WO2018097449A1 - Electrical vehicle charging system - Google Patents

Electrical vehicle charging system Download PDF

Info

Publication number
WO2018097449A1
WO2018097449A1 PCT/KR2017/007978 KR2017007978W WO2018097449A1 WO 2018097449 A1 WO2018097449 A1 WO 2018097449A1 KR 2017007978 W KR2017007978 W KR 2017007978W WO 2018097449 A1 WO2018097449 A1 WO 2018097449A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
energy storage
charging
unit
amount
Prior art date
Application number
PCT/KR2017/007978
Other languages
French (fr)
Korean (ko)
Inventor
안창모
Original Assignee
디엔비하우징(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 디엔비하우징(주) filed Critical 디엔비하우징(주)
Publication of WO2018097449A1 publication Critical patent/WO2018097449A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/52Wind-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/006Converting flow of air into electric energy, e.g. by using wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/003Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind solar power driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/006Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind wind power driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/90Energy harvesting concepts as power supply for auxiliaries' energy consumption, e.g. photovoltaic sun-roof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/906Solar cell systems

Definitions

  • the present invention relates to an electric vehicle charging system, and more particularly, to maintain a constant state of charge of each of a plurality of energy storage devices connected in multiple, even in areas where there is a lack of commercial power supply and poor climate and natural environment
  • the present invention relates to an electric vehicle charging system capable of stably charging an electric vehicle.
  • Hybrid cars using electric motors and gasoline engines are already commercialized and sold as such eco-friendly vehicles.
  • research on hydrogen fuel cars and electric cars has been actively conducted.
  • the electric vehicle refers to a vehicle using an electric charger and an electric motor, rather than using an engine based on petroleum fuel.
  • the electric vehicle has to supply electricity to the charger in place of petroleum raw materials, and the battery inside the electric vehicle is charged by a general charging system in a parked state.
  • the present invention enables to maintain a constant state of charge of each of the plurality of energy storage devices connected to the multiple, electric vehicle charging capable of charging the electric vehicle stably even in areas where commercial power supply is insufficient and the climate and natural environment is poor It is an object to provide a system.
  • the power supply unit for maintaining a constant state of charge of each of the plurality of energy storage devices connected to the multiple, power supply to the battery of the electric vehicle;
  • a charging unit connected to the power supply unit and having a plurality of ports arranged in parallel;
  • An input unit configured to receive a charging method and a charging start time of the charging unit;
  • a display unit displaying a charging state and a charge amount of a battery of the electric vehicle charged through the charging unit;
  • a control unit connected to the charging unit and controlling the supply of electric power.
  • the power supply unit includes a plurality of energy storage devices for generating and storing power by renewable energy generation, including photovoltaic power generation and wind power generation;
  • a predetermined reference power amount when the remaining power amount of at least one of the plurality of energy storage devices is less than or equal to the reference power amount, the remaining power amount among the plurality of energy storage devices is the most.
  • an energy operating server that controls the large energy storage device to supply power to the energy storage device that is less than or equal to the reference power amount.
  • each of the plurality of energy storage device includes a power generator including a solar generator and a wind generator, a power storage for storing the power generated by the power generator, and the power It includes a power management unit for calculating the remaining amount of power stored in the storage unit to generate the remaining power amount data.
  • the wind generator uses a vertical axis wind turbine.
  • the energy operation server receives the remaining power amount data from the power management unit, compares a predetermined reference power amount, and sequentially from the remaining power amount to the smallest or from the smallest remaining power to the largest Energy level comparison module to summarize; And an energy level control module using the result data of the energy level comparison module to generate a charge message instructing to supply power from one of the plurality of energy storage devices to another energy storage device.
  • the energy level control module generates a charging message such that the energy storage device having the largest remaining power amount supplies power to the energy storage having the smallest remaining power amount.
  • the energy storage device is preferably a container type house or a container type smart farm in which a solar generator and a wind generator are installed outside.
  • FIG. 1 is a block diagram showing an electric vehicle charging system according to an embodiment of the present invention.
  • FIG. 2 and 3 is a conceptual diagram showing an electric vehicle charging system according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a power supply unit of an electric vehicle charging system according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating a power supply unit of an electric vehicle charging system according to an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a container house to which an energy storage device (ESS) is applied.
  • ESS energy storage device
  • FIG. 7 is a conceptual diagram illustrating a container type smart farm to which an energy storage device (ESS) is applied.
  • ESS energy storage device
  • FIG. 8 is a block diagram illustrating an energy storage device.
  • FIG. 9 is a flowchart illustrating an operation process of a power supply unit in an electric vehicle charging system according to an embodiment of the present invention.
  • 1 is a block diagram showing an electric vehicle charging system according to an embodiment of the present invention.
  • 2 and 3 is a conceptual diagram showing an electric vehicle charging system according to an embodiment of the present invention.
  • 4 is a block diagram showing a power supply unit of an electric vehicle charging system according to an embodiment of the present invention.
  • 5 is a conceptual diagram illustrating a power supply unit of an electric vehicle charging system according to an embodiment of the present invention.
  • 6 is a conceptual diagram illustrating a container house to which an energy storage device (ESS) is applied.
  • 7 is a conceptual diagram illustrating a container type smart farm to which an energy storage device (ESS) is applied.
  • 8 is a block diagram illustrating an energy storage device.
  • an electric vehicle charging system includes a power supply unit 1100, a charging unit 1200, an input unit 1300, a display unit 1400, and a controller 1500. .
  • the power supply 1100 supplies power to the battery of the electric vehicle through the charging unit 1200.
  • the power supply unit 1100 may include a distribution panel provided with an earth leakage breaker or a circuit breaker in order to safely use electricity.
  • the power supply unit 1100 may include an electric meter to read the amount of usage when using an external power source.
  • the power supply unit 1100 does not charge the electric vehicle by receiving power from the outside, but generates and stores renewable energy such as solar energy and wind energy to charge the electric vehicle.
  • the power supply unit 1100 is configured as a multi-linked power supply system, each of which a plurality of independent structures each generate and store its own power, and is linked to distribute power between the plurality of independent structures.
  • the power supply unit 1100 according to the embodiment of the present invention will be described later.
  • the charging unit 1200 is connected to the power supply unit 1100 and supplies the power supplied from the power supply unit 1100 to the battery of the electric vehicle parked in the parking area (or the charging area).
  • the charging unit 1200 includes two or more ports. Two or more ports can each be connected to an electric vehicle to conveniently charge two or more electric vehicles.
  • the charging unit 1200 charges the electric vehicle may include a fast charging method and a low speed charging method.
  • the fast charging method and the low speed charging method are classified according to a charging time and an applied voltage for the power supply unit 1100 to recharge the battery of the electric vehicle to a predetermined level.
  • Each of the plurality of ports of the charging unit includes a high speed charging unit or a low speed charging unit.
  • the fast charging unit applies a DC voltage of 100V or more and 450V or less to the battery of an electric vehicle.
  • the high speed charging unit receives a voltage supplied from the power supply unit 1100, for example, a voltage of 380 V in three phases of AC and converts it into a voltage capable of high speed charging, for example, a DC voltage of 400 to 450 V to charge an electric vehicle. It usually takes about 15-30 minutes to charge.
  • the fast charging unit is 400-450V DC.
  • the battery of the electric vehicle can be charged by supplying power.
  • the low speed charging unit applies a DC voltage of 220V to the battery of the electric vehicle.
  • the low speed charging unit charges an electric vehicle by receiving a voltage supplied from the power supply unit 1100, for example, a voltage of 220V of an AC single phase, and converting it into a voltage capable of low speed charging, for example, a DC voltage of 220V. Charging takes about 5-6 hours.
  • the low speed charging unit is a DC 220V power. It is possible to charge the battery of the electric vehicle by supplying.
  • the input unit 1300 receives a charging method and a charging time of the charging unit 1200 for charging the electric vehicle.
  • the display unit 1400 displays the state of charge and the amount of charge of the battery of the electric vehicle charged through the charging unit 1200.
  • the user can check the battery charging state and the current charging amount, the estimated time of charging, the expected charge, etc. of the vehicle.
  • Information input to the input unit 1300 and information displayed on the display unit 1400 are transmitted to the user's portable terminal, so that the user can check the charging state in real time.
  • the controller 1500 is connected to the charging unit and controls the supply of power. When a plurality of electric vehicles are connected to a plurality of ports provided in the charging unit 1200, the plurality of electric vehicles are sequentially charged. The controller 1500 schedules charging times of the plurality of electric vehicles based on a time point at which information of the electric vehicle is input and an input charge start time, and controls power supply for each port. The controller 1500 cuts off the electricity supplied to the battery of the electric vehicle, in which the charging is completed when the charging of the electric vehicle battery is completed or the user completes charging by the charging capacity.
  • the display unit 1400 displays the completion of charging, and notifies the user of the completion of the charging to enable the rapid movement of the charged electric vehicle for parking of the waiting electric vehicle that is not worn in the charging area.
  • the power supply unit 1100 is a multi-connected power supply associated with a plurality of independent structures each generate and store their own power, and distribute the power between the plurality of independent structures It consists of a system. That is, each independent structure has an energy storage device, and each energy storage device is maintained so that the power state of charge is constant.
