WO2018097013A1 - Control device for rotary electric machine, and rotary electric machine unit - Google Patents

Control device for rotary electric machine, and rotary electric machine unit Download PDF

Info

Publication number
WO2018097013A1
WO2018097013A1 PCT/JP2017/041157 JP2017041157W WO2018097013A1 WO 2018097013 A1 WO2018097013 A1 WO 2018097013A1 JP 2017041157 W JP2017041157 W JP 2017041157W WO 2018097013 A1 WO2018097013 A1 WO 2018097013A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical machine
rotating electrical
switching element
power generation
control unit
Prior art date
Application number
PCT/JP2017/041157
Other languages
French (fr)
Japanese (ja)
Inventor
中山 英明
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017006017.6T priority Critical patent/DE112017006017T5/en
Publication of WO2018097013A1 publication Critical patent/WO2018097013A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current

Definitions

  • the present disclosure relates to a control device that controls a rotating electrical machine.
  • Patent Document 1 Conventionally, there is one that switches a power generation mode by a rotating electric machine when the rotating speed of the rotating electric machine is equal to or lower than a predetermined value and when the rotating speed exceeds a predetermined value (see Patent Document 1).
  • the field current flowing through the field coil is controlled, and the switching element is controlled to control the PWM controlled current to the armature coil. Electricity is generated and power is generated by PWM control.
  • PWM control When the rotational speed of the rotating electrical machine exceeds a predetermined value, power generation is performed by controlling the field current flowing in the field coil without performing PWM control.
  • power generation by controlling the field current can be performed only when the rotational speed of the rotating electrical machine exceeds a predetermined value and the power generation output of the rotating electrical machine exceeds the predetermined output.
  • power generation by PWM control is performed when the rotation speed of the rotating electrical machine is equal to or lower than a predetermined value, switching loss due to control of the switching element increases.
  • the present disclosure has been made in order to solve the above-described problems, and a main object of the present disclosure is to provide a control device for a rotating electrical machine capable of increasing the power generation output of the rotating electrical machine while suppressing an increase in switching loss. It is to provide.
  • the first means for solving the above problems is as follows.
  • a rotating electrical machine having a power generation function, a power storage device, a bridge-connected switching element, and a diode connected in parallel to each of the switching elements, and performing power conversion between the rotating electrical machine and the power storage device
  • a control unit that is applied to a vehicle including a conversion unit and controls the rotating electrical machine,
  • a synchronous rectification control unit that turns on the switching element connected in parallel to the diode through which the current flows, in synchronization with a period in which the current flows through the diode during power generation by the rotating electrical machine;
  • the on / off timing of the switching element is extended so that the period during which the switching element is turned on by the synchronous rectification control unit is extended.
  • a timing changing section for changing Is provided.
  • the power conversion unit includes the bridge-connected switching element and the diode connected in parallel to the switching element, and performs power conversion between the rotating electrical machine and the power storage device. Then, during power generation by the rotating electrical machine, the synchronous rectification control unit turns on the switching element connected in parallel to the diode through which the current flows in synchronization with the period during which the current flows through the diode. For this reason, the power storage device can be efficiently charged with the electric power output from the rotating electrical machine.
  • the timing changing unit is configured to extend a period during which the switching element is turned on by the synchronous rectification control unit when the current flowing through the diode is smaller than a predetermined current during power generation by the synchronous rectification control unit. Change the on / off timing. For this reason, it becomes possible to output electric power from the rotating electrical machine or increase the output electric power, thereby increasing the power generation output of the rotating electrical machine.
  • a case where the diode current stops flowing may be employed as a case where the current flowing through the diode becomes smaller than a predetermined current.
  • the configuration in which the period during which the switching element is turned on is extended includes a configuration in which the switching element is turned on earlier, a timing in which the switching element is turned off later, and a configuration in which both are performed. .
  • the timing changing unit gradually changes the on / off timing of the switching element when extending the period during which the switching element is turned on by the synchronous rectification control unit.
  • the on / off timing of the switching element is gradually changed. For this reason, it can suppress that the torque which acts by a rotary electric machine, and the output electric current and voltage change.
  • the timing changing unit shortens a period during which the switching element is turned on when the on / off timing of the switching element is changed to power generation by the synchronous rectification control unit. The on / off timing of the switching element is changed.
  • the switching element when switching from the state in which the on / off timing of the switching element is changed to the power generation by the synchronous rectification control unit, the switching element is turned on / off so that the period during which the switching element is turned on is shortened. Timing is changed. For this reason, it can be made to shift to the power generation by a synchronous rectification control part from the state where the on-off timing of the switching element was changed.
  • the timing changing unit gradually changes the on / off timing of the switching element when shortening the period during which the switching element is turned on.
  • the timing changing unit when the period during which the switching element is turned on is shortened by the timing changing unit, the on / off timing of the switching element is gradually changed. For this reason, it can suppress that the torque which acts by a rotary electric machine, and the output electric current and voltage change.
  • the switching elements corresponding to each phase of the rotating electrical machine are alternately switched on and off by half a cycle of one electrical angle, and the switching element is turned on.
  • a rectangular wave control unit that controls a phase to be transmitted, and the timing changing unit turns on the switching element by the synchronous rectification control unit when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit.
  • the on / off timing of the switching element is changed so as to be an on period having a length between a length of a period during which the switching element is turned on by the rectangular wave control unit.
  • the rectangular wave control unit switches the switching element corresponding to each phase of the rotating electrical machine alternately on and off by half a cycle of one electrical angle, and the switching element.
  • the phase at which is turned on is controlled. For this reason, it is possible to generate electric power by the rotating electrical machine while suppressing the switching loss as compared with the case where PWM control is performed.
  • the timing changing unit is configured to switch the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit.
  • the on / off timing of the switching element is changed so as to be an on period having a length between the on period and the on period. For this reason, it is possible to switch between the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit while maintaining a state in which electric power is output from the rotating electrical machine.
  • the phase at which the switching element is turned on is controlled. For this reason, the phase at which the switching element is turned on in power generation by the rectangular wave control unit is different from the phase at which the switching element is turned on in power generation by the synchronous rectification control unit.
  • the timing changing unit is configured to turn on the switching element by the synchronous rectification control unit when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit. And a configuration in which the on / off timing of the switching element is changed so that the phase is between the phase at which the switching element is turned on by the rectangular wave control unit. For this reason, when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit, it is possible to suppress a sudden change in the phase at which the switching element is turned on. As a result, it is possible to suppress a sudden change in the torque acting on the rotating electrical machine and the output current and voltage.
  • the timing changing unit gradually changes the on / off timing of the switching element when changing the phase at which the switching element is turned on.
  • the timing changing unit when the phase at which the switching element is turned on is changed by the timing changing unit, the on / off timing of the switching element is gradually changed. For this reason, it can suppress that the torque which acts by a rotary electric machine, and the output electric current and voltage change.
  • the timing changing unit is configured such that when the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit are switched, the amount of change in the power generation output by the rotating electrical machine is smaller than a predetermined amount.
  • a configuration is adopted in which the on / off timing of the switching element is changed. For this reason, when switching between the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit, it is possible to suppress the generation of noise and vibration in the rotating electrical machine.
  • the rectangular wave control unit applies each phase of the rotating electrical machine during power generation by the rotating electrical machine when the rotational speed of the rotating electrical machine is lower than a predetermined rotational speed.
  • the corresponding switching element is alternately turned on and off every half cycle of one electrical angle, and the phase at which the switching element is turned on is controlled.
  • the power generation speed is higher than the predetermined rotational speed
  • a configuration is adopted in which the switching element connected in parallel to the diode through which the current flows is turned on in synchronization with the period during which the current flows through the diode during power generation by the rotating electrical machine. be able to.
  • the tenth means is a rotating electrical machine unit and includes a rotating electrical machine control device of any one of the first to ninth means, the rotating electrical machine, and the power conversion unit.
  • the rotating electrical machine unit including the control device for the rotating electrical machine, the rotating electrical machine, and the power conversion unit, it is possible to increase the power generation output of the rotating electrical machine while suppressing an increase in switching loss. it can.
  • FIG. 1 is a circuit diagram showing a configuration of an in-vehicle rotating electrical machine system
  • FIG. 2 is a diagram showing the transition of the power generation mode
  • FIG. 3 is a diagram showing the control of the rotating electrical machine according to the rotational speed and torque
  • FIG. 4 is a chart showing drive signals and dead time during rectangular wave control.
  • FIG. 5 is a chart showing the operation during synchronous rectification control
  • FIG. 6 is a chart showing drive signals and dead time during synchronous rectification control.
  • an in-vehicle rotating electrical machine system 100 includes a rotating electrical machine unit 10, an engine ECU (Electronic Control Unit) 20, a battery 22 (corresponding to a power storage device), a second capacitor 23 (corresponding to a power storage device), an electric load. 24 etc.
  • the rotating electrical machine unit 10 includes a rotating electrical machine 17, an inverter 13, a rotating electrical machine ECU 14, and the like.
  • the rotating electrical machine unit 10 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated Starter Generator).
  • the rotating electrical machine 17 includes X, Y and Z phase windings 11X, 11Y, 11Z as a three-phase armature winding, and a field winding 12.
  • the battery 22 is a Pb battery that outputs a voltage of 12 V, for example.
  • a battery that outputs 12V using a different type of battery from the Pb battery a battery that outputs a voltage other than 12V, and the like can be used.
  • the X, Y, and Z phase windings 11X, 11Y, and 11Z are wound around a stator core (not shown) to form a stator.
  • the first ends of the X, Y, and Z phase windings 11X, 11Y, and 11Z are connected at a neutral point. That is, the rotating electrical machine unit 10 is Y-connected.
  • the field winding 12 is wound around a field pole (not shown) disposed opposite to the inner peripheral side of the stator core to constitute a rotor. By passing an exciting current through the field winding 12, the field pole is magnetized. An AC voltage is output from each phase winding 11X, 11Y, 11Z by a rotating magnetic field generated when the field pole is magnetized.
  • the rotor rotates by obtaining rotational power from the crankshaft of the in-vehicle engine 101 (the body of the in-vehicle engine is schematically shown in FIG. 1).
  • the engine 101 is, for example, an engine that uses gasoline as fuel, and generates driving force by the combustion of fuel.
  • the engine 101 is not limited to a gasoline engine, and may be a diesel engine using light oil as a fuel or an engine using other fuel.
  • the inverter 13 (corresponding to a power converter) converts the AC voltage (AC power) output from each phase winding 11X, 11Y, 11Z into a DC voltage (DC power).
  • the inverter 13 converts the DC voltage supplied from the battery 22 into an AC voltage and outputs the AC voltage to the phase windings 11X, 11Y, and 11Z.
  • the inverter 13 (corresponding to a rectifier circuit and a drive circuit) is a bridge circuit having upper and lower arms of the same number as the number of phases of the armature winding.
  • the inverter 13 includes an X-phase module 13X, a Y-phase module 13Y, and a Z-phase module 13Z, and constitutes a three-phase full-wave rectifier circuit.
  • the inverter 13 constitutes a drive circuit that drives the rotating electrical machine 17 by adjusting the AC voltage supplied to the phase windings 11X, 11Y, 11Z of the rotating electrical machine 17.
  • Each of the X, Y, and Z phase modules 13X, 13Y, and 13Z includes an upper arm switch Sp and a lower arm switch Sn. That is, the switches Sp and Sn are bridge-connected.
  • voltage controlled semiconductor switching elements are used as the switches Sp and Sn, and specifically, N-channel MOSFETs are used.
  • An upper arm diode Dp is connected in antiparallel (parallel) to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel (parallel) to the lower arm switch Sn.
  • the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn.
  • the diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example.
  • the second end of the X-phase winding 11X is connected to the X terminal PX of the X-phase module 13X.
  • the X terminal PX is connected to the low potential side terminal (source) of the upper arm switch Sp and the high potential side terminal (drain) of the lower arm switch Sn.
  • a B terminal (corresponding to an output terminal) of the rotating electrical machine unit 10 is connected to the drain of the upper arm switch Sp, and a grounding part (ground GND) is connected to the source of the lower arm switch Sn via the E terminal of the rotating electrical machine unit 10. )
  • the B terminal is a terminal connected to the positive electrode of the battery 22 and is formed in a detachable connector shape.
  • the second end of the Y-phase winding 11Y is connected to the Y terminal PY of the Y-phase module 13Y.
  • a connection point between the upper arm switch Sp and the lower arm switch Sn is connected to the Y terminal PY.
  • the B terminal is connected to the drain of the upper arm switch Sp, and the body of the engine 101 as the ground GND is connected to the source of the lower arm switch Sn via the E terminal.
  • the second end of the Z-phase winding 11Z is connected to the Z terminal PZ of the Z-phase module 13Z.
  • a connection point between the upper arm switch Sp and the lower arm switch Sn is connected to the Z terminal PZ.
  • the B terminal is connected to the drain of the upper arm switch Sp, and the body of the engine 101 as the ground GND is connected to the source of the lower arm switch Sn via the E terminal.
  • a first capacitor 15 (corresponding to a power storage device) and a Zener diode 16 are connected in parallel to a series connection body of the switches Sp and Sn constituting the phase modules 13X, 13Y, and 13Z.
  • a voltage sensor 41 (corresponding to a voltage detection unit and a voltage acquisition unit) that detects a voltage between the high-voltage side connection point P1 and the low-voltage side connection point P2 of the inverter 13 is provided.
