WO2018098628A1 - Bloc-batterie à modes de sortie multiples - Google Patents
Bloc-batterie à modes de sortie multiples Download PDFInfo
- Publication number
- WO2018098628A1 WO2018098628A1 PCT/CN2016/107698 CN2016107698W WO2018098628A1 WO 2018098628 A1 WO2018098628 A1 WO 2018098628A1 CN 2016107698 W CN2016107698 W CN 2016107698W WO 2018098628 A1 WO2018098628 A1 WO 2018098628A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery pack
- battery
- terminals
- output
- switching
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/247—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/213—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/269—Mechanical means for varying the arrangement of batteries or cells for different uses, e.g. for changing the number of batteries or for switching between series and parallel wiring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/284—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/296—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/503—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This invention relates to an electrical device, and in particular an energy storing device with respect to the interface between the energy storing device and other electrical devices.
- Battery-powered power tools are widely used in domestic and industrial applications, due to its mobility rendered by battery backs detachably installed to such power tools.
- the power tool usually contains a motor as an electrical load which consumes electrical power provided by the battery pack to output a driving force for completing desired works.
- the required electrical power for operating the power tool may be different depending on the output modes of the power tool.
- the output mode may be either a high power mode, delivering a higher torque on the workpiece, or a lower power mode delivering a lower torque on the workpiece.
- the current drawn from the battery needs to be higher, and vice versa.
- Conventional power tool battery packs are not able to provide such variable output currents.
- the present invention in one aspect, is a battery pack configured to be detachably installed in an electrical device.
- the battery pack contains a housing; N sets of electrically connected battery cells housed within the housing; N pairs of switching terminals; and a voltage control module.
- N is an integer.
- Two switching terminals in each one of the N pairs electrically connect to a positive output and a negative output respectively of one of the N sets of electrically connected battery cells.
- the voltage control module is electrically connected between the switching terminals and a plurality of output terminals configured on the housing.
- the voltage control module is arranged to connect the N switching terminal pairs in series or in parallel in order to output an electrical power from the battery pack to the electrical device.
- the voltage control module further includes a controller and a plurality of switching elements.
- the plurality of switching elements each is connected between two of the electrical terminals.
- the controller connects to and controls the switching actions of the plurality of switching elements.
- the switching elements include semiconductor switches which are configured on a PCB board.
- the semiconductor switches are MOSFETs.
- the number of switching elements in the voltage control module is N+1.
- the output terminals include a positive terminal and a negative terminal.
- the N sets of electrically connected battery cells are electrically isolated from each other when the battery pack is detached from the electrical device.
- each set of electrically connected battery cells outputs a voltage of 18V.
- the electrical device is a power tool.
- the electrical power outputted by the battery pack can be flexibly adjusted. For example, when a high current and low voltage output is required for a particular power tool (e.g. in case of a high output torque) , the sets of battery cells in the battery pack can be connected in parallel. When a low current and high voltage output is required for the same power tool (e.g. in case of a low output torque) , the sets of battery cells in the battery pack can be connected in series.
- the internal switch-over circuit in the battery pack there is no need for other voltage /current converting circuit in the power tool, as such operations have been completed in the battery pack. Therefore, the structural complexity of the power tool can be simplified.
- Another advantage of the present invention is that the same battery pack can be used for different types of power tools which have different voltage /current requirements.
- the battery pack is able to automatically detect the power tool type that the battery is installed to and switch to the appropriate output mode.
- the battery pack may have communication terminals which exchange data with the power tool /battery charger, and thus the battery automatically adjusts its internal circuit configuration depending on the type of the power tool /battery charger. This is an intelligent process and makes a battery pack being compatible with a full range of power tools possible.
- Fig. 1a is a perspective view of the battery pack according to a first embodiment of the present invention.
- Fig. 1b is the top view of the battery pack in Fig. 1b.
- Fig. 2a shows the perspective view of the battery pack in Fig. 1a with the housing removed to expose its internal parts.
- Fig. 2b is a side view of the battery pack internal parts in Fig. 2a.
- Fig. 3 shows the voltage control module in the battery pack connected with two power terminals among the four output terminals on a terminal holder of the batter pack.
