WO2018097693A2 - 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 - Google Patents

영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 Download PDF

Info

Publication number
WO2018097693A2
WO2018097693A2 PCT/KR2017/013673 KR2017013673W WO2018097693A2 WO 2018097693 A2 WO2018097693 A2 WO 2018097693A2 KR 2017013673 W KR2017013673 W KR 2017013673W WO 2018097693 A2 WO2018097693 A2 WO 2018097693A2
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
block
prediction
current block
information
Prior art date
Application number
PCT/KR2017/013673
Other languages
English (en)
French (fr)
Other versions
WO2018097693A3 (ko
Inventor
이하현
강정원
고현석
임성창
이진호
전동산
조승현
김휘용
최진수
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202311524467.1A priority Critical patent/CN117528108A/zh
Priority to CN202311529514.1A priority patent/CN117528109A/zh
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to CN201780073403.0A priority patent/CN109997363B/zh
Priority to EP17874753.1A priority patent/EP3547687A4/en
Priority to CN202311523399.7A priority patent/CN117528106A/zh
Priority to CN202311529594.0A priority patent/CN117528110A/zh
Priority to CN202311530058.2A priority patent/CN117528111A/zh
Priority to JP2019528067A priority patent/JP7044778B2/ja
Priority to CN202311524273.1A priority patent/CN117528107A/zh
Priority to US16/461,388 priority patent/US11343530B2/en
Priority to CN202311521182.2A priority patent/CN117528105A/zh
Publication of WO2018097693A2 publication Critical patent/WO2018097693A2/ko
Publication of WO2018097693A3 publication Critical patent/WO2018097693A3/ko
Priority to JP2021210557A priority patent/JP7253844B2/ja
Priority to US17/723,725 priority patent/US20220256187A1/en
Priority to US18/346,732 priority patent/US20230353776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/521Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명은 영상 부호화 및 복호화 방법에 관한 것이다. 이를 위한 영상 복호화 방법은, 현재 블록의 머지 후보 리스트에서 초기 움직임 벡터를 유도하는 단계, 상기 초기 움직임 벡터를 이용하여 보정된 움직임 벡터를 유도하는 단계 및 상기 보정된 움직임 벡터를 이용하여 상기 현재 블록의 예측 블록을 생성하는 단계를 포함할 수 있다.

