame fragment and the adjacent Ethernet frame or the Ethernet frame fragment;
  • the second sublayer generates a preamble including the Ethernet frame fragment sequence, and sends the preamble and the Ether frame fragment to the receiving side in the determined channel.
  • the data frame is encapsulated in a Gigabit Passive Optical Network Encapsulation Mode (GEM) frame, and the data frame number is a frame number FSN;
  • GEM Gigabit Passive Optical Network Encapsulation Mode
  • the sending, by the second sublayer, the number of the data frame and the data frame to the receiving side by using the determined channel includes:
  • the second sublayer adds the Ethernet frame fragment number in an option field of a Gigabit Passive Optical Network Encapsulation Mode frame encapsulating the Ethernet frame fragment, and the receiving side is in the determined channel. Sending a Gigabit passive optical network encapsulation mode GEM frame to which the Ethernet frame fragment number is added.
  • the second embodiment of the present invention provides a communication method for a passive optical network.
  • the solution may be applied to the receiving side of the data frame, and the transmitting side of the data frame may be an optical ONU or an OLT.
  • the method includes:
  • the data frame sent by the transmitting side in the channel and the number of the data frame are received in the channel;
  • the data frame received in the channel and sent by the transmitting side in the channel, and the number of the data frame include:
  • the second sub-layer receives, according to the correspondence between the data frame and the channel, the data frame sent by the transmitting side in the channel and the number of the data frame in the channel;
  • the method further includes: the second sublayer transmitting the data frame and the number of the data frame to a first sublayer;
  • the acquiring the number of the data frame, and reorganizing the data frame according to the number sequence of the data frame includes:
  • the first sublayer After receiving the data frame sent by the second sublayer and the number of the data frame, the first sublayer acquires the number of the data frame; and reassembles the received data according to the number sequence of the data frame. Data Frame.
  • the reorganizing the data frame according to the number sequence of the data frame includes:
  • Determining by using the data frame sent by the second sublayer as a data frame to be determined; determining a target number according to a cyclic shift increment or a cyclic shift decrement, the target number being the next number of the number of the most correctly received data frame. ;
  • the target number is modified to be equal to the number of the to-be-determined data frame, determining that the to-be-determined data frame is correctly received And the data frame that is obtained, the data frame to be retrieved and the data frame that was correctly received are recomposed into a service flow, and the target number is modified to be the next number of the number of the to-be-determined data frame.
  • the method further includes:
  • the timer is restarted; if the data frame with the target number is not received when the customizer times out, the pending data frame is discarded, and an alarm for data frame loss is generated.
  • the sending, by the second sublayer, the data frame and the number of the data frame to the first sublayer includes:
  • the second sublayer generates a primitive including the data frame and the number of the data frame
  • the second sublayer sends a primitive including the data frame and the number of the data frame to the first sublayer.
  • the first sub-layer is a multi-connection control protocol MLCP layer or a multi-point control protocol MPCP layer or a medium access control MAC layer or a harmonic sub-layer RS.
  • the data frame is an Ethernet frame or an Ethernet frame, and the data frame is numbered as a frame number FSN or an Ethernet frame fragment number.
  • the data frame received in the channel and sent by the transmitting side in the channel, and the number of the data frame include:
  • the second sublayer receives an identifier of the Ethernet frame that is used to mark the Ethernet frame as a channel binding from the sending side, and the Ethernet frame, and determines that the Ethernet frame is a channel-bound Ethernet according to the identifier. a frame, receiving the frame number FSN within a frame interval of the Ethernet frame and an adjacent Ethernet frame;
  • the second sublayer receives a preamble including the frame number FSN from the transmitting side, and the Ethernet frame;
  • the second sublayer receives, in the channel, the Ethernet frame fragment and an identifier of an Ethernet frame fragment used to mark the Ethernet frame fragmentation as a channel binding, where the Ethernet frame is fragmented and Receiving the Ethernet frame fragment sequence number within a frame interval of an adjacent Ethernet frame or an Ethernet frame fragment;
  • the second sublayer receives a preamble from the transmitting side that includes the Ether Frame Fragment Sequence, and the Ether Frame Fragment.
  • the data frame is encapsulated in a Gigabit passive optical network encapsulation mode GEM frame, and the data frame is numbered by a frame number FSN;
  • the data frame received in the channel and sent by the transmitting side in the channel includes:
  • the second sublayer receives a Gigabit Passive Optical Network Encapsulation Mode (GEM) frame from the transmitting side to which the frame number FSN is added.
  • GEM Gigabit Passive Optical Network Encapsulation Mode
  • a third embodiment of the present invention provides a communication device for a passive optical network, where a control unit is configured to receive a data frame, assign a number to the data frame, and determine a correspondence between the data frame and the channel, according to the data. Corresponding relationship between the frame and the channel determines a channel corresponding to the data frame;
  • a sending unit configured to send the data frame and the number of the data frame to the receiving side by using the determined channel.
  • the controlling unit for assigning a number to the data frame, includes: assigning a number to the data frame according to a cyclic shift increment or a cyclic shift decrement.
  • control unit is configured to receive a data frame, where the data is The frame allocation number includes: receiving a data frame in the first sublayer, and assigning a number to the data frame;
  • the control unit is further configured to send the data frame and the number of the data frame to the second sublayer;
  • the sending unit is configured to send the data frame and the number of the data frame to the receiving side by using the determined channel in the second sublayer.
  • control unit is configured to determine a correspondence between the data frame and the channel, and determine, according to the correspondence between the data frame and the channel, a channel corresponding to the data frame, where The first sub-layer reads a correspondence table between the data frame number and the channel, and determines a channel corresponding to the data frame according to the correspondence table between the data frame number and the channel;
  • the sending unit configured to send, by the second sublayer, the number of the data frame and the data frame to the receiving side by using the determined channel, after the receiving, by the second sublayer, the data frame And determining, according to the correspondence table between the data frame number and the channel, a frame number of the data frame, and sending, by the determined channel, the data frame and the number of the data frame to the receiving side.
  • control unit is further configured to generate a primitive that includes the data frame and the data frame number
  • the controlling unit configured to send the data frame and the number of the data frame to the second sublayer in the first sublayer, including: the data frame and the data frame in the first sublayer
  • the numbered primitive is sent to the second sublayer.
  • the first sub-layer is a multi-connection control protocol MLCP layer or a multi-point control protocol MPCP layer or a medium access control MAC layer or a harmonic sub-layer RS;
  • the passive optical network is an Ethernet passive optical network EPON, and the second sub-layer is a harmonic sub-layer RS or a physical coding sub-layer PCS; or the passive optical network is a Gigabit passive optical network GPON, The second sublayer is the transmission convergence TC layer.
  • the data frame includes: an Ethernet frame or an Ethernet frame fragment; the data frame number includes: a frame number FSN or an Ethernet frame fragment number.
  • the sending unit configured to send, by the second sublayer, the data frame and the number of the data frame to the receiving side by using the determined channel, includes: The second sublayer adds an identifier of the Ethernet frame for marking the Ethernet frame as a channel binding, and sends the Ethernet frame and the identifier to the receiving side in the determined channel. Transmitting the frame number FSN in the frame interval of the Ethernet frame and the adjacent Ethernet frame;
  • the Ethernet frame fragment and the identifier are sent in the frame interval of the Ethernet frame fragment and the adjacent Ethernet frame or the Ethernet frame fragmentation;
  • the data frame is encapsulated in a Gigabit passive optical network encapsulation mode GEM frame, and the data frame is numbered by a frame number FSN;
  • the sending unit configured to send, by the second sublayer, the number of the data frame and the data frame to the receiving side by using the determined channel, includes:
  • the side transmits a Gigabit passive optical network encapsulation mode GEM frame to which the Ethernet frame fragment number is added.
  • a fourth embodiment of the present invention provides a communication device for a passive optical network, where the communication device includes:
  • a receiving unit configured to receive, according to a correspondence between the data frame and the channel, a data frame sent by the transmitting side in the channel and a number of the data frame in the channel;
  • a recombining unit configured to acquire the number of the data frame, and reassemble the data frame according to the number sequence of the data frame.
  • the receiving unit is configured to receive, according to a correspondence between the data frame and the channel, the data frame and the data frame sent by the transmitting side in the channel in the channel according to the correspondence between the data frame and the channel.
  • the receiving unit is further configured to send the data frame and the number of the data frame to the first sublayer at the second sublayer;
  • the recombining unit is configured to acquire, after the first sublayer receives the data frame sent by the second sublayer and the number of the data frame, the number of the data frame; according to the data frame The numbering sequence reorganizes the received data frame.
  • the recombining unit configured to reassemble the data frame according to the number sequence of the data frame includes:
  • Determining by using the data frame sent by the second sublayer as a data frame to be determined; determining a target number according to a cyclic shift increment or a cyclic shift decrement, the target number being the next number of the number of the most correctly received data frame. ;
  • the target number is modified to be equal to the number of the to-be-determined data frame, determining that the to-be-determined data frame is correctly received And the data frame that is obtained, the data frame to be retrieved and the data frame that was correctly received are recomposed into a service flow, and the target number is modified to be the next number of the number of the to-be-determined data frame.
  • the recombining unit is further configured to: after the determining that the number of the to-be-determined data frame is greater than the target number, restarting a timer; if the customizer times out, not receiving The data frame having the target number discards the pending data frame and generates an alarm that the data frame is lost.
  • the receiving unit configured to send the data frame and the number of the data frame to the first sublayer in the second sublayer, include: in the second sublayer Generating a primitive including the data frame and the number of the data frame; and transmitting a primitive including the data frame and the number of the data frame to the first sublayer.
  • the first sublayer is a multi-connection control protocol MLCP layer or a multi-point control protocol MPCP layer or a medium access control MAC layer or a harmonic sub-layer RS.
  • the data frame is an Ethernet frame or an Ethernet frame, and the data frame is numbered as a frame number FSN or an Ethernet frame fragment number.
  • the receiving unit is configured to receive in a channel to send a side
  • the data frame sent in the channel and the number of the data frame include:
  • the Ethernet frame receives the frame sequence number FSN within a frame interval of the Ethernet frame and the adjacent Ethernet frame;
  • receiving, in the channel, the Ether frame fragment and an identifier of an Ether frame fragment used to mark the Ether frame fragmentation as a channel binding, where the Ether frame is fragmented Receiving the Ethernet frame fragment sequence within a frame interval of an adjacent Ethernet frame or an Ethernet frame fragment;
  • the data frame is encapsulated in a Gigabit passive optical network encapsulation mode GEM frame, and the data frame is numbered by a frame number FSN;
  • the receiving unit configured to receive, in the channel, the data frame sent by the transmitting side in the channel, includes: receiving, at the second sublayer, a gigabit added by the frame side FSN from the transmitting side Source optical network encapsulation mode GEM frame.
  • FIG. 1A is a schematic structural diagram of a system according to an embodiment of the present invention.
  • FIG. 1B is a schematic diagram of an Ethernet frame allocation system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a transmitting side communication device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a transmitting side communication device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a receiving side communication device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a FSN delivery process according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a FSN delivery process according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an Ethernet frame according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an Ethernet frame according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an Ethernet frame according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an Ethernet frame according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a GEM frame according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • a channel with a rate of 25 Gbps is used, to reach a system rate of 100 Gbps, four 25 Gbps channels can be bound to carry a 100 Gbps service flow. That is, on the transmitting side, the data frames of one service flow are distributed to four channels for transmission, and the receiving side needs to recombine the data frames of four channels to form one service flow. On the transmitting side, four available channels are used to transmit data frames, and the receiving side reassembles the received data frames to obtain a service flow. In the following embodiments, this will be exemplified, how to use four channels to transmit data frames, and how to receive and reassemble data frames on the receiving side to obtain a service flow. It can be understood that the channel combination that can be selected is different according to the channel-based rate, and the system bandwidth that can be implemented is not limited to 100G. The above examples should not be construed as limiting the uniqueness of the embodiments of the invention.
  • the data frame is an Ethernet frame (which may be simply referred to as a frame) as an example. It can be understood that the data frame may also be any other data frame, for example: Ethernet frame fragmentation, synchronous digital system SDH ( Synchronous digital hierarchy (SDH) frame, time division multiplexing (TDM) frame or the like.
  • Ethernet frame fragmentation synchronous digital system SDH ( Synchronous digital hierarchy (SDH) frame
  • TDM time division multiplexing
  • the first sub-layer has the function of numbering the data frame, and also performs the function of sending the data frame to the corresponding channel, and realizing the binding of the data frame to the channel correspondence, so that the functional naming can be adopted.
  • the second sub-layer performs the function of receiving the data frame and the data frame number from the transmitting side or the receiving side. Since the number of the data frame and the data frame has a binding relationship with the channel, the functional naming manner can be adopted. Name the second sublayer as: Bind the send layer. This will not be explained one by one in the subsequent embodiments involving the first sublayer, the second sublayer, and the channel bonding layer and the binding transmission layer.
  • first and second are used only to distinguish two identical names, for example, a first sub-layer and a second sub-layer, which are used to distinguish two sub-layers, and should not be understood as having other The order of precedence or any other technical meaning is not described in the following examples.
