WO2018097569A1 - 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법 - Google Patents
단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법 Download PDFInfo
- Publication number
- WO2018097569A1 WO2018097569A1 PCT/KR2017/013238 KR2017013238W WO2018097569A1 WO 2018097569 A1 WO2018097569 A1 WO 2018097569A1 KR 2017013238 W KR2017013238 W KR 2017013238W WO 2018097569 A1 WO2018097569 A1 WO 2018097569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- light
- phase
- hologram
- reference light
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 127
- 238000005259 measurement Methods 0.000 claims description 60
- 230000003287 optical effect Effects 0.000 claims description 38
- 230000010363 phase shift Effects 0.000 claims description 15
- 239000000284 extract Substances 0.000 claims description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims 1
- 238000001093 holography Methods 0.000 description 20
- 238000003384 imaging method Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 208000014733 refractive error Diseases 0.000 description 4
- 230000010287 polarization Effects 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0866—Digital holographic imaging, i.e. synthesizing holobjects from holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/32—Holograms used as optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/106—Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/12—Beam splitting or combining systems operating by refraction only
- G02B27/126—The splitting element being a prism or prismatic array, including systems based on total internal reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/50—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
- G02B30/56—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/18—Stereoscopic photography by simultaneous viewing
- G03B35/24—Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/005—Adaptation of holography to specific applications in microscopy, e.g. digital holographic microscope [DHM]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
- G03H2001/0452—Digital holography, i.e. recording holograms with digital recording means arranged to record an image of the object
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
- G03H2001/0454—Arrangement for recovering hologram complex amplitude
- G03H2001/0458—Temporal or spatial phase shifting, e.g. parallel phase shifting method
Definitions
- the present invention relates to an apparatus and method for digital holographic reconstruction using a single generation phase shift technique.
- the present invention acquires only one object hologram image, generates four phase shifted object holograms from the obtained object hologram using wave optical based interference equations, and generates four phase shifted holograms.
- the complex conjugated hologram is removed from the DC noise and virtual image information by using the over-phase shifting technique.
- the phase information of the object is extracted using the generated complex conjugated hologram, and then the three-dimensional shape information and the quantitative thickness information of the object are restored. This eliminates the time delay error that occurs when acquiring two holograms (object hologram and reference hologram) required for restoration of the prior art, or when acquiring four physical holograms with different degrees of phase shift, and software.
- phase shifting technique implemented by
- optical elements (1/4 wave plate and / or 1/2 wave plate), which is essential for the prior art, can be completely eliminated, information loss due to non-use of prior art filtering techniques is minimized. This is unnecessary, and therefore, the structure of the entire device is simple and can be implemented at low cost, and in particular, has a general purpose that can be applied to both the reflective and transmissive hologram restoration devices of the prior art, and defects of ultra-fine structures such as TFTs and semiconductors
- a single-generation phase shifting technique can be applied to detection, identification or display devices in a variety of applications, including detection devices, medical devices requiring precise three-dimensional image display, and detection of refractive error in transparent objects such as lenses.
- the present invention relates to an apparatus and method for digital holographic restoration.
- a general microscope is a device that measures the shape of an object by measuring the intensity of light that is reflected or transmitted from the object by shining a general light source onto the object
- the digital holography microscope detects the interference and diffraction of light that occurs when light is shined on the object. It is a device that measures and records them digitally to restore shape information of an object from these information.
- digital holography technology generates a single wavelength of light, such as a laser, and splits it into two lights using a light splitter so that one light is directly reflected on the image sensor (called reference light), and the other light is measured.
- reference light the image sensor
- the reference light and the object light cause interference in the image sensor.
- the interference fringe information of the light is converted into a digital image sensor. It is a technique for recording and restoring the shape of the object to be measured using a computer with the recorded interference fringe information. In this case, the recorded interference fringe information is generally called a hologram.
- the above-described digital holography microscope measures the interference pattern information of light with a digital image sensor and stores it digitally, and the numerical value using a computer device, etc., which is not an optical method. There is a difference in that the shape of the object to be measured is restored by machining through a calculation method.
- Korean Patent No. 10-0838586, registered on June 10, 2008 name of the invention: 3D measuring apparatus and 3D measuring method using digital holography
- Korean Patent No. 10-0867302 Invention: 3D Measuring Device Using Digital Holography
- Prior Art 2 June 2009
- Republic of Korea Patent No. 10-0906508 Invention name: 3D measurement device using digital holography
- FIG. 1 is a diagram illustrating a configuration of a 3D measuring apparatus using digital holography according to the related art 1.
- the 3D measuring apparatus using the digital holography according to the related art 1 includes a light guide 10, a first imaging unit 23, a second imaging unit 24, a light splitter 13, and a first wavelength.
- the plate 18 and the second wave plate 20 are included.
- the light splitter 13 eg, a polarizer beam splitter (PBS)
- PBS polarizer beam splitter
- a third wave plate 15 is disposed between the light splitter 13 and the reference plane 3, and a fourth wave plate 14 is disposed between the light splitter 13 and the measurement object 1.
- the third wave plate 15 and the fourth wave plate 14 may be implemented as a quarter wave plate.
- the reference light passing from the light splitter 13 to the reference plane 3 passes through the third wave plate 15, and the reference light passing through the third wave plate 15 is directed to the reference plane 3.
- the reference light reflected from the reference plane 3 passes through the third wave plate 15 again. In this case, the reference light incident from the light splitter 13 to the third wave plate 15 is reflected from the reference plane 3 and is reflected.
- the polarization direction between the reference light passing through the three wave plates 15 has a 90 difference.
- the measurement light directed from the light splitter 13 to the measurement object 1 passes through the fourth wave plate 14, and the measurement light passing through the fourth wave plate 14 passes through the measurement object 1. Headed.
- the measurement light reflected from the measurement object 1 passes through the fourth wave plate 14 again.
- the measurement light incident from the light splitter 13 into the fourth wave plate 14 is the same as that of the reference light.
- the polarization direction between the measurement light reflected from the measurement object 1 and passing through the fourth wave plate 14 have a 90 difference.
- the third wave plate 15 and the fourth wave plate 14 are placed between the light splitter 13, the reference plane 3, and the measurement object 1, respectively, the light in the form of a polarizing beam splitter The energy loss of the light passing through the divider 13 is minimized.
- the reference light and the measurement light which are reflected from the reference plane 3 and the measurement object 1 and passed through the third wave plate 15 and the fourth wave plate 14, respectively, pass through the light splitter 13 again.
- 1 wave plate 18 is directed.
- reference light and measurement light from the light splitter 13 pass through the first wave plate 18 to generate mutual interference.
- interference light passes through the prism unit 19.
- the interference light passes through the prism unit 19, and the first interference light directed toward the first imaging unit 23 and the second imaging unit 24 are directed to the prism unit 19.
- the light is divided into two interference lights, and the first interference light and the second interference light have a phase difference of 180 degrees.
- the first interference light directed to the first imaging unit 23 is picked up by the first imaging unit 23 and acquired as image information having one phase, for example, zero phase.
- the second interference light directed toward the second imaging unit 24 passes through the second wave plate 20 and a phase delay of 90 occurs to enter the second imaging unit 24.
- the phase difference between the second interference light picked up by the second imaging section 24 and the first interference light picked up by the first imaging section 23 becomes 90 by the second wave plate 20.
- the two image information for acquiring the 3D image can be acquired by the first imaging unit 23 and the second imaging unit 24 at the same time.
- the first wave plate 18 and the second wave plate 20 may be implemented as a quarter wave plate, respectively.
- the first imaging unit 23 and the second imaging unit 24 may be implemented by a CCD camera, and the first interfering light and the second imaging unit acquired by the first imaging unit 23 and the second imaging unit 24.
- the interfering light is used to acquire a 3D image of the measurement object 1 by a control unit such as a computer (not shown), and Fresnel transform, which is used in the conventional digital holography method, is applied to the 3D image using digital holography. An image can be obtained.
- image information having a phase difference of 90 in one shot is simultaneously captured by the first imaging unit 23 and the second imaging unit 24, and according to the conventional stereoscopic method that requires a plurality of holograms.
- the problem of measurement speed is solved, the high speed measurement capability of the deaxis method can be solved, and the conventional deaxis method does not use the entire area of the CCD camera generated by having a constant angle between the reference light and the measured light, that is, the horizontal
- the degradation of resolution can be prevented.
- a time delay error occurs when acquiring two holograms (object hologram and reference hologram) required for hologram restoration.
- the present invention solves the problems of the prior art described above, and acquires only one object hologram image, and generates four phase shifted object holograms using wave optical-based interference equations from the obtained object holograms.
- Complex conjugated hologram that removes DC noise and virtual image information using four phase shifted holograms and phase shifting techniques, extracts the phase information of the object using the generated complex conjugated hologram, and then uses the three-dimensional shape information of the object. And time delay that occurs when acquiring two holograms (object hologram and reference hologram) required for restoration of the prior art or acquiring four physical holograms with different degrees of phase shift by restoring quantitative thickness information.
- phase shifting technique eliminates error It is possible to completely remove direct current noise (including background noise), minimize information loss due to the non-use of prior art filtering techniques, and optical elements (1/4 wave plate and / or essentially required in the prior art).
- Half wave plate is not required, and thus the structure of the whole device is simple and can be implemented at low cost, and in particular, has a general purpose that can be applied to both the reflective and transmissive hologram restoration devices of the prior art, TFT and Applied to devices for detecting, verifying, or displaying a variety of fields, including devices for detecting defects of ultra-fine structures such as semiconductors, medical devices requiring precise 3D image display, and detecting refractive error of transparent objects such as lenses. It is an object of the present invention to provide an apparatus and method for digital holographic restoration using this single generation phase shifting technique.
- a digital holographic reconstruction apparatus using a single generation phase shifting technique includes a light source unit for emitting a single wavelength of light; A collimator for collimating single wavelength light emitted from the light source unit; A light splitter that splits the single wavelength light that has passed through the collimator into object light and reference light; An object light objective lens for passing the object light divided by the light splitter; A reference light objective lens for passing the reference light divided by the light splitter; An optical mirror for reflecting the reference light passing through the reference light objective lens; Interference that is transmitted through the object light objective lens and the reference light reflected by the optical mirror and the reference light reflected by the optical mirror passes through the object light objective lens and the reference light objective lens to be transmitted to the optical splitter, respectively A recording medium for recording a pattern; And a processor configured to receive and store an image file generated by converting the interference fringe from the recording medium, wherein the processor is configured to perform the first through the first through the wave equations based on a wave optics-based interference equation from
- phase shifted object holograms Generates four phase shifted object holograms, generates complex conjugated holograms that remove DC noise and virtual image information by using the generated first to fourth phase shifted holograms and software implemented phase shifting techniques, and generates the complex After extracting the phase information of the object to be measured using the conjugated hologram, it is characterized in that to restore the three-dimensional information of the object to be measured.
- a digital holographic reconstruction apparatus using a single generation phase shifting technique includes a light source unit for emitting a single wavelength of light; A collimator for collimating single wavelength light emitted from the light source unit; A light splitter that splits the single wavelength light that has passed through the collimator into object light and reference light; An object light objective lens configured to pass an object transmitted light including information of the object to be measured after the object light divided by the light splitter reflects the object to be measured; A second optical mirror for reflecting light sources other than the object reflected light passing through the object light objective lens; A reference light objective lens for passing the reference light divided by the light splitter; A first optical mirror for reflecting the reference light passing through the reference light objective lens; A second light splitter to which the reference light reflected by the first optical mirror and the object reflected light reflected by the second optical mirror are respectively transmitted; A recording medium for recording an interference fringe formed by the reference light and the object reflected light transmitted to the second optical splitter; And a processor configured to receive and store an image file
- phase shifted object holograms Generates four phase shifted object holograms, generates complex conjugated holograms that remove DC noise and virtual image information by using the generated first to fourth phase shifted holograms and software implemented phase shifting techniques, and generates the complex After extracting the phase information of the object to be measured using the conjugated hologram, it is characterized in that to restore the three-dimensional information of the object to be measured.
- a digital holographic reconstruction method using a single generation phase shifting technique comprises the steps of: a) obtaining an object hologram of an object to be measured; b) generating a first phase shifted object hologram by separating and extracting object light information having phase information of the measurement target object and reference light information without phase information of the measurement target object from the obtained object hologram; c) phase shifting the extracted reference light information by 90 to generate a second phase shifted object hologram; d) shifting the extracted reference light information by 180 to generate a third phase shifted object hologram; e) shifting the extracted reference light information by 270 to generate a fourth phase shifted object hologram; f) removing the direct current (DC) information, the direct current noise, and the virtual image information using the generated first to fourth phase shifted object holograms and a phase shifting method to obtain the phase information of the object to be measured. Extracting; And g) compensating for the distorted phase information to the extracted phase information, and calculating quantitative thickness information
- phase shift technique can be used to completely eliminate direct current noise (including background noise).