Description

영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
본 발명은 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체에 관한 것이다. 구체적으로, 본 발명은 움직임 벡터 보정을 이용한 영상 부호화/복호화 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 더 높은 해상도 및 화질을 갖는 영상에 대한 고효율 영상 부호화(encoding)/복호화(decoding) 기술이 요구된다.
영상 압축 기술로 현재 픽처의 이전 또는 이후 픽처로부터 현재 픽처에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽처 내의 화소 정보를 이용하여 현재 픽처에 포함된 화소값을 예측하는 화면 내 예측 기술, 잔여 신호의 에너지를 압축하기 위한 변환 및 양자화 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
본 발명은 영상의 부호화/복호화 효율을 향상시키기 위해 움직임 벡터를 보정하는 영상 복호화/부호화 방법 및 장치를 제공할 수 있다.
본 발명에 따른, 영상 복호화 방법은, 현재 블록의 머지 후보 리스트에서 초기 움직임 벡터를 유도하는 단계, 상기 초기 움직임 벡터를 이용하여 보정된 움직임 벡터를 유도하는 단계 및 상기 보정된 움직임 벡터를 이용하여 상기 현재 블록의 예측 블록을 생성하는 단계를 포함할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 초기 움직임 벡터를 유도하는 단계는, 머지 색인 정보가 지시하는 머지 후보로부터 상기 초기 움직임 벡터를 유도할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 초기 움직임 벡터를 유도하는 단계는, 상기 현재 블록이 양예측이 가능한 블록이고 상기 머지 색인 정보가 지시하는 머지 후보에 한 예측 방향의 움직임 정보만 존재하는 경우, 상기 존재하는 움직임 정보의 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 예측 방향의 초기 움직임 벡터로 유도할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 보정된 움직임 벡터를 유도하는 단계는, 상기 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿과의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 탐색하고, 상기 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 상기 보정된 움직임 벡터로 유도할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 소정의 탐색 영역은, 상기 초기 움직임 벡터가 지시하는 참조 픽처의 픽셀 위치를 중심으로 크로스, 정사각형, 다이아몬드 및 헥사곤 형태 중 적어도 한 형태를 가지는 영역으로 결정될 수 있다.
상기 영상 복호화 방법에 있어서, 상기 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿간의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터는, 템플릿간의 왜곡값 및 움직임 벡터에 대한 비용값 중 적어도 하나에 기초하여 탐색될 수 있다.
상기 영상 복호화 방법에 있어서, 상기 보정된 움직임 벡터를 유도하는 단계는, 상기 초기 움직임 벡터가 지시하는 적어도 하나의 예측 블록에 기초하여 보정된 움직임 벡터를 유도할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 보정된 움직임 벡터를 유도하는 단계는, 상기 현재 블록이 양방향 예측 블록인 경우, 제1예측 방향 초기 움직임 벡터가 지시하는 제1 예측 블록 및 제2 예측 방향 초기 움직임 벡터가 지시하는 제2 예측 블록의 가중합을 템플릿으로 설정하고, 상기 제1예측 방향 초기 움직임 벡터 및 상기 제2예측 방향 초기 움직임 벡터 중 적어도 하나가 지시하는 적어도 하나의 참조 픽처의 탐색 영역을 설정하여, 상기 탐색 영역내에서 상기 템플릿과의 차이를 최소로 하는 제3 예측 블록을 지시하는 움직임 벡터를 보정된 움직임 벡터로 유도할 수 있다. 여기서, 제1예측 방향 초기 움직임 벡터가 지시하는 제1 탐색 영역 및 제2예측 방향 초기 움직임 벡터가 지시하는 제2 탐색 영역이 설정된 경우, 상기 제1 탐색 영역 및 상기 제2 탐색 영역내에서 템플릿과 차이를 최소로 하는 각각의 예측 블록을 지시하는 움직임 벡터들을 이용하여 보정된 움직임 벡터를 유도할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 제1예측 방향 초기 움직임 벡터 또는 상기 제2예측 방향 초기 움직임 벡터 중 어느 하나가 존재하지 않는 경우, 존재하는 초기 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 초기 움직임 벡터를 유도할 수 있다.
상기 영상 복호화 방법에 있어서, 상기 현재 블록은 복호화 대상 블록의 하위 블록일 수 있다.
본 발명에 따른, 영상 부호화 방법은, 현재 블록의 머지 후보 리스트에서 초기 움직임 벡터를 유도하는 단계, 상기 초기 움직임 벡터를 이용하여 보정된 움직임 벡터를 유도하는 단계 및 상기 보정된 움직임 벡터를 이용하여 상기 현재 블록의 예측 블록을 생성하는 단계를 포함할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 초기 움직임 벡터를 유도하는 단계는, 머지 색인 정보가 지시하는 머지 후보로부터 상기 초기 움직임 벡터를 유도할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 초기 움직임 벡터를 유도하는 단계는, 상기 현재 블록이 양예측이 가능한 블록이고 상기 머지 색인 정보가 지시하는 머지 후보에 한 예측 방향의 움직임 정보만 존재하는 경우, 상기 존재하는 움직임 정보의 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 예측 방향의 초기 움직임 벡터로 유도할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 보정된 움직임 벡터를 유도하는 단계는, 상기 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿과의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 탐색하고, 상기 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 상기 보정된 움직임 벡터로 유도할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 소정의 탐색 영역은, 상기 초기 움직임 벡터가 지시하는 참조 픽처의 픽셀 위치를 중심으로 크로스, 정사각형, 다이아몬드 및 헥사곤 형태 중 적어도 한 형태를 가지는 영역으로 결정될 수 있다.
상기 영상 부호화 방법에 있어서, 상기 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿간의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터는, 템플릿간의 왜곡값 및 움직임 벡터에 대한 비용값 중 적어도 하나에 기초하여 탐색될 수 있다.
상기 영상 부호화 방법에 있어서, 상기 보정된 움직임 벡터를 유도하는 단계는, 상기 초기 움직임 벡터가 지시하는 적어도 하나의 예측 블록에 기초하여 보정된 움직임 벡터를 유도할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 보정된 움직임 벡터를 유도하는 단계는, 상기 현재 블록이 양방향 예측 블록인 경우, 제1예측 방향 초기 움직임 벡터가 지시하는 제1 예측 블록 및 제2 예측 방향 초기 움직임 벡터가 지시하는 제2 예측 블록의 가중합을 템플릿으로 설정하고, 상기 제1예측 방향 초기 움직임 벡터 또는 상기 제2예측 방향 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역을 설정하여, 상기 탐색 영역내에서 상기 템플릿과의 차이를 최소로 하는 제3 예측 블록을 지시하는 움직임 벡터를 보정된 움직임 벡터로 유도할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 제1예측 방향 초기 움직임 벡터 또는 상기 제2예측 방향 초기 움직임 벡터 중 어느 하나가 존재하지 않는 경우, 존재하는 초기 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 초기 움직임 벡터를 유도할 수 있다.
상기 영상 부호화 방법에 있어서, 상기 현재 블록은 복호화 대상 블록의 하위 블록일 수 있다.
본 발명에 따른, 기록 매체는 현재 블록의 머지 후보 리스트에서 초기 움직임 벡터를 유도하는 단계, 상기 초기 움직임 벡터를 이용하여 보정된 움직임 벡터를 유도하는 단계 및 상기 보정된 움직임 벡터를 이용하여 상기 현재 블록의 예측 블록을 생성하는 단계를 포함하는 영상 복호화 방법으로 생성된 비트스트림을 저장할 수 있다.
본 발명에 따르면, 압축 효율이 향상된 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.
본 발명에 따르면, 영상의 부호화 및 복호화 효율을 향상시킬 수 있다.
본 발명에 따르면, 영상의 부호화기 및 복호화기의 계산 복잡도를 감소시킬 수 있다.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다.
도 4는 화면 간 예측 과정의 실시예를 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이다.
도 6은 본 발명의 일 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 7은 현재 블록의 공간적 머지 후보 및 시간적 머지 후보를 유도하는 예를 설명하기 위한 도면이다.
도 8은 추가적인 머지 후보 리스트를 구성하기 위한 공간적 주변 블록 및 시간적 주변 블록을 나타내는 도면이다.
도 9 및 도 10은 초기 움직임 벡터 리스트 구성을 설명하기 위한 도면이다.
도 11 은 머지 색인 정보를 이용하여 초기 움직임 벡터를 유도하는 방법을 설명하기 위한 도면이다.
도 12는 움직임 벡터 미러링을 설명하기 위한 도면이다.
도 13은 움직임 벡터 스케일링을 설명하기 위한 도면이다.
도 14는 양 예측이 가능한 블록에서 L0 또는 L1 리스트에 해당하는 하나의 움직임 벡터만 존재하는 경우, 추가 움직임 벡터를 유도하는 일 예를 설명하기 위한 도면이다.
도 15는 양 예측이 가능한 블록에서 양방향 움직임 정보를 가지고 있는 머지 후보를 초기 움직임 벡터로 선택하는 일 예를 설명하기 위한 도면이다.
도 16 내지 도 21은 본 발명의 일 실시 예에 따른 템플릿을 설명하기 위한 도면이다.
도 22는 템플릿을 이용하여 초기 움직임 벡터를 보정하는 일 예를 설명하기 위한 도면이다.
도 23 내지 도 25는 현재 블록의 예측 블록들을 이용하여 초기 움직임 벡터를 보정하는 일 예를 설명하기 위한 도면이다.
도 26 및 도 27은 하위 블록을 설명하기 위한 도면이다.
도 28은 하위 블록 단위의 움직임 벡터 보정을 위한 초기 움직임 벡터를 설정하는 일 예를 설명하기 위한 도면이다.
도 29는 본 발명의 일 실시 예에 따른 영상 복호화 방법을 설명하기 위한 흐름도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. 후술하는 예시적 실시예들에 대한 상세한 설명은, 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 실시예를 실시할 수 있기에 충분하도록 상세히 설명된다. 다양한 실시예들은 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 실시예의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 예시적 실시예들의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
본 발명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 발명의 어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 즉, 본 발명에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.
본 발명의 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하고, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
또한, 이하에서 영상은 동영상(video)을 구성하는 하나의 픽처(picture)를 의미할 수 있으며, 동영상 자체를 나타낼 수도 있다. 예를 들면, "영상의 부호화 및/또는 복호화"는 "비디오의 부호화 및/또는 복호화"를 의미할 수 있으며, "비디오를 구성하는 영상들 중 하나의 영상의 부호화 및/또는 복호화"를 의미할 수도 있다. 여기서, 픽처는 영상과 동일한 의미를 가질 수 있다.
용어 설명
부호화기(Encoder): 부호화(Encoding)를 수행하는 장치를 의미한다.
복호화기(Decoder): 복호화(Decoding)를 수행하는 장치를 의미한다.
블록(Block): 샘플(Sample)의 MxN 배열이다. 여기서 M과 N은 양의 정수 값을 의미하며, 블록은 흔히 2차원 형태의 샘플 배열을 의미할 수 있다. 블록은 유닛을 의미할 수 있다. 현재 블록은 부호화 시 부호화의 대상이 되는 부호화 대상 블록, 복호화 시 복호화의 대상이 되는 복호화 대상 블록을 의미할 수 있다. 또한, 현재 블록은 부호화 블록, 예측 블록, 잔여 블록, 변환 블록 중 적어도 하나일 수 있다.
샘플(Sample): 블록을 구성하는 기본 단위이다. 비트 깊이 (bit depth, Bd)에 따라 0부터 2Bd - 1까지의 값으로 표현될 수 있다. 본 발명에서 샘플은 화소 또는 픽셀과 같은 의미로 사용될 수 있다.
유닛(Unit): 영상 부호화 및 복호화의 단위를 의미한다. 영상의 부호화 및 복호화에 있어서, 유닛은 하나의 영상을 분할한 영역일 수 있다. 또한, 유닛은 하나의 영상을 세분화 된 유닛으로 분할하여 부호화 혹은 복호화 할 때 그 분할된 단위를 의미할 수 있다. 영상의 부호화 및 복호화에 있어서, 유닛 별로 기정의된 처리가 수행될 수 있다. 하나의 유닛은 유닛에 비해 더 작은 크기를 갖는 하위 유닛으로 더 분할될 수 있다. 기능에 따라서, 유닛은 블록(Block), 매크로블록(Macroblock), 부호화 트리 유닛(Coding Tree Unit), 부호화 트리 블록(Coding Tree Block), 부호화 유닛(Coding Unit), 부호화 블록(Coding Block), 예측 유닛(Prediction Unit), 예측 블록(Prediction Block), 잔여 유닛(Residual Unit), 잔여 블록(Residual Block), 변환 유닛(Transform Unit), 변환 블록(Transform Block) 등을 의미할 수 있다. 또한, 유닛은 블록과 구분하여 지칭하기 위해 휘도(Luma) 성분 블록과 그에 대응하는 색차(Chroma) 성분 블록 그리고 각 블록에 대한 구문 요소를 포함한 것을 의미할 수 있다. 유닛은 다양한 크기와 형태를 가질 수 있으며, 특히 유닛의 형태는 직사각형뿐만 아니라 정사각형, 사다리꼴, 삼각형, 오각형 등 2차원으로 표현될 수 있는 기하학적 도형을 포함할 수 있다. 또한, 유닛 정보는 부호화 유닛, 예측 유닛, 잔여 유닛, 변환 유닛 등을 가리키는 유닛의 타입, 유닛의 크기, 유닛의 깊이, 유닛의 부호화 및 복호화 순서 등 중 적어도 하나 이상을 포함할 수 있다.
부호화 트리 유닛(Coding Tree Unit): 하나의 휘도 성분(Y) 부호화 트리 블록과 관련된 두 색차 성분(Cb, Cr) 부호화 트리 블록들로 구성된다. 또한, 상기 블록들과 각 블록에 대한 구문 요소를 포함한 것을 의미할 수도 있다. 각 부호화 트리 유닛은 부호화 유닛, 예측 유닛, 변환 유닛 등의 하위 유닛을 구성하기 위하여 쿼드트리(quad tree), 이진트리(binary tree) 등 하나 이상의 분할 방식을 이용하여 분할될 수 있다. 입력 영상의 분할처럼 영상의 복/부호화 과정에서 처리 단위가 되는 픽셀 블록을 지칭하기 위한 용어로 사용될 수 있다.
부호화 트리 블록(Coding Tree Block): Y 부호화 트리 블록, Cb 부호화 트리 블록, Cr 부호화 트리 블록 중 어느 하나를 지칭하기 위한 용어로 사용될 수 있다.
주변 블록(Neighbor block): 현재 블록에 인접한 블록을 의미한다. 현재 블록에 인접한 블록은 현재 블록에 경계가 맞닿은 블록 또는 현재 블록으로부터 소정의 거리 내에 위치한 블록을 의미할 수 있다. 주변 블록은 현재 블록의 꼭지점에 인접한 블록을 의미할 수 있다. 여기에서, 현재 블록의 꼭지점에 인접한 블록이란, 현재 블록에 가로로 인접한 이웃 블록에 세로로 인접한 블록 또는 현재 블록에 세로로 인접한 이웃 블록에 가로로 인접한 블록일 수 있다. 주변 블록은 복원된 주변 블록을 의미할 수도 있다.
복원된 주변 블록(Reconstructed Neighbor Block): 현재 블록 주변에 공간적(Spatial)/시간적(Temporal)으로 이미 부호화 혹은 복호화된 주변 블록을 의미한다. 이때, 복원된 주변 블록은 복원된 주변 유닛을 의미할 수 있다. 복원된 공간적 주변 블록은 현재 픽처 내의 블록이면서 부호화 및/또는 복호화를 통해 이미 복원된 블록일 수 있다. 복원된 시간적 주변 블록은 참조 픽처 내에서 현재 픽처의 현재 블록과 동일한 위치의 복원된 블록 또는 그 주변 블록일 수 있다.
유닛 깊이(Depth): 유닛이 분할된 정도를 의미한다. 트리 구조(Tree Structure)에서 루트 노드(Root Node)는 깊이가 가장 얕고, 리프 노드(Leaf Node)는 깊이가 가장 깊다고 할 수 있다. 또한, 유닛을 트리 구조로 표현했을 때 유닛이 존재하는 레벨(Level)이 유닛 깊이를 의미할 수 있다.
비트스트림(Bitstream): 부호화된 영상 정보를 포함하는 비트의 열을 의미한다.
파라미터 세트(Parameter Set): 비트스트림 내의 구조 중 헤더 정보에 해당한다. 비디오 파라미터 세트(video parameter set), 시퀀스 파라미터 세트(sequence parameter set), 픽처 파라미터 세트(picture parameter set), 적응 파라미터 세트(adaptation parameter set) 중 적어도 하나가 파라미터 세트에 포함될 수 있다. 또한, 파라미터 세트는 슬라이스(slice) 헤더 및 타일(tile) 헤더 정보를 포함할 수도 있다.
파싱(Parsing): 비트스트림을 엔트로피 복호화하여 구문 요소(Syntax Element)의 값을 결정하는 것을 의미하거나, 엔트로피 복호화 자체를 의미할 수 있다.
심볼(Symbol): 부호화/복호화 대상 유닛의 구문 요소, 부호화 파라미터(coding parameter), 변환 계수(Transform Coefficient)의 값 등 중 적어도 하나를 의미할 수 있다. 또한, 심볼은 엔트로피 부호화의 대상 혹은 엔트로피 복호화의 결과를 의미할 수 있다.
예측 유닛(Prediction Unit): 화면 간 예측, 화면 내 예측, 화면 간 보상, 화면 내 보상, 움직임 보상 등 예측을 수행할 때의 기본 유닛을 의미한다. 하나의 예측 유닛은 크기가 작은 복수의 파티션(Partition) 또는 하위 예측 유닛으로 분할 될 수도 있다.
예측 유닛 파티션(Prediction Unit Partition): 예측 유닛이 분할된 형태를 의미한다.
참조 영상 리스트(Reference Picture List): 화면 간 예측 혹은 움직임 보상에 사용되는 하나 이상의 참조 영상이 포함된 리스트를 의미한다. 참조 영상 리스트의 종류는 LC (List Combined), L0 (List 0), L1 (List 1), L2 (List 2), L3 (List 3) 등이 있을 수 있으며, 화면 간 예측에는 1개 이상의 참조 영상 리스트가 사용될 수 있다.
화면 간 예측 지시자(Inter Prediction Indicator): 현재 블록의 화면 간 예측 방향(단방향 예측, 쌍방향 예측 등)을 의미할 수 있다. 또는, 현재 블록의 예측 블록을 생성할 때 사용되는 참조 영상의 개수를 의미할 수 있다. 또는, 현재 블록에 대해 화면 간 예측 혹은 움직임 보상을 수행할 때 사용되는 예측 블록의 개수를 의미할 수 있다.
참조 영상 색인(Reference Picture Index): 참조 영상 리스트에서 특정 참조 영상을 지시하는 색인을 의미한다.
참조 영상(Reference Picture): 화면 간 예측 혹은 움직임 보상을 위해서 특정 블록이 참조하는 영상을 의미할 수 있다.
움직임 벡터(Motion Vector): 화면 간 예측 혹은 움직임 보상에 사용되는 2차원 벡터이며, 부호화/복호화 대상 영상과 참조 영상 사이의 오프셋을 의미할 수 있다. 예를 들어, (mvX, mvY)는 움직임 벡터를 나타낼 수 있으며, mvX는 가로(horizontal) 성분, mvY는 세로(vertical) 성분을 나타낼 수 있다.
움직임 벡터 후보(Motion Vector Candidate): 움직임 벡터를 예측할 때 예측 후보가 되는 블록 혹은 그 블록의 움직임 벡터를 의미한다. 또한, 움직임 벡터 후보는 움직임 벡터 후보 리스트에 포함될 수 있다.
움직임 벡터 후보 리스트(Motion Vector Candidate List): 움직임 벡터 후보를 이용하여 구성된 리스트를 의미할 수 있다.
움직임 벡터 후보 색인(Motion Vector Candidate Index): 움직임 벡터 후보 리스트 내의 움직임 벡터 후보를 가리키는 지시자를 의미한다. 움직임 벡터 예측기(Motion Vector Predictor)의 색인(index)이라고도 할 수 있다.
움직임 정보(Motion Information): 움직임 벡터, 참조 영상 색인, 화면 간 예측 지시자(Inter Prediction Indicator) 뿐만 아니라 참조 영상 리스트 정보, 참조 영상, 움직임 벡터 후보, 움직임 벡터 후보 색인, 머지 후보, 머지 색인 등 중 적어도 하나를 포함하는 정보를 의미할 수 있다.
머지 후보 리스트(Merge Candidate List): 머지 후보를 이용하여 구성된 리스트를 의미한다.
머지 후보(Merge Candidate): 공간적 머지 후보, 시간적 머지 후보, 조합된 머지 후보, 조합 양예측 머지 후보, 제로 머지 후보 등을 의미한다. 머지 후보는 화면 간 예측 지시자, 각 리스트에 대한 참조 영상 색인, 움직임 벡터 등의 움직임 정보를 포함할 수 있다.
머지 색인(Merge Index): 머지 후보 리스트 내 머지 후보를 지시하는 정보를 의미한다. 또한, 머지 색인은 공간적/시간적으로 현재 블록과 인접하게 복원된 블록들 중 머지 후보를 유도한 블록을 지시할 수 있다. 또한, 머지 색인은 머지 후보가 가지는 움직임 정보 중 적어도 하나를 지시할 수 있다.
변환 유닛(Transform Unit): 변환, 역변환, 양자화, 역양자화, 변환 계수 부호화/복호화와 같이 잔여 신호(residual signal) 부호화/복호화를 수행할 때의 기본 유닛을 의미한다. 하나의 변환 유닛은 분할되어 크기가 작은 복수의 변환 유닛으로 분할될 수 있다.
스케일링(Scaling): 변환 계수 레벨에 인수를 곱하는 과정을 의미한다. 변환 계수 레벨에 대한 스케일링의 결과로 변환 계수를 생성할 수 있다. 스케일링을 역양자화(dequantization)라고도 부를 수 있다.
양자화 매개변수(Quantization Parameter): 양자화에서 변환 계수에 대해 변환 계수 레벨(transform coefficient level)을 생성할 때 사용하는 값을 의미할 수 있다. 또는, 역양자화에서 변환 계수 레벨을 스케일링(scaling)하여 변환 계수를 생성할 때 사용하는 값을 의미할 수도 있다. 양자화 매개변수는 양자화 스텝 크기(step size)에 매핑된 값일 수 있다.
잔여 양자화 매개변수(Delta Quantization Parameter): 예측된 양자화 매개변수와 부호화/복호화 대상 유닛의 양자화 매개변수의 차분된 값을 의미한다.
스캔(Scan): 블록 혹은 행렬 내 계수의 순서를 정렬하는 방법을 의미한다. 예를 들어, 2차원 배열을 1차원 배열 형태로 정렬하는 것을 스캔이라고 한다. 또는, 1차원 배열을 2차원 배열 형태로 정렬하는 것도 스캔 혹은 역 스캔(Inverse Scan)이라고 부를 수 있다.
변환 계수(Transform Coefficient): 부호화기에서 변환을 수행하고 나서 생성된 계수 값을 의미한다. 또는, 복호화기에서 엔트로피 복호화 및 역양자화 중 적어도 하나를 수행하고 나서 생성된 계수 값을 의미할 수도 있다.변환 계수 또는 잔여 신호에 양자화를 적용한 양자화된 레벨 또는 양자화된 변환 계수 레벨도 변환 계수의 의미에 포함될 수 있다.
양자화된 레벨(Quantized Level): 부호화기에서 변환 계수 또는 잔여 신호에 양자화를 수행하여 생성된 값을 의미한다. 또는, 복호화기에서 역양자화를 수행하기 전 역양자화의 대상이 되는 값을 의미할 수도 있다. 유사하게, 변환 및 양자화의 결과인 양자화된 변환 계수 레벨도 양자화된 레벨의 의미에 포함될 수 있다.
넌제로 변환 계수(Non-zero Transform Coefficient): 값의 크기가 0이 아닌 변환 계수 혹은 값의 크기가 0이 아닌 변환 계수 레벨을 의미한다.
양자화 행렬(Quantization Matrix): 영상의 주관적 화질 혹은 객관적 화질을 향상시키기 위해서 양자화 혹은 역양자화 과정에서 이용하는 행렬을 의미한다. 양자화 행렬을 스케일링 리스트(scaling list)라고도 부를 수 있다.
양자화 행렬 계수(Quantization Matrix Coefficient): 양자화 행렬 내의 각 원소(element)를 의미한다. 양자화 행렬 계수를 행렬 계수(matrix coefficient)라고도 할 수 있다.
기본 행렬(Default Matrix): 부호화기와 복호화기에서 미리 정의되어 있는 소정의 양자화 행렬을 의미한다.
비 기본 행렬(Non-default Matrix): 부호화기와 복호화기에서 미리 정의되지 않고, 사용자에 의해서 시그널링되는 양자화 행렬을 의미한다.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
부호화 장치(100)는 인코더, 비디오 부호화 장치 또는 영상 부호화 장치일 수 있다. 비디오는 하나 이상의 영상들을 포함할 수 있다. 부호화 장치(100)는 하나 이상의 영상들을 순차적으로 부호화할 수 있다.
도 1을 참조하면, 부호화 장치(100)는 움직임 예측부(111), 움직임 보상부(112), 인트라 예측부(120), 스위치(115), 감산기(125), 변환부(130), 양자화부(140), 엔트로피 부호화부(150), 역양자화부(160), 역변환부(170), 가산기(175), 필터부(180) 및 참조 픽처 버퍼(190)를 포함할 수 있다.
부호화 장치(100)는 입력 영상에 대해 인트라 모드 및/또는 인터 모드로 부호화를 수행할 수 있다. 또한, 부호화 장치(100)는 입력 영상에 대한 부호화를 통해 비트스트림을 생성할 수 있고, 생성된 비트스트림을 출력할 수 있다. 생성된 비트스트림은 컴퓨터 판독가능한 기록 매체에 저장되거나, 유/무선 전송 매체를 통해 스트리밍될 수 있다. 예측 모드로 인트라 모드가 사용되는 경우 스위치(115)는 인트라로 전환될 수 있고, 예측 모드로 인터 모드가 사용되는 경우 스위치(115)는 인터로 전환될 수 있다. 여기서 인트라 모드는 화면 내 예측 모드를 의미할 수 있으며, 인터 모드는 화면 간 예측 모드를 의미할 수 있다. 부호화 장치(100)는 입력 영상의 입력 블록에 대한 예측 블록을 생성할 수 있다. 또한, 부호화 장치(100)는 예측 블록이 생성된 후, 입력 블록 및 예측 블록의 차분(residual)을 부호화할 수 있다. 입력 영상은 현재 부호화의 대상인 현재 영상으로 칭해질 수 있다. 입력 블록은 현재 부호화의 대상인 현재 블록 혹은 부호화 대상 블록으로 칭해질 수 있다.
예측 모드가 인트라 모드인 경우, 인트라 예측부(120)는 현재 블록의 주변에 이미 부호화/복호화된 블록의 픽셀 값을 참조 화소로서 이용할 수 있다. 인트라 예측부(120)는 참조 화소를 이용하여 공간적 예측을 수행할 수 있고, 공간적 예측을 통해 입력 블록에 대한 예측 샘플들을 생성할 수 있다. 여기서 인트라 예측은 화면 내 예측을 의미할 수 있다.
예측 모드가 인터 모드인 경우, 움직임 예측부(111)는, 움직임 예측 과정에서 참조 영상으로부터 입력 블록과 가장 매치가 잘 되는 영역을 검색할 수 있고, 검색된 영역을 이용하여 움직임 벡터를 도출할 수 있다. 참조 영상은 참조 픽처 버퍼(190)에 저장될 수 있다.