  • a PON system is provided as shown in FIG. 1A, which may include an optical line terminal (OLT) and an optical distribution network (Optical Distribution). Network, ODN, and Optical Network Unit (ONU), where the OLT to the ONU is called the downlink, and the ONU to the OLT is called the uplink.
  • the channel binding technology can be used for both downlink transmission and uplink transmission. That is to say, the channel binding technology can be implemented in the OLT or in the ONU.
  • FIG. 1A if the data of the service flow is sent to the ONU, the data of the service flow is allocated to the channel 1 to channel 4 of the binding transmission layer at the channel binding layer, and FIG.
  • the number of channels may be Is the number of channels greater than or equal to 2; the data is transmitted from the binding transmission layer to the wavelength division multiplexer of the ONU through the channel 1 to channel 4, and then reaches the channel 1 of the ONU binding receiving layer respectively.
  • Channel 4 and then reach the channel binding layer of the ONU, and the channel binding layer of the ONU reassembles the data into service flows in order.
  • This embodiment is an overview embodiment of an embodiment of the present invention, and specifically includes the following solutions:
  • the channel binding is implemented in the channel binding layer, that is, the Ethernet frames of the service flow are numbered in order, and distributed to each channel of the binding.
  • the channel binding layer may be a multi-connection control protocol MLCP layer, a multi-point control protocol MPCP layer, a media access control MAC layer, or a harmonic sub-layer RS.
  • the channel binding layer numbers the Ethernet frames of the service flow according to the order of reaching the channel binding layer, and the numbering manner may be cyclic shift increment or The way the cyclic shift is decremented. Taking the cyclic shift increment as an example, since the Ethernet frame is continuously transmitted, that is, the data amount can be infinite, but the number of register bits for storing the number of the Ethernet frame is limited, the channel binding layer numbers the data frame. The time can start from 1, and each time a new data frame is added, its number is increased by 1. When the number reaches N, the number of the next data frame is cycled to 1.
  • the cyclic shift decrement method is similar to the cyclic shift increment method.
  • the N is used as a loop.
  • the channel binding layer starts with the data frame number from N. Each new data frame is incremented by 1. When reduced to 0, the number of the next data frame is cycled to N again.
  • the frame allocator determines the available bandwidth for each channel according to the bandwidth allocation of each channel (the frame allocator can be connected to the bandwidth allocation module to obtain the bandwidth allocation of each channel, not shown in the figure).
  • Channel the frame is stored in the frame buffer queue of the corresponding channel, and the frame is The serial number is stored in the frame number buffer queue of the corresponding channel.
  • each channel corresponds to one wavelength path, and the bandwidth may be 10 Gbps, 25 Gbps, or other rates.
  • the OLT/ONU can send the Ethernet frame of the same service flow on different channels of the binding; on the same channel and the same service flow, the FSN sequence number of the Ethernet frame sent by the OLT/ONU satisfies the cyclic shift Bit increment or cyclic shift decrement.
  • the channel binding layer passes the Ethernet frame and the corresponding frame sequence number to the binding transmission layer.
  • the binding transmission layer may be a harmonic sub-layer RS, or may be a physical coding sub-layer PCS, and the binding transmission layer sets the frame sequence number and The corresponding Ethernet frame is associated and transmitted, so that the receiving side implements service flow reorganization according to the frame sequence number.
  • the channel binding layer is implemented in the MLCP layer.
  • the MLCP belongs to the channel bonding layer.
  • the frame allocator of the channel bonding layer allocates Ethernet frames to each channel.
  • Each channel contains the multipoint control protocol MPCP.
  • PMA physical medium attachment
  • PMD physical medium dependent
  • the RS layer and the PCS layer are connected by a Gigabit Medium Independent Interface (GMII).
  • GMII Medium Independent Interface
  • the binding transmission layer of each channel associates the frame sequence number with the corresponding Ethernet frame, so that the receiving side implements service flow reassembly according to the frame sequence number.
  • the following embodiments will be described with respect to the transmitting side of the Ethernet frame, that is, the transmitting side, and the receiving side of the Ethernet frame, that is, the receiving side, as follows:
  • mapping table between the data frame queue and the frame number generated by the sending side when the Ethernet interface is configured in the channel binding layer is as shown in Table 1 below:
  • N corresponds to 12 as shown in FIG. 1B.
  • the channel binding layer transmits the frame number of the transmitted Ethernet frame to the binding sending layer
  • the binding sending layer sends the frame sequence number to the corresponding Ethernet frame and sends it to the receiving side.
  • the channel bonding layer performs frame reorganization according to the frame number.
  • Method 1 Maintain the FSN queue in the channel binding layer and the binding sending layer to implement the frame number transmission.
  • the FSN queue can be referred to FIG. 1B.
  • a channel binding layer such as the MLCP or the MPCP layer generates an FSN queue while the Ethernet frame is being distributed.
  • the binding layer of the RS layer and the PCS layer reads the corresponding FSN queue when forwarding the data frame.
  • the FSN is populated into the Preamble of the corresponding frame or extended into the Inter-packet Gap (IPG).
  • IPG Inter-packet Gap
  • FSN can be realized by a cyclic shift register.
  • the frame allocator and the RS layer in the channel bonding layer jointly maintain the FSN queue.
  • the FSN queue includes four queues corresponding to the channel 1 to 4.
  • the binding layer of the RS layer and the PCS layer extracts the FSN in the preamble or the corresponding frame interval IPG field and writes it to the FSN queue, MLCP or MPCP layer, etc.
  • the channel bonding layer performs frame reassembly according to the FSN in the FSN queue.
  • the channel binding layer is implemented in the MLCP layer, and the binding receiving layer is implemented in the RS layer as an example.
  • the frame reassembler and the RS layer in the MLCP jointly maintain the FSN queue.
  • the FSN queue includes four queues corresponding to channels 1 to 4, respectively.
  • Method 2 The channel binding layer and the binding sending layer implement FSN interaction through primitives:
  • the primitive carrying the FSN (the primitive is a process consisting of several instructions for completing a certain function) can be implemented by changing the existing primitives and adding variable parameters, such as the channel binding layer In the MLCP layer, the channel transmission layer is implemented in the RS layer as an example. As shown in FIG. 5, the primitive delivery process shown in FIG. 5 can refer to the corresponding protocol, and the embodiment of the present invention only describes the modified part.
  • the channel binding layer is implemented in the MPCP, the MAC, the RS, and the like.
  • the method of modifying the variable parameters of the primitive to implement the FSN interaction is similar. Make restrictions, no longer repeat them one by one.
  • the primitives generated during data frame distribution are:
  • MLF MA_DATA_Request (DA, SA, m_sdu_tx, FSN);
  • the primitive contains the FSN parameter. If this parameter is present, the m_sdu_tx data will be sent on the binding channel.
  • the FSN identifies the sequence number of the frame in the service flow packet, which can be implemented by a cyclic shift register. If there is no FSN parameter, the m_sdu_tx data will be sent on the unbound channel; the primitive is generated by the MLCP and transmitted to the MPCP layer.
  • the MPCP layer After receiving the MLF:MA_DATA_Request (DA, SA, m_sdu_tx, FSN) primitive sent by the MLCP layer, the MPCP layer transmits the primitive to the MAC layer through the MAC:MA_DATA_Request (DA, SA, m_sdu_tx, FSN) primitive, and the MAC layer receives the MAC: After the primitive MA_DATA_Request (DA, SA, m_sdu_tx, FSN), the PLS_DATA.Request (OUTPUT_UNIT, FSN) is transmitted to the RS layer, and the RS layer parses the PLS_DATA.Request (OUTPUT_UNIT, FSN) primitive, extracts the FSN, and correspondingly
  • the Ethernet frame is associated with the transmission.
  • the association of the Ethernet frame and the FSN may be performed by sending the Ethernet frame and the corresponding FNS to the receiver.
  • the RS layer After receiving the Ethernet frame, the RS layer extracts the FSN from the corresponding location, and generates a PLS_DATA.Indication (INPUT_UNIT, FSN) primitive to send to the MAC layer.
  • the MAC After receiving the primitive, the MAC generates the MAC: MA_DATA_Indication (DA, SA, m_sdu_rx). , the receive_status, FSN) primitive is sent to the MPCP layer.
  • the MAC After receiving the primitive, the MAC generates the MLF: MA_DATA_Indication (DA, SA, m_sdu_rx, receive_status, FSN) primitives are sent to the MLCP layer, and the MLCP layer extracts the FSN according to the primitive. And the data frame is reorganized according to the FSN to obtain a service flow.
  • the primitive carrying the FSN can also be implemented by the newly defined primitive.
  • the channel binding layer is still in the MLCP layer, and the channel transmission layer is implemented in the RS layer.
  • two new definitions can be defined.
  • the MLCP layer can simultaneously send the MLF: MA_DATA_Request (DA, SA, m_sdu_tx) primitive and MLCP_FSN.Request (FSN), primitives to implement sending the data frame to be transmitted and the corresponding FSN to the RS layer.
  • RS layer can be sent simultaneously
  • the PLS_DATA.Indication (INPUT_UNIT) primitive and the MLCP_FSN.Indication (FSN) primitive are implemented to send the data frame to be received and the corresponding FSN to the MLCP layer.
  • the binding sending layer sends the FSN to the corresponding Ethernet frame.
  • the embodiment of the present invention further provides an optional implementation solution for the specific association sending, as follows:
  • the FSN flag (Flag) is used to mark whether the Ethernet frame is an Ethernet frame carried by the binding channel, and the FSN occupies a frame interval between the corresponding Ethernet frame and the next Ethernet frame. For example, if the FSN Flag is 0, the data frame is an Ethernet frame carried by the unbound channel, and the frame interval between the Ethernet frame and the next Ethernet frame is X bytes (such as 12 bytes), if FSN Flag If the data frame is an Ethernet frame carried by the binding channel, the first Y byte (such as 2 bytes) of the frame interval between the Ethernet frame and the next Ethernet frame carries the FSN, and the frame interval length is XY bytes.
  • the binding sending layer may include the FSN field in a Cyclic Redundancy Check (CRC) check range;
  • the FSN flag can be padded into the Ethernet frame preamble.
  • the lowest bit of the fourth byte of the Ethernet frame preamble carries the FSN Flag information.
  • the FSN Flag has different values. The meaning is as follows: 0: no channel binding, X byte frame interval;
  • this embodiment is different from the scheme shown in FIG. 7 in that the binding transmission layer carries the FSN between the last Ethernet frame and the Ethernet frame corresponding to the FSN;
  • the channel bonding layer may also fill the FSN into the preamble; for example, as shown in FIG. 9, the FSN flag information may occupy the highest of the second byte of the preamble.
  • the bit, FSN can be carried by 15 bits, where the lower 7 bits can occupy the lower 7 bits of the leading second byte, and the upper 8 bits can occupy the fourth byte of the preamble.
  • the FSN flag is used to mark whether the Ethernet frame is an Ethernet frame carried by the binding channel. For example, if the FSN Flag is 0, the data frame is an Ethernet frame carried by the unbound channel, and the Ethernet frame is preceded by the second word.
  • the lower 7bit and fourth bytes of the section are filled with default values; if FSN Flag If the data frame is 1, the data frame is an Ethernet frame, and the lower 7 bits and the fourth byte of the second byte of the Ethernet frame are filled with the FSN corresponding to the Ethernet frame.
  • the channel binding layer may also carry the FSN by extending the Preamble manner; for example, as shown in FIG. 10, the FSL identifier (Flag), FSN may be carried by the highest bit of the second byte of the preamble.
  • the length of the Preamble can be increased by 2 bytes to implement the bearer.
  • the FSN flag is used to mark whether the Ethernet frame is an Ethernet frame carried by the binding channel. For example, if the FSN Flag is 0, the data frame is an Ethernet frame carried by the unbound channel, and the Preamble length remains unchanged.
  • the LLID field is followed by the CRC field, or the Preamble length is increased by 2 bytes, but the missing value is padded, such as 0x5555, that is, after the LLID field, the CRC field is padded with 0x5555.
  • the FSN Flag is 1, indicating that the data frame is an Ethernet frame carried by the binding channel
  • the Preamble length is increased by 2 bytes. For example, 2 bytes are added after the LLID field to carry the FSN corresponding to the Ethernet frame.
  • the embodiment of the present invention further provides a method and a state machine for performing service flow reorganization according to the FSN on the receiving side.
  • a state machine for performing service flow reorganization according to the FSN on the receiving side.
  • the receiving device locally sets a desired FSN (Expected FSN), and the value of the Expected FSN is 1 greater than the FSN in the data frame of the most in-order processing;
  • the Expected FSN is one greater than the FSN of the most recently processed data frame because the FSN on the transmitting side is numbered in increments of cyclic shift or decrement in cyclic shift. Taking the cyclic shift increment as an example, it can be understood that when the sequence number of the most recently processed sequence is N, the Expected FSN should be cyclically shifted to the first sequence number, for example: 1; if the sequence number is numbered from 0, then Expected The FSN increments the cyclic shift to zero.