- optical elements (1/4 wave plate and / or 1/2 wave plate) which are essentially required in the prior art, so that the structure of the whole device is simple and can be implemented at low cost.
- Detection, identification or indication in a variety of fields including devices for detecting defects of ultra-fine structures such as TFTs and semiconductors, medical devices requiring accurate three-dimensional image display, and detection of refractive error in transparent objects such as lenses Applicable to the device.
- FIG. 1 is a view showing the configuration of a 3D measuring apparatus using digital holography according to the prior art 1.
- FIG. 2A is a schematic block diagram of a digital holographic reconstruction apparatus using a single generation phase shifting technique according to the first embodiment of the present invention.
- FIG. 2B is a schematic block diagram of a digital holographic restoration apparatus using a single generation phase shifting technique according to a second embodiment of the present invention.
- 2C is a schematic flowchart for explaining a digital holographic restoration method using a single generation phase shifting technique according to an embodiment of the present invention.
- FIG. 2D illustrates an object hologram of a staircase having three levels of different thicknesses in the off-axis holographic method according to an embodiment of the present invention, and first to fourth phase shifted holograms generated from the object holograms.
- FIG. 2E illustrates an object hologram of a staircase having three levels of different thicknesses in a forward axis holographic scheme, and first to fourth phase shifted holograms generated from the object holograms. Drawing.
- FIG. 2F is a three-dimensional view of a staircase with three levels of different thicknesses reconstructed using a software phase shifting technique of the four phase shifted holograms shown in FIG. 2D in a off-axis holographic method in accordance with an embodiment of the present invention.
- FIG. 2G is a three-dimensional, three-dimensional, staircase with three levels of different thicknesses reconstructed using a software phase shifting technique of the four phase shifted holograms shown in FIG. 2E in a forward axis holographic approach.
- 2H is a three-dimensional object hologram reconstructed using a prior art off-axis optical holographic method for a staircase having three levels of different thicknesses, and a three-dimensional reconstruction using a non-axis holographic method according to an embodiment of the present invention.
- a diagram is shown for comparing object holograms (see FIG. 2F).
- Figure 2i is a diagram showing the characteristics according to the de-axial restoration and constant-axis restoration of the hologram according to the prior art and the present invention as a comparison table.
- FIG. 2A is a schematic block diagram of a digital holographic reconstruction apparatus using a single generation phase shifting technique according to the first embodiment of the invention.
- the digital holographic restoration apparatus 200a using the single generation phase shifting technique includes a light source unit 210 that emits single wavelength light; A collimator 220 for collimating the single wavelength light emitted from the light source unit 210; A light splitter 230 that splits the single wavelength light that has passed through the collimator 220 into object light O and reference light R; An object light objective lens 240 for passing the object light O divided by the light splitter 230; A reference light objective lens 260 for passing the reference light R divided by the light splitter 230; An optical mirror 270 reflecting the reference light R passing through the reference light objective lens 260; The object light O passing through the object light objective lens 240 and reflected from the surface of the object 250 to be measured and the reference light R reflected by the optical mirror 270 are respectively the object light objective lens ( A recording medium (280) for recording an interference fringe formed by passing through the light source (240) and the reference light objective lens (260) to the light splitter (230); And
- the first to fourth phase shifted holograms are generated by using the interference equation, and the generated first to fourth phase shifted holograms and the phase shifting technique implemented by software are used to generate DC information, DC noise, and virtual image information. After generating the removed complex conjugated hologram and extracting the phase information of the measurement target object 250 using the generated complex conjugated hologram, it is characterized in that to restore the three-dimensional information of the measurement target object 250.
- FIG. 2B is a schematic block diagram of a digital holographic restoration apparatus using a single generation phase shifting technique according to a second embodiment of the present invention.
- the digital holographic restoration apparatus 200b using the single generation phase shifting technique includes a light source unit 210 that emits single wavelength light; A collimator 220 for collimating the single wavelength light emitted from the light source unit 210; A light splitter 230 that splits the single wavelength light that has passed through the collimator 220 into object light O and reference light R; The object light objective lens through which the object light O divided by the light splitter 230 passes the object 250 to be measured and then passes through the object transmitted light T including information of the object 250 to be measured.
- a recording medium (280) for recording an interference fringe formed by the reference light (R) and the object transmitted light (T) transmitted to the second optical splitter (232);
- a processor 290 for receiving and storing an image file generated by converting the interference fringe from the recording medium 280, wherein the processor 290 is based on the wave optics from the object hologram obtained from the image file.
- the first to fourth phase shifted holograms are generated by using the interference equation, and the generated first to fourth phase shifted holograms and the phase shifting technique implemented by software are used to generate DC information, DC noise, and virtual image information. After generating the removed complex conjugated hologram and extracting the phase information of the measurement target object 250 using the generated complex conjugated hologram, it is characterized in that to restore the three-dimensional information of the measurement target object 250.
- the object light O is reflected from the object 250 to be measured (the embodiment of FIG. 2A) or the object light O is transmitted through the object 250 to be measured (FIG. 2b), and further use of some components (e.g., the second optical mirror 272 and the second light splitter 232 of the embodiment of FIG.
- the digital holographic reconstruction apparatuses 200a and 200b using the single generation phase shifting technique according to the first and second embodiments of the present invention will be referred to collectively using the single generation phase shifting technique according to the embodiment of the present invention. This will be referred to as a digital holographic restoration device 200.
- the processor 290 of the digital holographic restoration apparatus 200 using the single generation phase shifting technique according to the embodiment of the present invention described above is a device capable of performing arithmetic operations such as a microprocessor, a personal computer (PC), and the like.
- the recording medium 280 may be implemented with an image sensor such as a charge coupled device (CCD), a complementary metal-oxide semiconductor (CMOS), or the like.
- the information of the object hologram obtained by the processor 290 of the digital holographic restoration apparatus 200 using the single-generation phase shifting technique according to the embodiment of the present invention described above is the wavelength, interference angle, phase, and object light. It may include aberration of the objective lens 240, and may further include noise.
- FIG. 2C is a schematic flowchart for explaining a digital holographic restoration method using a single generation phase shifting technique according to an embodiment of the present invention
- FIG. 2D is a three level in a non-axis holographic method according to an embodiment of the present invention.
- FIG. 2E illustrates an object hologram of a staircase having a different thickness of, and first to fourth phase shifted holograms generated from the object hologram
- FIG. 2E illustrates a stereoscopic holographic method according to an embodiment of the present invention.
- FIG. 2F illustrates an object hologram of a staircase having three levels of different thicknesses, and first to fourth phase shifted holograms generated from the object hologram
- FIG. 2F is a deaxial holo according to an embodiment of the present invention.
- the four phase shifted holograms shown in FIG. 2D are recovered using a software phase shifting technique.
- Figure 3 shows a three-dimensional object hologram of a staircase having three levels of different thicknesses
- FIG. 2G shows the four phase shifted holograms shown in FIG. 2E in a forward axis holographic manner in accordance with an embodiment of the present invention.
- Three-dimensional object hologram of stairs with three levels of different thickness reconstructed using the phase shift technique.
- the processor 290 of the digital holographic reconstruction apparatus 200 using the single generation phase shifting technique is performed by the processor 290.
- the object holograms 310a and 310b are obtained from the generated and stored image file (step S1). Note that in the description below, a is a reference associated with the off-axis hologram and b is used to indicate a reference associated with the off-axis hologram.
- the obtained object holograms 310a and 310b are obtained when the angle between two light beams (that is, the object light O and the reference light R) is 0 (that is, on the same axis). It is an on-axis hologram 310b and an off-axis hologram 310a when the angle at which two lights meet is not zero (ie, not on the same axis).
- the obtained object holograms 310a and 310b are complex conjugated holograms and may be expressed as in Equation 1 below.
- Equation 1
- 2
- Equation 1 x and y represent spatial coordinates, U o (x, y, 0) represents the obtained object hologram, and O (x, y) and R (x, y) respectively represent the object light (O). ) And reference light R, and O * (x, y) and R * (x, y) represent the complex conjugate of the object light O and the reference light R, respectively.
- the processor 290 generates first phase shifted object holograms 312a and 312b from the obtained object holograms 310a and 310b (step S2).
- the obtained object holograms 310a and 310b are interference patterns of the object light O having the phase information of the measurement target object 250 and the reference light R having no phase information of the measurement target object 50.
- the processor 290 measures object light information and phase information having phase information of the object to be measured 250 using a phase delay method. Reference light information without phase information of the target object 250 is separated and extracted. Then, after phase shifting the extracted reference light information by 0 °, a known interference equation based on wave optics ( First phase shifted object holograms 312a and 312b are generated by combining the reference light information phase shifted by 0 ° with the extracted object light information.
- the generated first phase shifted object holograms 312a and 312b may be expressed as in Equation 2 below.
- Equation 2 r is a spatial coordinate vector
- U 1ps (r) is a first phase shifted object hologram
- O (r) is object light information
- R (r + 0) is a reference light shifted in phase by 0 °. Represent information.
- Second phase shifted object holograms 314a and 314b are generated by combining the shifted reference light information and the extracted object light information (step S3).
- the generated second phase shifted object holograms 314a and 314b may be represented by Equation 3 below.
- Equation 3 r is a spatial coordinate vector, U 2ps (r) is a second phase shifted object hologram, O (r) is object light information, and R (r + ⁇ / 2) is phase shifted by 90 °.
- the reference light information is a spatial coordinate vector, U 2ps (r) is a second phase shifted object hologram, O (r) is object light information, and R (r + ⁇ / 2) is phase shifted by 90 °.
- the reference light information is a spatial coordinate vector, U 2ps (r) is a second phase shifted object hologram, O (r) is object light information, and R (r + ⁇ / 2) is phase shifted by 90 °. The reference light information.
- the processor 290 phase shifts the reference light information extracted in the step S2 by 180 °, and then, by 180 ° using the known interference equation based on the above-described wave optics.
- the third phase shifted object holograms 316a and 316b are generated by combining the phase shifted reference light information and the extracted object light information (step S4).
- the generated third phase shifted object holograms 316a and 316b may be represented by Equation 4 below.
- Equation 4 r is a spatial coordinate vector, U 3ps (r) is a third phase shifted object hologram, O (r) is object light information, and R (r + ⁇ ) is a reference light whose phase is shifted by 180 °. Represent information.
- the processor 290 phase shifts the reference light information extracted in the step S2 by 270 °, and then, by 270 ° using the known interference equation based on Wave Optics.
- the fourth phase shifted object holograms 318a and 318b are generated by combining the phase shifted reference light information and the extracted object light information (step S5).
- the generated fourth phase shifted object holograms 318a and 318b may be represented by Equation 5 below.
- Equation 5 r is a spatial coordinate vector, U 4ps (r) is a fourth phase shifted object hologram, O (r) is object light information, and R (r + 3 ⁇ / 2) is phase shifted by 270 °.
- the reference light information is a spatial coordinate vector, U 4ps (r) is a fourth phase shifted object hologram, O (r) is object light information, and R (r + 3 ⁇ / 2) is phase shifted by 270 °.
- the reference light information is a spatial coordinate vector, U 4ps (r) is a fourth phase shifted object hologram, O (r) is object light information, and R (r + 3 ⁇ / 2) is phase shifted by 270 °. The reference light information.
- the processor 290 describes that the steps S3, S4, and S5 are sequentially performed.
- the steps S3, S4, and S5 are respectively referred to the reference light information extracted in the step S2.
- Processor 290 then performs four phase shifted object holograms (i.e., first through fourth phase shifted object holograms 314a, 314b; 316a, 316b; 318a, 318b) respectively generated in steps S2 through S5. ) And a known phase shifting method implemented by software embedded in the processor 290 to remove direct current (DC) information including background noise, direct current noise, and virtual image information (step S6). If this process is represented by an equation, it may be expressed as shown in Equation 6.
- DC direct current
- Equation 6 x and y represent spatial coordinates, I DC (x, y) is DC information and DC noise, ⁇ (x, y) is phase information of the measurement target object 250, I 1 (x, y) is intensity information of the first phase shifted holograms 312a and 312b, I 2 (x, y) is the intensity information of the second phase shifted holograms 314a and 314b, and I 3 (x, y) ) Represents intensity information of the third phase shifted holograms 316a and 316b, and I 4 (x, y) represents intensity information of the fourth phase shifted holograms 318a and 318b.
- phase information of the measurement target object 250 is extracted using a complex conjugated hologram from which direct current (DC) information, direct current noise, and virtual image information have been removed.