움직임 보상부(112)는 움직임 벡터를 이용하는 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 여기서 인터 예측은 화면 간 예측 혹은 움직임 보상을 의미할 수 있다.
상기 움직임 예측부(111)과 움직임 보상부(112)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터(Interpolation Filter)를 적용하여 예측 블록을 생성할 수 있다. 화면 간 예측 혹은 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 예측 및 움직임 보상 방법이 스킵 모드(Skip Mode), 머지 모드(Merge Mode), 향상된 움직임 벡터 예측(Advanced Motion Vector Prediction; AMVP) 모드, 현재 픽처 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 화면 간 예측 혹은 움직임 보상을 수행할 수 있다.
감산기(125)는 입력 블록 및 예측 블록의 차분을 사용하여 잔여 블록(residual block)을 생성할 수 있다. 잔여 블록은 잔여 신호로 칭해질 수도 있다. 잔여 신호는 원 신호 및 예측 신호 간의 차이(difference)를 의미할 수 있다. 또는, 잔여 신호는 원신호 및 예측 신호 간의 차이를 변환(transform)하거나 양자화하거나 또는 변환 및 양자화함으로써 생성된 신호일 수 있다. 잔여 블록은 블록 단위의 잔여 신호일 수 있다.
변환부(130)는 잔여 블록에 대해 변환(transform)을 수행하여 변환 계수(transform coefficient)를 생성할 수 있고, 변환 계수를 출력할 수 있다. 여기서, 변환 계수는 잔여 블록에 대한 변환을 수행함으로써 생성된 계수 값일 수 있다. 변환 생략(transform skip) 모드가 적용되는 경우, 변환부(130)는 잔여 블록에 대한 변환을 생략할 수도 있다.
변환 계수 또는 잔여 신호에 양자화를 적용함으로써 양자화된 레벨(quantized level)이 생성될 수 있다. 이하, 실시예들에서는 양자화된 레벨도 변환 계수로 칭해질 수 있다.
양자화부(140)는 변환 계수 또는 잔여 신호를 양자화 매개변수에 따라 양자화함으로써 양자화된 레벨을 생성할 수 있고, 양자화된 레벨을 출력할 수 있다. 이때, 양자화부(140)에서는 양자화 행렬을 사용하여 변환 계수를 양자화할 수 있다.
엔트로피 부호화부(150)는, 양자화부(140)에서 산출된 값들 또는 부호화 과정에서 산출된 부호화 파라미터(Coding Parameter) 값들 등에 대하여 확률 분포에 따른 엔트로피 부호화를 수행함으로써 비트스트림(bitstream)을 생성할 수 있고, 비트스트림을 출력할 수 있다. 엔트로피 부호화부(150)는 영상의 픽셀에 관한 정보 및 영상의 복호화를 위한 정보에 대한 엔트로피 부호화를 수행할 수 있다. 예를 들면, 영상의 복호화를 위한 정보는 구문 요소(syntax element) 등을 포함할 수 있다.
엔트로피 부호화가 적용되는 경우, 높은 발생 확률을 갖는 심볼(symbol)에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 부호화 대상 심볼들에 대한 비트열의 크기가 감소될 수 있다. 엔트로피 부호화부(150)는 엔트로피 부호화를 위해 지수 골롬(exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 부호화 방법을 사용할 수 있다. 예를 들면, 엔트로피 부호화부(150)는 가변 길이 부호화(Variable Length Coding/Code; VLC) 테이블을 이용하여 엔트로피 부호화를 수행할 수 있다. 또한 엔트로피 부호화부(150)는 대상 심볼의 이진화(binarization) 방법 및 대상 심볼/빈(bin)의 확률 모델(probability model)을 도출한 후, 도출된 이진화 방법, 확률 모델, 문맥 모델(Context Model)을 사용하여 산술 부호화를 수행할 수도 있다.
엔트로피 부호화부(150)는 변환 계수 레벨을 부호화하기 위해 변환 계수 스캐닝(Transform Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다.
부호화 파라미터(Coding Parameter)는 구문 요소와 같이 부호화기에서 부호화되어 복호화기로 시그널링되는 정보(플래그, 인덱스 등)뿐만 아니라, 부호화 혹은 복호화 과정에서 유도되는 정보를 포함할 수 있으며, 영상을 부호화하거나 복호화할 때 필요한 정보를 의미할 수 있다. 예를 들어, 유닛/블록 크기, 유닛/블록 깊이, 유닛/블록 분할 정보, 유닛/블록 분할 구조, 쿼드트리 형태의 분할 여부, 이진트리 형태의 분할 여부, 이진트리 형태의 분할 방향(가로 방향 혹은 세로 방향), 이진트리 형태의 분할 형태(대칭 분할 혹은 비대칭 분할), 화면 내 예측 모드/방향, 참조 샘플 필터링 방법, 예측 블록 필터링 방법, 예측 블록 필터 탭, 예측 블록 필터 계수, 화면 간 예측 모드, 움직임 정보, 움직임 벡터, 참조 영상 색인, 화면 간 예측 방향, 화면 간 예측 지시자, 참조 영상 리스트, 참조 영상, 움직임 벡터 예측 후보, 움직임 벡터 후보 리스트, 머지 모드 사용 여부, 머지 후보, 머지 후보 리스트, 스킵(skip) 모드 사용 여부, 보간 필터 종류, 보간 필터 탭, 보간 필터 계수, 움직임 벡터 크기, 움직임 벡터 표현 정확도, 변환 종류, 변환 크기, 1차 변환 사용 여부 정보, 2차 변환 사용 여부 정보, 1차 변환 인덱스, 2차 변환 인덱스, 잔여 신호 유무 정보, 부호화 블록 패턴(Coded Block Pattern), 부호화 블록 플래그(Coded Block Flag), 양자화 매개변수, 양자화 행렬, 화면 내 루프 필터 적용 여부, 화면 내 루프 필터 계수, 화면 내 루프 필터 탭, 화면 내 루프 필터 모양/형태, 디블록킹 필터 적용 여부, 디블록킹 필터 계수, 디블록킹 필터 탭, 디블록킹 필터 강도, 디블록킹 필터 모양/형태, 적응적 샘플 오프셋 적용 여부, 적응적 샘플 오프셋 값, 적응적 샘플 오프셋 카테고리, 적응적 샘플 오프셋 종류, 적응적 루프내 필터 적용 여부, 적응적 루프내 필터 계수, 적응적 루프내 필터 탭, 적응적 루프내 필터 모양/형태, 이진화/역이진화 방법, 문맥 모델 결정 방법, 문맥 모델 업데이트 방법, 레귤러 모드 수행 여부, 바이패스 모드 수행 여부, 문맥 빈, 바이패스 빈, 변환 계수, 변환 계수 레벨, 변환 계수 레벨 스캐닝 방법, 영상 디스플레이/출력 순서, 슬라이스 식별 정보, 슬라이스 타입, 슬라이스 분할 정보, 타일 식별 정보, 타일 타입, 타일 분할 정보, 픽처 타입, 비트 심도, 휘도 신호 혹은 색차 신호에 대한 정보 중 적어도 하나의 값 또는 조합된 형태가 부호화 파라미터에 포함될 수 있다.
여기서, 플래그 혹은 인덱스를 시그널링(signaling)한다는 것은 인코더에서는 해당 플래그 혹은 인덱스를 엔트로피 부호화(Entropy Encoding)하여 비트스트림(Bitstream)에 포함하는 것을 의미할 수 있고, 디코더에서는 비트스트림으로부터 해당 플래그 혹은 인덱스를 엔트로피 복호화(Entropy Decoding)하는 것을 의미할 수 있다.
부호화 장치(100)가 인터 예측을 통한 부호화를 수행할 경우, 부호화된 현재 영상은 이후에 처리되는 다른 영상에 대한 참조 영상으로서 사용될 수 있다. 따라서, 부호화 장치(100)는 부호화된 현재 영상을 다시 복원 또는 복호화할 수 있고, 복원 또는 복호화된 영상을 참조 영상으로 저장할 수 있다.
양자화된 레벨은 역양자화부(160)에서 역양자화(dequantization)될 수 있고. 역변환부(170)에서 역변환(inverse transform)될 수 있다. 역양자화 및/또는 역변환된 계수는 가산기(175)를 통해 예측 블록과 합해질 수 있다, 역양자화 및/또는 역변환된 계수 및 예측 블록을 합함으로써 복원 블록(reconstructed block)이 생성될 수 있다. 여기서, 역양자화 및/또는 역변환된 계수는 역양자화 및 역변환 중 적어도 하나 이상이 수행된 계수를 의미하며, 복원된 잔여 블록을 의미할 수 있다.
복원 블록은 필터부(180)를 거칠 수 있다. 필터부(180)는 디블록킹 필터(deblocking filter), 샘플 적응적 오프셋(Sample Adaptive Offset; SAO), 적응적 루프 필터(Adaptive Loop Filter; ALF) 등 적어도 하나를 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(180)는 인루프 필터(in-loop filter)로 칭해질 수도 있다.
디블록킹 필터는 블록들 간의 경계에 생긴 블록 왜곡을 제거할 수 있다. 디블록킹 필터를 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 서로 다른 필터를 적용할 수 있다.
샘플 적응적 오프셋을 이용하여 부호화 에러를 보상하기 위해 픽셀 값에 적정 오프셋(offset) 값을 더할 수 있다. 샘플 적응적 오프셋은 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
적응적 루프 필터는 복원 영상 및 원래의 영상을 비교한 값에 기반하여 필터링을 수행할 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. 적응적 루프 필터를 적용할지 여부에 관련된 정보는 부호화 유닛(Coding Unit, CU) 별로 시그널링될 수 있고, 각각의 블록에 따라 적용될 적응적 루프 필터의 모양 및 필터 계수는 달라질 수 있다.
필터부(180)를 거친 복원 블록 또는 복원 영상은 참조 픽처 버퍼(190)에 저장될 수 있다. 도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
복호화 장치(200)는 디코더, 비디오 복호화 장치 또는 영상 복호화 장치일 수 있다.
도 2를 참조하면, 복호화 장치(200)는 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 인트라 예측부(240), 움직임 보상부(250), 가산기(255), 필터부(260) 및 참조 픽처 버퍼(270)를 포함할 수 있다.
복호화 장치(200)는 부호화 장치(100)에서 출력된 비트스트림을 수신할 수 있다. 복호화 장치(200)는 컴퓨터 판독가능한 기록 매체에 저장된 비트스트림을 수신하거나, 유/무선 전송 매체를 통해 스트리밍되는 비트스트림을 수신할 수 있다. 복호화 장치(200)는 비트스트림에 대하여 인트라 모드 또는 인터 모드로 복호화를 수행할 수 있다. 또한, 복호화 장치(200)는 복호화를 통해 복원된 영상 또는 복호화된 영상을 생성할 수 있고, 복원된 영상 또는 복호화된 영상을 출력할 수 있다.
복호화에 사용되는 예측 모드가 인트라 모드인 경우 스위치가 인트라로 전환될 수 있다. 복호화에 사용되는 예측 모드가 인터 모드인 경우 스위치가 인터로 전환될 수 있다.
복호화 장치(200)는 입력된 비트스트림을 복호화하여 복원된 잔여 블록(reconstructed residual block)을 획득할 수 있고, 예측 블록을 생성할 수 있다. 복원된 잔여 블록 및 예측 블록이 획득되면, 복호화 장치(200)는 복원된 잔여 블록과 및 예측 블록을 더함으로써 복호화 대상이 되는 복원 블록을 생성할 수 있다. 복호화 대상 블록은 현재 블록으로 칭해질 수 있다.
엔트로피 복호화부(210)는 비트스트림에 대한 확률 분포에 따른 엔트로피 복호화를 수행함으로써 심볼들을 생성할 수 있다. 생성된 심볼들은 양자화된 레벨 형태의 심볼을 포함할 수 있다. 여기에서, 엔트로피 복호화 방법은 상술된 엔트로피 부호화 방법의 역과정일 수 있다.
엔트로피 복호화부(210)는 변환 계수 레벨을 복호화하기 위해 변환 계수 스캐닝 방법을 통해 1차원의 벡터 형태 계수를 2차원의 블록 형태로 변경할 수 있다.
양자화된 레벨은 역양자화부(220)에서 역양자화될 수 있고, 역변환부(230)에서 역변환될 수 있다. 양자화된 레벨은 역양자화 및/또는 역변환이 수행된 결과로서, 복원된 잔여 블록으로 생성될 수 있다. 이때, 역양자화부(220)는 양자화된 레벨에 양자화 행렬을 적용할 수 있다.
인트라 모드가 사용되는 경우, 인트라 예측부(240)는 복호화 대상 블록 주변의 이미 복호화된 블록의 픽셀 값을 이용하는 공간적 예측을 수행함으로써 예측 블록을 생성할 수 있다.
인터 모드가 사용되는 경우, 움직임 보상부(250)는 움직임 벡터 및 참조 픽처 버퍼(270)에 저장되어 있는 참조 영상을 이용하는 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 상기 움직임 보상부(250)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터를 적용하여 예측 블록을 생성할 수 있다. 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 보상 방법이 스킵 모드, 머지 모드, AMVP 모드, 현재 픽처 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 움직임 보상을 수행할 수 있다.
가산기(255)는 복원된 잔여 블록 및 예측 블록을 가산하여 복원 블록을 생성할 수 있다. 필터부(260)는 디블록킹 필터, 샘플 적응적 오프셋 및 적응적 루프 필터 등 적어도 하나를 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(260)는 복원 영상을 출력할 수 있다. 복원 블록 또는 복원 영상은 참조 픽처 버퍼(270)에 저장되어 인터 예측에 사용될 수 있다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다. 도 3은 하나의 유닛이 복수의 하위 유닛으로 분할되는 실시예를 개략적으로 나타낸다.
영상을 효율적으로 분할하기 위해, 부호화 및 복호화에 있어서, 부호화 유닛(Coding Unit; CU)이 사용될 수 있다. 영상 부호화/복호화의 기본 단위로서 부호화 유닛이 사용될 수 있다. 또한, 영상 부호화/복호화 시 화면 내 모드 및 화면 간 모드가 구분되는 단위로 부호화 유닛을 사용할 수 있다. 부호화 유닛은 예측, 변환, 양자화, 역변환, 역양자화, 또는 변환 계수의 부호화/복호화의 과정을 위해 사용되는 기본 단위일 수 있다.
도 3을 참조하면, 영상(300)은 최대 부호화 유닛(Largest Coding Unit; LCU) 단위로 순차적으로 분할되고, LCU 단위로 분할 구조가 결정된다. 여기서, LCU는 부호화 트리 유닛(Coding Tree Unit; CTU)과 동일한 의미로 사용될 수 있다. 유닛의 분할은 유닛에 해당하는 블록의 분할을 의미할 수 있다. 블록 분할 정보에는 유닛의 깊이(depth)에 관한 정보가 포함될 수 있다. 깊이 정보는 유닛이 분할되는 회수 및/또는 정도를 나타낼 수 있다. 하나의 유닛은 트리 구조(tree structure)를 기초로 깊이 정보를 가지고 계층적으로 분할될 수 있다. 각각의 분할된 하위 유닛은 깊이 정보를 가질 수 있다. 깊이 정보는 CU의 크기를 나타내는 정보일 수 있고, 각 CU마다 저장될 수 있다.
분할 구조는 LCU(310) 내에서의 부호화 유닛(Coding Unit; CU)의 분포를 의미할 수 있다. 이러한 분포는 하나의 CU를 복수(2, 4, 8, 16 등을 포함하는 2 이상의 양의 정수)의 CU들로 분할할지 여부에 따라 결정할 수 있다. 분할에 의해 생성된 CU의 가로 크기 및 세로 크기는 각각 분할 전의 CU의 가로 크기의 절반 및 세로 크기의 절반이거나, 분할된 개수에 따라 분할 전의 CU의 가로 크기보다 작은 크기 및 세로 크기보다 작은 크기를 가질 수 있다. CU는 복수의 CU로 재귀적으로 분할될 수 있다. CU의 분할은 기정의된 깊이 또는 기정의된 크기까지 재귀적으로 이루어질 수 있다. 예컨대, LCU의 깊이는 0일 수 있고, 최소 부호화 유닛(Smallest Coding Unit; SCU)의 깊이는 기정의된 최대 깊이일 수 있다. 여기서, LCU는 상술된 것과 같이 최대의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있고, SCU는 최소의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있다. LCU(310)로부터 분할이 시작되고, 분할에 의해 CU의 가로 크기 및/또는 세로 크기가 줄어들 때마다 CU의 깊이는 1씩 증가한다.
또한, CU가 분할되는지 여부에 대한 정보는 CU의 분할 정보를 통해 표현될 수 있다. 분할 정보는 1비트의 정보일 수 있다. SCU를 제외한 모든 CU는 분할 정보를 포함할 수 있다. 예를 들면, 분할 정보의 값이 제1 값이면, CU가 분할되지 않을 수 있고, 분할 정보의 값이 제2 값이면, CU가 분할될 수 있다.
도 3을 참조하면, 깊이가 0인 LCU는 64x64 블록일 수 있다. 0은 최소 깊이일 수 있다. 깊이가 3인 SCU는 8x8 블록일 수 있다. 3은 최대 깊이일 수 있다. 32x32 블록 및 16x16 블록의 CU는 각각 깊이 1 및 깊이 2로 표현될 수 있다.
예를 들어, 하나의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 분할된 4개의 부호화 유닛의 가로 및 세로 크기는 분할되기 전 부호화 유닛의 가로 및 세로 크기와 비교하여 각각 절반의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 분할된 4개의 부호화 유닛은 각각 16x16의 크기를 가질 수 있다. 하나의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 쿼드트리(quad-tree) 형태로 분할되었다고 할 수 있다.
예를 들어, 하나의 부호화 유닛이 2개의 부호화 유닛으로 분할 될 경우, 분할된 2개의 부호화 유닛의 가로 혹은 세로 크기는 분할되기 전 부호화 유닛의 가로 혹은 세로 크기와 비교하여 절반의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 2개의 부호화 유닛으로 세로로 분할 될 경우, 분할된 2개의 부호화 유닛은 각각 16x32의 크기를 가질 수 있다. 하나의 부호화 유닛이 2개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 이진트리(binary-tree) 형태로 분할되었다고 할 수 있다. 도 3의 LCU(320)는 쿼드트리 형태의 분할 및 이진트리 형태의 분할이 모두 적용된 LCU의 일 예이다.
도 4는 화면 간 예측 과정의 실시예를 설명하기 위한 도면이다.
도 4에 도시된 사각형은 영상을 나타낼 수 있다. 또한, 도 4에서 화살표는 예측 방향을 나타낼 수 있다. 각 영상은 부호화 타입에 따라 I 픽처(Intra Picture), P 픽처(Predictive Picture), B 픽처(Bi-predictive Picture) 등으로 분류될 수 있다.
I 픽처는 화면 간 예측 없이 화면 내 예측을 통해 부호화될 수 있다. P 픽처는 단방향(예컨대, 순방향 또는 역방향)에 존재하는 참조 영상만을 이용하는 화면 간 예측을 통해 부호화될 수 있다. B 픽처는 쌍방향(예컨대, 순방향 및 역방향)에 존재하는 참조 픽처들을 이용하는 화면 간 예측을 통해 부호화될 수 있다. 여기서, 화면 간 예측이 사용되는 경우, 부호화기에서는 화면 간 예측 혹은 움직임 보상을 수행할 수 있고, 복호화기에서는 그에 대응하는 움직임 보상을 수행할 수 있다.
아래에서, 실시예에 따른 화면 간 예측에 대해 구체적으로 설명된다.
화면 간 예측 혹은 움직임 보상은 참조 픽처 및 움직임 정보를 이용하여 수행될 수 있다.
현재 블록에 대한 움직임 정보는 부호화 장치(100) 및 복호화 장치(200)의 각각에 의해 화면 간 예측 중 도출될 수 있다. 움직임 정보는 복원된 주변 블록의 움직임 정보, 콜 블록(collocated block; col block)의 움직임 정보 및/또는 콜 블록에 인접한 블록을 이용하여 도출될 수 있다. 콜 블록은 이미 복원된 콜 픽처(collocated picture; col picture) 내에서 현재 블록의 공간적 위치에 대응하는 블록일 수 있다. 여기서, 콜 픽처는 참조 픽처 리스트에 포함된 적어도 하나의 참조 픽처 중에서 하나의 픽처일 수 있다.
움직임 정보의 도출 방식은 현재 블록의 예측 모드에 따라 다를 수 있다. 예를 들면, 화면 간 예측을 위해 적용되는 예측 모드로서, AMVP 모드, 머지 모드, 스킵 모드, 현재 픽처 참조 모드 등이 있을 수 있다. 여기서 머지 모드를 움직임 병합 모드(motion merge mode)라고 지칭할 수 있다.
예를 들면, 예측 모드로서, AMVP가 적용되는 경우, 복원된 주변 블록의 움직임 벡터, 콜 블록의 움직임 벡터, 콜 블록에 인접한 블록의 움직임 벡터, (0, 0) 움직임 벡터 중 적어도 하나를 움직임 벡터 후보로 결정하여 움직임 벡터 후보 리스트(motion vector candidate list)를 생성할 수 있다. 생성된 움직임 벡터 후보 리스트를 이용하여 움직임 벡터 후보를 유도할 수 있다. 유도된 움직임 벡터 후보를 기반으로 현재 블록의 움직임 정보를 결정할 수 있다. 여기서, 콜 블록의 움직임 벡터 또는 콜 블록에 인접한 블록의 움직임 벡터를 시간적 움직임 벡터 후보(temporal motion vector candidate)라 지칭할 수 있고, 복원된 주변 블록의 움직임 벡터를 공간적 움직임 벡터 후보(spatial motion vector candidate)라 지칭할 수 있다.
부호화 장치(100)는 현재 블록의 움직임 벡터 및 움직임 벡터 후보 간의 움직임 벡터 차분(MVD: Motion Vector Difference)을 계산할 수 있고, MVD를 엔트로피 부호화할 수 있다. 또한, 부호화 장치(100)는 움직임 벡터 후보 색인을 엔트로피 부호화하여 비트스트림을 생성할 수 있다. 움직임 벡터 후보 색인은 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서 선택된 최적의 움직임 벡터 후보를 지시할 수 있다. 복호화 장치(200)는 움직임 벡터 후보 색인을 비트스트림으로부터 엔트로피 복호화하고, 엔트로피 복호화된 움직임 벡터 후보 색인을 이용하여 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서 복호화 대상 블록의 움직임 벡터 후보를 선택할 수 있다. 또한, 복호화 장치(200)는 엔트로피 복호화된 MVD 및 움직임 벡터 후보의 합을 통해 복호화 대상 블록의 움직임 벡터를 도출할 수 있다.
비트스트림은 참조 픽처를 지시하는 참조 영상 색인 등을 포함할 수 있다. 참조 영상 색인은 엔트로피 부호화되어 비트스트림을 통해 부호화 장치(100)로부터 복호화 장치(200)로 시그널링될 수 있다. 복호화 장치(200)는 유도된 움직임 벡터와 참조 영상 색인 정보에 기반하여 복호화 대상 블록에 대한 예측 블록을 생성할 수 있다.
움직임 정보의 도출 방식의 다른 예로, 머지 모드가 있다. 머지 모드란 복수의 블록들에 대한 움직임의 병합을 의미할 수 있다. 머지 모드는 현재 블록의 움직임 정보를 주변 블록의 움직임 정보로부터 유도하는 모드를 의미할 수 있다. 머지 모드가 적용되는 경우, 복원된 주변 블록의 움직임 정보 및/또는 콜 블록의 움직임 정보를 이용하여 머지 후보 리스트(merge candidate list)를 생성할 수 있다. 움직임 정보는 1) 움직임 벡터, 2) 참조 영상 색인, 및 3) 화면 간 예측 지시자 중 적어도 하나를 포함할 수 있다. 예측 지시자는 단방향 (L0 예측, L1 예측) 또는 쌍방향일 수 있다.
머지 후보 리스트는 움직임 정보들이 저장된 리스트를 나타낼 수 있다. 머지 후보 리스트에 저장되는 움직임 정보는, 현재 블록에 인접한 주변 블록의 움직임 정보(공간적 머지 후보(spatial merge candidate)) 및 참조 영상에서 현재 블록에 대응되는(collocated) 블록의 움직임 정보(시간적 머지 후보(temporal merge candidate)), 이미 머지 후보 리스트에 존재하는 움직임 정보들의 조합에 의해 생성된 새로운 움직임 정보 및 제로 머지 후보 중 적어도 하나일 수 있다.
부호화 장치(100)는 머지 플래그(merge flag) 및 머지 인덱스(merge index) 중 적어도 하나를 엔트로피 부호화하여 비트스트림을 생성한 후 복호화 장치(200)로 시그널링할 수 있다. 머지 플래그는 블록 별로 머지 모드를 수행할지 여부를 나타내는 정보일 수 있고, 머지 인덱스는 현재 블록에 인접한 주변 블록들 중 어떤 블록과 머지를 할 것인가에 대한 정보일 수 있다. 예를 들면, 현재 블록의 주변 블록들은 현재 블록의 좌측 인접 블록, 상단 인접 블록 및 시간적 인접 블록 중 적어도 하나를 포함할 수 있다.
스킵 모드는 주변 블록의 움직임 정보를 그대로 현재 블록에 적용하는 모드일 수 있다. 스킵 모드가 사용되는 경우, 부호화 장치(100)는 어떤 블록의 움직임 정보를 현재 블록의 움직임 정보로서 이용할 것인지에 대한 정보를 엔트로피 부호화하여 비트스트림을 통해 복호화 장치(200)에 시그널링할 수 있다. 이때, 부호화 장치(100)는 움직임 벡터 차분 정보, 부호화 블록 플래그 및 변환 계수 레벨 중 적어도 하나에 관한 구문 요소를 복호화 장치(200)에 시그널링하지 않을 수 있다.
현재 픽처 참조 모드는 현재 블록이 속한 현재 픽처 내의 기-복원된 영역을 이용한 예측 모드를 의미할 수 있다. 이때, 상기 기-복원된 영역을 특정하기 위해 벡터가 정의될 수 있다. 현재 블록이 현재 픽처 참조 모드로 부호화되는지 여부는 현재 블록의 참조 영상 색인을 이용하여 부호화될 수 있다. 현재 블록이 현재 픽처 참조 모드로 부호화된 블록인지 여부를 나타내는 플래그 혹은 인덱스가 시그널링될 수도 있고, 현재 블록의 참조 영상 색인을 통해 유추될 수도 있다. 현재 블록이 현재 픽처 참조 모드로 부호화된 경우, 현재 픽처는 현재 블록을 위한 참조 영상 리스트 내에서 고정 위치 또는 임의의 위치에 추가될 수 있다. 상기 고정 위치는 예를 들어, 참조 영상 색인이 0인 위치 또는 가장 마지막 위치일 수 있다. 현재 픽쳐가 참조 영상 리스트 내에서 임의의 위치에 추가되는 경우, 상기 임의의 위치를 나타내는 별도의 참조 영상 색인이 시그널링될 수도 있다.
상술한 사항을 바탕으로, 본 발명에 따른 영상 부호화/복호화 방법에 대해 상세히 살펴보기로 한다.
도 5는 본 발명의 일 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이고, 도 6은 본 발명의 일 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 5는 본 발명의 일 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이고, 도 6은 본 발명의 일 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 5을 참조하면, 부호화 장치는 머지 후보를 유도하고(S501), 유도된 머지 후보를 기초로 머지 후보 리스트를 생성할 수 있다. 머지 후보 리스트가 생성되면, 생성된 머지 후보 리스트를 이용하여 움직임 정보를 결정하고(S502), 결정된 움직임 정보를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다(S503). 이후, 부호화 장치는 움직임 보상에 관한 정보를 엔트로피 부호화할 수 있다(S504).
도 6을 참조하면, 복호화 장치는 부호화 장치로부터 수신한 움직임 보상에 관한 정보를 엔트로피 복호화하여(S601), 머지 후보를 유도하고(S602), 유도된 머지 후보를 기초로 머지 후보 리스트를 생성할수 있다. 머지 후보 리스트가 생성되면, 생성된 머지 후보 리스트를 이용하여 현재 블록의 움직임 정보를 결정할 수 있다(S603). 이후, 복호화 장치는 움직임 정보를 이용하여, 움직임 보상을 수행할 수 있다(S604).
여기서, 도 5 및 도 6은 도 4에서 설명한 머지 모드가 적용된 일 예일 수 있다.
이하, 도 5 및 도 6에 도시된 각 단계에 대해 상세히 살펴보기로 한다.
먼저, 머지 후보를 유도하는 단계에 대해 구체적으로 설명하기로 한다(S501, S602).
현재 블록에 대한 머지 후보는 공간적 머지 후보, 시간적 머지 후보 또는 추가적인 머지 후보 중 적어도 하나를 포함할 수 있다. 여기서, 공간적 머지 후보를 유도한다는 것은 공간적 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다.
도 7은 현재 블록의 공간적 머지 후보 및 시간적 머지 후보를 유도하는 예를 설명하기 위한 도면이다.
도 7을 참조하면, 현재 블록의 공간적 머지 후보는 현재 블록(X)에 인접한 주변 블록들로부터 유도될 수 있다. 현재 블록에 인접한 주변 블록은, 현재 블록의 상단에 인접한 블록(B1), 현재 블록의 좌측에 인접한 블록(A1), 현재 블록의 우측 상단 코너에 인접한 블록(B0), 현재 블록의 좌측 상단 코너에 인접한 블록(B2) 및 현재 블록의 좌측 하단 코너에 인접한 블록(A0) 중 적어도 하나를 포함할 수 있다.