- Fig. 4 shows the corresponding terminal holder on a power tool or battery charger for engaging the battery terminals in Fig. 3.
- Fig. 5 shows the equivalent circuit diagram of the battery pack of Fig. 1a-2b.
- Fig. 6 is the internal schematic diagram of the battery pack of Fig. 1a-2b.
- Fig. 7 shows the two sets of battery cells in the circuit of Fig. 5 connected in series.
- Fig. 8 is an equivalent circuit of that in Fig. 7.
- Fig. 9 shows the four electrical terminals in the circuit of Fig. 5 connected in series and parallel.
- Figs 10a and 10b show two different connection states of a plurality of battery cells in a battery pack according to another embodiment of the present invention.
- Fig. 11 shows a generalized connection diagram of N sets of battery cells in a battery pack with each set containing n battery cells, according to an embodiment of the present invention.
- Fig. 12a shows a terminal holder of a batter pack with two pairs of output terminals according to an embodiment of the present invention.
- Fig. 12b shows a terminal holder of a corresponding power tool for receiving the terminal holder of the battery pack in Fig. 12a.
- Fig. 13a shows a terminal holder of a batter pack with two pairs of output terminals as well as two signal pins according to an embodiment of the present invention.
- Fig. 13b shows a terminal holder of a corresponding power tool for receiving the terminal holder of the battery pack in Fig. 13a.
- Fig. 14a shows a side view of a battery pack with three sets of battery cells and three pairs of output terminals according to an embodiment of the present invention.
- Fig. 14b shows a perspective view of the battery pack in Fig. 14a.
- Fig. 14c shows a front view of the battery pack in Fig. 14a.
- Fig. 14d shows a top view of the battery pack in Fig. 14a.
- Fig. 15 shows separately the terminal holder of the battery pack in Fig. 14a.
- Couple or “connect” refers to electrical coupling or connection either directly or indirectly via one or more electrical means unless otherwise stated.
- the first embodiment of the present invention is a battery pack adapted to be used for power tools.
- the power tools are examples of electrical devices which require electrical power to perform normal functions.
- the battery pack contains a housing 20 in which all the internal components of the battery pack including the battery cells and the control circuit are housed.
- On the exterior surface of the battery pack there are mechanical features 24 such as latches or particular geometrical shape for installing the battery pack to a power tool or a battery charger.
- the mechanical features 24 are well known to people skilled in the art and will not be elaborated further.
- On the top side of the battery pack there is a region of the housing 20 used as a receptacle 26 for receiving terminal holders (not shown) on the power tool or battery charger. At the end of the receptacle 26, there are configured four output terminals 22 of the battery pack which are connected electrically with the inner circuit of the battery pack.
- Figs. 2a and 2b inside the housing of the battery pack there are a plurality of battery cells 32 installed to a frame 33.
- the frame 33 allows the individual battery cells 32 to be secured and kept in position.
- Figs. 2a and 2b there are in total ten battery cells 32.
- the connections between the battery cells 32 battery cells 32 will be described in details later.
- each battery cell 32 is mechanically to another battery cell 32 or the output terminals 22 by a connecting strip 36.
- the connecting strip 36 has an elongate shape, and at the two ends of the connecting step 36 there are contact pads 36 in firm contact with the cathode /anode of the respective battery cell 32.
- a PCB board 28 which carries a voltage control module (not shown) and other circuit components necessary for the operation of the battery pack.
- a battery terminal holder 30 fixed to the PCB board 28, on which the four output terminals 22 are secured.
- the battery terminal holder 30 contains four output terminals 22 as mentioned above, and in particular the four terminals include a positive (+) terminal 22d, a negative (-) terminal 22a, a first signal terminal (T1) 22b, and a second signal terminal (T2) 22c.
- the T1 terminal 22b and T2 terminal 22c are used to carry out data communication between the batter pack and the external power tool and/or battery charger. It is the positive terminal 22d and negative terminal 22a which are connected to the voltage control module 38.
- Each one of the four output terminals 22 has a bent shape with an end protruding forward.