  • 1103 Compare whether the FSN of the currently processed data frame is consistent with the Expected FSN. If the FSN is consistently entered into 1104, if the FSN is greater than the Expected FSN entering 1106, if the FSN is less than the Expected FSN entering 1105,
  • the data frame may be sent to a subsequent data frame reassembly link, and the value of the Expected FSN is incremented by 1 (incremental cyclic shift) or decremented by 1 (cyclic shift) Bit decrement), then enter 1108;
  • the receiving device may start the out-of-order reassembly timer, and buffer the received data frame, and then enter 1109;
  • 1108 Determine whether there is an entry in the FSN table of the discarded data frame that is consistent with the Expected FSN. If yes, enter 1110; if not, enter 1111.
  • 1109 Determine whether there are other cached data frames, if any, enter 1103, if not, enter 1102.
  • 1111 Determine whether there is a buffered data frame, if yes, enter 1103, if not, enter 1102.
  • the frame number transmission is performed at the channel binding layer and the binding transmission layer, and the receiving side implements service flow reassembly according to the frame sequence number, and the reliability is high.
  • the use of the IPG field to carry the FSN does not affect bandwidth efficiency.
  • the embodiment of the present invention can also be applied to a 40G or 100G GPON system to implement FSN interaction between a channel bonding layer and a binding sending layer (such as a TC layer), so that the binding sending layer associates the FSN with the corresponding Ethernet frame.
  • a binding sending layer such as a TC layer
  • the GEM header includes a Payload Length indication (PLI), a Key Index, a GEM Port Identifier (Port-ID), an Options, a Slice Indicator (LF), and a Mixed Error Correction ( Hybrid error correction (HFC);
  • FSN can be padded to the Options field.
  • the highest bit of the Options field can be used as the FSN flag bit, and the lower 16 bits of the Options field carry the FSN.
  • the FSN flag is used to mark whether the GEM frame carries the data frame of the binding channel. For example, if the FSN Flag is 0, the GEM frame carries the data frame carried by the unbound channel, and the lower 16 bits of the Options field are filled by default. Value; if the FSN Flag is 1, the GEM frame bears the binding channel. The data frame, the lower 16 bits of the Options field fills the FSN corresponding to the data frame.
  • the structure adopted for data transmission in FIG. 3 and FIG. 4 can be referred to the Institute of Electrical and Electronics Engineers IEEE protocol, and will not be further described herein.
  • the embodiment of the present invention further provides a communication device for a passive optical network.
  • the communication device is applied to the transmitting side of the data frame, and may be an ONU or an OLT.
  • the communications device includes:
  • control unit 1301 located in the channel binding layer
  • transmitting unit 1302 located in the binding transmission layer
  • the control unit 1301 is configured to receive a data frame, assign a number to the data frame, determine a correspondence between the data frame and the channel, and determine a channel corresponding to the data frame according to the corresponding relationship between the data frame and the channel;
  • the transmitting unit 1302 is configured to send the data frame and the number of the data frame to the receiving side by using the determined channel.
  • control unit 1301 for assigning a number to the data frame, includes: assigning a number to the data frame according to a cyclic shift increment or a cyclic shift decrement.
  • control unit 1301 is configured to receive a data frame, and assigning a number to the data frame includes: receiving a data frame in the first sublayer, and assigning a number to the data frame;
  • the control unit 1301 is further configured to send the data frame and the number of the data frame to the second sublayer;
  • the transmitting unit 1302 is configured to send, by the second sublayer, the data frame and the number of the data frame to the receiving side by using the determined channel.
  • control unit 1301 is configured to determine a correspondence between the data frame and the channel, and determining, according to the correspondence between the data frame and the channel, the channel corresponding to the data frame, comprising: reading a data frame number in the first sublayer. Corresponding relationship table with the channel, determining a channel corresponding to the data frame according to the correspondence table between the data frame number and the channel;
  • the sending unit 1302 configured to send the data frame and the number of the data frame to the receiving side by using the determined channel in the second sublayer, after receiving the data frame in the second sublayer, according to the data frame
  • the correspondence table between the number and the channel determines the frame number of the data frame, and sends the data frame and the number of the data frame to the receiving side through the channel determined above.
  • control unit 1301 is further configured to generate the data frame and the data frame. Numbered primitive;
  • the control unit 130 configured to send, by the first sublayer, the data frame and the number of the data frame to the second sublayer, to send, in the first sublayer, a primitive that includes the data frame and the data frame number Give the second sub-layer above.
  • the first sub-layer is a multi-connection control protocol MLCP layer or a multi-point control protocol MPCP layer or a medium access control MAC layer or a reconciliation sub-layer RS;
  • the passive optical network is an Ethernet passive optical network EPON
  • the second sublayer is a harmonic sublayer RS or a physical coding sublayer PCS; or the passive optical network is a Gigabit passive optical network GPON.
  • the second sub-layer is the above-mentioned transmission convergence TC layer.
  • the foregoing data frame includes: an Ethernet frame or an Ethernet frame fragmentation; and the number of the foregoing data frame includes: a frame number FSN or an Ethernet frame fragment sequence number.
  • the sending unit 1302 is configured to send, by the second sublayer, the data frame and the data frame number to the receiving side by using the determined channel, where the second sublayer is Adding, by the foregoing Ethernet frame, an identifier of an Ethernet frame that is used for marking the Ethernet frame as a channel binding, and sending the Ethernet frame and the identifier to the receiving side in the determined channel, in a frame interval between the Ethernet frame and the adjacent Ethernet frame. Sending the above frame number FSN;
  • the frame number FSN is sent in the frame interval of the foregoing Ethernet frame fragment and the adjacent Ethernet frame or the Ethernet frame fragment;
  • a preamble including the Ethernet frame fragment number is generated in the second sublayer, and the preamble and the Ethernet frame fragment are transmitted to the receiving side in the determined channel.
  • the data frame is encapsulated in a Gigabit passive optical network encapsulation mode GEM frame, and the data frame number is a frame number FSN;
  • the sending unit configured to send, by the second sublayer, the number of the data frame and the data frame to the receiving side by using the determined channel, includes:
  • the GEM passive optical network encapsulation mode GEM encapsulating the above Ethernet frame Adding the frame number FSN to the option field of the frame, and transmitting, in the channel determined above, the Gigabit passive optical network encapsulation mode GEM frame to which the frame number FSN is added to the receiving side;
  • Ethernet frame fragment number in the option field of the Gigabit Passive Optical Network Encapsulation Mode frame encapsulating the Ethernet frame fragment in the second sublayer, and adding the foregoing to the receiving side in the determined channel.
  • the data frame may be an Ethernet frame
  • the binding transmission layer may send the frame sequence number FSN in a frame interval between the Ethernet frame and the adjacent Ethernet frame;
  • the binding and transmitting layer may fill the frame number FSN in the Options field of the GEM frame in which the data frame is encapsulated, and send the GEM frame to which the frame number FSN is added to the receiving side in the channel;
  • the data frame is an Ethernet frame
  • the foregoing data frame is fragmented or is an Ethernet frame fragmentation
  • the binding and transmitting layer may send the foregoing in a frame interval of an Ethernet frame and an adjacent Ethernet frame or an Ethernet frame fragment.
  • Frame number FSN Frame number
  • the binding transmission layer generates a preamble including the frame number FSN or the Ethernet frame fragment number, and transmits the preamble and the Ethernet frame fragment to the receiving side in the channel.
  • the binding and transmitting layer may fill the frame number FSN in the Options field of the GEM frame in which the data frame fragment is encapsulated, and send the GEM frame to which the frame number FSN is added to the receiving side in the channel.
  • the embodiment of the present invention further provides a communication device for the passive optical network.
  • the communication device is applied to the receiving side of the data frame, and may be an ONU or an OLT.
  • the communications device includes:
  • a reassembly unit 1401 located in the channel binding layer; a receiving unit 1402 located in the binding receiving layer;
  • the receiving unit 1402 is configured to receive, according to a correspondence between the data frame and the channel, a data frame sent by the transmitting side in the channel and a number of the data frame in the channel;
  • the recombining unit 1401 is configured to obtain the number of the data frame, and recombine the data frame according to the number sequence of the data frame.
  • the receiving unit 1402 is configured to receive, in the second sublayer, the data frame sent by the transmitting side in the channel and the number of the data frame in the second sublayer according to the correspondence between the data frame and the channel;
  • the receiving unit 1402 is further configured to send the data frame and the number of the data frame to the first sublayer in the second sublayer;
  • the recombining unit 1401 is configured to: after receiving the data frame sent by the second sublayer and the number of the data frame, the first sublayer acquires the number of the data frame; and reassembles and receives the data frame according to the number sequence of the data frame. The above data frame.
  • the recombining unit 1401 specifically reorganizing the data frame according to the number sequence of the foregoing data frame, includes:
  • the data frame sent by the second sub-layer is used as a pending data frame;
  • the target number is determined according to a cyclic shift increment or a cyclic shift decrement, and the target number is a next number of the number of the most correctly received data frame;
  • the recombining unit 1401 is further configured to restart a timer after determining that the number of the to-be-determined data frame is greater than the target number, and discarding if the data plane with the target number is not received when the customizer times out
  • the above-mentioned pending data frame generates an alarm for data frame loss.
  • the receiving unit 1402 configured to send, by the second sublayer, the data frame and the number of the data frame to the first sublayer, includes: generating, by the second sublayer, the data frame and the data frame The primitive of the number; the primitive containing the number of the above data frame and the above data frame is sent Give the first sub-layer above.
  • the first sub-layer is a multi-connection control protocol MLCP layer or a multi-point control protocol MPCP layer or a medium access control MAC layer or a harmonic sub-layer RS.
  • the data frame is an Ethernet frame or an Ethernet frame
  • the number of the data frame is a frame number FSN or an Ethernet frame fragment number.
  • the receiving unit 1402 is configured to receive, in the channel, a data frame sent by the transmitting side in the channel, and the number of the data frame includes:
  • the second sublayer receives the preamble including the foregoing Ethernet frame fragment number sent from the transmitting side, and the foregoing Ethernet frame fragmentation.
  • the data frame is encapsulated in a Gigabit passive optical network encapsulation mode GEM frame, and the data frame number is a frame number FSN;
  • the receiving unit configured to receive, in the channel, the data frame sent by the transmitting side in the channel includes: receiving, at the second sublayer, a Gigabit passive optical network encapsulation mode added with the frame number FSN from the transmitting side GEM frame.
  • the first sub-layer is a channel binding layer
  • the second sub-layer is a binding transmission layer.
  • the channel binding layer may be a multi-connection control protocol MLCP layer or a multi-point control protocol MPCP layer. Or media access control MAC layer or reconciliation sub-layer RS;
  • the data frame is an Ethernet frame or an Ethernet frame
  • the number of the data frame is a frame number FSN or an Ethernet frame fragment number.
  • the receiving unit 1402 is configured to receive a data frame from the sending side and a frame number FSN of the data frame, specifically,
  • the data frame is an Ethernet frame
  • the binding layer receives the Ethernet frame, and extracts the frame number FSN within the frame interval of the Ethernet frame and the adjacent Ethernet frame;
  • the binding receiving layer receives the GEM frame encapsulating the data frame, and extracts the frame number FSN in the Options field of the GEM frame in which the data frame is encapsulated;
  • the receiving unit 1402 is configured to receive a data frame fragment from the transmitting side and a frame number FSN of the data frame fragment, specifically,
  • the data frame is an Ethernet frame
  • the binding layer receives the Ethernet frame fragmentation, and extracts the frame number FSN in the frame interval of the Ethernet frame or the Ethernet frame fragment and the adjacent Ethernet frame or the Ethernet frame fragmentation;
  • the binding receiving layer receives the GEM frame encapsulating the data frame fragment, and extracts the frame number FSN in the Options field of the GEM frame in which the data frame fragment is encapsulated.
