WO2017195799A1 - Rotating electrical machine unit - Google Patents

Rotating electrical machine unit Download PDF

Info

Publication number
WO2017195799A1
WO2017195799A1 PCT/JP2017/017610 JP2017017610W WO2017195799A1 WO 2017195799 A1 WO2017195799 A1 WO 2017195799A1 JP 2017017610 W JP2017017610 W JP 2017017610W WO 2017195799 A1 WO2017195799 A1 WO 2017195799A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrical machine
rotating electrical
conductive member
connection point
Prior art date
Application number
PCT/JP2017/017610
Other languages
French (fr)
Japanese (ja)
Inventor
中山 英明
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017002427.7T priority Critical patent/DE112017002427T5/en
Publication of WO2017195799A1 publication Critical patent/WO2017195799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present disclosure relates to a rotating electrical machine unit including a rotating electrical machine capable of generating power and a rectifier circuit.
  • the present disclosure has been made in order to solve the above-described problem, and the main purpose of the present disclosure is a rotation capable of controlling the voltage of the output terminal to the target voltage even when a large current flows from the rotating electrical machine unit. It is to provide an electric unit.
  • the present disclosure employs the following means.
  • the first means includes a rotating electric machine driven by an engine and capable of AC power generation, a rectifying circuit that rectifies the AC voltage generated by the rotating electric machine, and an output terminal that outputs a DC voltage from the rectifying circuit.
  • a rotating electrical machine unit comprising: a voltage detection unit that detects a voltage between a high-voltage side connection point and a low-voltage side connection point of the rectifier circuit; and a first conductive unit that connects the high-voltage side connection point and the output terminal.
  • a member, a second conductive member that connects the low-voltage side connection point and the engine as a grounded part, and the voltage detected by the voltage detection unit so that the voltage of the output terminal becomes a target generated voltage.
  • a voltage control unit that controls a generated voltage by the rotating electrical machine based on electrical resistances of the first conductive member and the second conductive member.
  • the rotating electrical machine is driven by the engine to execute AC power generation.
  • the rectifier circuit rectifies the AC voltage generated by the rotating electrical machine. Then, the DC voltage from the rectifier circuit is output from the output terminal.
  • the voltage between the high voltage side connection point and the low voltage side connection point of the rectifier circuit is detected by the voltage detection unit.
  • the high voltage side connection point and the output terminal are connected by the first conductive member.
  • the low-voltage side connection point and the engine as the grounding part are connected by the second conductive member.
  • the electric potential of the low-voltage side connection point and the electric potential of the grounding part are shifted due to the electric resistance of the second conductive member. Therefore, a deviation occurs between the voltage between the high-voltage side connection point and the low-voltage side connection point of the rectifier circuit detected by the voltage detection unit, and the voltage between the output terminal and the grounded portion.
  • the voltage control unit generates power by the rotating electrical machine based on the voltage detected by the voltage detection unit and the electric resistances of the first conductive member and the second conductive member so that the voltage at the output terminal becomes the target power generation voltage. Control the voltage. Therefore, even when a large current flows from the rotating electrical machine unit, the voltage at the output terminal can be controlled to the target generated voltage in consideration of the voltage drop due to the first conductive member and the second conductive member.
  • the voltage controller detects that the voltage detected by the voltage detector is equal to the electric resistance of the first conductive member and the second conductive member to the target generated voltage. It is possible to employ a configuration in which the power generation voltage by the rotating electrical machine is controlled so that the voltage is reduced by the voltage drop due to.
  • the rotating electrical machine can be driven by a voltage supplied from the outside of the rotating electrical machine unit to the output terminal, and the voltage control unit is configured such that the voltage of the output terminal becomes a target supply voltage.
  • the driving of the rotating electrical machine is controlled based on the voltage detected by the voltage detector and the electric resistances of the first conductive member and the second conductive member.
  • the rotating electrical machine is based on the voltage detected by the voltage detection unit and the electric resistances of the first conductive member and the second conductive member so that the voltage of the output terminal becomes the target supply voltage. Is controlled. Therefore, the operating voltage of the electric load connected to the output terminal can be ensured after accurately grasping the voltage of the output terminal.
  • the voltage controller detects that the voltage detected by the voltage detector is such that the electric resistance of the first conductive member and the second conductive member from the target supply voltage. It is possible to employ a configuration in which the drive of the rotating electrical machine is controlled so as to obtain a voltage obtained by subtracting the voltage drop due to.
  • the second conductive member includes a heat radiating member to which the rectifier circuit is attached.
  • the voltage at the output terminal can be controlled to the target voltage in consideration of the voltage drop due to the heat radiating member.
  • the second conductive member includes a housing that houses the rotating electrical machine.
  • the voltage at the output terminal can be controlled to the target voltage in consideration of the voltage drop due to the housing.
  • the second conductive member includes a connecting member for connecting the housing for housing the rotating electrical machine and the engine.
  • the voltage at the output terminal is controlled to the target voltage in consideration of the voltage drop due to the connecting member in the configuration in which the connecting member that connects the housing housing the rotating electrical machine and the engine is used as the second conductive member. can do.
  • the first conductive member is a wiring for connecting the high-voltage side connection point and the output terminal.
  • the voltage at the output terminal can be controlled to the target voltage in consideration of the voltage drop due to the wiring.
  • FIG. 1 is a circuit diagram showing a configuration of an in-vehicle rotating electrical machine system
  • FIG. 2 is a sectional view of the rotating electrical machine unit
  • FIG. 3 is a flowchart showing a procedure of assist control.
  • FIG. 4 is a flowchart showing a modification example of the assist control procedure.
  • FIG. 5 is a flowchart showing another modification example of the assist control procedure.
  • FIG. 6 is a flowchart showing another modification of the assist control procedure.
  • the in-vehicle rotating electrical machine system 100 includes a rotating electrical machine unit 10, an engine ECU (Electronic Control Unit) 20, a battery 22, a second capacitor 23, an electric load 24, and the like.
  • the rotating electrical machine unit 10 includes a rotating electrical machine 17, an inverter 13, a rotating electrical machine ECU 14, and the like.
  • the rotating electrical machine unit 10 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated Starter Generator).
  • the rotating electrical machine 17 includes X, Y and Z phase windings 11X, 11Y, 11Z as a three-phase armature winding, and a field winding 12.
  • the battery 22 is a Pb battery that outputs a voltage of 12 V, for example.
  • a battery that outputs 12V using a different type of battery from the Pb battery a battery that outputs a voltage other than 12V, and the like can be used.
  • the X, Y, and Z phase windings 11X, 11Y, and 11Z are wound around a stator core (not shown) to form a stator.
  • the first ends of the X, Y, and Z phase windings 11X, 11Y, and 11Z are connected at a neutral point. That is, the rotating electrical machine unit 10 is Y-connected.
  • the field winding 12 is wound around a field pole (not shown) disposed opposite to the inner peripheral side of the stator core to constitute a rotor. By passing an exciting current through the field winding 12, the field pole is magnetized. An AC voltage is output from each phase winding 11X, 11Y, 11Z by a rotating magnetic field generated when the field pole is magnetized.
  • the rotor rotates by obtaining rotational power from the crankshaft of the in-vehicle engine 101 (the body of the in-vehicle engine is schematically shown in FIG. 1).
  • the engine 101 is, for example, an engine that uses gasoline as fuel, and generates driving force by the combustion of fuel.
  • the engine 101 is not limited to a gasoline engine, and may be a diesel engine using light oil as a fuel or an engine using other fuel.
  • the inverter 13 converts the AC voltage output from each phase winding 11X, 11Y, 11Z into a DC voltage.
  • the inverter 13 converts the DC voltage supplied from the battery 22 into an AC voltage and outputs the AC voltage to the phase windings 11X, 11Y, and 11Z.
  • the inverter 13 (corresponding to a rectifier circuit and a drive circuit) is a bridge circuit having upper and lower arms of the same number as the number of phases of the armature winding.
  • the inverter 13 includes an X-phase module 13X, a Y-phase module 13Y, and a Z-phase module 13Z, and constitutes a three-phase full-wave rectifier circuit.
  • the inverter 13 constitutes a drive circuit that drives the rotating electrical machine 17 by adjusting the electric power supplied to the rotating electrical machine 17.
  • Each of the X, Y, and Z phase modules 13X, 13Y, and 13Z includes an upper arm switch Sp and a lower arm switch Sn.
  • voltage controlled semiconductor switching elements are used as the switches Sp and Sn, and specifically, N-channel MOSFETs are used.
  • An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn.
  • the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn.
  • the diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example.
  • the second end of the X-phase winding 11X is connected to the X terminal PX of the X-phase module 13X.
  • the X terminal PX is connected to the low potential side terminal (source) of the upper arm switch Sp and the high potential side terminal (drain) of the lower arm switch Sn.
  • a B terminal (corresponding to an output terminal) of the rotating electrical machine unit 10 is connected to the drain of the upper arm switch Sp, and a grounding part (ground GND) is connected to the source of the lower arm switch Sn via the E terminal of the rotating electrical machine unit 10. )
  • the B terminal is a terminal connected to the positive electrode of the battery 22 and is formed in a detachable connector shape.
  • the second end of the Y-phase winding 11Y is connected to the Y terminal PY of the Y-phase module 13Y.
  • a connection point between the upper arm switch Sp and the lower arm switch Sn is connected to the Y terminal PY.
  • the B terminal is connected to the drain of the upper arm switch Sp, and the body of the engine 101 as the ground GND is connected to the source of the lower arm switch Sn via the E terminal.
  • the second end of the Z-phase winding 11Z is connected to the Z terminal PZ of the Z-phase module 13Z.
  • a connection point between the upper arm switch Sp and the lower arm switch Sn is connected to the Z terminal PZ.
  • the B terminal is connected to the drain of the upper arm switch Sp, and the body of the engine 101 as the ground GND is connected to the source of the lower arm switch Sn via the E terminal.
  • a structure for connecting the source (low-pressure side connection point P2) of each lower arm switch Sn to the body of the engine 101 will be described later.
  • the first capacitor 15 and the Zener diode 16 are connected in parallel to the series connection body of the switches Sp and Sn constituting the phase modules 13X, 13Y, and 13Z.
  • a voltage sensor 41 (corresponding to a voltage detection unit and a voltage acquisition unit) that detects a voltage between the high-voltage side connection point P1 and the low-voltage side connection point P2 of the inverter 13 is provided.
  • the wiring 18 connecting the high voltage side connection point P1 and the B terminal corresponds to the first conductive member, and the conductive members connecting the low voltage side connection point P2 to the body of the engine 101 are the second conductive member. Equivalent to.
  • the wiring 18 includes a bus bar formed of a conductive metal in a bar shape, and a pattern wiring formed of a conductive metal film on a control board on which the rotating electrical machine ECU 14 is mounted.
  • the rotating electrical machine ECU 14 is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the rotating electrical machine ECU 14 adjusts the excitation current flowing through the field winding 12 by an IC regulator (not shown) inside. Thereby, the power generation voltage (voltage of the B terminal) of the rotating electrical machine unit 10 is controlled.
  • the rotating electrical machine ECU 14 assists the driving force of the engine 101 by controlling the inverter 13 to drive the rotating electrical machine 17 after the vehicle starts to travel.
  • the rotating electrical machine 17 can impart rotation to the crankshaft when the engine 101 is started, and also has a function as a starter.
  • the rotating electrical machine ECU 14 is connected to an engine ECU 20 that is a control device outside the rotating electrical machine unit 10 via an L terminal that is a communication terminal and a communication line.
  • the engine ECU 20 is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and controls the operating state of the engine 101.
  • the rotating electrical machine ECU 14 performs bidirectional communication (for example, serial communication using the LIN protocol) with the engine ECU 20 and exchanges information with the engine ECU 20.
  • the rotating electrical machine ECU 14 grasps the target generated voltage based on the serial communication signal transmitted from the engine ECU 20, and the field winding so that the generated voltage (the voltage at the B terminal) becomes the target generated voltage.
  • the PWM voltage applied to 12 is controlled. Thereby, the exciting current is adjusted, and the power generation state of the rotating electrical machine unit 10 is controlled.
  • the rotating electrical machine ECU 14 grasps the target torque (corresponding to the command value of the driving force) based on the serial communication signal, and the field winding 12 so that the torque generated by the rotating electrical machine 17 becomes this target torque. And the AC voltage supplied from the inverter 13 to the phase windings 11X, 11Y, and 11Z.
  • the engine ECU 20 and the positive terminal of the battery 22 are connected to the B terminal via the relay 21.
  • the body of the engine 101 as the ground GND is connected to the negative terminal of the battery 22.
  • a second capacitor 23 and an electrical load 24 are connected to the B terminal.
  • the electric load 24 includes an electric load whose operating voltage is a predetermined voltage or higher, such as an electronically controlled brake system of a vehicle or an electric power steering.
  • the operating voltage is a voltage at which the electrical load can exhibit the specified performance, such as a guaranteed voltage or a rated voltage of the electrical load.
  • the electrical load 24 may include an air conditioner, in-vehicle audio, a headlamp, and the like.
  • the relay 21 is turned on by turning on the ignition switch.
  • the front body 52 and the rear body 53 are connected by a tightening bolt 54 with the stator 55 of the rotating electrical machine 17 sandwiched in the rotational axis direction.
  • the front body 52 and the rear body 53 are formed of a material having excellent thermal conductivity and conductivity, such as an aluminum alloy.
  • the configuration including the front body 52 and the rear body 53 corresponds to a housing.
  • the stator 55 includes a stator core 55a fixed to the front body 52 and the rear body 53, and the phase windings 11X, 11Y, and 11Z wound around the stator core 55a.
  • a rotating shaft 56 is rotatably attached to the front body 52 and the rear body 53 by bearings 57a and 57b.
  • a rotor 58 is fixed to the rotating shaft 56.
  • the rotating shaft 56 is press-fitted into a pair of rotor cores 58 a and 58 b that form the rotor 58.
  • the rotor cores 58a and 58b are coupled to each other with the field winding 12 interposed therebetween.
  • the rotor 58 faces radially inward with respect to the stator 55, and a slight gap is formed between the outer peripheral surfaces of the rotor cores 58a and 58b and the inner peripheral surface of the stator core 55a.
  • a pulley 60 is attached to the front end portion (left end portion in FIG. 2) of the rotating shaft 56 so as to be integrally rotatable.
  • a belt (not shown) that transmits driving force from the engine 101 is stretched around the pulley 60.
  • a pair of slip rings 56 a and 56 b are formed at the rear end portion (right end portion in FIG. 2) of the rotation shaft 56 over the entire circumference of the rotation shaft 56.
  • a wire harness 58d of a rotor 58 is connected to each of the slip rings 56a and 56b, and the slip rings 56a and 56b are connected to the above-described field winding 12 by the wire harness 58d.
  • a pair of power supply brushes 61a and 61b are in contact with the slip rings 56a and 56b.
  • the power supply brushes 61a and 61b are attached to the rear body 53 via a brush holder 62 formed of a synthetic resin material.
  • the power supply brushes 61 a and 61 b are connected to the battery 22.
  • the battery 22 is electrically connected to the field winding 12 via power supply brushes 61a and 61b, slip rings 56a and 56b, and a wire harness 58d.
  • the power supply brushes 61 a and 61 b are in sliding contact with the slip rings 56 a and 56 b as the rotor 58 rotates, and supply power to the field winding 12.
  • a sensor magnetic pole 56c is formed at the rear end of the rotating shaft 56, and the sensor magnetic pole 56c has a plurality of magnetic poles.
  • the sensor magnetic pole 56c is held on the rotating shaft 56 via a magnet holder 56d formed of a nonmagnetic material.
  • a heat radiating plate 63 (corresponding to a second member and a heat radiating member) is arranged on the rear end side (right side in FIG. 2) of the rotating shaft 56 with respect to the rear body 53.
  • the heat radiating plate 63 is integrally formed of a material having excellent heat conductivity and conductivity, such as an aluminum alloy, and is formed in a substantially flat plate shape.
  • the heat radiating plate 63 has a flat bottom surface portion 63a extending in the radial direction, and faces the front so that one surface 63c (hereinafter referred to as the front surface 63c) of the bottom surface portion 63a faces the rear end portion of the rear body 53.