- the tool terminal holder 40 which is shown in Fig. 4, contains metal clips 42 arranged in a similar side-by-side fashion as the output terminals 22. There are at least two metal clips 42 on the tool terminal holder 40 for connecting at least the positive and negative terminals 22d, 22a.
- Fig. 5 shows the internal circuit diagram of the battery pack.
- the ten battery cells 32 in the battery pack are split into two sets each containing five battery cells 32, and these five battery cells 32 are connected in series. Each battery cell 32 outputs a voltage of 3.6V so together the five battery cells 32 connected in series outputs a total voltage of 18V.
- the first set 44 of battery cells is connected to a positive switching terminal 52b and a negative switching terminal 52d respectively.
- the second set 46 of battery cells is connected to a positive switching terminal 52a and a negative switching terminal 52c respectively.
- the four switching terminals 52a-d are also denoted by “b2+” , “b1+” , “a2-” and “a1-” respectively.
- the four switching terminals 52a-d are connected to the voltage control module 38, which on the other side is connected to the four output terminals 22a-22d.
- the voltage control module 38 includes a microcontroller (MCU) 48, and three switching elements 50.
- the MCU 48 is connected to the three switching elements 50 and is configured to control the switching operations of the latter.
- N is an integer.
- N is 2
- N-1 the number of switching elements required for performing series /parallel switch-over
- Fig. 6 shows the detailed schematic diagram of the battery pack described above.
- the MCU 48 is coupled to the T2 terminal 22c and T1 terminal 22b via a communication module 54.
- the T2 terminal 22c and T1 terminal 22b can be used for the MCU 48 communicating with external power tool /battery charger, such as supplying the operating status of the battery pack, or receiving information of the power tool /charger for adjusting the switching elements 50.
- Each switching element 50 includes two MOSFETs 56.
- the first set 44 of five battery cells is connected with its positive output to b1+ terminal 52b and its negative output to a1- terminal 52d.
- the second set 46 of five battery cells is connected with its positive output to b2+ terminal 52a and its negative output to a2- terminal 52c.
- Each one of the first set 44 and second set 46 of five battery cells is also coupled with an Analog Front End (AFE) module 58, which functions to sample and provide status of the battery cells to the MCU 48.
- AFE Analog Front End
- a high side driver 60 is configured for driving the MOSFETs 56 based on signals received from the MCU 48.
- the b2+ terminal 52a is directly connected to the negative output terminal 22d, and the a1- terminal 52d is directly connected to the negative output terminal 22a.
- Fig. 7 and Fig. 8 show the circuit connections of the first set 44 and second set 46 of battery cells when they are connected in series.
- Such a circuit configuration is realized by controlling the two MOSFETs 56 between the b1+ terminal 52b and the a2-terminal 52c in Fig. 6 to be in conducting status.
- the two MOSFETs 56 between the b2+ terminal 52a and the b1+ terminal 52b, as well as the two MOSFETs 56 between the a2- terminal 52c and the a1- terminal 52d are in the cut-off status. Since all ten battery cells are now connected in series, the output voltage at the positive and negative output terminals 22d and 22a is 36V.
- Fig. 9 shows, in a simplified circuit form, how the circuit shown in Figs. 5-6 can be figured in either series or parallel connection modes.
- the box 60 shows that when the switching terminals b1+ and a2- are connected, but switching terminals b2+ and b1+ are not connected as well as switching terminals a2- and a1- are not connected, then the 2 pairs of switching terminals are connected in series, thus outputting a 36V voltage.
- the box 62 shows that when the switching terminals b1+ and a2- are not connected, but switching terminals b2+ and b1+ are connected as well as switching terminals a2- and a1- are connected, then the 2 pairs of switching terminals are connected in parallel, thus outputting a 18V voltage.
- the battery pack when outputting the 18V voltage is able to output the current twice as much as the current when outputting the 36V voltage.
- Fig. 10a shows the equivalent circuit diagram of ten battery cells 122 in a battery pack, according to another embodiment of the present invention.
- each two battery cells 122 are connected in parallel to form a set 145, and thus there are five such sets 145 in the battery pack.
- the total output voltage at positive and negative terminals 122d and 122a is 18V.