  • the binding receiving layer may be a harmonic sub-layer RS or a physical coding sub-layer PCS; or, if the passive optical network is a Gigabit passive optical network GPON, Then, the above binding receiving layer may be the above-mentioned transmission convergence TC layer.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种无源光网络的通信方法、及设备,接收数据帧,为所述数据帧分配编号;确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道;通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。可以有效地提高PON带宽。另外不会改变数据帧原有的结构,可以提高带宽利用率。

Description

一种无源光网络的通信方法、及设备 技术领域
本发明涉及通信技术领域,特别涉及一种无源光网络的通信方法、及设备。
背景技术
以太网无源光网络(Ethernet Passive Optical Network,EPON)相关技术和标准在美国电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)的IEEE802.3的基础上发展而来,兼容以太网(Ethernet,ETH)技术和设备,可重用成熟器件和电路,设计实现风险低,技术和产业链相对成熟成本低。因此受到电信运营商的喜爱。
IEEE标准组织,为满足未来更大的带宽需求,在原有10G EPON的基础上,提出100G EPON的标准需求。100G EPON是面向10G EPON后的下一个EPON系统的,该系统可以提供更大的带宽容量。
由于受限于光器件性能,目前物理层只能实现25Gbps的速率,导致系统带宽不足,不能满足IEEE标准提出的100G EPON的标准需求。
发明内容
本发明实施例提供了一种无源光网络的通信方法、及设备,用于有效提高无源光网络(Passive Optical Network,PON)的系统带宽。
本发明实施例一方面提供了一种无源光网络的通信方法,本方案可以应用在数据帧的发送侧,数据帧的发送侧可以是光网络单元(Optical Network Unit,ONU)也可以是光线路终端(Optical Line Terminal,OLT);包括:接收数据帧,为所述数据帧分配编号;确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道;通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
本发明实施例,接收数据帧以及为数据帧分配编号的步骤在第一子层完成,第一子层会将数据帧分配给对应的通道,数据帧和其编号由位于物理层的第二子层发送给接收侧,由于在发送侧和接收侧使用了至少两条通道,那么发送侧 与接收侧之间的单宽将是单个通道单宽的倍数,例如:4个25Gbps速率的通道,可以到达100Gbps的系统速率。因此可以有效地提高EPON带宽。另外,采用本发明实施例不用更改数据帧的格式,因此不会改变其原有的结构,可以提高带宽利用率。
在一个可选的实现方式中,本发明实施例还提供了数据帧编号的实现方案:所述为所述数据帧分配编号包括:按照循环移位递增或循环移位递减的方式为所述数据帧分配编号。
以循环移位递增的方式为例,由于并不知道需要发送的数据帧有多少,因此编号所占用的位数难以确定,采用循环移位递增方式则可以预先规定一个固定的编号最大值,例如:16位编号,可以编号0~65535,即:65536个数据帧,第65537个数据帧将会被编号为0。
基于以上说明,第一子层和第二子层分别可以采用功能性命名为:通道绑定层和绑定发送层,那么所述接收数据帧,为所述数据帧分配编号包括:在第一子层接收数据帧,为所述数据帧分配编号;
所述方法还包括:所述第一子层将所述数据帧和所述数据帧的编号发送给第二子层;
所述通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
在一个可选的实现方式中,本发明实施例还提供了通过维护通道与数据帧或者说通道与数据帧的帧号之间的对应关系的方式,来实现第一子层和第二子层之间数据帧的编号传递的方案,具体如下:所述确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道包括:所述第一子层读取数据帧号与通道的对应关系表,按照所述数据帧号与通道的对应关系表确定所述数据帧对应的通道;
所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
所述第二子层在接收到所述数据帧后,依据所述数据帧号与通道的对应关 系表确定所述数据帧的帧号,通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
在一个可选的实现方式中,本发明实施例还提供了在第一子层通过原语的方式来传递数据帧的编号的方案,具体如下:在所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧之前,所述方法还包括:
所述第一子层生成包含所述数据帧及所述数据帧编号的原语;
所述第一子层将所述数据帧和所述数据帧的编号发送给第二子层包括:
所述第一子层将包含所述数据帧及所述数据帧编号的原语发送给所述第二子层。
在一个可选的实现方式中,作为一个更为具体的举例,本发明实施例还提供了第一子层以及第二子层所遵循的协议,以及数据帧的编号方式:所述第一子层为多连接控制协议(Multi-Link Control Protocol,MLCP)层或者多点控制协议多点控制协议(Multi-Point Control Protocol,MPCP)层或者媒体接入控制(Media Access Control,MAC)层或者调和子层(Reconciliation sublayer,RS),在EPON中所述第二子层为调和子层RS或者物理编码子层(Physical coding sublayer,PCS);或者,在吉比特无源光网络(Gigabit Passive Optical Network,GPON)中所述第二子层为传输汇聚(Transmission Convergence,TC)层。
在一个可选的实现方式中,作为一个更为具体的举例,本发明实施例还提供了数据帧的具体形式,以及对应的编号形式,具体如下:所述数据帧为以太帧或者以太帧分片,所述数据帧的编号为帧序号(Frame Sequence Number,FSN)或者以太帧分片序号。
在一个可选的实现方式中,基于以上数据帧的具体形式以及对应的编号形式,本发明实施例还提供了将数据帧以及对应的编号传递给接收侧的具体实现方案,所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
所述第二子层为所述以太帧添加用于标记所述以太帧为通道绑定的以太帧的标识,在所述确定的通道内向所述接收侧发送所述以太帧以及所述标识,在所述以太帧与相邻以太帧的帧间隔内发送所述帧序号FSN;
或者,所述第二子层生成包含所述帧序号FSN的前导,在所述确定的通道内向所述接收侧发送所述前导以及所述以太帧;
或者,所述第二子层为所述以太帧分片添加用于标记所述以太帧分片为通道绑定的以太帧分片的标识,在所述确定的通道内向所述接收侧发送所述以太帧分片以及所述标识,在所述以太帧分片与相邻以太帧或以太帧分片的帧间隔内发送所述帧序号FSN;
或者,所述第二子层生成包含所述以太帧分片序号的前导,在所述确定的通道内向所述接收侧发送所述前导以及所述以太帧分片。
在一个可选的实现方式中,所述数据帧封装在吉比特无源光网络封装模式(Gigabit Passive Optical Network Encapsulation Mode,GEM)帧中,所述数据帧的编号为帧序号FSN;
所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
所述第二子层在封装了所述以太帧的吉比特无源光网络封装模式GEM帧的选项字段添加所述帧序号FSN,在所述确定的通道内向所述接收侧发送添加了所述帧序号FSN的吉比特无源光网络封装模式GEM帧;
或者,所述第二子层在封装了所述以太帧分片的吉比特无源光网络封装模式帧的选项字段添加所述以太帧分片序号,在所述确定的通道内向所述接收侧发送添加了所述以太帧分片序号的吉比特无源光网络封装模式GEM帧。
本发明实施例二方面提供了一种无源光网络的通信方法,本方案可以应用在数据帧的接收侧,数据帧的发送侧可以是光ONU也可以是OLT;所述方法包括:
按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号;
获取所述数据帧的编号,依据所述数据帧的编号顺序重组所述数据帧。
在一个可选的实现方式中,所述按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号包括:
第二子层按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号;
所述方法还包括:所述第二子层将所述数据帧以及所述数据帧的编号发送到第一子层;
所述获取所述数据帧的编号,依据所述数据帧的编号顺序重组所述数据帧包括:
所述第一子层在接收到所述第二子层发送的数据帧以及所述数据帧的编号后,获取所述数据帧的编号;依据所述数据帧的编号顺序重组接收到的所述数据帧。
在一个可选的实现方式中,所述依据所述数据帧的编号顺序重组所述数据帧包括:
将所述第二子层发送的数据帧作为待定数据帧;按照循环移位递增或循环移位递减的方式确定目标编号,所述目标编号为最近正确接收到的数据帧的编号的下一个编号;
确定所述待定数据帧的编号等于所述目标编号,则确定所述待定数据帧为正确接收到的数据帧,将所述目标编号修改为所述待定数据帧的编号的下一个编号,将所述待定数据帧与之前正确接收到的数据帧重组成业务流;
确定所述待定数据帧的编号小于所述目标编号,则丢弃所述待定数据帧;
确定所述待定数据帧的编号大于所述目标编号,则缓存所述待定数据帧,待所述目标编号被修改为与所述待定数据帧的编号相等后,确定所述待定数据帧为正确接收到的数据帧,将所述待定数据帧取出与之前正确接收到的数据帧重组成业务流,将所述目标编号修改为所述待定数据帧的编号的下一个编号。
在一个可选的实现方式中在所述确定所述待定数据帧的编号大于所述目标编号之后,所述方法还包括:
重启定时器;若在所述定制器超时,未接收到具有所述目标编号的数据帧,则丢弃所述待定数据帧,并产生数据帧丢失的告警。
在一个可选的实现方式中,所述第二子层将所述数据帧以及所述数据帧的编号发送到第一子层包括:
所述第二子层生成包含所述数据帧及所述数据帧的编号的原语;
所述第二子层将包含所述数据帧及所述数据帧的编号的原语发送给所述第一子层。
在一个可选的实现方式中,,所第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS。
在一个可选的实现方式中,所述数据帧为以太帧或者以太帧分片,所述数据帧的编号为帧序号FSN或者以太帧分片序号。
在一个可选的实现方式中,所述在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号包括:
所述第二子层接收来自所述发送侧的用于标记所述以太帧为通道绑定的以太帧的标识以及所述以太帧,依据所述标识确定所述以太帧为通道绑定的以太帧,在所述以太帧与相邻以太帧的帧间隔内接收所述帧序号FSN;
或者,所述第二子层接收来自所述发送侧的包含所述帧序号FSN的前导,以及所述以太帧;
或者,所述第二子层在所述通道内接收所述以太帧分片以及用于标记所述以太帧分片为通道绑定的以太帧分片的标识,在所述以太帧分片与相邻以太帧或以太帧分片的帧间隔内接收所述以太帧分片序号;
或者,所述第二子层接收来自发送侧发的包含所述以太帧分片序号的前导,以及所述以太帧分片。
在一个可选的实现方式中所述数据帧封装在吉比特无源光网络封装模式GEM帧中,所述数据帧的编号为帧序号FSN;
所述在通道内接收来发送侧在所述通道内发送的数据帧包括:
所述第二子层接收来自所述发送侧的添加了所述帧序号FSN的吉比特无源光网络封装模式GEM帧。
本发明实施例三方面提供了一种无源光网络的通信设备,控制单元,用于接收数据帧,为所述数据帧分配编号;确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道;
发送单元,用于通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
在一个可选的实现方式中,所述控制单元,用于为所述数据帧分配编号包括:按照循环移位递增或循环移位递减的方式为所述数据帧分配编号。
在一个可选的实现方式中,所述控制单元,用于接收数据帧,为所述数据 帧分配编号包括:在第一子层接收数据帧,为所述数据帧分配编号;
所述控制单元,还用于将所述数据帧和所述数据帧的编号发送给第二子层;
所述发送单元,用于在所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
在一个可选的实现方式中,所述控制单元,用于确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道包括:在所述第一子层读取数据帧号与通道的对应关系表,按照所述数据帧号与通道的对应关系表确定所述数据帧对应的通道;
所述发送单元,用于在第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:在所述第二子层接收到所述数据帧后,依据所述数据帧号与通道的对应关系表确定所述数据帧的帧号,通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
在一个可选的实现方式中,所述控制单元,还用于生成包含所述数据帧及所述数据帧编号的原语;
所述控制单元,用于在第一子层将所述数据帧和所述数据帧的编号发送给第二子层包括:在所述第一子层将包含所述数据帧及所述数据帧编号的原语发送给所述第二子层。
在一个可选的实现方式中,所述第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS;
所述无源光网络为以太网无源光网络EPON,所述第二子层为调和子层RS或者物理编码子层PCS;或者,所述无源光网络为吉比特无源光网络GPON,所述第二子层为所述传输汇聚TC层。