  • the other surface 63b (hereinafter referred to as the rear surface 63b) is attached to the outer peripheral surface of the rear body 53 so as to face rearward.
  • the heat radiating plate 63 has a substantially C shape so that the rotation shaft 56 penetrates through the central portion, and surrounds the rotation shaft 56 and the power supply brushes 61a and 61b in the radially outward direction.
  • the inverter 13 is attached to the rear surface 63b of the bottom surface portion 63a. On the rear surface 63b of the heat radiating plate 63, the inverter 13 is attached in a form divided into the phase modules 13X, 13Y, 13Z.
  • a substrate case 65 is attached to the rear surface 63 b of the heat sink 63.
  • the substrate case 65 is integrally formed in a container shape with a synthetic resin material.
  • a control board 66 is attached in the board case 65 so as to be located rearward. In other words, the control board 66 is disposed on the rear surface 63 b side of the heat radiating plate 63 through the board case 65.
  • the control board 66 is formed by providing pattern wiring (not shown) with a copper foil or the like on a base material impregnated with an insulating resin. On the control board 66, a plurality of electronic elements including the rotating electrical machine ECU 14 shown in FIG.
  • a rotation sensor 67 is provided on the control board 66.
  • the rotation sensor 67 is formed by a magnetoelectric conversion element such as a Hall IC and faces the sensor magnetic pole 56c described above in the rotation axis direction.
  • the rotation sensor 67 detects a change in magnetic flux due to rotation of the rotation shaft 56 and detects a rotation angle, a rotation speed, a rotation acceleration, and the like of the rotor 58.
  • a rear end cover 68 is attached to the rear end surface of the rear body 53.
  • the rear end cover 68 is arranged at a position sandwiching the control board 66 together with the heat radiating plate 63.
  • the rear end cover 68 is formed of a synthetic resin material in a container shape, and includes a flat portion 68a facing the control board 66, and a cylindrical portion 68b connected to the flat portion 68a and extending forward at the outer peripheral portion. .
  • the rear end cover 68 is attached to the rear body 53 so as to cover the control board 66, the slip rings 56a and 56b, and the power supply brushes 61a and 61b. Further, the front end of the cylindrical portion 68b and the rear end surface of the rear body 53 are opposed to each other in the rotation axis direction.
  • the inverter 13 is attached to the bottom surface 63b of the heat sink 63.
  • the source of each lower arm switch Sn is electrically connected to the heat sink 63.
  • the heat radiating plate 63 is electrically connected to the rear body 53 and the front body 52.
  • the rear body 53 and the front body 52 are electrically connected to the body of the engine 101 via a steel connecting member 69.
  • the electrical resistance of the second conductive member from the low-pressure side connection point P2 to the body of the engine 101 is measured in advance. Further, the electrical resistance of the first conductive member from the high voltage side connection point P1 to the B terminal is measured in advance.
  • assist control for assisting the driving force of the engine 101 by driving the rotating electrical machine 17 after the start of traveling of the vehicle will be described.
  • This assist control is executed by the rotating electrical machine ECU 14 (corresponding to an assist control unit and a voltage control unit).
  • the assist control unit assists the driving force of the engine 101 by driving the rotating electrical machine 17 by controlling the inverter 13 after the vehicle starts to travel.
  • the voltage of the battery 22 decreases.
  • the electric load 24 includes an electric load having an operating voltage equal to or higher than a predetermined voltage. For this reason, the voltage of the battery 22 decreases and becomes less than a predetermined voltage, and there is a possibility that the operating voltage of the electric load 24 cannot be secured.
  • the voltage control unit is configured so that the voltage (corresponding to the voltage of the battery 22) detected by the voltage sensor 41 is equal to or higher than a predetermined voltage during the execution of the assist by the assist control unit.
  • the inverter 13 is controlled to drive the rotating electrical machine 17 continuously. That is, the rotating electrical machine ECU 14 inputs a target torque to be generated by the rotating electrical machine 17 from the engine ECU 20, and based on the target torque so that the voltage detected by the voltage sensor 41 becomes equal to or higher than a predetermined voltage during the execution of the assist.
  • the inverter 13 is controlled to continuously drive the rotating electrical machine 17.
  • the voltage control unit controls the inverter 13 by the assist control unit when the voltage detected by the voltage sensor 41 is equal to or higher than a lower limit voltage set higher than a predetermined voltage during the execution of the assist by the assist control unit. Do not limit. Then, the voltage control unit causes the assist control unit to control the inverter 13 to continuously drive the rotating electrical machine 17 so that the voltage detected by the voltage sensor 41 is maintained at the lower limit voltage when the voltage is decreased to the lower limit voltage. Specifically, the inverter 13 may be feedback controlled so that the voltage detected by the voltage sensor 41 becomes the lower limit voltage.
  • FIG. 3 is a flowchart showing the procedure of the assist control.
  • the rotating electrical machine ECU 14 determines whether or not the voltage detected by the voltage sensor 41 is equal to or higher than the lower limit voltage (S11). When the rotating electrical machine ECU 14 determines that the detected voltage is equal to or higher than the lower limit voltage (S11: YES), the rotating electrical machine 17 drives the rotating electrical machine 17 to generate the target torque (S12). On the other hand, when the rotating electrical machine ECU 14 determines that the detected voltage is not equal to or higher than the lower limit voltage (S11: NO), the rotating electrical machine 17 is driven so that the detected voltage becomes the lower limit voltage (S13). When the rotating electrical machine 17 is driven so that the detected voltage becomes the lower limit voltage, the torque generated by the rotating electrical machine 17 is equal to or less than the target torque.
  • the above assist control has the following advantages.
  • Assistance can be continuously executed while ensuring the operating voltage of the electrical load 24.
  • the driving force by the rotating electrical machine 17 is not limited and normal assist can be executed.
  • the voltage of the battery 22 can be maintained at the lower limit voltage set higher than the predetermined voltage. As a result, it is possible to stabilize the operation of the electric load 24 having an operating voltage equal to or higher than a predetermined voltage.
  • the voltage control unit causes the assist control unit to control the inverter 13 so that the voltage acquired by the voltage sensor 41 becomes equal to or higher than a predetermined voltage when the assist control unit executes the assist.
  • the rotary electric machine 17 may be continuously driven.
  • the inverter 13 may be controlled so as to decrease the voltage supplied to the rotating electrical machine 17 by a predetermined amount.
  • the assist is continuously executed while the operating voltage of the electric load 24 is generally secured by the simple control that causes the voltage of the battery 22 to become equal to or higher than the predetermined voltage when the voltage of the battery 22 becomes lower than the predetermined voltage. can do.
  • FIG. 4 is a flowchart showing the assist control procedure.
  • the rotating electrical machine ECU 14 determines whether or not the voltage detected by the voltage sensor 41 is less than a predetermined voltage (S21). When the rotating electrical machine ECU 14 determines that the detected voltage is not less than the predetermined voltage (S21: NO), the rotating electrical machine 17 drives the rotating electrical machine 17 to generate the target torque (S22). On the other hand, when it is determined that the detected voltage is less than the predetermined voltage (S21: YES), the rotating electrical machine ECU 14 decreases the voltage supplied to the rotating electrical machine 17 by a predetermined amount so that the detected voltage becomes equal to or higher than the predetermined voltage. The rotating electrical machine 17 is driven so as to be (S23).
  • the predetermined amount can be arbitrarily set, and the voltage supplied to the rotating electrical machine 17 by setting it to a large value may be reduced at once, or the voltage supplied to the rotating electrical machine 17 by setting it to a small value may be repeated. It may be decreased. Note that when the rotating electrical machine 17 is driven so that the detected voltage is equal to or higher than the predetermined voltage, the torque generated by the rotating electrical machine 17 is equal to or less than the target torque.
  • the voltage control unit controls the inverter 13 by the assist control unit so that the voltage detected by the voltage sensor 41 is predicted to be less than the predetermined voltage during the execution of the assist by the assist control unit so that the voltage is not less than the predetermined voltage.
  • the rotating electrical machine 17 may be continuously driven.
  • the voltage of the battery 22 may be predicted from the voltage decrease rate detected by the voltage sensor 41, and the voltage supplied to the rotating electrical machine 17 may be reduced in advance. Further, the amount by which the supplied voltage is decreased in advance may be variable based on the detected voltage decrease rate. Further, the amount by which the supplied voltage is decreased in advance may be variable based on the difference between the detected voltage and the predetermined voltage. According to such a configuration, even when the voltage of the battery 22 rapidly decreases during the execution of the assist, the voltage of the battery 22 can be predicted so as not to become less than a predetermined voltage.
  • FIG. 5 is a flowchart showing the procedure of the assist control.
  • the rotating electrical machine ECU 14 predicts whether or not the voltage detected by the voltage sensor 41 is less than a predetermined voltage (S31). When the rotating electrical machine ECU 14 does not predict that the detected voltage will be less than the predetermined voltage (S31: NO), the rotating electrical machine 17 drives the rotating electrical machine 17 to generate the target torque (S32). On the other hand, when it is predicted that the detected voltage is less than the predetermined voltage (S31: YES), the rotating electrical machine ECU 14 reduces the voltage supplied to the rotating electrical machine 17 in advance so that the detected voltage does not become less than the predetermined voltage. The rotary electric machine 17 is driven (S33). When the rotating electrical machine 17 is driven so that the detected voltage does not become less than the predetermined voltage, the torque generated by the rotating electrical machine 17 is equal to or less than the target torque.
  • the assist control unit can be configured by the rotating electrical machine ECU 14, and the voltage control unit can be configured by the engine ECU 20.
  • the rotating electrical machine ECU 14 inputs a target torque (corresponding to a command value of the driving force) to be generated by the rotating electrical machine 17 from the engine ECU 20, and controls the inverter 13 based on the target torque after the vehicle starts running to rotate the rotating electrical machine. 17 is driven to assist the driving force of the engine 101.
  • the engine ECU 20 controls the target torque so that the voltage acquired by the voltage sensor 41 becomes equal to or higher than a predetermined voltage during the execution of the assist by the rotating electrical machine ECU 14, and controls the inverter 13 by the rotating electrical machine ECU 14 to control the rotating electrical machine 17. May be continuously driven.
  • FIG. 6 is a flowchart showing the procedure of the assist control.
  • the engine ECU 20 determines whether or not the voltage detected by the voltage sensor 41 is equal to or higher than the lower limit voltage (S41). If the engine ECU 20 determines that the detected voltage is equal to or higher than the lower limit voltage (S41: YES), the engine ECU 20 sets a target torque based on the driver's request (S42). On the other hand, when it is determined that the detected voltage is not equal to or higher than the lower limit voltage (S41: NO), the engine ECU 20 sets the target torque so that the detected voltage becomes the lower limit voltage (S43). When the target torque is set so that the detected voltage becomes the lower limit voltage, the torque generated by the rotating electrical machine 17 is equal to or less than the target torque set based on the driver's request.
  • the voltage between the high voltage side connection point P1 and the low voltage side connection point P2 of the inverter 13 is detected by the voltage sensor 41.
  • the high voltage side connection point P1 and the B terminal are connected by a first conductive member (wiring 18). For this reason, when a voltage is supplied from the B terminal to the high voltage side connection point P1, a voltage drop occurs due to the electric resistance of the first conductive member.
  • the low-voltage side connection point P2 and the engine 101 as the grounding part are electrically connected by a second conductive member (the heat radiating plate 63, the rear body 53, the front body 52, and the connecting member 69).
  • the voltage controller 17 rotates the rotating electrical machine 17 based on the voltage detected by the voltage sensor 41 and the electric resistances of the first conductive member and the second conductive member so that the voltage at the B terminal becomes the target supply voltage.
  • the current flowing through the first conductive member and the second conductive member is detected by a current sensor, and the voltage drop is calculated by multiplying the detected current by the electrical resistance of the first conductive member and the second conductive member.
  • the current flowing through the first conductive member and the second conductive member may be estimated, and the voltage drop may be calculated using the estimated current.
  • the lower limit voltage or the predetermined voltage can be employed.
  • the voltage control unit determines that the voltage detected by the voltage sensor 41 is a voltage obtained by subtracting the voltage drop due to the electrical resistance of the first conductive member and the second conductive member from the target supply voltage. 13 can control the drive of the rotating electrical machine 17. According to such a configuration, the operating voltage of the electric load 24 connected to the B terminal can be ensured after accurately grasping the voltage of the B terminal.
  • a voltage sensor 41A (corresponding to a voltage acquisition unit) that directly detects the terminal voltage of the battery 22 may be provided. Then, the voltage control unit continues the rotating electrical machine 17 by controlling the inverter 13 by the assist control unit so that the voltage detected by the voltage sensor 41A becomes equal to or higher than a predetermined voltage during the execution of the assist by the assist control unit. It may be driven.
  • the voltage control unit is configured to rotate the rotating electrical machine based on the voltage detected by the voltage sensor 41A and the electric resistances of the first conductive member and the second conductive member so that the voltage supplied to the inverter 13 becomes the command voltage.
  • the drive of 17 may be controlled. According to such a configuration, even when the rotating electrical machine 17 is driven based on the detection value of the voltage sensor 41A that directly detects the terminal voltage of the battery 22, it depends on the electrical resistance of the first conductive member and the second conductive member. In consideration of the voltage drop, the rotating electrical machine 17 can generate the target torque.
  • the voltage control unit is based on the voltage detected by the voltage sensor 41 and the electric resistances of the first conductive member and the second conductive member so that the voltage at the B terminal becomes the target generated voltage.
  • the generated voltage by the rotating electrical machine 17 is controlled.
  • the voltage control unit includes an inverter so that the voltage detected by the voltage sensor 41 is a voltage obtained by adding a voltage drop due to the electric resistance of the first conductive member and the second conductive member to the target generated voltage.
  • the generated voltage by the rotating electrical machine 17 is controlled.
  • the current flowing through the first conductive member and the second conductive member is detected by a current sensor, and the voltage drop is calculated by multiplying the detected current by the electrical resistance of the first conductive member and the second conductive member.
  • the current flowing through the first conductive member and the second conductive member may be estimated, and the voltage drop may be calculated using the estimated current.
  • the power generation control has the following advantages.
  • the voltage at the B terminal can be controlled to the target generated voltage in consideration of the voltage drop due to the first conductive member and the second conductive member.
  • the voltage at the B terminal can be controlled to the target voltage in consideration of the voltage drop due to the heat sink 63.
  • the voltage at the B terminal can be controlled to the target voltage in consideration of the voltage drop due to the housing.
  • the voltage at the B terminal is controlled to the target voltage in consideration of the voltage drop due to the connecting member 69. be able to.
  • the voltage at the B terminal can be controlled to the target voltage in consideration of the voltage drop due to the wiring 18.
  • the voltage sensor 41 may be provided in the rotating electrical machine ECU 14. In that case, the high-voltage side connection point P1 and the low-voltage side connection point P2 are also located in the rotating electrical machine ECU.
  • the number of members included in the first conductive member and the second conductive member can be appropriately changed, and members other than the above-described members can be employed.
  • a rotating electrical machine having a multi-phase multiple winding can be adopted.
  • a rotor 58 having a magnet may be employed instead of the field winding 12.
  • the control of the inverter 13 may be changed according to the configuration of the rotating electrical machine 17.
  • the configuration of the inverter 13 is also configured such that the entire X, Y, Z phase modules 13X, 13Y, 13Z are integrated modules, or two of the X, Y, Z phase modules 13X, 13Y, 13Z are integrated modules.
  • an MG MotoreratorGenerator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Rectifiers (AREA)