  • the rotating electrical machine ECU 14 (corresponding to a control device) is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the rotating electrical machine ECU 14 adjusts the excitation current flowing through the field winding 12 by an IC regulator (not shown) inside. Thereby, the power generation voltage (voltage of the B terminal) of the rotating electrical machine unit 10 is controlled.
  • the rotating electrical machine ECU 14 assists the driving force of the engine 101 by controlling the inverter 13 to drive the rotating electrical machine 17 after the vehicle starts to travel.
  • the rotating electrical machine 17 can impart rotation to the crankshaft when the engine 101 is started, and also has a function as a starter.
  • the rotating electrical machine ECU 14 is connected to an engine ECU 20 that is a control device outside the rotating electrical machine unit 10 via an L terminal that is a communication terminal and a communication line.
  • the engine ECU 20 is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and controls the operating state of the engine 101.
  • the rotating electrical machine ECU 14 performs bidirectional communication (for example, serial communication using the LIN protocol) with the engine ECU 20 and exchanges information with the engine ECU 20.
  • the rotating electrical machine ECU 14 grasps the required torque (including braking torque) requested from the rotating electrical machine 17 based on the serial communication signal transmitted from the engine ECU 20.
  • the rotating electrical machine ECU 14 controls the PWM voltage applied to the field winding 12 and the on / off states of the switches Sp and Sn so that the rotating electrical machine 17 generates the required torque.
  • the engine ECU 20 and the positive terminal of the battery 22 are connected to the B terminal via the relay 21.
  • the body of the engine 101 as the ground GND is connected to the negative terminal of the battery 22.
  • a second capacitor 23 and an electrical load 24 are connected to the B terminal.
  • the electric load 24 includes an electric load whose operating voltage is a predetermined voltage or higher, such as an electronically controlled brake system of a vehicle or an electric power steering.
  • the operating voltage is a voltage at which the electrical load can exhibit the specified performance, such as a guaranteed voltage or a rated voltage of the electrical load.
  • the electrical load 24 may include an air conditioner, in-vehicle audio, a headlamp, and the like.
  • the relay 21 is turned on by turning on the ignition switch.
  • the rotating electrical machine ECU 14 performs rectangular wave control, synchronous rectification control, and diode (Di) rectification when the rotating electrical machine 17 generates power.
  • the rotating electrical machine ECU 14 switches between the power generation mode and the power running mode based on the rotational speed of the rotating electrical machine 17 and the required torque (including braking torque) required for the rotating electrical machine 17.
  • the rotating electrical machine ECU 14 performs pulse width modulation control (PWM control) in a region A where the rotational speed is less than the first rotational speed F1 during power running. Further, the rotating electrical machine ECU 14 performs the rectangular wave control in the region B where the rotational speed is equal to or higher than the first rotational speed F1 during power running.
  • the first rotation speed F1 is set to a value that changes according to the required torque.
  • the first rotation speed F1 may be a fixed value that does not depend on the required torque.
  • the PWM control can increase the output torque of the rotating electrical machine 17 compared to the rectangular wave control, while the load and switching loss in the control increase as the rotational speed of the rotating electrical machine 17 increases. Therefore, PWM control is performed in the region A where the rotational speed is low, and rectangular wave control is performed in the region B where the rotational speed is high.
  • the rotating electrical machine ECU 14 performs the rectangular wave control in the region C where the rotational speed is less than the second rotational speed F2 (corresponding to a predetermined rotational speed) during power generation.
  • the rotating electrical machine ECU 14 performs synchronous rectification control in a region D where power is generated, the rotational speed is equal to or higher than the second rotational speed F2 and lower than the third rotational speed F3, and the required torque is lower than a predetermined negative torque T1 (F2 ⁇ F3).
  • the rotating electrical machine ECU 14 performs diode rectification at the time of power generation, in a region E where the rotational speed is equal to or higher than the second rotational speed F2 and the required torque is negative torque T1 or higher, or the rotational speed is equal to or higher than the third rotational speed F3.
  • the second rotation speed F2 and the third rotation speed F3 are fixed values that do not depend on the required torque.
  • the second rotation speed F2 and the third rotation speed F3 may be set to values that change according to the required torque.
  • FIG. 4 is a chart showing drive signals and dead time DT1 of the switches Sp and Sn in rectangular wave control during power generation.
  • the rotating electrical machine ECU 14 corresponding to the rectangular wave control unit
  • the phase ⁇ 1 (timing t1) for turning on the upper arm switch Sp is controlled.
  • the phases of the phases are shifted from each other by an electrical angle of 120 °.
  • a dead time DT1 for turning off both the switches Sp and Sn is provided between the period for turning on the upper arm switch Sp and the period for turning on the lower arm switch Sn.
  • the dead time DT1 is set to a predetermined fixed value.
  • the phase ⁇ 1 is set based on the rotation speed of the rotating electrical machine 17 and the required torque (or required power generation voltage).
  • the rotating electrical machine ECU 14 can reduce the number of times of switching and suppress the switching loss by performing the rectangular wave control as compared with the PWM control.
  • FIG. 5 is a chart showing the operation at the time of synchronous rectification control
  • FIG. 6 is a chart showing the drive signals and dead time DT2 of the switches Sp and Sn at the time of synchronous rectification control.
  • the rotating electrical machine ECU 14 (corresponding to the synchronous rectification control unit) flows in synchronization with the periods Ta1 and Ta2 in which current flows in the diodes Dp and Dn.
  • the switches Sp and Sn connected in parallel to the diodes Dp and Dn are turned on.
  • the rotating electrical machine ECU 14 detects a current flowing in each phase, and turns on the corresponding switches Sp and Sn at a timing when the current is detected to flow in each phase.
  • the timing at which current flows in each phase may be acquired in advance based on experiments or the like, and the corresponding switches Sp and Sn may be turned on at that timing.
  • a dead time DT2 in which both the switches Sp and Sn are off occurs between the period in which the upper arm switch Sp is turned on and the period in which the lower arm switch Sn is turned on.
  • the dead time DT2 is a variable value determined according to the periods Ta1 and Ta2.
  • the phase ⁇ 2 (timing t2) at which the upper arm switch Sp is turned on changes in accordance with the timing at which current flows in each phase.
  • the rotating electrical machine ECU 14 turns off all the switches Sp and Sn constituting the inverter 13 and performs rectification by the diodes Dp and Dn connected in parallel to the switches Sp and Sn.
  • the switching loss in the synchronous rectification control is larger than the diode loss in the diode rectification.
  • the rotating electrical machine ECU 14 performs synchronous rectification control in the region D where the generated power is large, and performs diode rectification in the region E where the generated power is small (rotational speed ⁇ F3).
  • the rotating electrical machine ECU 14 performs diode rectification in the region E where the rotational speed of the rotating electrical machine 17 is high (rotational speed ⁇ F3). carry out.
  • the rotating electrical machine ECU 14 (corresponding to the timing changing unit) switches the switches Sp and Sn in the synchronous rectification control when no current flows through the diodes Dp and Dn during power generation by the synchronous rectification control.
  • the on / off timing of the switches Sp and Sn is changed so as to extend the period during which the switch is turned on.
  • the rotary electric machine ECU 14 switches between the power generation by the synchronous rectification control and the power generation by the rectangular wave control, the length of the period during which the switches Sp and Sn are turned on in the synchronous rectification control, and the switches Sp and Sn in the rectangular wave control.
  • the on / off timings of the switches Sp and Sn are changed so that the on period has a length between the on period and the on period.
  • a configuration for extending the period during which the switches Sp and Sn are turned on a configuration in which the timing to turn on the switches Sp and Sn is advanced, a configuration in which the timing to turn off the switches Sp and Sn is delayed, and both of them are performed.
  • a configuration or the like can be adopted.
  • the rotating electrical machine ECU 14 gradually changes the on / off timings of the switches Sp and Sn when extending the period during which the switches Sp and Sn are turned on in the synchronous rectification control. For example, the rotating electrical machine ECU 14 continuously changes the on / off timings of the switches Sp and Sn, or changes the on / off timings of the switches Sp and Sn in stages.
  • the phase ⁇ 1 (timing t1) at which the upper arm switch Sp is turned on is controlled. Further, in the power generation by the synchronous rectification control unit, the phase ⁇ 2 (timing t2) at which the upper arm switch Sp is turned on changes according to the timing of current flowing in each phase. Therefore, the phase ⁇ 1 in which the upper arm switch Sp (lower arm switch Sn of another phase) is turned on in the power generation by the rectangular wave control, and the upper arm switch Sp (lower arm switch of another phase in the power generation by the synchronous rectification control). The phase ⁇ 2 at which Sn) is turned on will be different.
  • the rotating electrical machine ECU 14 switches between the power generation by the synchronous rectification control and the power generation by the rectangular wave control unit, the phase ⁇ 2 in which the upper arm switch Sp is turned on in the synchronous rectification control unit and the upper arm switch Sp in the rectangular wave control is set.
  • the on / off timing of the upper arm switch Sp (lower arm switch Sn) is changed so that the phase is between the phase ⁇ 1 to be turned on.
  • the rotating electrical machine ECU 14 gradually changes the on / off timings of the switches Sp and Sn when changing the phase at which the switches Sp and Sn are turned on.
  • the rotating electrical machine ECU 14 shifts from the state in which the on / off timing of the switches Sp and Sn is changed to the power generation by the synchronous rectification control, the rotating electrical machine ECU 14 shortens the period during which the switches Sp and Sn are turned on. Change the on / off timing.
  • a configuration for shortening the period during which the switches Sp and Sn are turned on a configuration for delaying the timing for turning on the switches Sp and Sn, a configuration for increasing the timing for turning off the switches Sp and Sn, and both of them are performed.
  • a configuration or the like can be adopted.
  • the rotating electrical machine ECU 14 gradually changes the on / off timings of the switches Sp and Sn when the period during which the switches Sp and Sn are turned on is shortened.
  • the rotating electrical machine ECU 14 switches the power generation output (torque, generated power) change amount by the rotating electrical machine 17 to be smaller than a predetermined amount when switching between power generation by synchronous rectification control and power generation by rectangular wave control.
  • the on / off timing of Sp and Sn is changed.
  • the rotating electrical machine ECU 14 calculates the on / off timings of the switches Sp and Sn at which the torque (that is, the generated power) output from the rotating electrical machine 17 is equal between the power generation by the synchronous rectification control and the power generation by the rectangular wave control.
  • the rotating electrical machine ECU 14 sets the on / off timing of the switches Sp, Sn between the on / off timing of the switches Sp, Sn in the power generation by the synchronous rectification control and the on / off timing of the switches Sp, Sn in the power generation by the rectangular wave control. Change gradually.
  • the rotating electrical machine ECU 14 sets the switches Sp and Sn to extend the period Ta1 during which the switches Sp and Sn are turned on in the synchronous rectification control when no current flows through the diodes Dp and Dn during power generation by the synchronous rectification control. Change the on / off timing. For this reason, it becomes possible to output electric power from the rotating electrical machine 17 and increase the power generation output of the rotating electrical machine 17. In addition, since the number of times the switches Sp and Sn are switched does not increase, an increase in switching loss can be suppressed as compared with the case where PWM control is performed.
  • the switch Sp, Sn on / off timing is changed to the power generation by the synchronous rectification control
  • the switch Sp, Sn on / off timing is changed so that the period during which the switches Sp, Sn are turned on is shortened. Is done. For this reason, it can transfer to the electric power generation by synchronous rectification control from the state in which the on-off timing of switches Sp and Sn was changed.
  • the switches Sp and Sn are turned on by the length of the period Ta1 during which the switches Sp and Sn are turned on in the synchronous rectification control and the rectangular wave control.
  • the on / off timings of the switches Sp and Sn are changed so as to be an on period having a length between the period (a half period of one electrical angle) of the period of time. For this reason, it is possible to switch between the power generation by the synchronous rectification control and the power generation by the rectangular wave control while maintaining the state in which the electric power is output from the rotating electrical machine 17.
  • the upper arm switch Sp when switching between power generation by the synchronous rectification control and power generation by the rectangular wave control, the upper arm switch Sp is turned on in the phase ⁇ 2 in which the upper arm switch Sp is turned on in the synchronous rectification control and the rectangular wave control.
  • the on / off timings of the switches Sp and Sn are changed so that the phase is between the phase ⁇ 1 and the phase ⁇ 1.
  • the rotating electrical machine ECU 14 changes the on / off timing of the switches Sp and Sn so that the amount of change in the power generation output by the rotating electrical machine 17 is smaller than a predetermined amount when switching between power generation by synchronous rectification control and power generation by rectangular wave control. . For this reason, at the time of switching between power generation by synchronous rectification control and power generation by rectangular wave control, it is possible to suppress the occurrence of noise and vibration in the rotating electrical machine 17.
  • the power generation output of the rotating electrical machine 17 can be increased while suppressing an increase in switching loss.
  • the rotating electrical machine ECU 14 is not limited to the case where the current does not flow through the diodes Dp and Dn during power generation by the synchronous rectification control, but the switch Sp in the synchronous rectification control when the current flowing through the diodes Dp and Dn is smaller than a predetermined current. , Sn may be turned on / off so as to extend the period Ta1 during which the switches are turned on.
  • the predetermined current for example, a current at which the power generation efficiency of the rotating electrical machine 17 is lower than the predetermined efficiency can be adopted although the current flows through the diodes Dp and Dn. According to such a configuration, the electric power output from the rotating electrical machine 17 can be increased, the power generation output of the rotating electrical machine 17 can be increased, and the power generation efficiency of the rotating electrical machine 17 can be improved.
  • An electric double layer capacitor or a lithium ion capacitor may be employed instead of the battery 22.
  • the functions of a rectangular wave control unit, a synchronous rectification control unit, and a timing change unit can be realized by the engine ECU 20 instead of the rotating electrical machine ECU 14.
  • a rotating electrical machine having a multi-phase multiple winding can be adopted.
  • a rotor 58 having a magnet may be employed instead of the field winding 12.
  • the control of the inverter 13 may be changed according to the configuration of the rotating electrical machine 17.
  • the configuration of the inverter 13 is also configured such that the entire X, Y, Z phase modules 13X, 13Y, 13Z are integrated modules, or two of the X, Y, Z phase modules 13X, 13Y, 13Z are integrated modules.
  • an MG Motor Generator
  • an alternator generator