현재 블록의 공간적 머지 후보를 유도하기 위해서, 현재 블록에 인접한 주변 블록이 현재 블록의 공간적 머지 후보 유도에 사용될 수 있는지 여부를 판단할 수 있다. 이때, 현재 블록에 인접한 주변 블록이 현재 블록의 공간적 머지 후보 유도에 사용될 수 있는 여부는 소정의 우선 순위에 따라 결정될 수 있다. 일 예로, 도 7에 도시된 예에서, A1, B1, B0, A0 및 B2 위치의 블록 순서대로 공간적 머지 후보 유도 가용성이 판단될 수 있다. 상기 가용성 여부 판단 순서를 기반으로 결정된 공간적 머지 후보를 현재 블록의 머지 후보 리스트에 순차적으로 추가할 수 있다.
일 예로, A1, B0, A0, B2 위치의 주변 블록으로부터 4개의 공간적 머지 후보가 유도된 경우, 머지 후보 리스트에 유도된 공간적 머지 후보가 순차적으로 추가될 수 있다.
또한, 부호화 파라미터 중 적어도 하나 이상에 기반하여 상기 공간적 머지 후보를 유도할 수 있다.
여기서, 공간적 머지 후보의 움직임 정보는 L0 및 L1의 움직임 정보뿐만 아니라 L2, L3 등 3개 이상의 움직임 정보를 가질 수 있다. 여기서, 참조 영상 리스트는 L0, L1, L2, L3 등 적어도 1개 이상을 포함할 수 있다.
다음으로, 현재 블록의 시간적 머지 후보를 유도하는 방법에 대해 설명하도록 한다.
현재 블록의 시간적 머지 후보는, 현재 영상의 대응 위치 영상(Co-located picture)에 포함된 복원된 블록으로부터 유도될 수 있다. 여기서, 대응 위치 영상은, 현재 영상 이전에 부호화/복호화가 완료된 영상으로, 현재 영상과 상이한 시간적 순서를 갖는 영상일 수 있다.
시간적 머지 후보를 유도한다는 것은 시간적 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다.
도 7을 참조하면, 현재 영상의 대응 위치 영상(collocated picture)에서, 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 위부 위치를 포함하는 블록 또는 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 내부 위치를 포함하는 블록으로부터 현재 블록의 시간적 머지 후보를 유도할 수 있다. 여기서, 시간적 머지 후보는 대응 위치 블록의 움직임 정보를 의미할 수 있다. 일 예로, 현재 블록(X)의 시간적 머지 후보는 현재 블록과 공간적으로 동일한 위치에 대응하는 블록(C)의 좌측 하단 코너에 인접한 블록(H) 또는 블록 C의 중심점을 포함하는 블록(C3)으로부터 유도될 수 있다. 현재 블록의 시간적 머지 후보를 유도하기 위해 사용되는 블록 H 또는 블록 C3 등을 '대응 위치 블록(collocated block)'이라 호칭할 수 있다.
블록 C의 외부 위치를 포함하는 블록 H로부터 현재 블록의 시간적 머지 후보를 유도할 수 있을 경우, 블록 H가 현재 블록의 대응 위치 블록으로 설정될 수 있다. 이 경우, 현재 블록의 시간적 머지 후보는 블록 H의 움직임 정보를 기초로 유도될 수 있다. 반면, 블록 H로부터 현재 블록의 시간적 머지 후보를 유도할 수 없을 경우, 블록 C의 내부 위치를 포함하는 블록 C3가 현재 블록의 대응 위치 블록으로 설정될 수 있다. 이 경우, 현재 블록의 시간적 머지 후보는 블록 C3의 움직임 정보를 기초로 유도될 수 있다. 만약, 블록 H 및 블록 C3로부터 현재 블록의 시간적 머지를 유도할 수 없는 경우라면(예컨대, 블록 H 및 블록 C3가 모두 화면 내 부호화된 경우), 현재 블록에 대한 시간적 머지 후보는 유도되지 않거나 또는 블록 H 및 블록 C3와는 다른 위치의 블록으로부터 유도될 수 있을 것이다.
다른 예로, 현재 블록의 시간적 머지 후보는 대응 위치 영상 내 복수의 블록으로부터 유도될 수도 있다. 일 예로, 블록 H 및 블록 C3로부터 현재 블록에 대한 복수의 시간적 머지 후보를 유도할 수도 있다.
현재 블록이 포함된 현재 영상과 현재 블록의 참조 영상 사이의 거리가 대응 위치 블록이 포함된 대응 위치 영상과 대응 위치 블록의 참조 영상 사이의 거리와 다를 경우, 현재 블록의 시간적 머지 후보의 움직임 벡터는 대응 위치 블록의 움직임 벡터를 스케일링함으로써 획득될 수 있다. 여기서, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다. 일 예로, 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리의 비율에 따라 대응 위치 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 시간적 머지 후보의 움직임 벡터가 유도될 수 있다.
또한, 현재 블록, 주변 블록 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기초하여 시간적 머지 후보, 대응 위치 영상, 대응 위치 블록, 예측 리스트 활용 플래그 및 참조 영상 색인 중 적어도 하나를 유도할 수도 있다.
공간적 머지 후보들 및 시간적 머지 후보들 중 적어도 하나 이상을 유도한 후에 유도된 머지 후보 순서대로 머지 후보 리스트에 추가하여 머지 후보 리스트를 생성할 수 있다.
다음으로, 현재 블록의 추가적인 머지 후보를 유도하는 방법에 대해 설명하도록 한다.
추가적인 머지 후보는 변경된 공간적 머지 후보(modified spatial merge candidate), 변경된 시간적 머지 후보(modified temporal merge candidate), 조합된 머지 후보(combined merge candidate), 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 의미할 수 있다. 여기서, 추가적인 머지 후보를 유도하는 것은 추가적인 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다.
변경된 공간적 머지 후보는 유도된 공간적 머지 후보의 움직임 정보 중 적어도 하나를 변경한 머지 후보를 의미할 수 있다.
변경된 시간적 머지 후보는 유도된 시간적 머지 후보의 움직임 정보 중 적어도 하나를 변경한 머지 후보를 의미할 수 있다.
조합된 머지 후보는 머지 후보 리스트에 존재하는 공간적 머지 후보, 시간적 머지 후보, 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보들의 움직임 정보 중 적어도 하나의 움직임 정보를 조합하여 유도되는 머지 후보를 의미할 수 있다.
또는, 조합된 머지 후보는 머지 후보 리스트에 존재하진 않지만 공간적 머지 후보 및 시간적 머지 후보 중 적어도 하나 이상을 유도할 수 있는 블록으로부터 유도된 공간적 머지 후보 및 유도된 시간적 머지 후보와 이를 기초로 생성된 변경된 공간적 머지 후보, 변경 시간적 머지 후보, 조합된 머지 후보 및 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나의 움직임 정보를 조합하여 유도되는 머지 후보를 의미할 수 있다.
또는, 복호화기에서 비트스트림으로부터 엔트로피 복호화한 움직임 정보를 이용하여 조합된 머지 후보를 유도할 수 있다. 이때, 부호화기에서 조합된 머지 후보 유도에 사용된 움직임 정보는 비트스트림에 엔트로피 부호화될 수 있다.
조합된 머지 후보는 조합 양예측 머지 후보를 의미할 수 있다. 조합 양예측 머지 후보는 양예측(bi-prediction)을 사용하는 머지 후보로 L0 움직임 정보와 L1 움직임 정보를 가지는 머지 후보를 의미할 수 있다.
소정의 움직임 정보 값을 가지는 머지 후보는 움직임 벡터가 (0, 0)인 제로 머지 후보를 의미할 수 있다. 한편, 소정의 움직임 정보 값을 가지는 머지 후보는 부호화 장치 및 복호화 장치에서 동일한 값을 사용하도록 기 설정될 수도 있다.
현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기반하여 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 유도 또는 생성할 수 있다. 또한, 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기반하여 머지 후보 리스트에 추가할 수 있다.
한편, 머지 후보 리스트의 크기는 현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터에 기반하여 결정될 수 있고, 부호화 파라미터에 기반하여 크기가 변경될 수 있다.
한편, 본 발명에서는 머지 후보 유도시 움직임 벡터 보정 방법을 이용하여 유도된 보정된 움직임 벡터가 이용할 수 있다. 이에 대한 구체적인 설명은 도 7 내지 도 28를 참고하여 후술하도록 한다.
다음으로는, 생성된 머지 후보 리스트를 이용하여, 현재 블록의 움직임 정보를 결정하는 단계에 대해 구체적으로 설명하기로 한다(S502, S603).
부호화기는 움직임 추정(motion estimation)을 통하여 머지 후보 리스트 내의 머지 후보 중 움직임 보상에 이용되는 머지 후보를 결정하고, 결정된 머지 후보를 지시하는 머지 후보 색인(merge_idx)을 비트스트림에 부호화할 수 있다.
한편, 부호화기는 예측 블록을 생성하기 위하여 상술한 머지 후보 색인을 기초로 머지 후보 리스트에서 머지 후보를 선택하여 현재 블록의 움직임 정보를 결정할 수 있다. 여기서, 결정된 움직임 정보를 기초로 움직임 보상(motion compensation)을 수행하여 현재 블록의 예측 블록을 생성할 수 있다.
복호화기는 비트스트림 내의 머지 후보 색인을 복호화하여 머지 후보 색인이 지시하는 머지 후보 리스트 내의 머지 후보를 결정할 수 있다. 결정된 머지 후보는 현재 블록의 움직임 정보로 결정할 수 있다. 결정된 움직임 정보는 현재 블록의 움직임 보상에 사용된다. 이 때, 움직임 보상은 인터 예측(inter prediction)의 의미와 동일할 수 있다.
다음으로, 결정된 움직임 정보를 이용하여, 움직임 보상을 수행하는 단계에 대해 살펴보기로 한다(S503, S604).
부호화 장치 및 복호화 장치는 결정된 움직임 정보를 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다(S503, S604). 여기서, 여기서, 현재 블록은 결정된 머지 후보의 움직임 정보를 가질 수 있다.
현재 블록은 예측 방향에 따라 최소 1개부터 최대 N개의 움직임 벡터를 가질 수 있다. 움직임 벡터를 이용하여, 최소 1개부터 최대 N개의 예측 블록을 생성하여, 현재 블록의 최종 예측 블록을 유도할 수 있다.
일 예로, 현재 블록이 1개의 움직임 벡터를 가질 경우, 상기 움직임 벡터(또는 움직임 정보)를 이용하여 생성된 예측 블록을, 현재 블록의 최종 예측 블록으로 결정할 수 있다.
반면, 현재 블록이 복수의 움직임 벡터(또는 움직임 정보)를 가질 경우, 복수의 움직임 벡터(또는 움직임 정보)를 이용하여 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다. 복수의 움직임 벡터(또는 움직임 정보)에 의해 지시되는 복수의 예측 블록 각각을 포함하는 참조 영상들은 서로 다른 참조 영상 리스트에 포함될 수도 있고, 동일한 참조 영상 리스트에 포함될 수도 있다.
일 예로, 공간적 움직임 벡터 후보, 시간적 움직임 벡터 후보, 소정의 값을 갖는 움직임 벡터 또는 조합된 움직임 벡터 후보 중 적어도 하나를 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다.
다른 예로, 기 설정된 움직임 벡터 후보 색인에 의해 지시되는 움직임 벡터 후보들을 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다. 또한, 기 설정된 움직임 벡터 후보 색인 범위에 존재하는 움직임 벡터 후보들을 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다.
각 예측 블록에 적용되는 가중치는 1/N (여기서, N은 생성된 예측 블록의 수)로 균등한 값을 가질 수 있다. 일 예로, 2개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/2 이고, 3개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/3이며, 4개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/4일 수 있다. 또는, 각 예측 블록마다 상이한 가중치를 부여하여, 현재 블록의 최종 예측 블록을 결정할 수도 있다.
가중치는 예측 블록별 고정된 값을 가져야 하는 것은 아니며, 예측 블록별 가변적 값을 가질 수도 있다. 이때, 각 예측 블록에 적용되는 가중치는 서로 동일할 수도 있고, 서로 상이할 수도 있다. 일 예로, 2개의 예측 블록이 생성된 경우, 2개의 예측 블록에 적용되는 가중치는 (1/2, 1/2)일뿐만 아니라, (1/3, 2/3), (1/4, 3/4), (2/5, 3/5), (3/8, 5/8) 등과 같이 블록별로 가변적이 값일 수 있다. 한편, 가중치는 양의 실수의 값 또는 음의 실수의 값일 수 있다. 일 예로, (-1/2, 3/2), (-1/3, 4/3), (-1/4, 5/4) 등과 같이 음의 실수의 값을 포함할 수 있다.
한편, 가변적 가중치를 적용하기 위해, 현재 블록을 위한 하나 또는 그 이상의 가중치 정보가 비트스트림을 통해 시그널링될 수도 있다. 가중치 정보는 예측 블록별로 각각 시그널링될 수도 있고, 참조 영상별로 시그널링될 수도 있다. 복수의 예측 블록이 하나의 가중치 정보를 공유하는 것도 가능하다.
부호화 장치 및 복호화 장치는 예측 블록 리스트 활용 플래그에 기초하여 예측된 움직임 벡터(또는 움직임 정보)의 이용 여부를 판단할 수 있다. 일 예로, 각 참조 영상 리스트 별로 예측 블록 리스트 활용 플래그가 제1 값인 1을 지시하는 경우, 부호화 장치 및 복호화 장치는 화면 간 예측 또는 움직임 보상을 수행하기 위하여 현재 블록의 예측된 움직임 벡터를 이용할 수 있다는 것을 나타내고, 제2 값인 0을 지시하는 경우, 부호화 장치 및 복호화 장치는 현재 블록의 예측된 움직임 벡터를 이용하여 화면 간 예측 또는 움직임 보상을 수행하지 않는 것을 나타낼 수 있다. 한편, 예측 블록 리스트 활용 플래그의 제1의 값은 0으로, 제2의 값은 1으로 설정될 수도 있다. 하기 수학식 1 내지 수학식 3는, 각각 현재 블록의 화면 간 예측 지시자가, PRED_BI, PRED_TRI 및 PRED_QUAD이고, 각 참조 영상 리스트에 대한 예측 방향이 단방향인 경우, 현재 블록의 최종 예측 블록을 생성하는 예를 나타낸다.
Figure PCTKR2017013673-appb-M000001
Figure PCTKR2017013673-appb-M000002
Figure PCTKR2017013673-appb-M000003
상기 수학식 1 내지 3에서, P_BI, P_TRI, P_QUAD는 현재 블록의 최종 예측 블록을 나타내고, LX(X=0, 1, 2, 3)은 참조 영상 리스트를 의미할 수 있다. WF_LX은 LX를 이용하여 생성된 예측 블록의 가중치 값을 나타내고, OFFSET_LX은 LX를 이용하여 생성된 예측 블록에 대한 오프셋 값을 나타낼 수 있다. P_LX는 현재 블록의 LX에 대한 움직임 벡터(또는 움직임 정보)를 이용하여 생성한 예측 블록을 의미한다. RF는 라운딩 팩터(Rounding factor)를 의미하고, 0, 양수 또는 음수로 설정될 수 있다. LX 참조 영상 리스트는 롱텀(long-term) 참조 영상, 디블록킹 필터(deblocking filter)를 수행하지 않은 참조 영상, 샘플 적응적 오프셋(sample adaptive offset)을 수행하지 않은 참조 영상, 적응적 루프 필터(adaptive loop filter)를 수행하지 않은 참조 영상, 디블록킹 필터 및 적응적 오프셋만 수행한 참조 영상, 디블록킹 필터 및 적응적 루프 필터만 수행한 참조 영상, 샘플 적응적 오프셋 및 적응적 루프 필터만 수행한 참조 영상, 디블록킹 필터, 샘플 적응적 오프셋 및 적응적 루프 필터 모두 수행한 참조 영상 중 적어도 하나를 포함할 수 있다. 이 경우, LX 참조 영상 리스트는 L2 참조 영상 리스트 및 L3 참조 영상 리스트 중 적어도 하나일 수 있다.
소정 참조 영상 리스트에 대한 예측 방향이 복수 방향인 경우에도, 예측 블록들의 가중합에 기초하여, 현재 블록에 대한 최종 예측 블록을 획득할 수 있다. 이때, 동일한 참조 영상 리스트로부터 유도된 예측 블록들에 적용되는 가중치는 동일한 값을 가질 수도 있고, 상이한 값을 가질 수도 있다.
복수의 예측 블록에 대한 가중치(WF_LX) 및 오프셋(OFFSET_LX) 중 적어도 하나는 엔트로피 부호화/복호화되는 부호화 파라미터일 수 있다. 다른 예로, 가중치 및 오프셋은 현재 블록 주변의 부호화/복호화된 주변 블록으로부터 유도될 수도 있다. 여기서, 현재 블록 주변의 주변 블록은, 현재 블록의 공간적 움직임 벡터 후보를 유도하기 위해 이용되는 블록 또는 현재 블록의 시간적 움직임 벡터 후보를 유도하기 위해 이용되는 블록 중 적어도 하나를 포함할 수 있다.
다른 예로, 가중치 및 오프셋은 현재 영상과 각 참조 영상들의 디스플레이 순서(POC)에 기초하여 결정될 수도 있다. 이 경우, 현재 영상과 참조 영상 사이의 거리가 멀수록, 가중치 또는 오프셋을 작은 값으로 설정하고, 현재 영상과 참조 영상 사이의 거리가 가까울수록 가중치 또는 오프셋을 큰 값으로 설정할 수 있다. 일 예로, 현재 영상과 L0 참조 영상의 POC 차이가 2인 경우, L0 참조 영상을 참조하여 생성된 예측 블록에 적용되는 가중치 값을 1/3으로 설정하는 반면, 현재 영상과 L0 참조 영상의 POC 차이가 1인 경우, L0 참조 영상을 참조하여 생성된 예측 블록에 적용되는 가중치 값을 2/3으로 설정할 수 있다. 위에 예시한 바와 같이, 가중치 또는 오프셋 값은 현재 영상과 참조 영상 사이의 디스플레이 순서 차와 반비례 관계를 가질 수 있다. 다른 예로, 가중치 또는 오프셋 값은 현재 영상과 참조 영상 사이의 디스플레이 순서 차와 비례 관계를 갖도록 하는 것 역시 가능하다.
다른 예로, 부호화 파라미터 중 적어도 하나 이상에 기반하여, 가중치 또는 오프셋 중 적어도 하나 이상을 엔트로피 부호화/복호화할 수도 있다. 또한 부호화 파라미터 중 적어도 하나 이상에 기반하여, 예측 블록들의 가중합을 계산할 수도 있다.
복수의 예측 블록의 가중합은 예측 블록 내의 일부 영역에서만 적용될 수 있다. 여기서, 일부 영역은 예측 블록 내의 경계에 해당하는 영역일 수 있다. 위와 같이 일부 영역에만 가중합을 적용하기 위하여, 예측 블록의 하위 블록(sub-block)단위로 가중합을 수행할 수 있다.
영역 정보가 지시하는 블록 크기의 블록 내부에서 더 작은 블록 크기의 하위 블록들에서는 동일한 예측 블록 또는 동일한 최종 예측 블록을 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영역 정보가 지시하는 블록 깊이의 블록 내부에서 더 깊은 블록 깊이의 하위 블록들에서는 동일한 예측 블록 또는 동일한 최종 예측 블록을 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다.
또한, 움직임 벡터 예측을 이용해서 예측 블록들의 가중합 계산 시, 움직임 벡터 후보 리스트 내에 존재하는 적어도 하나 이상의 움직임 벡터 후보를 이용해서 가중합을 계산하고 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 공간적 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 공간적 움직임 벡터 후보와 시간적 움직임 벡터 후보들로 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 조합된 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 특정한 움직임 벡터 후보 색인들을 가지는 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 특정한 움직임 벡터 후보 색인 범위 내에 존재하는 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
또한, 머지 모드를 이용해서 예측 블록들의 가중합 계산 시, 머지 후보 리스트 내에 존재하는 적어도 하나 이상의 머지 후보를 이용해서 가중합을 계산하고 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 공간적 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 공간적 머지 후보와 시간적 머지 후보들로 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 조합된 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 특정한 머지 후보 색인들을 가지는 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
예를 들어, 특정한 머지 후보 색인 범위 내에 존재하는 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.
부호화기 및 복호화기에서는 현재 블록에서 가지는 움직임 벡터/정보를 이용하여 움직임 보상을 수행할 수 있다. 이때, 움직임 보상의 결과인 최종 예측 블록은 적어도 하나 이상의 예측 블록을 이용해서 생성될 수 있다. 여기서, 현재 블록은 현재 부호화 블록(coding block), 현재 예측 블록(prediction block) 중 적어도 하나 이상을 의미할 수 있다.
다음으로, 움직임 보상에 관한 정보를 엔트로피 부호화/복호화하는 과정에 대해 상세히 살펴보기로 한다(S504, S601).
부호화 장치는 움직임 보상에 관한 정보를 비트스트림을 통해 엔트로피 부호화하고, 복호화 장치는 비트스트림에 포함된 움직임 보상에 관한 정보를 엔트로피 복호화할 수 있다. 여기서, 엔트로피 부호화/복호화되는 움직임 보상에 관한 정보는, 화면 간 예측 지시자(Inter Prediction Indicator)(inter_pred_idc), 참조 영상 색인(ref_idx_l0, ref_idx_l1, ref_idx_l2, ref_idx_l3), 움직임 벡터 후보 색인(mvp_l0_idx, mvp_l1_idx, mvp_l2_idx, mvp_l3_idx), 움직임 벡터 차분(motion vector difference), 스킵 모드 사용 여부 정보(cu_skip_flag), 머지 모드 사용 여부 정보(merge_flag), 머지 색인 정보(merge_index), 머지 모드 기반 움직임 벡터 보정 사용 여부 정보(fruc_flag), 가중치 값(wf_l0, wf_l1, wf_l2, wf_l3) 및 오프셋 값(offset_l0, offset_l1, offset_l2, offset_l3) 중 적어도 하나를 포함할 수 있다.
화면 간 예측 지시자는 현재 블록의 화면 간 예측으로 부호화/복호화되는 경우, 현재 블록의 화면 간 예측 방향 또는 예측 방향의 개수 중 적어도 하나를 의미할 수 있다. 일 예로, 화면 간 예측 지시자는, 단방향 예측을 지시하거나, 쌍방향 예측, 3개 방향 예측 또는 4개 방향 예측 등 복수 방향 예측을 지시할 수 있다. 화면 간 예측 지시자는 현재 블록이 예측 블록을 생성할 때 사용하는 참조 영상의 수를 의미할 수 있다. 또는, 하나의 참조 영상이 복수개의 방향 예측을 위해 이용될 수도 있다. 이 경우, M개의 참조 영상을 이용하여 N(N>M)개 방향 예측을 수행할 수 있다. 화면 간 예측 지시자는 현재 블록에 대한 화면 간 예측 또는 움직임 보상을 수행할 때 사용되는 예측 블록의 수를 의미할 수도 있다.
참조 영상 지시자는 현재 블록의 예측 방향의 수에 따라, 단방향(PRED_LX), 양방향(PRED_BI), 세방향(PRED_TRI), 네방향(PRED_QUAD) 또는 그 이상의 방향성을 지시할 수 있다.
예측 리스트 활용 플래그(prediction list utilization flag)는 해당 참조 영상 리스트를 이용하여 예측 블록을 생성하는지 여부를 나타낸다.
참조 영상 색인은 각 참조 영상 리스트에서 현재 블록이 참조하는 참조 영상을 특정할 수 있다. 각 참조 영상 리스트에 대해 1개 이상의 참조 영상 색인이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 1개 이상의 참조 영상 색인을 이용하여 움직임 보상을 수행할 수 있다.
움직임 벡터 후보 색인은 참조 영상 리스트 별 또는 참조 영상 색인 별로 생성된 움직임 벡터 후보 리스트에서 현재 블록에 대한 움직임 벡터 후보를 나타낸다. 움직임 벡터 후보 리스트별로 적어도 1개 이상의 움직임 벡터 후보 색인이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 적어도 1개 이상의 움직임 벡터 후보 색인을 이용하여 움직임 보상을 수행할 수 있다.
움직임 벡터 차분은 움직임 벡터와 예측된 움직임 벡터 사이의 차분값을 나타낸다. 현재 블록에 대해 참조 영상 리스트 또는 참조 영상 색인 별로 생성된 움직임 벡터 후보 리스트에 대해 1개 이상의 움직임 벡터 차분이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 1개 이상의 움직임 벡터 차분을 이용하여, 움직임 보상을 수행할 수 있다.
스킵 모드 사용 여부 정보(cu_skip_flag)는, 제 1의 값인 1을 가질 경우 스킵 모드 사용을 지시할 수 있으며, 제 2의 값인 0을 가질 경우 스킵 모드 사용을 지시하지 않을 수 있다. 스킵 모드 사용 여부 정보를 기반으로 스킵 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.
머지 모드 사용 여부 정보(merge_flag)는, 제 1의 값인 1을 가질 경우 머지 모드 사용을 지시할 수 있으며, 제 2의 값인 0을 가질 경우 머지 모드 사용을 지시하지 않을 수 있다. 머지 모드 사용 여부 정보를 기반으로 머지 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.
머지 색인 정보(merge_index)는 머지 후보 리스트(merge candidate list) 내 머지 후보(merge candidate)를 지시하는 정보를 의미할 수 있다.
또한, 머지 색인 정보는 머지 색인(merge index)에 대한 정보를 의미할 수 있다.
또한, 머지 색인 정보는 공간적/시간적으로 현재 블록과 인접하게 복원된 블록들 중 머지 후보를 유도한 블록을 지시할 수 있다.
또한, 머지 색인 정보는 머지 후보가 가지는 움직임 정보 중 적어도 하나 이상을 지시할 수 있다. 예를 들어, 머지 색인 정보는 제 1의 값인 0을 가질 경우 머지 후보 리스트 내 첫번째 머지 후보를 지시할 수 있으며, 제 2의 값인 1을 가질 경우 머지 후보 리스트 내 두번째 머지 후보를 지시할 수 있으며, 제 3의 값인 2를 가질 경우 머지 후보 리스트 내 세번째 머지 후보를 지시할 수 있다. 마찬가지로 제 4 내지 제N 값을 가질 경우 머지 후보 리스트 내 순서에 따라 값에 해당하는 머지 후보를 지시할 수 있다. 여기서 N은 0을 포함한 양의 정수를 의미할 수 있다.
머지 모드 색인 정보를 기반으로 머지 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.
머지 모드 기반 움직임 벡터 보정 사용 여부 정보(fruc_flag)는 머지 모드 기반 움직임 벡터 보정 사용 여부를 지시하는 정보를 의미할 수 있다. 부호화 블록 및 예측 블록 중 적어도 하나의 단위에서 엔트로피 부호화/복호화 될 수 있다.
예를 들어, 머지 모드 기반 움직임 벡터 보정 사용 여부 정보는 제1의 값인 1을 가질 경우 머지 모드 기반 움직임 벡터 사용을 지시할 수 있으며, 제2의 값인 0을 가질 경우 머지 모드 기반 움직임 벡터 사용을 지시하지 않을 수 있다. 여기서, 제1의 값 및 제2의 값은 변경될 수 있다.
다만, 이에 한정되지 않고 부호화기/복호화기에 기 정의된 다른 화면 간 예측 모드(일 예로, 스킵 모드, AMVP모드 등)을 기반으로 움직임 벡터 보정이 사용 여부가 결정될 수 있다. 즉, fruc_flag가 명시적으로 시그널링이 없는 경우라도, 소정의 조건하에서 움직임 벡터 보정이 선택적으로 사용될 수도 있다.
한편, 머지 모드 기반 움직임 벡터 보정 사용 여부 정보(fruc_falg)는 머지 모드 사용 여부 정보(merge_flag)가 머지 모드 사용을 지시하는 제1의 값을 가질 경우, 엔트로피 복호화 할 수 있다.
현재 블록에 대한 움직임 보상 시 2개 이상의 예측 블록이 생성된 경우, 각 예측 블록에 대한 가중합(weighted sum)을 통해 현재 블록에 대한 최종 예측 블록이 생성될 수 있다. 가중합 연산시, 각 예측 블록에 대해 가중치 및 오프셋 중 적어도 하나 이상이 적용될 수 있다. 가중치(weighting factor) 또는 오프셋(offset) 등과 같이 가중합 연산에 이용되는 가중합 인자는, 참조 영상 리스트, 참조 영상, 움직임 벡터 후보 색인, 움직임 벡터 차분, 움직임 벡터, 스킵 모드 사용 여부 정보, 머지 모드 사용 여부 정보, 머지 색인 정보 중 적어도 하나의 개수만큼 또는 적어도 하나의 개수 이상 엔트로피 부호화/복호화될 수 있다. 또한, 각 예측 블록의 가중합 인자는 화면 간 예측 지시자에 기반하여 엔트로피 부호화/복호화될 수 있다. 여기서, 가중합 인자는 가중치 및 오프셋 중 적어도 하나를 포함할 수 있다.