Abstract

A rotating electrical machine unit (10) is provided with: a rotating electrical machine (17) that is driven by an engine (101) and is capable of generating alternating-current power; a rectification circuit (13) that rectifies an alternating-current voltage generated by the rotating electrical machine; and an output terminal (B) that outputs a direct-current voltage supplied from the rectification circuit. The rotating electrical machine unit is further provided with: a voltage detection unit (41) that detects a voltage between a high-voltage side connection point (P1) and a low-voltage side connection point (P2) in the rectification circuit; a first conductor member (18) that connects the high-voltage side connection point and the output terminal; a second conductor member (52, 53, 63, 69) that connects the low-voltage side connection point and the engine serving as a grounding site; and a voltage control unit (14) that controls, on the basis of the voltage detected by the voltage detection unit and the electrical resistances of the first and second conductor members, the voltage to be generated by the rotating electrical machine so as to cause the voltage of the output terminal to be equal to a target power generation voltage.

Description

回転電機ユニットRotating electrical machine unit 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年5月12日に出願された日本出願番号2016-096307号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2016-096307 filed on May 12, 2016, and the description is incorporated herein.
 本開示は、発電可能な回転電機と整流回路とを備える回転電機ユニットに関する。 The present disclosure relates to a rotating electrical machine unit including a rotating electrical machine capable of generating power and a rectifier circuit.
 従来、エンジンにより駆動されて発電する発電機(回転電機)と、発電機の発電電流が充電されるバッテリとを備え、バッテリの端子電圧に応じて発電機の発電量を増減しバッテリの端子電圧を一定に保持させるものがある(特許文献1参照)。 2. Description of the Related Art Conventionally, a generator (rotary electric machine) that is driven by an engine to generate electric power and a battery that is charged with the generated current of the generator are charged, and the terminal voltage of the battery is increased or decreased according to the terminal voltage of the battery. Is held constant (see Patent Document 1).
実開昭57-192739号公報Japanese Utility Model Publication No.57-192739
 ところで、近年、発電機の出力端子に接続される電気負荷の数が増加しているため、電気負荷毎の供給電圧ではなく出力端子の電圧を目標電圧に制御することが望ましい。しかしながら、例えば車両の減速時における回生発電では数百A程度の大電流が流れるため、mΩ単位の抵抗でも電圧が低下し易い。特に、発電可能な回転電機と整流回路とを備える一体型の回転電機ユニットでは、使用できる内部配線に制約があり、こうした傾向が顕著となる。このため、接続部の接続抵抗や配線抵抗等による電圧低下を考慮して、出力端子の電圧を目標電圧に制御する必要がある。 Incidentally, in recent years, since the number of electrical loads connected to the output terminal of the generator is increasing, it is desirable to control the voltage of the output terminal to the target voltage instead of the supply voltage for each electrical load. However, for example, in regenerative power generation when the vehicle is decelerating, a large current of about several hundreds of A flows, so that the voltage is likely to decrease even with a resistance in mΩ units. In particular, in an integrated rotating electrical machine unit including a rotating electrical machine capable of generating power and a rectifier circuit, the internal wiring that can be used is limited, and this tendency becomes remarkable. For this reason, it is necessary to control the voltage at the output terminal to the target voltage in consideration of the voltage drop due to the connection resistance or the wiring resistance of the connection portion.
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、回転電機ユニットから大電流が流れる場合であっても、出力端子の電圧を目標電圧に制御することのできる回転電機ユニットを提供することにある。 The present disclosure has been made in order to solve the above-described problem, and the main purpose of the present disclosure is a rotation capable of controlling the voltage of the output terminal to the target voltage even when a large current flows from the rotating electrical machine unit. It is to provide an electric unit.
 上記課題を解決するため、本開示は以下の手段を採用した。 In order to solve the above problems, the present disclosure employs the following means.
 第1の手段は、エンジンにより駆動されて交流発電可能な回転電機と、前記回転電機により発電された交流電圧を整流する整流回路と、前記整流回路からの直流電圧を出力する出力端子と、を備える回転電機ユニットであって、前記整流回路の高圧側接続点と低圧側接続点との間の電圧を検出する電圧検出部と、前記高圧側接続点と前記出力端子とを接続する第1導電部材と、前記低圧側接続点と接地部位としての前記エンジンとを接続する第2導電部材と、前記出力端子の電圧が目標発電電圧になるように、前記電圧検出部により検出される前記電圧と前記第1導電部材及び前記第2導電部材の電気抵抗とに基づいて、前記回転電機による発電電圧を制御する電圧制御部と、を備える。 The first means includes a rotating electric machine driven by an engine and capable of AC power generation, a rectifying circuit that rectifies the AC voltage generated by the rotating electric machine, and an output terminal that outputs a DC voltage from the rectifying circuit. A rotating electrical machine unit comprising: a voltage detection unit that detects a voltage between a high-voltage side connection point and a low-voltage side connection point of the rectifier circuit; and a first conductive unit that connects the high-voltage side connection point and the output terminal. A member, a second conductive member that connects the low-voltage side connection point and the engine as a grounded part, and the voltage detected by the voltage detection unit so that the voltage of the output terminal becomes a target generated voltage. A voltage control unit that controls a generated voltage by the rotating electrical machine based on electrical resistances of the first conductive member and the second conductive member.
 上記構成によれば、回転電機は、エンジンにより駆動されて交流発電を実行する。整流回路は、回転電機により発電された交流電圧を整流する。そして、整流回路からの直流電圧が出力端子から出力される。 According to the above configuration, the rotating electrical machine is driven by the engine to execute AC power generation. The rectifier circuit rectifies the AC voltage generated by the rotating electrical machine. Then, the DC voltage from the rectifier circuit is output from the output terminal.
 ここで、電圧検出部により、整流回路の高圧側接続点と低圧側接続点との間の電圧が検出される。高圧側接続点と出力端子とは、第1導電部材により接続されている。このため、高圧側接続点から出力端子まで電圧が供給される際に、第1導電部材の電気抵抗により電圧低下が生じる。また、低圧側接続点と接地部位としてのエンジンとは、第2導電部材により接続されている。このため、低圧側接続点の電位と接地部位の電位とには、第2導電部材の電気抵抗によりずれが生じる。したがって、電圧検出部により検出される整流回路の高圧側接続点と低圧側接続点との間の電圧と、出力端子と接地部位との間の電圧とにはずれが生じる。 Here, the voltage between the high voltage side connection point and the low voltage side connection point of the rectifier circuit is detected by the voltage detection unit. The high voltage side connection point and the output terminal are connected by the first conductive member. For this reason, when a voltage is supplied from the high voltage side connection point to the output terminal, a voltage drop occurs due to the electric resistance of the first conductive member. Further, the low-voltage side connection point and the engine as the grounding part are connected by the second conductive member. For this reason, the electric potential of the low-voltage side connection point and the electric potential of the grounding part are shifted due to the electric resistance of the second conductive member. Therefore, a deviation occurs between the voltage between the high-voltage side connection point and the low-voltage side connection point of the rectifier circuit detected by the voltage detection unit, and the voltage between the output terminal and the grounded portion.
 そこで、電圧制御部は、出力端子の電圧が目標発電電圧になるように、電圧検出部により検出される電圧と第1導電部材及び第2導電部材の電気抵抗とに基づいて、回転電機による発電電圧を制御する。したがって、回転電機ユニットから大電流が流れる場合であっても、第1導電部材及び第2導電部材による電圧低下を考慮して、出力端子の電圧を目標発電電圧に制御することができる。 Therefore, the voltage control unit generates power by the rotating electrical machine based on the voltage detected by the voltage detection unit and the electric resistances of the first conductive member and the second conductive member so that the voltage at the output terminal becomes the target power generation voltage. Control the voltage. Therefore, even when a large current flows from the rotating electrical machine unit, the voltage at the output terminal can be controlled to the target generated voltage in consideration of the voltage drop due to the first conductive member and the second conductive member.
 具体的には、第2の手段のように、前記電圧制御部は、前記電圧検出部により検出される前記電圧が、前記目標発電電圧に前記第1導電部材及び前記第2導電部材の電気抵抗による電圧低下分を加えた電圧となるように、前記回転電機による発電電圧を制御するといった構成を採用することができる。 Specifically, as in the second means, the voltage controller detects that the voltage detected by the voltage detector is equal to the electric resistance of the first conductive member and the second conductive member to the target generated voltage. It is possible to employ a configuration in which the power generation voltage by the rotating electrical machine is controlled so that the voltage is reduced by the voltage drop due to.
 第3の手段では、前記回転電機は、前記回転電機ユニットの外部から前記出力端子へ供給される電圧により駆動可能であり、前記電圧制御部は、前記出力端子の電圧が目標供給電圧になるように、前記電圧検出部により検出される前記電圧と前記第1導電部材及び前記第2導電部材の電気抵抗とに基づいて、前記回転電機の駆動を制御する。 In the third means, the rotating electrical machine can be driven by a voltage supplied from the outside of the rotating electrical machine unit to the output terminal, and the voltage control unit is configured such that the voltage of the output terminal becomes a target supply voltage. In addition, the driving of the rotating electrical machine is controlled based on the voltage detected by the voltage detector and the electric resistances of the first conductive member and the second conductive member.
 回転電機の駆動により大電力が消費されると、出力端子へ供給される電圧が低下して、出力端子に接続された電気負荷の動作電圧を確保できなくなるおそれがある。また、出力端子の電圧を正確に把握するには、第1導電部材及び第2導電部材による電圧低下を考慮する必要がある。 When a large amount of power is consumed by driving the rotating electrical machine, the voltage supplied to the output terminal is lowered, and there is a possibility that the operating voltage of the electric load connected to the output terminal cannot be secured. Further, in order to accurately grasp the voltage at the output terminal, it is necessary to consider the voltage drop due to the first conductive member and the second conductive member.
 この点、上記構成によれば、出力端子の電圧が目標供給電圧になるように、電圧検出部により検出される電圧と第1導電部材及び第2導電部材の電気抵抗とに基づいて、回転電機の駆動が制御される。したがって、出力端子の電圧を正確に把握した上で、出力端子に接続された電気負荷の動作電圧を確保することができる。 In this regard, according to the above configuration, the rotating electrical machine is based on the voltage detected by the voltage detection unit and the electric resistances of the first conductive member and the second conductive member so that the voltage of the output terminal becomes the target supply voltage. Is controlled. Therefore, the operating voltage of the electric load connected to the output terminal can be ensured after accurately grasping the voltage of the output terminal.
 具体的には、第4の手段のように、前記電圧制御部は、前記電圧検出部により検出される前記電圧が、前記目標供給電圧から前記第1導電部材及び前記第2導電部材の電気抵抗による電圧低下分を引いた電圧となるように、前記回転電機の駆動を制御するといった構成を採用することができる。 Specifically, as in the fourth means, the voltage controller detects that the voltage detected by the voltage detector is such that the electric resistance of the first conductive member and the second conductive member from the target supply voltage. It is possible to employ a configuration in which the drive of the rotating electrical machine is controlled so as to obtain a voltage obtained by subtracting the voltage drop due to.
 第5の手段では、前記第2導電部材は、前記整流回路が取り付けられた放熱部材を含む。 In the fifth means, the second conductive member includes a heat radiating member to which the rectifier circuit is attached.
 上記構成によれば、整流回路が取り付けられた放熱部材を第2導電部材として利用する構成において、放熱部材による電圧低下を考慮して、出力端子の電圧を目標電圧に制御することができる。 According to the above configuration, in the configuration in which the heat radiating member to which the rectifier circuit is attached is used as the second conductive member, the voltage at the output terminal can be controlled to the target voltage in consideration of the voltage drop due to the heat radiating member.
 第6の手段では、前記第2導電部材は、前記回転電機を収容するハウジングを含む。 In the sixth means, the second conductive member includes a housing that houses the rotating electrical machine.
 上記構成によれば、回転電機を収容するハウジングを第2導電部材として利用する構成において、ハウジングによる電圧低下を考慮して、出力端子の電圧を目標電圧に制御することができる。 According to the above configuration, in the configuration in which the housing that houses the rotating electrical machine is used as the second conductive member, the voltage at the output terminal can be controlled to the target voltage in consideration of the voltage drop due to the housing.
 第7の手段では、前記第2導電部材は、前記回転電機を収容するハウジングと前記エンジンとを連結する連結部材を含む。 In the seventh means, the second conductive member includes a connecting member for connecting the housing for housing the rotating electrical machine and the engine.
 上記構成によれば、回転電機を収容するハウジングとエンジンとを連結する連結部材を第2導電部材として利用する構成において、連結部材による電圧低下を考慮して、出力端子の電圧を目標電圧に制御することができる。 According to the above configuration, the voltage at the output terminal is controlled to the target voltage in consideration of the voltage drop due to the connecting member in the configuration in which the connecting member that connects the housing housing the rotating electrical machine and the engine is used as the second conductive member. can do.
 第8の手段では、前記第1導電部材は、前記高圧側接続点と前記出力端子とを接続する配線である。 In the eighth means, the first conductive member is a wiring for connecting the high-voltage side connection point and the output terminal.
 上記構成によれば、高圧側接続点と出力端子とを配線により接続する構成において、配線による電圧低下を考慮して、出力端子の電圧を目標電圧に制御することができる。 According to the above configuration, in the configuration in which the high-voltage side connection point and the output terminal are connected by the wiring, the voltage at the output terminal can be controlled to the target voltage in consideration of the voltage drop due to the wiring.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車載回転電機システムの構成を示す回路図であり、 図2は、回転電機ユニットの断面図であり、 図3は、アシスト制御の手順を示すフローチャートであり、 図4は、アシスト制御の手順の変更例を示すフローチャートであり、 図5は、アシスト制御の手順の他の変更例を示すフローチャートであり、 図6は、アシスト制御の手順の他の変更例を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a circuit diagram showing a configuration of an in-vehicle rotating electrical machine system, FIG. 2 is a sectional view of the rotating electrical machine unit, FIG. 3 is a flowchart showing a procedure of assist control. FIG. 4 is a flowchart showing a modification example of the assist control procedure. FIG. 5 is a flowchart showing another modification example of the assist control procedure. FIG. 6 is a flowchart showing another modification of the assist control procedure.
 以下、車両に搭載された回転電機システムとして具現化した一実施形態について、図面を参照しつつ説明する。 Hereinafter, an embodiment embodied as a rotating electrical machine system mounted on a vehicle will be described with reference to the drawings.
 図1に示すように、車載回転電機システム100は、回転電機ユニット10、エンジンECU(Electronic Control Unit)20、バッテリ22、第2コンデンサ23、電気負荷24等を備えている。回転電機ユニット10は、回転電機17、インバータ13、回転電機ECU14等を備えている。回転電機ユニット10は、モータ機能付き発電機であり、機電一体型のISG(Integrated Starter Generator)として構成されている。回転電機17は、3相電機子巻線としてのX,Y、Z相巻線11X,11Y,11Z、界磁巻線12を備えている。バッテリ22は、例えば12Vの電圧を出力するPbバッテリである。なお、バッテリ22として、Pbバッテリと異なる種類のバッテリで12Vを出力するバッテリや、12V以外の電圧を出力するバッテリ等を採用することもできる。 As shown in FIG. 1, the in-vehicle rotating electrical machine system 100 includes a rotating electrical machine unit 10, an engine ECU (Electronic Control Unit) 20, a battery 22, a second capacitor 23, an electric load 24, and the like. The rotating electrical machine unit 10 includes a rotating electrical machine 17, an inverter 13, a rotating electrical machine ECU 14, and the like. The rotating electrical machine unit 10 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated Starter Generator). The rotating electrical machine 17 includes X, Y and Z phase windings 11X, 11Y, 11Z as a three-phase armature winding, and a field winding 12. The battery 22 is a Pb battery that outputs a voltage of 12 V, for example. In addition, as the battery 22, a battery that outputs 12V using a different type of battery from the Pb battery, a battery that outputs a voltage other than 12V, and the like can be used.