Abstract

A control device (14, 20) for a rotary electric machine, said control device being applied to a vehicle equipped with: a rotary electric machine (17) having a power generation function; power storage devices (15, 22, 23); and power conversion units (13) that perform a power conversion between the rotary electric machine and the power storage devices, and have bridge-connected switching elements (Sp, Sn) and diodes (Dp, Dn) respectively connected in parallel to the switching elements. The control device for a rotary electric machine is equipped with: a synchronous rectification control unit which, when power is generated by the rotary electric machine, and in synchronization with the period in which current is flowing in a diode, turns on the switching element that is connected in parallel to the diode in which current is flowing; and a timing changing unit which, when power is generated by the synchronous rectification control unit and the current flowing in a diode is smaller than a prescribed current, changes the on/off timing of the switching element so as to lengthen the period in which the switching element is turned on by the synchronous rectification control unit.

Description

回転電機の制御装置、回転電機ユニットRotating electrical machine control device, rotating electrical machine unit 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年11月28日に出願された日本出願番号2016-230062号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-230062 filed on November 28, 2016, the contents of which are incorporated herein by reference.
 本開示は、回転電機を制御する制御装置に関する。 The present disclosure relates to a control device that controls a rotating electrical machine.
 従来、回転電機の回転速度が所定値以下のときと所定値を超えるときとで、回転電機による発電モードを切り替えるものがある(特許文献1参照)。特許文献1に記載のものでは、回転電機の回転速度が所定値以下のときには、界磁コイルに流れる界磁電流を制御するとともに、スイッチング素子を制御して電機子コイルにPWM制御された電流を通電してPWM制御による発電を行っている。そして、回転電機の回転速度が所定値を超えるときには、PWM制御を行わず、界磁コイルに流れる界磁電流の制御による発電を行っている。 Conventionally, there is one that switches a power generation mode by a rotating electric machine when the rotating speed of the rotating electric machine is equal to or lower than a predetermined value and when the rotating speed exceeds a predetermined value (see Patent Document 1). In the device disclosed in Patent Document 1, when the rotational speed of the rotating electrical machine is equal to or lower than a predetermined value, the field current flowing through the field coil is controlled, and the switching element is controlled to control the PWM controlled current to the armature coil. Electricity is generated and power is generated by PWM control. When the rotational speed of the rotating electrical machine exceeds a predetermined value, power generation is performed by controlling the field current flowing in the field coil without performing PWM control.
特開2016-189698号公報JP 2016-189698 A
 ところで、界磁電流の制御による発電は、回転電機の回転速度が所定値を超えて回転電機の発電出力が所定出力を超えるときしか行うことができない。しかしながら、回転電機の回転速度が所定値以下のときにPWM制御による発電を行うと、スイッチング素子の制御によるスイッチング損失が増加することとなる。 Incidentally, power generation by controlling the field current can be performed only when the rotational speed of the rotating electrical machine exceeds a predetermined value and the power generation output of the rotating electrical machine exceeds the predetermined output. However, if power generation by PWM control is performed when the rotation speed of the rotating electrical machine is equal to or lower than a predetermined value, switching loss due to control of the switching element increases.
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、スイッチング損失が増加することを抑制しつつ、回転電機の発電出力を増加させることのできる回転電機の制御装置を提供することにある。 The present disclosure has been made in order to solve the above-described problems, and a main object of the present disclosure is to provide a control device for a rotating electrical machine capable of increasing the power generation output of the rotating electrical machine while suppressing an increase in switching loss. It is to provide.
 上記課題を解決するための第1の手段は、
 発電機能を有する回転電機と、蓄電装置と、ブリッジ接続されたスイッチング素子と前記スイッチング素子にそれぞれ並列接続されたダイオードとを有して前記回転電機と前記蓄電装置との間の電力変換を行う電力変換部と、を備える車両に適用され、前記回転電機を制御する制御装置であって、
 前記回転電機による発電時に、前記ダイオードに電流が流れる期間に同期させて、電流が流れるダイオードに並列接続された前記スイッチング素子をオンにする同期整流制御部と、
 前記同期整流制御部による発電時に、前記ダイオードに流れる電流が所定電流よりも小さくなる場合に、前記同期整流制御部により前記スイッチング素子がオンにされる期間を延長するように前記スイッチング素子のオンオフタイミングを変更するタイミング変更部と、
を備える。
The first means for solving the above problems is as follows.
A rotating electrical machine having a power generation function, a power storage device, a bridge-connected switching element, and a diode connected in parallel to each of the switching elements, and performing power conversion between the rotating electrical machine and the power storage device A control unit that is applied to a vehicle including a conversion unit and controls the rotating electrical machine,
A synchronous rectification control unit that turns on the switching element connected in parallel to the diode through which the current flows, in synchronization with a period in which the current flows through the diode during power generation by the rotating electrical machine;
When the current flowing through the diode is smaller than a predetermined current during power generation by the synchronous rectification control unit, the on / off timing of the switching element is extended so that the period during which the switching element is turned on by the synchronous rectification control unit is extended. A timing changing section for changing
Is provided.
 上記構成によれば、電力変換部は、ブリッジ接続されたスイッチング素子とスイッチング素子にそれぞれ並列接続されたダイオードとを有しており、回転電機と蓄電装置との間の電力変換を行う。そして、回転電機による発電時に、同期整流制御部により、ダイオードに電流が流れる期間に同期させて、電流が流れるダイオードに並列接続されたスイッチング素子がオンにされる。このため、回転電機から出力される電力により、蓄電装置を効率良く充電することができる。 According to the above configuration, the power conversion unit includes the bridge-connected switching element and the diode connected in parallel to the switching element, and performs power conversion between the rotating electrical machine and the power storage device. Then, during power generation by the rotating electrical machine, the synchronous rectification control unit turns on the switching element connected in parallel to the diode through which the current flows in synchronization with the period during which the current flows through the diode. For this reason, the power storage device can be efficiently charged with the electric power output from the rotating electrical machine.
 ここで、同期整流制御部による発電時に、回転電機により発電される電圧が蓄電装置の電圧よりも低くなると、ダイオードに電流が流れなくなる。このため、同期整流制御部による発電では、回転電機から電力を出力することができなくなる。この点、タイミング変更部は、同期整流制御部による発電時に、ダイオードに流れる電流が所定電流よりも小さくなる場合に、同期整流制御部によりスイッチング素子がオンにされる期間を延長するようにスイッチング素子のオンオフタイミングを変更する。このため、回転電機から電力を出力することができたり、出力される電力を増加させたりすることができるようになり、回転電機の発電出力を増加させることができる。しかも、スイッチング素子をスイッチングする回数は増加しないため、PWM制御を行う場合と比較して、スイッチング損失が増加することを抑制することができる。特に、ダイオードに流れる電流が所定電流よりも小さくなる場合として、ダイオード電流が流れなくなる場合を採用してもよい。 Here, when the voltage generated by the rotating electrical machine becomes lower than the voltage of the power storage device during power generation by the synchronous rectification control unit, no current flows through the diode. For this reason, in the power generation by the synchronous rectification control unit, it becomes impossible to output electric power from the rotating electrical machine. In this regard, the timing changing unit is configured to extend a period during which the switching element is turned on by the synchronous rectification control unit when the current flowing through the diode is smaller than a predetermined current during power generation by the synchronous rectification control unit. Change the on / off timing. For this reason, it becomes possible to output electric power from the rotating electrical machine or increase the output electric power, thereby increasing the power generation output of the rotating electrical machine. And since the frequency | count of switching a switching element does not increase, it can suppress that a switching loss increases compared with the case where PWM control is performed. In particular, a case where the diode current stops flowing may be employed as a case where the current flowing through the diode becomes smaller than a predetermined current.
 なお、スイッチング素子がオンにされる期間を延長する構成として、スイッチング素子をオンにするタイミングを早くする構成、スイッチング素子をオフにするタイミングを遅くする構成、及びそれらの双方を行う構成を含むものとする。 Note that the configuration in which the period during which the switching element is turned on is extended includes a configuration in which the switching element is turned on earlier, a timing in which the switching element is turned off later, and a configuration in which both are performed. .
 第2の手段では、前記タイミング変更部は、前記同期整流制御部により前記スイッチング素子がオンにされる期間を延長する際に、前記スイッチング素子のオンオフタイミングを徐々に変更する。 In the second means, the timing changing unit gradually changes the on / off timing of the switching element when extending the period during which the switching element is turned on by the synchronous rectification control unit.
 上記構成によれば、スイッチング素子がオンにされる期間を延長する際に、スイッチング素子のオンオフタイミングが徐々に変更される。このため、回転電機により作用するトルクや、出力される電流及び電圧が変動することを抑制することができる。 According to the above configuration, when extending the period during which the switching element is turned on, the on / off timing of the switching element is gradually changed. For this reason, it can suppress that the torque which acts by a rotary electric machine, and the output electric current and voltage change.
 第3の手段では、前記タイミング変更部は、前記スイッチング素子のオンオフタイミングが変更された状態から前記同期整流制御部による発電へ移行する際に、前記スイッチング素子をオンにする期間を短縮するように前記スイッチング素子のオンオフタイミングを変更する。 In the third means, the timing changing unit shortens a period during which the switching element is turned on when the on / off timing of the switching element is changed to power generation by the synchronous rectification control unit. The on / off timing of the switching element is changed.
 同期整流制御部によるスイッチング素子のオンオフタイミングから変更されたオンオフタイミングで発電を行っている状態において、同期整流制御部による発電へ移行する必要が生じることがある。 In a state where power generation is performed at the on / off timing changed from the on / off timing of the switching element by the synchronous rectification control unit, it may be necessary to shift to power generation by the synchronous rectification control unit.
 この点、上記構成によれば、スイッチング素子のオンオフタイミングが変更された状態から同期整流制御部による発電へ移行する際に、スイッチング素子がオンにされる期間が短縮されるようにスイッチング素子のオンオフタイミングが変更される。このため、スイッチング素子のオンオフタイミングが変更された状態から、同期整流制御部による発電へ移行させることができる。 In this regard, according to the above configuration, when switching from the state in which the on / off timing of the switching element is changed to the power generation by the synchronous rectification control unit, the switching element is turned on / off so that the period during which the switching element is turned on is shortened. Timing is changed. For this reason, it can be made to shift to the power generation by a synchronous rectification control part from the state where the on-off timing of the switching element was changed.
 第4の手段では、前記タイミング変更部は、前記スイッチング素子をオンにする期間を短縮する際に、前記スイッチング素子のオンオフタイミングを徐々に変更する。 In the fourth means, the timing changing unit gradually changes the on / off timing of the switching element when shortening the period during which the switching element is turned on.
 上記構成によれば、タイミング変更部により、スイッチング素子がオンにされる期間が短縮される際に、スイッチング素子のオンオフタイミングが徐々に変更される。このため、回転電機により作用するトルクや、出力される電流及び電圧が変動することを抑制することができる。 According to the above configuration, when the period during which the switching element is turned on is shortened by the timing changing unit, the on / off timing of the switching element is gradually changed. For this reason, it can suppress that the torque which acts by a rotary electric machine, and the output electric current and voltage change.
 第5の手段では、前記回転電機による発電時に、前記回転電機の各相に対応する前記スイッチング素子を電気角1周期の半周期ずつ交互にオンとオフとに切り替えるとともに、前記スイッチング素子をオンにする位相を制御する矩形波制御部を備え、前記タイミング変更部は、前記同期整流制御部による発電と前記矩形波制御部による発電との切り替えに際して、前記同期整流制御部により前記スイッチング素子がオンにされる期間の長さと前記矩形波制御部により前記スイッチング素子がオンにされる期間の長さとの間の長さのオン期間になるように前記スイッチング素子のオンオフタイミングを変更する。 In the fifth means, during the power generation by the rotating electrical machine, the switching elements corresponding to each phase of the rotating electrical machine are alternately switched on and off by half a cycle of one electrical angle, and the switching element is turned on. A rectangular wave control unit that controls a phase to be transmitted, and the timing changing unit turns on the switching element by the synchronous rectification control unit when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit. The on / off timing of the switching element is changed so as to be an on period having a length between a length of a period during which the switching element is turned on by the rectangular wave control unit.
 上記構成によれば、回転電機による発電時に、矩形波制御部により、回転電機の各相に対応するスイッチング素子が電気角1周期の半周期ずつ交互にオンとオフとに切り替えられるとともに、スイッチング素子がオンにされる位相が制御される。このため、PWM制御を行う場合と比較してスイッチング損失を抑制しつつ、回転電機により発電を行うことができる。 According to the above configuration, at the time of power generation by the rotating electrical machine, the rectangular wave control unit switches the switching element corresponding to each phase of the rotating electrical machine alternately on and off by half a cycle of one electrical angle, and the switching element. The phase at which is turned on is controlled. For this reason, it is possible to generate electric power by the rotating electrical machine while suppressing the switching loss as compared with the case where PWM control is performed.
 ここで、タイミング変更部は、同期整流制御部による発電と矩形波制御部による発電との切り替えに際して、同期整流制御部によりスイッチング素子がオンにされる期間の長さと矩形波制御部によりスイッチング素子がオンにされる期間の長さとの間の長さのオン期間になるようにスイッチング素子のオンオフタイミングを変更する。このため、回転電機から電力を出力する状態を維持しつつ、同期整流制御部による発電と矩形波制御部による発電とを切り替えることができる。 Here, the timing changing unit is configured to switch the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit. The on / off timing of the switching element is changed so as to be an on period having a length between the on period and the on period. For this reason, it is possible to switch between the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit while maintaining a state in which electric power is output from the rotating electrical machine.