- the phase information of the extracted measurement target object 250 may be expressed as shown in Equation 7 below.
- Equation 7 x and y represent spatial coordinates, ⁇ (x, y) is phase information of the measurement target object 250, and I 1 (x, y) is the first phase shifted holograms 312a and 312b. Intensity information, I 2 (x, y) is the intensity information of the second phase shifted holograms 314a, 314b, and I 3 (x, y) is the third phase shifted holograms 316a, 316b. The intensity information, and I 4 (x, y), represent the intensity information of the fourth phase shifted holograms 318a and 318b.
- the processor 290 compensates for the distorted phase information by using a 2D phase unwrapping algorithm on the extracted phase information of the measurement target object 250 and uses the compensated phase information.
- Quantitative thickness information of the measurement target object 250 calculated by the processor 290 may be expressed as in Equation 8 below.
- Equation 8 ⁇ L is quantitative thickness information of the measurement target object 250, ⁇ is the wavelength of the light source unit 210 used when obtaining the object hologram, and ⁇ (x, y) is the phase of the measurement target object 250.
- the information, ⁇ n (x, y) represents the difference in refractive index between the background and the measurement target object 250.
- the processor 290 restores the three-dimensional shape of the measurement target object 250 by using the quantitative thickness information of the measurement target object 250 calculated according to Equation 8 above (S7: FIG. 2F). And reference numerals 320a and 320b of FIG. 2g).
- the three-dimensional shape reconstructed by the processor 290 may be displayed on a separately provided monitor (not shown), for example, a display of a PC.
- 2H is a three-dimensional object hologram reconstructed using a prior art off-axis optical holographic method for a staircase having three levels of different thicknesses, and a three-dimensional reconstruction using a non-axis holographic method according to an embodiment of the present invention.
- a diagram is shown for comparing object holograms (see FIG. 2F).
- Figure 2i is a diagram showing the characteristics according to the de-axial restoration and constant-axis restoration of the hologram according to the prior art and the present invention as a comparison table.
- a digital holographic restoration method using a single generation phase shifting technique includes a) obtaining object holograms 310a and 310b of an object to be measured 250. Step (S1); b) first and second object light information having phase information of the measurement target object 250 and reference light information without phase information of the measurement target object 250 are extracted from the obtained object holograms 310a and 310b.
- phase shifting object holograms 312a and 312b (S2); c) shifting the extracted reference light information by 90 degrees to generate second phase shifted object holograms 314a and 314b (S3); d) shifting the extracted reference light information by 180 phases to generate third phase shifted object holograms 316a and 316b (S4); e) generating a fourth phase shifted object hologram (318a, 318b) by shifting the extracted reference light information by 270 in phase (S5); f) direct current (DC) information and direct current noise, virtual image using the generated first to fourth phase shifted object holograms 314a, 314b; 316a, 316b; 318a, 318b and a phase shifting method.
- DC direct current
- steps c) to e) may be performed simultaneously.
- the object light information and the reference light information in the step c) is obtained by the obtained object holograms (310a, 310b) It is separated and extracted using the phase delay method in the frequency domain of.
- the first to fourth phase shifted object holograms 314a, 314b; 316a, 316b; 318a, 318b) are the interference equations based on wave optics, respectively. Is generated by combining the extracted reference light information with the reference light information phase shifted by 0 °, 90 °, 180 °, and 270 °, respectively.
- the distorted phase information is spread two-dimensional phase on the phase information of the extracted measurement target object 250 Compensated using a 2D phase unwrapping algorithm.
- ⁇ L quantitative thickness information of the measurement target object 250
- ⁇ is the wavelength of the light source unit 210 used when obtaining the object hologram
- ⁇ (x, y) represents phase information of the measurement target object 250
- ⁇ n (x, y) represents a difference in refractive index between the background and the measurement target object 250.
- the digital holographic restoration apparatus 200 and the method using the single generation phase shifting technique according to the present invention 1) upon acquisition of two holograms (object hologram and reference hologram) required for restoration of the prior art. Time delay error occurring when acquiring four physical holograms with different phase shifts or different phase shifts is eliminated, and 2) perfect removal of direct current noise (including background noise) is achieved by using a software implemented phase shifting technique. 3) information loss due to the non-use of prior art filtering techniques is minimized, and 4) the use of optical elements (1/4 wave plate and / or 1/2 wave plate), which is essential for the prior art, is unnecessary. Therefore, the structure of the whole device is simple and can be implemented at low cost.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Holo Graphy (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
본 발명에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법은 a) 측정 대상 물체의 물체 홀로그램을 획득하는 단계; b) 상기 획득된 물체 홀로그램으로부터 상기 측정 대상 물체의 위상 정보를 갖는 물체광 정보와 상기 측정 대상 물체의 위상 정보가 없는 기준광 정보를 분리하여 추출하여 제 1 위상 천이된 물체 홀로그램을 생성하는 단계; c) 상기 추출된 기준광 정보를 90만큼 위상을 천이시켜 제 2 위상 천이된 물체 홀로그램을 생성하는 단계; d) 상기 추출된 기준광 정보를 180만큼 위상을 천이시켜 제 3 위상 천이된 물체 홀로그램을 생성하는 단계; e) 상기 추출된 기준광 정보를 270만큼 위상을 천이시켜 제 4 위상 천이된 물체 홀로그램을 생성하는 단계; f) 상기 생성된 제 1 내지 제 4 위상 천이된 물체 홀로그램과 위상 천이 기법(phase shifting method)을 사용하여 직류(DC) 정보 및 직류 잡음, 허상 정보를 제거하여 상기 측정 대상 물체의 상기 위상 정보를 추출하는 단계; 및 g) 상기 추출된 상기 위상 정보에 왜곡된 위상 정보를 보상하고, 상기 보상된 위상 정보를 이용하여 상기 측정 대상 물체의 정량적인 두께 정보를 계산하여 상기 측정 대상 물체의 3차원 형상 정보 및 정량적인 두께 정보를 복원하는 단계를 포함하는 것을 특징으로 한다.
Description
본 발명은 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법에 관한 것이다.
좀 더 구체적으로, 본 발명은 한 장의 물체 홀로그램 영상만을 획득하고, 획득된 물체 홀로그램으로부터 파동 광학 기반의 간섭 방정식을 이용하여 4개의 위상 천이된 물체 홀로그램을 생성하며, 생성된 4개의 위상 천이된 홀로그램과 위상 천이 기법을 이용하여 직류 잡음 및 허상 정보를 제거한 복소 공액 홀로그램을 생성하고, 생성된 복소 공액 홀로그램을 이용하여 물체의 위상 정보를 추출한 후, 물체의 3차원 형상 정보 및 정량적인 두께 정보를 복원함으로써, 종래 기술의 복원에 필요한 2개의 홀로그램(물체 홀로그램 및 기준 홀로그램)의 획득 시에 발생하거나 또는 위상 천이 정도가 상이한 4개의 물리적인 홀로그램의 획득 시에 발생하는 시간 지연 오차 발생이 제거되고, 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 잡음(배경 잡음 포함)의 완벽한 제거가 가능하며, 종래 기술의 필터링 기법의 미사용에 따른 정보 손실이 최소화되고, 종래 기술에서 필수적으로 요구되는 광학 소자(1/4 파장판 및/또는 1/2 파장판)의 사용이 불필요하며, 그에 따라 장치 전체의 구조가 간단하고 저비용으로 구현이 가능하고, 특히 종래 기술의 반사형 및 투과형 홀로그램 복원 장치에 모두 적용될 수 있는 범용성을 가지며, TFT 및 반도체와 같은 초미세 구조의 결함 검출용 장치, 정밀한 3차원 영상의 표시가 요구되는 의료 기기, 및 기타 렌즈와 같은 투명한 물체의 굴절률 에러 검출 등을 포함한 다양한 분야의 검출, 확인 또는 표시용 장치에 적용이 가능한 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법에 관한 것이다.
일반적인 현미경이 통상 일반 광원을 물체에 비추어 물체로부터 반사 또는 투과되는 빛의 세기를 측정함으로 물체의 형상을 측정하는 장치라면, 디지털 홀로그래피 현미경은 빛이 물체에 비추어졌을 경우 일어나는 빛의 간섭과 회절현상을 측정하고 이를 디지털 방식으로 기록하여, 이들 정보로부터 물체의 형상정보를 복원하는 장치이다.
즉, 디지털 홀로그래피 기술은 레이저와 같은 단일 파장의 빛을 생성하고, 이를 광분할기를 이용하여 2개의 빛으로 분할하여, 하나의 빛은 이미지 센서에 직접 비추고(기준광이라 한다), 다른 빛은 측정 대상 물체에 비추어 상기 측정 대상 물체로부터 반사되는 빛을 이미지 센서에 비추면(물체광이라 한다), 이미지 센서에서 상기 기준광과 물체광이 간섭현상을 일으키게 되는데, 이러한 빛의 간섭무늬 정보를 디지털 이미지 센서로 기록하고, 상기 기록된 간섭무늬 정보를 가지고 컴퓨터를 활용하여 측정 대상 물체의 형상을 복원하는 기술이다. 그리고 이때 상기 기록되는 간섭무늬 정보를 통상 홀로그램이라고 지칭한다.
상술한 디지털 홀로그래피 현미경은 기존의 광학적 홀로그래피 방식과 비교하였을 때, 빛의 간섭무늬 정보를 디지털 이미지 센서로 측정하고 디지털 방식으로 저장하고, 상기 저장된 간섭무늬 정보를 광학적 방식이 아닌 컴퓨터 장치 등을 이용한 수치연산 방식을 통하여 가공해서 측정 대상 물체의 형상을 복원한다는 점에서 차이가 있다.
상술한 종래 디지털 홀로그래피 기술들로는 예를 들어, 2008년 6월 10일자로 등록된 대한민국 특허 제10-0838586호(발명의 명칭: 디지털 홀로그래피를 이용한 3D 측정 장치 및 3D 측정 방법) (이하 "종래 기술 1"이라 함), 2008년 10월 31일자로 등록된 대한민국 특허 제10-0867302호(발명의 명칭: 디지털 홀로그래피를 이용한 3D 측정 장치)(이하 "종래 기술 2"라 함), 2009년 6월 30일자로 등록된 대한민국 특허 제10-0906508호(발명의 명칭: 디지털 홀로그래피를 이용한 3D 측정 장치)(이하 "종래 기술 3"이라 함), 2008년 11월 21일자로 등록된 대한민국 특허 제10-1003241호(발명의 명칭: On-Axis 방식의 디지털 홀로그래피를 이용한 3 측정 장치)(이하 "종래 기술 4"라 함), 및 2008년 11월 21일자로 등록된 대한민국 특허 제10-0870967호(발명의 명칭: 허상이 제거되는 디지털 홀로그램 기록 재생 장치 및 기록 재생 방법)(이하 "종래 기술 5"라 함) 등이 공개되어 있다.
예를 들어, 도 1은 종래 기술 1에 따른 디지털 홀로그래피를 이용한 3D 측정장치의 구성을 도시한 도면이다.
도 1을 참조하면, 종래 기술 1의 디지털 홀로그래피를 이용한 3D 측정장치는 도광원(10), 제1 촬상부(23), 제2 촬상부(24), 광 분할부(13), 제1 파장판(18) 및 제2 파장판(20)을 포함한다.
광원(10)으로부터 방출된 광은 고정부재(11)의 핀홀(미도시) 및 고정부재(11)와 광 분할부(13) 사이에 배치된 볼록렌즈(12)를 통과하여 평행광이 되고, 이러한 평행광은 광 분할부(13)로 입사된다. 광 분할부(13)(예를 들어, 편광 빔 스플리터(Polarizer Beam Splitter : PBS))는 광원(10)으로부터 방출된 광을 상호편광 방향이 수직인 기준광(Reference beam)과 측정광(Object beam)으로 분할하여, 각각 기준면(3)과 측정 대상물(1)로 향하게 한다.
광 분할부(13)와 기준면(3) 사이에는 제3 파장판(15)이 배치되고, 광 분할부(13)와 측정 대상물(1) 사이에는 제4 파장판(14)이 배치되며, 이러한 제3 파장판(15) 및 제4 파장판(14)은 1/4 파장판으로 구현될 수 있다. 제3 파장판(15)으로는 광 분할부(13)로부터 기준면(3)으로 향하는 기준광이 통과하고, 제3 파장판(15)을 통과한 기준광은 기준면(3)으로 향한다. 기준면(3)으로부터 반사된 기준광은 다시 제3 파장판(15)을 통과하는데, 이 경우 광 분할부(13)로부터 제3 파장판(15)으로 입사되는 기준광과 기준면(3)으로부터 반사되어 제3 파장판(15)을 통과한 기준광 간의 편광 방향은 90 차이를 갖게 된다.