在一个可选的实现方式中,所述数据帧包括:以太帧或者以太帧分片;所述数据帧的编号包括:帧序号FSN或者以太帧分片序号。
在一个可选的实现方式中,所述发送单元,用于在所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:在所述第二子层为所述以太帧添加用于标记所述以太帧为通道绑定的以太帧的标识,在所述确定的通道内向所述接收侧发送所述以太帧以及所述标识,在所述以太帧与相邻以太帧的帧间隔内发送所述帧序号FSN;
或者,在所述第二子层生成包含所述帧序号FSN的前导,在所述确定的通道内向所述接收侧发送所述前导以及所述以太帧;
或者,在所述第二子层为所述以太帧分片添加用于标记所述以太帧分片为通道绑定的以太帧分片的标识,在所述确定的通道内向所述接收侧发送所述以太帧分片以及所述标识,在所述以太帧分片与相邻以太帧或以太帧分片的帧间隔内发送所述帧序号FSN;
或者,在所述第二子层生成包含所述以太帧分片序号的前导,在所述确定的通道内向所述接收侧发送所述前导以及所述以太帧分片。
在一个可选的实现方式中,所述数据帧封装在吉比特无源光网络封装模式GEM帧中,所述数据帧的编号为帧序号FSN;
所述发送单元,用于在所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
在所述第二子层在封装了所述以太帧的吉比特无源光网络封装模式GEM帧的选项字段添加所述帧序号FSN,在所述确定的通道内向所述接收侧发送添加了所述帧序号FSN的吉比特无源光网络封装模式GEM帧;
或者,在所述第二子层在封装了所述以太帧分片的吉比特无源光网络封装模式帧的选项字段添加所述以太帧分片序号,在所述确定的通道内向所述接收侧发送添加了所述以太帧分片序号的吉比特无源光网络封装模式GEM帧。
本发明实施例四方面提供了一种无源光网络的通信设备,所述通信设备包括:
接收单元,用于按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号;
重组单元,用于获取所述数据帧的编号,依据所述数据帧的编号顺序重组所述数据帧。
在一个可选的实现方式中,所述接收单元,用于在第二子层按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号;
所述接收单元,还用于在所述第二子层将所述数据帧以及所述数据帧的编号发送到第一子层;
所述重组单元,用于在所述第一子层在接收到所述第二子层发送的数据帧以及所述数据帧的编号后,获取所述数据帧的编号;依据所述数据帧的编号顺序重组接收到的所述数据帧。
在一个可选的实现方式中,所述重组单元,用于依据所述数据帧的编号顺序重组所述数据帧包括:
将所述第二子层发送的数据帧作为待定数据帧;按照循环移位递增或循环移位递减的方式确定目标编号,所述目标编号为最近正确接收到的数据帧的编号的下一个编号;
确定所述待定数据帧的编号等于所述目标编号,则确定所述待定数据帧为正确接收到的数据帧,将所述目标编号修改为所述待定数据帧的编号的下一个编号,将所述待定数据帧与之前正确接收到的数据帧重组成业务流;
确定所述待定数据帧的编号小于所述目标编号,则丢弃所述待定数据帧;
确定所述待定数据帧的编号大于所述目标编号,则缓存所述待定数据帧,待所述目标编号被修改为与所述待定数据帧的编号相等后,确定所述待定数据帧为正确接收到的数据帧,将所述待定数据帧取出与之前正确接收到的数据帧重组成业务流,将所述目标编号修改为所述待定数据帧的编号的下一个编号。
在一个可选的实现方式中,所述重组单元,还用于在所述确定所述待定数据帧的编号大于所述目标编号之后,重启定时器;若在所述定制器超时,未接收到具有所述目标编号的数据帧,则丢弃所述待定数据帧,并产生数据帧丢失的告警。
在一个可选的实现方式中,所述接收单元,用于在所述第二子层将所述数据帧以及所述数据帧的编号发送到第一子层包括:在所述第二子层生成包含所述数据帧及所述数据帧的编号的原语;将包含所述数据帧及所述数据帧的编号的原语发送给所述第一子层。
在一个可选的实现方式中,所第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS。
在一个可选的实现方式中,所述数据帧为以太帧或者以太帧分片,所述数据帧的编号为帧序号FSN或者以太帧分片序号。
在一个可选的实现方式中,所述接收单元,用于在通道内接收来发送侧在 所述通道内发送的数据帧以及所述数据帧的编号包括:
在所述第二子层接收来自所述发送侧的用于标记所述以太帧为通道绑定的以太帧的标识以及所述以太帧,依据所述标识确定所述以太帧为通道绑定的以太帧,在所述以太帧与相邻以太帧的帧间隔内接收所述帧序号FSN;
或者,在所述第二子层接收来自所述发送侧的包含所述帧序号FSN的前导,以及所述以太帧;
或者,在所述第二子层在所述通道内接收所述以太帧分片以及用于标记所述以太帧分片为通道绑定的以太帧分片的标识,在所述以太帧分片与相邻以太帧或以太帧分片的帧间隔内接收所述以太帧分片序号;
或者,在所述第二子层接收来自发送侧发的包含所述以太帧分片序号的前导,以及所述以太帧分片。
在一个可选的实现方式中,所述数据帧封装在吉比特无源光网络封装模式GEM帧中,所述数据帧的编号为帧序号FSN;
所述接收单元,用于在通道内接收来发送侧在所述通道内发送的数据帧包括:在所述第二子层接收来自所述发送侧的添加了所述帧序号FSN的吉比特无源光网络封装模式GEM帧。
附图说明
图1A为本发明实施例系统结构示意图;
图1B为本发明实施例以太帧分配系统示意图;
图2为本发明实施例发送侧通信设备结构示意图;
图3为本发明实施例发送侧通信设备结构示意图;
图4为本发明实施例接收侧通信设备结构示意图;
图5为本发明实施例FSN传递流程示意图;
图6为本发明实施例FSN传递流程示意图;
图7为本发明实施例以太帧结构示意图;
图8为本发明实施例以太帧结构示意图;
图9为本发明实施例以太帧结构示意图;
图10为本发明实施例以太帧结构示意图;
图11为本发明实施例方法流程示意图;
图12为本发明实施例GEM帧结构示意图;
图13为本发明实施例通信设备结构示意图;
图14为本发明实施例通信设备结构示意图。
具体实施方式
如果使用25Gbps的速率的通道,要到达100Gbps的系统速率,可以将4个25Gbps的通道进行绑定以承载100Gbps的业务流。即在发射侧,将一条业务流的数据帧分发至4个通道进行发送,而接收侧则需要将4个通道的数据帧进行重组形成一条业务流。在发送侧使用4条可用的通道发送数据帧,接收侧则将接收到的数据帧进行重组得到业务流。在后续实施例中将以此为例进行举例说明,如何使用4条通道发送数据帧,以及在接收侧如何接收并重组数据帧得到业务流。可以理解的是,基于通道的速率不同,可以选择的通道组合也会不同,能够实现的系统带宽也不限于100G,以上举例不应理解为对发明实施例的唯一性限定。
在本发明实施例中,以数据帧为以太帧(可以简称为帧)为例进行说明,可以理解的是数据帧还可以是其他任意数据帧,例如:以太帧分片、同步数字体系SDH(synchronous digital hierarchy,SDH)帧、时分复用(time division multiplexing,TDM)帧或者其他。
在后续实施例中,第一子层具有为数据帧编号的功能,还执行将数据帧发送到对应的的通道的功能,实现数据帧与通道对应关系的绑定,因此可以采用功能性命名的方式将第一子层称为:通道绑定层。第二子层执行从发送侧接收或者向接收侧发送数据帧以及数据帧编号的功能,由于数据帧和数据帧的编号与通道之间具有绑定的对应关系,因此可以采用功能性命名的方式将第二子层命名为:绑定发送层。在后续实施例中涉及到第一子层、第二子层以及通道绑定层和绑定发送层时将不再对此进行一一说明。在本发明实施例中“第一”和“第二”仅作为区分两个相同名称使用,例如:第一子层和第二子层,用于区分两个子层,不应理解为具有其他例如先后次序或者其他任何技术含义的限定,后续实施例将不再一一说明。
在本发明实施例中,提供如图1A所示的一种应用本发明实施例提供的方法的PON系统,该系统中可以包括光线路终端(Optical Line Terminal,OLT)、光分配网络(Optical Distribution Network,ODN)以及光网络单元(Optical Network Unit,ONU),其中,从OLT到ONU称为下行,从ONU到OLT称为上行。其中,通道绑定技术既可以用于下行传输,也可以用于上行传输,也就是说,通道绑定技术可以在OLT中实现,也可以在ONU中实现,本发明实施例对此不做限制。在图1A中,若业务流的数据发往ONU,那么业务流的数据在通道绑定层被分配到绑定发送层的通道1~通道4,需要说明的是图1A作为示意图,通道数量可以是任意大于或等于2的通道数;数据由绑定发送层经通道1~通道4到达波分复用器发送给ONU的波分复用器,再分别达到ONU绑定接收层的通道1~通道4,再到达ONU的通道绑定层,由ONU的通道绑定层将数据重新按顺序重组成业务流。
本实施例为本发明实施例的综述实施例,具体包含如下几个方案:
一、在通道绑定层实现通道绑定,即将业务流的以太帧按顺序进行编号,并分发至绑定的各个通道。通道绑定层可以是多连接控制协议MLCP层,也可以是多点控制协议MPCP层,还可以是媒体接入控制MAC层,还可以是调和子层RS。
如图1B所示,为本发明实施例通道绑定层的一个实例,通道绑定层对业务流的以太帧按照到达通道绑定层的顺序进行编号,编号的方式可以是循环移位递增或循环移位递减的方式。以循环移位递增为例,由于以太帧是持续发送的,也就是数据量可以是无穷大的,但用于存储以太帧的编号的寄存器位数是有限的,所以通道绑定层对数据帧编号时可以从1开始,每新增一个数据帧,其编号增加1,当编号达到N时,对下一个数据帧的编号就又循环为1。循环移位递减方式与循环移位递增方式类似,仍然以N作为一个循环为例,通道绑定层对数据帧的编号从N开始,每新增1个数据帧,其编号减1,当编号减少为0时,下一个数据帧的编号又循环为N。
业务流的以太帧到达帧分配器以后,帧分配器根据各个通道带宽分配情况(帧分配器可连接至带宽分配模块获取各个通道带宽分配情况,图中未示出)确定可用于发送该帧的通道,将该帧存入对应通道的帧缓存队列,并将该帧的 序号存入对应通道的帧序号缓存队列。在本发明实施例中每个通道对应一条波长通路,带宽可以为10Gbps,25Gbps,或其他速率。
在本发明实施例中,OLT/ONU可在绑定的不同通道上发送同一业务流的以太帧;在同一通道与同一业务流上,OLT/ONU发送的以太帧的FSN序号之间满足循环移位递增或循环移位递减关系。
二、通道绑定层将以太帧以及对应的帧序号传递至绑定发送层,上述绑定发送层可以为调和子层RS,也可以为物理编码子层PCS,绑定发送层将帧序号与对应的以太帧进行关联发送,以便接收侧根据帧序号实现业务流重组。
如图2所示,以通道绑定层在MLCP层实现为例,MLCP属于通道绑定层,通道绑定层的帧分配器将以太帧分配给各个通道,各通道分别包含多点控制协议MPCP层,媒体接入控制MAC层,调和子层RS,物理编码PCS层,物理媒介附加(Physical medium attachment,PMA)层和物理媒介相关(Physical medium dependent,PMD)层。其中,在100G EPON系统中,RS层与PCS层采用25千兆媒体独立接口(Gigabit Medium Independent Interface,GMII)连接。各个通道的绑定发送层将帧序号与对应的以太帧进行关联发送,以便接收侧根据帧序号实现业务流重组。以下实施例将分别就以太帧的发送侧即发送侧,和以太帧的接收侧即接收侧进行说明,具体如下:
一、发送侧:
发送侧在通道绑定层进行以太帧分发时生成数据帧队列和帧序号的对应关系表,如下表1所示:
表1
Figure PCTCN2016108022-appb-000001
在表1中,对应图1B所示N取值为12。
通道绑定层将所发送以太帧的帧序号传至绑定发送层;
绑定发送层将帧序号与对应的以太帧进行关联发送至接收侧。
二、接收侧:
在接收侧的绑定接收层提取以太帧的对应的帧序号;
绑定接收层将帧序号传至通道绑定层;
通道绑定层根据帧序号进行帧重组。
以下实施例将就本发明实施例通道绑定层与绑定发送层传递帧序号的方法进行详细说明。
方法一:在通道绑定层和绑定发送层共同维护FSN队列来实现帧序号的传递。
FSN队列可以参考图1B所示。
在发送方一侧,由MLCP或MPCP层等通道绑定层在进行以太帧帧分发的同时生成一个FSN队列,RS层、PCS层等绑定发送层在转发数据帧时读取相应FSN队列中的FSN并将其填充至对应帧的前导(Preamble)中或将其扩展至帧间隔(Inter-packet Gap,IPG)中。其中,FSN可通过循环移位寄存器实现。
如图3所示,可以一并参考图2所示,通道绑定层中的帧分配器和RS层共同维护了FSN队列,在图3中,FSN队列包含4个队列分别对应到通道1~4。
接收方一侧,RS层、PCS层等绑定发送层接收到数据帧以后,将其前导(preamble)中或对应的帧间隔IPG字段中的FSN提取出来写入FSN队列,MLCP或MPCP层等通道绑定层根据FSN队列中的FSN进行帧重组。
如图4所示,可以一并参考图2所示,以通道绑定层在MLCP层实现,绑定接收层在RS层实现为例,MLCP中的帧重组器和RS层共同维护了FSN队列,在图4中,FSN队列包含4个队列分别对应到通道1~4。
方法二:通道绑定层和绑定发送层通过原语实现FSN的交互:
(1)、携带FSN的原语(原语是由若干条指令组成的,用于完成一定功能的一个过程)可通过更改现有原语,增加变量参数实现,如下原语以通道绑定层在MLCP层,通道发送层在RS层实现为例,如图5所示,图5所示的原语传递过程可以参考相应的协议,本发明实施例仅就其中修改的部分进行说明。通道绑定层在MPCP、MAC、RS等层实现,通道发送层在RS、PCS等层实现时,修改原语的变量参数实现FSN交互的方法类似,本发明实施例对此不 做限制,不再一一赘述。
在发送方向:
在进行数据帧分发时产生原语为:
MLF:MA_DATA_Request(DA,SA,m_sdu_tx,FSN);
该原语包含FSN参数,如果存在此参数,说明m_sdu_tx数据将在绑定通道上发送,FSN标识该帧在业务流数据包中的顺序编号,可通过循环移位寄存器实现。如果不存在FSN参数,则说明m_sdu_tx数据将在非绑定通道上发送;该原语由MLCP产生,传输给MPCP层。MPCP层接收到MLCP层发送的MLF:MA_DATA_Request(DA,SA,m_sdu_tx,FSN)原语后,通过MAC:MA_DATA_Request(DA,SA,m_sdu_tx,FSN)原语传输至MAC层,MAC层接收到MAC:MA_DATA_Request(DA,SA,m_sdu_tx,FSN)原语后则产生PLS_DATA.Request(OUTPUT_UNIT,FSN)传输至RS层,RS层解析PLS_DATA.Request(OUTPUT_UNIT,FSN)原语,提取FSN,并将其与相应的以太帧进行关联发送。在本发明实施例中,以太帧和FSN的关联发送可以是指将以太帧以及对应的FNS一同发送给接收方。