  • the state of charge of the power is constant does not mean that the state of charge of all the energy storage devices is the same, but it means maintaining a certain range based on the reference value.
  • the power supply 1100 includes a plurality of energy storage devices 100 and an energy operation server 200, as shown in FIG.
  • Each of the plurality of energy storage systems (ESS: 100a to 100e) is a device for generating and storing power, and may be applied to an independent structure that generates and stores power by itself.
  • This independent structure may be, for example, a containerized house as illustrated in FIG. 6, or may be a containerized smart farm as illustrated in FIG. 7.
  • the container-type house shown in FIG. 6 can be easily constructed where the user desires by improving the housing in the container, and the interior of the container is provided with furniture, appliances, toilets, and the like for the user.
  • the solar generator 111 and the wind generator 112 is installed outside the container, and stores the power generated by the solar generator 111 and the wind generator 112 to be applied to all the power used in the house.
  • Container-type houses can be designed to meet the power loads (e.g. daily load: 1.5 kWh, based on eight batteries of 100 AH) that are considered to be the minimum necessary for residential living in the absence of electrical infrastructure.
  • the power loads e.g. daily load: 1.5 kWh, based on eight batteries of 100 AH
  • the solar generator 111 and the wind generator 112 is mounted in a hybrid type.
  • the container type smart farm shown in FIG. 7 is a container type smart farm using stand-alone renewable energy capable of performing hydroponic cultivation without supplying energy from the outside by using renewable energy.
  • Hydroponic cultivation (A) that can be grown may be installed one or a plurality. Hydroponic cultivation may be installed on the same plane, but may be arranged in a stacked form for space utilization. And the discharge hole for the discharge of water is formed at the bottom of one side of the hydroponic cultivation.
  • the solar generator 111 and the wind generator 112 is installed outside the container, and stores the power generated by the solar generator 111 and the wind generator 112 to be applied to all the power used in the house.
  • each of the energy storage devices 100a to 100e is a storage device for storing power generated by a power generation facility applied to the container-type house or container-type smart farm, and each container-type house or The container type smart farm will have one energy storage device.
  • Each of the energy storage devices 100a to 100e generates and stores energy independently of each other, but is connected by a common power line L, and when the amount of power remaining in any one energy storage device is less than the reference value, It is possible to charge the insufficient power by the energy storage device having a large amount of remaining power among the energy storage device.
  • each of the energy storage devices 100a to 100e includes a power generation unit 110, a power storage unit 120, and a power management unit 130.
  • the power generator 110 generates power from natural forces, and in the present embodiment, includes a solar generator 111 and a wind generator 112.
  • a solar generator 111 and a wind generator 112.
  • a wind generator 112. Of course, it is not necessarily limited thereto, and may include all kinds of renewable energy generators that are commercially available according to technology development.
  • the solar generator 111 and the wind generator 112 are installed in the same energy storage device.
  • the wind generator 112 preferably uses a vertical axis wind turbine. By using a vertical axis wind turbine can effectively utilize the limited space, it is possible to minimize the size of the energy storage device (100).
  • the power storage unit 120 stores the power generated by the power generation unit 110.
  • the power manager 130 controls the supply of power required for use of the independent structure by automatic or user command, and calculates the remaining amount of power stored in the power storage unit 120 to generate remaining power amount data.
  • the power manager 130 includes, for example, a power usage meter such as a meter.
  • the meter includes a current measuring unit and a voltage measuring unit, and measures the current and voltage supplied to the load, respectively, and measures the amount of power used using the measured current and voltage values.
  • the power manager 130 calculates the amount of power remaining by subtracting the amount of power used measured by the meter from the power capacity stored in the power storage unit 120.
  • the power manager 130 periodically transmits the calculated remaining power amount to the energy operation server 200. Alternatively, when the request message is received from the energy operation server 200, the calculated remaining power amount is transmitted to the energy operation server 200.
  • the power management unit 130 in the power supply control required for the use of the independent structure, the heating and cooling device inside the independent structure (for example, a container-type house) to be sequentially contacted by the battery voltage and the priority compared to the power used, By automatically blocking the home appliances, lighting devices, and refrigerators, power stored in the power storage unit 120 may be controlled to be used for a long time.
  • the energy operation server 200 compares the remaining power amount of each of the plurality of energy storage devices 100a to 100e with a predetermined reference power amount, and the remaining power amount of at least one of the plurality of energy storage devices 100a to 100e is a reference power amount.
  • the energy storage device having the largest remaining power amount among the plurality of energy storage devices is controlled to supply power to the energy storage device having a reference power amount or less.
  • the energy operation server 200 includes an energy level comparison module 210 and an energy level control module 220.
  • the emergency generator 300 may include an emergency generator control module 230 for controlling the operation.
  • the energy level comparison module 210 periodically receives the remaining amount of power data from the power management unit 130 of the energy storage devices 100a to 100e. Alternatively, the energy level comparison module 210 transmits a request message for requesting the remaining power amount data to the power management unit 130 of the energy storage devices 100a to 100e when necessary aperiodically. The power manager 130 receiving the request message of the energy level comparing module 210 transmits the remaining power amount data to the energy level comparing module 210.
  • the energy level comparison module 210 compares the received remaining power amount data with a predetermined reference power amount, and sequentially arranges the remaining power amount from the largest to the lowest. Alternatively, the remaining power amounts are arranged in descending order from smallest to largest. The energy level comparison module 210 transmits the result data to the energy level control module 220.
  • the energy level control module 220 receives the result data from the energy level comparison module 210 and determines an energy storage device having a remaining power amount or less than a reference power amount. In addition, the energy level control module 220 determines the energy storage device having the largest remaining power amount, generates a charge message instructing to supply power from the latter energy storage device to the former energy storage device, and then, Transmission to the power management unit 130 included in the energy storage device.
  • the power management unit 130 receiving the charge message controls the power storage unit 120 to supply power to the energy storage device having a residual amount of power or less through the power line L.
  • the energy level control module 220 when there are two or more energy storage devices that are less than the reference power amount, the energy level control module 220 generates a charging message instructing to supply power from the energy storage device having the largest remaining power amount to the energy storage device having the smallest remaining power amount. In addition, the controller generates a charging message instructing to supply power from the energy storage device having the second largest amount of power to the energy storage device having the second smallest amount of power.
  • the charging message may be generated such that the energy storage device having the largest remaining power amount supplies power to the energy storage device having the smallest remaining power amount without having to compare the remaining power amount with the reference value.
  • the emergency generator control module 230 is included in any one or more energy storage devices of each of the energy storage devices 100 or when the power generated by the solar generator and the wind power generator is insufficient due to deterioration of weather conditions. Controls the operation of the emergency generator 300 for supplying emergency energy to the energy storage device during abnormal operation, such as when the power generation unit 110 is insufficient power of the energy storage device due to the poor operation of the power generator 110.
  • the energy level comparison module 210 of the energy operation server 200 uses the remaining power amount data received from the power management unit 130 of the plurality of energy storage devices 100a to 100e to store the plurality of energy storage devices 100a to 100e. Each energy level is monitored (S100).
  • the energy level comparison module 210 arranges the remaining power in order from the largest to the lowest. Alternatively, the remaining power amounts are arranged in descending order from smallest to largest.
  • the energy level control module 220 determines an energy storage device having the least amount of remaining power (S200).
  • the energy level control module 220 determines an energy storage device having the largest amount of remaining power and generates a charging message instructing to supply power to the energy storage device having the least amount of remaining power, thereby generating power of the energy storage device having the largest amount of remaining power. Transmission to the management unit 130 (S300).
  • the power management unit 130 receiving the charge message controls the power storage unit 120 to supply power to a predetermined energy storage device through the power line (L).
  • the energy level control module 220 determines an energy storage device having the second largest amount of remaining power and generates a charging message instructing to supply power to the energy storage device having the second smallest amount of remaining power.
  • the large energy storage device transmits to the power management unit 130.
  • the power management unit 130 receiving the charge message controls the power storage unit 120 to supply power to a predetermined energy storage device through the power wire L (S400 and S500).
  • the energy level control module 220 determines an energy storage device having the third largest remaining power amount, and transmits a load blocking / charging start message to the energy storage device.
  • the power management unit 130 receiving the control block the power supply to the load by controlling the power storage unit 120 and starts charging (S600, S700).
  • the charging message may be generated such that the energy storage device having the largest remaining power amount supplies power to the energy storage device having the smallest remaining power amount without having to compare the remaining power amount with the reference value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to an electrical vehicle charging system enabling the state of charge of power of each of a plurality of multi-linked energy storage devices to stay consistent and thus stably charging an electrical vehicle even in a region having insufficient commercial power supply and inadequate climate and natural environment.