 X,Y、Z相巻線11X,11Y,11Zは、図示しない固定子鉄心に巻回されて固定子を構成している。本実施形態において、X,Y、Z相巻線11X,11Y,11Zのそれぞれの第1端同士は、中性点にて接続されている。すなわち、回転電機ユニット10は、Y結線されたものである。 The X, Y, and Z phase windings 11X, 11Y, and 11Z are wound around a stator core (not shown) to form a stator. In the present embodiment, the first ends of the X, Y, and Z phase windings 11X, 11Y, and 11Z are connected at a neutral point. That is, the rotating electrical machine unit 10 is Y-connected.
 界磁巻線12は、固定子鉄心の内周側に対向配置された図示しない界磁極に巻回されて回転子を構成している。界磁巻線12に励磁電流を流すことにより、界磁極が磁化される。界磁極が磁化されたときに発生する回転磁界によって各相巻線11X,11Y,11Zから交流電圧が出力される。本実施形態において、回転子は、車載エンジン101(図1では車載エンジンのボディを模式的に表示)のクランク軸から回転動力を得て回転する。エンジン101は、例えばガソリンを燃料とするエンジンであり、燃料の燃焼により駆動力を発生する。なお、エンジン101は、ガソリンエンジンに限らず、軽油を燃料として用いるディーゼルエンジンや、その他の燃料を用いるエンジンであってもよい。 The field winding 12 is wound around a field pole (not shown) disposed opposite to the inner peripheral side of the stator core to constitute a rotor. By passing an exciting current through the field winding 12, the field pole is magnetized. An AC voltage is output from each phase winding 11X, 11Y, 11Z by a rotating magnetic field generated when the field pole is magnetized. In the present embodiment, the rotor rotates by obtaining rotational power from the crankshaft of the in-vehicle engine 101 (the body of the in-vehicle engine is schematically shown in FIG. 1). The engine 101 is, for example, an engine that uses gasoline as fuel, and generates driving force by the combustion of fuel. The engine 101 is not limited to a gasoline engine, and may be a diesel engine using light oil as a fuel or an engine using other fuel.
 インバータ13は、各相巻線11X,11Y,11Zから出力された交流電圧を直流電圧に変換する。また、インバータ13は、バッテリ22から供給される直流電圧を交流電圧に変換して各相巻線11X,11Y,11Zへ出力する。インバータ13(整流回路及び駆動回路に相当)は、電機子巻線の相数と同数の上下アームを有するブリッジ回路である。詳しくは、インバータ13は、X相モジュール13X、Y相モジュール13Y、及びZ相モジュール13Zを備え、3相全波整流回路を構成している。また、インバータ13は、回転電機17に供給される電力を調節することで回転電機17を駆動する駆動回路を構成している。 The inverter 13 converts the AC voltage output from each phase winding 11X, 11Y, 11Z into a DC voltage. The inverter 13 converts the DC voltage supplied from the battery 22 into an AC voltage and outputs the AC voltage to the phase windings 11X, 11Y, and 11Z. The inverter 13 (corresponding to a rectifier circuit and a drive circuit) is a bridge circuit having upper and lower arms of the same number as the number of phases of the armature winding. Specifically, the inverter 13 includes an X-phase module 13X, a Y-phase module 13Y, and a Z-phase module 13Z, and constitutes a three-phase full-wave rectifier circuit. Further, the inverter 13 constitutes a drive circuit that drives the rotating electrical machine 17 by adjusting the electric power supplied to the rotating electrical machine 17.
 X,Y,Z相モジュール13X,13Y,13Zのそれぞれは、上アームスイッチSp、及び下アームスイッチSnを備えている。本実施形態では、各スイッチSp,Snとして、電圧制御形の半導体スイッチング素子を用いており、具体的には、NチャネルMOSFETを用いている。上アームスイッチSpには、上アームダイオードDpが逆並列に接続され、下アームスイッチSnには、下アームダイオードDnが逆並列に接続されている。本実施形態では、各ダイオードDp,Dnとして、各スイッチSp,Snのボディダイオードを用いている。なお、各ダイオードDp,Dnとしては、ボディダイオードに限らず、例えば各スイッチSp,Snとは別部品のダイオードであってもよい。 Each of the X, Y, and Z phase modules 13X, 13Y, and 13Z includes an upper arm switch Sp and a lower arm switch Sn. In the present embodiment, voltage controlled semiconductor switching elements are used as the switches Sp and Sn, and specifically, N-channel MOSFETs are used. An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn. In the present embodiment, the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn. The diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example.
 X相モジュール13XのX端子PXには、X相巻線11Xの第2端が接続されている。X端子PXには、上アームスイッチSp低電位側端子(ソース)と下アームスイッチSnの高電位側端子(ドレイン)とが接続されている。上アームスイッチSpのドレインには、回転電機ユニット10のB端子(出力端子に相当)が接続され、下アームスイッチSnのソースには、回転電機ユニット10のE端子を介して接地部位(グランドGND)としてのエンジン101のボディが接続されている。B端子は、上記バッテリ22の正極に接続される端子であり、着脱自在のコネクタ状に形成されている。 The second end of the X-phase winding 11X is connected to the X terminal PX of the X-phase module 13X. The X terminal PX is connected to the low potential side terminal (source) of the upper arm switch Sp and the high potential side terminal (drain) of the lower arm switch Sn. A B terminal (corresponding to an output terminal) of the rotating electrical machine unit 10 is connected to the drain of the upper arm switch Sp, and a grounding part (ground GND) is connected to the source of the lower arm switch Sn via the E terminal of the rotating electrical machine unit 10. ) As the body of the engine 101 is connected. The B terminal is a terminal connected to the positive electrode of the battery 22 and is formed in a detachable connector shape.
 Y相モジュール13YのY端子PYには、Y相巻線11Yの第2端が接続されている。Y端子PYには、上アームスイッチSpと下アームスイッチSnとの接続点が接続されている。上アームスイッチSpのドレインには、B端子が接続され、下アームスイッチSnのソースには、E端子を介してグランドGNDとしてのエンジン101のボディが接続されている。 The second end of the Y-phase winding 11Y is connected to the Y terminal PY of the Y-phase module 13Y. A connection point between the upper arm switch Sp and the lower arm switch Sn is connected to the Y terminal PY. The B terminal is connected to the drain of the upper arm switch Sp, and the body of the engine 101 as the ground GND is connected to the source of the lower arm switch Sn via the E terminal.
 Z相モジュール13ZのZ端子PZには、Z相巻線11Zの第2端が接続されている。Z端子PZには、上アームスイッチSpと下アームスイッチSnとの接続点が接続されている。上アームスイッチSpのドレインには、B端子が接続され、下アームスイッチSnのソースには、E端子を介してグランドGNDとしてのエンジン101のボディが接続されている。各下アームスイッチSnのソース(低圧側接続点P2)を、エンジン101のボディに接続する構造については後述する。 The second end of the Z-phase winding 11Z is connected to the Z terminal PZ of the Z-phase module 13Z. A connection point between the upper arm switch Sp and the lower arm switch Sn is connected to the Z terminal PZ. The B terminal is connected to the drain of the upper arm switch Sp, and the body of the engine 101 as the ground GND is connected to the source of the lower arm switch Sn via the E terminal. A structure for connecting the source (low-pressure side connection point P2) of each lower arm switch Sn to the body of the engine 101 will be described later.
 各相モジュール13X,13Y,13Zのそれぞれを構成する各スイッチSp,Snの直列接続体には、第1コンデンサ15と、ツェナーダイオード16とが並列接続されている。インバータ13の高圧側接続点P1と低圧側接続点P2との間の電圧を検出する電圧センサ41(電圧検出部及び電圧取得部に相当)が設けられている。なお、高圧側接続点P1とB端子とを接続する配線18が第1導電部材に相当し、低圧側接続点P2からエンジン101のボディまでを接続する導電性の各部材が第2導電部材に相当する。配線18は、導電性の金属により棒状に形成されたバスバー、及び回転電機ECU14を搭載する制御基板上に導電性の金属膜により形成されたパターン配線を含んでいる。 The first capacitor 15 and the Zener diode 16 are connected in parallel to the series connection body of the switches Sp and Sn constituting the phase modules 13X, 13Y, and 13Z. A voltage sensor 41 (corresponding to a voltage detection unit and a voltage acquisition unit) that detects a voltage between the high-voltage side connection point P1 and the low-voltage side connection point P2 of the inverter 13 is provided. The wiring 18 connecting the high voltage side connection point P1 and the B terminal corresponds to the first conductive member, and the conductive members connecting the low voltage side connection point P2 to the body of the engine 101 are the second conductive member. Equivalent to. The wiring 18 includes a bus bar formed of a conductive metal in a bar shape, and a pattern wiring formed of a conductive metal film on a control board on which the rotating electrical machine ECU 14 is mounted.
 回転電機ECU14は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンとして構成されている。回転電機ECU14は、その内部の図示しないICレギュレータにより、界磁巻線12に流す励磁電流を調整する。これにより、回転電機ユニット10の発電電圧(B端子の電圧)を制御する。また、回転電機ECU14は、車両の走行開始後にインバータ13を制御して回転電機17を駆動させて、エンジン101の駆動力をアシストする。なお、回転電機17は、エンジン101の始動時にクランク軸に回転を付与可能であり、スタータとしての機能も有している。回転電機ECU14は、通信端子であるL端子及び通信線を介して、回転電機ユニット10外部の制御装置であるエンジンECU20と接続されている。エンジンECU20は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンとして構成されており、エンジン101の運転状態を制御する。回転電機ECU14は、エンジンECU20との間で双方向通信(例えば、LINプロトコルを用いたシリアル通信)を行い、エンジンECU20と情報のやりとりをする。 The rotating electrical machine ECU 14 is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. The rotating electrical machine ECU 14 adjusts the excitation current flowing through the field winding 12 by an IC regulator (not shown) inside. Thereby, the power generation voltage (voltage of the B terminal) of the rotating electrical machine unit 10 is controlled. The rotating electrical machine ECU 14 assists the driving force of the engine 101 by controlling the inverter 13 to drive the rotating electrical machine 17 after the vehicle starts to travel. The rotating electrical machine 17 can impart rotation to the crankshaft when the engine 101 is started, and also has a function as a starter. The rotating electrical machine ECU 14 is connected to an engine ECU 20 that is a control device outside the rotating electrical machine unit 10 via an L terminal that is a communication terminal and a communication line. The engine ECU 20 is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and controls the operating state of the engine 101. The rotating electrical machine ECU 14 performs bidirectional communication (for example, serial communication using the LIN protocol) with the engine ECU 20 and exchanges information with the engine ECU 20.
 本実施形態において、回転電機ECU14は、エンジンECU20から送信されたシリアル通信信号に基づいて目標発電電圧を把握し、発電電圧(B端子の電圧)がこの目標発電電圧になるように界磁巻線12に印加するPWM電圧を制御する。これにより、励磁電流を調整し、回転電機ユニット10の発電状態を制御する。また、回転電機ECU14は、上記シリアル通信信号に基づいて目標トルク(駆動力の指令値に相当)を把握し、回転電機17が発生するトルクがこの目標トルクになるように、界磁巻線12に印加するPWM電圧及びインバータ13から各相巻線11X,11Y,11Zへ供給される交流電圧を制御する。 In the present embodiment, the rotating electrical machine ECU 14 grasps the target generated voltage based on the serial communication signal transmitted from the engine ECU 20, and the field winding so that the generated voltage (the voltage at the B terminal) becomes the target generated voltage. The PWM voltage applied to 12 is controlled. Thereby, the exciting current is adjusted, and the power generation state of the rotating electrical machine unit 10 is controlled. The rotating electrical machine ECU 14 grasps the target torque (corresponding to the command value of the driving force) based on the serial communication signal, and the field winding 12 so that the torque generated by the rotating electrical machine 17 becomes this target torque. And the AC voltage supplied from the inverter 13 to the phase windings 11X, 11Y, and 11Z.
 B端子には、リレー21を介して、エンジンECU20とバッテリ22の正極端子とが接続されている。バッテリ22の負極端子には、グランドGNDとしてのエンジン101のボディが接続されている。B端子には、第2コンデンサ23と、電気負荷24とが接続されている。電気負荷24は、例えば車両の電子制御ブレーキシステムや電動パワーステアリング等、所定電圧以上を動作電圧とする電気負荷を含んでいる。動作電圧は、電気負荷が規定の性能を発揮可能な電圧であり、電気負荷の保証電圧や定格電圧等である。電気負荷24は、エアコンディショナーや、車載オーディオ、ヘッドランプ等を含んでいてもよい。なお、リレー21は、イグニッションスイッチのオンによってオン状態とされる。 The engine ECU 20 and the positive terminal of the battery 22 are connected to the B terminal via the relay 21. The body of the engine 101 as the ground GND is connected to the negative terminal of the battery 22. A second capacitor 23 and an electrical load 24 are connected to the B terminal. The electric load 24 includes an electric load whose operating voltage is a predetermined voltage or higher, such as an electronically controlled brake system of a vehicle or an electric power steering. The operating voltage is a voltage at which the electrical load can exhibit the specified performance, such as a guaranteed voltage or a rated voltage of the electrical load. The electrical load 24 may include an air conditioner, in-vehicle audio, a headlamp, and the like. The relay 21 is turned on by turning on the ignition switch.
 次に、図2の断面図を参照して、回転電機ユニット10の機械的構造を説明する。 Next, the mechanical structure of the rotating electrical machine unit 10 will be described with reference to the cross-sectional view of FIG.
 回転電機ユニット10において、フロントボディ52およびリヤボディ53は、上記回転電機17のステータ55を回転軸方向に挟み込んだ状態で、締付ボルト54により連結されている。フロントボディ52およびリヤボディ53は、アルミニウム合金等の熱伝導性及び導電性に優れた材料によって形成されている。フロントボディ52およびリヤボディ53を包括した構成は、ハウジングに相当する。ステータ55は、フロントボディ52およびリヤボディ53に固定されたステータコア55aと、ステータコア55aに巻回された上記各相巻線11X,11Y,11Zとを備えている。 In the rotating electrical machine unit 10, the front body 52 and the rear body 53 are connected by a tightening bolt 54 with the stator 55 of the rotating electrical machine 17 sandwiched in the rotational axis direction. The front body 52 and the rear body 53 are formed of a material having excellent thermal conductivity and conductivity, such as an aluminum alloy. The configuration including the front body 52 and the rear body 53 corresponds to a housing. The stator 55 includes a stator core 55a fixed to the front body 52 and the rear body 53, and the phase windings 11X, 11Y, and 11Z wound around the stator core 55a.
 一方、フロントボディ52およびリヤボディ53には、軸受57a、57bによって、回転軸56が回転可能に取り付けられている。回転軸56には、ロータ58が固定されている。回転軸56は、ロータ58を形成する一対のロータコア58a、58bに圧入されている。ロータコア58a、58bは、上記界磁巻線12を挟み込んで互いに結合されている。ロータ58はステータ55に対して半径方向内方に対向しており、ロータコア58a、58bの外周面とステータコア55aの内周面との間には、僅かな隙間が形成されている。 On the other hand, a rotating shaft 56 is rotatably attached to the front body 52 and the rear body 53 by bearings 57a and 57b. A rotor 58 is fixed to the rotating shaft 56. The rotating shaft 56 is press-fitted into a pair of rotor cores 58 a and 58 b that form the rotor 58. The rotor cores 58a and 58b are coupled to each other with the field winding 12 interposed therebetween. The rotor 58 faces radially inward with respect to the stator 55, and a slight gap is formed between the outer peripheral surfaces of the rotor cores 58a and 58b and the inner peripheral surface of the stator core 55a.
 さらに、回転軸56の前端部(図2における左端部)には、プーリ60が一体回転可能に取り付けられている。プーリ60には、エンジン101からの駆動力を伝達するベルト(図示せず)が張架されている。 Furthermore, a pulley 60 is attached to the front end portion (left end portion in FIG. 2) of the rotating shaft 56 so as to be integrally rotatable. A belt (not shown) that transmits driving force from the engine 101 is stretched around the pulley 60.
 回転軸56の後端部(図2における右端部)には、一対のスリップリング56a、56bが、回転軸56の全周にわたって形成されている。スリップリング56a、56bには、それぞれロータ58のワイヤーハーネス58dが接続されており、ワイヤーハーネス58dによってスリップリング56a、56bは、前述した界磁巻線12に接続されている。 A pair of slip rings 56 a and 56 b are formed at the rear end portion (right end portion in FIG. 2) of the rotation shaft 56 over the entire circumference of the rotation shaft 56. A wire harness 58d of a rotor 58 is connected to each of the slip rings 56a and 56b, and the slip rings 56a and 56b are connected to the above-described field winding 12 by the wire harness 58d.
 各々のスリップリング56a、56bには、一対の給電ブラシ61a、61bが当接している。給電ブラシ61a、61bは、合成樹脂材料によって形成されたブラシホルダ62を介して、リヤボディ53に取り付けられている。給電ブラシ61a、61bは、上記バッテリ22に接続されている。バッテリ22は、給電ブラシ61a、61b、スリップリング56a、56bおよびワイヤーハーネス58dを介して界磁巻線12と電気的に接続している。給電ブラシ61a、61bは、ロータ58が回転することにより、スリップリング56a、56bに対して摺接し、界磁巻線12へ電力を供給する。 A pair of power supply brushes 61a and 61b are in contact with the slip rings 56a and 56b. The power supply brushes 61a and 61b are attached to the rear body 53 via a brush holder 62 formed of a synthetic resin material. The power supply brushes 61 a and 61 b are connected to the battery 22. The battery 22 is electrically connected to the field winding 12 via power supply brushes 61a and 61b, slip rings 56a and 56b, and a wire harness 58d. The power supply brushes 61 a and 61 b are in sliding contact with the slip rings 56 a and 56 b as the rotor 58 rotates, and supply power to the field winding 12.
 さらに、回転軸56の後端部には、センサ磁極56cが形成されており、センサ磁極56cは、複数の磁極を有している。センサ磁極56cは、非磁性材料により形成された磁石ホルダ56dを介して、回転軸56に保持されている。 Furthermore, a sensor magnetic pole 56c is formed at the rear end of the rotating shaft 56, and the sensor magnetic pole 56c has a plurality of magnetic poles. The sensor magnetic pole 56c is held on the rotating shaft 56 via a magnet holder 56d formed of a nonmagnetic material.
 リヤボディ53よりも回転軸56の後端部側(図2における右側)には、放熱板63(第2部材及び放熱部材に相当)が配置されている。放熱板63は、アルミニウム合金等の熱伝導性及び導電性に優れた材料によって一体成形されており、略平板状に形成されている。放熱板63は、半径方向に延びた平板状の底面部63aを備えており、底面部63aの一面63c(以下、前面63cという)が、リヤボディ53の後端部と対向するように前方を向き、他面63b(以下、後面63bという)が後方を向くように、リヤボディ53の外周面に取り付けられている。放熱板63は、中央部を回転軸56が貫通するように、略C形状を呈しており、回転軸56および給電ブラシ61a、61bを半径方向外方において取り囲んでいる。 A heat radiating plate 63 (corresponding to a second member and a heat radiating member) is arranged on the rear end side (right side in FIG. 2) of the rotating shaft 56 with respect to the rear body 53. The heat radiating plate 63 is integrally formed of a material having excellent heat conductivity and conductivity, such as an aluminum alloy, and is formed in a substantially flat plate shape. The heat radiating plate 63 has a flat bottom surface portion 63a extending in the radial direction, and faces the front so that one surface 63c (hereinafter referred to as the front surface 63c) of the bottom surface portion 63a faces the rear end portion of the rear body 53. The other surface 63b (hereinafter referred to as the rear surface 63b) is attached to the outer peripheral surface of the rear body 53 so as to face rearward. The heat radiating plate 63 has a substantially C shape so that the rotation shaft 56 penetrates through the central portion, and surrounds the rotation shaft 56 and the power supply brushes 61a and 61b in the radially outward direction.