- the output voltage positive and negative terminals 122d and 122a is also 18V, but instead of having five sets of battery cells, there are only two sets 147 connected in parallel in Fig. 10b.
- the circuit configuration can be switched from that in Fig. 10a to that in Fig. 10b, or vice versa, by implementing switching elements similar to those shown in Figs. 5-6.
- Fig. 11 shows a generalized internal circuit connection of battery packs according to the present invention with a scalable battery capacity and output ratings.
- the number of sets of battery cells 232 and thus the number of pairs of switching terminals, can be represented by a variable N, where N is an integer.
- N is an integer.
- the number of battery cells 232 is n. Therefore, the total number of battery cells 232 in the battery pack is N ⁇ n, and this total number is proportional to the capacity of the battery pack. Note that there is no limit as to the value or N or n.
- all the n battery cells 232 are connected in series and each battery cell 232 has an output voltage of V.
- a first set 244 of battery cells is connected to a positive switching terminal 252b and a negative switching terminal 252d respectively.
- a second set 246 of battery cells is connected to a positive switching terminal 252a and a negative switching terminal 252c respectively.
- the four switching terminals 252a-d are also denoted by “B2+” , “B1+” , “A2-” and “A1-” respectively.
- a battery terminal holder 330 contains four output terminals 322 similar to those shown in Fig. 3, and in particular the four terminals 322 include a first positive (+) terminal 322d, a first negative (-) terminal 322a, a second positive (+) terminal 322b, and a second negative (-) terminal 322c.
- Each one of the four output terminals 322 has a bent shape with an end protruding forward, while being in sheet shapes with little thickness.
- all negative terminals 322c, 322a are arranged on one side of the battery terminal holder 330, while all the positive terminals 322d, 322b are arranged on another side of the battery terminal holder 330.
- the tool terminal holder 340 which is shown in Fig. 12b, contains four metal clips 342 arranged in a similar side-by-side fashion as the output terminals 322 on the corresponding battery terminal holder 330.
- the metal clips 342 are received in a frame 343 and are separated from each other by three dividers 341 integrally formed with the frame 343.
- Each divider 341 is in a substantially “L” shape and includes a vertical part 341a and a bottom part 341b.
- the frame 343 similarly includes vertical walls 343a and a bottom part 343b.
- the four metal clips 342 two of them include a further vertical metal pin 349, while the other two do not have such vertical metal pins.
- Figs. 13a and 13b further show another embodiment of the invention including a battery terminal holder 430 and a tool terminal holder 440.
- the tool terminal holder 440 is identical to the tool terminal holder shown in Fig. 12b.
- the battery terminal holder 430 is also largely similar to the battery terminal holder shown in Fig. 12a. Therefore, any similar structures or shapes which have been described above will not be discussed again herewith for the sake of brevity.
- a major different in the battery terminal holder 430 as compared to the battery terminal holder shown in Fig. 12a is that there are two additional signal terminals 451 in the battery terminal holder 430 between two terminals 422.
- These two signal terminals 451 each is in a L shape but with a substantial width as compared to the terminals 322 in Fig. 12a which only have minimum width.
- the width herein is defined as the span of distance along the direction where the multiple terminals are arranged.
- the two signal terminals 451 have the top surface on their open ends acting as the conductive surface for signal coupling with the power tool.
- the pins 453 are designed to perform the similar functions as terminals 422 for providing electric power from the battery pack to the power tool.
- Figs. 14a-14d and Fig. 15 show another embodiment of the present invention which includes a battery pack.
- the differences of this battery pack as compared to that illustrated in Figs. 1a-2b include that there are now three sets of battery cells 532, with the number of battery cells 532 within each set remaining five. All these battery cells 532 are accommodated in a housing (not shown) and thus the overall height of the battery pack in Figs. 14a-14e is larger than that in Figs. 1a-2b.
- the plurality of battery cells 532 is installed to a frame 533.
- the frame 533 allows the individual battery cells 532 to be secured and kept in position.
- a PCB board 528 which carries a voltage control module (not shown) and other circuit components necessary for the operation of the battery pack.
- a battery terminal holder 530 fixed to the PCB board 528, on which six output terminals 522, 551 are secured.