또한, 제4 파장판(14)으로는 광 분할부(13)로부터 측정 대상물(1)로 향하는 측정광이 통과하고, 제4 파장판(14)을 통과한 측정광은 측정 대상물(1)을 향한다. 측정 대상물(1)로부터 반사된 측정광은 다시 제4 파장판(14)을 통과하는데, 이 경우 기준광에서와 동일하게, 광 분할부(13)로부터 제4 파장판(14)으로 입사되는 측정광과 측정 대상물(1)로부터 반사되어 제4 파장판(14)을 통과한 측정광 간의 편광 방향은 90 차이를 갖게 된다.
상술한 바와 같이, 광 분할부(13)와 기준면(3) 및 측정 대상물(1) 사이에 각각 제3 파장판(15) 및 제4 파장판(14)을 위치시킴으로써, 편광 빔 스플리터 형태의 광 분할부(13)을 통과하는 광의 에너지 손실을 최소화하게 된다.
한편, 기준면(3) 및 측정 대상물(1)로부터 각각 반사되어 제3 파장판(15) 및 제4 파장판(14)을 통과한 기준광 및 측정광은 다시 광 분할부(13)를 통과하며 제1 파장판(18)을 향하게 된다. 제1 파장판(18)은 광 분할부(13)로부터의 기준광 및 측정광은 제1 파장판(18)을 통과하면서 상호 간섭이 발생하게 된다.
또한, 프리즘부(19)로는 간섭광이 통과하는데, 간섭광은 프리즘부(19)를 통과하면서, 제1 촬상부(23)로 향하는 제1 간섭광과 제2 촬상부(24)로 향하는 제2 간섭광으로 분할되고, 제1 간섭광과 제2 간섭광은 180의 위상차를 갖는다. 제1 촬상부(23)로 향하는 제1 간섭광은 제1 촬상부(23)에 의해 촬상되어 하나의 위상, 예를 들어 0의 위상을 갖는 이미지 정보로 취득된다. 반면에, 제2 촬상부(24)로 향하는 제2 간섭광은 제2 파장판(20)을 통과하면서 90의 위상 지연이 발생하여 제2 촬상부(24)로 입사된다. 그 결과, 제2 촬상부(24)에 의해 촬상되는 제2 간섭광과, 제1 촬상부(23)에 의해 촬상되는 제1 간섭광 간의 위상차는 제2 파장판(20)에 의해 90가 됨으로서, 3D 이미지의 획득을 위한 2개의 이미지 정보가 동시에 제1 촬상부(23) 및 제2 촬상부(24)에 의해 취득 가능하게 된다. 여기서, 제1 파장판(18) 및 제2 파장판(20)은 각각 1/4 파장판으로 구현될 수 있다.
제1 촬상부(23) 및 제2 촬상부(24)는 CCD 카메라로 구현될 수 있고, 제1 촬상부(23) 및 제2 촬상부(24)에 의해 취득된 제1 간섭광 및 제2 간섭광은 도시되지 않은 컴퓨터와 같은 제어부에 의해 측정 대상물(1)에 대한 3D 이미지를 획득하는데 사용되며, 기존의 디지털 홀로그래피 방식에서 사용되는 프레넬 변환(Fresnel transform)이 적용되어 디지털 홀로그래피를 이용한 3D 이미지가 획득될 수 있다.
상술한 종래 기술 1에서는, 한 번의 촬영으로 90의 위상차를 갖는 이미지 정보가 제1 촬상부(23) 및 제2 촬상부(24)에 동시에 촬상됨으로써, 복수 개의 홀로그램이 필요한 기존의 정축 방식에 의한 측정 속도 문제가 해결되고, 탈축 방식이 갖는 고속측정 능력을 가질 수 있으며, 또한 기존의 탈축 방식이 기준광과 측정광을 일정한 각을 갖도록 함으로써 발생하는 CCD 카메라의 전 영역을 사용하지 못하는 단점, 즉 횡분해능의 저하를 방지할 수 있게 된다.
종래 기술의 홀로그래피 방식(광학적 홀로그래피 방식 및 디지털 홀로그래피 방식 포함)의 홀로그램 생성 및 복원에서는 다음과 같은 문제가 발생한다.
먼저, 종래 광학적 홀로그래피 방식에서는 홀로그램 복원에 요구되는 2장의 홀로그램(물체 홀로그램 및 기준 홀로그램)의 획득 시에 시간 지연 오차가 발생한다.
또한, 종래 홀로그래피 방식 중 탈축 홀로그래피 방식에서는 홀로그램 복원 시 제거되지 않은 직류 잡음(배경 잡음 포함)으로 인하여 물체의 정량적인 3차원 정보 획득이 어렵거나 오차가 발생한다.
또한, 종래 홀로그래피 방식 중 정축 홀로그래피 방식에서는 획득된 홀로그램에서 직류 정보 및 허상 정보가 분리되지 않아 이들 직류 정보 및 허상 정보의 완벽한 제거가 불가능하고, 2) 2개의 이미지 센서(종래 기술 1 내지 3의 경우) 또는 3개의 이미지 센서(종래 기술 4의 경우)의 사용이 요구되고, 위상 천이 기법을 사용하기 위해 1개, 2개 또는 내지 4개의 물리적인 광학 장치의 사용이 요구된다(구체적으로, 종래 기술 1의 경우 4개의 1/4 파장판의 사용이 요구되고, 종래 기술 2의 경우 1개의 1/4 파장판의 사용이 요구되며, 종래 기술 3은 2개의 1/4 파장판의 사용이 요구되고, 종래 기술 4는 1개의 1/4 파장판 및 1개의 1/2 파장판(즉, 2개의 파장판)의 사용이 요구됨). 따라서, 종래 기술에서는 홀로그램 생성 및 복원 장치의 전체 구조가 복잡해지고, 전체 제조 비용이 고가라는 문제점이 여전히 존재한다.
또한, 종래 기술 5의 경우, 4분할법을 이용하여 허상 정보가 제거되는 3차원 홀로그램 영상의 복원이 가능하지만, 직류 정보를 제거하는 과정에서 직류 정보에 포함되어 있는 물체 정보가 손실이 되고, 기술적인 한계로 인하여 직류 정보를 완벽하게 제거하지 못하기 때문에 측정 물체의 정확한 3차원 정보 획득이 불가능하다는 문제점을 갖는다.
따라서, 상술한 문제점을 해결하기 위한 새로운 방안이 요구된다.
(선행기술문헌)
(특허문헌)
1. 대한민국 특허 제10-0838586호
2. 대한민국 특허 제10-0867302호
3. 대한민국 특허 제10-0906508호
4. 대한민국 특허 제10-1003241호
5. 대한민국 특허 제10-0870967호
본 발명은 상술한 종래 기술의 문제점을 해결하기 위한 것으로, 한 장의 물체 홀로그램 영상만을 획득하고, 획득된 물체 홀로그램으로부터 파동 광학 기반의 간섭 방정식을 이용하여 4개의 위상 천이된 물체 홀로그램을 생성하며, 생성된 4개의 위상 천이된 홀로그램과 위상 천이 기법을 이용하여 직류 잡음 및 허상 정보를 제거한 복소 공액 홀로그램을 생성하고, 생성된 복소 공액 홀로그램을 이용하여 물체의 위상 정보를 추출한 후, 물체의 3차원 형상 정보 및 정량적인 두께 정보를 복원함으로써, 종래 기술의 복원에 필요한 2개의 홀로그램(물체 홀로그램 및 기준 홀로그램)의 획득 시에 발생하거나 또는 위상 천이 정도가 상이한 4개의 물리적인 홀로그램의 획득 시에 발생하는 시간 지연 오차 발생이 제거되고, 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 잡음(배경 잡음 포함)의 완벽한 제거가 가능하며, 종래 기술의 필터링 기법의 미사용에 따른 정보 손실이 최소화되고, 종래 기술에서 필수적으로 요구되는 광학 소자(1/4 파장판 및/또는 1/2 파장판)의 사용이 불필요하며, 그에 따라 장치 전체의 구조가 간단하고 저비용으로 구현이 가능하고, 특히 종래 기술의 반사형 및 투과형 홀로그램 복원 장치에 모두 적용될 수 있는 범용성을 가지며, TFT 및 반도체와 같은 초미세 구조의 결함 검출용 장치, 정밀한 3차원 영상의 표시가 요구되는 의료 기기, 및 기타 렌즈와 같은 투명한 물체의 굴절률 에러 검출 등을 포함한 다양한 분야의 검출, 확인 또는 표시용 장치에 적용이 가능한 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법을 제공하기 위한 것이다.
본 발명의 제 1 특징에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치는 단일 파장 광을 방출하는 광원부; 상기 광원부에서 방출된 단일 파장 광을 시준하기 위한 시준기; 상기 시준기를 통과한 상기 단일 파장 광을 물체광 및 기준광으로 분할하는 광 분할기; 상기 광 분할기에 의해 분할된 상기 물체광을 통과시키는 물체광 대물 렌즈; 상기 광 분할기에 의해 분할된 상기 기준광을 통과시키는 기준광 대물 렌즈; 상기 기준광 대물 렌즈를 통과한 상기 기준광을 반사시키는 광학 거울; 상기 물체광 대물 렌즈를 통과하여 측정 대상 물체의 표면에서 반사된 물체광 및 상기 광학 거울에 의해 반사된 기준광이 각각 상기 물체광 대물 렌즈 및 기준광 대물 렌즈를 통과하여 상기 광 분할기로 전달되어 형성되는 간섭 무늬를 기록하는 기록 매체; 및 상기 기록 매체에서 상기 간섭무늬를 변환하여 생성된 이미지 파일을 수신하여 저장하는 프로세서를 포함하되, 상기 프로세서는 상기 이미지 파일로부터 획득된 물체 홀로그램으로부터 파동 광학 기반의 간섭 방정식을 이용하여 제 1 내지 제 4개 위상 천이된 물체 홀로그램을 생성하며, 생성된 제 1 내지 제 4 위상 천이된 홀로그램과 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 잡음 및 허상 정보를 제거한 복소 공액 홀로그램을 생성하고, 생성된 복소 공액 홀로그램을 이용하여 상기 측정 대상 물체의 위상 정보를 추출한 후, 상기 측정 대상 물체의 3차원 정보를 복원하는 것을 특징으로 한다.
본 발명의 제 2 특징에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치는 단일 파장 광을 방출하는 광원부; 상기 광원부에서 방출된 단일 파장 광을 시준하기 위한 시준기; 상기 시준기를 통과한 상기 단일 파장 광을 물체광 및 기준광으로 분할하는 광 분할기; 상기 광 분할기에 의해 분할된 상기 물체광이 측정 대상 물체를 반사한 후 상기 측정 대상 물체의 정보를 포함한 물체 투과광을 통과시키는 물체광 대물 렌즈; 상기 물체광 대물 렌즈를 통과한 상기 물체 반사광을 제외한 나머지의 광원을 반사시키는 제 2 광학 거울; 상기 광 분할기에 의해 분할된 상기 기준광을 통과시키는 기준광 대물 렌즈; 상기 기준광 대물 렌즈를 통과한 상기 기준광을 반사시키는 제 1 광학 거울; 상기 제 1 광학 거울에 의해 반사된 상기 기준광 및 상기 제 2 광학 거울에 의해 반사된 상기 물체 반사광이 각각 전달되는 제 2 광 분할기; 상기 제 2 광 분할기로 전달된 상기 기준광 및 상기 물체 반사광에 의해 형성되는 간섭 무늬를 기록하는 기록 매체; 및 상기 기록 매체에서 상기 간섭무늬를 변환하여 생성된 이미지 파일을 수신하여 저장하는 프로세서를 포함하되, 상기 프로세서는 상기 이미지 파일로부터 획득된 물체 홀로그램으로부터 파동 광학 기반의 간섭 방정식을 이용하여 제 1 내지 제 4개 위상 천이된 물체 홀로그램을 생성하며, 생성된 제 1 내지 제 4 위상 천이된 홀로그램과 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 잡음 및 허상 정보를 제거한 복소 공액 홀로그램을 생성하고, 생성된 복소 공액 홀로그램을 이용하여 상기 측정 대상 물체의 위상 정보를 추출한 후, 상기 측정 대상 물체의 3차원 정보를 복원하는 것을 특징으로 한다.