 矩形波制御部による発電では、スイッチング素子がオンにされる位相が制御される。このため、矩形波制御部による発電においてスイッチング素子がオンにされる位相と、同期整流制御部による発電においてスイッチング素子がオンにされる位相とが異なることとなる。 In the power generation by the rectangular wave control unit, the phase at which the switching element is turned on is controlled. For this reason, the phase at which the switching element is turned on in power generation by the rectangular wave control unit is different from the phase at which the switching element is turned on in power generation by the synchronous rectification control unit.
 この点、第6の手段では、前記タイミング変更部は、前記同期整流制御部による発電と前記矩形波制御部による発電との切り替えに際して、前記同期整流制御部により前記スイッチング素子がオンにされる位相と前記矩形波制御部により前記スイッチング素子がオンにされる位相との間の位相になるように前記スイッチング素子のオンオフタイミングを変更するといった構成を採用している。このため、同期整流制御部による発電と矩形波制御部による発電との切り替えに際して、スイッチング素子をオンにする位相が急変することを抑制することができる。ひいては、回転電機により作用するトルクや、出力される電流及び電圧が急変することを抑制することができる。 In this regard, in the sixth means, the timing changing unit is configured to turn on the switching element by the synchronous rectification control unit when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit. And a configuration in which the on / off timing of the switching element is changed so that the phase is between the phase at which the switching element is turned on by the rectangular wave control unit. For this reason, when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit, it is possible to suppress a sudden change in the phase at which the switching element is turned on. As a result, it is possible to suppress a sudden change in the torque acting on the rotating electrical machine and the output current and voltage.
 第7の手段では、前記タイミング変更部は、前記スイッチング素子をオンにする位相を変更する際に、前記スイッチング素子のオンオフタイミングを徐々に変更する。 In the seventh means, the timing changing unit gradually changes the on / off timing of the switching element when changing the phase at which the switching element is turned on.
 上記構成によれば、タイミング変更部により、スイッチング素子がオンにされる位相が変更される際に、スイッチング素子のオンオフタイミングが徐々に変更される。このため、回転電機により作用するトルクや、出力される電流及び電圧が変動することを抑制することができる。 According to the above configuration, when the phase at which the switching element is turned on is changed by the timing changing unit, the on / off timing of the switching element is gradually changed. For this reason, it can suppress that the torque which acts by a rotary electric machine, and the output electric current and voltage change.
 同期整流制御部による発電と矩形波制御部による発電との切り替えに際して、回転電機による発電出力の変化量が大きくなると、回転電機において騒音や振動が発生するおそれがある。 When switching between the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit, if the amount of change in the power generation output by the rotary electric machine becomes large, noise and vibration may occur in the rotary electric machine.
 この点、第8の手段では、前記タイミング変更部は、前記同期整流制御部による発電と前記矩形波制御部による発電との切り替えに際して、前記回転電機による発電出力の変化量が所定量よりも小さくなるように前記スイッチング素子のオンオフタイミングを変更するといった構成を採用している。このため、同期整流制御部による発電と矩形波制御部による発電との切り替えに際して、回転電機において騒音や振動が発生することを抑制することができる。 In this regard, in the eighth means, the timing changing unit is configured such that when the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit are switched, the amount of change in the power generation output by the rotating electrical machine is smaller than a predetermined amount. Thus, a configuration is adopted in which the on / off timing of the switching element is changed. For this reason, when switching between the power generation by the synchronous rectification control unit and the power generation by the rectangular wave control unit, it is possible to suppress the generation of noise and vibration in the rotating electrical machine.
 具体的には、第9の手段のように、前記矩形波制御部は、前記回転電機の回転速度が所定回転速度よりも低い場合に、前記回転電機による発電時に、前記回転電機の各相に対応する前記スイッチング素子を電気角1周期の半周期ずつ交互にオンとオフとにするとともに、前記スイッチング素子をオンにする位相を制御し、前記同期整流制御部は、前記回転電機の回転速度が前記所定回転速度よりも高い場合に、前記回転電機による発電時に、前記ダイオードに電流が流れる期間に同期させて、電流が流れるダイオードに並列接続された前記スイッチング素子をオンにするといった構成を採用することができる。 Specifically, as in the ninth means, the rectangular wave control unit applies each phase of the rotating electrical machine during power generation by the rotating electrical machine when the rotational speed of the rotating electrical machine is lower than a predetermined rotational speed. The corresponding switching element is alternately turned on and off every half cycle of one electrical angle, and the phase at which the switching element is turned on is controlled. When the power generation speed is higher than the predetermined rotational speed, a configuration is adopted in which the switching element connected in parallel to the diode through which the current flows is turned on in synchronization with the period during which the current flows through the diode during power generation by the rotating electrical machine. be able to.
 第10の手段は、回転電機ユニットであって、第1~第9のいずれか1つの手段の回転電機の制御装置と、前記回転電機と、前記電力変換部と、を備える。 The tenth means is a rotating electrical machine unit and includes a rotating electrical machine control device of any one of the first to ninth means, the rotating electrical machine, and the power conversion unit.
 上記構成によれば、回転電機の制御装置と、回転電機と、電力変換部と、を備える回転電機ユニットにおいて、スイッチング損失が増加することを抑制しつつ、回転電機の発電出力を増加させることができる。 According to the above configuration, in the rotating electrical machine unit including the control device for the rotating electrical machine, the rotating electrical machine, and the power conversion unit, it is possible to increase the power generation output of the rotating electrical machine while suppressing an increase in switching loss. it can.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車載回転電機システムの構成を示す回路図であり、 図2は、発電モードの遷移を示す図であり、 図3は、回転速度及びトルクに応じた回転電機の制御を示す図であり、 図4は、矩形波制御時の駆動信号及びデッドタイムを示すチャートであり、 図5は、同期整流制御時の動作を示すチャートであり、 図6は、同期整流制御時の駆動信号及びデッドタイムを示すチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a circuit diagram showing a configuration of an in-vehicle rotating electrical machine system, FIG. 2 is a diagram showing the transition of the power generation mode, FIG. 3 is a diagram showing the control of the rotating electrical machine according to the rotational speed and torque, FIG. 4 is a chart showing drive signals and dead time during rectangular wave control. FIG. 5 is a chart showing the operation during synchronous rectification control, FIG. 6 is a chart showing drive signals and dead time during synchronous rectification control.
 以下、車両に搭載された回転電機システムとして具現化した一実施形態について、図面を参照しつつ説明する。 Hereinafter, an embodiment embodied as a rotating electrical machine system mounted on a vehicle will be described with reference to the drawings.
 図1に示すように、車載回転電機システム100は、回転電機ユニット10、エンジンECU(Electronic Control Unit)20、バッテリ22(蓄電装置に相当)、第2コンデンサ23(蓄電装置に相当)、電気負荷24等を備えている。回転電機ユニット10は、回転電機17、インバータ13、回転電機ECU14等を備えている。回転電機ユニット10は、モータ機能付き発電機であり、機電一体型のISG(Integrated Starter Generator)として構成されている。回転電機17は、3相電機子巻線としてのX,Y、Z相巻線11X,11Y,11Z、界磁巻線12を備えている。バッテリ22は、例えば12Vの電圧を出力するPbバッテリである。なお、バッテリ22として、Pbバッテリと異なる種類のバッテリで12Vを出力するバッテリや、12V以外の電圧を出力するバッテリ等を採用することもできる。 As shown in FIG. 1, an in-vehicle rotating electrical machine system 100 includes a rotating electrical machine unit 10, an engine ECU (Electronic Control Unit) 20, a battery 22 (corresponding to a power storage device), a second capacitor 23 (corresponding to a power storage device), an electric load. 24 etc. The rotating electrical machine unit 10 includes a rotating electrical machine 17, an inverter 13, a rotating electrical machine ECU 14, and the like. The rotating electrical machine unit 10 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated Starter Generator). The rotating electrical machine 17 includes X, Y and Z phase windings 11X, 11Y, 11Z as a three-phase armature winding, and a field winding 12. The battery 22 is a Pb battery that outputs a voltage of 12 V, for example. In addition, as the battery 22, a battery that outputs 12V using a different type of battery from the Pb battery, a battery that outputs a voltage other than 12V, and the like can be used.
 X,Y、Z相巻線11X,11Y,11Zは、図示しない固定子鉄心に巻回されて固定子を構成している。本実施形態において、X,Y、Z相巻線11X,11Y,11Zのそれぞれの第1端同士は、中性点にて接続されている。すなわち、回転電機ユニット10は、Y結線されたものである。 The X, Y, and Z phase windings 11X, 11Y, and 11Z are wound around a stator core (not shown) to form a stator. In the present embodiment, the first ends of the X, Y, and Z phase windings 11X, 11Y, and 11Z are connected at a neutral point. That is, the rotating electrical machine unit 10 is Y-connected.
 界磁巻線12は、固定子鉄心の内周側に対向配置された図示しない界磁極に巻回されて回転子を構成している。界磁巻線12に励磁電流を流すことにより、界磁極が磁化される。界磁極が磁化されたときに発生する回転磁界によって各相巻線11X,11Y,11Zから交流電圧が出力される。本実施形態において、回転子は、車載エンジン101(図1では車載エンジンのボディを模式的に表示)のクランク軸から回転動力を得て回転する。エンジン101は、例えばガソリンを燃料とするエンジンであり、燃料の燃焼により駆動力を発生する。なお、エンジン101は、ガソリンエンジンに限らず、軽油を燃料として用いるディーゼルエンジンや、その他の燃料を用いるエンジンであってもよい。 The field winding 12 is wound around a field pole (not shown) disposed opposite to the inner peripheral side of the stator core to constitute a rotor. By passing an exciting current through the field winding 12, the field pole is magnetized. An AC voltage is output from each phase winding 11X, 11Y, 11Z by a rotating magnetic field generated when the field pole is magnetized. In the present embodiment, the rotor rotates by obtaining rotational power from the crankshaft of the in-vehicle engine 101 (the body of the in-vehicle engine is schematically shown in FIG. 1). The engine 101 is, for example, an engine that uses gasoline as fuel, and generates driving force by the combustion of fuel. The engine 101 is not limited to a gasoline engine, and may be a diesel engine using light oil as a fuel or an engine using other fuel.
 インバータ13(電力変換部に相当)は、各相巻線11X,11Y,11Zから出力された交流電圧(交流電力)を直流電圧(直流電力)に変換する。また、インバータ13は、バッテリ22から供給される直流電圧を交流電圧に変換して各相巻線11X,11Y,11Zへ出力する。インバータ13(整流回路及び駆動回路に相当)は、電機子巻線の相数と同数の上下アームを有するブリッジ回路である。詳しくは、インバータ13は、X相モジュール13X、Y相モジュール13Y、及びZ相モジュール13Zを備え、3相全波整流回路を構成している。また、インバータ13は、回転電機17の各相巻線11X,11Y,11Zに供給される交流電圧を調節することで回転電機17を駆動する駆動回路を構成している。 The inverter 13 (corresponding to a power converter) converts the AC voltage (AC power) output from each phase winding 11X, 11Y, 11Z into a DC voltage (DC power). The inverter 13 converts the DC voltage supplied from the battery 22 into an AC voltage and outputs the AC voltage to the phase windings 11X, 11Y, and 11Z. The inverter 13 (corresponding to a rectifier circuit and a drive circuit) is a bridge circuit having upper and lower arms of the same number as the number of phases of the armature winding. Specifically, the inverter 13 includes an X-phase module 13X, a Y-phase module 13Y, and a Z-phase module 13Z, and constitutes a three-phase full-wave rectifier circuit. The inverter 13 constitutes a drive circuit that drives the rotating electrical machine 17 by adjusting the AC voltage supplied to the phase windings 11X, 11Y, 11Z of the rotating electrical machine 17.
 X,Y,Z相モジュール13X,13Y,13Zのそれぞれは、上アームスイッチSp、及び下アームスイッチSnを備えている。すなわち、スイッチSp,Snはブリッジ接続されている。本実施形態では、各スイッチSp,Snとして、電圧制御形の半導体スイッチング素子を用いており、具体的には、NチャネルMOSFETを用いている。上アームスイッチSpには、上アームダイオードDpが逆並列(並列)に接続され、下アームスイッチSnには、下アームダイオードDnが逆並列(並列)に接続されている。本実施形態では、各ダイオードDp,Dnとして、各スイッチSp,Snのボディダイオードを用いている。なお、各ダイオードDp,Dnとしては、ボディダイオードに限らず、例えば各スイッチSp,Snとは別部品のダイオードであってもよい。 Each of the X, Y, and Z phase modules 13X, 13Y, and 13Z includes an upper arm switch Sp and a lower arm switch Sn. That is, the switches Sp and Sn are bridge-connected. In the present embodiment, voltage controlled semiconductor switching elements are used as the switches Sp and Sn, and specifically, N-channel MOSFETs are used. An upper arm diode Dp is connected in antiparallel (parallel) to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel (parallel) to the lower arm switch Sn. In the present embodiment, the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn. The diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example.
 X相モジュール13XのX端子PXには、X相巻線11Xの第2端が接続されている。X端子PXには、上アームスイッチSpの低電位側端子(ソース)と下アームスイッチSnの高電位側端子(ドレイン)とが接続されている。上アームスイッチSpのドレインには、回転電機ユニット10のB端子(出力端子に相当)が接続され、下アームスイッチSnのソースには、回転電機ユニット10のE端子を介して接地部位(グランドGND)としてのエンジン101のボディが接続されている。B端子は、上記バッテリ22の正極に接続される端子であり、着脱自在のコネクタ状に形成されている。 The second end of the X-phase winding 11X is connected to the X terminal PX of the X-phase module 13X. The X terminal PX is connected to the low potential side terminal (source) of the upper arm switch Sp and the high potential side terminal (drain) of the lower arm switch Sn. A B terminal (corresponding to an output terminal) of the rotating electrical machine unit 10 is connected to the drain of the upper arm switch Sp, and a grounding part (ground GND) is connected to the source of the lower arm switch Sn via the E terminal of the rotating electrical machine unit 10. ) As the body of the engine 101 is connected. The B terminal is a terminal connected to the positive electrode of the battery 22 and is formed in a detachable connector shape.
 Y相モジュール13YのY端子PYには、Y相巻線11Yの第2端が接続されている。Y端子PYには、上アームスイッチSpと下アームスイッチSnとの接続点が接続されている。上アームスイッチSpのドレインには、B端子が接続され、下アームスイッチSnのソースには、E端子を介してグランドGNDとしてのエンジン101のボディが接続されている。 The second end of the Y-phase winding 11Y is connected to the Y terminal PY of the Y-phase module 13Y. A connection point between the upper arm switch Sp and the lower arm switch Sn is connected to the Y terminal PY. The B terminal is connected to the drain of the upper arm switch Sp, and the body of the engine 101 as the ground GND is connected to the source of the lower arm switch Sn via the E terminal.
 Z相モジュール13ZのZ端子PZには、Z相巻線11Zの第2端が接続されている。Z端子PZには、上アームスイッチSpと下アームスイッチSnとの接続点が接続されている。上アームスイッチSpのドレインには、B端子が接続され、下アームスイッチSnのソースには、E端子を介してグランドGNDとしてのエンジン101のボディが接続されている。 The second end of the Z-phase winding 11Z is connected to the Z terminal PZ of the Z-phase module 13Z. A connection point between the upper arm switch Sp and the lower arm switch Sn is connected to the Z terminal PZ. The B terminal is connected to the drain of the upper arm switch Sp, and the body of the engine 101 as the ground GND is connected to the source of the lower arm switch Sn via the E terminal.
 各相モジュール13X,13Y,13Zのそれぞれを構成する各スイッチSp,Snの直列接続体には、第1コンデンサ15(蓄電装置に相当)と、ツェナーダイオード16とが並列接続されている。インバータ13の高圧側接続点P1と低圧側接続点P2との間の電圧を検出する電圧センサ41(電圧検出部及び電圧取得部に相当)が設けられている。 A first capacitor 15 (corresponding to a power storage device) and a Zener diode 16 are connected in parallel to a series connection body of the switches Sp and Sn constituting the phase modules 13X, 13Y, and 13Z. A voltage sensor 41 (corresponding to a voltage detection unit and a voltage acquisition unit) that detects a voltage between the high-voltage side connection point P1 and the low-voltage side connection point P2 of the inverter 13 is provided.