- the four terminals 522 include a second positive (+) terminal 522d, a second negative (-) terminal 522a, a third positive (+) terminal 522b, and a third negative (-) terminal 522c. Between the second negative (-) terminal 522a and the second positive (+) terminal 522d, There are two signal terminals 551a, 551b each is in a L shape but with a substantial width as compared to the terminals 322 in Fig. 12a which only have minimum width. The width herein is defined as the span of distance along the direction where the multiple terminals are arranged.
- the two signal terminals 551a, 551b have the top surface on their open ends acting as the conductive surface for signal coupling with the power tool.
- the pins 553a, 553b are designed to perform the similar functions as terminals 522 for providing electric power from the battery pack to the power tool.
- the electrical device described in the embodiments above is a power tool.
- energy-consuming appliances for example include light emitting devices, audio devices, or measurement instruments.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Selon la présente invention, un bloc-batterie est configuré pour être installé de manière amovible dans un dispositif électrique. Le bloc-batterie contient un boîtier ; N ensembles de cellules de batterie électriquement connectées logées à l'intérieur du boîtier ; N paires de bornes de commutation ; et un module de commande de tension. N est un nombre entier. Deux bornes de commutation dans chacune des N paires se connectent électriquement à une sortie positive et à une sortie négative respectivement de l'un des N ensembles de cellules de batterie connectées électriquement. Le module de commande de tension est connecté électriquement entre les bornes de commutation et une pluralité de bornes de sortie configurées sur le boîtier. Le module de commande de tension est agencé pour connecter les N paires de bornes de commutation en série ou en parallèle afin de fournir une puissance électrique du bloc-batterie au dispositif électrique. Le bloc-batterie est apte à réaliser un commutateur interne de connexion en série et en parallèle entre les ensembles de cellules de batterie, fournissant ainsi une grande flexibilité à la sortie de batterie.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16922913.5A EP3549229A4 (fr) | 2016-11-29 | 2016-11-29 | Bloc-batterie à modes de sortie multiples |
PCT/CN2016/107698 WO2018098628A1 (fr) | 2016-11-29 | 2016-11-29 | Bloc-batterie à modes de sortie multiples |
CN201690001772.XU CN210693472U (zh) | 2016-11-29 | 2016-11-29 | 具有多种输出模式的电池组 |
TW106141012A TW201820741A (zh) | 2016-11-29 | 2017-11-24 | 具有多種輸出模式的電池組 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/107698 WO2018098628A1 (fr) | 2016-11-29 | 2016-11-29 | Bloc-batterie à modes de sortie multiples |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018098628A1 true WO2018098628A1 (fr) | 2018-06-07 |
Family
ID=62241039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/107698 WO2018098628A1 (fr) | 2016-11-29 | 2016-11-29 | Bloc-batterie à modes de sortie multiples |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3549229A4 (fr) |
CN (1) | CN210693472U (fr) |
TW (1) | TW201820741A (fr) |
WO (1) | WO2018098628A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109599526A (zh) * | 2018-12-20 | 2019-04-09 | 常州格力博有限公司 | 电能储存装置及电动工具 |