본 발명의 제 3 특징에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법은 a) 측정 대상 물체의 물체 홀로그램을 획득하는 단계; b) 상기 획득된 물체 홀로그램으로부터 상기 측정 대상 물체의 위상 정보를 갖는 물체광 정보와 상기 측정 대상 물체의 위상 정보가 없는 기준광 정보를 분리하여 추출하여 제 1 위상 천이된 물체 홀로그램을 생성하는 단계; c) 상기 추출된 기준광 정보를 90만큼 위상을 천이시켜 제 2 위상 천이된 물체 홀로그램을 생성하는 단계; d) 상기 추출된 기준광 정보를 180만큼 위상을 천이시켜 제 3 위상 천이된 물체 홀로그램을 생성하는 단계; e) 상기 추출된 기준광 정보를 270만큼 위상을 천이시켜 제 4 위상 천이된 물체 홀로그램을 생성하는 단계; f) 상기 생성된 제 1 내지 제 4 위상 천이된 물체 홀로그램과 위상 천이 기법(phase shifting method)을 사용하여 직류(DC) 정보 및 직류 잡음, 허상 정보를 제거하여 상기 측정 대상 물체의 상기 위상 정보를 추출하는 단계; 및 g) 상기 추출된 상기 위상 정보에 왜곡된 위상 정보를 보상하고, 상기 보상된 위상 정보를 이용하여 상기 측정 대상 물체의 정량적인 두께 정보를 계산하여 상기 측정 대상 물체의 3차원 형상 정보 및 정량적인 두께 정보를 복원하는 단계를 포함하는 것을 특징으로 한다.
상술한 본 발명에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법을 사용하면 다음과 같은 장점이 달성된다.
1. 종래 기술의 복원에 필요한 2개의 홀로그램(물체 홀로그램 및 기준 홀로그램)의 획득 시에 발생하거나 또는 위상 천이 정도가 상이한 4개의 물리적인 홀로그램의 획득 시에 발생하는 시간 지연 오차 발생이 제거된다.
2. 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 잡음(배경 잡음 포함)의 완벽한 제거가 가능하다.
3. 종래 기술의 필터링 기법의 미사용에 따른 정보 손실이 최소화된다.
4. 종래 기술에서 필수적으로 요구되는 광학 소자(1/4 파장판 및/또는 1/2 파장판)의 사용이 불필요하며, 그에 따라 장치 전체의 구조가 간단하고 저비용으로 구현이 가능하다.
5. 특히, 종래 기술의 반사형 및 투과형 홀로그램 복원 장치에 모두 적용될 수 있는 범용성을 갖는다.
6. TFT 및 반도체와 같은 초미세 구조의 결함 검출용 장치, 정밀한 3차원 영상의 표시가 요구되는 의료 기기, 및 기타 렌즈와 같은 투명한 물체의 굴절률 에러 검출 등을 포함한 다양한 분야의 검출, 확인 또는 표시용 장치에 적용이 가능하다.
본 발명의 추가적인 장점은 동일 또는 유사한 참조번호가 동일한 구성요소를 표시하는 첨부 도면을 참조하여 이하의 설명으로부터 명백히 이해될 수 있다.
도 1은 종래 기술 1에 따른 디지털 홀로그래피를 이용한 3D 측정장치의 구성을 도시한 도면이다.
도 2a는 본 발명의 제 1 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치의 개략적인 블록도이다.
도 2b는 본 발명의 제 2 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치의 개략적인 블록도이다.
도 2c는 본 발명의 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법을 설명하기 위한 개략적인 플로우차트이다.
도 2d는 본 발명의 실시예에 따른 탈축 홀로그래픽 방식에서 3개 레벨의 상이한 두께를 갖는 계단의 물체 홀로그램, 및 물체 홀로그램에서 생성된 제 1 위상 천이된 홀로그램 내지 제 4 위상 천이된 홀로그램을 도시한 도면이다.
도 2e는 본 발명의 실시예에 따른 정축 홀로그래픽 방식에서 3개 레벨의 상이한 두께를 갖는 계단의 물체 홀로그램, 및 물체 홀로그램에서 생성된 제 1 위상 천이된 홀로그램 내지 제 4 위상 천이된 홀로그램을 도시한 도면이다.
도 2f는 본 발명의 실시예에 따른 탈축 홀로그래픽 방식에서 도 2d에 도시된 4개의 위상 천이된 홀로그램을 소프트웨어 방식의 위상 천이 기법을 사용하여 복원한 3개 레벨의 상이한 두께를 갖는 계단의 3차원 물체 홀로그램을 도시한 도면이다.
도 2g는 본 발명의 실시예에 따른 정축 홀로그래픽 방식에서 도 2e에 도시된 4개의 위상 천이된 홀로그램을 소프트웨어 방식의 위상 천이 기법을 사용하여 복원한 3개 레벨의 상이한 두께를 갖는 계단의 3차원 물체 홀로그램을 도시한 도면이다.
도 2h는 3개 레벨의 상이한 두께를 갖는 계단에 대해 종래 기술의 탈축 광학적 홀로그래픽 방식을 사용하여 복원한 3차원 물체 홀로그램 및 본 발명의 실시예에 따른 탈축 홀로그래픽 방식을 사용하여 복원한 3차원 물체 홀로그램(도 2f 참조)을 비교하기 위해 도시한 도면이다.
도 2i는 종래 기술과 본 발명에 따른 홀로그램의 탈축 복원 및 정축 복원에 따른 특성을 비교표로 도시한 도면이다.
이하에서 본 발명의 실시예 및 도면을 참조하여 본 발명을 상세히 기술한다.
도 2a는 발명의 제 1 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치의 개략적인 블록도이다.
도 2a를 참조하면, 본 발명의 제 1 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200a)는 단일 파장 광을 방출하는 광원부(210); 상기 광원부(210)에서 방출된 단일 파장 광을 시준하기 위한 시준기(220); 상기 시준기(220)을 통과한 상기 단일 파장 광을 물체광(O) 및 기준광(R)으로 분할하는 광 분할기(230); 상기 광 분할기(230)에 의해 분할된 상기 물체광(O)을 통과시키는 물체광 대물 렌즈(240); 상기 광 분할기(230)에 의해 분할된 상기 기준광(R)을 통과시키는 기준광 대물 렌즈(260); 상기 기준광 대물 렌즈(260)을 통과한 상기 기준광(R)을 반사시키는 광학 거울(270); 상기 물체광 대물 렌즈(240)을 통과하여 측정 대상 물체(250)의 표면에서 반사된 물체광(O) 및 상기 광학 거울(270)에 의해 반사된 기준광(R)이 각각 상기 물체광 대물 렌즈(240) 및 기준광 대물 렌즈(260)를 통과하여 상기 광 분할기(230)로 전달되어 형성되는 간섭 무늬를 기록하는 기록 매체(280); 및 상기 기록 매체(280)에서 상기 간섭무늬를 변환하여 생성된 이미지 파일을 수신하여 저장하는 프로세서(290)를 포함하되, 상기 프로세서(290)는 상기 이미지 파일로부터 획득된 물체 홀로그램으로부터 파동 광학 기반의 간섭 방정식을 이용하여 제 1 내지 제 4 위상 천이된 물체 홀로그램을 생성하며, 생성된 제 1 내지 제 4 위상 천이된 홀로그램과 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 정보 및 직류 잡음, 허상 정보를 제거한 복소 공액 홀로그램을 생성하고, 생성된 복소 공액 홀로그램을 이용하여 상기 측정 대상 물체(250)의 위상 정보를 추출한 후, 상기 측정 대상 물체(250)의 3차원 정보를 복원하는 것을 특징으로 한다.
도 2b는 본 발명의 제 2 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치의 개략적인 블록도이다.
도 2b를 참조하면, 본 발명의 제 2 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200b)는 단일 파장 광을 방출하는 광원부(210); 상기 광원부(210)에서 방출된 단일 파장 광을 시준하기 위한 시준기(220); 상기 시준기(220)를 통과한 상기 단일 파장 광을 물체광(O) 및 기준광(R)으로 분할하는 광 분할기(230); 상기 광 분할기(230)에 의해 분할된 상기 물체광(O)이 측정 대상 물체(250)를 투과한 후 상기 측정 대상 물체(250)의 정보를 포함한 물체 투과광(T)을 통과시키는 물체광 대물 렌즈(240); 상기 물체광 대물 렌즈(240)를 통과한 상기 물체 투과광(T)을 반사시키는 제 2 광학 거울(272); 상기 광 분할기(230)에 의해 분할된 상기 기준광(R)을 통과시키는 기준광 대물 렌즈(260); 상기 기준광 대물 렌즈(260)를 통과한 상기 기준광(R)을 반사시키는 제 1 광학 거울(270); 상기 제 1 광학 거울(270)에 의해 반사된 상기 기준광(R) 및 상기 제 2 광학 거울(272)에 의해 반사된 상기 물체 투과광(T)이 각각 전달되는 제 2 광 분할기(232); 상기 제 2 광 분할기(232)로 전달된 상기 기준광(R) 및 상기 물체 투과광(T)에 의해 형성되는 간섭 무늬를 기록하는 기록 매체(280); 및 상기 기록 매체(280)에서 상기 간섭무늬를 변환하여 생성된 이미지 파일을 수신하여 저장하는 프로세서(290)를 포함하되, 상기 프로세서(290)는 상기 이미지 파일로부터 획득된 물체 홀로그램으로부터 파동 광학 기반의 간섭 방정식을 이용하여 제 1 내지 제 4 위상 천이된 물체 홀로그램을 생성하며, 생성된 제 1 내지 제 4 위상 천이된 홀로그램과 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 정보 및 직류 잡음, 허상 정보를 제거한 복소 공액 홀로그램을 생성하고, 생성된 복소 공액 홀로그램을 이용하여 상기 측정 대상 물체(250)의 위상 정보를 추출한 후, 상기 측정 대상 물체(250)의 3차원 정보를 복원하는 것을 특징으로 한다.
상술한 도 2a 및 도 2b에 각각 도시된 본 발명의 제 1 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200a) 및 본 발명의 제 2 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200b)는 물체광(O)이 측정 대상 물체(250)에서 반사(도 2a의 실시예)되거나 또는 물체광(O)이 측정 대상 물체(250)를 투과(도 2b의 실시예)한다는 점, 및 그에 따른 일부 구성요소(예를 들어, 도 2b의 실시예의 제 2 광학 거울(272) 및 제 2 광 분할기(232))의 추가 사용 및 그에 따른 일부 구성요소의 배치를 제외하고는 실질적으로 동일한 구성을 가지며, 특히 간섭 무늬가 기록 매체(280) 상에 기록되고, 기록된 상기 간섭 무늬가 프로세서(290)에 의해 이미지 파일 형태로 획득된 물체 홀로그램으로부터 디지털 기준 홀로그램을 계산한다는 점에서 동일한 특징을 갖는다는 점에 유의하여야 한다. 따라서, 이하에서는 본 발명의 제 1 및 제 2 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200a,200b)를 통칭하여 본 발명의 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200)로 지칭하기로 한다.
상술한 본 발명의 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200)의 프로세서(290)는 예를 들어, 마이크로프로세서, PC(Personal Computer) 등의 산술 연산이 가능한 장치로 구현되고, 또한 기록 매체(280)는 예를 들어 CCD(Charge Coupled Device), CMOS(Complimentary Metal-Oxide Semiconductor) 등의 이미지 센서로 구현될 수 있다.
또한, 상술한 본 발명의 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200)의 프로세서(290)에 의해 획득되는 물체 홀로그램의 정보는 파장, 간섭각, 위상, 및 물체광 대물 렌즈(240)의 수차를 포함하고, 노이즈를 추가적으로 포함할 수 있다.
도 2c는 본 발명의 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법을 설명하기 위한 개략적인 플로우차트이고, 도 2d는 본 발명의 실시예에 따른 탈축 홀로그래픽 방식에서 3개 레벨의 상이한 두께를 갖는 계단의 물체 홀로그램, 및 물체 홀로그램에서 생성된 제 1 위상 천이된 홀로그램 내지 제 4 위상 천이된 홀로그램을 도시한 도면이며, 도 2e는 본 발명의 실시예에 따른 정축 홀로그래픽 방식에서 3개 레벨의 상이한 두께를 갖는 계단의 물체 홀로그램, 및 물체 홀로그램에서 생성된 제 1 위상 천이된 홀로그램 내지 제 4 위상 천이된 홀로그램을 도시한 도면이고, 도 2f는 본 발명의 실시예에 따른 탈축 홀로그래픽 방식에서 도 2d에 도시된 4개의 위상 천이된 홀로그램을 소프트웨어 방식의 위상 천이 기법을 사용하여 복원한 3개 레벨의 상이한 두께를 갖는 계단의 3차원 물체 홀로그램을 도시한 도면이며, 도 2g는 본 발명의 실시예에 따른 정축 홀로그래픽 방식에서 도 2e에 도시된 4개의 위상 천이된 홀로그램을 소프트웨어 방식의 위상 천이 기법을 사용하여 복원한 3개 레벨의 상이한 두께를 갖는 계단의 3차원 물체 홀로그램을 도시한 도면이다.