 回転電機ECU14(制御装置に相当)は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンとして構成されている。回転電機ECU14は、その内部の図示しないICレギュレータにより、界磁巻線12に流す励磁電流を調整する。これにより、回転電機ユニット10の発電電圧(B端子の電圧)を制御する。また、回転電機ECU14は、車両の走行開始後にインバータ13を制御して回転電機17を駆動させて、エンジン101の駆動力をアシストする。なお、回転電機17は、エンジン101の始動時にクランク軸に回転を付与可能であり、スタータとしての機能も有している。回転電機ECU14は、通信端子であるL端子及び通信線を介して、回転電機ユニット10外部の制御装置であるエンジンECU20と接続されている。エンジンECU20は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンとして構成されており、エンジン101の運転状態を制御する。回転電機ECU14は、エンジンECU20との間で双方向通信(例えば、LINプロトコルを用いたシリアル通信)を行い、エンジンECU20と情報のやりとりをする。 The rotating electrical machine ECU 14 (corresponding to a control device) is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. The rotating electrical machine ECU 14 adjusts the excitation current flowing through the field winding 12 by an IC regulator (not shown) inside. Thereby, the power generation voltage (voltage of the B terminal) of the rotating electrical machine unit 10 is controlled. The rotating electrical machine ECU 14 assists the driving force of the engine 101 by controlling the inverter 13 to drive the rotating electrical machine 17 after the vehicle starts to travel. The rotating electrical machine 17 can impart rotation to the crankshaft when the engine 101 is started, and also has a function as a starter. The rotating electrical machine ECU 14 is connected to an engine ECU 20 that is a control device outside the rotating electrical machine unit 10 via an L terminal that is a communication terminal and a communication line. The engine ECU 20 is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and controls the operating state of the engine 101. The rotating electrical machine ECU 14 performs bidirectional communication (for example, serial communication using the LIN protocol) with the engine ECU 20 and exchanges information with the engine ECU 20.
 回転電機ECU14は、エンジンECU20から送信されたシリアル通信信号に基づいて、回転電機17に要求する要求トルク(制動トルクを含む)を把握する。そして、回転電機ECU14は、回転電機17が要求トルクを発生するように、界磁巻線12に印加するPWM電圧、及びスイッチSp,Snのオンオフ状態を制御する。 The rotating electrical machine ECU 14 grasps the required torque (including braking torque) requested from the rotating electrical machine 17 based on the serial communication signal transmitted from the engine ECU 20. The rotating electrical machine ECU 14 controls the PWM voltage applied to the field winding 12 and the on / off states of the switches Sp and Sn so that the rotating electrical machine 17 generates the required torque.
 B端子には、リレー21を介して、エンジンECU20とバッテリ22の正極端子とが接続されている。バッテリ22の負極端子には、グランドGNDとしてのエンジン101のボディが接続されている。B端子には、第2コンデンサ23と、電気負荷24とが接続されている。電気負荷24は、例えば車両の電子制御ブレーキシステムや電動パワーステアリング等、所定電圧以上を動作電圧とする電気負荷を含んでいる。動作電圧は、電気負荷が規定の性能を発揮可能な電圧であり、電気負荷の保証電圧や定格電圧等である。電気負荷24は、エアコンディショナーや、車載オーディオ、ヘッドランプ等を含んでいてもよい。なお、リレー21は、イグニッションスイッチのオンによってオン状態とされる。 The engine ECU 20 and the positive terminal of the battery 22 are connected to the B terminal via the relay 21. The body of the engine 101 as the ground GND is connected to the negative terminal of the battery 22. A second capacitor 23 and an electrical load 24 are connected to the B terminal. The electric load 24 includes an electric load whose operating voltage is a predetermined voltage or higher, such as an electronically controlled brake system of a vehicle or an electric power steering. The operating voltage is a voltage at which the electrical load can exhibit the specified performance, such as a guaranteed voltage or a rated voltage of the electrical load. The electrical load 24 may include an air conditioner, in-vehicle audio, a headlamp, and the like. The relay 21 is turned on by turning on the ignition switch.
 図2に発電モードの遷移を示すように、回転電機ECU14は、回転電機17による発電時に、矩形波制御、同期整流制御、及びダイオード(Di)整流を行う。回転電機ECU14は、回転電機17の回転速度と回転電機17に要求される要求トルク(制動トルクを含む)とに基づいて、これらの発電モード及び力行モードを切り替える。 2, the rotating electrical machine ECU 14 performs rectangular wave control, synchronous rectification control, and diode (Di) rectification when the rotating electrical machine 17 generates power. The rotating electrical machine ECU 14 switches between the power generation mode and the power running mode based on the rotational speed of the rotating electrical machine 17 and the required torque (including braking torque) required for the rotating electrical machine 17.
 詳しくは図3に示すように、回転電機ECU14は、力行時、且つ回転速度が第1回転速度F1未満の領域Aで、パルス幅変調制御(PWM制御)を実施する。また、回転電機ECU14は、力行時、且つ回転速度が第1回転速度F1以上の領域Bで、矩形波制御を実施する。第1回転速度F1は、要求トルクに応じて変化する値に設定されている。なお、第1回転速度F1は、要求トルクに依存しない固定値であってもよい。 Specifically, as shown in FIG. 3, the rotating electrical machine ECU 14 performs pulse width modulation control (PWM control) in a region A where the rotational speed is less than the first rotational speed F1 during power running. Further, the rotating electrical machine ECU 14 performs the rectangular wave control in the region B where the rotational speed is equal to or higher than the first rotational speed F1 during power running. The first rotation speed F1 is set to a value that changes according to the required torque. The first rotation speed F1 may be a fixed value that does not depend on the required torque.
 力行時において、PWM制御は、矩形波制御よりも回転電機17の出力トルクを大きくできる一方で、回転電機17の回転速度が上昇すると制御における負荷、及び、スイッチング損失が増加する。そこで、回転速度の低い領域AでPWM制御を実施し、回転速度の高い領域Bで矩形波制御を実施する。 During power running, the PWM control can increase the output torque of the rotating electrical machine 17 compared to the rectangular wave control, while the load and switching loss in the control increase as the rotational speed of the rotating electrical machine 17 increases. Therefore, PWM control is performed in the region A where the rotational speed is low, and rectangular wave control is performed in the region B where the rotational speed is high.
 また、回転電機ECU14は、発電時、且つ回転速度が第2回転速度F2(所定回転速度に相当)未満の領域Cで、矩形波制御を実施する。回転電機ECU14は、発電時、且つ回転速度が第2回転速度F2以上第3回転速度F3未満、且つ要求トルクが所定の負のトルクT1未満の領域Dで、同期整流制御を実施する(F2<F3)。また、回転電機ECU14は、発電時、且つ回転速度が第2回転速度F2以上且つ要求トルクが負のトルクT1以上、又は回転速度が第3回転速度F3以上の領域Eで、ダイオード整流を実施する。第2回転速度F2及び第3回転速度F3は、それぞれ要求トルクに依らない固定値である。なお、第2回転速度F2及び第3回転速度F3は、それぞれ要求トルクに応じて変化する値に設定されていてもよい。 Further, the rotating electrical machine ECU 14 performs the rectangular wave control in the region C where the rotational speed is less than the second rotational speed F2 (corresponding to a predetermined rotational speed) during power generation. The rotating electrical machine ECU 14 performs synchronous rectification control in a region D where power is generated, the rotational speed is equal to or higher than the second rotational speed F2 and lower than the third rotational speed F3, and the required torque is lower than a predetermined negative torque T1 (F2 < F3). In addition, the rotating electrical machine ECU 14 performs diode rectification at the time of power generation, in a region E where the rotational speed is equal to or higher than the second rotational speed F2 and the required torque is negative torque T1 or higher, or the rotational speed is equal to or higher than the third rotational speed F3. . The second rotation speed F2 and the third rotation speed F3 are fixed values that do not depend on the required torque. The second rotation speed F2 and the third rotation speed F3 may be set to values that change according to the required torque.
 図4は、発電時の矩形波制御におけるスイッチSp,Snの駆動信号及びデッドタイムDT1を示すチャートである。同図に示すように、発電時の矩形波制御では、回転電機ECU14(矩形波制御部に相当)は、回転電機17の各相に対応するスイッチSp,Snを電気角1周期Rの半周期ずつ交互にオン(H信号)とオフ(L信号)とに切り替えるとともに、上アームスイッチSpをオンにする位相θ1(タイミングt1)を制御する。各相の位相は、互いに電気角120°ずれている。また、上アームスイッチSpをオンにする期間と下アームスイッチSnをオンにする期間との間には、スイッチSp,Snを共にオフにするデッドタイムDT1が設けられている。デッドタイムDT1は、所定の固定値に設定されている。位相θ1は、回転電機17の回転速度、及び要求トルク(あるいは要求発電電圧)に基づいて設定される。 FIG. 4 is a chart showing drive signals and dead time DT1 of the switches Sp and Sn in rectangular wave control during power generation. As shown in the figure, in the rectangular wave control during power generation, the rotating electrical machine ECU 14 (corresponding to the rectangular wave control unit) switches the switches Sp and Sn corresponding to each phase of the rotating electrical machine 17 to a half cycle of one electrical angle R. While alternately switching on (H signal) and off (L signal) one by one, the phase θ1 (timing t1) for turning on the upper arm switch Sp is controlled. The phases of the phases are shifted from each other by an electrical angle of 120 °. Further, a dead time DT1 for turning off both the switches Sp and Sn is provided between the period for turning on the upper arm switch Sp and the period for turning on the lower arm switch Sn. The dead time DT1 is set to a predetermined fixed value. The phase θ1 is set based on the rotation speed of the rotating electrical machine 17 and the required torque (or required power generation voltage).
 矩形波制御を実施すると、電気角1周期当たりのスイッチング回数がオン操作とオフ操作とでそれぞれ1回だけであり、PWM制御を実施した場合と比較して、電気角1周期当たりのスイッチング回数が少ない。このため、回転電機ECU14は、矩形波制御を実施することで、PWM制御と比較してスイッチング回数を低減し、スイッチング損失を抑制することができる。 When the rectangular wave control is performed, the number of times of switching per electrical angle cycle is only once for the ON operation and the OFF operation, and the number of switching times per cycle of the electrical angle is smaller than when PWM control is performed. Few. For this reason, the rotating electrical machine ECU 14 can reduce the number of times of switching and suppress the switching loss by performing the rectangular wave control as compared with the PWM control.
 図5は同期整流制御時の動作を示すチャートであり、図6は同期整流制御時におけるスイッチSp,Snの駆動信号及びデッドタイムDT2を示すチャートである。図5,6に示すように、発電時の同期整流制御では、回転電機ECU14(同期整流制御部に相当)は、ダイオードDp,Dnに電流が流れる期間Ta1,Ta2に同期させて、電流が流れるダイオードDp,Dnに並列接続されたスイッチSp,Snをオンにする。例えば、回転電機ECU14は、各相に流れる電流を検出し、各相において電流が流れたことが検出されたタイミングで対応するスイッチSp,Snをオンにする。また、各相において電流が流れるタイミングを、予め実験等に基づいて取得しておき、そのタイミングで対応するスイッチSp,Snをオンにしてもよい。図6に示すように、上アームスイッチSpをオンにする期間と下アームスイッチSnをオンにする期間との間には、スイッチSp,Snが共にオフであるデッドタイムDT2が生じている。デッドタイムDT2は、期間Ta1,Ta2に応じて決まる可変値である。また、上アームスイッチSpをオンにする位相θ2(タイミングt2)は、各相に電流が流れるタイミングに応じて変化する。 FIG. 5 is a chart showing the operation at the time of synchronous rectification control, and FIG. 6 is a chart showing the drive signals and dead time DT2 of the switches Sp and Sn at the time of synchronous rectification control. As shown in FIGS. 5 and 6, in the synchronous rectification control during power generation, the rotating electrical machine ECU 14 (corresponding to the synchronous rectification control unit) flows in synchronization with the periods Ta1 and Ta2 in which current flows in the diodes Dp and Dn. The switches Sp and Sn connected in parallel to the diodes Dp and Dn are turned on. For example, the rotating electrical machine ECU 14 detects a current flowing in each phase, and turns on the corresponding switches Sp and Sn at a timing when the current is detected to flow in each phase. Alternatively, the timing at which current flows in each phase may be acquired in advance based on experiments or the like, and the corresponding switches Sp and Sn may be turned on at that timing. As shown in FIG. 6, a dead time DT2 in which both the switches Sp and Sn are off occurs between the period in which the upper arm switch Sp is turned on and the period in which the lower arm switch Sn is turned on. The dead time DT2 is a variable value determined according to the periods Ta1 and Ta2. In addition, the phase θ2 (timing t2) at which the upper arm switch Sp is turned on changes in accordance with the timing at which current flows in each phase.
 また、回転電機ECU14は、ダイオード整流では、インバータ13を構成する全てのスイッチSp,Snをオフにし、各スイッチSp,Snに並列接続されたダイオードDp,Dnにより整流を行う。図3において、発電電力(要求トルクの絶対値)の小さい領域では、同期整流制御におけるスイッチング損失がダイオード整流におけるダイオード損失よりも大きくなる。このため、回転電機ECU14は、発電電力が大きい領域Dで同期整流制御を実施し、発電電力が小さい領域E(回転速度<F3)でダイオード整流を実施する。また、同期整流制御は、回転電機17の回転速度が上昇すると制御における負荷が増加するため、回転電機ECU14は、回転電機17の回転速度が高い領域E(回転速度≧F3)において、ダイオード整流を実施する。 In the diode rectification, the rotating electrical machine ECU 14 turns off all the switches Sp and Sn constituting the inverter 13 and performs rectification by the diodes Dp and Dn connected in parallel to the switches Sp and Sn. In FIG. 3, in the region where the generated power (absolute value of the required torque) is small, the switching loss in the synchronous rectification control is larger than the diode loss in the diode rectification. For this reason, the rotating electrical machine ECU 14 performs synchronous rectification control in the region D where the generated power is large, and performs diode rectification in the region E where the generated power is small (rotational speed <F3). In the synchronous rectification control, the load in the control increases as the rotational speed of the rotating electrical machine 17 increases. Therefore, the rotating electrical machine ECU 14 performs diode rectification in the region E where the rotational speed of the rotating electrical machine 17 is high (rotational speed ≧ F3). carry out.
 ここで、同期整流制御による発電時に、回転電機17により発電される電圧がバッテリ22(第1コンデンサ15)の電圧よりも低くなると、ダイオードDp,Dnに電流が流れなくなる。このため、同期整流制御による発電では、回転電機17から電力を出力することができなくなる。 Here, when the voltage generated by the rotating electrical machine 17 is lower than the voltage of the battery 22 (first capacitor 15) during the power generation by the synchronous rectification control, no current flows through the diodes Dp and Dn. For this reason, in the power generation by the synchronous rectification control, it becomes impossible to output electric power from the rotating electrical machine 17.
 これに対して、本実施形態では、回転電機ECU14(タイミング変更部に相当)は、同期整流制御による発電時に、ダイオードDp,Dnに電流が流れなくなる場合に、同期整流制御においてスイッチSp,Snがオンにされる期間を延長するようにスイッチSp,Snのオンオフタイミングを変更する。 On the other hand, in the present embodiment, the rotating electrical machine ECU 14 (corresponding to the timing changing unit) switches the switches Sp and Sn in the synchronous rectification control when no current flows through the diodes Dp and Dn during power generation by the synchronous rectification control. The on / off timing of the switches Sp and Sn is changed so as to extend the period during which the switch is turned on.