接收方向:
RS层接收到以太帧后,从相应位置提取出FSN,据此产生PLS_DATA.Indication(INPUT_UNIT,FSN)原语发送至MAC层,MAC收到该原语后产生MAC:MA_DATA_Indication(DA,SA,m_sdu_rx,receive_status,FSN)原语发送至MPCP层,MAC收到该原语后产生MLF:MA_DATA_Indication(DA,SA,m_sdu_rx,receive_status,FSN)原语发送至MLCP层,MLCP层则根据该原语提取FSN,并根据FSN进行数据帧重组得到业务流。
(2)、携带FSN的原语也可通过新定义原语实现,仍以通道绑定层在MLCP层,通道发送层在RS层实现为例,如图6所示,可新定义了两个原语:MLCP_FSN.Request(FSN)和MLCP_FSN.Indication(FSN);分别用于MLCP向RS传递FSN,和RS向MLCP传递FSN。MLCP层可同时发送MLF:MA_DATA_Request(DA,SA,m_sdu_tx)原语和MLCP_FSN.Request(FSN),原语以实现将待发送的数据帧和相应的FSN发送给RS层。RS层可同时发送 PLS_DATA.Indication(INPUT_UNIT)原语和MLCP_FSN.Indication(FSN)原语以实现将待接收的数据帧和相应的FSN发送给MLCP层。
在前述实施例中有关于绑定发送层将FSN与相应以太帧关联发送的要求,本发明实施例还提供了具体关联发送的可选实现方案,如下:
(1)、如图7所示,FSN标识(Flag)用于标记该以太帧是否为绑定通道承载的以太帧,FSN则占用对应以太帧和下一个以太帧之间的帧间隔位置。例如,如果FSN Flag为0,说明该数据帧为非绑定通道承载的以太帧,该以太帧和下一个以太帧之间的帧间隔长度为X字节(如12字节),如果FSN Flag为1,说明该数据帧为绑定通道承载的以太帧,该以太帧和下一个以太帧之间的帧间隔的前Y字节(如2字节)承载FSN,帧间隔长度为X-Y字节;可选地,绑定发送层可将FSN字段纳入循环冗余校验(Cyclic Redundancy Check,CRC)校验范围;
在图7所示的帧结构中,还包括保留(Reserved)的0x555、逻辑链路标识起始定界符(Start of Logical Link Identification Delimiter,SLD)、等其他部分,可以参考以太帧结构的相关标准,在此不再一一说明。
X:正常帧间隔长度,单位Byte;
Y:FSN字段长度,单位Byte;
FSN标识(Flag)可以填充至以太帧前导(preamble)中,例如如图7所示,采用以太帧前导的第四字节的最低bit位承载FSN Flag信息,具体地,FSN Flag的不同取值含义如下:0:无通道绑定,X字节的帧间隔;
1:通道绑定,X-Y字节的帧间隔。
(2),如图8所示,本实施例与图7所示方案不同之处在于绑定发送层用上一以太帧和FSN对应的以太帧之间后Y个字节承载FSN;
(3)、如图9所示,通道绑定层还可以将FSN填充至前导(Preamble)中;例如,如图9所示,FSN标识(Flag)信息可占用前导的第二字节的最高bit,FSN则可用15bit承载,其中低7bit可占用前导第二字节的低7bit,高8bit可占用前导的第四字节。FSN标识(Flag)用于标记该以太帧是否为绑定通道承载的以太帧,例如,如果FSN Flag为0,说明该数据帧为非绑定通道承载的以太帧,该以太帧前导第二字节的低7bit和第四字节填充缺省值;如果FSN Flag 为1,说明该数据帧为绑定通道承载的以太帧,该以太帧前导第二字节的低7bit和第四字节填充该以太帧对应的FSN。
(4)、如图10所示,通道绑定层还可以通过扩展Preamble的方式来承载FSN;例如,如10所示,可用前导的第二字节的最高bit承载FSN标识(Flag),FSN则可将Preamble的长度增加2字节以实现承载。FSN标识(Flag)用于标记该以太帧是否为绑定通道承载的以太帧,例如,如果FSN Flag为0,说明该数据帧为非绑定通道承载的以太帧,Preamble长度保持不变,即LLID字段后即为CRC字段,或Preamble长度增加2字节,但填充缺失值,如0x5555,即在LLID字段后,CRC字段前填充0x5555。如果FSN Flag为1,说明该数据帧为绑定通道承载的以太帧,则Preamble长度增加2字节,例如,在LLID字段后添加2字节用于承载该以太帧对应的FSN。
本发明实施例还提供了在接收侧根据FSN进行业务流重组的方法及状态机:具体请参阅图11所示流程,可以一并参考图4所示的结构图。
1101:接收侧设备本地设置一期望FSN(Expected FSN),该Expected FSN的值比最近按序处理(in-order processing)的数据帧中的FSN大1;
Expected FSN比最近按需处理的数据帧的FSN大1,是因为在发送侧FSN是按照循环移位递增或循环移位递减来编号。以循环移位递增为例,可以理解的是,当最近按序处理的序号是N,那么Expected FSN应该循环移位递增为第1个序号,例如:1;如果序号从0开始编号,那么Expected FSN将循环移位递增为0。
1102:接收一个数据帧,提取数据帧所对应的FSN;
1103:对比当前处理的数据帧的FSN与Expected FSN是否一致,如果一致进入1104,如果FSN大于Expected FSN进入1106,如果FSN小于Expected FSN进入1105,
1104:确定当前处理的数据帧的FSN与Expected FSN一致后,可以将该数据帧送入后续数据帧重组环节,并且Expected FSN的值自增1(循环移位递增)或自减1(循环移位递减),然后进入1108;
1105:确定当前处理的数据帧的FSN比Expected FSN小,则丢弃该数据帧,然后进入1108;
1106:确定当前处理的数据帧的FSN比Expected FSN大,判断该数据帧是否为缓存的数据帧,如果是则进入1109;如果不是则进入1107;
1107:确定当前处理的数据帧的FSN比Expected FSN大后,接收侧设备可以启动乱序重组定时器,并缓存接收到的数据帧,然后进入1109;
进一步地,在乱序重组时间到达时,如果缓存的数据帧的FSN无法和Expected FSN一致,则丢弃缓存的数据帧,并产生一个帧丢失(Frame Loss)告警,并将该数据帧的FSN填充至丢弃数据帧FSN表。
1108:判断丢弃数据帧FSN表中是否有与Expected FSN一致的表项,如果有,则进入1110;如果没有则进入1111。
1109:判断是否有其他缓存的数据帧,如果有则进入1103,如果没有则进入1102。
1110:删除丢弃数据帧FSN表中相应表项,期望FSN的值自增1。
1111:判断是否有缓存的数据帧,如果有则进入1103,如果没有则进入1102。
采用本发明实施例,在通道绑定层和绑定发送层进行帧序号传递,接收侧根据帧序号实现业务流重组,可靠性高。另外,采用IPG字段承载FSN,不影响带宽效率。
本发明实施例,也可以应用于40G或100G GPON系统,实现通道绑定层和绑定发送层(如TC层)之间进行FSN交互,以便绑定发送层将FSN和相应的以太帧进行关联发送,如绑定发送层将FSN填充至吉比特无源光网络封装模式GEM帧的选项(Options)字段,具体如图12所示;在GEM框架中包含GEM头(Header),GEM承载(Payload),其中GEM头包含净荷长度指示(Payload length indication,PLI)、键值索引(Key Index)、GEM端口标识(Port-ID)、Options、切片指示(Last fragment,LF)、混合纠错(Hybrid error correction,HFC);FSN可以填充至Options字段。例如,可采用Options字段的最高bit位作为FSN标识(flag)位,采用Options字段的低16bit携带FSN。FSN标识(Flag)用于标记该GEM帧是否承载绑定通道的数据帧,例如,如果FSN Flag为0,说明该GEM帧承载非绑定通道承载的数据帧,Options字段的低16bit填充缺省值;如果FSN Flag为1,说明该GEM帧承载绑定通道 的数据帧,Options字段的低16bit填充数据帧对应的FSN。
以上实施例中,图3和图4中数据传递所采用的结构,可以参考电气和电子工程师协会IEEE协议,在此不再一一赘述。
本发明实施例还提供了一种无源光网络的通信设备,如图13所示,该通信设备应用在数据帧的发送侧,可以是ONU也可以是OLT;上述通信设备包括:
位于通道绑定层的控制单元1301;位于绑定发送层的发送单元1302;
上述控制单元1301,用于接收数据帧,为上述数据帧分配编号;确定上述数据帧与通道的对应关系,根据所上述数据帧与通道的对应关系确定上述数据帧对应的通道;
上述发送单元1302,用于通过上述确定的通道将上述数据帧和上述数据帧的编号发送给接收侧。
可选地,上述控制单元1301,用于为上述数据帧分配编号包括:按照循环移位递增或循环移位递减的方式为上述数据帧分配编号。
在一个可选的实现方式中,上述控制单元1301,用于接收数据帧,为上述数据帧分配编号包括:在第一子层接收数据帧,为上述数据帧分配编号;
上述控制单元1301,还用于将上述数据帧和上述数据帧的编号发送给第二子层;
上述发送单元1302,用于在上述第二子层通过上述确定的通道将上述数据帧和上述数据帧的编号发送给接收侧。
可选地,上述控制单元1301,用于确定上述数据帧与通道的对应关系,根据上述数据帧与通道的对应关系确定上述数据帧对应的通道包括:在上述第一子层读取数据帧号与通道的对应关系表,按照上述数据帧号与通道的对应关系表确定上述数据帧对应的通道;
上述发送单元1302,用于在第二子层通过上述确定的通道将上述数据帧和上述数据帧的编号发送给接收侧包括:在上述第二子层接收到上述数据帧后,依据上述数据帧号与通道的对应关系表确定上述数据帧的帧号,通过上述确定的通道将上述数据帧和上述数据帧的编号发送给接收侧。
可选地,上述控制单元1301,还用于生成包含上述数据帧及上述数据帧 编号的原语;
上述控制单元1301,用于在第一子层将上述数据帧和上述数据帧的编号发送给第二子层包括:在上述第一子层将包含上述数据帧及上述数据帧编号的原语发送给上述第二子层。
可选地,上述第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS;
可选地,上述无源光网络为以太网无源光网络EPON,上述第二子层为调和子层RS或者物理编码子层PCS;或者,上述无源光网络为吉比特无源光网络GPON,上述第二子层为上述传输汇聚TC层。
可选地,上述数据帧包括:以太帧或者以太帧分片;上述数据帧的编号包括:帧序号FSN或者以太帧分片序号。
在一个可选的实现方式中,上述发送单元1302,用于在上述第二子层通过上述确定的通道将上述数据帧和上述数据帧的编号发送给接收侧包括:在上述第二子层为上述以太帧添加用于标记上述以太帧为通道绑定的以太帧的标识,在上述确定的通道内向上述接收侧发送上述以太帧以及上述标识,在上述以太帧与相邻以太帧的帧间隔内发送上述帧序号FSN;
或者,在上述第二子层生成包含上述帧序号FSN的前导,在上述确定的通道内向上述接收侧发送上述前导以及上述以太帧;
或者,在上述第二子层为上述以太帧分片添加用于标记上述以太帧分片为通道绑定的以太帧分片的标识,在上述确定的通道内向上述接收侧发送上述以太帧分片以及上述标识,在上述以太帧分片与相邻以太帧或以太帧分片的帧间隔内发送上述帧序号FSN;
或者,在上述第二子层生成包含上述以太帧分片序号的前导,在上述确定的通道内向上述接收侧发送上述前导以及上述以太帧分片。
可选地,上述数据帧封装在吉比特无源光网络封装模式GEM帧中,上述数据帧的编号为帧序号FSN;
上述发送单元,用于在上述第二子层通过上述确定的通道将上述数据帧和上述数据帧的编号发送给接收侧包括:
在上述第二子层在封装了上述以太帧的吉比特无源光网络封装模式GEM 帧的选项字段添加上述帧序号FSN,在上述确定的通道内向上述接收侧发送添加了上述帧序号FSN的吉比特无源光网络封装模式GEM帧;
或者,在上述第二子层在封装了上述以太帧分片的吉比特无源光网络封装模式帧的选项字段添加上述以太帧分片序号,在上述确定的通道内向上述接收侧发送添加了上述以太帧分片序号的吉比特无源光网络封装模式GEM帧。
在本发明实施例中,针对EPON系统,数据帧可以为以太帧,绑定发送层可以在以太帧与相邻以太帧的帧间隔内发送上述帧序号FSN;
或者,在上述绑定发送层生成包含上述帧序号FSN的前导,在上述通道内向上述接收侧发送上述前导以及上述以太帧;
针对GPON系统,上述绑定发送层可以在封装了数据帧的GEM帧的Options字段填充上述帧序号FSN,在上述通道内向上述接收侧发送添加了上述帧序号FSN的GEM帧;
或者,在上述绑定发送层为上述数据帧分片添加用于标记上述数据帧分片为通道绑定的数据帧分片的标识,在上述通道内向上述接收侧发送上述数据帧分片以及上述标识,包含:
具体地,针对EPON系统,数据帧为以太帧,上述数据帧分片或者为以太帧分片,上述绑定发送层可以在以太帧与相邻以太帧或以太帧分片的帧间隔内发送上述帧序号FSN;
或者,在上述绑定发送层生成包含上述帧序号FSN或者以太帧分片序号的前导,在上述通道内向上述接收侧发送上述前导以及上述以太帧分片。
针对GPON系统,上述绑定发送层可以在封装了数据帧分片的GEM帧的Options字段填充上述帧序号FSN,在上述通道内向上述接收侧发送添加了上述帧序号FSN的GEM帧。
本发明实施例还提供了另一种无源光网络的通信设备,如图14所示,该通信设备应用在数据帧的接收侧,可以是ONU也可以是OLT;上述通信设备包括:
位于通道绑定层的重组单元1401;位于绑定接收层的接收单元1402;
上述接收单元1402,用于按照数据帧与通道之间的对应关系,在通道内接收来发送侧在上述通道内发送的数据帧以及上述数据帧的编号;
上述重组单元1401,用于获取上述数据帧的编号,依据上述数据帧的编号顺序重组上述数据帧。
可选地,上述接收单元1402,用于在第二子层按照数据帧与通道之间的对应关系,在通道内接收来发送侧在上述通道内发送的数据帧以及上述数据帧的编号;
上述接收单元1402,还用于在上述第二子层将上述数据帧以及上述数据帧的编号发送到第一子层;
上述重组单元1401,用于在上述第一子层在接收到上述第二子层发送的数据帧以及上述数据帧的编号后,获取上述数据帧的编号;依据上述数据帧的编号顺序重组接收到的上述数据帧。
可选地,上述重组单元1401,具体依据上述数据帧的编号顺序重组上述数据帧包括:
将上述第二子层发送的数据帧作为待定数据帧;按照循环移位递增或循环移位递减的方式确定目标编号,上述目标编号为最近正确接收到的数据帧的编号的下一个编号;
