WO2018096996A1 - Co2 hydrate for oral ingestion or complex for oral ingestion containing said co2 hydrate, and methods respectively for producing those products - Google Patents

Co2 hydrate for oral ingestion or complex for oral ingestion containing said co2 hydrate, and methods respectively for producing those products Download PDF

Info

Publication number
WO2018096996A1
WO2018096996A1 PCT/JP2017/041049 JP2017041049W WO2018096996A1 WO 2018096996 A1 WO2018096996 A1 WO 2018096996A1 JP 2017041049 W JP2017041049 W JP 2017041049W WO 2018096996 A1 WO2018096996 A1 WO 2018096996A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrate
ice
oral
maximum
seconds
Prior art date
Application number
PCT/JP2017/041049
Other languages
French (fr)
Japanese (ja)
Inventor
愛 辻
紀子 阿野
雅子 神辺須
敬宏 江口
佳孝 山本
実大 室町
太郎 水谷
裕一朗 山崎
貴昭 井上
信威 下條
有希 榎本
Original Assignee
キリン株式会社
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリン株式会社, 国立大学法人筑波大学 filed Critical キリン株式会社
Priority to JP2018552522A priority Critical patent/JP7058011B2/en
Publication of WO2018096996A1 publication Critical patent/WO2018096996A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/269Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of microbial origin, e.g. xanthan or dextran
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor

Definitions

  • the present invention relates to a CO 2 hydrate for oral intake or a composite for oral intake containing the CO 2 hydrate (hereinafter also referred to as “CO 2 hydrate for oral intake, etc.”) and a method for producing them.
  • CO 2 hydrate A substance called CO 2 hydrate (carbon dioxide hydrate) is known.
  • CO 2 hydrate refers to an inclusion compound in which carbon dioxide molecules are confined in the empty space of a water molecule crystal.
  • a water molecule forming a crystal is called a “host molecule”, and a molecule trapped in the void of the crystal of the water molecule is called a “guest molecule” or “guest substance”.
  • CO 2 hydrate decomposes into CO 2 (carbon dioxide) and water when melted, it generates CO 2 upon melting.
  • CO 2 hydrate can be produced by making CO 2 and water into a condition of low temperature and high pressure CO 2 partial pressure, for example, at a certain temperature and CO 2 hydrate at that temperature.
  • CO 2 hydrate production conditions CO 2 partial pressure production conditions
  • the above-mentioned conditions of “a certain temperature and the CO 2 partial pressure higher than the equilibrium pressure of CO 2 hydrate at that temperature” are shown in FIG. 2 of Non-Patent Document 1 and FIG. 7 of Non-Patent Document 2.
  • the high pressure side of this curve (the equilibrium pressure curve of CO 2 hydrate)
  • the vertical axis represents the CO 2 pressure
  • the horizontal axis represents the temperature
  • it is expressed as a condition of the combination of the temperature in the region (above the curve) and the CO 2 pressure.
  • the CO 2 hydrate can also be produced by reacting fine ice instead of water with CO 2 under conditions of low temperature and low pressure CO 2 partial pressure.
  • CO 2 concentration of CO 2 hydrate depending on the preparation of CO 2 hydrate, can be on the order of about 3-28 wt%, and the CO 2 concentration of the carbonated water (about 0.5 wt.%) Remarkably high compared.
  • Patent Document 1 As an application of CO 2 hydrate, for example, in Patent Document 1, by mixing CO 2 hydrate with a beverage, carbonic acid is given to the beverage to produce a carbonated beverage.
  • Patent Document 3 discloses that a carbonated supplement medium formed by covering CO 2 hydrate with ice is added to a beverage to cool a slimmed beverage and to replenish carbon dioxide in a drained beverage.
  • CO 2 hydrate is mixed with frozen confectionery such as oyster ice and ice cream, so that the CO 2 hydrate is melted in the oral cavity of the person who ate the frozen confectionery.
  • frozen confectionery such as oyster ice and ice cream
  • an irritating texture can be generated such that a frozen dessert can be played in the mouth.
  • CO 2 store hydrate to transfer, from the viewpoint of suppressing such CO 2 as possible degradation of hydrates, the temperature during storage and transport is preferably as low, CO 2 in a lower temperature condition Higher costs are required to maintain hydrate. Therefore, at lower cost, CO 2 from a more efficient inhibition of the decomposition of hydrate, and more effectively suppress the decomposition of CO 2 hydrate by means other than temperature control, storage stability, storage stability Means have been developed to improve. As such means, an attempt has been made to use a phenomenon called “self-preservation effect” known in gas hydrates such as CO 2 .