Description

전기자동차 충전시스템Electric Vehicle Charging System
본 발명은 전기자동차 충전시스템에 관한 것으로, 보다 구체적으로는 다중연계된 복수의 에너지 저장장치 각각의 전력 충전 상태를 일정하게 유지할 수 있도록 하여, 상용 전력공급이 부족하고 기후 및 자연환경이 열악한 지역에서도 안정하게 전기자동차를 충전할 수 있는 전기자동차 충전시스템에 관한 것이다. The present invention relates to an electric vehicle charging system, and more particularly, to maintain a constant state of charge of each of a plurality of energy storage devices connected in multiple, even in areas where there is a lack of commercial power supply and poor climate and natural environment The present invention relates to an electric vehicle charging system capable of stably charging an electric vehicle.
종래 자동차의 원료인 석유의 사용으로 인하여 이산화탄소의 배출이 증가되고, 이로 인한 지구온난화현상이 지속화되고 이상기후현상이 발생되면서 이산화탄소의 배출을 줄이기 위해 자동차 제조 기술이 발전하였으며, 주로 친환경적인 차량에 대한 관심과 그로 인한 생산 기술의 연구가 많이 이루어지고 있다.Due to the use of petroleum, the raw material of automobiles, carbon dioxide emission is increased, and global warming phenomenon and abnormal climate phenomenon are occurring, and automobile manufacturing technology has been developed to reduce carbon dioxide emission. There is a great deal of research into the interest and the resulting production technology.
이러한 친환경적인 차량으로 전기모터와 가솔린 엔진 등을 같이 사용하는 하이브리드 차가 이미 상용화되어 판매되고 있으며, 그 밖에 수소연료차, 전기차에 관한 연구 등이 활발히 진행되고 있다.Hybrid cars using electric motors and gasoline engines are already commercialized and sold as such eco-friendly vehicles. In addition, research on hydrogen fuel cars and electric cars has been actively conducted.
상용차로서 하이브리드차 다음으로 많이 연구가 집중되고 있는 분야가 바로 전기모터로만 동작하는 전기자동차에 관한 연구이다.As a commercial vehicle, the next most concentrated research area is a study on electric vehicles that operate only with electric motors.
이러한 전기자동차(electric vehicle, EV)는 석유연료를 기반한 엔진을 사용하는 것이 아니라, 전기충전기와 전기모터를 사용하는 자동차를 말한다.The electric vehicle (EV) refers to a vehicle using an electric charger and an electric motor, rather than using an engine based on petroleum fuel.
전기자동차는 석유원료를 대신하여 내부에 충전기에 전기를 공급하여야 하는데 통상적으로 주차된 상태에서 일반적인 충전시스템에 의해 전기자동차 내부의 배터리를 충전한다.The electric vehicle has to supply electricity to the charger in place of petroleum raw materials, and the battery inside the electric vehicle is charged by a general charging system in a parked state.
이렇게 개발된 전기자동차를 상용화하여 활성화하기에는 몇가지 문제가 있다. 이중 가장 많이 논의되고 있는 문제점 중의 하나는 아직까지는 이러한 충전시설이 미비하다는 점이다.There are some problems to commercialize and activate the electric vehicle thus developed. One of the most discussed problems is the lack of such charging facilities.
특히, 기후 및 자연 환경이 열악하고 전력 에너지 자원이 풍부하지 못한 해외 지역, 특히 중앙 아시아 및 러시아와 같은 극한 환경 지역에서는 전력 에너지 사용에 많은 비용을 지불하고 있으므로, 이들 지역에서의 전기자동차 충전시설 구축은 더욱더 어려운 실정이다.In particular, in areas with poor climate and natural environment and where there is not abundant power energy resources, especially in extreme environmental areas such as Central Asia and Russia, the use of electric energy charging facilities is expensive. Is even more difficult.
본 발명은 다중연계된 복수의 에너지 저장장치 각각의 전력 충전 상태를 일정하게 유지할 수 있도록 하여, 상용 전력공급이 부족하고 기후 및 자연환경이 열악한 지역에서도 안정하게 전기자동차를 충전할 수 있는 전기자동차 충전시스템을 제공하는 것을 목적으로 한다.The present invention enables to maintain a constant state of charge of each of the plurality of energy storage devices connected to the multiple, electric vehicle charging capable of charging the electric vehicle stably even in areas where commercial power supply is insufficient and the climate and natural environment is poor It is an object to provide a system.
본 발명의 실시예에 따른 전기자동차 충전시스템은, 다중연계된 복수의 에너지 저장장치 각각의 전력 충전 상태를 일정하게 유지하며, 전기자동차의 배터리에 전력을 공급하는 전력 공급부; 상기 전력 공급부에 연결되며, 병렬로 배열된 복수의 포트를 구비하는 충전부; 상기 충전부의 충전 방식, 충전 시작 시간을 입력받는 입력부; 상기 충전부를 통해 충전되는 전기자동차의 배터리의 충전상태 및 충전량을 표시하는 표시부; 및, 상기 충전부에 연결되며, 전력의 공급을 제어하는 제어부;를 포함한다.An electric vehicle charging system according to an embodiment of the present invention, the power supply unit for maintaining a constant state of charge of each of the plurality of energy storage devices connected to the multiple, power supply to the battery of the electric vehicle; A charging unit connected to the power supply unit and having a plurality of ports arranged in parallel; An input unit configured to receive a charging method and a charging start time of the charging unit; A display unit displaying a charging state and a charge amount of a battery of the electric vehicle charged through the charging unit; And a control unit connected to the charging unit and controlling the supply of electric power.
본 발명의 일 양상에 의하면, 상기 전력 공급부는, 태양광 발전 및 풍력 발전을 포함하는 신재생 에너지 발전에 의해 전력을 생성하고 저장하는 복수의 에너지 저장장치; 상기 복수의 에너지 저장장치 각각의 잔존 전력량과 기설정된 기준 전력량을 비교하여, 상기 복수의 에너지 저장장치 중 적어도 어느 하나의 잔존 전력량이 상기 기준 전력량 이하인 경우, 상기 복수의 에너지 저장장치 중 잔존 전력량이 가장 큰 에너지 저장장치가 상기 기준 전력량 이하인 에너지 저장장치로 전력을 공급하도록 제어하는 에너지 운영 서버를 포함한다.According to an aspect of the present invention, the power supply unit includes a plurality of energy storage devices for generating and storing power by renewable energy generation, including photovoltaic power generation and wind power generation; When the remaining power amount of each of the plurality of energy storage devices is compared with a predetermined reference power amount, when the remaining power amount of at least one of the plurality of energy storage devices is less than or equal to the reference power amount, the remaining power amount among the plurality of energy storage devices is the most. And an energy operating server that controls the large energy storage device to supply power to the energy storage device that is less than or equal to the reference power amount.
본 발명의 일 양상에 의하면, 상기 복수의 에너지 저장장치 각각은, 태양광 발전기와 풍력 발전기를 포함하는 전력 발생부와, 상기 전력 발생부에 의해 발생된 전력을 저장하는 전력 저장부와, 상기 전력 저장부에 저장된 전력의 잔존량을 산출하여 잔존 전력량 데이터를 생성하는 전력 관리부를 포함한다.According to an aspect of the present invention, each of the plurality of energy storage device, a power generator including a solar generator and a wind generator, a power storage for storing the power generated by the power generator, and the power It includes a power management unit for calculating the remaining amount of power stored in the storage unit to generate the remaining power amount data.
본 발명의 일 양상에 의하면, 상기 풍력 발전기는 수직축 풍력터빈을 사용한다.According to one aspect of the invention, the wind generator uses a vertical axis wind turbine.
본 발명의 일 양상에 의하면, 상기 에너지 운영 서버는, 상기 전력 관리부로부터 잔존 전력량 데이터를 수신하여 기설정된 기준 전력량을 비교하고, 잔존 전력량이 큰 것부터 작은 순으로 또는 잔존 전력량이 작은 것부터 큰 순으로 순차적으로 정리하는 에너지레벨 비교모듈; 상기 에너지레벨 비교모듈의 결과 데이터를 이용하여 상기 복수의 에너지 저장장치 중 어느 하나의 에너지 저장장치로부터 다른 에너지 저장장치로 전력을 공급할 것을 지시하는 충전 메시지를 생성하는 에너지레벨 제어모듈;을 포함한다.According to an aspect of the present invention, the energy operation server receives the remaining power amount data from the power management unit, compares a predetermined reference power amount, and sequentially from the remaining power amount to the smallest or from the smallest remaining power to the largest Energy level comparison module to summarize; And an energy level control module using the result data of the energy level comparison module to generate a charge message instructing to supply power from one of the plurality of energy storage devices to another energy storage device.
본 발명의 일 양상에 의하면, 상기 에너지레벨 제어모듈은, 잔존 전력량이 n번째 큰 에너지 저장장치가 잔존 전력량이 n번째로 작은 에너지 저장장치로 전력을 공급하도록 충전 메시지를 생성한다.According to an aspect of the present invention, the energy level control module generates a charging message such that the energy storage device having the largest remaining power amount supplies power to the energy storage having the smallest remaining power amount.
본 발명의 일 양상에 의하면, 상기 에너지 저장장치는 외부에 태양광 발전기와 풍력 발전기가 설치된 컨테이너형 하우스 또는 컨테이너형 스마트팜인 것이 바람직하다.According to an aspect of the present invention, the energy storage device is preferably a container type house or a container type smart farm in which a solar generator and a wind generator are installed outside.
기타 본 발명의 다양한 측면에 따른 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of embodiments according to various aspects of the present invention are included in the following detailed description.
본 발명의 실시 형태에 따르면, 다중연계된 복수의 에너지 저장장치 각각의 전력 충전 상태를 일정하게 유지할 수 있도록 하여, 상용 전력공급이 부족하고 기후 및 자연환경이 열악한 지역에서도 안정하게 전기자동차를 충전할 수 있는 전기자동차 충전시스템을 제공할 수 있다. According to an embodiment of the present invention, it is possible to maintain a constant state of charge of each of the plurality of energy storage devices connected to the multiple, it is possible to stably charge the electric vehicle even in a region where there is a lack of commercial power supply and poor climate and natural environment. Can provide an electric vehicle charging system.
도 1은 본 발명의 실시예에 따른 전기자동차 충전시스템이 도시된 블록도이다.1 is a block diagram showing an electric vehicle charging system according to an embodiment of the present invention.
도 2 및 도 3은 본 발명의 실시예에 따른 전기자동차 충전시스템이 도시된 개념도이다.2 and 3 is a conceptual diagram showing an electric vehicle charging system according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 전기자동차 충전시스템의 전력 공급부가 도시된 블록도이다.4 is a block diagram showing a power supply unit of an electric vehicle charging system according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 전기자동차 충전시스템의 전력 공급부가 도시된 개념도이다.5 is a conceptual diagram illustrating a power supply unit of an electric vehicle charging system according to an embodiment of the present invention.
도 6은 에너지 저장장치(ESS)가 적용된 컨테이너 하우스가 도시된 개념도이다. 6 is a conceptual diagram illustrating a container house to which an energy storage device (ESS) is applied.
도 7은 에너지 저장장치(ESS)가 적용된 컨테이너형 스마트팜이 도시된 개념도이다.7 is a conceptual diagram illustrating a container type smart farm to which an energy storage device (ESS) is applied.
도 8은 에너지 저장장치가 도시된 블록도이다.8 is a block diagram illustrating an energy storage device.