确定上述待定数据帧的编号等于上述目标编号,则确定上述待定数据帧为正确接收到的数据帧,将上述目标编号修改为上述待定数据帧的编号的下一个编号,将上述待定数据帧与之前正确接收到的数据帧重组成业务流;
确定上述待定数据帧的编号小于上述目标编号,则丢弃上述待定数据帧;
确定上述待定数据帧的编号大于上述目标编号,则缓存上述待定数据帧,待上述目标编号被修改为与上述待定数据帧的编号相等后,确定上述待定数据帧为正确接收到的数据帧,将上述待定数据帧取出与之前正确接收到的数据帧重组成业务流,将上述目标编号修改为上述待定数据帧的编号的下一个编号。进一步地,上述重组单元1401,还用于在上述确定上述待定数据帧的编号大于上述目标编号之后,重启定时器;若在上述定制器超时,未接收到具有上述目标编号的数据帧,则丢弃上述待定数据帧,并产生数据帧丢失的告警。
可选地,上述接收单元1402,用于在上述第二子层将上述数据帧以及上述数据帧的编号发送到第一子层包括:在上述第二子层生成包含上述数据帧及上述数据帧的编号的原语;将包含上述数据帧及上述数据帧的编号的原语发送 给上述第一子层。
可选地,所第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS。
可选地,上述数据帧为以太帧或者以太帧分片,上述数据帧的编号为帧序号FSN或者以太帧分片序号。
在一个可选的实现方式中,上述接收单元1402,用于在通道内接收来发送侧在上述通道内发送的数据帧以及上述数据帧的编号包括:
在上述第二子层接收来自上述发送侧的用于标记上述以太帧为通道绑定的以太帧的标识以及上述以太帧,依据上述标识确定上述以太帧为通道绑定的以太帧,在上述以太帧与相邻以太帧的帧间隔内接收上述帧序号FSN;
或者,在上述第二子层接收来自上述发送侧的包含上述帧序号FSN的前导,以及上述以太帧;
或者,在上述第二子层在上述通道内接收上述以太帧分片以及用于标记上述以太帧分片为通道绑定的以太帧分片的标识,在上述以太帧分片与相邻以太帧或以太帧分片的帧间隔内接收上述以太帧分片序号;
或者,在上述第二子层接收来自发送侧发的包含上述以太帧分片序号的前导,以及上述以太帧分片。
可选地,上述数据帧封装在吉比特无源光网络封装模式GEM帧中,上述数据帧的编号为帧序号FSN;
上述接收单元,用于在通道内接收来发送侧在上述通道内发送的数据帧包括:在上述第二子层接收来自上述发送侧的添加了上述帧序号FSN的吉比特无源光网络封装模式GEM帧。
可选地,假定第一子层为通道绑定层,第二子层为绑定发送层,那么针对EPON系统,上述通道绑定层可以为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS;
可选地,上述数据帧为以太帧或者以太帧分片,上述数据帧的编号为帧序号FSN或者以太帧分片序号。
可选地,上述接收单元1402,用于接收来自发送侧的数据帧以及上述数据帧的帧序号FSN,具体地,
针对EPON系统,数据帧为以太帧,上述绑定层接收以太帧,并在上述以太帧与相邻以太帧的帧间隔内提取上述帧序号FSN;
或者,在上述绑定接收侧层接收以太帧,并在上述以太帧的前导中提取上述帧序号FSN;
针对GPON系统,上述绑定接收层接收封装了数据帧的GEM帧,并在上述封装了数据帧的GEM帧的Options字段提取上述帧序号FSN;
可选地,上述接收单元1402,用于接收来自发送侧的数据帧分片以及上述数据帧分片的帧序号FSN,具体地,
针对EPON系统,数据帧为以太帧,上述绑定层接收以太帧分片,并在上述以太帧或以太帧分片与相邻以太帧或以太帧分片的帧间隔内提取上述帧序号FSN;
或者,在上述绑定接收侧层接收以太帧分片,并在上述以太帧分片的前导中提取上述帧序号FSN;
针对GPON系统,上述绑定接收层接收封装了数据帧分片的GEM帧,并在上述封装了数据帧分片的GEM帧的Options字段提取上述帧序号FSN。
如果无源光网络为以太网无源光网络EPON,那么上述绑定接收层可以为调和子层RS或者物理编码子层PCS;或者,如果上述无源光网络为吉比特无源光网络GPON,那么上述绑定接收层可以为上述传输汇聚TC层。
值得注意的是,上述通信设备只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
另外,本领域普通技术人员可以理解实现上述各方法实施例中的全部或部分步骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (36)

  1. 一种无源光网络的通信方法,其特征在于,包括:
    接收数据帧,为所述数据帧分配编号;
    确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道;
    通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
  2. 根据权利要求1所述方法,其特征在于,所述为所述数据帧分配编号包括:
    按照循环移位递增或循环移位递减的方式为所述数据帧分配编号。
  3. 根据权利要求1或2所述方法,其特征在于,所述接收数据帧,为所述数据帧分配编号包括:在第一子层接收数据帧,为所述数据帧分配编号;
    所述方法还包括:所述第一子层将所述数据帧和所述数据帧的编号发送给第二子层;
    所述通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
    所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
  4. 根据权利要求3所述方法,其特征在于,所述确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道包括:所述第一子层读取数据帧号与通道的对应关系表,按照所述数据帧号与通道的对应关系表确定所述数据帧对应的通道;
    所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
    所述第二子层在接收到所述数据帧后,依据所述数据帧号与通道的对应关系表确定所述数据帧的帧号,通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
  5. 根据权利要求3所述方法,其特征在于,在所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧之前,所述方法还包括:
    所述第一子层生成包含所述数据帧及所述数据帧编号的原语;
    所述第一子层将所述数据帧和所述数据帧的编号发送给第二子层包括:
    所述第一子层将包含所述数据帧及所述数据帧编号的原语发送给所述第二子层。
  6. 根据权利要求3所述方法,其特征在于,所述第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS;
    所述无源光网络为以太网无源光网络EPON,所述第二子层为调和子层RS或者物理编码子层PCS;或者,所述无源光网络为吉比特无源光网络GPON,所述第二子层为所述传输汇聚TC层。
  7. 根据权利要求1至6任意一项所述方法,其特征在于,所述数据帧包括:以太帧或者以太帧分片;所述数据帧的编号包括:帧序号FSN或者以太帧分片序号。
  8. 根据权利要求7所述方法,其特征在于,所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
    所述第二子层为所述以太帧添加用于标记所述以太帧为通道绑定的以太帧的标识,在所述确定的通道内向所述接收侧发送所述以太帧以及所述标识,在所述以太帧与相邻以太帧的帧间隔内发送所述帧序号FSN;
    或者,所述第二子层生成包含所述帧序号FSN的前导,在所述确定的通道内向所述接收侧发送所述前导以及所述以太帧;
    或者,所述第二子层为所述以太帧分片添加用于标记所述以太帧分片为通道绑定的以太帧分片的标识,在所述确定的通道内向所述接收侧发送所述以太帧分片以及所述标识,在所述以太帧分片与相邻以太帧或以太帧分片的帧间隔内发送所述帧序号FSN;
    或者,所述第二子层生成包含所述以太帧分片序号的前导,在所述确定的通道内向所述接收侧发送所述前导以及所述以太帧分片。
  9. 根据权利要求7所述方法,其特征在于,所述数据帧封装在吉比特无源光网络封装模式GEM帧中,所述数据帧的编号为帧序号FSN;
    所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发 送给接收侧包括:
    所述第二子层在封装了所述以太帧的吉比特无源光网络封装模式GEM帧的选项字段添加所述帧序号FSN,在所述确定的通道内向所述接收侧发送添加了所述帧序号FSN的吉比特无源光网络封装模式GEM帧;
    或者,所述第二子层在封装了所述以太帧分片的吉比特无源光网络封装模式帧的选项字段添加所述以太帧分片序号,在所述确定的通道内向所述接收侧发送添加了所述以太帧分片序号的吉比特无源光网络封装模式GEM帧。
  10. 一种无源光网络的通信方法,其特征在于,所述方法包括:
    按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号;
    获取所述数据帧的编号,依据所述数据帧的编号顺序重组所述数据帧。
  11. 根据权利要求10所述方法,其特征在于,所述按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号包括:
    第二子层按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号;
    所述方法还包括:所述第二子层将所述数据帧以及所述数据帧的编号发送到第一子层;
    所述获取所述数据帧的编号,依据所述数据帧的编号顺序重组所述数据帧包括:
    所述第一子层在接收到所述第二子层发送的数据帧以及所述数据帧的编号后,获取所述数据帧的编号;依据所述数据帧的编号顺序重组接收到的所述数据帧。
  12. 根据权利要求11所述方法,其特征在于,所述依据所述数据帧的编号顺序重组所述数据帧包括:
    将所述第二子层发送的数据帧作为待定数据帧;按照循环移位递增或循环移位递减的方式确定目标编号,所述目标编号为最近正确接收到的数据帧的编号的下一个编号;
    确定所述待定数据帧的编号等于所述目标编号,则确定所述待定数据帧为 正确接收到的数据帧,将所述目标编号修改为所述待定数据帧的编号的下一个编号,将所述待定数据帧与之前正确接收到的数据帧重组成业务流;
    确定所述待定数据帧的编号小于所述目标编号,则丢弃所述待定数据帧;
    确定所述待定数据帧的编号大于所述目标编号,则缓存所述待定数据帧,待所述目标编号被修改为与所述待定数据帧的编号相等后,确定所述待定数据帧为正确接收到的数据帧,将所述待定数据帧取出与之前正确接收到的数据帧重组成业务流,将所述目标编号修改为所述待定数据帧的编号的下一个编号。
  13. 根据权利要求12所述方法,其特征在于,在所述确定所述待定数据帧的编号大于所述目标编号之后,所述方法还包括:
    重启定时器;若在所述定制器超时,未接收到具有所述目标编号的数据帧,则丢弃所述待定数据帧,并产生数据帧丢失的告警。
  14. 根据权利要求11所述方法,其特征在于,所述第二子层将所述数据帧以及所述数据帧的编号发送到第一子层包括:
    所述第二子层生成包含所述数据帧及所述数据帧的编号的原语;
    所述第二子层将包含所述数据帧及所述数据帧的编号的原语发送给所述第一子层。
  15. 根据权利要求11所述方法,其特征在于,所第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS。
  16. 根据权利要求11至15任意一项所述方法,其特征在于,所述数据帧为以太帧或者以太帧分片,所述数据帧的编号为帧序号FSN或者以太帧分片序号。
  17. 根据权利要求16所述方法,其特征在于,所述在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号包括:
    所述第二子层接收来自所述发送侧的用于标记所述以太帧为通道绑定的以太帧的标识以及所述以太帧,依据所述标识确定所述以太帧为通道绑定的以太帧,在所述以太帧与相邻以太帧的帧间隔内接收所述帧序号FSN;
    或者,所述第二子层接收来自所述发送侧的包含所述帧序号FSN的前导,以及所述以太帧;
    或者,所述第二子层在所述通道内接收所述以太帧分片以及用于标记所述以太帧分片为通道绑定的以太帧分片的标识,在所述以太帧分片与相邻以太帧或以太帧分片的帧间隔内接收所述以太帧分片序号;
    或者,所述第二子层接收来自发送侧发的包含所述以太帧分片序号的前导,以及所述以太帧分片。
  18. 根据权利要求11至15任意一项所述方法,其特征在于,所述数据帧封装在吉比特无源光网络封装模式GEM帧中,所述数据帧的编号为帧序号FSN;
    所述在通道内接收来发送侧在所述通道内发送的数据帧包括:
    所述第二子层接收来自所述发送侧的添加了所述帧序号FSN的吉比特无源光网络封装模式GEM帧。
  19. 一种无源光网络的通信设备,其特征在于,包括:
    控制单元,用于接收数据帧,为所述数据帧分配编号;确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道;
    发送单元,用于通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
  20. 根据权利要求19所述通信设备,其特征在于,
    所述控制单元,用于为所述数据帧分配编号包括:按照循环移位递增或循环移位递减的方式为所述数据帧分配编号。
  21. 根据权利要求19或20所述通信设备,其特征在于,
    所述控制单元,用于接收数据帧,为所述数据帧分配编号包括:在第一子层接收数据帧,为所述数据帧分配编号;
    所述控制单元,还用于将所述数据帧和所述数据帧的编号发送给第二子层;
    所述发送单元,用于在所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
  22. 根据权利要求21所述通信设备,其特征在于,
    所述控制单元,用于确定所述数据帧与通道的对应关系,根据所述数据帧与通道的对应关系确定所述数据帧对应的通道包括:在所述第一子层读取数据 帧号与通道的对应关系表,按照所述数据帧号与通道的对应关系表确定所述数据帧对应的通道;
    所述发送单元,用于在第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:在所述第二子层接收到所述数据帧后,依据所述数据帧号与通道的对应关系表确定所述数据帧的帧号,通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧。