  • the self-preserving effect of gas hydrate means that the decomposition of gas hydrate is very slow under certain specific conditions in the region of temperature and pressure conditions where gas hydrate should originally decompose relatively quickly. The effect becomes.
  • the mechanism of the self-preserving effect has not yet been fully elucidated, the decomposition of the gas hydrate is an endothermic reaction, so that under certain specific conditions, the water generated on the surface due to the decomposition of the gas hydrate is once again frozen.
  • an ice film covers the surface of the gas hydrate, and as a result, the storage stability and storage stability of the gas hydrate are improved.
  • Patent Document 4 gas hydrate particles in which the gas may be CO 2 gas are placed under the decomposition conditions, and the surfaces of the particles are slightly melted to generate water. It is disclosed that the self-preserving property of the gas hydrate is enhanced by freezing the gas.
  • Patent Document 5 improves the transportation and storage efficiency of gas hydrate by forming an ice film on the surface of the pellet in a humidified atmosphere after the step of forming a gas hydrate such as methane into a pellet. Is disclosed.
  • Patent Document 6 discloses that after the step of forming a gas hydrate such as methane into a pellet, negatively charged raw material water is sprayed onto the pellet, and a thin and uniform water film of 10 ⁇ m to 500 ⁇ m is formed on the pellet surface. It is disclosed that a gas hydrate exhibiting sufficient self-preserving property can be produced by forming an ice and cooling it to form an ice film.
  • the storage stability and storage stability related to self-storability are storage stability and storage stability at a temperature below the melting point of ice (less than about 0 ° C.). This is a concept of another dimension that is not directly related to the sustained release of carbon dioxide under conditions such as about 37 ° C.
  • Patent Document 7 is characterized by carbon dioxide class hydrate added with saccharides such as glucose and having foamability and sweetness when contained in the mouth. Frozen confection is disclosed, and Non-Patent Document 3 discloses that the storage stability of carbon dioxide hydrate is reduced by adding sucrose (sucrose) during the production of carbon dioxide hydrate.
  • sucrose sucrose
  • these documents is for adding sugar to water in the production of CO 2 hydrate, for example, does not disclose coating the CO 2 hydrate in an ice film containing saccharides.
  • Patent Document 8 discloses a spoon by mixing CO 2 hydrate-containing particles with ice slurry containing stabilizers such as locust bean gum and gelatin. A method for producing ice that can be picked up is disclosed.
  • Patent Document 9 discloses a method for producing a frozen carbonated beverage that is mixed with a frozen syrup with flavor containing a thickener such as pectin.
  • the CO 2 hydrate been made to mix the frozen material containing a thickening agent, it is intended to disclose coating the CO 2 hydrate in an ice film containing, for example, thickener Absent.
  • JP 2005-224146 A Japanese Patent No. 4969683 Japanese Patent No. 4716921 Japanese Patent No. 517336 Japanese Patent No. 5153412 Japanese Patent No. 5052385 JP 2008-237034 A Japanese Patent No. 4169165 Special table 2004-512035 gazette
  • the test of calculating (mL / second) was repeated three times, and the maximum value of the CO 2 generation rate (mL / second) obtained every 5 seconds was determined as the maximum CO 2 generation of the CO 2 hydrate.
  • a dead lung volume comprising: a model lung driven by a ventilator; an oral model; a communication pipe connecting the model lung and the oral model in communication; and a capnometer installed in the communication pipe
  • a breathing simulator adjusted to about 200 mL was used. An outline of the breathing simulator is shown in FIG. Specifically, CO 2 hydrate is put into the oral model, and the CO 2 concentration (mmHg) in the exhaled gas in the communication tube when the model adult lung is driven is measured. This CO 2 concentration (mmHg) is measured for 120 seconds or more, and the maximum value of the concentration is taken as the maximum CO 2 concentration (mmHg) in the model lung.
  • CO 2 gas was supplied to the model lung at 200 mL / min equivalent to the amount generated in vivo.
  • an object of the present invention is to solve (problem (1)) is, CO 2 hydrate or CO 2 hydrate composite (hereinafter represented as "CO 2 hydrate and the like".)
  • CO 2 hydrate and the like The edible or drinkable to Decomposition of CO 2 hydrate etc. is progressing after adding CO 2 hydrate etc. to cold food and drink when taking it into the mouth for the purpose of enjoying a unique texture or feeling over the throat, or a production effect that looks delicious. Yes, even when inhaling the CO 2 gas that is being generated by the decomposition of the CO 2 hydrate etc. at the stage of carrying it to the mouth, the risk of carbon dioxide poisoning has been reduced compared to the prior art. It is to provide a high CO 2 hydrate for oral intake.