CN110783651A (zh) * | 2019-12-09 | 2020-02-11 | 常州格力博有限公司 | 电能储存装置、电动工具系统及充电装置 |
EP3629443A4 (fr) * | 2018-07-25 | 2020-07-08 | Swit Electronics Co., Ltd. | Batterie et composant externe |
EP3890145A4 (fr) * | 2018-12-20 | 2021-10-06 | Globe (Jiangsu) Co., Ltd. | Dispositif de stockage d'énergie et système d'outil électrique |
US11333713B2 (en) | 2019-09-24 | 2022-05-17 | Globe (Jiangsu) Co., Ltd | Voltage sampling circuit and method for sampling voltage |
US11450896B2 (en) * | 2020-09-30 | 2022-09-20 | Nanjing Chervon Industry Co., Ltd. | Battery pack, power tool system, and charging system |
US12021400B2 (en) | 2019-10-12 | 2024-06-25 | Globe (Jiangsu) Co., Ltd | Voltage balancing system for balancing unbalanced battery pack voltage caused by non-cascade of analog front ends |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113508491B (zh) * | 2019-03-01 | 2023-06-30 | 米沃奇电动工具公司 | 电动工具和用于与其一起使用的电池组 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200832795A (en) * | 2007-01-29 | 2008-08-01 | Syspotek Corp | Fuel cell apparatus containing series/parallel connected circuit |
CN101924379A (zh) * | 2010-04-12 | 2010-12-22 | 常州格力博工具有限公司 | 电池包及电池包与电气装置的组合 |
CN102570777A (zh) * | 2010-11-12 | 2012-07-11 | 索尼公司 | 串并联切换系统、电力供给装置及电力供给控制装置 |
CN102651566A (zh) * | 2011-02-25 | 2012-08-29 | 威斯科数据安全国际有限公司 | 用于强认证令牌的并串联电池切换和电压调节电路及方法 |
CN104701580A (zh) * | 2013-12-10 | 2015-06-10 | 联想(北京)有限公司 | 一种电池和电源切换方法 |
CN105895840A (zh) * | 2015-02-13 | 2016-08-24 | 株式会社牧田 | 电池组 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014217991A1 (de) * | 2014-09-09 | 2016-03-10 | Robert Bosch Gmbh | Zellenträger für einen Akkupack einer Handwerkzeugmaschine |
DE102016203431A1 (de) * | 2015-03-06 | 2016-09-08 | Robert Bosch Gmbh | Akkupack für eine Handwerkzeugmaschine und Verfahren zur Herstellung eines Akkupacks für eine Handwerkzeugmaschine |
-
2016
- 2016-11-29 CN CN201690001772.XU patent/CN210693472U/zh active Active
- 2016-11-29 WO PCT/CN2016/107698 patent/WO2018098628A1/fr unknown
- 2016-11-29 EP EP16922913.5A patent/EP3549229A4/fr active Pending
-
2017
- 2017-11-24 TW TW106141012A patent/TW201820741A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200832795A (en) * | 2007-01-29 | 2008-08-01 | Syspotek Corp | Fuel cell apparatus containing series/parallel connected circuit |
CN101924379A (zh) * | 2010-04-12 | 2010-12-22 | 常州格力博工具有限公司 | 电池包及电池包与电气装置的组合 |
CN102570777A (zh) * | 2010-11-12 | 2012-07-11 | 索尼公司 | 串并联切换系统、电力供给装置及电力供给控制装置 |
CN102651566A (zh) * | 2011-02-25 | 2012-08-29 | 威斯科数据安全国际有限公司 | 用于强认证令牌的并串联电池切换和电压调节电路及方法 |
CN104701580A (zh) * | 2013-12-10 | 2015-06-10 | 联想(北京)有限公司 | 一种电池和电源切换方法 |
CN105895840A (zh) * | 2015-02-13 | 2016-08-24 | 株式会社牧田 | 电池组 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3549229A4 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3629443A4 (fr) * | 2018-07-25 | 2020-07-08 | Swit Electronics Co., Ltd. | Batterie et composant externe |
US11641043B2 (en) | 2018-12-20 | 2023-05-02 | Globe (jiangsu) Co., Ltd. | Electric energy storage device and electric tool system |
US12095108B2 (en) | 2018-12-20 | 2024-09-17 | Globe (jiangsu) Co., Ltd. | Electric energy storage device and electric tool system |
CN109599526B (zh) * | 2018-12-20 | 2024-03-12 | 格力博(江苏)股份有限公司 | 电能储存装置及电动工具 |
EP3890145A4 (fr) * | 2018-12-20 | 2021-10-06 | Globe (Jiangsu) Co., Ltd. | Dispositif de stockage d'énergie et système d'outil électrique |