도 2c 내지 도 2g를 도 2a 및 도 2b와 함께 참조하면, 본 발명의 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200)의 프로세서(290)는 프로세서(290)에 의해 생성 및 저장된 이미지 파일로부터 물체 홀로그램(310a,310b)을 획득한다(S1 단계). 이하의 기술(description)에서, a는 탈축 홀로그램과 관련된 참조부호이고, b는 정축 홀로그램과 관련된 참조부호를 나타내기 위해 사용된다는 점에 유의하여야 한다.
좀 더 구체적으로, 획득된 물체 홀로그램(310a,310b)은 2개의 광(즉, 물체광(O) 및 기준광(R))이 만나 이루는 각도가 0인 경우(즉, 동일축 상에 있는 경우) 정축(On-Axis) 홀로그램(310b)이고, 2개의 광이 만나 이루는 각도가 0가 아닌 경우(즉, 동일축 상에 있지 않는 경우) 탈축(Off-Axis) 홀로그램(310a)이다. 상기 획득된 물체 홀로그램(310a,310b)은 복소 공액 홀로그램으로서, 하기 식1과 같이 표시될 수 있다.
식 1: |Uo(x,y,0)|2= |O(x,y)|2+|R(x,y)|2+ O*(x,y)R(x,y)+O(x,y)R*(x,y)
상기 식1에서, x와 y는 공간 좌표를 나타내고, Uo(x,y,0)는 획득된 물체 홀로그램을 나타내며, O(x,y) 및 R(x,y)는 각각 물체광(O)과 기준광(R)을 나타내고, O*(x,y)및 R*(x,y)는 각각 물체광(O)과 기준광(R)의 복소 공액을 나타낸다.
그 후, 프로세서(290)는 상기 획득된 물체 홀로그램(310a,310b)으로부터 제 1 위상 천이된 물체 홀로그램(312a,312b)을 생성한다(S2 단계).
좀 더 구체적으로, 획득된 물체 홀로그램(310a,310b)은 측정 대상 물체(250)의 위상 정보를 갖는 물체광(O)과 측정 대상 물체(50)의 위상 정보가 없는 기준광(R)의 간섭무늬로 이루어져 있으며, 프로세서(290)는 상기 획득된 물체 홀로그램(310a,310b)의 주파수 영역에서 위상 지연 방법(phase delay method)을 사용하여 측정 대상 물체(250)의 위상 정보를 갖는 물체광 정보와 측정 대상 물체(250)의 위상 정보가 없는 기준광 정보를 분리하여 추출한다. 그 후, 추출된 기준광 정보를 0°만큼 위상을 천이(phase shifting)시킨 후, 파동 광학(Wave Optics) 기반의 공지의 간섭 방정식()을 이용하여 0°만큼 위상 천이된 기준광 정보와 상기 추출된 물체광 정보를 결합시킴으로써 제 1 위상 천이된 물체 홀로그램(312a,312b)을 생성한다. 생성된 제 1 위상 천이된 물체 홀로그램(312a,312b)은 하기 식2와 같이 표시될 수 있다.
식 2: U1ps(r)=|O(r)+R(r+0)|
상기 식 2에서, r은 공간 좌표 벡터이고, U1ps(r)는 제 1 위상 천이된 물체 홀로그램, O(r)은 물체광 정보, R(r+0)는 0°만큼 위상이 천이된 기준광 정보를 나타낸다.
그 후, 프로세서(290)는 상기 S2 단계에서 추출된 기준광 정보를 90°만큼 위상을 천이(phase shifting)시킨 후, 상술한 파동 광학(Wave Optics) 기반의 공지의 간섭 방정식을 이용하여 90만큼 위상 천이된 기준광 정보와 상기 추출된 물체광 정보를 결합시킴으로써 제 2 위상 천이된 물체 홀로그램(314a,314b)을 생성한다(S3 단계). 생성된 제 2 위상 천이된 물체 홀로그램(314a,314b)은 하기 식 3과 같이 표시될 수 있다.
식 3: U2ps(r)=|O(r)+R(r+π/2)|
상기 식 3에서, r은 공간 좌표 벡터이고, U2ps(r)는 제 2 위상 천이된 물체 홀로그램, O(r)은 물체광 정보, R(r+π/2)는 90°만큼 위상이 천이된 기준광 정보를 나타낸다.
그 후, 프로세서(290)는 상기 S2 단계에서 추출된 기준광 정보를 180°만큼 위상을 천이(phase shifting)시킨 후, 상술한 파동 광학(Wave Optics) 기반의 공지의 간섭 방정식을 이용하여 180°만큼 위상 천이된 기준광 정보와 상기 추출된 물체광 정보를 결합시킴으로써 제 3 위상 천이된 물체 홀로그램(316a,316b)을 생성한다(S4 단계). 생성된 제 3 위상 천이된 물체 홀로그램(316a,316b)은 하기 식 4와 같이 표시될 수 있다.
식 4: U3ps(r)=|O(r)+R(r+π)|
상기 식 4에서, r은 공간 좌표 벡터이고, U3ps(r)는 제 3 위상 천이된 물체 홀로그램, O(r)은 물체광 정보, R(r+π)는 180°만큼 위상이 천이된 기준광 정보를 나타낸다.
그 후, 프로세서(290)는 상기 S2 단계에서 추출된 기준광 정보를 270°만큼 위상을 천이(phase shifting)시킨 후, 상술한 파동 광학(Wave Optics) 기반의 공지의 간섭 방정식을 이용하여 270°만큼 위상 천이된 기준광 정보와 상기 추출된 물체광 정보를 결합시킴으로써 제 4 위상 천이된 물체 홀로그램(318a,318b)을 생성한다(S5 단계). 생성된 제 4 위상 천이된 물체 홀로그램(318a,318b)은 하기 식 5와 같이 표시될 수 있다.
식 5: U4ps(r)=|O(r)+R(r+3π/2)|
상기 식 5에서, r은 공간 좌표 벡터이고,U4ps(r)는 제 4 위상 천이된 물체 홀로그램, O(r)은 물체광 정보, R(r+3π/2)는 270°만큼 위상이 천이된 기준광 정보를 나타낸다.
상술한 본 발명의 실시예에서는, 프로세서(290)이 상기 S3, S4, 및 S5 단계를 순차적으로 수행되는 것으로 기술하고 있지만, 이들 S3, S4, 및 S5 단계는 각각 상기 S2 단계에서 추출된 기준광 정보를 90°, 180°, 및 270°만큼 위상을 천이(phase shifting)시켜 제 2 내지 제 4 위상 천이된 물체 홀로그램(314a,314b;316a,316b;318a,318b)을 생성하는 것으로, 병렬 처리 방식에 의해 동시에 수행될 수 있다는 점에 유의하여야 한다.
그 후, 프로세서(290)는 상기 S2 내지 S5 단계에서 각각 생성된 4개의 위상 천이된 물체 홀로그램(즉, 제 1 내지 제 4 위상 천이된 물체 홀로그램(314a,314b;316a,316b;318a,318b))과 프로세서(290) 내에 내장된 소프트웨어로 구현되는 공지의 위상 천이 기법(phase shifting method)을 사용하여 배경 잡음을 포함한 직류(DC) 정보 및 직류 잡음, 허상 정보를 제거한다(S6 단계). 이 과정을 식으로 나타내면 식 6과 같이 표시될 수 있다.
상기 식 6에서, x와 y는 공간 좌표를 나타내고, IDC(x,y)는 직류 정보 및 직류 잡음, Φ(x,y)는 측정 대상 물체(250)의 위상 정보,I1(x,y)은 제 1 위상 천이된 홀로그램(312a,312b)의 세기(Intensity) 정보, I2(x,y)는 제 2 위상 천이된 홀로그램(314a,314b)의 세기 정보, I3(x,y)는 제 3 위상 천이된 홀로그램(316a,316b)의 세기 정보, 및 I4(x,y)는 제 4 위상 천이된 홀로그램(318a,318b)의 세기 정보를 나타낸다.
그 후, 직류(DC) 정보 및 직류 잡음, 허상 정보가 제거된 복소 공액 홀로그램을 이용하여 측정 대상 물체(250)의 위상 정보를 추출한다. 추출된 측정 대상 물체(250)의 위상 정보는 하기 식 7과 같이 표시될 수 있다.
식 7: Φ(x,y) = tan-1[I4(x,y)-I2(x,y)]/[I1(x,y)-I3(x,y)]
상기 식 7에서, x와 y는 공간 좌표를 나타내고, Φ(x,y)는 측정 대상 물체(250)의 위상 정보, I1(x,y)은 제 1 위상 천이된 홀로그램(312a,312b)의 세기(Intensity) 정보, I2(x,y)는 제 2 위상 천이된 홀로그램(314a,314b)의 세기 정보, I3(x,y)는 제 3 위상 천이된 홀로그램(316a,316b)의 세기 정보, 및 I4(x,y)는 제 4 위상 천이된 홀로그램(318a,318b)의 세기 정보를 나타낸다.
그 후, 프로세서(290)는 상기 추출된 측정 대상 물체(250)의 위상 정보에 2차원 위상 펼침 알고리즘(2D phase unwrapping algorithm)을 이용하여 왜곡된 위상 정보를 보상하고, 또한 보상된 위상 정보를 이용하여 측정 대상 물체(250)의 정량적인 두께 정보를 계산한다. 프로세서(290)에 의해 계산된 측정 대상 물체(250)의 정량적인 두께 정보는 하기 식 8과 같이 표시될 수 있다.
식 8: △L = λ△φ(x,y)/2π△n(x,y)
상기 식 8에서, △L은 측정 대상 물체(250)의 정량적인 두께 정보, λ는 물체 홀로그램 획득 시 사용한 광원부(210)의 파장, φ(x,y)는 상기 측정 대상 물체(250)의 위상 정보, △n(x,y)는 배경과 측정 대상 물체(250) 간의 굴절률 차이를 나타낸다.
그 후, 프로세서(290)는 상기 [수학식8]에 따라 계산된 측정 대상 물체(250)의 정량적인 두께 정보를 이용하여 측정 대상 물체(250)의 3차원 형상을 복원한다(S7: 도 2f 및 도 2g의 참조부호 320a 및 320b 참조). 프로세서(290)에 의해 복원된 3차원 형상은, 예를 들어, PC의 디스플레이와 같은 별도로 제공되는 모니터(미도시)에 표시될 수 있다.
도 2h는 3개 레벨의 상이한 두께를 갖는 계단에 대해 종래 기술의 탈축 광학적 홀로그래픽 방식을 사용하여 복원한 3차원 물체 홀로그램 및 본 발명의 실시예에 따른 탈축 홀로그래픽 방식을 사용하여 복원한 3차원 물체 홀로그램(도 2f 참조)을 비교하기 위해 도시한 도면이다.
도 2h를 참조하면, 본 발명의 실시예에 따라 복원된 3차원 물체 홀로그램(320a)이 종래 기술에 비해 훨씬 더 선명하고 명확하게 복원되었음을 확인할 수있다.
도 2i는 종래 기술과 본 발명에 따른 홀로그램의 탈축 복원 및 정축 복원에 따른 특성을 비교표로 도시한 도면이다.
도 2i를 참조하면, 본 발명에 따른 홀로그램의 탈축 복원의 경우 종래 기술에 비해 정보 손실도, 잡음 제거도, 시간 지연 에러 발생, 요구되는 홀로그램 수 항목에서 현저히 향상되거나 개선되었음을 알 수 있고, 또한 본 발명에 따른 홀로그램의 정축 복원의 경우 종래 기술에 비해 정보 손실도, 장치 제조 비용, 시간 지연 에러 발생, 요구되는 홀로그램 수 항목에서 현저히 향상 및 개선되었음을 알 수 있다.
이하에서는 본 발명의 일 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법을 기술한다.