  23. 根据权利要求21所述通信设备,其特征在于,
    所述控制单元,还用于生成包含所述数据帧及所述数据帧编号的原语;
    所述控制单元,用于在第一子层将所述数据帧和所述数据帧的编号发送给第二子层包括:在所述第一子层将包含所述数据帧及所述数据帧编号的原语发送给所述第二子层。
  24. 根据权利要求21所述通信设备,其特征在于,所述第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS;
    所述无源光网络为以太网无源光网络EPON,所述第二子层为调和子层RS或者物理编码子层PCS;或者,所述无源光网络为吉比特无源光网络GPON,所述第二子层为所述传输汇聚TC层。
  25. 根据权利要求19至24任意一项所述通信设备,其特征在于,所述数据帧包括:以太帧或者以太帧分片;所述数据帧的编号包括:帧序号FSN或者以太帧分片序号。
  26. 根据权利要求25所述通信设备,其特征在于,
    所述发送单元,用于在所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:在所述第二子层为所述以太帧添加用于标记所述以太帧为通道绑定的以太帧的标识,在所述确定的通道内向所述接收侧发送所述以太帧以及所述标识,在所述以太帧与相邻以太帧的帧间隔内发送所述帧序号FSN;
    或者,在所述第二子层生成包含所述帧序号FSN的前导,在所述确定的通道内向所述接收侧发送所述前导以及所述以太帧;
    或者,在所述第二子层为所述以太帧分片添加用于标记所述以太帧分片为 通道绑定的以太帧分片的标识,在所述确定的通道内向所述接收侧发送所述以太帧分片以及所述标识,在所述以太帧分片与相邻以太帧或以太帧分片的帧间隔内发送所述帧序号FSN;
    或者,在所述第二子层生成包含所述以太帧分片序号的前导,在所述确定的通道内向所述接收侧发送所述前导以及所述以太帧分片。
  27. 根据权利要求25所述通信设备,其特征在于,所述数据帧封装在吉比特无源光网络封装模式GEM帧中,所述数据帧的编号为帧序号FSN;
    所述发送单元,用于在所述第二子层通过所述确定的通道将所述数据帧和所述数据帧的编号发送给接收侧包括:
    在所述第二子层在封装了所述以太帧的吉比特无源光网络封装模式GEM帧的选项字段添加所述帧序号FSN,在所述确定的通道内向所述接收侧发送添加了所述帧序号FSN的吉比特无源光网络封装模式GEM帧;
    或者,在所述第二子层在封装了所述以太帧分片的吉比特无源光网络封装模式帧的选项字段添加所述以太帧分片序号,在所述确定的通道内向所述接收侧发送添加了所述以太帧分片序号的吉比特无源光网络封装模式GEM帧。
  28. 一种无源光网络的通信设备,其特征在于,所述通信设备包括:
    接收单元,用于按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号;
    重组单元,用于获取所述数据帧的编号,依据所述数据帧的编号顺序重组所述数据帧。
  29. 根据权利要求28所述通信设备,其特征在于,
    所述接收单元,用于在第二子层按照数据帧与通道之间的对应关系,在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号;
    所述接收单元,还用于在所述第二子层将所述数据帧以及所述数据帧的编号发送到第一子层;
    所述重组单元,用于在所述第一子层在接收到所述第二子层发送的数据帧以及所述数据帧的编号后,获取所述数据帧的编号;依据所述数据帧的编号顺序重组接收到的所述数据帧。
  30. 根据权利要求29所述通信设备,其特征在于,
    所述重组单元,用于依据所述数据帧的编号顺序重组所述数据帧包括:
    将所述第二子层发送的数据帧作为待定数据帧;按照循环移位递增或循环移位递减的方式确定目标编号,所述目标编号为最近正确接收到的数据帧的编号的下一个编号;
    确定所述待定数据帧的编号等于所述目标编号,则确定所述待定数据帧为正确接收到的数据帧,将所述目标编号修改为所述待定数据帧的编号的下一个编号,将所述待定数据帧与之前正确接收到的数据帧重组成业务流;
    确定所述待定数据帧的编号小于所述目标编号,则丢弃所述待定数据帧;
    确定所述待定数据帧的编号大于所述目标编号,则缓存所述待定数据帧,待所述目标编号被修改为与所述待定数据帧的编号相等后,确定所述待定数据帧为正确接收到的数据帧,将所述待定数据帧取出与之前正确接收到的数据帧重组成业务流,将所述目标编号修改为所述待定数据帧的编号的下一个编号。
  31. 根据权利要求30所述通信设备,其特征在于,
    所述重组单元,还用于在所述确定所述待定数据帧的编号大于所述目标编号之后,重启定时器;若在所述定制器超时,未接收到具有所述目标编号的数据帧,则丢弃所述待定数据帧,并产生数据帧丢失的告警。
  32. 根据权利要求29所述通信设备,其特征在于,
    所述接收单元,用于在所述第二子层将所述数据帧以及所述数据帧的编号发送到第一子层包括:在所述第二子层生成包含所述数据帧及所述数据帧的编号的原语;将包含所述数据帧及所述数据帧的编号的原语发送给所述第一子层。
  33. 根据权利要求29所述通信设备,其特征在于,所第一子层为多连接控制协议MLCP层或者多点控制协议MPCP层或者媒体接入控制MAC层或者调和子层RS。
  34. 根据权利要求29至33任意一项所述通信设备,其特征在于,所述数据帧为以太帧或者以太帧分片,所述数据帧的编号为帧序号FSN或者以太帧分片序号。
  35. 根据权利要求34所述通信设备,其特征在于,所述接收单元,用于在通道内接收来发送侧在所述通道内发送的数据帧以及所述数据帧的编号包括:
    在所述第二子层接收来自所述发送侧的用于标记所述以太帧为通道绑定的以太帧的标识以及所述以太帧,依据所述标识确定所述以太帧为通道绑定的以太帧,在所述以太帧与相邻以太帧的帧间隔内接收所述帧序号FSN;
    或者,在所述第二子层接收来自所述发送侧的包含所述帧序号FSN的前导,以及所述以太帧;
    或者,在所述第二子层在所述通道内接收所述以太帧分片以及用于标记所述以太帧分片为通道绑定的以太帧分片的标识,在所述以太帧分片与相邻以太帧或以太帧分片的帧间隔内接收所述以太帧分片序号;
    或者,在所述第二子层接收来自发送侧发的包含所述以太帧分片序号的前导,以及所述以太帧分片。
  36. 根据权利要求29至33任意一项所述通信设备,其特征在于,所述数据帧封装在吉比特无源光网络封装模式GEM帧中,所述数据帧的编号为帧序号FSN;
    所述接收单元,用于在通道内接收来发送侧在所述通道内发送的数据帧包括:在所述第二子层接收来自所述发送侧的添加了所述帧序号FSN的吉比特无源光网络封装模式GEM帧。
PCT/CN2016/108022 2016-11-30 2016-11-30 一种无源光网络的通信方法、及设备 WO2018098684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108022 WO2018098684A1 (zh) 2016-11-30 2016-11-30 一种无源光网络的通信方法、及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108022 WO2018098684A1 (zh) 2016-11-30 2016-11-30 一种无源光网络的通信方法、及设备

Publications (1)

Publication Number Publication Date
WO2018098684A1 true WO2018098684A1 (zh) 2018-06-07

Family

ID=62241100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108022 WO2018098684A1 (zh) 2016-11-30 2016-11-30 一种无源光网络的通信方法、及设备

Country Status (1)

Country Link
WO (1) WO2018098684A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866763A (zh) * 2020-12-28 2021-05-28 网宿科技股份有限公司 Hls多码率流切片的序列号生成方法、服务器及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729940A (zh) * 2008-10-22 2010-06-09 华为技术有限公司 向多路通信通道发送数据的方法及接收数据的方法
WO2014079044A1 (zh) * 2012-11-23 2014-05-30 华为技术有限公司 一种hfc网络的通信方法、装置和系统
CN105812062A (zh) * 2016-03-04 2016-07-27 烽火通信科技股份有限公司 光传送网mld接口适配方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729940A (zh) * 2008-10-22 2010-06-09 华为技术有限公司 向多路通信通道发送数据的方法及接收数据的方法
WO2014079044A1 (zh) * 2012-11-23 2014-05-30 华为技术有限公司 一种hfc网络的通信方法、装置和系统
CN105812062A (zh) * 2016-03-04 2016-07-27 烽火通信科技股份有限公司 光传送网mld接口适配方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HISADOME: "Ethernet Inverse Multiplexing Based on Aggregation at the Physical Layer", IEICE TRANSACTIONS ON COMMUNICATIONS, 30 April 2011 (2011-04-30), XP055002341 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866763A (zh) * 2020-12-28 2021-05-28 网宿科技股份有限公司 Hls多码率流切片的序列号生成方法、服务器及存储介质

Similar Documents

Publication Publication Date Title
US10666376B2 (en) High data rate extension with bonding
EP3832914A1 (en) Oam message transmission method, sending device, receiving device, and readable storage device
WO2017202158A1 (zh) 转发数据的方法和设备
EP2315397B1 (en) Method and device for adapting and bearing multiple services
US11477549B2 (en) Transmission network system, data switching and transmission method, apparatus and equipment
US20230155756A1 (en) Data Transmission Method and Device
EP2395682A1 (en) A service adaptation method and service adaptation device
KR102383297B1 (ko) 서비스 주파수를 투명하게 전송하기 위한 방법 및 디바이스
WO2011057545A1 (zh) 传输多路业务的方法和装置
CN108521343A (zh) 一种oam报文的处理方法及装置
WO2017177549A1 (zh) 无源光网络架构及其实现数据传输的方法和光网络设备
WO2019114544A1 (zh) 一种数据传送的方法、设备和系统
US11902718B2 (en) Service data transmission method, related device, and digital processing chip
WO2017206306A1 (zh) 一种数据帧发送、接收的方法和设备
EP3979662B1 (en) Message processing method and device
WO2023246416A1 (zh) 一种数据传输方法及装置
WO2018098684A1 (zh) 一种无源光网络的通信方法、及设备
WO2023109424A1 (zh) 一种数据传输的方法以及相关装置
US11902172B2 (en) Device and method for transferring identification and/or data flow control information between devices
WO2014000439A1 (zh) 基带射频接口承载传输的方法、装置和系统
US11895448B2 (en) Communication apparatus and communication method
JP7167345B2 (ja) データ伝送方法、通信機器、および記憶媒体
US8077739B2 (en) Methods, communication networks, and computer program products for communicating time division multiplexing traffic using a traffic encapsulation standard configured to support statistical multiplexing (STATMUX) traffic
US20130028264A1 (en) Packet reassembly processing
US20040114640A1 (en) System, method and device for aggregating SONET links

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922950

Country of ref document: EP

Kind code of ref document: A1