CTU 에서 움직임 보상에 관한 정보가 엔트로피 부호화/복호화되는 경우, 움직임 보상에 관한 정보의 값에 따라 CTU에 존재하는 모든 또는 일부 블록들에서 해당 움직임 보상에 관한 정보를 이용하여 움직임 보상을 수행할 수 있다.
CTU 또는 CTU의 하위 유닛에서 움직임 보상에 관한 정보를 엔트로피 부호화/복호화되는 경우, 소정의 블록 크기 또는 소정의 블록 깊이 중 적어도 하나에 기초하여 움직임 보상에 관한 정보를 엔트로피 부호화/복호화될 수 있다.
여기서, 소정의 블록 크기 또는 소정의 블록 깊이에 관한 정보는 추가적으로 엔트로피 부호화/복호화될 수 있다. 또는, 소정의 블록 크기 또는 소정의 블록 깊이에 관한 정보는 부호화기 및 복호화기에서 기 설정된 값, 부호화 파라미터 중 적어도 하나 또는 다른 구문 요소 값 중 적어도 하나에 기초하여 결정될 수도 있다.
소정의 블록 크기보다 크거나 같은 블록 크기를 가지는 블록에서만 움직임 보상에 관한 정보가 엔트로피 부호화/복호화될 수 있고, 소정의 블록 크기보다 작은 블록 크기를 가지는 블록에서는 움직임 보상에 관한 정보가 엔트로피 부호화/복호화되지 않을 수 있다. 이 경우, 소정의 블록 크기보다 크거나 같은 블록 크기를 가지는 블록 내의 하위 블록들은 소정의 블록 크기보다 크거나 같은 블록 크기를 가지는 블록에서 엔트로피 부호화/복호화된 움직임 보상에 관한 정보에 기반하여 움직임 보상을 수행할 수 있다. 즉, 소정의 블록 크기보다 크거나 같은 블록 크기를 가지는 블록내의 하위 블록들은 움직임 벡터 후보, 움직임 벡터 후보 리스트, 머지 후보, 머지 후보 리스트 등을 포함하는 움직임 보상에 관한 정보가 공유될 수 있다.
소정의 블록 깊이보다 얕거나 같은 블록 깊이를 가지는 블록에서만 움직임 보상에 관한 정보가 엔트로피 부호화/복호화될 수 있고, 소정의 블록 깊이보다 더 깊은 블록 깊이를 가지는 블록에서는 움직임 보상에 관한 정보가 엔트로피 부호화/복호화되지 않을 수 있다. 이 경우, 소정의 블록 깊이보다 얕거나 같은 블록 깊이를 가지는 블록내의 하위 블록들은 소정의 블록 깊이보다 얕거나 같은 블록 깊이를 가지는 블록에서 엔트로피 부호화/복호화되는 움직임 보상에 관한 정보에 기반하여 움직임 보상을 수행할 수 있다. 즉, 소정의 블록 깊이보다 얕거나 같은 블록 깊이를 가지는 블록내의 하위 블록들은 움직임 벡터 후보, 움직임 벡터 후보 리스트, 머지 후보, 머지 후보 리스트 등을 포함하는 움직임 보상에 관한 정보가 공유될 수 있다.
움직임 보상에 관한 정보는, 블록 단위로 엔트로피 부호화/복호화될 수도 있고, 상위 레벨에서 엔트로피 부호화/복호화 될수도 있다. 일 예로, 움직임 보상에 관한 정보는, CTU, CU 또는 PU 등 블록 단위로 엔트로피 부호화/복호화되거나, 비디오 파라미터 세트(Video Parameter Set), 시퀀스 파라미터 세트(Sequence Parameter Set), 픽처 파라미터 세트(Picture Parameter Set), 적응 파라미터 세트(Adaptation Parameter Set) 또는 슬라이스 헤더(Slice Header) 등 상위 레벨에서 엔트로피 부호화/복호화될 수 있다.
움직임 보상에 관한 정보는 움직임 보상에 관한 정보와 움직임 보상에 관한 정보 예측값 사이의 차분값을 나타내는 움직임 보상에 관한 정보 차분값을 기초로 엔트로피 부호화/복호화될 수도 있다.
현재 블록의 움직임 보상에 관한 정보를 엔트로피 부호화/복호화하는 대신, 현재 블록 주변에 부호화/복호화된 블록의 움직임 보상에 관한 정보를 현재 블록의 움직임 보상에 관한 정보로 이용하는 것도 가능하다.
또한, 부호화 파라미터 중 적어도 하나 이상에 기반하여 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 유도할 수 있다.
또한, 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 부호화 파라미터 중 적어도 하나 이상에 기반하여 비트스트림으로부터 엔트로피 복호화할 수 있다. 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 부호화 파라미터 중 적어도 하나 이상에 기반하여 비트스트림에 엔트로피 부호화할 수 있다.
움직임 보상에 관한 정보는 움직임 벡터, 움직임 벡터 후보, 움직임 벡터 후보 색인, 움직임 벡터 차분값, 움직임 벡터 예측값, 스킵 모드 사용 여부 정보(skip_flag), 머지 모드 사용 여부 정보(merge_flag), 머지 색인 정보(merge_index), 움직임 벡터 해상도(motion vector resolution) 정보, 중첩된 블록 움직임 보상(overlapped block motion compensation) 정보, 지역 조명 보상(local illumination compensation) 정보, 어파인 움직임 보상(affine motion compensation) 정보, 복호화기 움직임 벡터 유도(decoder-side motion vector derivation) 정보, 양방향 광학 흐름(bi-directional optical flow) 정보 중 적어도 하나를 더 포함할 수 있다. 여기서, 복호화기 움직임 벡터 유도는 패턴 정합 움직임 벡터 유도(pattern matched motion vector derivation)을 의미할 수 있다.
움직임 벡터 해상도 정보는 움직임 벡터 및 움직임 벡터 차분값 중 적어도 하나 이상에 대해 특정 해상도를 사용하는지 여부를 나타내는 정보일 수 있다. 여기서, 해상도는 정밀도(precision)를 의미할 수 있다. 또한, 특정 해상도는 16-화소(16-pel) 단위, 8-화소(8-pel) 단위, 4-화소(4-pel) 단위, 정수-화소(integer-pel) 단위, 1/2-화소(1/2-pel) 단위, 1/4-화소(1/4-pel) 단위, 1/8-화소(1/8-pel) 단위, 1/16-화소(1/16-pel) 단위, 1/32-화소(1/32-pel) 단위, 1/64-화소(1/64-pel) 단위 중 적어도 하나로 설정될 수 있다.
중첩된 블록 움직임 보상 정보는 현재 블록의 움직임 보상 시 현재 블록 블록에 공간적으로 인접한 주변 블록의 움직임 벡터를 추가로 사용하여 현재 블록의 예측 블록의 가중합을 계산하는지 여부를 나타내는 정보일 수 있다.
지역 조명 보상 정보는 현재 블록의 예측 블록 생성 시 가중치 값 및 오프셋 값 중 적어도 하나를 적용하는지 여부를 나타내는 정보일 수 있다. 여기서, 가중치 값 및 오프셋 값 중 적어도 하나는 참조 블록을 기반으로 산출된 값일 수 있다.
어파인 움직임 보상 정보는 현재 블록에 대한 움직임 보상 시 어파인 움직임 모델(affine motion model)을 사용하는지 여부를 나타내는 정보일 수 있다. 여기서, 어파인 움직임 모델은 복수의 파라미터를 이용하여 하나의 블록을 다수의 하위 블록으로 분할하고, 대표 움직임 벡터들을 이용하여 분할된 하위 블록의 움직임 벡터를 산출하는 모델일 수 있다.
복호화기 움직임 벡터 유도 정보는 움직임 보상에 필요한 움직임 벡터를 복호화기에서 유도하여 사용하는지 여부를 나타내는 정보일 수 있다. 복호화기 움직임 벡터 유도 정보에 기초하여 움직임 벡터에 관한 정보는 엔트로피 부호화/복호화되지 않을 수 있다. 그리고, 복호화기 움직임 벡터 유도 정보가 복호화기에서 움직임 벡터를 유도하여 사용하는 것을 나타내는 경우, 머지 모드에 관한 정보가 엔트로피 부호화/복호화될 수 있다. 즉, 복호화기 움직임 벡터 유도 정보는 복호화기에서 머지 모드를 이용 여부를 나타낼 수 있다.
양방향 광학 흐름 정보는 픽셀 단위 혹은 하위 블록 단위로 움직임 벡터를 교정하여 움직임 보상을 수행하는지 여부에 나타내는 정보일 수 있다. 양방향 광학 흐름 정보에 기초하여 픽셀 단위 혹은 하위 블록 단위의 움직임 벡터는 엔트로피 부호화/복호화되지 않을 수 있다. 여기서, 움직임 벡터 교정은 블록 단위의 움직임 벡터를 픽셀 단위 혹은 하위 블록 단위로 움직임 벡터 값을 변경하는 것일 수 있다.
현재 블록은 움직임 보상에 관한 정보 중 적어도 하나를 이용하여 움직임 보상을 수행하고, 움직임 보상에 관한 정보 중 적어도 하나를 엔트로피 부호화/복호화할 수 있다.
움직임 보상과 관련한 정보를 엔트로피 부호화/복호화하는 경우, 절삭된 라이스(Truncated Rice) 이진화 방법, K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법, 제한된 K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법, 고정 길이(Fixed-length) 이진화 방법, 단항(Unary) 이진화 방법 또는 절삭된 단항(Truncated Unary) 이진화 방법 등의 이진화(Binarization) 방법이 이용될 수 있다.
움직임 보상에 관한 정보를 엔트로피 부호화/복호화할 때, 현재 블록 주변의 주변 블록의 움직임 보상에 관한 정보 또는 주변 블록의 영역 정보, 이전에 부호화/복호화된 움직임 보상에 관한 정보 또는 이전에 부호화/복호화된 영역 정보, 현재 블록의 깊이에 관한 정보 및 현재 블록의 크기에 관한 정보 중 적어도 하나 이상을 이용하여 문맥 모델(context model)을 결정할 수 있다.
또한, 움직임 보상에 관한 정보를 엔트로피 부호화/복호화할 때, 주변 블록의 움직임 보상에 관한 정보, 이전에 부호화/복호화된 움직임 보상에 관한 정보, 현재 블록의 깊이에 관한 정보 및 현재 블록의 크기에 관한 정보 중 적어도 하나 이상을 현재 블록의 움직임 보상에 관한 정보에 대한 예측값으로 사용하여 엔트로피 부호화/복호화를 수행할 수도 있다.
이하에서는, 움직임 벡터 보정 방법과 관련한 구체적인 설명을 도 7 내지 도 28을 참고하여 설명하도록 한다.
현재 블록에 대한 움직임 벡터를 유도함에 있어, 스킵/머지 모드 기반 움직임 벡터 유도하는 방법 및 향상된 움직임 벡터 예측 모드를 이용하여 유도하는 방법 중 적어도 하나 이상의 방법을 이용하여 현재 블록의 움직임 벡터를 유도할 수 있다. 여기서, 움직임 벡터를 유도한다고 함은, 현재 블록의 움직임 벡터를 유도하는 것에 현재 블록의 참조 영상 색인 정보를 유도하는 것도 포함할 수 있다.
아래에서는, 머지 모드 기반 움직임 벡터 보정 방법을 설명한다. 그러나, 머지 모드에 한정되지 아니하고, 머지 모드 외에 다른 화면 간 예측 모드 기반의 움직임 벡터 보정 방법에도 아래 설명이 적용될 수 있다.
머지 모드 기반 움직임 벡터 보정 방법은 초기 움직임 벡터 유도 단계, 초기 움직임 벡터를 기반으로 보정된 움직임 벡터를 유도하는 단계 및 하위 블록 단위로 보정된 움직임 벡터를 유도하는 단계 중 적어도 하나를 포함할 수 있다.
먼저, 초기 움직임 벡터 유도 단계에 대해 구체적으로 설명하기로 한다.
도 7과 같이 공간적 주변 블록 및 시간적 주변 블록 중 적어도 하나로부터 유도된 머지 후보 리스트 내의 머지 후보를 이용하여 현재 블록에 대한 초기 움직임 벡터를 유도할 수 있다.
한편, 머지 모드 기반 움직임 벡터 보정을 위해 별도의 머지 후보 리스트를 구성할 수 있다.
도 8은 별도의 머지 후보 리스트를 구성하기 위한 공간적 주변 블록 및 시간적 주변 블록을 나타내는 도면이다.
도 8를 참고하면, 별도의 머지 후보 리스트를 구성함에 있어, 공간적 주변 블록(A0, A1, A2, B0, B1, B2, B3)으로부터 소정의 개수의 후보를 A1, B1, B0, A0, B2, B3, A2 순서대로 별도의 머지 후보 리스트에 포함시킨 후, 시간적 주변 블록으로부터 유도된 후보, 조합 양예측 머지 후보 및 제로 머지 후보를 별도의 머지 후보 리스트에 포함시켜 초기 움직임 벡터를 유도할 수 있다.
한편, 머지 후보 리스트내의 머지 후보를 이용함에 있어, 머지 후보 리스트 내의 전부 혹은 일부 머지 후보를 이용하여 현재 블록에 대한 초기 움직임 벡터를 유도할 수 있다.
예를 들어, 머지 후보 리스트내의 머지 후보가 서브 블록 단위로 유도된 움직임 정보를 갖는 경우, 해당 머지 후보를 머지 후보 리스트 구성에서 추가적인 공간적 주변 블록 및/또는 시간적 주변 블록으로부터 유도된 움직임 정보를 대체하거나 혹은 초기 움직임 벡터로 사용하지 않을 수 있다.
도 9 및 도 10은 초기 움직임 벡터 리스트 구성을 설명하기 위한 도면이다.
도 9와 같이 머지 후보 리스트가 구성된 경우, 도 10과 같이 각 리스트 방향에 해당하는 머지 후보들로부터 해당 리스트 방향의 초기 움직임 벡터 리스트를 구성할 수 있다. 여기서, 초기 움직임 벡터 리스트는 움직임 벡터 및 잠조 영상 색인 중 적어도 하나를 포함할 수 있다.
일 예로, 초기 움직 벡터 리스트는 머지 후보 리스트로부터 움직임 벡터만을 가져다 사용할 수 있으며, 참조 영상 색인은 고정된 소정의 값을 사용할 수 있다. 여기서, 고정된 소정의 값은 부호화기에서 복호화기로 시그널링 된 값이거나, 부호화기 및 복호화기에 공통적으로 설정된 값일 수 있다.
한편, 머지 후보 리스트내의 머지 후보의 참조 영상 색인 정보가 초기 움직임 벡터 리스트의 소정의 참조 영상 색인 정보와 일치하지 않을 경우, 시간 거리(또는 POC 차이)를 고려하여 스케일링한 움직임 벡터를 초기 움직임 벡터로 사용할 수 있다.
한편, 초기 움직임 벡터 리스트를 구성함에 있어서, 리스트 내에 동일한 움직임 벡터와 참조 영상 색인이 들어 있는 경우에는 추가를 하지 않을 수 있다.
도 11은 머지 색인 정보를 이용하여 초기 움직임 벡터를 유도하는 방법을 설명하기 위한 도면이다. 머지 후보 리스트내의 머지 후보 중 머지 색인 정보에 해당하는 머지 후보의 움직임 정보를 초기 움직임 벡터로 사용할 수 있다.
도 11을 참고하면, 머지 색인 정보 값이 3에 해당하는 경우, 머지 후보 리스트에서 네 번째 후보에 해당하는 L0 리스트 [움직임 벡터: (3,1), 참조 영상 색인: 0] 과 L1 리스트 [움직임 벡터: (-3,1), 참조 영상 색인: 0] 를 각 리스트 방향의 초기 움직임 벡터로 유도할 수 있습니다.
한편, 머지 색인 정보 값이 4에 해당하는 경우, 머지 후보 리스트에서 다섯 번째 후보에 해당하는 L0 리스트 [움직임 벡터: (6,2), 참조 영상 색인: 0 ] 만을 L0 리스트 방향의 초기 움직임 벡터로 사용할 수 있다. 여기서, 머지 색인 정보는 머지 모드를 위한 색인 정보 일 수 있다.
다만, 머지 모드 기반 움직임 벡터 보정을 위해 사용되는 초기 움직임 벡터 색인 정보가 추가로 정의될 수 있으며, 이는 부호화/복호화 블록 단위마다 엔트로피 부호화/복호화 될 수 있다.
한편, 머지 후보 리스트내의 머지 후보를 이용함에 있어, 머지 색인 정보에 대한 엔트로피 복호화를 하지 않고 머지 후보 리스트내의 머지 후보들 중 소정의 번호에 해당하는 머지 후보의 움직임 벡터를 초기 움직임 벡터로 설정할 수 있다. 여기서, 소정의 번호는 부호화기 및 복호화기에 공통적으로 설정된 번호일 수 있다.
예를 들어, 부호화/복호화기에서 동일하게 머지 후보 리스트내의 첫 번째 후보에 해당하는 움직임 벡터를 초기 움직임 벡터로 사용한다고 할 경우, 도 11의 머지 후보 리스트에서 첫 번째 후보에 해당하는 L0 리스트 [움직임 벡터: (3,1), 참조 영상 색인: 0 ] 과 L1 리스트 [움직임 벡터: (-2,0), 참조 영상 색인: 0 ] 를 L0/L1 리스트 방향의 초기 움직임 벡터로 사용할 수 있다.
한편, 머지 후보 리스트내의 머지 후보를 이용함에 있어, 현재 블록이 양 예측이 가능한 블록이지만, L0 또는 L1 리스트에 해당하는 하나의 움직임 정보만 존재하는 경우, 존재하는 움직임 정보를 기반으로 유도된 움직임 정보를 추가 초기 움직임 정보로 사용할 수 있다. 여기서, 존재하는 움직임 정보는 동일 리스트 내의 다른 머지 후보의 움직임 정보일 수도 있다.
위와 같이 존재하는 움직임 정보를 기반으로 추가 움직임 정보를 유도함에 있어, 존재하는 움직임 정보가 지시하는 참조 픽처, 현재 블록이 속해있는 현재 픽처, 또는 움직임 정보 생성이 필요한 리스트내의 참조 픽처들간의 시간 거리(또는 POC 차이) 중 적어도 하나를 고려하여 존재하지 않는 움직임 정보를 대체할 추가 초기 움직임 벡터를 유도할 수 있다.
구체적으로, 존재하는 움직임 벡터를 미러링 및 스케일링 중 적어도 하나를 수행하여 존재하지 않는 움직임 벡터를 대체할 추가 초기 움직임 벡터를 유도할 수 있다.
예를 들어, 도 11에서 머지 색인 정보의 값이 2인 경우, L0 움직임 정보만 존재할 수 있다.
이 경우, L0 움직임 벡터가 지시하는 참조 픽처와 현재 블록이 속해 있는 픽처간의 POC 차이와 동일한 POC 차이를 갖는 L1 참조 픽처 리스트내의 참조 픽처를 기준으로 미러링한 L0 움직임 벡터를 L1 리스트 움직임 벡터로 유도할 수 있다.
또한, L1 리스트내의 참조 픽처 중 L0 움직임 벡터가 지시하는 참조 픽처와 동일한 POC를 갖는 참조 픽처를 제외하고, 현재 픽처와의 POC 차이가 가장 작은 픽처를 L1 참조 픽처로 유도하고, L0 참조 픽처와 현재 픽처의 POC 차이 및 유도된 L1 참조 픽처와 현재 픽처의 POC 차이를 고려하여 스케일한 L0 움직임 벡터를 L1 방향 움직임 벡터로 유도할 수 있다.
도 12는 움직임 벡터 미러링을 설명하기 위한 도면이다.
도 12를 참고하면, L0 움직임 벡터가 지시하는 참조 픽처와 현재 블록이 속해 있는 픽처간의 POC 차이와 동일한 POC 차이를 갖는 L1 참조 픽처 리스트내의 참조 픽처를 기준으로 미러링한 L0 움직임 벡터를 L1 리스트 움직임 벡터로 유도할 수 있다.
구체적으로, L0 움직임 벡터가 지시하는 참조 픽처의 POC 가 0 이고 현재 픽처의 POC 가 4 이므로 두 픽처간의 POC 차이는 4로 계산될 수 있다. L1 리스트 방향의 참조 픽처 중 현재 픽처와의 POC 차이가 4인 픽처가 존재하므로 해당 픽처를 대상으로 L0 움직임 벡터를 미러링을 하여 생성한 움직임 벡터와 해당 참조 픽처의 참조 영상 색인을 L1 움직임 정보로 사용할 수 있다. 여기서, L0 움직임 벡터를 L1 리스트 방향으로 미러링하여 생성한 L1 움직임 벡터는 (3, 1) 이며 L1 참조 영상 색인은 0 이다.
도 13은 움직임 벡터 스케일링을 설명하기 위한 도면이다.
도 13을 참고하면, L1 리스트내의 참조 픽처 중 L0 움직임 벡터가 지시하는 참조 픽처와 동일한 POC를 갖는 참조 픽처를 제외하고, 현재 픽처와의 POC 차이가 가장 작은 픽처를 L1 참조 픽처로 유도하고, L0 참조 픽처와 현재 픽처의 POC 차이 및 유도된 L1 참조 픽처와 현재 픽처의 POC 차이를 고려하여 스케일한 L0 움직임 벡터를 L1 방향 움직임 벡터로 유도할 수 있다.
구체적으로, L0 움직임 벡터가 지시하는 참조 픽처(POC 2)를 제외하고, 현재 픽처와의 POC 차이가 가장 작은 픽처(POC 1)를 L1 참조 픽처로 유도할 수 있다. 그리고, L0 참조 픽처와 현재 픽처의 POC 차이(tb) 및 유도된 L1 참조 픽처와 현재 픽처의 POC 차이(td)를 고려하여 스케일링한 L0 움직임 벡터를 L1 방향 움직임 벡터로 유도할 수 있다.
움직임 벡터의 스케일링 과정은 아래와 같이 수행될 수 있다.
td는 현재 영상에 대한 영상 순서 카운트와 현재 블록의 L1 참조 영상에 대한 영상 순서 카운트 간의 차이 값을 의미할 수 있다. tb는 현재 영상에 대한 영상 순서 카운트와 현재 블록의 L0참조 영상에 대한 영상 순서 카운트 간의 차이 값을 의미할 수 있다.
td 값 혹은 tb 값을 -128과 127 사이의 범위에 포함되도록 td 값 및 tb 값 중 적어도 하나 이상을 조정할 수 있다. 이때, td 값 혹은 tb 값이 -128보다 작으면 td 값 혹은 tb 값을 -128로 조정할 수 있고, td 값 혹은 tb 값이 127보다 클 경우에는 td 값 혹은 tb 값을 127로 조정할 수 있다. td 값 혹은 tb 값이 -128과 127 사이의 범위에 포함되면 td 값 혹은 tb 값을 조정하지 않을 수 있다. 즉, tb 값 혹은 tb 값이 일정한 값의 범위 내에 속하도록 tb 값 혹은 tb 값을 클리핑(clipping)할 수 있다.
tx 값을 (16384 + Abs(td/2)) / td로 결정할 수 있다. 이때, Abs()는 절대값 함수를 나타내며, 해당 함수의 출력 값은 입력 값의 절대값이 될 수 있다.
스케일링 인자인 DistScaleFactor를 (tb*tx+32)>>6로 결정할 수 있고, -1024과 1023 사이의 범위에 포함되도록 DistScaleFactor 값을 조정한다.
스케일링된 움직임 벡터는 Sign(DistScaleFactor*mv) * ((Abs(DistScaleFactor*mv)+127)>>8) 로 결정할 수 있다. 이때, Sign()는 특정 값의 부호 정보를 출력하며, 만약 Sign(-1)이면 -를 출력할 수 있다. mv은 스케일링되기 전 존재하는 움직임 벡터 값을 나타낼 수 있다.
도 14는 양 예측이 가능한 블록에서 L0 또는 L1 리스트에 해당하는 하나의 움직임 벡터만 존재하는 경우, 추가 움직임 벡터를 유도하는 일 예를 설명하기 위한 도면이다. 머지 후보 리스트내의 머지 후보를 이용함에 있어, 현재 블록이 양예측이 가능한 블록이지만, L0 또는 L1 리스트에 해당하는 하나의 움직임 벡터만 존재하는 경우, 움직임 벡터가 존재하지 않는 예측 방향의 머지 후보 리스트내에서 추가 움직임 벡터를 유도할 수 있다.
도 14를 참고하면, 머지 색인 정보값이 2인 경우 L0 움직임 벡터만 존재한다. 이 경우, L1 리스트에서 n번째로 이용 가능한 움직임 벡터를 현재 블록의 초기 L1 움직임 벡터로 사용할 수 있다. 여기서, n은 부호화기/복호화기에서 공통적으로 설정된 값일 수 있고, 1을 포함하는 양의 정수 일 수 있다.
도 15는 양 예측이 가능한 블록에서 양방향 움직임 정보를 가지고 있는 머지 후보를 초기 움직임 벡터로 선택하는 일 예를 설명하기 위한 도면이다. 머지 후보 리스트내의 머지 후보를 이용함에 있어, 현재 블록이 양예측이 가능한 블록인 경우, 머지 후보 리스트에서 양방향 움직임 정보를 갖고 있는 머지 후보를 초기 움직임 벡터로 사용할 수 있다. 여기서, 머지 후보 리스트에 양방향 움직임 정보를 가진 후보가 복수개인 경우, 가장 작은 머지 색인 정보를 가진 후보가 사용될 수 있다.
도 15를 참고하면, 현재 블록이 양예측이 가능한 블록에 해당되는 경우, 첫번째로 이용 가능한 양방향 움직임 정보를 가지고 있는 머지 후보 색인 3에 해당하는 움직임 벡터를 초기 움직임 벡터로 사용할 수 있다.
상기 조건을 만족하는 참조 영상이 존재하지 않을 경우에는 존재하는 머지 색인 정보에 의해 선택된 머지 후보의 움직임 정보를 초기 움직임 벡터로 유도할 수 있다.
한편, 상술한 방법으로 유도된 초기 움직임 벡터를 기반으로 움직임 보정을 수행함에 있어, 초기 움직임 벡터가 부화소 단위의 움직임 벡터를 가지는 경우 가까운 정수 화소 위치로 라운딩한 움직임 벡터를 기반으로 움직임 보정을 수행할 수 있다.
예를 들어, 1/16 움직임 벡터 정밀도를 가지는 경우, 아래와 같은 수학식 4으로 통해 정수 화소 위치로 라운딩을 할 수 있다. 쉬프트(Shift) 값을 정밀도에 따라 다르며, 1/16 움직임 벡터 정밀도인 경우는 4, 1/8 움직임 벡터 정밀도인 경우는 3의 값을 가질 수 있다.
Figure PCTKR2017013673-appb-M000004
다음으로는, 유도된 초기 움직임 벡터를 기반으로 보정된 움직임 벡터를 유도하는 단계에 대해 구체적으로 설명하기로 한다.
부호화기/복호화기에서는 상기 유도된 초기 움직임 벡터를 이용하여 블록 단위 움직임 벡터 보정을 수행할 수 있다.
움직임 벡터 보정과 관련하여, 현재 블록의 공간적 주변 블록 및/또는 시간적 주변 블록을 이용하여 초기 움직임 벡터에 대한 보정을 수행할 수 있다. 움직임 벡터 보정에 이용되는 공간적 주변 블록 및/또는 시간적 주변 블록의 복원 픽셀을 템플릿으로 정의할 수 있다.
일 예로, 부호화기/복호화기는 현재 블록의 공간적 주변 복원 픽셀들로 템플릿을 구성하여, 해당 템플릿을 이용하여 초기 움직임 벡터에 대한 보정을 수행할 수 있다.
도 16 내지 도 21은 본 발명의 일 실시 예에 따른 템플릿을 설명하기 위한 도면이다.
템플릿을 구성함에 있어, 도 16과 같이 현재 블록의 상단 및/또는 좌측 주변 복원 블록의 픽셀들을 이용하여 템플릿을 구성할 수 있다
여기서, 현재 블록의 상단 또는 좌측 주변 복원 블록의 픽셀들이 이용 가능하지 않을 경우, 이용 가능한 블록의 픽셀로만 템플릿을 구성할 수 있다.
일 예로, 도 17에 도시 된 것과 같이 현재 블록의 상단 주변 복원 블록이 픽처 경계, 슬라이스 경계, 타일 경계 또는 CTU 경계로 이용 가능하지 않을 경우, 좌측 주변 복원 블록의 픽셀만으로 템플릿을 구성할 수 있으며, 현재 블록의 좌측 주변 복원 블록이 픽처 경계, 슬라이스 경계, 타일 경계 또는 CTU 경계로 이용 가능하지 않을 경우, 상단 주변 복원 블록의 픽셀만으로 템플릿을 구성할 수 있다.
또한, 템플릿을 구성함에 있어서, 이용 가능하지 않은 픽셀은 이용 가능한 픽셀로 대체되어 템플릿을 구성할 수도 있다. 여기서, 이용 가능한 픽셀은 현재 블록의 주변 픽셀, 주변 픽셀들에 보간 필터를 적용하여 유도된 픽셀 또는 부호화기/복호화기에 기 정의된 값을 가지는 픽셀일 수도 있다. 한편, 템플릿은 복원된 픽셀 값이 아닌 예측 픽셀 값으로 구성될 수도 있다.
상기 템플릿을 구성함에 있어, 움직임 벡터가 부화소 단위를 가지는 경우, 보간 필터를 적용하여 해당 위치의 픽셀값을 생성할 수 있다. 여기서 보간에 사용되는 필터는 bi-linear 필터, 8-tap DCT-IF 필터 등이 적용될 수 있다. 템플릿을 구성하기 위해 사용되는 보간 필터에 대한 정보 전송없이 부호화기/복호화기에서 동일하게 소정의 방법을 사용할 수 있으며, 보간 필터 타입에 대한 정보가 비트스트림에 포함되어 시그널링될 수 있다.
한편, 템플릿의 크기는 MxN을 가질 수 있고, M과 N은 양의 정수 일 수 있다.
예를 들어, 도 18과 같이 현재 블록의 크기(가로x세로)가 64x32 이고, 부호화기/복호화기에서 기 정의한 템플릿의 픽셀 길이가 4 픽셀인 경우, 상단 템플릿의 크기는 64x4 이고, 좌측 템플릿의 크기는 4x32 일 수 있다.
여기서, 픽셀의 길이는 움직임 벡터의 정밀도에 따라 산출될 수 있다.
일 예로, 움직임 벡터의 정밀도가 1/4단위이고 블록 크기가 16 픽셀인 경우, 템플릿의 픽셀 길이는 4 픽셀로 산출될 수 있다.
한편, 템플릿을 구성함에 있어서, 도 19와 같이 현재 블록의 가로/세로 크기가 다른 경우, 상단 템플릿과 좌측 템플릿의 크기를 동일하게 사용할 수 있다.
한편, 템플릿을 구성함에 있어서, 템플릿의 크기는 MxN을 가지는 경우, 상단 템플릿의 M은 현재 블록의 가로 길이보다 큰 값을 가질 수 있으며, N은 부호화기/복호화기에서 고정된 픽셀 길이를 가질 수 있다. 그리고, 우측 템플릿의 N은 현재 블록의 세로 길이보다 큰 값을 가질 수 있으며, M은 부호화기/복호화기에 고정된 픽셀 길이를 가질 수 있다.
예를 들어, 도 20과 같이 현재 블록의 크기가 64x64 이고, 부호화기/복호화기에서 정의한 템플릿의 픽셀 길이가 6 픽셀인 경우, 상단 템플릿의 크기는 128x6 이고, 좌측 템플릿의 크기는 6x128 일 수 있다.
한편, 템플릿을 구성함에 있어, 템플릿의 크기는 MxN을 가질수 있고 M 과 N은 현재 블록의 가로/세로 길이와 동일 할 수 있다.
예를 들어, 도 21과 같이 현재 블록의 크기가 64x64 일 경우, 좌측 템플릿의 크기는 64x64 이고 상단 템플릿의 크기는 64x64 일 수 있다.
한편, 템플릿을 구성함에 있어, 템플릿의 크기는 MxN을 가질 수 있고, 현재 블록의 크기 또는 깊이 정보에 따라 서로 크기의 템플릿을 사용할 수 있다.
예를 들어, 현재 블록의 크기가 128x64이고 가로 또는 세로의 길이 32 보다 큰 경우, 상단 템플릿의 크기는 128x6 이고 좌측 템플릿의 크기는 6x64 일 수 있다.
예를 들어, 현재 블록의 크기(가로x세로)가 16x16이고 가로 또는 세로의 길이 32 보다 작은 경우, 상단 템플릿의 크기는 16x2 이고 좌측 템플릿의 크기는 2x16 일 수 있다.
한편, 템플릿 구성에 필요한 템플릿 크기 정보는 비트스트림에 포함되어 시그널링될 수 있다.
도 22는 템플릿을 이용하여 초기 움직임 벡터를 보정하는 일 예를 설명하기 위한 도면이다.
도 22를 참고하면, 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역에서 현재 블록의 주변 템플릿과의 에러를 최소로 하는 템플릿을 지시하는 움직임 벡터를 탐색하여, 그 움직임 벡터를 보정된 움직임 벡터로 결정할 수 있다.
여기서, 참조 픽처 내의 템플릿은 초기 움직임 벡터가 지시하는 픽셀 위치를 포함한 소정의 탐색 영역에 기반하여 생성될 수 있다.
그리고, 소정의 탐색 영역은 초기 움직임 벡터가 지시하는 해당 픽셀 위치를 중심으로 크로스, 정사각형, 다이아몬드, 헥사곤 형태 등의 탐색 방법에 따라 달리 적용될 수 있다. 한편, 참조 픽처내의 템플릿과 현재 블록의 주변 템플릿간의 에러를 최소화한다는 것은 참조 픽처내의 템플릿과 현재 블록의 주변 템플릿간의 차이를 최소화한다는 것을 의미할 수 있다.