 底面部63aの後面63bには、上記インバータ13が取り付けられている。放熱板63の後面63bにおいて、インバータ13は上記各相モジュール13X,13Y,13Zに分割された形態で取り付けられている。 The inverter 13 is attached to the rear surface 63b of the bottom surface portion 63a. On the rear surface 63b of the heat radiating plate 63, the inverter 13 is attached in a form divided into the phase modules 13X, 13Y, 13Z.
 放熱板63の後面63bには、基板ケース65が取り付けられている。基板ケース65は、合成樹脂材料によって容器状に一体成形されている。基板ケース65内には、後方に位置するように、制御基板66が取り付けられている。換言すれば、基板ケース65を介して、制御基板66は放熱板63の後面63b側に配置されている。制御基板66は、絶縁性の樹脂が含浸した基材上に、銅箔等によってパターン配線(図示せず)が設けられることにより形成されている。制御基板66上には、図1に示した回転電機ECU14を含んだ複数の電子要素が配置されている。 A substrate case 65 is attached to the rear surface 63 b of the heat sink 63. The substrate case 65 is integrally formed in a container shape with a synthetic resin material. A control board 66 is attached in the board case 65 so as to be located rearward. In other words, the control board 66 is disposed on the rear surface 63 b side of the heat radiating plate 63 through the board case 65. The control board 66 is formed by providing pattern wiring (not shown) with a copper foil or the like on a base material impregnated with an insulating resin. On the control board 66, a plurality of electronic elements including the rotating electrical machine ECU 14 shown in FIG.
 また、制御基板66上には、回転センサ67が設けられている。回転センサ67は、ホールIC等の磁電変換素子によって形成されており、前述のセンサ磁極56cと回転軸方向に対向している。回転センサ67は、回転軸56の回転による磁束変化を検出し、ロータ58の回転角度、回転速度、回転加速度等を検出している。 Further, a rotation sensor 67 is provided on the control board 66. The rotation sensor 67 is formed by a magnetoelectric conversion element such as a Hall IC and faces the sensor magnetic pole 56c described above in the rotation axis direction. The rotation sensor 67 detects a change in magnetic flux due to rotation of the rotation shaft 56 and detects a rotation angle, a rotation speed, a rotation acceleration, and the like of the rotor 58.
 リヤボディ53の後端面には、リヤエンドカバー68が取り付けられている。リヤエンドカバー68は、放熱板63とともに制御基板66を挟む位置に配置されている。リヤエンドカバー68は合成樹脂材料にて器状に形成され、制御基板66と対向した平面部68aと、平面部68aに連結して外周部において前方に延びた筒状部68bとを有している。リヤエンドカバー68は、リヤボディ53との間において、制御基板66、スリップリング56a、56b、給電ブラシ61a、61bを覆うように取り付けられている。また、筒状部68bの前端とリヤボディ53の後端面とは、回転軸方向に対向している。 A rear end cover 68 is attached to the rear end surface of the rear body 53. The rear end cover 68 is arranged at a position sandwiching the control board 66 together with the heat radiating plate 63. The rear end cover 68 is formed of a synthetic resin material in a container shape, and includes a flat portion 68a facing the control board 66, and a cylindrical portion 68b connected to the flat portion 68a and extending forward at the outer peripheral portion. . The rear end cover 68 is attached to the rear body 53 so as to cover the control board 66, the slip rings 56a and 56b, and the power supply brushes 61a and 61b. Further, the front end of the cylindrical portion 68b and the rear end surface of the rear body 53 are opposed to each other in the rotation axis direction.
 ここで、図1で示した各下アームスイッチSnのソース(低圧側接続点P2)を、エンジン101のボディに接続する構造について説明する。 Here, a structure for connecting the source (low-pressure side connection point P2) of each lower arm switch Sn shown in FIG. 1 to the body of the engine 101 will be described.
 上述したように、インバータ13は、放熱板63の底面部63bに取り付けられている。そして、各下アームスイッチSnのソースは、放熱板63に電気的に接続されている。放熱板63は、リヤボディ53及びフロントボディ52に電気的に接続されている。リヤボディ53及びフロントボディ52は、スチール製の連結部材69を介してエンジン101のボディに電気的に接続されている。 As described above, the inverter 13 is attached to the bottom surface 63b of the heat sink 63. The source of each lower arm switch Sn is electrically connected to the heat sink 63. The heat radiating plate 63 is electrically connected to the rear body 53 and the front body 52. The rear body 53 and the front body 52 are electrically connected to the body of the engine 101 via a steel connecting member 69.
 そして、低圧側接続点P2からエンジン101のボディまでの第2導電部材の電気抵抗は、予め測定されている。また、高圧側接続点P1からB端子までの第1導電部材の電気抵抗は、予め測定されている。 And the electrical resistance of the second conductive member from the low-pressure side connection point P2 to the body of the engine 101 is measured in advance. Further, the electrical resistance of the first conductive member from the high voltage side connection point P1 to the B terminal is measured in advance.
 [アシスト制御]
 次に、車両の走行開始後に回転電機17を駆動させて、エンジン101の駆動力をアシストするアシスト制御について説明する。このアシスト制御は、回転電機ECU14(アシスト制御部及び電圧制御部に相当)により実行される。
[Assist control]
Next, assist control for assisting the driving force of the engine 101 by driving the rotating electrical machine 17 after the start of traveling of the vehicle will be described. This assist control is executed by the rotating electrical machine ECU 14 (corresponding to an assist control unit and a voltage control unit).
 アシスト制御部は、車両の走行開始後にインバータ13を制御して回転電機17を駆動させて、エンジン101の駆動力をアシストする。このとき、回転電機17の駆動により大電力が消費されると、バッテリ22の電圧が低下する。電気負荷24は、所定電圧以上を動作電圧とする電気負荷を含んでいる。このため、バッテリ22の電圧が低下して所定電圧未満となり、電気負荷24の動作電圧を確保できなくなるおそれがある。 The assist control unit assists the driving force of the engine 101 by driving the rotating electrical machine 17 by controlling the inverter 13 after the vehicle starts to travel. At this time, when a large amount of power is consumed by driving the rotating electrical machine 17, the voltage of the battery 22 decreases. The electric load 24 includes an electric load having an operating voltage equal to or higher than a predetermined voltage. For this reason, the voltage of the battery 22 decreases and becomes less than a predetermined voltage, and there is a possibility that the operating voltage of the electric load 24 cannot be secured.
 そこで、本実施形態では、電圧制御部は、アシスト制御部によるアシストの実行中に、電圧センサ41により検出される電圧(バッテリ22の電圧に相当)が所定電圧以上になるように、アシスト制御部によりインバータ13を制御させて回転電機17を継続駆動させる。すなわち、回転電機ECU14は、エンジンECU20から回転電機17に発生させる目標トルクを入力し、アシストの実行中に、電圧センサ41により検出される電圧が所定電圧以上になるように、目標トルクに基づいてインバータ13を制御して回転電機17を継続駆動させる。 Therefore, in the present embodiment, the voltage control unit is configured so that the voltage (corresponding to the voltage of the battery 22) detected by the voltage sensor 41 is equal to or higher than a predetermined voltage during the execution of the assist by the assist control unit. Thus, the inverter 13 is controlled to drive the rotating electrical machine 17 continuously. That is, the rotating electrical machine ECU 14 inputs a target torque to be generated by the rotating electrical machine 17 from the engine ECU 20, and based on the target torque so that the voltage detected by the voltage sensor 41 becomes equal to or higher than a predetermined voltage during the execution of the assist. The inverter 13 is controlled to continuously drive the rotating electrical machine 17.
 詳しくは、電圧制御部は、アシスト制御部によるアシストの実行中に、電圧センサ41により検出される電圧が所定電圧よりも高く設定した下限電圧以上である場合は、アシスト制御部によるインバータ13の制御を制限しない。そして、電圧制御部は、電圧センサ41により検出される電圧が下限電圧まで低下した場合に下限電圧で維持されるように、アシスト制御部によりインバータ13を制御させて回転電機17を継続駆動させる。具体的には、電圧センサ41により検出される電圧が下限電圧になるように、インバータ13をフィードバック制御すればよい。 Specifically, the voltage control unit controls the inverter 13 by the assist control unit when the voltage detected by the voltage sensor 41 is equal to or higher than a lower limit voltage set higher than a predetermined voltage during the execution of the assist by the assist control unit. Do not limit. Then, the voltage control unit causes the assist control unit to control the inverter 13 to continuously drive the rotating electrical machine 17 so that the voltage detected by the voltage sensor 41 is maintained at the lower limit voltage when the voltage is decreased to the lower limit voltage. Specifically, the inverter 13 may be feedback controlled so that the voltage detected by the voltage sensor 41 becomes the lower limit voltage.
 図3は、上記アシスト制御の手順を示すフローチャートである。回転電機ECU14は、電圧センサ41により検出される電圧が下限電圧以上であるか否か判定する(S11)。回転電機ECU14は、検出される電圧が下限電圧以上であると判定した場合(S11:YES)、目標トルクを発生するように回転電機17を駆動させる(S12)。一方、回転電機ECU14は、検出される電圧が下限電圧以上でないと判定した場合(S11:NO)、検出される電圧が下限電圧になるように回転電機17を駆動させる(S13)。なお、検出される電圧が下限電圧になるように回転電機17を駆動させる場合は、回転電機17が発生するトルクは目標トルク以下となる。 FIG. 3 is a flowchart showing the procedure of the assist control. The rotating electrical machine ECU 14 determines whether or not the voltage detected by the voltage sensor 41 is equal to or higher than the lower limit voltage (S11). When the rotating electrical machine ECU 14 determines that the detected voltage is equal to or higher than the lower limit voltage (S11: YES), the rotating electrical machine 17 drives the rotating electrical machine 17 to generate the target torque (S12). On the other hand, when the rotating electrical machine ECU 14 determines that the detected voltage is not equal to or higher than the lower limit voltage (S11: NO), the rotating electrical machine 17 is driven so that the detected voltage becomes the lower limit voltage (S13). When the rotating electrical machine 17 is driven so that the detected voltage becomes the lower limit voltage, the torque generated by the rotating electrical machine 17 is equal to or less than the target torque.
 上記アシスト制御は、以下の利点を有する。 The above assist control has the following advantages.
 ・電気負荷24の動作電圧を確保しつつ、アシストを継続して実行することができる。 Assistance can be continuously executed while ensuring the operating voltage of the electrical load 24.
 ・バッテリ22の電圧が下限電圧以上である場合は、回転電機17による駆動力が制限されず、通常のアシストを実行することができる。 When the voltage of the battery 22 is equal to or higher than the lower limit voltage, the driving force by the rotating electrical machine 17 is not limited and normal assist can be executed.
 ・アシストの実行中にバッテリ22の電圧が低下した場合でも、バッテリ22の電圧を所定電圧よりも高く設定した下限電圧で維持することができる。その結果、所定電圧以上を動作電圧とする電気負荷24の動作を安定させることができる。 · Even when the voltage of the battery 22 decreases during the execution of the assist, the voltage of the battery 22 can be maintained at the lower limit voltage set higher than the predetermined voltage. As a result, it is possible to stabilize the operation of the electric load 24 having an operating voltage equal to or higher than a predetermined voltage.
 ・回転電機17による駆動力を制限しない場合と比較して、エンジンECU20の制御を変更する必要がなく、回転電機ECU14の制御により、電気負荷24の動作電圧を確保しつつ、アシストを継続して実行することができる。 Compared with the case where the driving force by the rotating electrical machine 17 is not limited, it is not necessary to change the control of the engine ECU 20, and the assist is continued while the operating voltage of the electric load 24 is secured by the control of the rotating electrical machine ECU 14. Can be executed.
 なお、上記アシスト制御を、以下のように変更して実行することもできる。 Note that the above-described assist control can be changed and executed as follows.
 ・電圧制御部は、アシスト制御部によるアシストの実行中に、電圧センサ41により取得される電圧が所定電圧未満になった場合に所定電圧以上になるように、アシスト制御部によりインバータ13を制御させて回転電機17を継続駆動させてもよい。具体的には、電圧センサ41により検出される電圧が所定電圧未満になった場合に、回転電機17へ供給する電圧を所定量減少させるようにインバータ13を制御させればよい。こうした構成によれば、バッテリ22の電圧が所定電圧未満になった場合に所定電圧以上になるようにする簡易な制御により、電気負荷24の動作電圧を概ね確保しつつ、アシストを継続して実行することができる。 The voltage control unit causes the assist control unit to control the inverter 13 so that the voltage acquired by the voltage sensor 41 becomes equal to or higher than a predetermined voltage when the assist control unit executes the assist. Thus, the rotary electric machine 17 may be continuously driven. Specifically, when the voltage detected by the voltage sensor 41 becomes less than a predetermined voltage, the inverter 13 may be controlled so as to decrease the voltage supplied to the rotating electrical machine 17 by a predetermined amount. According to such a configuration, the assist is continuously executed while the operating voltage of the electric load 24 is generally secured by the simple control that causes the voltage of the battery 22 to become equal to or higher than the predetermined voltage when the voltage of the battery 22 becomes lower than the predetermined voltage. can do.
 図4は、上記アシスト制御の手順を示すフローチャートである。回転電機ECU14は、電圧センサ41により検出される電圧が所定電圧未満であるか否か判定する(S21)。回転電機ECU14は、検出される電圧が所定電圧未満でないと判定した場合(S21:NO)、目標トルクを発生するように回転電機17を駆動させる(S22)。一方、回転電機ECU14は、検出される電圧が所定電圧未満であると判定した場合(S21:YES)、回転電機17へ供給する電圧を所定量減少させて、検出される電圧が所定電圧以上になるように回転電機17を駆動させる(S23)。所定量は、任意に設定することができ、大きな値に設定して回転電機17へ供給する電圧を一度で減少させてもよいし、小さな値に設定して回転電機17へ供給する電圧を繰り返し減少させてもよい。なお、検出される電圧が所定電圧以上になるように回転電機17を駆動させる場合は、回転電機17が発生するトルクは目標トルク以下となる。 FIG. 4 is a flowchart showing the assist control procedure. The rotating electrical machine ECU 14 determines whether or not the voltage detected by the voltage sensor 41 is less than a predetermined voltage (S21). When the rotating electrical machine ECU 14 determines that the detected voltage is not less than the predetermined voltage (S21: NO), the rotating electrical machine 17 drives the rotating electrical machine 17 to generate the target torque (S22). On the other hand, when it is determined that the detected voltage is less than the predetermined voltage (S21: YES), the rotating electrical machine ECU 14 decreases the voltage supplied to the rotating electrical machine 17 by a predetermined amount so that the detected voltage becomes equal to or higher than the predetermined voltage. The rotating electrical machine 17 is driven so as to be (S23). The predetermined amount can be arbitrarily set, and the voltage supplied to the rotating electrical machine 17 by setting it to a large value may be reduced at once, or the voltage supplied to the rotating electrical machine 17 by setting it to a small value may be repeated. It may be decreased. Note that when the rotating electrical machine 17 is driven so that the detected voltage is equal to or higher than the predetermined voltage, the torque generated by the rotating electrical machine 17 is equal to or less than the target torque.
 ・電圧制御部は、アシスト制御部によるアシストの実行中に、電圧センサ41により検出される電圧が所定電圧未満になると予測した場合に所定電圧未満にならないように、アシスト制御部によりインバータ13を制御させて回転電機17を継続駆動させてもよい。具体的には、電圧センサ41により検出される電圧の低下速度からバッテリ22の電圧を予測し、回転電機17へ供給する電圧を予め減少させればよい。また、検出される電圧の低下速度に基づいて、供給する電圧を予め減少させる量を可変としてもよい。また、検出される電圧と所定電圧との差に基づいて、供給する電圧を予め減少させる量を可変としてもよい。こうした構成によれば、アシストの実行中にバッテリ22の電圧が急激に低下する場合であっても、バッテリ22の電圧を予測して所定電圧未満にならないようにすることができる。 The voltage control unit controls the inverter 13 by the assist control unit so that the voltage detected by the voltage sensor 41 is predicted to be less than the predetermined voltage during the execution of the assist by the assist control unit so that the voltage is not less than the predetermined voltage. Thus, the rotating electrical machine 17 may be continuously driven. Specifically, the voltage of the battery 22 may be predicted from the voltage decrease rate detected by the voltage sensor 41, and the voltage supplied to the rotating electrical machine 17 may be reduced in advance. Further, the amount by which the supplied voltage is decreased in advance may be variable based on the detected voltage decrease rate. Further, the amount by which the supplied voltage is decreased in advance may be variable based on the difference between the detected voltage and the predetermined voltage. According to such a configuration, even when the voltage of the battery 22 rapidly decreases during the execution of the assist, the voltage of the battery 22 can be predicted so as not to become less than a predetermined voltage.