 詳しくは、回転電機ECU14は、同期整流制御による発電と矩形波制御による発電との切り替えに際して、同期整流制御においてスイッチSp,Snがオンにされる期間の長さと矩形波制御においてスイッチSp,Snがオンにされる期間の長さとの間の長さのオン期間になるように、スイッチSp,Snのオンオフタイミングを変更する。スイッチSp,Snがオンにされる期間を延長する構成として、スイッチSp,Snをオンにするタイミングを早くする構成、スイッチSp,Snをオフにするタイミングを遅くする構成、及びそれらの双方を行う構成等を採用することができる。回転電機ECU14は、同期整流制御においてスイッチSp,Snがオンにされる期間を延長する際に、スイッチSp,Snのオンオフタイミングを徐々に変更する。例えば、回転電機ECU14は、スイッチSp,Snのオンオフタイミングを連続的に変更したり、スイッチSp,Snのオンオフタイミングを段階的に変更したりする。 Specifically, the rotary electric machine ECU 14 switches between the power generation by the synchronous rectification control and the power generation by the rectangular wave control, the length of the period during which the switches Sp and Sn are turned on in the synchronous rectification control, and the switches Sp and Sn in the rectangular wave control. The on / off timings of the switches Sp and Sn are changed so that the on period has a length between the on period and the on period. As a configuration for extending the period during which the switches Sp and Sn are turned on, a configuration in which the timing to turn on the switches Sp and Sn is advanced, a configuration in which the timing to turn off the switches Sp and Sn is delayed, and both of them are performed. A configuration or the like can be adopted. The rotating electrical machine ECU 14 gradually changes the on / off timings of the switches Sp and Sn when extending the period during which the switches Sp and Sn are turned on in the synchronous rectification control. For example, the rotating electrical machine ECU 14 continuously changes the on / off timings of the switches Sp and Sn, or changes the on / off timings of the switches Sp and Sn in stages.
 矩形波制御による発電では、上アームスイッチSpがオンにされる位相θ1(タイミングt1)が制御される。また、同期整流制御部による発電では、上アームスイッチSpがオンにされる位相θ2(タイミングt2)が、各相に電流が流れるタイミングに応じて変化する。このため、矩形波制御による発電において上アームスイッチSp(別の相の下アームスイッチSn)がオンにされる位相θ1と、同期整流制御による発電において上アームスイッチSp(別の相の下アームスイッチSn)がオンにされる位相θ2とが異なることとなる。 In the power generation by the rectangular wave control, the phase θ1 (timing t1) at which the upper arm switch Sp is turned on is controlled. Further, in the power generation by the synchronous rectification control unit, the phase θ2 (timing t2) at which the upper arm switch Sp is turned on changes according to the timing of current flowing in each phase. Therefore, the phase θ1 in which the upper arm switch Sp (lower arm switch Sn of another phase) is turned on in the power generation by the rectangular wave control, and the upper arm switch Sp (lower arm switch of another phase in the power generation by the synchronous rectification control). The phase θ2 at which Sn) is turned on will be different.
 そこで、回転電機ECU14は、同期整流制御による発電と矩形波制御部による発電との切り替えに際して、同期整流制御部において上アームスイッチSpがオンにされる位相θ2と矩形波制御において上アームスイッチSpがオンにされる位相θ1との間の位相になるように、上アームスイッチSp(下アームスイッチSn)のオンオフタイミングを変更する。回転電機ECU14は、スイッチSp,Snをオンにする位相を変更する際に、スイッチSp,Snのオンオフタイミングを徐々に変更する。 Therefore, when the rotating electrical machine ECU 14 switches between the power generation by the synchronous rectification control and the power generation by the rectangular wave control unit, the phase θ2 in which the upper arm switch Sp is turned on in the synchronous rectification control unit and the upper arm switch Sp in the rectangular wave control is set. The on / off timing of the upper arm switch Sp (lower arm switch Sn) is changed so that the phase is between the phase θ1 to be turned on. The rotating electrical machine ECU 14 gradually changes the on / off timings of the switches Sp and Sn when changing the phase at which the switches Sp and Sn are turned on.
 また、回転電機ECU14は、スイッチSp,Snのオンオフタイミングが変更された状態から同期整流制御による発電へ移行する際に、スイッチSp,Snをオンにする期間を短縮するようにスイッチSp,Snのオンオフタイミングを変更する。スイッチSp,Snがオンにされる期間を短縮する構成として、スイッチSp,Snをオンにするタイミングを遅くする構成、スイッチSp,Snをオフにするタイミングを早くする構成、及びそれらの双方を行う構成等を採用することができる。回転電機ECU14は、スイッチSp,Snがオンにされる期間を短縮する際に、スイッチSp,Snのオンオフタイミングを徐々に変更する。 In addition, when the rotating electrical machine ECU 14 shifts from the state in which the on / off timing of the switches Sp and Sn is changed to the power generation by the synchronous rectification control, the rotating electrical machine ECU 14 shortens the period during which the switches Sp and Sn are turned on. Change the on / off timing. As a configuration for shortening the period during which the switches Sp and Sn are turned on, a configuration for delaying the timing for turning on the switches Sp and Sn, a configuration for increasing the timing for turning off the switches Sp and Sn, and both of them are performed. A configuration or the like can be adopted. The rotating electrical machine ECU 14 gradually changes the on / off timings of the switches Sp and Sn when the period during which the switches Sp and Sn are turned on is shortened.
 こうした制御により、回転電機ECU14は、同期整流制御による発電と矩形波制御による発電との切り替えに際して、回転電機17による発電出力(トルク、発電電力)の変化量が所定量よりも小さくなるようにスイッチSp,Snのオンオフタイミングを変更する。詳しくは、回転電機ECU14は、同期整流制御による発電と矩形波制御による発電とで、回転電機17が出力するトルク(すなわち発電電力)が等しくなるスイッチSp,Snのオンオフタイミングをそれぞれ算出する。そして、回転電機ECU14は、同期整流制御による発電でのスイッチSp,Snのオンオフタイミングと、矩形波制御による発電でのスイッチSp,Snのオンオフタイミングとの間で、スイッチSp,Snのオンオフタイミングを徐々に変更する。 By such control, the rotating electrical machine ECU 14 switches the power generation output (torque, generated power) change amount by the rotating electrical machine 17 to be smaller than a predetermined amount when switching between power generation by synchronous rectification control and power generation by rectangular wave control. The on / off timing of Sp and Sn is changed. Specifically, the rotating electrical machine ECU 14 calculates the on / off timings of the switches Sp and Sn at which the torque (that is, the generated power) output from the rotating electrical machine 17 is equal between the power generation by the synchronous rectification control and the power generation by the rectangular wave control. The rotating electrical machine ECU 14 sets the on / off timing of the switches Sp, Sn between the on / off timing of the switches Sp, Sn in the power generation by the synchronous rectification control and the on / off timing of the switches Sp, Sn in the power generation by the rectangular wave control. Change gradually.
 以上詳述した本実施形態は、以下の利点を有する。 The embodiment described above has the following advantages.
 ・回転電機ECU14は、同期整流制御による発電時に、ダイオードDp,Dnに電流が流れなくなる場合に、同期整流制御においてスイッチSp,Snがオンにされる期間Ta1を延長するようにスイッチSp,Snのオンオフタイミングを変更する。このため、回転電機17から電力を出力することができるようになり、回転電機17の発電出力を増加させることができる。しかも、スイッチSp,Snをスイッチングする回数は増加しないため、PWM制御を行う場合と比較して、スイッチング損失が増加することを抑制することができる。 The rotating electrical machine ECU 14 sets the switches Sp and Sn to extend the period Ta1 during which the switches Sp and Sn are turned on in the synchronous rectification control when no current flows through the diodes Dp and Dn during power generation by the synchronous rectification control. Change the on / off timing. For this reason, it becomes possible to output electric power from the rotating electrical machine 17 and increase the power generation output of the rotating electrical machine 17. In addition, since the number of times the switches Sp and Sn are switched does not increase, an increase in switching loss can be suppressed as compared with the case where PWM control is performed.
 ・スイッチSp,Snのオンオフタイミングが変更された状態から同期整流制御による発電へ移行する際に、スイッチSp,Snがオンにされる期間が短縮されるようにスイッチSp,Snのオンオフタイミングが変更される。このため、スイッチSp,Snのオンオフタイミングが変更された状態から、同期整流制御による発電へ移行させることができる。 -When the switch Sp, Sn on / off timing is changed to the power generation by the synchronous rectification control, the switch Sp, Sn on / off timing is changed so that the period during which the switches Sp, Sn are turned on is shortened. Is done. For this reason, it can transfer to the electric power generation by synchronous rectification control from the state in which the on-off timing of switches Sp and Sn was changed.
 ・回転電機ECU14により、スイッチSp,Snがオンにされる期間が延長及び短縮される際に、スイッチSp,Snのオンオフタイミングが徐々に変更される。このため、回転電機17により作用するトルクや、出力される電流及び電圧が変動することを抑制することができる。 When the period during which the switches Sp and Sn are turned on is extended and shortened by the rotating electrical machine ECU 14, the on / off timing of the switches Sp and Sn is gradually changed. For this reason, it can suppress that the torque which acts with the rotary electric machine 17, and the electric current and voltage which are output change.
 ・回転電機ECU14は、同期整流制御による発電と矩形波制御による発電との切り替えに際して、同期整流制御においてスイッチSp,Snがオンにされる期間Ta1の長さと矩形波制御によりスイッチSp,Snがオンにされる期間(電気角1周期の半周期)の長さとの間の長さのオン期間になるようにスイッチSp,Snのオンオフタイミングを変更する。このため、回転電機17から電力を出力する状態を維持しつつ、同期整流制御による発電と矩形波制御による発電とを切り替えることができる。 -When the rotating electrical machine ECU 14 switches between power generation by synchronous rectification control and power generation by rectangular wave control, the switches Sp and Sn are turned on by the length of the period Ta1 during which the switches Sp and Sn are turned on in the synchronous rectification control and the rectangular wave control. The on / off timings of the switches Sp and Sn are changed so as to be an on period having a length between the period (a half period of one electrical angle) of the period of time. For this reason, it is possible to switch between the power generation by the synchronous rectification control and the power generation by the rectangular wave control while maintaining the state in which the electric power is output from the rotating electrical machine 17.
 ・回転電機ECU14は、同期整流制御による発電と矩形波制御による発電との切り替えに際して、同期整流制御において上アームスイッチSpがオンにされる位相θ2と矩形波制御において上アームスイッチSpがオンにされる位相θ1との間の位相になるようにスイッチSp,Snのオンオフタイミングを変更する。このため、同期整流制御による発電と矩形波制御による発電との切り替えに際して、スイッチSp,Snをオンにする位相が急変することを抑制することができる。ひいては、回転電機17により作用するトルクや、出力される電流及び電圧が急変することを抑制することができる。 In the rotating electrical machine ECU 14, when switching between power generation by the synchronous rectification control and power generation by the rectangular wave control, the upper arm switch Sp is turned on in the phase θ2 in which the upper arm switch Sp is turned on in the synchronous rectification control and the rectangular wave control. The on / off timings of the switches Sp and Sn are changed so that the phase is between the phase θ1 and the phase θ1. For this reason, at the time of switching between the power generation by the synchronous rectification control and the power generation by the rectangular wave control, it is possible to suppress a sudden change in the phase at which the switches Sp and Sn are turned on. As a result, it is possible to suppress sudden changes in the torque applied by the rotating electrical machine 17 and the output current and voltage.
 ・回転電機ECU14は、同期整流制御による発電と矩形波制御による発電との切り替えに際して、回転電機17による発電出力の変化量が所定量よりも小さくなるようにスイッチSp,Snのオンオフタイミングを変更する。このため、同期整流制御による発電と矩形波制御による発電との切り替えに際して、回転電機17において騒音や振動が発生することを抑制することができる。 The rotating electrical machine ECU 14 changes the on / off timing of the switches Sp and Sn so that the amount of change in the power generation output by the rotating electrical machine 17 is smaller than a predetermined amount when switching between power generation by synchronous rectification control and power generation by rectangular wave control. . For this reason, at the time of switching between power generation by synchronous rectification control and power generation by rectangular wave control, it is possible to suppress the occurrence of noise and vibration in the rotating electrical machine 17.
 ・回転電機ECU14と、回転電機17と、インバータ13と、を備える回転電機ユニット10において、スイッチング損失が増加することを抑制しつつ、回転電機17の発電出力を増加させることができる。 In the rotating electrical machine unit 10 including the rotating electrical machine ECU 14, the rotating electrical machine 17, and the inverter 13, the power generation output of the rotating electrical machine 17 can be increased while suppressing an increase in switching loss.
 なお、上記実施形態を、以下のように変更して実施することもできる。 It should be noted that the above embodiment can be modified as follows.
 ・回転電機ECU14は、同期整流制御による発電時に、ダイオードDp,Dnに電流が流れなくなる場合に限らず、ダイオードDp,Dnに流れる電流が所定電流よりも小さくなる場合に、同期整流制御においてスイッチSp,Snがオンにされる期間Ta1を延長するようにスイッチSp,Snのオンオフタイミングを変更してもよい。所定電流としては、例えばダイオードDp,Dnに電流が流れているものの、回転電機17の発電効率が所定効率よりも低下する電流を採用することができる。こうした構成によれば、回転電機17から出力される電力を増加させることができ、回転電機17の発電出力を増加させることができるとともに、回転電機17の発電効率を向上させることができる。 The rotating electrical machine ECU 14 is not limited to the case where the current does not flow through the diodes Dp and Dn during power generation by the synchronous rectification control, but the switch Sp in the synchronous rectification control when the current flowing through the diodes Dp and Dn is smaller than a predetermined current. , Sn may be turned on / off so as to extend the period Ta1 during which the switches are turned on. As the predetermined current, for example, a current at which the power generation efficiency of the rotating electrical machine 17 is lower than the predetermined efficiency can be adopted although the current flows through the diodes Dp and Dn. According to such a configuration, the electric power output from the rotating electrical machine 17 can be increased, the power generation output of the rotating electrical machine 17 can be increased, and the power generation efficiency of the rotating electrical machine 17 can be improved.
 ・バッテリ22に代えて、電気二重層キャパシタや、リチウムイオンキャパシタを採用することもできる。 · An electric double layer capacitor or a lithium ion capacitor may be employed instead of the battery 22.
 ・回転電機ECU14に代えて、エンジンECU20により、矩形波制御部、同期整流制御部、及びタイミング変更部の機能を実現することもできる。 The functions of a rectangular wave control unit, a synchronous rectification control unit, and a timing change unit can be realized by the engine ECU 20 instead of the rotating electrical machine ECU 14.
 ・回転電機17として、多相多重巻線を有する回転電機を採用することもできる。回転電機17として、界磁巻線12に代えて、ロータ58に磁石を備えるものを採用することもできる。その場合は、回転電機17の構成に応じて、インバータ13の制御を変更すればよい。なお、インバータ13の構成も、X,Y,Z相モジュール13X,13Y,13Z全体を一体のモジュールとして構成したり、X,Y,Z相モジュール13X,13Y,13Zのうち2つを一体のモジュールとして構成したりしてもよい。また、回転電機17として、車両を駆動することが可能な駆動力を発生するMG(Motor Generator)や、オルタネータ(発電機)を採用することもできる。 -As the rotating electrical machine 17, a rotating electrical machine having a multi-phase multiple winding can be adopted. As the rotating electrical machine 17, a rotor 58 having a magnet may be employed instead of the field winding 12. In that case, the control of the inverter 13 may be changed according to the configuration of the rotating electrical machine 17. The configuration of the inverter 13 is also configured such that the entire X, Y, Z phase modules 13X, 13Y, 13Z are integrated modules, or two of the X, Y, Z phase modules 13X, 13Y, 13Z are integrated modules. Or may be configured as Further, as the rotating electrical machine 17, an MG (Motor Generator) that generates a driving force capable of driving the vehicle or an alternator (generator) can be adopted.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (10)