도 9는 본 발명의 일 실시예에 따른 전기자동차 충전시스템에서 전력 공급부의 동작 과정이 도시된 순서도이다.9 is a flowchart illustrating an operation process of a power supply unit in an electric vehicle charging system according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 이하, 도면을 참조하여 본 발명의 실시예에 따른 전기자동차 충전시스템을 설명한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, the terms 'comprise' or 'have' are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof. Hereinafter, an electric vehicle charging system according to an embodiment of the present invention with reference to the drawings.
도 1은 본 발명의 실시예에 따른 전기자동차 충전시스템이 도시된 블록도이다. 도 2 및 도 3은 본 발명의 실시예에 따른 전기자동차 충전시스템이 도시된 개념도이다. 도 4는 본 발명의 실시예에 따른 전기자동차 충전시스템의 전력 공급부가 도시된 블록도이다. 도 5는 본 발명의 실시예에 따른 전기자동차 충전시스템의 전력 공급부가 도시된 개념도이다. 도 6은 에너지 저장장치(ESS)가 적용된 컨테이너 하우스가 도시된 개념도이다. 도 7은 에너지 저장장치(ESS)가 적용된 컨테이너형 스마트팜이 도시된 개념도이다. 도 8은 에너지 저장장치가 도시된 블록도이다. 1 is a block diagram showing an electric vehicle charging system according to an embodiment of the present invention. 2 and 3 is a conceptual diagram showing an electric vehicle charging system according to an embodiment of the present invention. 4 is a block diagram showing a power supply unit of an electric vehicle charging system according to an embodiment of the present invention. 5 is a conceptual diagram illustrating a power supply unit of an electric vehicle charging system according to an embodiment of the present invention. 6 is a conceptual diagram illustrating a container house to which an energy storage device (ESS) is applied. 7 is a conceptual diagram illustrating a container type smart farm to which an energy storage device (ESS) is applied. 8 is a block diagram illustrating an energy storage device.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전기자동차 충전시스템은, 전력공급부(1100), 충전부(1200), 입력부(1300), 표시부(1400), 제어부(1500)를 포함한다.As shown in FIG. 1, an electric vehicle charging system according to an exemplary embodiment of the present invention includes a power supply unit 1100, a charging unit 1200, an input unit 1300, a display unit 1400, and a controller 1500. .
전력공급부(1100)는 충전부(1200)를 통해 전기자동차의 배터리에 전력을 공급한다. 전력공급부(1100)는 전기를 안전하게 사용하기 위하여 누전차단기나 배선용차단기가 설치된 분전반을 포함하며, 외부전원을 이용하는 경우 사용량을 검침할 수 있도록 전기계기를 포함할 수 있다.The power supply 1100 supplies power to the battery of the electric vehicle through the charging unit 1200. The power supply unit 1100 may include a distribution panel provided with an earth leakage breaker or a circuit breaker in order to safely use electricity. The power supply unit 1100 may include an electric meter to read the amount of usage when using an external power source.
본 발명의 실시예에서 전력공급부(1100)는 외부에서 전력을 공급받아서 전기자동차를 충전하는 것이 아니라, 자체적으로 태양광 에너지, 풍력 에너지와 같은 신재생 에너지를 발생 저장하여 전기자동차를 충전한다.In an embodiment of the present invention, the power supply unit 1100 does not charge the electric vehicle by receiving power from the outside, but generates and stores renewable energy such as solar energy and wind energy to charge the electric vehicle.
본 발명의 실시예에서 전력공급부(1100)는, 다수의 독립 구조물이 각각 자체적으로 전력을 발생 저장하며, 다수의 독립 구조물 간에 전력을 분배하도록 연계된 다중연계 전력공급 시스템으로 구성된다. 이러한 본 발명의 실시예에 따른 전력공급부(1100)에 대해서는 후술하도록 하겠다.In an embodiment of the present invention, the power supply unit 1100 is configured as a multi-linked power supply system, each of which a plurality of independent structures each generate and store its own power, and is linked to distribute power between the plurality of independent structures. The power supply unit 1100 according to the embodiment of the present invention will be described later.
충전부(1200)는 전력공급부(1100)에 연결되어, 전력공급부(1100)로부터 공급받은 전력을 주차영역(또는 충전영역)에 주차된 전기자동차의 배터리에 공급한다. The charging unit 1200 is connected to the power supply unit 1100 and supplies the power supplied from the power supply unit 1100 to the battery of the electric vehicle parked in the parking area (or the charging area).
도 2에 도시된 바와 같이, 충전부(1200)는 2개 이상의 포트를 구비한다. 2개 이상의 포트는 각각 전기 자동차에 연결되어 2개 이상의 전기 자동차를 편리하게 충전할 수 있다.As shown in FIG. 2, the charging unit 1200 includes two or more ports. Two or more ports can each be connected to an electric vehicle to conveniently charge two or more electric vehicles.
충전부(1200)가 전기 자동차를 충전하는 방식은 고속 충전 방식 및 저속 충전 방식이 있다. 고속 충전 방식 및 저속 충전 방식은 전력 공급부(1100)가 전기자동차의 배터리를 일정수준까지 재충전하는데 걸리는 충전 시간과 인가되는 전압에 따라 구분된다.The charging unit 1200 charges the electric vehicle may include a fast charging method and a low speed charging method. The fast charging method and the low speed charging method are classified according to a charging time and an applied voltage for the power supply unit 1100 to recharge the battery of the electric vehicle to a predetermined level.
충전부의 복수의 포트는 각각 고속충전유닛 또는 저속충전유닛을 구비한다. 고속충전유닛은 전기자동차의 배터리에 100V이상 450V이하의 직류전압을 인가한다. 고속충전유닛은 전력공급부(1100)로부터 공급받은 전압, 예를 들어 교류 삼상의 380V의 전압을 입력받아서 고속충전이 가능한 전압, 예를 들어 400~450V의 직류전압으로 변압하여 전기자동차에 충전하는 것으로, 통상 충전시간이 15~30분 정도 걸린다.Each of the plurality of ports of the charging unit includes a high speed charging unit or a low speed charging unit. The fast charging unit applies a DC voltage of 100V or more and 450V or less to the battery of an electric vehicle. The high speed charging unit receives a voltage supplied from the power supply unit 1100, for example, a voltage of 380 V in three phases of AC and converts it into a voltage capable of high speed charging, for example, a DC voltage of 400 to 450 V to charge an electric vehicle. It usually takes about 15-30 minutes to charge.
고속충전을 위하여 충전 구역 내에 고속충전지역을 지정하고, 전기자동차의 배터리에 고속으로 충전을 원하는 소유자가 입력부(1300)를 통해 충전을 원하는 시간 및 용량을 지정하면, 고속충전유닛은 직류 400~450V의 전력을 공급하여 전기자동차의 배터리를 충전할 수 있다.If the fast charging area is designated in the charging zone for high speed charging, and the owner who wants to charge the battery of the electric vehicle at high speed specifies the time and capacity for charging through the input unit 1300, the fast charging unit is 400-450V DC. The battery of the electric vehicle can be charged by supplying power.
저속충전유닛은 전기자동차의 배터리에 220V의 직류전압을 인가한다. 저속충전유닛은 전력공급부(1100)로부터 공급받은 전압, 예를 들어 교류 단상의 220V의 전압을 입력받아서 저속충전이 가능한 전압, 예를 들어 220V의 직류전압으로 변압하여 전기자동차에 충전하는 것으로, 통상 충전시간이 5~6시간 정도 걸린다.The low speed charging unit applies a DC voltage of 220V to the battery of the electric vehicle. The low speed charging unit charges an electric vehicle by receiving a voltage supplied from the power supply unit 1100, for example, a voltage of 220V of an AC single phase, and converting it into a voltage capable of low speed charging, for example, a DC voltage of 220V. Charging takes about 5-6 hours.
저속충전을 위하여 충전 구역 내에 저속충전지역으로 지정된 구역에 주차된 전기자동차의 배터리에 충전을 원하는 소유자가 입력부(1300)를 통해 충전을 원하는 시간 및 용량을 지정하면, 저속충전유닛은 직류 220V의 전력을 공급하여, 전기자동차의 배터리를 충전할 수 있다.If the owner who wants to charge the battery of the electric vehicle parked in the zone designated as the low speed charging zone in the charging zone for the low speed charging designates the time and capacity to charge through the input unit 1300, the low speed charging unit is a DC 220V power. It is possible to charge the battery of the electric vehicle by supplying.
입력부(1300)는 충전부(1200)가 전기 자동차를 충전하는 방식 및 충전 시간을 입력받는다. The input unit 1300 receives a charging method and a charging time of the charging unit 1200 for charging the electric vehicle.
표시부(1400)는 충전부(1200)를 통해 충전되는 전기자동차의 배터리의 충전상태 및 충전량을 표시한다. 사용자는 표시부를 통하여 자신의 자동차의 배터리 충전 상태 및 현재 충전량, 충전 예상 시간, 예상되는 요금 등을 확인할 수 있다. 입력부(1300)에 입력된 정보 및 표시부(1400)에 표시된 정보는 사용자의 휴대 단말로 전송되어, 사용자는 충전 상태를 실시간으로 확인할 수 있다. The display unit 1400 displays the state of charge and the amount of charge of the battery of the electric vehicle charged through the charging unit 1200. The user can check the battery charging state and the current charging amount, the estimated time of charging, the expected charge, etc. of the vehicle. Information input to the input unit 1300 and information displayed on the display unit 1400 are transmitted to the user's portable terminal, so that the user can check the charging state in real time.
제어부(1500)는 충전부에 연결되며, 전력의 공급을 제어한다. 충전부(1200)에 구비된 복수의 포트에 복수의 전기 자동차가 연결되면, 복수 개의 전기 자동차는 순차적으로 충전된다. 제어부(1500)는 전기 자동차의 정보가 입력된 시점 및 입력된 충전 시작 시간을 토대로 복수의 전기 자동차의 충전 시간을 스케줄링하며, 각각의 포트에 대하여 전력 공급을 제어한다. 제어부(1500)는 하나의 전기자동차 배터리에 대하여 충전이 완료되거나 사용자가 충전 용량만큼 충전이 완료되면, 충전이 완료된 전기자동차의 배터리에 공급되는 전기를 차단한다.The controller 1500 is connected to the charging unit and controls the supply of power. When a plurality of electric vehicles are connected to a plurality of ports provided in the charging unit 1200, the plurality of electric vehicles are sequentially charged. The controller 1500 schedules charging times of the plurality of electric vehicles based on a time point at which information of the electric vehicle is input and an input charge start time, and controls power supply for each port. The controller 1500 cuts off the electricity supplied to the battery of the electric vehicle, in which the charging is completed when the charging of the electric vehicle battery is completed or the user completes charging by the charging capacity.
충전이 완료되면, 표시부(1400)는 충전완료를 표시하고, 사용자에게 충전 완료를 통지하여 충전구역에 입고하지 못한 대기 중인 전기자동차의 주차를 위하여 충전된 전기자동차의 빠른 이동이 가능하도록 한다.When the charging is completed, the display unit 1400 displays the completion of charging, and notifies the user of the completion of the charging to enable the rapid movement of the charged electric vehicle for parking of the waiting electric vehicle that is not worn in the charging area.
다음으로, 본 발명의 실시예에 따른 전력공급부(1100)에 대해서 설명한다.Next, the power supply unit 1100 according to the embodiment of the present invention will be described.