다시, 도 2a 내지 도 2i를 참조하면, 본 발명의 일 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법은 a) 측정 대상 물체(250)의 물체 홀로그램(310a,310b)을 획득하는 단계(S1); b) 상기 획득된 물체 홀로그램(310a,310b)으로부터 상기 측정 대상 물체(250)의 위상 정보를 갖는 물체광 정보와 상기 측정 대상 물체(250)의 위상 정보가 없는 기준광 정보를 분리하여 추출하여 제 1 위상 천이된 물체 홀로그램(312a,312b)을 생성하는 단계(S2); c) 상기 추출된 기준광 정보를 90만큼 위상을 천이시켜 제 2 위상 천이된 물체 홀로그램(314a,314b)을 생성하는 단계(S3); d) 상기 추출된 기준광 정보를 180만큼 위상을 천이시켜 제 3 위상 천이된 물체 홀로그램(316a,316b)을 생성하는 단계(S4); e) 상기 추출된 기준광 정보를 270만큼 위상을 천이시켜 제 4 위상 천이된 물체 홀로그램(318a,318b)을 생성하는 단계(S5); f) 상기 생성된 제 1 내지 제 4 위상 천이된 물체 홀로그램(314a,314b;316a,316b;318a,318b)과 위상 천이 기법(phase shifting method)을 사용하여 직류(DC) 정보 및 직류 잡음, 허상 정보를 제거하여 상기 측정 대상 물체(250)의 상기 위상 정보를 추출하는 단계(S6); 및 g) 상기 추출된 상기 위상 정보에 왜곡된 위상 정보를 보상하고, 상기 보상된 위상 정보를 이용하여 상기 측정 대상 물체(250)의 정량적인 두께 정보를 계산하여 상기 측정 대상 물체(250)의 3차원 형상 정보 및 정량적인 두께 정보를 복원하는 단계(S7)를 포함한다.
상술한 본 발명의 일 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법에서, 상기 c) 단계 내지 상기 e) 단계는 동시에 수행될 수 있다.
또한, 상술한 본 발명의 일 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법에서, 상기 c) 단계에서 상기 물체광 정보와 상기 기준광 정보는 상기 획득된 물체 홀로그램(310a,310b)의 주파수 영역에서 위상 지연 방법(phase delay method)을 사용하여 분리 및 추출된다.
또한, 상술한 본 발명의 일 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법에서, 상기 제 1 내지 제 4 위상 천이된 물체 홀로그램(314a,314b;316a,316b;318a,318b)은 각각 파동 광학(Wave Optics) 기반의 간섭 방정식()을 이용하여 상기 0°, 90°, 180°, 및 270°만큼 각각 위상 천이된 상기 기준광 정보와 상기 추출된 물체광 정보를 결합시킴으로써 생성된다.
또한, 상술한 본 발명의 일 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법에서, 상기 측정 대상 물체(250)의 상기 위상 정보는 상기 식 7에서와 같이 Φ(x,y) = tan-1[I4(x,y)-I2(x,y)]/[I1(x,y)-I3(x,y)]로 표시되고, 여기서 x와 y는 공간 좌표를 나타내고, Φ(x,y)는 측정 대상 물체(250)의 위상 정보, I1(x,y)은 제 1 위상 천이된 홀로그램(312a,312b)의 세기(Intensity) 정보, I2(x,y)는 제 2 위상 천이된 홀로그램(314a,314b)의 세기 정보, I3(x,y)는 제 3 위상 천이된 홀로그램(316a,316b)의 세기 정보, 및 I4(x,y)는 제 4 위상 천이된 홀로그램(318a,318b)의 세기 정보를 나타낸다.
또한, 상술한 본 발명의 일 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법에서, 상기 왜곡된 위상 정보는 상기 추출된 측정 대상 물체(250)의 상기 위상 정보에 2차원 위상 펼침 알고리즘(2D phase unwrapping algorithm)을 이용하여 보상된다.
또한, 상술한 본 발명의 일 실시예에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법에서, 상기 측정 대상 물체(250)의 상기 정량적인 두께 정보는 상기 식 8에서와 같이 △L = λ△φ(x,y)/2π△n(x,y)로 표시되고, 여기서 △L은 측정 대상 물체(250)의 정량적인 두께 정보, λ는 물체 홀로그램 획득 시 사용한 광원부(210)의 파장, φ(x,y)는 상기 측정 대상 물체(250)의 위상 정보, △n(x,y)는 배경과 측정 대상 물체(250) 간의 굴절률 차이를 나타낸다.
상술한 바와 같이, 본 발명에 따른 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치(200) 및 방법에서는, 1) 종래 기술의 복원에 필요한 2개의 홀로그램(물체 홀로그램 및 기준 홀로그램)의 획득 시에 발생하거나 또는 위상 천이 정도가 상이한 4개의 물리적인 홀로그램의 획득 시에 발생하는 시간 지연 오차 발생이 제거되고, 2) 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 잡음(배경 잡음 포함)의 완벽한 제거가 가능하며, 3) 종래 기술의 필터링 기법의 미사용에 따른 정보 손실이 최소화되고, 4) 종래 기술에서 필수적으로 요구되는 광학 소자(1/4 파장판 및/또는 1/2 파장판)의 사용이 불필요하며, 그에 따라 장치 전체의 구조가 간단하고 저비용으로 구현이 가능하며, 5) 특히, 종래 기술의 반사형 및 투과형 홀로그램 복원 장치에 모두 적용될 수 있는 범용성을 갖고, 6) TFT 및 반도체와 같은 초미세 구조의 결함 검출용 장치, 정밀한 3차원 영상의 표시가 요구되는 의료 기기, 및 기타 렌즈와 같은 투명한 물체의 굴절률 에러 검출 등을 포함한 다양한 분야의 검출, 확인 또는 표시용 장치에 적용이 가능하다는 장점이 달성된다.
다양한 변형예가 본 발명의 범위를 벗어남이 없이 본 명세서에 기술되고 예시된 구성 및 방법으로 만들어질 수 있으므로, 상기 상세한 설명에 포함되거나 첨부 도면에 도시된 모든 사항은 예시적인 것으로 본 발명을 제한하기 위한 것이 아니다. 따라서, 본 발명의 범위는 상술한 예시적인 실시예에 의해 제한되지 않으며, 이하의 청구범위 및 그 균등물에 따라서만 정해져야 한다.
Claims (14)
- 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치에 있어서,단일 파장 광을 방출하는 광원부;상기 광원부에서 방출된 단일 파장 광을 시준하기 위한 시준기;상기 시준기를 통과한 상기 단일 파장 광을 물체광 및 기준광으로 분할하는 광 분할기;상기 광 분할기에 의해 분할된 상기 물체광을 통과시키는 물체광 대물 렌즈;상기 광 분할기에 의해 분할된 상기 기준광을 통과시키는 기준광 대물 렌즈;상기 기준광 대물 렌즈를 통과한 상기 기준광을 반사시키는 광학 거울;상기 물체광 대물 렌즈를 통과하여 측정 대상 물체의 표면에서 반사된 물체광 및 상기 광학 거울에 의해 반사된 기준광이 각각 상기 물체광 대물 렌즈 및 기준광 대물 렌즈를 통과하여 상기 광 분할기로 전달되어 형성되는 간섭 무늬를 기록하는 기록 매체; 및상기 기록 매체에서 상기 간섭무늬를 변환하여 생성된 이미지 파일을 수신하여 저장하는 프로세서를 포함하되,상기 프로세서는 상기 이미지 파일로부터 획득된 물체 홀로그램으로부터 파동 광학 기반의 간섭 방정식을 이용하여 제 1 내지 제 4개 위상 천이된 물체 홀로그램을 생성하며, 생성된 제 1 내지 제 4 위상 천이된 홀로그램과 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 잡음 및 허상 정보를 제거한 복소 공액 홀로그램을 생성하고, 생성된 복소 공액 홀로그램을 이용하여 상기 측정 대상 물체의 위상 정보를 추출한 후, 상기 측정 대상 물체의 3차원 정보를 복원하는디지털 홀로그래픽 복원 장치.
- 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치에 있어서,단일 파장 광을 방출하는 광원부;상기 광원부에서 방출된 단일 파장 광을 시준하기 위한 시준기;상기 시준기를 통과한 상기 단일 파장 광을 물체광 및 기준광으로 분할하는 광 분할기;상기 광 분할기에 의해 분할된 상기 물체광이 측정 대상 물체를 투과한 후 상기 측정 대상 물체의 정보를 포함한 물체 투과광을 통과시키는 물체광 대물 렌즈;상기 물체광 대물 렌즈를 통과한 상기 물체 투과광을 반사시키는 제 2 광학 거울;상기 광 분할기에 의해 분할된 상기 기준광을 통과시키는 기준광 대물 렌즈;상기 기준광 대물 렌즈를 통과한 상기 기준광을 반사시키는 제 1 광학 거울;상기 제 1 광학 거울에 의해 반사된 상기 기준광 및 상기 제 2 광학 거울에 의해 반사된 상기 물체 투과광이 각각 전달되는 제 2 광 분할기;상기 제 2 광 분할기로 전달된 상기 기준광 및 상기 물체광 투과광에 의해 형성되는 간섭 무늬를 기록하는 기록 매체; 및상기 기록 매체에서 상기 간섭무늬를 변환하여 생성된 이미지 파일을 수신하여 저장하는 프로세서를 포함하되,상기 프로세서는 상기 이미지 파일로부터 획득된 물체 홀로그램으로부터 파동 광학 기반의 간섭 방정식을 이용하여 4제 1 내지 제 4 위상 천이된 물체 홀로그램을 생성하며, 생성된 제 1 내지 제 4 위상 천이된 홀로그램과 소프트웨어로 구현되는 위상 천이 기법을 이용하여 직류 잡음 및 허상 정보를 제거한 복소 공액 홀로그램을 생성하고, 생성된 복소 공액 홀로그램을 이용하여 상기 측정 대상 물체의 위상 정보를 추출한 후, 상기 측정 대상 물체의 3차원 정보를 복원하는디지털 홀로그래픽 복원 장치.
- 제 1항 또는 제 2항에 있어서,상기 프로세서는 상기 획득된 물체 홀로그램의 주파수 영역에서 위상 지연 방법(phase delay method)을 사용하여 상기 물체광 정보와 상기 기준광 정보를 분리 및 추출하는 디지털 홀로그래픽 복원 장치.
- 제 3항에 있어서,상기 프로세서는 상기 기준광 정보를 각각 0°, 90°, 180°, 및 270°만큼 위상을 천이시킨 후, 파동 광학(Wave Optics) 기반의 간섭 방정식 을 이용하여 0°, 90°, 180°, 및 270°만큼 위상 천이된 기준광 정보와 상기 추출된 물체광 정보를 결합시켜 상기 제 1 내지 제 4 위상 천이된 물체 홀로그램을 생성하는 디지털 홀로그래픽 복원 장치.
- 제 4항에 있어서,상기 프로세서는 상기 제 2 내지 제 4 위상 천이된 물체 홀로그램을 동시에 생성하는 디지털 홀로그래픽 복원 장치.
- 제 1항 또는 제 2항에 있어서,상기 측정 대상 물체의 상기 위상 정보는 식 Φ(x,y) = tan-1[I4(x,y)-I2(x,y)]/[I1(x,y)-I3(x,y)]로 표시되고, 여기서 x와 y는 공간 좌표를 나타내고, Φ(x,y)는 상기 측정 대상 물체의 위상 정보, I1(x,y), I2(x,y), I3(x,y), 및 I4(x,y)는 각각 상기 제 1 내지 제 4 위상 천이된 홀로그램의 세기(Intensity) 정보를 나타내는 디지털 홀로그래픽 복원 장치.
- 제 1항 또는 제 2항에 있어서,상기 측정 대상 물체의 정량적인 두께 정보는 식 △L = λ△φ(x,y)/2π△n(x,y)로 표시되고, 여기서 △L은 상기 측정 대상 물체의 정량적인 두께 정보, λ는 상기 광원부의 파장, φ(x,y)는 상기 측정 대상 물체의 위상 정보, △n(x,y)는 배경과 상기 측정 대상 물체 간의 굴절률의 차이인 디지털 홀로그래픽 복원 장치.
- 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 방법에 있어서,a) 측정 대상 물체의 물체 홀로그램을 획득하는 단계;b) 상기 획득된 물체 홀로그램으로부터 상기 측정 대상 물체의 위상 정보를 갖는 물체광 정보와 상기 측정 대상 물체의 위상 정보가 없는 기준광 정보를 분리하여 추출하여 제 1 위상 천이된 물체 홀로그램을 생성하는 단계;c) 상기 추출된 기준광 정보를 90°만큼 위상을 천이시켜 제 2 위상 천이된 물체 홀로그램을 생성하는 단계;d) 상기 추출된 기준광 정보를 180°만큼 위상을 천이시켜 제 3 위상 천이된 물체 홀로그램을 생성하는 단계;e) 상기 추출된 기준광 정보를 270°만큼 위상을 천이시켜 제 4 위상 천이된 물체 홀로그램을 생성하는 단계;f) 상기 생성된 제 1 내지 제 4 위상 천이된 물체 홀로그램과 위상 천이 기법(phase shifting method)을 사용하여 직류(DC) 정보 및 직류 잡음, 허상 정보를 제거하여 상기 측정 대상 물체의 상기 위상 정보를 추출하는 단계; 및g) 상기 추출된 상기 위상 정보에 왜곡된 위상 정보를 보상하고, 상기 보상된 위상 정보를 이용하여 상기 측정 대상 물체의 정량적인 두께 정보를 계산하여 상기 측정 대상 물체의 3차원 형상 정보 및 정량적인 두께 정보를 복원하는 단계를 포함하는 디지털 홀로그래픽 복원 방법.