  1.  発電機能を有する回転電機(17)と、蓄電装置(15、22、23)と、ブリッジ接続されたスイッチング素子(Sp,Sn)と前記スイッチング素子にそれぞれ並列接続されたダイオード(Dp,Dn)とを有して前記回転電機と前記蓄電装置との間の電力変換を行う電力変換部(13)と、を備える車両に適用され、前記回転電機を制御する制御装置(14、20)であって、
     前記回転電機による発電時に、前記ダイオードに電流が流れる期間に同期させて、電流が流れるダイオードに並列接続された前記スイッチング素子をオンにする同期整流制御部と、
     前記同期整流制御部による発電時に、前記ダイオードに流れる電流が所定電流よりも小さくなる場合に、前記同期整流制御部により前記スイッチング素子がオンにされる期間を延長するように前記スイッチング素子のオンオフタイミングを変更するタイミング変更部と、
    を備える回転電機の制御装置。
    A rotating electrical machine (17) having a power generation function, a power storage device (15, 22, 23), switching elements (Sp, Sn) connected in a bridge, and diodes (Dp, Dn) connected in parallel to the switching elements, And a control device (14, 20) that controls the rotating electrical machine, and is applied to a vehicle including a power conversion unit (13) that performs power conversion between the rotating electrical machine and the power storage device. ,
    A synchronous rectification control unit that turns on the switching element connected in parallel to the diode through which the current flows, in synchronization with a period in which the current flows through the diode during power generation by the rotating electrical machine;
    When the current flowing through the diode is smaller than a predetermined current during power generation by the synchronous rectification control unit, the on / off timing of the switching element is extended so that the period during which the switching element is turned on by the synchronous rectification control unit is extended. A timing changing section for changing
    A control device for a rotating electrical machine.
  2.  前記タイミング変更部は、前記同期整流制御部により前記スイッチング素子がオンにされる期間を延長する際に、前記スイッチング素子のオンオフタイミングを徐々に変更する請求項1に記載の回転電機の制御装置。 The control device for a rotating electrical machine according to claim 1, wherein the timing changing unit gradually changes the on / off timing of the switching element when extending a period during which the switching element is turned on by the synchronous rectification control unit.
  3.  前記タイミング変更部は、前記スイッチング素子のオンオフタイミングが変更された状態から前記同期整流制御部による発電へ移行する際に、前記スイッチング素子をオンにする期間を短縮するように前記スイッチング素子のオンオフタイミングを変更する請求項1又は2に記載の回転電機の制御装置。 The timing changing unit is configured to reduce an on / off timing of the switching element so as to shorten a period during which the switching element is turned on when the on / off timing of the switching element is changed to power generation by the synchronous rectification control unit. The control apparatus of the rotary electric machine according to claim 1 or 2, wherein
  4.  前記タイミング変更部は、前記スイッチング素子をオンにする期間を短縮する際に、前記スイッチング素子のオンオフタイミングを徐々に変更する請求項3に記載の回転電機の制御装置。 4. The control device for a rotating electrical machine according to claim 3, wherein the timing changing unit gradually changes the on / off timing of the switching element when the period during which the switching element is turned on is shortened.
  5.  前記回転電機による発電時に、前記回転電機の各相に対応する前記スイッチング素子を電気角1周期の半周期ずつ交互にオンとオフとに切り替えるとともに、前記スイッチング素子をオンにする位相を制御する矩形波制御部(14、20)を備え、
     前記タイミング変更部は、前記同期整流制御部による発電と前記矩形波制御部による発電との切り替えに際して、前記同期整流制御部により前記スイッチング素子がオンにされる期間の長さと前記矩形波制御部により前記スイッチング素子がオンにされる期間の長さとの間の長さのオン期間になるように前記スイッチング素子のオンオフタイミングを変更する請求項1~4のいずれか1項に記載の回転電機の制御装置。
    A rectangle for switching the switching element corresponding to each phase of the rotating electrical machine alternately on and off for each half cycle of an electrical angle and controlling the phase at which the switching element is turned on during power generation by the rotating electrical machine A wave control unit (14, 20),
    The timing changing unit is configured to change a period of time during which the switching element is turned on by the synchronous rectification control unit and the rectangular wave control unit when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit. The control of the rotating electrical machine according to any one of claims 1 to 4, wherein the on / off timing of the switching element is changed so as to be an on period having a length between a period of time during which the switching element is turned on. apparatus.
  6.  前記タイミング変更部は、前記同期整流制御部による発電と前記矩形波制御部による発電との切り替えに際して、前記同期整流制御部により前記スイッチング素子がオンにされる位相と前記矩形波制御部により前記スイッチング素子がオンにされる位相との間の位相になるように前記スイッチング素子のオンオフタイミングを変更する請求項5に記載の回転電機の制御装置。 The timing changing unit is configured to switch a phase of turning on the switching element by the synchronous rectification control unit and the switching by the rectangular wave control unit when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit. The control device for a rotating electrical machine according to claim 5, wherein the on / off timing of the switching element is changed so as to be in a phase between the phase where the element is turned on.
  7.  前記タイミング変更部は、前記スイッチング素子をオンにする位相を変更する際に、前記スイッチング素子のオンオフタイミングを徐々に変更する請求項6に記載の回転電機の制御装置。 The control device for a rotating electrical machine according to claim 6, wherein the timing changing unit gradually changes an on / off timing of the switching element when changing a phase at which the switching element is turned on.
  8.  前記タイミング変更部は、前記同期整流制御部による発電と前記矩形波制御部による発電との切り替えに際して、前記回転電機による発電出力の変化量が所定量よりも小さくなるように前記スイッチング素子のオンオフタイミングを変更する請求項5~7のいずれか1項に記載の回転電機の制御装置。 The timing changing unit is configured to turn on and off the switching element so that the amount of change in power generation output by the rotating electrical machine is smaller than a predetermined amount when switching between power generation by the synchronous rectification control unit and power generation by the rectangular wave control unit. The rotating electrical machine control device according to any one of claims 5 to 7, wherein the controller is changed.
  9.  前記矩形波制御部は、前記回転電機の回転速度が所定回転速度よりも低い場合に、前記回転電機による発電時に、前記回転電機の各相に対応する前記スイッチング素子を電気角1周期の半周期ずつ交互にオンとオフとにするとともに、前記スイッチング素子をオンにする位相を制御し、
     前記同期整流制御部は、前記回転電機の回転速度が前記所定回転速度よりも高い場合に、前記回転電機による発電時に、前記ダイオードに電流が流れる期間に同期させて、電流が流れるダイオードに並列接続された前記スイッチング素子をオンにする請求項5~8のいずれか1項に記載の回転電機の制御装置。
    When the rotational speed of the rotating electrical machine is lower than a predetermined rotational speed, the rectangular wave control unit causes the switching element corresponding to each phase of the rotating electrical machine to have a half cycle of an electrical angle during power generation by the rotating electrical machine. Alternately turning on and off at a time, and controlling the phase at which the switching element is turned on,
    The synchronous rectification control unit is connected in parallel to a diode through which a current flows in synchronization with a period during which a current flows through the diode during power generation by the rotating electrical machine when the rotational speed of the rotating electrical machine is higher than the predetermined rotation speed. The control device for a rotating electrical machine according to any one of claims 5 to 8, wherein the switched switching element is turned on.
  10.  請求項1~9のいずれか1項に記載の回転電機の制御装置(14)と、
     前記回転電機(17)と、前記電力変換部(13)と、を備える回転電機ユニット(10)。
    A control device (14) for a rotating electrical machine according to any one of claims 1 to 9,
    A rotating electrical machine unit (10) comprising the rotating electrical machine (17) and the power converter (13).
PCT/JP2017/041157 2016-11-28 2017-11-15 Control device for rotary electric machine, and rotary electric machine unit WO2018097013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017006017.6T DE112017006017T5 (en) 2016-11-28 2017-11-15 Control device for a rotating electrical machine and a rotating electrical machine unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-230062 2016-11-28
JP2016230062A JP6645405B2 (en) 2016-11-28 2016-11-28 Rotary electric machine control device, rotary electric machine unit