 図5は、上記アシスト制御の手順を示すフローチャートである。回転電機ECU14は、電圧センサ41により検出される電圧が所定電圧未満になるか否か予測する(S31)。回転電機ECU14は、検出される電圧が所定電圧未満になると予測しなかった場合(S31:NO)、目標トルクを発生するように回転電機17を駆動させる(S32)。一方、回転電機ECU14は、検出される電圧が所定電圧未満になると予測した場合(S31:YES)、回転電機17へ供給する電圧を予め減少させて、検出される電圧が所定電圧未満にならないように回転電機17を駆動させる(S33)。なお、検出される電圧が所定電圧未満にならないように回転電機17を駆動させる場合は、回転電機17が発生するトルクは目標トルク以下となる。 FIG. 5 is a flowchart showing the procedure of the assist control. The rotating electrical machine ECU 14 predicts whether or not the voltage detected by the voltage sensor 41 is less than a predetermined voltage (S31). When the rotating electrical machine ECU 14 does not predict that the detected voltage will be less than the predetermined voltage (S31: NO), the rotating electrical machine 17 drives the rotating electrical machine 17 to generate the target torque (S32). On the other hand, when it is predicted that the detected voltage is less than the predetermined voltage (S31: YES), the rotating electrical machine ECU 14 reduces the voltage supplied to the rotating electrical machine 17 in advance so that the detected voltage does not become less than the predetermined voltage. The rotary electric machine 17 is driven (S33). When the rotating electrical machine 17 is driven so that the detected voltage does not become less than the predetermined voltage, the torque generated by the rotating electrical machine 17 is equal to or less than the target torque.
 ・アシスト制御部を回転電機ECU14により構成し、電圧制御部をエンジンECU20により構成することもできる。この場合、回転電機ECU14は、エンジンECU20から回転電機17に発生させる目標トルク(駆動力の指令値に相当)を入力し、車両の走行開始後に目標トルクに基づいてインバータ13を制御して回転電機17を駆動させて、エンジン101の駆動力をアシストする。エンジンECU20は、回転電機ECU14によるアシストの実行中に、電圧センサ41により取得される電圧が所定電圧以上になるように目標トルクを制御して、回転電機ECU14によりインバータ13を制御させて回転電機17を継続駆動させればよい。こうした構成によれば、回転電機17の駆動力を制限しない場合と比較して、回転電機ECU14の制御を変更する必要がなく、エンジンECU20の制御により、電気負荷24の動作電圧を確保しつつ、アシストを継続して実行することができる。 The assist control unit can be configured by the rotating electrical machine ECU 14, and the voltage control unit can be configured by the engine ECU 20. In this case, the rotating electrical machine ECU 14 inputs a target torque (corresponding to a command value of the driving force) to be generated by the rotating electrical machine 17 from the engine ECU 20, and controls the inverter 13 based on the target torque after the vehicle starts running to rotate the rotating electrical machine. 17 is driven to assist the driving force of the engine 101. The engine ECU 20 controls the target torque so that the voltage acquired by the voltage sensor 41 becomes equal to or higher than a predetermined voltage during the execution of the assist by the rotating electrical machine ECU 14, and controls the inverter 13 by the rotating electrical machine ECU 14 to control the rotating electrical machine 17. May be continuously driven. According to such a configuration, it is not necessary to change the control of the rotating electrical machine ECU 14 as compared with the case where the driving force of the rotating electrical machine 17 is not limited, and the operating voltage of the electric load 24 is secured by the control of the engine ECU 20. Assist can be executed continuously.
 図6は、上記アシスト制御の手順を示すフローチャートである。エンジンECU20は、電圧センサ41により検出される電圧が下限電圧以上であるか否か判定する(S41)。エンジンECU20は、検出される電圧が下限電圧以上であると判定した場合(S41:YES)、ドライバの要求に基づいて目標トルクを設定する(S42)。一方、エンジンECU20は、検出される電圧が下限電圧以上でないと判定した場合(S41:NO)、検出される電圧が下限電圧になるように目標トルクを設定する(S43)。なお、検出される電圧が下限電圧になるように目標トルクを設定する場合は、回転電機17が発生するトルクはドライバの要求に基づいて設定する目標トルク以下となる。 FIG. 6 is a flowchart showing the procedure of the assist control. The engine ECU 20 determines whether or not the voltage detected by the voltage sensor 41 is equal to or higher than the lower limit voltage (S41). If the engine ECU 20 determines that the detected voltage is equal to or higher than the lower limit voltage (S41: YES), the engine ECU 20 sets a target torque based on the driver's request (S42). On the other hand, when it is determined that the detected voltage is not equal to or higher than the lower limit voltage (S41: NO), the engine ECU 20 sets the target torque so that the detected voltage becomes the lower limit voltage (S43). When the target torque is set so that the detected voltage becomes the lower limit voltage, the torque generated by the rotating electrical machine 17 is equal to or less than the target torque set based on the driver's request.
 ・電圧センサ41により、インバータ13の高圧側接続点P1と低圧側接続点P2との間の電圧が検出される。高圧側接続点P1とB端子とは、第1導電部材(配線18)により接続されている。このため、B端子から高圧側接続点P1まで電圧が供給される際に、第1導電部材の電気抵抗により電圧低下が生じる。また、低圧側接続点P2と接地部位としてのエンジン101とは、第2導電部材(放熱板63、リヤボディ53及びフロントボディ52、連結部材69)により電気的に接続されている。このため、低圧側接続点P2の電位と接地部位の電位とには、第2導電部材の電気抵抗によりずれが生じる。したがって、電圧センサ41により検出されるインバータ13の高圧側接続点P1と低圧側接続点P2との間の電圧と、B端子と接地部位との間の電圧とにはずれが生じる。 The voltage between the high voltage side connection point P1 and the low voltage side connection point P2 of the inverter 13 is detected by the voltage sensor 41. The high voltage side connection point P1 and the B terminal are connected by a first conductive member (wiring 18). For this reason, when a voltage is supplied from the B terminal to the high voltage side connection point P1, a voltage drop occurs due to the electric resistance of the first conductive member. Further, the low-voltage side connection point P2 and the engine 101 as the grounding part are electrically connected by a second conductive member (the heat radiating plate 63, the rear body 53, the front body 52, and the connecting member 69). For this reason, a difference occurs between the electric potential of the second conductive member between the electric potential of the low-voltage side connection point P2 and the electric potential of the ground portion. Therefore, there is a deviation between the voltage between the high-voltage side connection point P1 and the low-voltage side connection point P2 of the inverter 13 detected by the voltage sensor 41 and the voltage between the B terminal and the grounding part.
 ここで、上述したように、第1導電部材及び第2導電部材の電気抵抗は、予め測定されている。このため、電圧制御部は、B端子の電圧が目標供給電圧になるように、電圧センサ41により検出される電圧と第1導電部材及び第2導電部材の電気抵抗とに基づいて、回転電機17の駆動を制御してもよい。例えば、第1導電部材及び第2導電部材に流れる電流を電流センサにより検出し、検出された電流に第1導電部材及び第2導電部材の電気抵抗を掛けることで電圧低下分を算出する。なお、第1導電部材及び第2導電部材に流れる電流を推定し、推定された電流を用いて電圧低下分を算出してもよい。目標供給電圧としては、上記下限電圧や上記所定電圧を採用することができる。具体的には、電圧制御部は、電圧センサ41により検出される電圧が、目標供給電圧から第1導電部材及び第2導電部材の電気抵抗による電圧低下分を引いた電圧となるように、インバータ13により回転電機17の駆動を制御するといった構成を採用することができる。こうした構成によれば、B端子の電圧を正確に把握した上で、B端子に接続された電気負荷24の動作電圧を確保することができる。 Here, as described above, the electrical resistances of the first conductive member and the second conductive member are measured in advance. For this reason, the voltage controller 17 rotates the rotating electrical machine 17 based on the voltage detected by the voltage sensor 41 and the electric resistances of the first conductive member and the second conductive member so that the voltage at the B terminal becomes the target supply voltage. You may control the drive of. For example, the current flowing through the first conductive member and the second conductive member is detected by a current sensor, and the voltage drop is calculated by multiplying the detected current by the electrical resistance of the first conductive member and the second conductive member. Note that the current flowing through the first conductive member and the second conductive member may be estimated, and the voltage drop may be calculated using the estimated current. As the target supply voltage, the lower limit voltage or the predetermined voltage can be employed. Specifically, the voltage control unit determines that the voltage detected by the voltage sensor 41 is a voltage obtained by subtracting the voltage drop due to the electrical resistance of the first conductive member and the second conductive member from the target supply voltage. 13 can control the drive of the rotating electrical machine 17. According to such a configuration, the operating voltage of the electric load 24 connected to the B terminal can be ensured after accurately grasping the voltage of the B terminal.
 ・図1に破線で示すように、バッテリ22の端子電圧を直接検出する電圧センサ41A(電圧取得部に相当)を設けてもよい。そして、電圧制御部は、アシスト制御部によるアシストの実行中に、この電圧センサ41Aにより検出される電圧が所定電圧以上になるように、アシスト制御部によりインバータ13を制御させて回転電機17を継続駆動させてもよい。 As shown by a broken line in FIG. 1, a voltage sensor 41A (corresponding to a voltage acquisition unit) that directly detects the terminal voltage of the battery 22 may be provided. Then, the voltage control unit continues the rotating electrical machine 17 by controlling the inverter 13 by the assist control unit so that the voltage detected by the voltage sensor 41A becomes equal to or higher than a predetermined voltage during the execution of the assist by the assist control unit. It may be driven.
 ・電圧制御部は、インバータ13に供給される電圧が指令電圧になるように、上記電圧センサ41Aにより検出される電圧と第1導電部材及び第2導電部材の電気抵抗とに基づいて、回転電機17の駆動を制御してもよい。こうした構成によれば、バッテリ22の端子電圧を直接検出する電圧センサ41Aの検出値に基づいて、回転電機17を駆動する場合であっても、第1導電部材及び第2導電部材の電気抵抗による電圧低下を考慮して、回転電機17により目標トルクを発生させることができる。 The voltage control unit is configured to rotate the rotating electrical machine based on the voltage detected by the voltage sensor 41A and the electric resistances of the first conductive member and the second conductive member so that the voltage supplied to the inverter 13 becomes the command voltage. The drive of 17 may be controlled. According to such a configuration, even when the rotating electrical machine 17 is driven based on the detection value of the voltage sensor 41A that directly detects the terminal voltage of the battery 22, it depends on the electrical resistance of the first conductive member and the second conductive member. In consideration of the voltage drop, the rotating electrical machine 17 can generate the target torque.
 [発電制御]
 次に、エンジン101により回転電機17を駆動して交流発電させて、インバータ13により交流電圧を直流電圧に変換してB端子へ出力する発電制御について説明する。この発電制御は、車両の減速時に回生発電として行われるものであってもよいし、エンジン運転中に行われるものであってもよい。この発電制御は、回転電機ECU14(電圧制御部に相当)により実行される。
[Power generation control]
Next, power generation control will be described in which the rotating electrical machine 17 is driven by the engine 101 to cause AC power generation, and the inverter 13 converts the AC voltage into a DC voltage and outputs it to the B terminal. This power generation control may be performed as regenerative power generation when the vehicle is decelerated, or may be performed during engine operation. This power generation control is executed by the rotating electrical machine ECU 14 (corresponding to a voltage control unit).
 上述したように、電圧センサ41により検出されるインバータ13の高圧側接続点P1と低圧側接続点P2との間の電圧と、B端子と接地部位との間の電圧とにはずれが生じる。そこで、本実施形態では、電圧制御部は、B端子の電圧が目標発電電圧になるように、電圧センサ41により検出される電圧と第1導電部材及び第2導電部材の電気抵抗とに基づいて、回転電機17による発電電圧を制御する。具体的には、電圧制御部は、電圧センサ41により検出される電圧が、目標発電電圧に第1導電部材及び第2導電部材の電気抵抗による電圧低下分を加えた電圧となるように、インバータ13の制御に基づき回転電機17による発電電圧を制御する。例えば、第1導電部材及び第2導電部材に流れる電流を電流センサにより検出し、検出された電流に第1導電部材及び第2導電部材の電気抵抗を掛けることで電圧低下分を算出する。なお、第1導電部材及び第2導電部材に流れる電流を推定し、推定された電流を用いて電圧低下分を算出してもよい。 As described above, a deviation occurs between the voltage between the high-voltage side connection point P1 and the low-voltage side connection point P2 of the inverter 13 detected by the voltage sensor 41 and the voltage between the B terminal and the ground portion. Therefore, in the present embodiment, the voltage control unit is based on the voltage detected by the voltage sensor 41 and the electric resistances of the first conductive member and the second conductive member so that the voltage at the B terminal becomes the target generated voltage. The generated voltage by the rotating electrical machine 17 is controlled. Specifically, the voltage control unit includes an inverter so that the voltage detected by the voltage sensor 41 is a voltage obtained by adding a voltage drop due to the electric resistance of the first conductive member and the second conductive member to the target generated voltage. Based on the control 13, the generated voltage by the rotating electrical machine 17 is controlled. For example, the current flowing through the first conductive member and the second conductive member is detected by a current sensor, and the voltage drop is calculated by multiplying the detected current by the electrical resistance of the first conductive member and the second conductive member. Note that the current flowing through the first conductive member and the second conductive member may be estimated, and the voltage drop may be calculated using the estimated current.
 上記発電制御は、以下の利点を有する。 The power generation control has the following advantages.
 ・回転電機ユニット10から大電流が流れる場合であっても、第1導電部材及び第2導電部材による電圧低下を考慮して、B端子の電圧を目標発電電圧に制御することができる。 Even when a large current flows from the rotating electrical machine unit 10, the voltage at the B terminal can be controlled to the target generated voltage in consideration of the voltage drop due to the first conductive member and the second conductive member.
 ・インバータ13が取り付けられた放熱板63を第2導電部材として利用する構成において、放熱板63による電圧低下を考慮して、B端子の電圧を目標電圧に制御することができる。 In the configuration in which the heat sink 63 to which the inverter 13 is attached is used as the second conductive member, the voltage at the B terminal can be controlled to the target voltage in consideration of the voltage drop due to the heat sink 63.
 ・回転電機17を収容するハウジング(フロントボディ52及びリヤボディ53)を第2導電部材として利用する構成において、ハウジングによる電圧低下を考慮して、B端子の電圧を目標電圧に制御することができる。 In the configuration in which the housing (the front body 52 and the rear body 53) that houses the rotating electrical machine 17 is used as the second conductive member, the voltage at the B terminal can be controlled to the target voltage in consideration of the voltage drop due to the housing.
 ・回転電機17を収容するハウジングとエンジン101とを連結する連結部材69を第2導電部材として利用する構成において、連結部材69による電圧低下を考慮して、B端子の電圧を目標電圧に制御することができる。 In the configuration in which the connecting member 69 that connects the housing that houses the rotating electrical machine 17 and the engine 101 is used as the second conductive member, the voltage at the B terminal is controlled to the target voltage in consideration of the voltage drop due to the connecting member 69. be able to.
 ・高圧側接続点P1とB端子とを配線18により接続する構成において、配線18による電圧低下を考慮して、B端子の電圧を目標電圧に制御することができる。 In the configuration in which the high-voltage side connection point P1 and the B terminal are connected by the wiring 18, the voltage at the B terminal can be controlled to the target voltage in consideration of the voltage drop due to the wiring 18.
 なお、上記実施形態を以下のように変更して実施することもできる。 It should be noted that the above embodiment can be modified as follows.
 ・電圧センサ41が回転電機ECU14内に設けられていてもよい。その場合、高圧側接続点P1及び低圧側接続点P2も回転電機ECU14内に位置することとなる。 The voltage sensor 41 may be provided in the rotating electrical machine ECU 14. In that case, the high-voltage side connection point P1 and the low-voltage side connection point P2 are also located in the rotating electrical machine ECU.
 ・第1導電部材及び第2導電部材として、それらに含まれる部材の数を適宜変更可能であり、上記の各部材以外の部材を採用することもできる。 · As the first conductive member and the second conductive member, the number of members included in the first conductive member and the second conductive member can be appropriately changed, and members other than the above-described members can be employed.
 ・回転電機17として、多相多重巻線を有する回転電機を採用することもできる。回転電機17として、界磁巻線12に代えて、ロータ58に磁石を備えるものを採用することもできる。その場合は、回転電機17の構成に応じて、インバータ13の制御を変更すればよい。なお、インバータ13の構成も、X,Y,Z相モジュール13X,13Y,13Z全体を一体のモジュールとして構成したり、X,Y,Z相モジュール13X,13Y,13Zのうち2つを一体のモジュールとして構成したりしてもよい。また、回転電機17として、車両を駆動することが可能な駆動力を発生するMG(Motor Generator)を採用することもできる。 -As the rotating electrical machine 17, a rotating electrical machine having a multi-phase multiple winding can be adopted. As the rotating electrical machine 17, a rotor 58 having a magnet may be employed instead of the field winding 12. In that case, the control of the inverter 13 may be changed according to the configuration of the rotating electrical machine 17. The configuration of the inverter 13 is also configured such that the entire X, Y, Z phase modules 13X, 13Y, 13Z are integrated modules, or two of the X, Y, Z phase modules 13X, 13Y, 13Z are integrated modules. Or may be configured as Further, as the rotating electrical machine 17, an MG (MotoreratorGenerator) that generates a driving force capable of driving the vehicle may be employed.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (8)