본 발명의 실시예에서 전력공급부(1100)는, 도 3에 예시된 바와 같이, 다수의 독립 구조물이 각각 자체적으로 전력을 발생 저장하며, 다수의 독립 구조물 간에 전력을 분배하도록 연계된 다중연계 전력공급 시스템으로 구성된다. 즉, 각각의 독립 구조물은 에너지 저장장치를 구비하며, 각각의 에너지 저장장치는 전력 충전 상태가 일정하도록 유지된다. 여기서, “전력 충전 상태가 일정”하다는 것은 모든 에너지 저장장치의 전력 충전 상태가 동일하다는 것을 의미하는 것이 아니라, 기준치를 기준으로 일정 범위를 유지하는 것을 의미한다.In the embodiment of the present invention, the power supply unit 1100, as illustrated in FIG. 3, is a multi-connected power supply associated with a plurality of independent structures each generate and store their own power, and distribute the power between the plurality of independent structures It consists of a system. That is, each independent structure has an energy storage device, and each energy storage device is maintained so that the power state of charge is constant. Here, “the state of charge of the power is constant” does not mean that the state of charge of all the energy storage devices is the same, but it means maintaining a certain range based on the reference value.
본 발명의 실시예에서 전력공급부(1100)는, 도 4에 도시된 바와 같이, 복수의 에너지 저장장치(100) 및 에너지 운영 서버(200)를 포함한다. In an embodiment of the present invention, the power supply 1100 includes a plurality of energy storage devices 100 and an energy operation server 200, as shown in FIG.
복수의 에너지 저장장치(ESS: Energy Storage System)(100: 100a ~ 100e) 각각은 전력을 생성하고 저장하는 장치이며, 자체적으로 전력을 발생 저장하는 독립 구조물에 적용될 수 있다. 이러한 독립 구조물은, 예를 들어 도 6에 예시된 바와 같은 컨테이너형 하우스일 수 있으며, 또는 도 7에 예시된 바와 같은 컨테이너형 스마트팜(smart farm)일 수 있다. Each of the plurality of energy storage systems (ESS: 100a to 100e) is a device for generating and storing power, and may be applied to an independent structure that generates and stores power by itself. This independent structure may be, for example, a containerized house as illustrated in FIG. 6, or may be a containerized smart farm as illustrated in FIG. 7.
도 6에 도시된 컨테이너형 하우스는, 컨테이너에서 주거가 가능하도록 개량하여 사용자가 원하는 곳에서 쉽게 시공이 가능하고, 컨테이너 내부에는 사용자를 위한 가구, 가전, 화장실 등이 구비된다.The container-type house shown in FIG. 6 can be easily constructed where the user desires by improving the housing in the container, and the interior of the container is provided with furniture, appliances, toilets, and the like for the user.
컨테이너 외부에는 태양광 발전기(111)와 풍력 발전기(112)가 설치되고, 태양광 발전기(111)와 풍력 발전기(112)에서 발생한 전력을 저장하여 하우스 내부에서 사용되는 모든 전원에 적용되도록 한다. The solar generator 111 and the wind generator 112 is installed outside the container, and stores the power generated by the solar generator 111 and the wind generator 112 to be applied to all the power used in the house.
컨테이너형 하우스는 전기 인프라가 갖추어지지 않은 곳에서 주거 생활에 최소한 필요하다고 생각되는 전력 부하(예를 들어, 일일 부하량 :1.5KWh, 배터리 100AH 8대 기준)를 만족할 수 있도록 설계될 수 있고, 날 씨와 시간대에 발전량 변동성의 단점을 보완하기 위해 태양광 발전기(111)와 풍력 발전기(112)가 하이브리드형으로 장착되어 있다.Container-type houses can be designed to meet the power loads (e.g. daily load: 1.5 kWh, based on eight batteries of 100 AH) that are considered to be the minimum necessary for residential living in the absence of electrical infrastructure. In order to compensate for the shortcomings of power generation fluctuations in the solar power generation time and the solar generator 111 and the wind generator 112 is mounted in a hybrid type.
도 7에 도시된 컨테이너형 스마트팜은, 신재생에너지를 활용하여 외부로부터 에너지 공급 없이 수경재배를 수행할 수 있는 독립형 신재생에너지를 활용한 컨테이너형 스마트팜으로, 컨테이너 내부에 수경재배 방식으로 식물을 재배할 수 있는 수경재배부(A)가 하나 또는 다수개 설치될 수 있다. 수경재배부는 동일 평면상에 설치될 수도 있으나, 공간 활용을 위하여 적층된 형태로 배치될 수 있다. 그리고 수경재배부의 일측 하단에는 물의 배출을 위한 배출공이 형성된다.The container type smart farm shown in FIG. 7 is a container type smart farm using stand-alone renewable energy capable of performing hydroponic cultivation without supplying energy from the outside by using renewable energy. Hydroponic cultivation (A) that can be grown may be installed one or a plurality. Hydroponic cultivation may be installed on the same plane, but may be arranged in a stacked form for space utilization. And the discharge hole for the discharge of water is formed at the bottom of one side of the hydroponic cultivation.
컨테이너 외부에는 태양광 발전기(111)와 풍력 발전기(112)가 설치되고, 태양광 발전기(111)와 풍력 발전기(112)에서 발생한 전력을 저장하여 하우스 내부에서 사용되는 모든 전원에 적용되도록 한다. The solar generator 111 and the wind generator 112 is installed outside the container, and stores the power generated by the solar generator 111 and the wind generator 112 to be applied to all the power used in the house.
다시 도 4를 참조하면, 각각의 에너지 저장장치(100a ~ 100e)는 전술한 컨테이너형 하우스 또는 컨테이너형 스마트팜에 적용된 발전 시설에 의해 생성된 전력을 저장하는 저장장치이며, 각각의 컨테이너형 하우스 또는 컨테이너형 스마트팜에 하나의 에너지 저장장치를 구비하게 된다.Referring back to FIG. 4, each of the energy storage devices 100a to 100e is a storage device for storing power generated by a power generation facility applied to the container-type house or container-type smart farm, and each container-type house or The container type smart farm will have one energy storage device.
각각의 에너지 저장장치(100a ~ 100e)는 각각 독립적으로 발전하여 에너지를 생성 저장하지만, 공통의 전력 배선(L)에 의해 연결되어, 어느 하나의 에너지 저장장치에 잔존하는 전력량이 기준치 이하인 경우, 나머지 에너지 저장장치 중에서 잔존 전력량이 큰 에너지 저장장치에 의해 부족한 전력을 충전할 수 있도록 한다.Each of the energy storage devices 100a to 100e generates and stores energy independently of each other, but is connected by a common power line L, and when the amount of power remaining in any one energy storage device is less than the reference value, It is possible to charge the insufficient power by the energy storage device having a large amount of remaining power among the energy storage device.
이를 위해, 도 8에 도시된 바와 같이, 각각의 에너지 저장장치(100a ~ 100e)는 전력 발생부(110)와, 전력 저장부(120)와, 전력 관리부(130)를 포함한다.To this end, as shown in FIG. 8, each of the energy storage devices 100a to 100e includes a power generation unit 110, a power storage unit 120, and a power management unit 130.
전력 발생부(110)는 자연력으로부터 전력을 발생시키며, 본 실시예에서는 태양광 발전기(111)와 풍력 발전기(112)를 포함하여 이루어진다. 물론, 반드시 이에 한정되는 것은 아니며, 기술 발전에 따라 상용화 가능한 모든 종류의 신재생 에너지 발전기를 포함할 수 있다.The power generator 110 generates power from natural forces, and in the present embodiment, includes a solar generator 111 and a wind generator 112. Of course, it is not necessarily limited thereto, and may include all kinds of renewable energy generators that are commercially available according to technology development.
태양광 발전기(111)와 풍력 발전기(112)로 전력 발생부(110)를 구성하는 경우, 태양광 발전기(111)와 풍력 발전기(112)를 동일한 하나의 에너지 저장장치에 설치하는데, 이때, 풍력 날개의 그림자에 의해 태양광 발전기(111)의 발전 손실을 최소화하기 위해, 풍력 발전기(112)는 수직축 풍력터빈을 사용하는 것이 바람직하다. 수직축 풍력터빈을 사용함으로써 한정된 공간을 효율적으로 활용할 수 있고, 에너지 저장장치(100)의 크기를 최소화할 수 있다.When the power generator 110 is configured by the solar generator 111 and the wind generator 112, the solar generator 111 and the wind generator 112 are installed in the same energy storage device. In order to minimize the power loss of the solar generator 111 by the shadow of the blade, the wind generator 112 preferably uses a vertical axis wind turbine. By using a vertical axis wind turbine can effectively utilize the limited space, it is possible to minimize the size of the energy storage device (100).
전력 저장부(120)는 전력 발생부(110)에 의해 발생된 전력을 저장한다. The power storage unit 120 stores the power generated by the power generation unit 110.
전력 관리부(130)는 자동 또는 사용자 명령에 의해 독립 구조물 사용에 필요한 전력의 공급을 제어하고, 전력 저장부(120)에 저장된 전력의 잔존량을 산출하여 잔존 전력량 데이터를 생성한다.The power manager 130 controls the supply of power required for use of the independent structure by automatic or user command, and calculates the remaining amount of power stored in the power storage unit 120 to generate remaining power amount data.
전력 관리부(130)는, 예를 들어, 계량기와 같은 전력 사용량 측정기를 포함한다. 계량기는 전류 측정부와 전압 측정부를 포함하며, 부하로 공급되는 전류와 전압을 각각 측정하고 측정된 전류값과 전압값을 이용하여 사용한 전력량을 측정한다. 전력 관리부(130)는, 전력 저장부(120)에 저장된 전력 용량에서 계량기로 계측된 사용 전력량을 차감하여 잔존 전력량을 산출한다.The power manager 130 includes, for example, a power usage meter such as a meter. The meter includes a current measuring unit and a voltage measuring unit, and measures the current and voltage supplied to the load, respectively, and measures the amount of power used using the measured current and voltage values. The power manager 130 calculates the amount of power remaining by subtracting the amount of power used measured by the meter from the power capacity stored in the power storage unit 120.
전력 관리부(130)는 산출된 잔존 전력량을 주기적으로 에너지 운영 서버(200)로 전송한다. 또는 에너지 운영 서버(200)로부터 요청 메시지를 받은 경우, 산출된 잔존 전력량을 에너지 운영 서버(200)로 전송한다.The power manager 130 periodically transmits the calculated remaining power amount to the energy operation server 200. Alternatively, when the request message is received from the energy operation server 200, the calculated remaining power amount is transmitted to the energy operation server 200.
전력 관리부(130)는 독립 구조물 사용에 필요한 전력 공급 제어에 있어서, 배터리 전압대비 및 사용전력 대비 우선 순위에 의해 순차적으로 접점이 되도록 하여 독립 구조물(예를 들어, 컨테이너형 하우스) 내부의 냉난방 장치, 가전제품, 조명장치, 냉장고 순으로 자동 차단되게 함으로써 전력 저장부(120)에 저장된 전력을 장시간 사용할 수 있도록 제어할 수 있다.The power management unit 130, in the power supply control required for the use of the independent structure, the heating and cooling device inside the independent structure (for example, a container-type house) to be sequentially contacted by the battery voltage and the priority compared to the power used, By automatically blocking the home appliances, lighting devices, and refrigerators, power stored in the power storage unit 120 may be controlled to be used for a long time.
에너지 운영 서버(200)는 복수의 에너지 저장장치(100a ~ 100e) 각각의 잔존 전력량과 기설정된 기준 전력량을 비교하여, 복수의 에너지 저장장치(100a ~ 100e) 중 적어도 어느 하나의 잔존 전력량이 기준 전력량 이하인 경우, 복수의 에너지 저장장치 중 잔존 전력량이 가장 큰 에너지 저장장치가 기준 전력량 이하인 에너지 저장장치로 전력을 공급하도록 제어한다.The energy operation server 200 compares the remaining power amount of each of the plurality of energy storage devices 100a to 100e with a predetermined reference power amount, and the remaining power amount of at least one of the plurality of energy storage devices 100a to 100e is a reference power amount. In the case of the following, the energy storage device having the largest remaining power amount among the plurality of energy storage devices is controlled to supply power to the energy storage device having a reference power amount or less.