참조 픽처내의 템플릿과 현재 블록의 템플릿간의 에러를 계산함에 있어, 왜곡값 및 움직임 벡터에 대한 비용값 중 적어도 하나를 고려하여 에러를 계산할 수 있다.
일 예로, 좌측 및 상단 템플릿이 모두 가능한 경우, 비용 값은 아래와 같이 계산할 수 있다.
비용값 = (좌측 템플릿 간 왜곡값 + 상단 템플릿 간 왜곡값) + (초기 움직임 벡터(x,y)- 보정된 움직임 벡터(x,y))*가중치
일 예로, 상단 템플릿만 가능한 경우, 비용 값은 아래와 같이 계산할 수 있다.
비용값= 상단 템플릿 간 왜곡값+ (초기 움직임 벡터(x,y)- 보정된 움직임 벡터(x,y))*가중치
여기서, 상기 비용값 계산에서 가중치는 0보다 작은 음수, 0보다 큰 양수를 가질 수 있다.
한편, 상기 왜곡값은 템플릿간 SAD 및 MR-SAD 중 적어도 하나를 이용하여 계산될 수 있다.
Figure PCTKR2017013673-appb-M000005
여기서, Ctp(i,j) 는 현재 블록의 좌측 또는 상단 템플릿 픽셀값, Ltp(i,j) 는 참조 픽처내의 좌측 또는 상단 템플릿 픽셀값, detlatDC는 (현재 블록의 좌측 템플릿 평균 픽셀값 - 참조 픽처내의 좌측 템플릿 평균 픽셀값 ) 또는 (현재 블록의 상단 템플릿 평균 픽셀값 - 참조 픽처내의 상단 템플릿 평균 픽셀값) 을 의미할 수 있다.
초기 움직임 벡터를 기반으로 찾은 보정된 움직임 벡터(rMV)가 지시하는 픽셀 위치를 중심으로 한 소정의 탐색 영역 내에서 현재 블록의 템플릿과의 에러를 최소로 하는 템플릿을 지시하는 새로운 움직임 벡터(nMV)를 찾을 수 있다.
여기서, 새로운 움직임 벡터(nMV)로부터 구한 참조 픽처의 템플릿과 현재 블록 템플릿간의 에러가 보정된 움직임 벡터(rMV)로부터 구한 참조 픽처 템플릿과 현재 블록 템플릿간의 에러보다 클 경우, 더 이상의 보정 과정을 진행하지 않을 수 있다.
그러나, 새로운 움직임 벡터(nMV)로부터 구한 참조 픽처의 템플릿과 현재 블록 템플릿간의 에러가 보정된 움직임 벡터(rMV)로부터 구한 참조 픽처 템플릿과 현재 블록 템플릿간의 에러보다 작을 경우, 새로운 움직임 벡터(nMV)가 지시하는 픽셀 위치를 중심으로 한 소정의 탐색 영역 내에서 또 다른 새로운 움직임 벡터를 구해 보정할 수 있다.
한편, 새로운 움직임 벡터(nMV)로부터 구한 참조 픽처의 템플릿과 현재 블록 템플릿간의 에러가 보정된 움직임 벡터(rMV)로부터 구한 참조 픽처 템플릿과 현재 블록 템플릿간의 에러보다 작을 경우, 새로운 움직임 벡터의 검색을 반복할 수 있다. 이 경우, 새로운 움직임 벡터의 검색은 움직임 보정 수행 횟수 정보에 기초하여 제한될 수 있다.
일 예로, 움직임 보정 수행 횟수 정보가 2인 경우, 새로운 움직임 벡터의 검색은 총 2회로 제한될 수 있다.
움직임 보정 수행 횟수 정보는 비트스트림에 포함되어 시그널링될 수 있다.
한편, 움직임 보정 수행 횟수는 부호화기와 복호화기에서 동일하게 미리 정해진 소정의 값을 사용할 수도 있다.
한편, 초기 움직임 벡터가 L0 움직임 벡터, L1 움직임 벡터 등 N개의 예측 방향에 대한 움직임 벡터를 가질 경우, 각각의 예측 방향으로부터 움직임 벡터에 대한 보정된 움직임 벡터를 구할 수 있다.
한편, 소정의 탐색 영역은 탐색 영역 정보에 기초하여 결정될 수 있다. 여기서, 탐색 영역의 결정에 필요한 탐색 영역 정보는 비트스트림에 포함되어 시그널링될 수 있다.
그리고, 소정의 탐색 영역의 크기는 픽처 타입, 시간적 계층 (temporal layer), 블록 크기 등 부호화 파라미터에 따라 달리 적용될 수 있다. 예를 들어, 최상위 계층에 해당하는 픽처의 탐색 영역의 크기는 1 정수 픽셀 크기의 탐색 영역을 가질 수 있으면, 하위 계층들에 해당하는 픽처의 탐색 영역의 크기는 8 정수 픽셀 크기의 탐색 영역을 가질 수 있다
도 23 내지 도 25는 현재 블록의 예측 블록들을 이용하여 초기 움직임 벡터를 보정하는 일 예를 설명하기 위한 도면이다. 도 22에서 설명한 템플릿을 사용하지 않고 움직임 벡터로부터 생성한 현재 블록의 예측 블록들을 이용하여 초기 움직임 벡터에 대한 보정을 수행할 수 있다.
예측 블록들을 이용하여 움직임 보정을 수행함에 있어서, 초기 움직임 벡터가 지시하는 각 참조 픽처내의 예측 블록 간의 차이를 기반으로 움직임 벡터를 보정할 수 있다.
여기서, 예측 블록은 초기 움직임 벡터가 지시하는 픽셀 위치를 중심으로 한 소정의 탐색 범위 내에 위치할 수 있다. 소정의 탐색 범위에서 도출되는 움직임 벡터로부터 예측 블록을 생성하고, 예측 블록 간의 차이를 최소로 하는 움직임 벡터를 보정된 움직임 벡터로 결정할 수 있다.
그리고, 예측 블록 간의 차이는 L0 방향의 초기 움직임 벡터(이하, “L0 초기 움직임 벡터”라고 함) 또는 L1 방향의 초기 움직임 벡터(이하, “L1 초기 움직임 벡터”라고 함)에 기초하여 생성되는 복수의 예측 블록들 간의 차이를 의미할 수도 있고, L0 초기 움직임 벡터 및 L1 초기 움직임 벡터에 기초하여 각각 생성된 예측 블록들 간의 차이를 의미할 수도 있다.
일 예로, 도 23과 같이 L0 초기 움직임 벡터가 지시하는 L0 참조 픽처내의 해당 픽셀 위치를 중심으로 한 소정의 탐색 범위 내에서 이동한 움직임 벡터로부터 생성한 예측 블록(P0)과 L0 움직임 벡터를 기반으로 유도한 L1 움직임 벡터로부터 생성한 예측 블록(P1)간의 에러를 최소로 하는 움직임 벡터를 보정된 움직임 벡터로 결정할 수 있다. 여기서, L1 움직임 벡터는 초기 L0 움직임 벡터 또는 소정의 탐색 범위 내에서 이동한 L0 움직임 벡터를 미러링 또는 스케일링하여 유도된 움직임 벡터일 수 있다.
다른 예로, 도 24와 같이 L1 초기 움직임 벡터가 지시하는 L1 참조 픽처내의 해당 픽셀 위치를 중심으로 소정의 탐색 범위 내에서 이동한 움직임 벡터로부터 생성한 예측 블록(P1)과 L1 움직임 벡터를 기반으로 유도한 L0 움직임 벡터로부터 생성한 예측 블록(P0) 간의 에러를 최소로 하는 움직임 벡터를 보정된 움직임 벡터로 결정할 수 있다. 여기서, L0 움직임 벡터는 초기 L1 움직임 벡터 또는 소정의 탐색 범위 내에서 이동한 L1 움직임 벡터를 미러링 또는 스케일링하여 유도된 움직임 벡터일 수 있다.
한편, Lx 움직임 벡터로부터 Ly 방향 움직임 벡터를 유도함에 있어, Lx 움직임 벡터가 지시하는 참조 픽처, 현재 블록이 속해있는 픽처, Ly 방향내의 참조 픽처들간의 시간 거리(또는 POC 차이) 중 적어도 하나를 고려하여 유도될 수 있다. 여기서, x, y는 0를 포함하는 서로 다른 양의 정수 일 수 있다.
미러링의 일 예로, L0 움직임 벡터가 지시하는 참조 픽처와 현재 블록이 속해 있는 픽처간의 POC 차이와 동일한 POC 차이를 갖는 L1 참조 픽처 리스트내의 참조 픽처를 기준으로 미러링한 L0 움직임 벡터를 L1 방향 움직임 벡터로 유도할 수 있다.
스케일링의 일 예로, L1 참조 픽처 리스트내의 참조 픽처 중 L0 움직임 벡터가 지시하는 참조 픽처와 동일한 POC를 갖는 참조 픽처를 제외하고 현재 블록 픽처와의 POC 차이가 작은 픽처를 기준으로 POC 차이를 고려하여 스케일한 L0 움직임 벡터를 L1 방향 움직임 벡터로 유도할 수 있다.
한편, 예측 블록들을 이용하여 움직임 보정을 수행함에 있어서, L0 초기 움직임 벡터로부터 생성한 예측 블록과 L1 초기 움직임 벡터로부터 생성한 예측 블록을 가중합하여 생성한 블록을 이용하여 움직임 보정을 수행할 수 있다.
예를 들어, 도 25와 같이 L0 초기 움직임 벡터로부터 생성한 예측 블록(P0)과 L1 초기 움직임 벡터로부터 생성한 예측 블록(P1)을 가중합하여 생성한 예측 블록(Ps)을 템플릿으로 설정할 수 있다. 그리고, L0 초기 움직임 벡터가 지시하는 픽셀 위치를 중심으로 한 소정의 탐색 범위내에서 움직임 벡터를 이동하여 예측 블록(Pr0)을 생성할 수 있다. 여기서, 생성된 예측 블록(Pr0)과 템플릿(Ps)간의 에러를 최소로 하는 움직임 벡터를 L0 리스트 방향의 보정된 움직임 벡터로 결정할 수 있다.
또한, L1 움직임 벡터가 지시하는 픽셀 위치를 중심으로 한 소정의 탐색 범위내에서 움직임 벡터를 이동하여 예측 블록(Pr1)을 생성할 수 있다. 여기서, 생성된 예측 블록(Pr1)과 템플릿(Ps)간의 에러를 최소로 하는 움직임 벡터를 L1 리스트 방향의 보정된 움직임 벡터로 결정할 수 있다.
한편, 예측 블록(Ps)는 아래와 같이 산출될 수 있다.
Ps = (a1*P0 + a2*P1) >> 1
여기서, a1 및 a2는 가중합시 사용되는 가중치이다. 가중치는 고정된 값에 한정되지 아니하며, 가변적인 값일 수도 있다. 각 예측 블록에 적용되는 가중치는 서로 동일할 수도 있고, 서로 상이할 수도 있다. 가변적인 가중치를 적용하기 위해 복호화 대상 블록을 위한 가중치 정보가 비트스트림을 시그널링될 수도 있다.
한편, 초기 움직임 벡터가 L0 만 유도된 경우, L0 초기 움직임 벡터로부터 생성한 예측 블록(P0)만을 템플릿으로할 수 있다. 그리고, L0 초기 움직임 벡터가 지시하는 픽셀 위치를 중심으로 한 소정의 탐색 범위내에서 움직임 벡터를 이동하여 생성한 예측 블록(Pr0)과 템플릿간의 에러를 최소로 하는 움직임 벡터를 L0 리스트 방향의 보정된 움직임 벡터로 결정할 수 있다.
한편, 현재 블록의 예측 블록간의 차이를 계산함에 있어, 왜곡값과 움직임 벡터에 대한 비용값 중 적어도 하나를 고려하여 예측 블록간의 차이를 계산할 수 있다.
일 예로, L0 초기 움직임 벡터를 이용하여 예측 블록 (P0 , P1)을 생성한 경우, 비용값은 아래와 같이 계산되어 질 수 있다.
비용값 = 왜곡값(예측블록(P0)-예측블록(P1) )+ (초기 L0 움직임 벡터 - 보정된 L0 움직임 벡터)*가중치
일 예로, L1 초기 움직임 벡터를 이용하여 예측 블록 (P0 , P1) 을 생성한 경우, 비용값은 아래와 같이 계산되어 질 수 있다.
비용값 = 왜곡값 (예측블록(P0)-예측블록(P1) )+ (초기 L1 움직임 벡터 - 보정된 L1 움직임 벡터)*가중치
여기서, 상기 비용값 계산에서 가중치는 0보다 작은 음수, 0보다 큰 양수를 가질 수 있다
한편, 상기 비용값 계산에서 왜곡값은 예측 블록 간 SAD, SATD 및 MR-SAD 중 적어도 하나를 이용하여 계산될 수 있다.
초기 움직임 벡터를 기반으로 찾은 보정된 움직임 벡터(rMV)가 지시하는 픽셀 위치를 중심으로 소정의 탐색 영역 내에서 예측 블럭간 에러를 최소로 하는 새로운 움직임 벡터(nMV)를 찾을 수 있다.
여기서, 새로운 움직임 벡터(nMV)로부터 구한 예측 블록간(P0, P1) 에러가 보정된 움직임 벡터(rMV)로부터 구한 예측 블록간 (P0, P1) 에러보다 클 경우, 더 이상의 보정 과정을 진행하지 않을 수 있다. 그러나, 새로운 움직임 벡터(nMV)로부터 구한 예측 블록간(P0, P1) 에러가 보정된 움직임 벡터(rMV)로부터 구한 예측 블록간 (P0, P1) 에러보다 작을 경우, 새로운 움직임 벡터(nMV)가 지시하는 픽셀 위치를 중심으로 한 소정의 탐색 영역내에서 또 다른 새로운 움직임 벡터를 구해 보정할 수 있다.
한편, 새로운 움직임 벡터로부터 구한 예측 블록간 에러가 보정된 움직임 벡터로부터 구한 예측 블록간 에러보다 작을 경우, 새로운 움직임 벡터의 검색을 반복할 수 있다. 이 경우, 새로운 움직임 벡터의 검색은 움직임 보정 수행 횟수 정보에 기초하여 제한될 수 있다.
일 예로, 움직임 보정 수행 횟수 정보가 2인 경우, 새로운 움직임 벡터의 검색은 총 2회로 제한될 수 있다.
움직임 보정 수행 횟수 정보는 비트스트림에 포함되어 시그널링될 수 있다. 한편, 움직임 보정 수행 횟수는 부호화기와 복호화기에서 동일하게 미리 정해진 소정의 값을 사용할 수도 있다.
상술한 바와 같이, 초기 움직임 벡터를 기반으로 움직임 벡터를 보정하는 방법에는 크게 템플릿을 이용하는 방법 및 예측 블록을 이용하는 방법이 있다.
부호화기/복호화기에서는 움직임 벡터 보정 방법를 지시하는 움직임 벡터 보정 모드 정보(MV_REFINE_MODE)를 이용하여 움직임 벡터 보정 방법을 선택할 수 있다.
일 예로, 움직임 벡터 보정 모드 정보(MV_REFINE_MODE)가 제1 값인 0인 경우, 현재 블록의 주변 템플릿을 이용하여 움직임 벡터를 보정할 수 있다. 반대로, 움직임 벡터 보정 모드 정보(MV_REFINE_MODE)가 제2 값인 1인 경우, 움직임 벡터로부터 구한 예측 블록들을 이용하여 움직임 벡터를 보정할 수 있다. 여기서, 제1 값 및 제2 값은 각각 1 및 0으로 설정될 수도 있다.
한편, 움직임 벡터 보정 모드 정보는 비트스트림에 포함되어 시그널링될 수 있다.
한편, 움직임 벡터 보정 방법은 부호화 파라미터에 따라 결정될 수 있다.
예를 들어, 현재 블록의 초기 움직임 벡터가 단방향 움직임 벡터를 가지는 경우는 주변 템플릿을 이용하여 움직임 벡터를 보정할 수 있고, 현재 블록의 초기 움직임 벡터가 양방향 벡터를 가지는 경우는 움직임 벡터로부터 구한 예측 블록 신호를 이용하여 움직임 벡터를 보정할 수 있다.
움직임 벡터 보정 모드 정보를 이용하지 않고, 부호화 파라미터를 이용하여 부호화기/복호화기에서 움직임 벡터 보정 방법을 선택할 수 있다. 예를 들어, 현재 블록이 L0 또는 L1 움직임 벡터만 가용할 경우, 주변 템플릿을 이용하여 움직임 벡터를 보정할 수 있고, 현재 블록이 L0 및 L1 움직임 벡터 모두 가용할 경우, 움직임 벡터로부터 구한 예측 블록을 가중합하여 생성한 예측 블록을 템플릿으로 이용하여 각 예측 방향의 움직임 벡터를 보정할 수 있다. 또 다른 예로, 현재 블록이 L0 또는 L1 움직임 벡터만 가용할 경우, 주변 템플릿을 이용하여 움직임 벡터를 보정할 수 있고, 현재 블록이 L0 및 L1 움직임 벡터 모두 가용할 경우, 각 예측 방향의 움직임 벡터로부터 구한 예측 블록간의 차이를 이용하여 각 예측 방향의 움직임 벡터를 보정할 수 있다.
한편, 현재 블록에 대한 움직임 벡터를 유도하는데 있어, 초기 움직임 벡터에 대한 보정 없이 초기 움직임 벡터를 현재 블록의 움직임 벡터로 사용할 수도 있다.
다음으로는, 하위 블록 단위로 보정된 움직임 벡터를 유도하는 단계에 대해 구체적으로 설명하기로 한다.
현재 블록은 하나 이상의 하위 블록으로 나누어질 수 있다.
일 예로, 현재 블록을 가로 방향으로 N개로, 세로방향으로 M개로 분할 함으로써, M*N개의 하위 블록으로 나눌 수 있다. M과 N은 각각 1 이상의 임의의 정수일 수 있다. M과 N은 동일하거나 상이한 정수일 수 있다.
또는, 현재 블록을 가로로 W 개 픽셀과 세로로 H개 픽셀로 이루어진 W*H 하위 블록으로 분할할 수 있다. W와 H는 각각 2 이상의 임의의 정수일 수 있다. W와 H는 동일하거나 상이한 정수일 수 있다.
하위 블록의 크기는 현재 블록의 크기에 따라 결정될 수 있다.
예를 들어, 현재 블록의 크기가 K개의 샘플 이하인 경우, 4x4 하위 블록을 사용하고, 현재 블록의 크기가 N개의 샘플 보다 큰 경우, 8x8 하위 블록을 사용할 수 있다. 여기서 K는 양의 정수이며, 예를 들어 256일 수 있다.
한편, 하위 블록의 크기는 부호화기 및 복호화기에서 미리 정의된 크기를 사용할 수 있다.
한편, 하위 블록의 크기는 하위 블록 크기 정보에 기초하여 결정될 수 있다. 하위 블록 크기 정보는 비트스트림에 포함되어 시그널링될 수 있다.
또한, 하위 블록의 크기를 결정함에 있어, 하위 블록 크기 정보와 함께 현재 블록의 크기 정보를 함께 고려하여 하위 블록의 크기를 결정할 수 있다.
예를 들어, 하위 블록 크기의 정보가 하위 블록의 깊이 정보를 지시할 경우, 현재 블록의 가로/세로 길이와 하위 블록의 깊이 정보를 이용하여 다음과 같이 하위 블록의 크기를 결정할 수 있다.
하위 블록의 크기 = (블록의 가로 세로 길이의 평균 길이 >> 하위 블록 깊이 정보)
예를 들어, 도 26과 같이 블록의 가로/세로 길이의 평균값이 64 이고, 하위 블록 깊이 정보가 3 인 경우, 하위 블록의 크기 8 로 정해질 수 있다.
하위 블록은 정사각형 형태 및 직사각형 형태 중 적어도 하나 이상일 수 있다.
예를 들어, 도 27과 같이 현재 블록이 정사각형 형태일 경우 하위 블록은 직사각형 형태일 수 있다. 그리고, 현재 블록이 직사각형 형태일 경우 하위 블록은 정사각형 형태 일 수 있다.
부호화기 및 복호화기에서는 하위 블록 단위의 움직임 벡터 보정을 위한 초기 움직임 벡터을 다음 중 적어도 하나의 방법에 의해 설정할 수 있다.
(1) 블록 단위에서 결정된 초기 움직임 벡터 또는 보정된 움직임 벡터를 하위 블록 단위의 초기 움직임 벡터로 설정할 수 있다.
(2) 제로 움직임 벡터(0,0)를 하위 블록 단위의 초기 움직임 벡터로 설정할 수 있다.
(3) 하위 블록의 시간적 주변인 대응 위치 픽처 (co-located picture)에서 복원된 블록으로부터 유도된 움직임 벡터를 하위 블록 단위의 초기 움직임 벡터로 설정 할 수 있다.
(4) 하위 블록 단위 머지를 통해 유도한 움직임 벡터를 하위 블록 단위의 초기 움직임 벡터 초기 값으로 설정할 수 있다.
(5) 현재 하위 블록의 좌측 및 상단에 인접한 하위 블록의 움직임 벡터를 하위 블록 단위의 초기 움직임 벡터로 설정할 수 있다. 일 예로, 도 28과 같이 현재 하위 블록(s)의 좌측 하위 블록(b), 좌측 하단 하위 블록(a), 좌상단 하위 블록(c), 상단 하위 블록(d), 상단 우측 하위 블록(f)의 움직임 벡터를 현재 하위 블록의 초기 움직임 벡터로 사용할 수 있다.
상기 (1)~(5)의 방법에 의해 설정된 적어도 하나의 하위 블록 단위의 초기 움직임 벡터 중에서 블록 단위에서 결정된 움직임 정보의 참조 영상 색인 정보와 동일한 값을 가지는 초기 움직임 벡터만을 이용할 수 있다.
다만, 블록 단위에서 결정된 움직임 정보의 참조 영상 색인 정보와 일치하지 않은 경우에는, 시간 거리를 고려하여 스케일링한 값을 하위 블록 단위의 초기 움직임 벡터로 사용할 수도 있다.
하위 블록 단위의 움직임 벡터 보정을 위한 초기 움직임 벡터을 구함에 있어, 하위 블록들의 참조 영상 색인 정보는 동일한 소정의 값으로 설정될 수 있다.
예를 들어, 모든 하위 블록의 참조 영상 색인 정보는 0 값으로 설정될 수 있다.
따라서, 블록 단위에서 결정된 움직임 정보 및 주변으로부터 유도된 움직임 정보의 참조 영상 색인 정보가 0의 값을 갖지 않는 경우, 움직임 벡터를 시간 거리를 고려하여 스케일링 한 후 해당 하위 블록의 초기 움직임 벡터로 사용할 수 있다.
그리고, 부호화기 및 복호화기에서는 상기 도출한 초기 움직임 벡터를 이용하여 하위 블록 단위 움직임 벡터 보정을 수행할 수 있다.
부호화기와 복호화기에서 동일하게 현재 블록의 공간적 주변 블록들 및/또는 시간적 주변 블록들을 이용하여 상기 전술한 템플릿을 이용한 움직임 벡터 보정 방법, 예측 블록을 이용한 움직임 벡터 보정 방법 중 적어도 하나의 방법으로 하위 블록의 초기 움직임 벡터에 대한 보정을 수행할 수 있다.
한편, 상술한 움직임 벡터 보정 방법에 사용될 수 있는 머지 모드 기반 움직임 벡터 보정 사용 여부 정보, 탬플릿 크기 정보, 탐색 영역 정보, 가중치 정보, 움직임 보정 수행 횟수 정보, 움직임 벡터 보정 모드 정보 및 하위 블록 크기 정보는 움직임 보상에 관한 정보에 포함될 수 있다.
움직임 보상에 관한 정보의 엔트로피 부호화/복호화는 도 5 및 도 6의 S504단계 및 S601단계에서 구체적으로 설명하였는 바, 생략하도록 한다.
현재 블록이 머지 모드가 아닌 AMVP 모드가 적용되고, 적어도 하나의 움직임 벡터 후보가 존재하는 경우, 생성된 움직임 벡터 후보 리스트를 이용하여 보정된 움직임 벡터 후보를 유도할 수 있다.
예를 들어, 복원된 주변 블록의 움직임 벡터, 콜 블록의 움직임 벡터 및 콜 블록에 인접한 블록의 움직임 벡터 중 적어도 하나를 움직임 벡터 후보로 결정하여 움직임 벡터 후보 리스트가 생성된 경우, 생성된 움직임 벡터 후보를 초기 움직임 벡터로 하여 상기 템플릿을 이용한 움직임 벡터 보정 방법을 통해 보정된 움직임 벡터를 유도할 수 있다.
여기서, N개의 움직임 벡터 후보가 존재할 경우, 참조 영상 내의 템플릿과 부호화/복호화 대상 블록의 주변 템플릿간의 차이를 가장 최소로 하는 움직임 벡터 후보를 보정된 움직임 벡터로 이용할 수 있다.
한편, 상기 결정된 보정된 움직임 벡터 후보를 이용함에 있어, 움직임 벡터 후보 리스트내의 첫번째 움직임 벡터 후보와 움직임 벡터값이 동일하지 않은 경우, 상기 결정된 보정된 움직임 벡터 후보를 움직임 벡터 후보 리스트의 첫번째 후보로 사용할 수 있다. 이 경우, 리스트내의 기존 움직임 벡터 후보들의 위치는 한 단계씩 증가될 수 있고 N번째 후보에 대해서는 리스트내에서 제거될 수 있다.
예를 들어, 복원된 주변 블록의 움직임 벡터, 콜 블록의 움직임 벡터, 콜 블록에 인접한 블록의 움직임 벡터로부터 결정된 움직임 벡터 후보가 1개 인 경우, 움직임 벡터 후보를 초기 움직임 벡터로 하여 상기 템플릿을 이용한 움직임 벡터 보정 방법을 통해 보정된 움직임 벡터를 유도할 수 있다.
한편, 상기 결정된 보정된 움직임 벡터 후보를 이용함에 있어, 움직임 벡터 후보 리스트내의 첫 번째 움직임 벡터 후보와 보정된 움직임 벡터값이 동일하지 않은 경우, 상기 보정된 움직임 벡터 후보를 움직임 벡터 후보 리스트내의 두 번째 후보로 사용할 수 있다.
한편, 머지 후보 리스트 및 움직임 벡터 후보 리스트를 구성함에 있어, 공간적/시간적 후보 블록들이 상기 움직임 보정 방법을 이용하여 부호화/복호화된 경우, 해당 후보들을 리스트에 포함시키지 않을 수 있다.
또한, 상기 움직임 보정 방법을 통해 부호화/복호화된 블록에 대해서는 중첩적 블록 움직임 보상(overlapped block motion compensation, OMBC), 양 방향 예측을 위한 광-흐름 기반 움직임 보정 방법(bi-directional optical flow, BIO) 등을 추가적으로 적용하지 않을 수 있다.
또한, 상기 움직임 보정 방법을 통해 부호화/복호화된 블록에 대한 지역 조명 보상(local illumination compensation) 정보는 머지 색인 정보에 해당하는 후보 블록으로부터 유도될 수 있다.
도 29는 본 발명의 일 실시 예에 따른 영상 복호화 방법을 나타내는 흐름도 이다.
도 29를 참고하면, 복호화기는 현재 블록의 머지 후보 리스트에서 초기 움직임 벡터를 유도할 수 있다(S2910).
이 경우, 머지 후보 리스트내에서 머지 색인 정보가 지시하는 머지 후보로부터 초기 움직임 벡터를 유도할 수 있다.
한편, 현재 블록이 양예측이 가능한 블록이고 상기 머지 색인 정보가 지시하는 머지 후보에 한 예측 방향의 움직임 정보만 존재하는 경우, 존재하는 움직임 정보의 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 예측 방향의 초기 움직임 벡터로 유도할 수 있다. 이에 대한 구체적인 설명은 도 12 및 도 13을 참고하여 전술하였는 바, 생략하도록 한다.
그리고, 복호화기는 초기 움직임 벡터를 이용하여 보정된 움직임 벡터를 유도할 수 있다(S2920).
구체적으로, 보정된 움직임 벡터를 유도하는 단계(S2920)는 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿과의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 탐색하고, 상기 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 상기 보정된 움직임 벡터로 유도할 수 있다.
여기서, 소정의 탐색 영역은, 상기 초기 움직임 벡터가 지시하는 참조 픽처의 픽셀 위치를 중심으로 크로스, 정사각형, 다이아몬드 및 헥사곤 형태 중 적어도 한 형태를 가지는 영역으로 결정될 수 있다.
그리고, 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿간의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터는, 템플릿간의 왜곡값 및 움직임 벡터에 대한 비용값 중 적어도 하나에 기초하여 탐색될 수 있다.
한편, 보정된 움직임 벡터를 유도하는 단계(S2920)는 초기 움직임 벡터가 지시하는 적어도 하나의 예측 블록에 기초하여 보정된 움직임 벡터를 유도할 수 있다.
여기서, 현재 블록이 양방향 예측 블록인 경우, 제1예측 방향 초기 움직임 벡터가 지시하는 제1 예측 블록 및 제2 예측 방향 초기 움직임 벡터가 지시하는 제2 예측 블록의 가중합을 템플릿으로 설정하고, 상기 제1예측 방향 초기 움직임 벡터 및 상기 제2예측 방향 초기 움직임 벡터 중 적어도 하나가 지시하는 적어도 하나의 참조 픽처의 탐색 영역을 설정하여, 상기 탐색 영역내에서 상기 템플릿과의 차이를 최소로 하는 제3 예측 블록을 지시하는 움직임 벡터를 보정된 움직임 벡터로 유도할 수 있다. 여기서, 제1예측 방향 초기 움직임 벡터가 지시하는 제1 탐색 영역 및 제2예측 방향 초기 움직임 벡터가 지시하는 제2 탐색 영역이 설정된 경우, 상기 제1 탐색 영역 및 상기 제2 탐색 영역내에서 템플릿과 차이를 최소로 하는 각각의 예측 블록을 지시하는 움직임 벡터들을 이용하여 보정된 움직임 벡터를 유도할 수 있다.
한편, 제1예측 방향 초기 움직임 벡터 또는 제2예측 방향 초기 움직임 벡터 중 어느 하나가 존재하지 않는 경우, 존재하는 초기 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 초기 움직임 벡터를 유도할 수 있다.
그리고, 보정된 움직임 벡터를 이용하여 상기 현재 블록의 예측 블록을 생성할 수 있다(S2930).
상술한 영상 복호화 방법에서, 현재 블록은 복호화 대상 블록의 하위 블록일 수 있다. 이 경우, 하위 블록 단위로 움직임 벡터를 보정할 수 있다.
상기의 실시예들은 부호화기 및 복호화기에서 같은 방법으로 수행될 수 있다.
상기 실시예를 적용하는 순서는 부호화기와 복호화기에서 상이할 수 있고, 상기 실시예를 적용하는 순서는 부호화기와 복호화기에서 동일할 수 있다.
휘도 및 색차 신호 각각에 대하여 상기 실시예를 수행할 수 있고, 휘도 및 색차 신호에 대한 상기 실시예를 동일하게 수행할 수 있다.
본 발명의 상기 실시예들이 적용되는 블록의 형태는 정방형(square) 형태 혹은 비정방형(non-square) 형태를 가질 수 있다.
본 발명의 상기 실시예들은 부호화 블록, 예측 블록, 변환 블록, 블록, 현재 블록, 부호화 유닛, 예측 유닛, 변환 유닛, 유닛, 현재 유닛 중 적어도 하나의 크기에 따라 적용될 수 있다. 여기서의 크기는 상기 실시예들이 적용되기 위해 최소 크기 및/또는 최대 크기로 정의될 수도 있고, 상기 실시예가 적용되는 고정 크기로 정의될 수도 있다. 또한, 상기 실시예들은 제1 크기에서는 제1의 실시예가 적용될 수도 있고, 제2 크기에서는 제2의 실시예가 적용될 수도 있다. 즉, 상시 실시예들은 크기에 따라 복합적으로 적용될 수 있다. 또한, 본 발명의 상기 실시예들은 최소 크기 이상 및 최대 크기 이하일 경우에만 적용될 수도 있다. 즉, 상기 실시예들을 블록 크기가 일정한 범위 내에 포함될 경우에만 적용될 수도 있다.
예를 들어, 현재 블록의 크기가 8x8 이상일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 4x4일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이하일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이상이고 64x64 이하일 경우에만 상기 실시예들이 적용될 수 있다.
본 발명의 상기 실시예들은 시간적 계층(temporal layer)에 따라 적용될 수 있다. 상기 실시예들이 적용 가능한 시간적 계층을 식별하기 위해 별도의 식별자(identifier)가 시그널링되고, 해당 식별자에 의해 특정된 시간적 계층에 대해서 상기 실시예들이 적용될 수 있다. 여기서의 식별자는 상기 실시예가 적용 가능한 최하위 계층 및/또는 최상위 계층으로 정의될 수도 있고, 상기 실시예가 적용되는 특정 계층을 지시하는 것으로 정의될 수도 있다. 또한, 상기 실시예가 적용되는 고정된 시간적 계층이 정의될 수도 있다.
예를 들어, 현재 영상의 시간적 계층이 최하위 계층일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 영상의 시간적 계층 식별자가 1 이상인 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 영상의 시간적 계층이 최상위 계층일 경우에만 상기 실시예들이 적용될 수 있다.
본 발명의 상기 실시예들이 적용되는 슬라이스 종류(slice type)이 정의되고, 해당 슬라이스 종류에 따라 본 발명의 상기 실시예들이 적용될 수 있다.
상술한 실시예들에서, 방법들은 일련의 단계 또는 유닛으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예는 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.
이상 설명된 본 발명에 따른 실시예들은 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
본 발명은 영상을 부호화/복호화하는 장치에 이용될 수 있다.