  1.  エンジン(101)により駆動されて交流発電可能な回転電機(17)と、前記回転電機により発電された交流電圧を整流する整流回路(13)と、前記整流回路からの直流電圧を出力する出力端子(B)と、を備える回転電機ユニット(10)であって、
     前記整流回路の高圧側接続点(P1)と低圧側接続点(P2)との間の電圧を検出する電圧検出部(41)と、
     前記高圧側接続点と前記出力端子とを接続する第1導電部材(18)と、
     前記低圧側接続点と接地部位としての前記エンジンとを接続する第2導電部材(63、53、52、69)と、
     前記出力端子の電圧が目標発電電圧になるように、前記電圧検出部により検出される前記電圧と前記第1導電部材及び前記第2導電部材の電気抵抗とに基づいて、前記回転電機による発電電圧を制御する電圧制御部(14)と、
    を備える回転電機ユニット。
    A rotating electrical machine (17) driven by the engine (101) and capable of AC power generation, a rectifying circuit (13) for rectifying the AC voltage generated by the rotating electrical machine, and an output terminal for outputting a DC voltage from the rectifying circuit (B), a rotating electrical machine unit (10) comprising:
    A voltage detector (41) for detecting a voltage between the high voltage side connection point (P1) and the low voltage side connection point (P2) of the rectifier circuit;
    A first conductive member (18) connecting the high-voltage side connection point and the output terminal;
    A second conductive member (63, 53, 52, 69) for connecting the low-pressure side connection point and the engine as a grounding part;
    Based on the voltage detected by the voltage detection unit and the electric resistance of the first conductive member and the second conductive member so that the voltage of the output terminal becomes a target generated voltage, the generated voltage by the rotating electrical machine A voltage control unit (14) for controlling
    A rotating electrical machine unit comprising:
  2.  前記電圧制御部は、前記電圧検出部により検出される前記電圧が、前記目標発電電圧に前記第1導電部材及び前記第2導電部材の電気抵抗による電圧低下分を加えた電圧となるように、前記回転電機による発電電圧を制御する請求項1に記載の回転電機ユニット。 The voltage control unit is configured such that the voltage detected by the voltage detection unit is a voltage obtained by adding a voltage drop due to electric resistance of the first conductive member and the second conductive member to the target generated voltage. The rotating electrical machine unit according to claim 1, wherein a generated voltage by the rotating electrical machine is controlled.
  3.  前記回転電機は、前記回転電機ユニットの外部から前記出力端子へ供給される電圧により駆動可能であり、
     前記電圧制御部は、前記出力端子の電圧が目標供給電圧になるように、前記電圧検出部により検出される前記電圧と前記第1導電部材及び前記第2導電部材の電気抵抗とに基づいて、前記回転電機の駆動を制御する請求項1に記載の回転電機ユニット。
    The rotating electrical machine can be driven by a voltage supplied to the output terminal from the outside of the rotating electrical machine unit,
    The voltage control unit is based on the voltage detected by the voltage detection unit and the electric resistances of the first conductive member and the second conductive member so that the voltage of the output terminal becomes a target supply voltage. The rotating electrical machine unit according to claim 1 which controls driving of the rotating electrical machine.
  4.  前記電圧制御部は、前記電圧検出部により検出される前記電圧が、前記目標供給電圧から前記第1導電部材及び前記第2導電部材の電気抵抗による電圧低下分を引いた電圧となるように、前記回転電機の駆動を制御する請求項3に記載の回転電機ユニット。 The voltage control unit is configured such that the voltage detected by the voltage detection unit is a voltage obtained by subtracting a voltage drop due to electric resistance of the first conductive member and the second conductive member from the target supply voltage. The rotating electrical machine unit according to claim 3, wherein the driving of the rotating electrical machine is controlled.
  5.  前記第2導電部材は、前記整流回路が取り付けられた放熱部材(63)を含む請求項1~4のいずれか1項に記載の回転電機ユニット。 The rotating electrical machine unit according to any one of claims 1 to 4, wherein the second conductive member includes a heat radiating member (63) to which the rectifier circuit is attached.
  6.  前記第2導電部材は、前記回転電機を収容するハウジング(53、52)を含む請求項1~5のいずれか1項に記載の回転電機ユニット。 The rotating electrical machine unit according to any one of claims 1 to 5, wherein the second conductive member includes a housing (53, 52) that houses the rotating electrical machine.
  7.  前記第2導電部材は、前記回転電機を収容するハウジングと前記エンジンとを連結する連結部材(69)を含む請求項6に記載の回転電機ユニット。 The rotating electrical machine unit according to claim 6, wherein the second conductive member includes a connecting member (69) for connecting the housing for housing the rotating electrical machine and the engine.
  8.  前記第1導電部材は、前記高圧側接続点と前記出力端子とを接続する配線(18)である請求項1~7のいずれか1項に記載の回転電機ユニット。 The rotating electrical machine unit according to any one of claims 1 to 7, wherein the first conductive member is a wiring (18) connecting the high-voltage side connection point and the output terminal.
PCT/JP2017/017610 2016-05-12 2017-05-09 Rotating electrical machine unit WO2017195799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017002427.7T DE112017002427T5 (en) 2016-05-12 2017-05-09 ROTATING ELECTRICAL MACHINE UNIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016096307A JP2017204953A (en) 2016-05-12 2016-05-12 Dynamo-electric machine unit
JP2016-096307 2016-05-12