이를 위해, 에너지 운영 서버(200)는 에너지레벨 비교모듈(210)과, 에너지레벨 제어모듈(220)을 포함한다. 또한, 비상 발전기(300)의 동작을 제어하는 비상 발전기 제어모듈(230)을 포함할 수 있다.To this end, the energy operation server 200 includes an energy level comparison module 210 and an energy level control module 220. In addition, the emergency generator 300 may include an emergency generator control module 230 for controlling the operation.
에너지레벨 비교모듈(210)은 주기적으로 에너지 저장장치(100a ~ 100e)의 전력 관리부(130)로부터 잔존 전력량 데이터를 수신한다. 또는, 에너지레벨 비교모듈(210)은 비주기적으로 필요시에 에너지 저장장치(100a ~ 100e)의 전력 관리부(130)로 잔존 전력량 데이터를 요청하는 요청 메시지를 전송한다. 에너지레벨 비교모듈(210)의 요청 메시지를 수신한 전력 관리부(130)는 잔존 전력량 데이터를 에너지레벨 비교모듈(210)로 송신한다. The energy level comparison module 210 periodically receives the remaining amount of power data from the power management unit 130 of the energy storage devices 100a to 100e. Alternatively, the energy level comparison module 210 transmits a request message for requesting the remaining power amount data to the power management unit 130 of the energy storage devices 100a to 100e when necessary aperiodically. The power manager 130 receiving the request message of the energy level comparing module 210 transmits the remaining power amount data to the energy level comparing module 210.
에너지레벨 비교모듈(210)은 수신된 잔존 전력량 데이터와 기설정된 기준 전력량을 비교하고, 잔존 전력량이 큰 것부터 작은 순으로 순차적으로 정리한다. 또는 잔존 전력량이 작은 것부터 큰 순으로 순차적으로 정리한다. 에너지레벨 비교모듈(210)은 그 결과 데이터를 에너지레벨 제어모듈(220)로 전송한다. The energy level comparison module 210 compares the received remaining power amount data with a predetermined reference power amount, and sequentially arranges the remaining power amount from the largest to the lowest. Alternatively, the remaining power amounts are arranged in descending order from smallest to largest. The energy level comparison module 210 transmits the result data to the energy level control module 220.
에너지레벨 제어모듈(220)은 에너지레벨 비교모듈(210)로부터 결과 데이터를 수신하고, 잔존 전력량이 기준 전력량 이하인 에너지 저장장치를 결정한다. 또한, 에너지레벨 제어모듈(220)은 잔존 전력량이 가장 큰 에너지 저장장치를 결정하여, 후자의 에너지 저장장치로부터 전자의 에너지 저장장치로 전력을 공급할 것을 지시하는 충전 메시지를 생성한 후, 이를 후자의 에너지 저장장치에 포함된 전력 관리부(130)로 전송한다.The energy level control module 220 receives the result data from the energy level comparison module 210 and determines an energy storage device having a remaining power amount or less than a reference power amount. In addition, the energy level control module 220 determines the energy storage device having the largest remaining power amount, generates a charge message instructing to supply power from the latter energy storage device to the former energy storage device, and then, Transmission to the power management unit 130 included in the energy storage device.
충전 메시지를 수신한 전력 관리부(130)는 전력 저장부(120)를 제어하여 전력 배선(L)을 통해 잔존 전력량이 기준 전력량 이하인 에너지 저장장치로 전력을 공급한다.The power management unit 130 receiving the charge message controls the power storage unit 120 to supply power to the energy storage device having a residual amount of power or less through the power line L.
한편, 기준 전력량 이하인 에너지 저장장치가 2 이상인 경우, 에너지레벨 제어모듈(220)은 잔존 전력량이 가장 큰 에너지 저장장치로부터 잔존 전력량이 가장 작은 에너지 저장장치로 전력을 공급할 것을 지시하는 충전 메시지를 생성하고, 잔존 전력량이 2번째로 큰 에너지 저장장치로부터 잔존 전력량이 2번째로 작은 에너지 저장장치로 전력을 공급할 것을 지시하는 충전 메시지를 생성한다.On the other hand, when there are two or more energy storage devices that are less than the reference power amount, the energy level control module 220 generates a charging message instructing to supply power from the energy storage device having the largest remaining power amount to the energy storage device having the smallest remaining power amount. In addition, the controller generates a charging message instructing to supply power from the energy storage device having the second largest amount of power to the energy storage device having the second smallest amount of power.
물론, 에너지 저장장치가 더 많이 구비되는 경우에도 유사한 과정을 거쳐 에너지 저장장치 간에 부족한 전력을 상호 보충하도록 할 수 있다. 또한, 경우에 따라, 잔존 전력량을 기준치와 비교할 필요없이 잔존 전력량이 n번째 큰 에너지 저장장치가 잔존 전력량이 n번째로 작은 에너지 저장장치로 전력을 공급하도록 충전 메시지를 생성할 수 있다.Of course, when more energy storage devices are provided, a similar process may be performed to supplement the insufficient power between the energy storage devices. In some cases, the charging message may be generated such that the energy storage device having the largest remaining power amount supplies power to the energy storage device having the smallest remaining power amount without having to compare the remaining power amount with the reference value.
비상 발전기 제어모듈(230)은, 기상 조건의 악화로, 태양광 발전기와 풍력 발전기에 의해 생성된 전력이 부족한 경우, 또는 각각의 에너지 저장장치(100)들 중 어느 하나 이상의 에너지 저장장치에 포함된 전력 발생부(110)의 작동 불량으로 해당 에너지 저장장치의 전력이 부족한 경우 등의 비정상 운영시, 해당 에너지 저장장치로 비상 에너지를 공급하는 비상 발전기(300)의 동작을 제어한다.The emergency generator control module 230 is included in any one or more energy storage devices of each of the energy storage devices 100 or when the power generated by the solar generator and the wind power generator is insufficient due to deterioration of weather conditions. Controls the operation of the emergency generator 300 for supplying emergency energy to the energy storage device during abnormal operation, such as when the power generation unit 110 is insufficient power of the energy storage device due to the poor operation of the power generator 110.
다음으로, 도 9를 참조하여 본 발명의 일 실시예에 따른 전기자동차 충전시스템에서 전력 공급부의 동작 과정을 설명한다.Next, the operation of the power supply unit in the electric vehicle charging system according to an embodiment of the present invention will be described with reference to FIG. 9.
에너지 운영 서버(200)의 에너지레벨 비교모듈(210)은 복수의 에너지 저장장치(100a ~ 100e)의 전력 관리부(130)로부터 수신한 잔존 전력량 데이터를 이용하여 복수의 에너지 저장장치(100a ~ 100e) 각각의 에너지 레벨을 모니터링한다(S100).The energy level comparison module 210 of the energy operation server 200 uses the remaining power amount data received from the power management unit 130 of the plurality of energy storage devices 100a to 100e to store the plurality of energy storage devices 100a to 100e. Each energy level is monitored (S100).
에너지레벨 비교모듈(210)은 잔존 전력량이 큰 것부터 작은 순으로 순차적으로 정리한다. 또는 잔존 전력량이 작은 것부터 큰 순으로 순차적으로 정리한다. 에너지레벨 제어모듈(220)은 잔존 전력량이 가장 적은 에너지 저장장치를 결정한다(S200).The energy level comparison module 210 arranges the remaining power in order from the largest to the lowest. Alternatively, the remaining power amounts are arranged in descending order from smallest to largest. The energy level control module 220 determines an energy storage device having the least amount of remaining power (S200).
에너지레벨 제어모듈(220)은 잔존 전력량이 가장 큰 에너지 저장장치를 결정하고, 잔존 전력량이 가장 적은 에너지 저장장치로 전력을 공급할 것을 지시하는 충전 메시지를 생성하여 잔존 전력량이 가장 큰 에너지 저장장치의 전력 관리부(130)로 전송한다(S300).The energy level control module 220 determines an energy storage device having the largest amount of remaining power and generates a charging message instructing to supply power to the energy storage device having the least amount of remaining power, thereby generating power of the energy storage device having the largest amount of remaining power. Transmission to the management unit 130 (S300).
충전 메시지를 수신한 전력 관리부(130)는 전력 저장부(120)를 제어하여 전력 배선(L)을 통해 정해진 에너지 저장장치로 전력을 공급한다.The power management unit 130 receiving the charge message controls the power storage unit 120 to supply power to a predetermined energy storage device through the power line (L).
에너지레벨 제어모듈(220)은 잔존 전력량이 2번째로 큰 에너지 저장장치를 결정하고, 잔존 전력량이 2번째로 적은 에너지 저장장치로 전력을 공급할 것을 지시하는 충전 메시지를 생성하여 잔존 전력량이 2번째로 큰 에너지 저장장치의 전력 관리부(130)로 전송한다. 충전 메시지를 수신한 전력 관리부(130)는 전력 저장부(120)를 제어하여 전력 배선(L)을 통해 정해진 에너지 저장장치로 전력을 공급한다(S400, S500).The energy level control module 220 determines an energy storage device having the second largest amount of remaining power and generates a charging message instructing to supply power to the energy storage device having the second smallest amount of remaining power. The large energy storage device transmits to the power management unit 130. The power management unit 130 receiving the charge message controls the power storage unit 120 to supply power to a predetermined energy storage device through the power wire L (S400 and S500).
에너지레벨 제어모듈(220)은 잔존 전력량이 3번째로 큰 에너지 저장장치를 결정하고, 해당 에너지 저장장치로 부하차단/충전개시 메시지를 전송한다. 이를 수신한 전력 관리부(130)는 전력 저장부(120)를 제어하여 부하로의 전력 공급을 차단하고, 충전을 개시한다(S600, S700).The energy level control module 220 determines an energy storage device having the third largest remaining power amount, and transmits a load blocking / charging start message to the energy storage device. The power management unit 130 receiving the control block the power supply to the load by controlling the power storage unit 120 and starts charging (S600, S700).
물론, 에너지 저장장치가 더 많이 구비되는 경우에도 유사한 과정을 거쳐 에너지 저장장치 간에 부족한 전력을 상호 보충하도록 할 수 있다. 또한, 경우에 따라, 잔존 전력량을 기준치와 비교할 필요없이 잔존 전력량이 n번째 큰 에너지 저장장치가 잔존 전력량이 n번째로 작은 에너지 저장장치로 전력을 공급하도록 충전 메시지를 생성할 수 있다.Of course, when more energy storage devices are provided, a similar process may be performed to supplement the insufficient power between the energy storage devices. In some cases, the charging message may be generated such that the energy storage device having the largest remaining power amount supplies power to the energy storage device having the smallest remaining power amount without having to compare the remaining power amount with the reference value.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As mentioned above, although an embodiment of the present invention has been described, those of ordinary skill in the art may add, change, delete or add components within the scope not departing from the spirit of the present invention described in the claims. The present invention may be modified and changed in various ways, etc., which will also be included within the scope of the present invention.