Claims (20)

  1. 영상 복호화 방법에 있어서,
    현재 블록의 머지 후보 리스트에서 초기 움직임 벡터를 유도하는 단계;
    상기 초기 움직임 벡터를 이용하여 보정된 움직임 벡터를 유도하는 단계; 및
    상기 보정된 움직임 벡터를 이용하여 상기 현재 블록의 예측 블록을 생성하는 단계를 포함하는 영상 복호화 방법.
  2. 제1항에 있어서,
    상기 초기 움직임 벡터를 유도하는 단계는,
    머지 색인 정보가 지시하는 머지 후보로부터 상기 초기 움직임 벡터를 유도하는 것을 특징으로 하는 영상 복호화 방법.
  3. 제2항에 있어서,
    상기 초기 움직임 벡터를 유도하는 단계는,
    상기 현재 블록이 양예측이 가능한 블록이고 상기 머지 색인 정보가 지시하는 머지 후보에 한 예측 방향의 움직임 정보만 존재하는 경우, 상기 존재하는 움직임 정보의 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 예측 방향의 초기 움직임 벡터로 유도하는 것을 특징으로 하는 영상 복호화 방법.
  4. 제1항에 있어서,
    상기 보정된 움직임 벡터를 유도하는 단계는,
    상기 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿과의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 탐색하고,
    상기 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 상기 보정된 움직임 벡터로 유도하는 것을 특징으로 하는 영상 복호화 방법.
  5. 제4항에 있어서,
    상기 소정의 탐색 영역은,
    상기 초기 움직임 벡터가 지시하는 참조 픽처의 픽셀 위치를 중심으로 크로스, 정사각형, 다이아몬드 및 헥사곤 형태 중 적어도 한 형태를 가지는 영역으로 결정되는 것을 특징으로 하는 영상 복호화 방법.
  6. 제4항에 있어서,
    상기 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿간의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터는,
    템플릿간의 왜곡값 및 움직임 벡터에 대한 비용값 중 적어도 하나에 기초하여 탐색되는 것을 특징으로 하는 영상 복호화 방법.
  7. 제1항에 있어서,
    상기 보정된 움직임 벡터를 유도하는 단계는,
    상기 초기 움직임 벡터가 지시하는 적어도 하나의 예측 블록에 기초하여 보정된 움직임 벡터를 유도하는 것을 특징으로 하는 영상 복호화 방법.
  8. 제7항에 있어서,
    상기 보정된 움직임 벡터를 유도하는 단계는,
    상기 현재 블록이 양방향 예측 블록인 경우, 제1예측 방향 초기 움직임 벡터가 지시하는 제1 예측 블록 및 제2 예측 방향 초기 움직임 벡터가 지시하는 제2 예측 블록의 가중합을 템플릿으로 설정하고,
    상기 제1예측 방향 초기 움직임 벡터 및 상기 제2예측 방향 초기 움직임 벡터 중 적어도 하나가 지시하는 적어도 하나의 참조 픽처의 탐색 영역을 설정하여,
    상기 탐색 영역내에서 상기 템플릿과의 차이를 최소로 하는 제3 예측 블록을 지시하는 움직임 벡터를 보정된 움직임 벡터로 유도하는 것을 특징으로 하는 영상 복호화 방법.
  9. 제8항에 있어서,
    상기 제1예측 방향 초기 움직임 벡터 또는 상기 제2예측 방향 초기 움직임 벡터 중 어느 하나가 존재하지 않는 경우, 존재하는 초기 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 초기 움직임 벡터를 유도하는 것을 특징으로 하는 영상 복호화 방법.
  10. 제1항에 있어서,
    상기 현재 블록은 복호화 대상 블록의 하위 블록인 것을 특징으로 하는 영상 복호화 방법.
  11. 영상 부호화 방법에 있어서,
    현재 블록의 머지 후보 리스트에서 초기 움직임 벡터를 유도하는 단계;
    상기 초기 움직임 벡터를 이용하여 보정된 움직임 벡터를 유도하는 단계; 및
    상기 보정된 움직임 벡터를 이용하여 상기 현재 블록의 예측 블록을 생성하는 단계를 포함하는 영상 부호화 방법.
  12. 제11항에 있어서,
    상기 초기 움직임 벡터를 유도하는 단계는,
    머지 색인 정보가 지시하는 머지 후보로부터 상기 초기 움직임 벡터를 유도하는 것을 특징으로 하는 영상 부호화 방법.
  13. 제12항에 있어서,
    상기 초기 움직임 벡터를 유도하는 단계는,
    상기 현재 블록이 양예측이 가능한 블록이고 상기 머지 색인 정보가 지시하는 머지 후보에 한 예측 방향의 움직임 정보만 존재하는 경우, 상기 존재하는 움직임 정보의 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 예측 방향의 초기 움직임 벡터로 유도하는 것을 특징으로 하는 영상 부호화 방법.
  14. 제11항에 있어서,
    상기 보정된 움직임 벡터를 유도하는 단계는,
    상기 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿과의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 탐색하고,
    상기 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터를 상기 보정된 움직임 벡터로 유도하는 것을 특징으로 하는 영상 부호화 방법.
  15. 제14항에 있어서,
    상기 소정의 탐색 영역은,
    상기 초기 움직임 벡터가 지시하는 참조 픽처의 픽셀 위치를 중심으로 크로스, 정사각형, 다이아몬드 및 헥사곤 형태 중 적어도 한 형태를 가지는 영역으로 결정되는 것을 특징으로 하는 영상 부호화 방법.
  16. 제14항에 있어서,
    상기 초기 움직임 벡터가 지시하는 참조 픽처의 탐색 영역내에서 현재 블록의 주변 템플릿간의 차이를 최소로 하는 템플릿을 지시하는 움직임 벡터는,
    템플릿간의 왜곡값 및 움직임 벡터에 대한 비용값 중 적어도 하나에 기초하여 탐색되는 것을 특징으로 하는 영상 부호화 방법.
  17. 제11항에 있어서,
    상기 보정된 움직임 벡터를 유도하는 단계는,
    상기 초기 움직임 벡터가 지시하는 적어도 하나의 예측 블록에 기초하여 보정된 움직임 벡터를 유도하는 것을 특징으로 하는 영상 부호화 방법.
  18. 제17항에 있어서,
    상기 보정된 움직임 벡터를 유도하는 단계는,
    상기 현재 블록이 양방향 예측 블록인 경우, 제1예측 방향 초기 움직임 벡터가 지시하는 제1 예측 블록 및 제2 예측 방향 초기 움직임 벡터가 지시하는 제2 예측 블록의 가중합을 템플릿으로 설정하고,
    상기 제1예측 방향 초기 움직임 벡터 및 상기 제2예측 방향 초기 움직임 벡터 중 적어도 하나가 지시하는 적어도 하나의 참조 픽처의 탐색 영역을 설정하여,
    상기 탐색 영역내에서 상기 템플릿과의 차이를 최소로 하는 제3 예측 블록을 지시하는 움직임 벡터를 보정된 움직임 벡터로 유도하는 것을 특징으로 하는 영상 부호화 방법.
  19. 제18항에 있어서,
    상기 제1예측 방향 초기 움직임 벡터 또는 상기 제2예측 방향 초기 움직임 벡터 중 어느 하나가 존재하지 않는 경우, 존재하는 초기 움직임 벡터를 미러링 또는 스케일링하여 존재하지 않는 초기 움직임 벡터를 유도하는 것을 특징으로 하는 영상 부호화 방법.
  20. 기록 매체에 있어서,
    현재 블록의 머지 후보 리스트에서 초기 움직임 벡터를 유도하는 단계;
    상기 초기 움직임 벡터를 이용하여 보정된 움직임 벡터를 유도하는 단계; 및
    상기 보정된 움직임 벡터를 이용하여 상기 현재 블록의 예측 블록을 생성하는 단계를 포함하는 영상 부호화 방법으로 생성된 비트스트림을 저장하는 기록 매체.
PCT/KR2017/013673 2016-11-28 2017-11-28 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 WO2018097693A2 (ko)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN202311524273.1A CN117528107A (zh) 2016-11-28 2017-11-28 图像编码方法、图像解码方法及用于传送比特流的方法
JP2019528067A JP7044778B2 (ja) 2016-11-28 2017-11-28 画像復号方法、画像符号化方法、及び非一時的なコンピュータ可読記録媒体
CN201780073403.0A CN109997363B (zh) 2016-11-28 2017-11-28 图像编码/解码方法和装置以及存储有比特流的记录介质
CN202311529514.1A CN117528109A (zh) 2016-11-28 2017-11-28 图像编码方法、图像解码方法及用于传送比特流的方法
CN202311523399.7A CN117528106A (zh) 2016-11-28 2017-11-28 图像编码方法、图像解码方法及用于传送比特流的方法
CN202311529594.0A CN117528110A (zh) 2016-11-28 2017-11-28 图像编码方法、图像解码方法及用于传送比特流的方法
US16/461,388 US11343530B2 (en) 2016-11-28 2017-11-28 Image encoding/decoding method and device, and recording medium having bitstream stored thereon
CN202311524467.1A CN117528108A (zh) 2016-11-28 2017-11-28 图像编码方法、图像解码方法及用于传送比特流的方法
EP17874753.1A EP3547687A4 (en) 2016-11-28 2017-11-28 IMAGE ENCODING / DECODING METHOD AND DEVICE AND RECORDING MEDIUM WITH STORED BIT CURRENT
CN202311530058.2A CN117528111A (zh) 2016-11-28 2017-11-28 图像编码方法、图像解码方法及用于传送比特流的方法
CN202311521182.2A CN117528105A (zh) 2016-11-28 2017-11-28 图像编码方法、图像解码方法及用于传送比特流的方法
JP2021210557A JP7253844B2 (ja) 2016-11-28 2021-12-24 画像復号方法、画像符号化方法、及び非一時的なコンピュータ可読記録媒体
US17/723,725 US20220256187A1 (en) 2016-11-28 2022-04-19 Image encoding/decoding method and device, and recording medium having bitstream stored thereon
US18/346,732 US20230353776A1 (en) 2016-11-28 2023-07-03 Image encoding/decoding method and device, and recording medium having bitstream stored thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0159717 2016-11-28
KR20160159717 2016-11-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/461,388 A-371-Of-International US11343530B2 (en) 2016-11-28 2017-11-28 Image encoding/decoding method and device, and recording medium having bitstream stored thereon
US17/723,725 Continuation US20220256187A1 (en) 2016-11-28 2022-04-19 Image encoding/decoding method and device, and recording medium having bitstream stored thereon