Publications (1)

Publication Number Publication Date
WO2017195799A1 true WO2017195799A1 (en) 2017-11-16

Family

ID=60267665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017610 WO2017195799A1 (en) 2016-05-12 2017-05-09 Rotating electrical machine unit

Country Status (3)

Country Link
JP (1) JP2017204953A (en)
DE (1) DE112017002427T5 (en)
WO (1) WO2017195799A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2714921C1 (en) * 2019-06-11 2020-02-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method of stabilizing output voltage of a magnetoelectric alternator
RU2726950C1 (en) * 2020-03-12 2020-07-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет" "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Voltage stabilized magnetoelectric alternator
RU2762286C1 (en) * 2021-04-22 2021-12-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Voltage stabilized valve magnetoelectric generator
RU2792170C1 (en) * 2022-10-31 2023-03-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Valve magnetoelectric generator with input power factor correction of its rectifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259392B2 (en) * 2019-02-21 2023-04-18 株式会社デンソー power generation controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092530A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Defective grounding detecting method, defective grounding detecting device, and automatic stop control device for engine
JP2009148089A (en) * 2007-12-14 2009-07-02 Daihatsu Motor Co Ltd Power generation control apparatus for vehicle
JP2011010500A (en) * 2009-06-29 2011-01-13 Panasonic Corp Power device
JP2012244673A (en) * 2011-05-17 2012-12-10 Hitachi Automotive Systems Ltd Ac generator for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192739A (en) 1981-05-22 1982-11-26 Matsushita Electric Ind Co Ltd Hot air heater
JP4992728B2 (en) * 2008-01-10 2012-08-08 トヨタ自動車株式会社 Power supply device and discharge control method thereof
JP5729475B2 (en) * 2011-08-04 2015-06-03 トヨタ自動車株式会社 Vehicle and vehicle control method
JP2016096307A (en) 2014-11-17 2016-05-26 トヨタ自動車株式会社 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092530A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Defective grounding detecting method, defective grounding detecting device, and automatic stop control device for engine
JP2009148089A (en) * 2007-12-14 2009-07-02 Daihatsu Motor Co Ltd Power generation control apparatus for vehicle
JP2011010500A (en) * 2009-06-29 2011-01-13 Panasonic Corp Power device
JP2012244673A (en) * 2011-05-17 2012-12-10 Hitachi Automotive Systems Ltd Ac generator for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2714921C1 (en) * 2019-06-11 2020-02-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method of stabilizing output voltage of a magnetoelectric alternator
RU2726950C1 (en) * 2020-03-12 2020-07-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет" "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Voltage stabilized magnetoelectric alternator
RU2762286C1 (en) * 2021-04-22 2021-12-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Voltage stabilized valve magnetoelectric generator
RU2792170C1 (en) * 2022-10-31 2023-03-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Valve magnetoelectric generator with input power factor correction of its rectifier
RU2806899C1 (en) * 2023-09-14 2023-11-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Machine-electronic generating system with voltage and frequency stabilization

Also Published As

Publication number Publication date
JP2017204953A (en) 2017-11-16
DE112017002427T5 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP4116292B2 (en) Electric power generation system for hybrid vehicles
US7816805B2 (en) Power supply system with multiphase motor and multiphase inverter
US7471004B2 (en) Driving/electric-power generating system for vehicle
JP4926222B2 (en) Control device for vehicle power converter
WO2017195799A1 (en) Rotating electrical machine unit
JP5079030B2 (en) Control device for power converter
US20150091481A1 (en) Power converting device and power converting system
CN103780042A (en) Brushless direct current reluctance starter generator
JP2011061928A (en) Vehicular alternator, and rectifier of vehicular alternator
JP2014204451A (en) Controller of vehicular generator motor and method thereof
JP2011097739A (en) Power supply
JP2014143862A (en) Power generation controller for vehicle
JP4950162B2 (en) Vehicle power supply
JP4478185B2 (en) Engine starter for vehicle
JP3381411B2 (en) Motor generator for vehicles
WO2018131568A1 (en) Control device for power conversion circuit and rotary electric machine unit
KR20180014512A (en) System and method for start power generation of vehicle
CN103347728A (en) Method for adjusting an actual torque delivered by an electric motor in a motor vehicle to a target torque
JP5638465B2 (en) Vehicle power supply system
JP6834460B2 (en) Rotating machine control device, rotating machine unit
JP2017202778A (en) Control device for rotary electric machine
JP6645405B2 (en) Rotary electric machine control device, rotary electric machine unit
JP6665773B2 (en) Rotary electric machine rotation rise abnormality detection device, rotating electric machine unit
JP7225720B2 (en) Power generation torque control device for rotary electric machine
JP2015014278A (en) Starter generator and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796160

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796160

Country of ref document: EP

Kind code of ref document: A1