Claims (3)

  1. 다중연계된 복수의 에너지 저장장치 각각의 전력 충전 상태를 일정하게 유지하며, 전기자동차의 배터리에 전력을 공급하는 전력 공급부;A power supply unit which maintains a constant power charging state of each of the plurality of energy storage devices connected to each other, and supplies power to a battery of the electric vehicle;
    상기 전력 공급부에 연결되며, 병렬로 배열된 복수의 포트를 구비하는 충전부;A charging unit connected to the power supply unit and having a plurality of ports arranged in parallel;
    상기 충전부의 충전 방식, 충전 시작 시간을 입력받는 입력부; An input unit configured to receive a charging method and a charging start time of the charging unit;
    상기 충전부를 통해 충전되는 전기자동차의 배터리의 충전상태 및 충전량을 표시하는 표시부; 및A display unit displaying a charging state and a charge amount of a battery of the electric vehicle charged through the charging unit; And
    상기 충전부에 연결되며, 전력의 공급을 제어하는 제어부;를 포함하며,And a control unit connected to the charging unit and controlling a supply of power.
    상기 전력 공급부는,The power supply unit,
    태양광 발전 및 풍력 발전을 포함하는 신재생 에너지 발전에 의해 전력을 생성하고 저장하는 복수의 에너지 저장장치와,A plurality of energy storage devices for generating and storing electric power by renewable energy generation including solar power generation and wind power generation;
    상기 복수의 에너지 저장장치 각각의 잔존 전력량과 기설정된 기준 전력량을 비교하여, 상기 복수의 에너지 저장장치 중 적어도 어느 하나의 잔존 전력량이 상기 기준 전력량 이하인 경우, 상기 복수의 에너지 저장장치 중 잔존 전력량이 가장 큰 에너지 저장장치가 상기 기준 전력량 이하인 에너지 저장장치로 전력을 공급하도록 제어하는 에너지 운영 서버를 포함하며,When the remaining power amount of each of the plurality of energy storage devices is compared with a predetermined reference power amount, when the remaining power amount of at least one of the plurality of energy storage devices is less than or equal to the reference power amount, the remaining power amount among the plurality of energy storage devices is the most. An energy operating server controlling the large energy storage device to supply power to the energy storage device which is less than or equal to the reference power amount,
    상기 복수의 에너지 저장장치 각각은,Each of the plurality of energy storage devices,
    태양광 발전기와 풍력 발전기를 포함하는 전력 발생부와,A power generator including a solar generator and a wind generator,
    상기 전력 발생부에 의해 발생된 전력을 저장하는 전력 저장부와,A power storage unit for storing power generated by the power generation unit;
    상기 전력 저장부에 저장된 전력의 잔존량을 산출하여 잔존 전력량 데이터를 생성하는 전력 관리부를 포함하며,Comprising a power management unit for generating the remaining power amount data by calculating the remaining amount of power stored in the power storage unit,
    상기 에너지 운영 서버는,The energy operation server,
    상기 전력 관리부로부터 잔존 전력량 데이터를 수신하여 기설정된 기준 전력량을 비교하고, 잔존 전력량이 큰 것부터 작은 순으로 또는 잔존 전력량이 작은 것부터 큰 순으로 순차적으로 정리하는 에너지레벨 비교모듈과,An energy level comparison module that receives the remaining power amount data from the power management unit, compares the predetermined reference power amount, and sequentially arranges the remaining power amount from the largest to the smallest, or from the smaller remaining power to the largest;
    상기 에너지레벨 비교모듈의 결과 데이터를 이용하여 상기 복수의 에너지 저장장치 중 어느 하나의 에너지 저장장치로부터 다른 에너지 저장장치로 전력을 공급할 것을 지시하는 충전 메시지를 생성하는 에너지레벨 제어모듈을 포함하며,And an energy level control module configured to generate a charging message instructing to supply power from one energy storage device of the plurality of energy storage devices to another energy storage device by using the result data of the energy level comparison module.
    상기 에너지레벨 제어모듈은,The energy level control module,
    잔존 전력량이 n번째 큰 에너지 저장장치가 잔존 전력량이 n번째로 작은 에너지 저장장치로 전력을 공급하도록 충전 메시지를 생성하는 것을 특징으로 하는 전기자동차 충전시스템.An electric vehicle charging system according to claim 1, wherein the energy storage device having the nth largest remaining power generates a charge message to supply power to the energy storage device having the lowest remaining power amount.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 풍력 발전기는 수직축 풍력터빈을 사용하는 것을 특징으로 하는 전기자동차 충전시스템.The wind generator is an electric vehicle charging system, characterized in that using a vertical axis wind turbine.
  3. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2,
    상기 에너지 저장장치는 외부에 태양광 발전기와 풍력 발전기가 설치된 컨테이너형 하우스 또는 컨테이너형 스마트팜인 것을 특징으로 하는 전기자동차 충전시스템.The energy storage device is an electric vehicle charging system, characterized in that the container-type house or container-type smart farm with a solar generator and a wind generator installed on the outside.
PCT/KR2017/007978 2016-11-28 2017-07-25 Electrical vehicle charging system WO2018097449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160159322A KR101777150B1 (en) 2016-11-28 2016-11-28 Charging system of electric vehicle
KR10-2016-0159322 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018097449A1 true WO2018097449A1 (en) 2018-05-31