  • the problem to be solved by the present invention (problem (2)) is that, after ingesting CO 2 hydrate or the like for the above purpose, decomposition of CO 2 hydrate or the like in the oral environment is the problem (1). Even when a larger amount of CO 2 gas is inhaled than in the case of the above problem (1), which is generated by proceeding more rapidly than in the case of the above, the risk of carbon dioxide poisoning is reduced more safely than before. It is to provide CO 2 hydrate and the like for oral intake having high properties. Furthermore, the problem to be solved by the present invention (problem (3)) is to provide a safer method for producing CO 2 hydrate for oral intake that has a reduced risk of carbon dioxide poisoning. .
  • the said subject (1) will be solved naturally. This is because the decomposition rate of CO 2 hydrate increases as the temperature increases and the risk of carbon dioxide poisoning increases, and the temperature increases or decreases depending on the temperature of the cold food or drink ⁇ temperature ⁇ oral temperature (-37 ° C).
  • the risk of carbon dioxide poisoning due to decomposition of CO 2 hydrate and the like when added to cold food and drink is the risk of carbon dioxide poisoning due to decomposition of CO 2 hydrate and the like when contacted with moisture in the oral cavity. This is because it is lower than the risk.
  • the present inventors have made intensive studies in order to solve the above problems, the lung CO 2 concentration is above a certain, there is a possibility that personal injury by carbon dioxide intoxication, the arterial blood carbon dioxide partial pressure 80 It is known that consciousness is confused at ⁇ 100mmHg (Respiratory Physiology Revised Edition for Respiratory Management) (Yodosha, Kenji Tsuji, issued December 1, 2011) ), The idea was to control the carbon dioxide partial pressure in the lungs to be less than 80 mmHg even when CO 2 hydrate was ingested.
  • CO 2 sustained-release can be controlled to a carbon dioxide partial pressure of less than 80 mmHg in the lung, and the carbon dioxide poisoning risk when ingesting in the oral cavity is significantly reduced and sufficient carbon dioxide is obtained. It was found that a CO 2 hydrate for oral intake having a feeling can be obtained.
  • the present inventors coated CO 2 hydrate with an ice film (including an ice film containing a thickener and a sweetening component), and adjusted the thickness and composition of the ice film to be coated. It was found that the maximum CO 2 generation rate at the time of melting of CO 2 hydrate under an environment similar to that in the human oral cavity can be controlled. The present inventors have completed the present invention based on these findings.
  • Patent Documents 4 to 6 and the like that disclose coating CO 2 hydrate with an ice film
  • these prior arts are merely self-preserving, that is, temperatures below the melting point of ice (about about This is a technique aiming to improve storage stability and storage stability at less than 0 ° C.), and at the time of melting in an environment similar to the human oral cavity (for example, 36 to 38 ° C.) as in the present invention.
  • This is not a technique for reducing the maximum CO 2 generation rate (improving CO 2 sustained release).
  • the present inventors have provided storage stability and sustained release of CO 2 with respect to a plurality of small pellets of CO 2 hydrate and one large block of CO 2 hydrate containing the same amount of CO 2.
  • the ice film formed on the surface of the CO 2 hydrate pellet is desirably formed as thin as possible within a range that exhibits a self-preserving effect.
  • its thickness is at most about 500 ⁇ m or less (see, for example, Patent Document 6).
  • Patent Document 2 describes a carbon supplement medium formed by covering CO 2 hydrate with ice.
  • the specification discloses that CO 2 is heated at a specified pressure under a specified temperature. A mixture of two gases mixed in water and stirring the water to form a slurry is cooled without dehydration, and is dispersed with CO 2 hydrate in ice.
  • CO 2 hydrate prepared in this process not only ice, on the surface of ice is than CO 2 hydrate is often scattered, CO 2 sustained release of the present invention is adjusted This is different from “CO 2 hydrate provided with an ice coating film” which is one embodiment of CO 2 hydrate for oral intake.