- 제 8항에 있어서,상기 c) 단계 내지 상기 e) 단계가 동시에 수행되는 디지털 홀로그래픽 복원 방법.
- 제 8항에 있어서,상기 c) 단계에서 상기 물체광 정보와 상기 기준광 정보는 상기 획득된 물체 홀로그램의 주파수 영역에서 위상 지연 방법(phase delay method)을 사용하여 분리 및 추출되는 디지털 홀로그래픽 복원 방법.
- 제 8항에 있어서,상기 제 1 내지 제 4 위상 천이된 물체 홀로그램은 각각 파동 광학(Wave Optics) 기반의 간섭 방정식 을 이용하여 상기 0°, 90°, 180°, 및 270°만큼 각각 위상 천이된 상기 기준광 정보와 상기 추출된 물체광 정보를 결합시킴으로써 생성되는 디지털 홀로그래픽 복원 방법.
- 제 8항에 있어서,상기 측정 대상 물체의 상기 위상 정보는 식 Φ(x,y) = tan-1[I4(x,y)-I2(x,y)]/[I1(x,y)-I3(x,y)]로 표시되고, 여기서 x와 y는 공간 좌표를 나타내고, Φ(x,y)는 상기 측정 대상 물체의 위상 정보, I1(x,y), I2(x,y), I3(x,y), 및 I4(x,y)는 각각 상기 제 1 내지 제 4 위상 천이된 홀로그램의 세기(Intensity) 정보를 나타내는 디지털 홀로그래픽 복원 방법.
- 제 8항에 있어서,상기 g) 단계에서, 상기 왜곡된 위상 정보는 상기 추출된 측정 대상 물체의 상기 위상 정보에 2차원 위상 펼침 알고리즘(2D phase unwrapping algorithm)을 이용하여 보상되는 디지털 홀로그래픽 복원 방법.
- 제 8항에 있어서,상기 측정 대상 물체의 정량적인 두께 정보는 식 △L = λ△φ(x,y)/2π△n(x,y)로 표시되고, 여기서 △L은 상기 측정 대상 물체의 정량적인 두께 정보, λ는 상기 물체 홀로그램 획득 시 사용한 광원부의 파장, φ(x,y)는 상기 측정 대상 물체의 위상 정보, △n(x,y)는 배경과 상기 측정 대상 물체 간의 굴절률의 차이인 디지털 홀로그래픽 복원 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/173,073 US10564603B2 (en) | 2016-11-22 | 2018-10-29 | Digital holographic reconstruction device and method using single generation phase shifting method |
US16/737,251 US10845760B2 (en) | 2016-11-22 | 2020-01-08 | Digital holographic reconstruction device and method using single generation phase shifting method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0155752 | 2016-11-22 | ||
KR1020160155752A KR101899026B1 (ko) | 2016-11-22 | 2016-11-22 | 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/173,073 Continuation US10564603B2 (en) | 2016-11-22 | 2018-10-29 | Digital holographic reconstruction device and method using single generation phase shifting method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018097569A1 true WO2018097569A1 (ko) | 2018-05-31 |
Family
ID=62195277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/013238 WO2018097569A1 (ko) | 2016-11-22 | 2017-11-21 | 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법 |
Country Status (3)
Country | Link |
---|---|
US (2) | US10564603B2 (ko) |
KR (1) | KR101899026B1 (ko) |
WO (1) | WO2018097569A1 (ko) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10935379B2 (en) * | 2016-11-29 | 2021-03-02 | The Trustees Of The Stevens Institute Of Technology | Method and apparatus for quantum measurement via mode matched photon conversion |
WO2019117453A1 (ko) * | 2017-12-15 | 2019-06-20 | 주식회사 내일해 | 측정 대상 물체의 3차원 형상 정보를 생성하는 방법, 결함 검출 방법 및 결함 검출 장치 |
KR102055307B1 (ko) * | 2018-10-08 | 2020-01-22 | 주식회사 내일해 | 측정 대상 물체의 3차원 형상 정보 생성 장치 |
KR102425448B1 (ko) * | 2018-10-08 | 2022-07-27 | 주식회사 내일해 | 측정 대상 물체의 3차원 형상 정보 생성 장치 |
KR102093885B1 (ko) * | 2018-10-15 | 2020-04-23 | 주식회사 내일해 | 측정 대상 물체의 3차원 형상 정보 생성 장치 |
KR102483163B1 (ko) * | 2018-10-15 | 2023-01-04 | 주식회사 내일해 | 측정 대상 물체의 3차원 형상 정보 생성 장치 |
KR102028864B1 (ko) * | 2019-05-07 | 2019-11-04 | 연세대학교 산학협력단 | 광원 위치를 보정하기 위한 현미경 장치 및 그 방법 |
US11711209B2 (en) | 2019-10-18 | 2023-07-25 | The Trustees Of The Stevens Institute Of Technology | Systems and methods for quantum-secured, private-preserving computations |
KR20210086099A (ko) | 2019-12-31 | 2021-07-08 | 삼성전자주식회사 | 홀로그래픽 현미경 및 이를 이용한 반도체 소자 제조 방법 |
US12050434B1 (en) * | 2020-01-09 | 2024-07-30 | University Of South Florida | Wide-area quantitative phase microscopy using spatial phase scanning digital holography |
US11822287B1 (en) | 2022-08-01 | 2023-11-21 | Chris Hsinlai Liu | Binocular holographic machine vision system and method for identifying locations of target elements |
CN115494005A (zh) * | 2022-10-13 | 2022-12-20 | 昆明理工大学 | 基于红外显微数字全息的半导体缺陷检测装置及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003149080A (ja) * | 2001-11-08 | 2003-05-21 | Ricoh Co Ltd | ホログラム素子の特性評価装置 |
US20120116703A1 (en) * | 2009-04-24 | 2012-05-10 | Nicolas Pavillon | Method and apparatus for enhanced spatial bandwidth wavefronts reconstructed from digital interferograms or holograms |
KR20160029359A (ko) * | 2014-09-05 | 2016-03-15 | 광운대학교 산학협력단 | 다중 기준 영상들을 이용한 3차원 물체 형상 복원 장치 및 방법 |
KR20160029606A (ko) * | 2014-09-05 | 2016-03-15 | 광운대학교 산학협력단 | 디지털 홀로그래피 현미경 및 디지털 홀로그램 영상 생성 방법 |
KR20160125795A (ko) * | 2015-04-22 | 2016-11-01 | 광운대학교 산학협력단 | 마이크로 렌즈의 굴절률 오차 검출방법 및 검출장치 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11502317A (ja) * | 1995-03-13 | 1999-02-23 | オレゴン州 | 時間ドメイン空間スペクトラルフィルタリングを介して光ビームの経路を定める装置及び方法 |
US7616320B2 (en) * | 2006-03-15 | 2009-11-10 | Bahram Javidi | Method and apparatus for recognition of microorganisms using holographic microscopy |
KR100870967B1 (ko) | 2007-03-22 | 2008-12-01 | (주)에이피앤텍 | 허상이 제거되는 디지털 홀로그램 기록재생장치 및기록재생방법 |
KR100838586B1 (ko) | 2007-10-17 | 2008-06-19 | (주)펨트론 | 디지털 홀로그래피를 이용한 3d측정장치 및 3d측정방법 |
KR100867302B1 (ko) | 2008-04-15 | 2008-11-06 | (주)펨트론 | 디지털 홀로그래피를 이용한 3d 측정장치 |
KR100906508B1 (ko) | 2008-06-12 | 2009-07-07 | (주)펨트론 | 디지털 홀로그래피를 이용한 3d 측정장치 |
KR101003241B1 (ko) | 2009-02-20 | 2010-12-21 | 전북대학교산학협력단 | On-axis 방식의 디지털 홀로그래피를 이용한 3D 측정장치 |
JP2011034023A (ja) | 2009-08-06 | 2011-02-17 | Sony Corp | 三次元画像再生表示装置、三次元画像再生表示方法、三次元画像情報取得再生システム、三次元画像情報取得再生方法 |
EP2565725B1 (en) * | 2011-09-02 | 2014-04-30 | Mitutoyo Corporation | Method and apparatus for the exact reconstruction of the object wave in off-axis digital holography |
-
2016
- 2016-11-22 KR KR1020160155752A patent/KR101899026B1/ko active IP Right Grant
-
2017
- 2017-11-21 WO PCT/KR2017/013238 patent/WO2018097569A1/ko active Application Filing
-
2018
- 2018-10-29 US US16/173,073 patent/US10564603B2/en not_active Expired - Fee Related
-
2020
- 2020-01-08 US US16/737,251 patent/US10845760B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003149080A (ja) * | 2001-11-08 | 2003-05-21 | Ricoh Co Ltd | ホログラム素子の特性評価装置 |
US20120116703A1 (en) * | 2009-04-24 | 2012-05-10 | Nicolas Pavillon | Method and apparatus for enhanced spatial bandwidth wavefronts reconstructed from digital interferograms or holograms |
KR20160029359A (ko) * | 2014-09-05 | 2016-03-15 | 광운대학교 산학협력단 | 다중 기준 영상들을 이용한 3차원 물체 형상 복원 장치 및 방법 |
KR20160029606A (ko) * | 2014-09-05 | 2016-03-15 | 광운대학교 산학협력단 | 디지털 홀로그래피 현미경 및 디지털 홀로그램 영상 생성 방법 |
KR20160125795A (ko) * | 2015-04-22 | 2016-11-01 | 광운대학교 산학협력단 | 마이크로 렌즈의 굴절률 오차 검출방법 및 검출장치 |
Also Published As
Publication number | Publication date |
---|---|
KR20180057291A (ko) | 2018-05-30 |
US20190121292A1 (en) | 2019-04-25 |
KR101899026B1 (ko) | 2018-10-04 |
US10564603B2 (en) | 2020-02-18 |
US20200142357A1 (en) | 2020-05-07 |
US10845760B2 (en) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018097569A1 (ko) | 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법 | |
Wizinowich | Phase shifting interferometry in the presence of vibration: a new algorithm and system | |
WO2019078384A1 (ko) | 개선된 홀로그래픽 복원 장치 및 방법 | |
Kulkarni et al. | Optical measurement techniques–A push for digitization | |
KR100838586B1 (ko) | 디지털 홀로그래피를 이용한 3d측정장치 및 3d측정방법 | |
KR100906508B1 (ko) | 디지털 홀로그래피를 이용한 3d 측정장치 | |
WO2019039663A1 (ko) | 개선된 홀로그래픽 복원 장치 및 방법 | |
JP2930406B2 (ja) | 位相シフトを利用するモアレ法の応用によりテストされるべき表面のモアレパターンを観測するための方法および装置 | |
WO2019112073A1 (ko) | 개선된 홀로그래픽 복원 장치 및 방법 | |
JPH0272336A (ja) | 光学的相関処理装置 | |
KR100867302B1 (ko) | 디지털 홀로그래피를 이용한 3d 측정장치 | |
US20220163918A1 (en) | Device and method for calibration-free phase shifting procedure for self-interference holography | |
Jiang et al. | Tri-wavelength simultaneous ESPI for 3D micro-deformation field measurement | |
US11215951B2 (en) | Differential holography | |
KR20170079441A (ko) | 진동 환경에서 큰 단차를 갖는 샘플의 높낮이 측정을 위한 디지털 홀로그램 기록재생장치 및 기록재생방법 | |
CN110864817A (zh) | 基于单像素探测器的非干涉定量相位成像方法 | |
KR102468990B1 (ko) | 단일 생성 위상 천이 기법을 이용한 디지털 홀로그래픽 복원 장치 및 방법 | |
US20220026697A1 (en) | Apparatus and method to convert a regular bright-field microscope into a ps-qpi system | |
Khodadad | Multiplexed digital holography incorporating speckle correlation | |
JPH0587541A (ja) | 2次元情報測定装置 | |
JPH07248261A (ja) | 位相差測定装置 | |
WO2017052244A1 (ko) | 굴절률 분포 측정 시스템 및 이를 이용한 굴절률 분포 측정 방법 | |
US11353316B1 (en) | Interferometry with pixelated color discriminating elements combined with pixelated polarization masks | |
JP2005351801A (ja) | 面間隔測定方法及び面間隔測定装置 | |
Ayisi | Multiple-Wavelength Phase Retrieval With Digital Holographic Microscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17874301 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17874301 Country of ref document: EP Kind code of ref document: A1 |