Family

ID=59926438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007978 WO2018097449A1 (en) 2016-11-28 2017-07-25 Electrical vehicle charging system

Country Status (2)

Country Link
KR (1) KR101777150B1 (en)
WO (1) WO2018097449A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110936836A (en) * 2019-12-31 2020-03-31 北京泊易行咨询有限公司 Movable automobile charging container
CN111038304A (en) * 2019-12-17 2020-04-21 西安工程大学 Canopy type automobile charging pile cooling device combining indirect evaporative cooling and solar energy
GB2629733A (en) * 2022-04-07 2024-11-06 3Ti Energy Hubs Ltd A charging station

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172265B1 (en) * 2018-12-13 2020-10-30 (주)제주전기자동차서비스 Electric vehicle charging station
KR20200098798A (en) 2019-02-12 2020-08-21 건양대학교산학협력단 A needless electric vehicle
KR102340621B1 (en) * 2019-07-12 2021-12-17 엘지전자 주식회사 Power control system and method for charger of electric vehicle
KR20230075621A (en) * 2021-11-23 2023-05-31 전기은 Artificial intelligent road surface icing risk determination system, small wind power generation, and solar power-based road heating power supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140014226A (en) * 2011-03-09 2014-02-05 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Charge balancing system for batteries
KR20140072675A (en) * 2012-12-05 2014-06-13 엘에스산전 주식회사 Charging system
JP2015073431A (en) * 2010-05-19 2015-04-16 株式会社日立製作所 Charging device, charge control unit, and charge control method
KR20160097637A (en) * 2015-02-09 2016-08-18 (주)브이엠이코리아 Apparatus for Controlling Secondary Cell Battery for Next Generation Eco-friendly Vehicle
KR20160108962A (en) * 2015-03-09 2016-09-21 주식회사 루비 Mobile Electric vehicle charger

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135836B2 (en) 2003-03-28 2006-11-14 Power Designers, Llc Modular and reconfigurable rapid battery charger
JP5077701B2 (en) 2008-10-31 2012-11-21 本田技研工業株式会社 Power supply control device
JP5493441B2 (en) 2009-04-15 2014-05-14 日産自動車株式会社 Inter-vehicle charging method, inter-vehicle charging cable, and electric vehicle
US9762069B2 (en) 2009-05-19 2017-09-12 Duracell U.S. Operations, Inc. Multi-use fast rate charging stand
JP2011024334A (en) 2009-07-15 2011-02-03 Toshiba Corp Charging station and charging station system using the same
JP2011188588A (en) * 2010-03-05 2011-09-22 Honda Motor Co Ltd Charging cable and charging system
JP5548894B2 (en) 2010-05-10 2014-07-16 株式会社東光高岳 Electric vehicle charging device
JP5647057B2 (en) 2010-05-19 2014-12-24 株式会社日立製作所 Charging apparatus, charging control unit, and charging control method
NL2004746C2 (en) * 2010-05-19 2011-11-22 Epyon B V Charging system for electric vehicles.
FR2982090B1 (en) 2011-10-31 2013-12-20 Commissariat Energie Atomique CHARGE BALANCING DEVICE FOR ELEMENTS OF A POWER BATTERY
JP6031225B2 (en) 2011-11-01 2016-11-24 日本信号株式会社 Charging system
JP2013110870A (en) 2011-11-21 2013-06-06 Panasonic Corp Power converter
KR101287586B1 (en) * 2012-01-31 2013-07-19 엘에스산전 주식회사 Electric vehicle battery charging syste m
KR101426826B1 (en) 2013-01-31 2014-08-05 명지대학교 산학협력단 Variable Resistance Type Droop Control Appratus and the Method for Stand-alone Micro-grid
KR101439265B1 (en) 2014-02-10 2014-09-11 제주대학교 산학협력단 Charging system and the method for electric vehicle
KR101556058B1 (en) 2014-03-31 2015-09-30 중소기업은행 charging apparatus with multiple charging port and charging method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073431A (en) * 2010-05-19 2015-04-16 株式会社日立製作所 Charging device, charge control unit, and charge control method
KR20140014226A (en) * 2011-03-09 2014-02-05 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Charge balancing system for batteries
KR20140072675A (en) * 2012-12-05 2014-06-13 엘에스산전 주식회사 Charging system
KR20160097637A (en) * 2015-02-09 2016-08-18 (주)브이엠이코리아 Apparatus for Controlling Secondary Cell Battery for Next Generation Eco-friendly Vehicle
KR20160108962A (en) * 2015-03-09 2016-09-21 주식회사 루비 Mobile Electric vehicle charger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111038304A (en) * 2019-12-17 2020-04-21 西安工程大学 Canopy type automobile charging pile cooling device combining indirect evaporative cooling and solar energy
CN110936836A (en) * 2019-12-31 2020-03-31 北京泊易行咨询有限公司 Movable automobile charging container
CN110936836B (en) * 2019-12-31 2024-05-14 北京泊易行咨询有限公司 Mobilizable car container that charges
GB2629733A (en) * 2022-04-07 2024-11-06 3Ti Energy Hubs Ltd A charging station

Also Published As

Publication number Publication date
KR101777150B1 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2018097449A1 (en) Electrical vehicle charging system
US8103386B2 (en) Power system
WO2017142241A1 (en) Power management method for ess connected with new and renewable energy
US20150360578A1 (en) Batter capacity degradation indication
JP5704156B2 (en) Battery system
CN107627868A (en) Quick charge home system for electric vehicle
US20220158464A1 (en) Ev charger with adaptable charging protocol
CN103828165A (en) Vehicle charging system, vehicle charging method, power supply system, and power supply method
CN110797928A (en) Charging station load balance management method and device
JP2022050041A (en) Power system, server, charge/discharge control device, and power demand/supply adjustment method
KR20140029671A (en) Battery pack system with cahrger and inverter for portable
KR20140028482A (en) Portable battery pack system capable deal with blackout
CN209072142U (en) A kind of charging system for electric automobile
CN214900308U (en) Hybrid power supply device and 5G base station energy cabinet
JP5860706B2 (en) Local power interchange system
CN111130175B (en) Energy storage bus station based on retired power battery and power supply control method thereof
WO2018021787A1 (en) Hybrid energy storage system and energy management method thereof
WO2018097448A1 (en) Multi-linked power supply system
CN110667382B (en) Agricultural machine power supply method and system
CN218997771U (en) Outdoor power supply system
CN217425976U (en) Container energy storage system communication framework
US11772507B1 (en) Energy facility leveraging electric vehicle charging to increase usage of renewable energy
US11801767B2 (en) Control of vehicle and home energy storage systems
US20230234465A1 (en) Hybrid electric vehicle management device, hybrid electric vehicle management method, and hybrid electric vehicle management system
WO2022224530A1 (en) Charge/discharge system, charge/discharge system control method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874287

Country of ref document: EP

Kind code of ref document: A1