EP3890144A4 (fr) * | 2018-12-20 | 2021-10-06 | Globe (Jiangsu) Co., Ltd. | Dispositif de stockage d'énergie électrique et système d'outil électrique |
EP3890084A4 (fr) * | 2018-12-20 | 2021-10-06 | Globe (Jiangsu) Co., Ltd. | Appareil de stockage d'énergie électrique et système d'outil électrique |
EP3890146A4 (fr) * | 2018-12-20 | 2022-03-09 | Globe (Jiangsu) Co., Ltd. | Dispositif de stockage d'énergie électrique et système d'outil électrique |
CN109599526A (zh) * | 2018-12-20 | 2019-04-09 | 常州格力博有限公司 | 电能储存装置及电动工具 |
US11855299B2 (en) | 2018-12-20 | 2023-12-26 | Globe (jiangsu) Co., Ltd. | Electric energy storage device and electric tool system |
US11637347B2 (en) | 2018-12-20 | 2023-04-25 | Globe (jiangsu) Co., Ltd. | Electric energy storage device and electric tool system |
US11333713B2 (en) | 2019-09-24 | 2022-05-17 | Globe (Jiangsu) Co., Ltd | Voltage sampling circuit and method for sampling voltage |
US12021400B2 (en) | 2019-10-12 | 2024-06-25 | Globe (Jiangsu) Co., Ltd | Voltage balancing system for balancing unbalanced battery pack voltage caused by non-cascade of analog front ends |
US11837702B2 (en) | 2019-12-09 | 2023-12-05 | Globe (Jiangsu) Co., Ltd | Electric energy storage device, power tool system and charging system |
EP3836343A1 (fr) * | 2019-12-09 | 2021-06-16 | Globe (Jiangsu) Co., Ltd. | Dispositif de stockage d'énergie électrique, système d'outil électrique et système de chargement |
CN110783651A (zh) * | 2019-12-09 | 2020-02-11 | 常州格力博有限公司 | 电能储存装置、电动工具系统及充电装置 |
US11450896B2 (en) * | 2020-09-30 | 2022-09-20 | Nanjing Chervon Industry Co., Ltd. | Battery pack, power tool system, and charging system |
US12002931B2 (en) | 2020-09-30 | 2024-06-04 | Nanjing Chervon Industry Co., Ltd. | Battery pack, power tool system, and charging system |
Also Published As
Publication number | Publication date |
---|---|
EP3549229A4 (fr) | 2020-09-23 |
CN210693472U (zh) | 2020-06-05 |
TW201820741A (zh) | 2018-06-01 |
EP3549229A1 (fr) | 2019-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018098628A1 (fr) | Bloc-batterie à modes de sortie multiples | |
US11664540B2 (en) | Power tool system and battery pack thereof | |
JP5099569B1 (ja) | 直並列切り替え式セル電圧バランス回路のスイッチをmosfetで構成した回路及びその駆動回路 | |
US5596236A (en) | Motor capable of using high or low voltage | |
US7592781B2 (en) | Charger control circuit with automatic polarity selection | |
CN212366135U (zh) | 电池包、工具系统及充电系统 | |
CN211062817U (zh) | 电池组 | |
JP2006211778A (ja) | 多機能ニッケル水素またはニッケルカドミウム電池充電器及び緊急給電器 | |
CN111816819A (zh) | 电池包、工具系统及充电系统 | |
WO2020006701A1 (fr) | Chargeur de batterie destiné à de multiples blocs-batteries | |
WO2020066904A1 (fr) | Adaptateur et système de dispositif électrique | |
US20170125777A1 (en) | Battery pack | |
CN211743200U (zh) | 电池模块和可扩展电池系统以及电驱动机器 | |
JP2016513352A (ja) | バッテリーパック及びその充電制御方法 | |
CN110679004A (zh) | 蓄电池单元 | |
JP5809592B2 (ja) | 電源装置 | |
CN212366136U (zh) | 电池包、工具系统及充电系统 | |
EP3705337A1 (fr) | Connecteur de charge, dispositif de charge, kit et procédé | |
CN107874319B (zh) | 电子烟及其电源结构 | |
JP6998755B2 (ja) | 電気機器取付ユニット及び電気機器ユニット | |
US10319967B2 (en) | Battery module | |
CN210200846U (zh) | 一种电池盒 | |
AU2017101871A4 (en) | Scalable battery system | |
CN113097625B (zh) | 一种堆叠式标准化的电池模组 | |
CN220188591U (zh) | 一种直流电源正负极切换装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16922913 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016922913 Country of ref document: EP Effective date: 20190701 |