Publications (1)

Publication Number Publication Date
WO2018097013A1 true WO2018097013A1 (en) 2018-05-31

Family

ID=62195035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041157 WO2018097013A1 (en) 2016-11-28 2017-11-15 Control device for rotary electric machine, and rotary electric machine unit

Country Status (3)

Country Link
JP (1) JP6645405B2 (en)
DE (1) DE112017006017T5 (en)
WO (1) WO2018097013A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7077886B2 (en) * 2018-09-13 2022-05-31 株式会社デンソー Rotating electric machine for vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210895A (en) * 2002-02-20 2005-08-04 Hitachi Ltd Charger
JP2010268594A (en) * 2009-05-14 2010-11-25 Mitsubishi Electric Corp Power converter for vehicle
CN102185336A (en) * 2011-05-06 2011-09-14 潘迪 Wind power generating equipment
JP2012070559A (en) * 2010-09-24 2012-04-05 Denso Corp Rotary electric machine for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006386A1 (en) * 2014-07-10 2016-01-14 三菱電機株式会社 Control device and control method for vehicle dynamo
JP5996031B1 (en) * 2015-04-01 2016-09-21 三菱電機株式会社 Control device for rotating electrical machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210895A (en) * 2002-02-20 2005-08-04 Hitachi Ltd Charger
JP2010268594A (en) * 2009-05-14 2010-11-25 Mitsubishi Electric Corp Power converter for vehicle
JP2012070559A (en) * 2010-09-24 2012-04-05 Denso Corp Rotary electric machine for vehicle
CN102185336A (en) * 2011-05-06 2011-09-14 潘迪 Wind power generating equipment

Also Published As

Publication number Publication date
JP6645405B2 (en) 2020-02-14
JP2018088734A (en) 2018-06-07
DE112017006017T5 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JPS6387137A (en) Electric source
CN103780042A (en) Brushless direct current reluctance starter generator
CN104242521A (en) Double-mode electric power generator
US20170117834A1 (en) Control apparatus for rotating electric machine
EP2824826B1 (en) Power generation device, mobile object and power generation control method
JP2004364352A (en) Motor, drive method thereof, and automobile
WO2017195799A1 (en) Rotating electrical machine unit
JP5174617B2 (en) Rotating electrical machine device and control device thereof
JP4478185B2 (en) Engine starter for vehicle
CN110168925B (en) Control device for power conversion circuit, and rotating electric machine unit
WO2018097013A1 (en) Control device for rotary electric machine, and rotary electric machine unit
JP6254940B2 (en) Resonant motor system
US7928676B2 (en) Vehicle motor control apparatus
JP6834460B2 (en) Rotating machine control device, rotating machine unit
JP2015014278A (en) Starter generator and control method therefor
JP6492901B2 (en) Electric motor device
JP6421681B2 (en) Motor generator equipment
JP7185480B2 (en) power converter
JP2012244690A (en) Inverter generator
WO2018097014A1 (en) Fault detection device for rotation sensor
JP5241761B2 (en) Vehicle power supply system
JP6665773B2 (en) Rotary electric machine rotation rise abnormality detection device, rotating electric machine unit
JP2003079195A (en) Generator motor unit for vehicle employing field winding type synchronous machine
WO2016157386A1 (en) Starting power generation device and starting power generation method
JP2020088918A (en) Power generation torque control device for rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874408

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17874408

Country of ref document: EP

Kind code of ref document: A1