Publications (2)

Publication Number Publication Date
WO2018097693A2 true WO2018097693A2 (ko) 2018-05-31
WO2018097693A3 WO2018097693A3 (ko) 2018-07-19

Family

ID=62195228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013673 WO2018097693A2 (ko) 2016-11-28 2017-11-28 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Country Status (6)

Country Link
US (3) US11343530B2 (ko)
EP (1) EP3547687A4 (ko)
JP (3) JP7044778B2 (ko)
KR (4) KR102283517B1 (ko)
CN (8) CN117528108A (ko)
WO (1) WO2018097693A2 (ko)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876056A (zh) * 2018-08-31 2020-03-10 腾讯美国有限责任公司 视频解码的方法和装置、计算机设备及存储介质
WO2020094150A1 (en) * 2018-11-10 2020-05-14 Beijing Bytedance Network Technology Co., Ltd. Rounding in current picture referencing
CN111163322A (zh) * 2020-01-08 2020-05-15 绍兴文理学院 对基于历史运动矢量的索引进行映射的编码及解码方法
WO2020177696A1 (en) * 2019-03-05 2020-09-10 Huawei Technologies Co., Ltd. Use of extended samples during search in decoder-side motion refinement
WO2020185925A1 (en) * 2019-03-11 2020-09-17 Vid Scale, Inc. Symmetric merge mode motion vector coding
CN111837386A (zh) * 2018-09-21 2020-10-27 Kddi 株式会社 图像解码装置、图像编码装置、图像处理系统和程序
JP2020537424A (ja) * 2017-10-09 2020-12-17 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 動きベクトルの改善のための制限されたメモリアクセスウィンドウ
CN112369021A (zh) * 2018-06-29 2021-02-12 韩国电子通信研究院 用于吞吐量增强的图像编码/解码方法和设备以及存储比特流的记录介质
CN112468817A (zh) * 2019-09-06 2021-03-09 杭州海康威视数字技术股份有限公司 一种编解码方法、装置及其设备
WO2021054776A1 (ko) * 2019-09-18 2021-03-25 삼성전자 주식회사 움직임 정보의 부호화 장치 및 방법, 및 복호화 장치 및 방법
CN113170153A (zh) * 2018-11-20 2021-07-23 交互数字Vc控股公司 基于二元树初始化当前图片参考块矢量
EP3833027A4 (en) * 2018-09-03 2021-09-29 Huawei Technologies Co., Ltd. MOTION VECTOR DETECTION METHOD, DEVICE, COMPUTER EQUIPMENT, AND STORAGE MEDIUM
US11172196B2 (en) 2018-09-24 2021-11-09 Beijing Bytedance Network Technology Co., Ltd. Bi-prediction with weights in video coding and decoding
US11197003B2 (en) 2018-06-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Unified constrains for the merge affine mode and the non-merge affine mode
US11197007B2 (en) 2018-06-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Sub-block MV inheritance between color components
US11202081B2 (en) 2018-06-05 2021-12-14 Beijing Bytedance Network Technology Co., Ltd. Interaction between IBC and BIO
JP2022521561A (ja) * 2019-02-28 2022-04-11 ホアウェイ・テクノロジーズ・カンパニー・リミテッド インター予測のためのエンコーダ、デコーダ、および対応する方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343530B2 (en) * 2016-11-28 2022-05-24 Electronics And Telecommunications Research Institute Image encoding/decoding method and device, and recording medium having bitstream stored thereon
KR102387363B1 (ko) * 2017-11-30 2022-04-18 엘지전자 주식회사 영상 코딩 시스템에서 인터 예측에 따른 영상 디코딩 방법 및 장치
EP3747193A4 (en) * 2018-01-30 2021-11-03 Sharp Kabushiki Kaisha SYSTEMS AND METHODS FOR PERFORMING MOTION VECTOR PREDICTION FOR VIDEO ENCODING USING MOTION VECTOR PREDICATOR ORIGINS
KR102220474B1 (ko) 2018-02-28 2021-02-25 삼성전자주식회사 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR102368621B1 (ko) * 2018-02-28 2022-02-28 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
CN116684594A (zh) * 2018-04-30 2023-09-01 寰发股份有限公司 照度补偿方法及相应的电子装置
WO2019245260A1 (ko) * 2018-06-18 2019-12-26 세종대학교 산학협력단 영상 부호화/복호화 방법 및 장치
WO2020004931A1 (ko) * 2018-06-27 2020-01-02 엘지전자 주식회사 영상 코딩 시스템에서 인터 예측에 따른 영상 처리 방법 및 장치
TWI744661B (zh) 2018-06-29 2021-11-01 大陸商北京字節跳動網絡技術有限公司 要根據模式檢查的查找表中的運動候選的數量
KR20240005239A (ko) 2018-06-29 2024-01-11 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 Lut와 amvp 사이의 상호작용
CN110662056B (zh) 2018-06-29 2022-06-07 北京字节跳动网络技术有限公司 哪个查找表需要更新或不更新
CN110662052B (zh) 2018-06-29 2022-07-08 北京字节跳动网络技术有限公司 更新查找表(lut)的条件
CN114885173A (zh) 2018-06-29 2022-08-09 抖音视界(北京)有限公司 Lut中的运动候选的检查顺序
CN112335248B (zh) * 2018-06-29 2023-12-05 英迪股份有限公司 使用解码器侧的运动补偿的视频编码方法和装置
CN114845108A (zh) 2018-06-29 2022-08-02 抖音视界(北京)有限公司 查找表的更新:fifo、约束的fifo
BR112020024142A2 (pt) 2018-06-29 2021-03-02 Beijing Bytedance Network Technology Co., Ltd. método para processamento de vídeo, aparelho para codificação de dados de vídeo, meio de armazenamento e meio de gravação legíveis por computador não transitório
KR20210025537A (ko) 2018-06-29 2021-03-09 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 하나 또는 다수의 룩업 테이블들을 사용하여 이전에 코딩된 모션 정보를 순서대로 저장하고 이를 사용하여 후속 블록들을 코딩하는 개념
TWI731364B (zh) 2018-07-02 2021-06-21 大陸商北京字節跳動網絡技術有限公司 Hmvp+非相鄰運動
WO2020009390A1 (ko) * 2018-07-02 2020-01-09 엘지전자 주식회사 영상 코딩 시스템에서 인터 예측에 따른 영상 처리 방법 및 장치
WO2020009427A1 (ko) * 2018-07-02 2020-01-09 엘지전자 주식회사 영상 코딩 시스템의 인터 예측에서 템플릿 기반의 후보 리스트 재정렬 방법 및 장치
US11451786B2 (en) * 2018-07-05 2022-09-20 Lg Electronics Inc. Image coding method using buffer compression in CTU unit, and apparatus therefor
WO2020013673A1 (ko) * 2018-07-13 2020-01-16 엘지전자 주식회사 Dmvr에 기반하여 인터 예측을 수행하는 방법 및 장치
WO2020017840A1 (ko) * 2018-07-16 2020-01-23 엘지전자 주식회사 Dmvr에 기반하여 인터 예측을 수행하는 방법 및 장치
GB2590310B (en) 2018-09-12 2023-03-22 Beijing Bytedance Network Tech Co Ltd Conditions for starting checking HMVP candidates depend on total number minus K
CN110896485B (zh) * 2018-09-13 2021-10-15 华为技术有限公司 一种预测运动信息的解码方法及装置
TW202025737A (zh) * 2018-09-19 2020-07-01 大陸商北京字節跳動網絡技術有限公司 仿射模式中自適應運動矢量分辨率的快速算法
GB2577318B (en) * 2018-09-21 2021-03-10 Canon Kk Video coding and decoding
JP7391958B2 (ja) 2018-11-08 2023-12-05 オッポ広東移動通信有限公司 ビデオ信号符号化/復号方法及び前記方法に用いられる機器
WO2020101392A1 (ko) 2018-11-14 2020-05-22 에스케이텔레콤 주식회사 인터 예측 방법 및 이를 이용한 영상 복호화 장치
KR20200056272A (ko) * 2018-11-14 2020-05-22 에스케이텔레콤 주식회사 인터 예측 방법 및 이를 이용한 영상 복호화 장치
CN113056916A (zh) 2018-11-22 2021-06-29 北京字节跳动网络技术有限公司 基于子块的运动候选的选择和信令
CN116405686A (zh) * 2018-12-15 2023-07-07 华为技术有限公司 图像重建方法和装置
US11876957B2 (en) 2018-12-18 2024-01-16 Lg Electronics Inc. Method and apparatus for processing video data
WO2020130714A1 (ko) * 2018-12-21 2020-06-25 주식회사 엑스리스 영상 신호 부호화/복호화 방법 및 이를 위한 장치
CN112565785B (zh) 2018-12-28 2022-04-26 杭州海康威视数字技术股份有限公司 一种编解码方法及其设备
KR20240010576A (ko) 2019-01-10 2024-01-23 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 Lut 업데이트의 호출
WO2020143824A1 (en) 2019-01-13 2020-07-16 Beijing Bytedance Network Technology Co., Ltd. Interaction between lut and shared merge list
WO2020147773A1 (en) 2019-01-16 2020-07-23 Beijing Bytedance Network Technology Co., Ltd. Inserting order of motion candidates in lut
CN113615193A (zh) 2019-03-22 2021-11-05 北京字节跳动网络技术有限公司 Merge列表构建和其他工具之间的交互
JP7323649B2 (ja) 2019-06-14 2023-08-08 エルジー エレクトロニクス インコーポレイティド インター予測に基づく画像コーディング方法及び装置
JP7420838B2 (ja) * 2019-06-14 2024-01-23 エルジー エレクトロニクス インコーポレイティド 動きベクトルを用いた画像コーディング方法及び装置
EP3997877A4 (en) 2019-08-13 2023-05-24 Beijing Bytedance Network Technology Co., Ltd. MOTION ACCURACY IN SUBBLOCK-BASED INTERPREDICTION
CN114762330A (zh) 2019-09-22 2022-07-15 北京字节跳动网络技术有限公司 视频的子图片编码和解码
US11792423B2 (en) 2019-11-22 2023-10-17 Qualcomm Incorporated Early termination of motion vector refinement process in video coding
US20240114127A1 (en) * 2021-02-11 2024-04-04 Dolby Laboratories Licensing Corporation Intra-prediction for hexagonally-sampled video and image compression
WO2023027564A1 (ko) * 2021-08-27 2023-03-02 주식회사 윌러스표준기술연구소 움직임 정보를 보정하는 방법 및 이를 위한 장치
WO2024010338A1 (ko) * 2022-07-05 2024-01-11 한국전자통신연구원 영상 부호화/복호화를 위한 방법, 장치 및 기록 매체

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19548452C1 (de) * 1995-12-22 1997-02-20 Siemens Ag Verfahren zur rechnergestützten Bewegungsschätzung für Bildpunkte zeitlich aufeinander folgender Bilder einer Videosequenz
KR20010045766A (ko) 1999-11-08 2001-06-05 오길록 상태천이도를 이용하여 제어부를 구현한 움직임 추정 장치
US6711211B1 (en) 2000-05-08 2004-03-23 Nokia Mobile Phones Ltd. Method for encoding and decoding video information, a motion compensated video encoder and a corresponding decoder
KR100450746B1 (ko) 2001-12-15 2004-10-01 한국전자통신연구원 계층탐색 기반의 혼합형 움직임 추정 장치 및 방법
TWI566586B (zh) * 2009-10-20 2017-01-11 湯姆生特許公司 一序列形象的現時區塊之寫碼方法和重建方法
EP4135329A3 (en) * 2011-01-07 2023-04-05 LG Electronics Inc. Method for encoding and decoding image information and device using same
JP5786498B2 (ja) 2011-06-30 2015-09-30 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法及び画像符号化プログラム
KR20130050407A (ko) * 2011-11-07 2013-05-16 오수미 인터 모드에서의 움직임 정보 생성 방법
US20130114717A1 (en) 2011-11-07 2013-05-09 Qualcomm Incorporated Generating additional merge candidates
WO2013105791A1 (ko) * 2012-01-09 2013-07-18 삼성전자 주식회사 움직임 벡터 정규화에 기초한 영상의 부호화 방법 및 장치, 영상의 복호화 방법 및 장치
CN110830797B (zh) * 2012-01-18 2023-09-15 韩国电子通信研究院 视频解码装置、视频编码装置和传输比特流的方法
RU2624578C2 (ru) * 2012-07-02 2017-07-04 Самсунг Электроникс Ко., Лтд. Способ и устройство для прогнозирования вектора движения для кодирования видео или декодирования видео
PL400344A1 (pl) * 2012-08-13 2014-02-17 Politechnika Poznanska Sposób wyznaczania predyktora wektora ruchu
KR102070719B1 (ko) * 2013-01-23 2020-01-30 한국전자통신연구원 인터 예측 방법 및 그 장치
WO2014120368A1 (en) * 2013-01-30 2014-08-07 Intel Corporation Content adaptive entropy coding for next generation video
KR20130067280A (ko) * 2013-04-18 2013-06-21 엠앤케이홀딩스 주식회사 인터 예측 부호화된 동영상 복호화 방법
WO2015006984A1 (en) * 2013-07-19 2015-01-22 Mediatek Singapore Pte. Ltd. Reference view selection for 3d video coding
CN105794210B (zh) * 2013-12-06 2019-05-10 联发科技股份有限公司 视频编码系统中用于边界像素的运动补偿预测方法及装置
US9854237B2 (en) * 2014-10-14 2017-12-26 Qualcomm Incorporated AMVP and merge candidate list derivation for intra BC and inter prediction unification
US10200711B2 (en) * 2015-03-27 2019-02-05 Qualcomm Incorporated Motion vector derivation in video coding
CA2995507C (en) * 2015-09-02 2021-05-25 Mediatek Inc. Method and apparatus of decoder side motion derivation for video coding
EP3264769A1 (en) 2016-06-30 2018-01-03 Thomson Licensing Method and apparatus for video coding with automatic motion information refinement
CN114513657A (zh) * 2016-07-05 2022-05-17 株式会社Kt 对视频进行解码的方法和设备以及对视频进行编码的方法
US11638027B2 (en) * 2016-08-08 2023-04-25 Hfi Innovation, Inc. Pattern-based motion vector derivation for video coding
US11343530B2 (en) * 2016-11-28 2022-05-24 Electronics And Telecommunications Research Institute Image encoding/decoding method and device, and recording medium having bitstream stored thereon
US10750203B2 (en) * 2016-12-22 2020-08-18 Mediatek Inc. Method and apparatus of adaptive bi-prediction for video coding

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11582477B2 (en) 2017-10-09 2023-02-14 Huawei Technologies Co., Ltd. Limited memory access window for motion vector refinement
JP7279140B2 (ja) 2017-10-09 2023-05-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 動きベクトルの改善のための制限されたメモリアクセスウィンドウ
JP2022027770A (ja) * 2017-10-09 2022-02-14 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 動きベクトルの改善のための制限されたメモリアクセスウィンドウ
JP2020537424A (ja) * 2017-10-09 2020-12-17 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 動きベクトルの改善のための制限されたメモリアクセスウィンドウ
US11805270B2 (en) 2017-10-09 2023-10-31 Huawei Technologies Co., Ltd. Limited memory access window for motion vector refinement
US11405632B2 (en) 2017-10-09 2022-08-02 Huawei Technologies Co., Ltd. Limited memory access window for motion vector refinement
US11509915B2 (en) 2018-06-05 2022-11-22 Beijing Bytedance Network Technology Co., Ltd. Interaction between IBC and ATMVP
US11831884B2 (en) 2018-06-05 2023-11-28 Beijing Bytedance Network Technology Co., Ltd Interaction between IBC and BIO
US11523123B2 (en) 2018-06-05 2022-12-06 Beijing Bytedance Network Technology Co., Ltd. Interaction between IBC and ATMVP
US11202081B2 (en) 2018-06-05 2021-12-14 Beijing Bytedance Network Technology Co., Ltd. Interaction between IBC and BIO
US11895306B2 (en) 2018-06-21 2024-02-06 Beijing Bytedance Network Technology Co., Ltd Component-dependent sub-block dividing
US11197007B2 (en) 2018-06-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Sub-block MV inheritance between color components
US11477463B2 (en) 2018-06-21 2022-10-18 Beijing Bytedance Network Technology Co., Ltd. Component-dependent sub-block dividing
US11659192B2 (en) 2018-06-21 2023-05-23 Beijing Bytedance Network Technology Co., Ltd Sub-block MV inheritance between color components
US11197003B2 (en) 2018-06-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Unified constrains for the merge affine mode and the non-merge affine mode
CN112369021A (zh) * 2018-06-29 2021-02-12 韩国电子通信研究院 用于吞吐量增强的图像编码/解码方法和设备以及存储比特流的记录介质
CN110876056A (zh) * 2018-08-31 2020-03-10 腾讯美国有限责任公司 视频解码的方法和装置、计算机设备及存储介质
CN110876056B (zh) * 2018-08-31 2022-07-01 腾讯美国有限责任公司 视频解码的方法和装置、计算机设备及存储介质
US11563949B2 (en) 2018-09-03 2023-01-24 Huawei Technologies Co., Ltd. Motion vector obtaining method and apparatus, computer device, and storage medium
EP3833027A4 (en) * 2018-09-03 2021-09-29 Huawei Technologies Co., Ltd. MOTION VECTOR DETECTION METHOD, DEVICE, COMPUTER EQUIPMENT, AND STORAGE MEDIUM
CN115250350B (zh) * 2018-09-03 2024-04-09 华为技术有限公司 运动矢量的获取方法、装置、计算机设备及存储介质
CN115250350A (zh) * 2018-09-03 2022-10-28 华为技术有限公司 运动矢量的获取方法、装置、计算机设备及存储介质
CN111837386A (zh) * 2018-09-21 2020-10-27 Kddi 株式会社 图像解码装置、图像编码装置、图像处理系统和程序
EP3855736A4 (en) * 2018-09-21 2022-08-03 KDDI Corporation IMAGE DECODING DEVICE, IMAGE ENCODING DEVICE, IMAGE PROCESSING SYSTEM AND PROGRAM
US11616945B2 (en) 2018-09-24 2023-03-28 Beijing Bytedance Network Technology Co., Ltd. Simplified history based motion vector prediction
US11202065B2 (en) 2018-09-24 2021-12-14 Beijing Bytedance Network Technology Co., Ltd. Extended merge prediction
US11172196B2 (en) 2018-09-24 2021-11-09 Beijing Bytedance Network Technology Co., Ltd. Bi-prediction with weights in video coding and decoding
US11792421B2 (en) 2018-11-10 2023-10-17 Beijing Bytedance Network Technology Co., Ltd Rounding in pairwise average candidate calculations
WO2020094150A1 (en) * 2018-11-10 2020-05-14 Beijing Bytedance Network Technology Co., Ltd. Rounding in current picture referencing
CN113170153A (zh) * 2018-11-20 2021-07-23 交互数字Vc控股公司 基于二元树初始化当前图片参考块矢量
JP7350857B2 (ja) 2019-02-28 2023-09-26 ホアウェイ・テクノロジーズ・カンパニー・リミテッド インター予測のためのエンコーダ、デコーダ、および対応する方法
JP2022521561A (ja) * 2019-02-28 2022-04-11 ホアウェイ・テクノロジーズ・カンパニー・リミテッド インター予測のためのエンコーダ、デコーダ、および対応する方法
US11736719B2 (en) 2019-02-28 2023-08-22 Huawei Technologies Co., Ltd. Encoder, a decoder and corresponding methods for inter-prediction
WO2020177696A1 (en) * 2019-03-05 2020-09-10 Huawei Technologies Co., Ltd. Use of extended samples during search in decoder-side motion refinement
US11902508B2 (en) 2019-03-05 2024-02-13 Huawei Technologies Co., Ltd. Use of extended samples during search in decoder-side motion refinement
JP2022525401A (ja) * 2019-03-11 2022-05-13 ヴィド スケール インコーポレイテッド 対称的マージモード動きベクトル符号化
CN113728643A (zh) * 2019-03-11 2021-11-30 Vid拓展公司 对称合并模式运动向量编码
WO2020185925A1 (en) * 2019-03-11 2020-09-17 Vid Scale, Inc. Symmetric merge mode motion vector coding
CN112468817B (zh) * 2019-09-06 2022-07-29 杭州海康威视数字技术股份有限公司 一种编解码方法、装置及其设备
CN112468817A (zh) * 2019-09-06 2021-03-09 杭州海康威视数字技术股份有限公司 一种编解码方法、装置及其设备
WO2021054776A1 (ko) * 2019-09-18 2021-03-25 삼성전자 주식회사 움직임 정보의 부호화 장치 및 방법, 및 복호화 장치 및 방법
CN111163322B (zh) * 2020-01-08 2022-08-30 绍兴文理学院 对基于历史运动矢量的索引进行映射的编码及解码方法
CN111163322A (zh) * 2020-01-08 2020-05-15 绍兴文理学院 对基于历史运动矢量的索引进行映射的编码及解码方法

Also Published As

Publication number Publication date
KR102283517B1 (ko) 2021-07-29
CN117528105A (zh) 2024-02-06
CN117528110A (zh) 2024-02-06
CN109997363A (zh) 2019-07-09
JP2022051733A (ja) 2022-04-01
KR102391524B1 (ko) 2022-04-27
EP3547687A4 (en) 2020-07-15
CN117528111A (zh) 2024-02-06
KR20210095113A (ko) 2021-07-30
KR20230037530A (ko) 2023-03-16
CN117528108A (zh) 2024-02-06
US20200267408A1 (en) 2020-08-20
WO2018097693A3 (ko) 2018-07-19
KR102509513B1 (ko) 2023-03-14
CN117528107A (zh) 2024-02-06
CN109997363B (zh) 2023-12-05
JP2023068059A (ja) 2023-05-16
JP7044778B2 (ja) 2022-03-30
CN117528106A (zh) 2024-02-06
KR102625959B1 (ko) 2024-01-17
JP7253844B2 (ja) 2023-04-07
JP2019536376A (ja) 2019-12-12
US20230353776A1 (en) 2023-11-02
KR20220054572A (ko) 2022-05-03
CN117528109A (zh) 2024-02-06
US11343530B2 (en) 2022-05-24
US20220256187A1 (en) 2022-08-11
KR20180061060A (ko) 2018-06-07
EP3547687A2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
WO2018097693A2 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018066867A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018226015A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2019190224A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018030773A1 (ko) 영상 부호화/복호화 방법 및 장치
WO2018097692A2 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2019177354A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018012886A1 (ko) 영상 부호화/복호화 방법 및 이를 위한 기록 매체
WO2019182385A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018012851A1 (ko) 영상 부호화/복호화 방법 및 이를 위한 기록 매체
WO2019172705A1 (ko) 샘플 필터링을 이용한 영상 부호화/복호화 방법 및 장치
WO2017222237A1 (ko) 화면 내 예측 방법 및 장치
WO2018016823A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018026166A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2019083334A1 (ko) 비대칭 서브 블록 기반 영상 부호화/복호화 방법 및 장치
WO2017204532A1 (ko) 영상 부호화/복호화 방법 및 이를 위한 기록 매체
WO2020005035A1 (ko) 처리율 향상을 위한 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2020141813A2 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2020005031A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2020060316A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2019240493A1 (ko) 문맥 적응적 이진 산술 부호화 방법 및 장치
WO2018101700A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018097590A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2015133838A1 (ko) 폴리곤 유닛 기반 영상 인코딩/디코딩 방법 및 이를 위한 장치
WO2020013532A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874753

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019528067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017874753

Country of ref document: EP