  • the present invention (1) CO 2 hydrate for ingestion, wherein the maximum CO 2 generation rate defined below is adjusted to be less than 8 mL / sec, or for ingestion containing the CO 2 hydrate Composite: (Definition of maximum CO 2 generation rate (mL / sec)) 0.3 was taken the amount of CO 2 hydrate containing CO 2 for ⁇ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value of the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate (mL / sec) of the CO 2 hydrate; (2) The CO 2 hydrate for oral consumption according to (1)
  • a complex for oral consumption containing the CO 2 hydrate (3) The CO 2 hydrate for oral consumption according to (2) above, or the CO 2 hydrate, wherein the ice coating film is an ice film having a thickness of 0.6 to 50 mm Oral ingestion compounds, (4) CO 2 hydrate for oral consumption according to any one of (1) to (3) above, which is CO 2 hydrate containing 0.3 to 0.36 g CO 2 , or A composition for oral consumption containing the CO 2 hydrate, (5) CO 2 content, 3 above, wherein the ⁇ 28 by weight% (1) to (4) oral ingestion for CO 2 hydrate of any one of or the CO 2 hydrate Including ingestible composites, (6)
  • the ice coating film contains one or more substances selected from the group consisting of a thickener and a sweetening component, according to the above (2) to (5), CO 2 hydrate for oral intake according to any of the above, or a composite for oral intake containing the CO 2 hydrate, (7)
  • the concentration of the thickener contained in the ice coating film
  • CO 2 hydrate for oral intake according to the above (6), or a composite for oral intake containing the CO 2 hydrate
  • the present invention relates to a composite for oral consumption containing the CO 2 hydrate.
  • maximum CO 2 generation rate which is defined below is characterized in that it comprises a step of adjusting to be less than 8 mL / sec, for oral ingestion CO 2 hydrate or the Method for producing a composite for oral consumption containing CO 2 hydrate: (Definition of maximum CO 2 generation rate (mL / sec)) 0.3 was taken the amount of CO 2 hydrate containing CO 2 for ⁇ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value of the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate
  • maximum CO 2 generation rate which is defined below is characterized in that it comprises a step of adjusting to be less than 8 mL / sec, for oral ingestion CO 2 hydrate or the Method for adjusting CO 2 sustained release of composite for ingestion containing CO 2 hydrate: (Definition of maximum CO 2 generation rate (mL / sec)) 0.3 was taken the amount of CO 2 hydrate containing CO 2 for ⁇ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value among the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum
  • a more safe CO for ingestion having sufficient carbon dioxide feeling while reducing the risk of carbon dioxide poisoning when ingested after being added to food or drink or when directly ingested.
  • the measurement item is end expiratory CO 2 partial pressure.
  • the CO 2 cylinder supplies CO 2 gas equivalent to the amount of CO 2 production at the time of adult rest (200 mL / min), and the ventilator drives the model lung at the set ventilation.
  • the present invention the maximum CO 2 (herein, simply “maximum CO 2 evolution rate” also displays.) Generation rate adjusted so that less than 8 mL / sec by oral ingestion for CO 2 as defined below Hydrate or a complex for oral intake containing the CO 2 hydrate (hereinafter also referred to as “CO 2 hydrate for oral intake of the present invention”) and a production method thereof (hereinafter “the present invention”) It is also indicated as “Manufacturing method”.
  • the CO 2 hydrate for oral intake of the present invention is adjusted so that the maximum CO 2 generation rate is less than 8 mL / second, that is, the CO 2 sustained release property is adjusted.
  • the CO 2 hydrate for oral consumption of the present invention that is adjusted so that the maximum CO 2 generation rate is less than 8 mL / second is a highly safe CO 2 hydrate for oral intake of carbon dioxide poisoning.
  • "CO 2 hydrate having sufficient carbon feeling” the maximum CO 2 evolution rate is 1 mL / sec or more, the CO 2 hydrate is more preferably 1.5 mL / sec or more To do.
  • the present invention is the manufacturing of CO 2 hydrate, maximum CO 2 generation rate 8 mL / oral intake for CO 2 hydrate and the like, characterized in that adjusted to be less than a second CO 2 sustained release (Hereinafter also referred to as “the CO 2 sustained release adjusting method of the present invention”).
  • CO 2 hydrate carbon dioxide hydrate
  • CO 2 hydrate means a solid inclusion compound in which carbon dioxide molecules are confined in the empty space of a crystal of water molecules.
  • CO 2 hydrate is usually an icy crystal, and releases carbon dioxide while melting, for example, under standard atmospheric pressure conditions and under temperature conditions where ice melts.
  • the oral intake for CO 2 hydrate of the present invention is not particularly limited as long as it is such oral intake CO 2 hydrate, such as shape, size, CO 2 content, and production method.
  • the composite for oral consumption of the present invention means a substance for oral intake including the CO 2 hydrate for oral intake of the present invention.
  • the composition for oral intake of the present invention is not particularly limited in terms of composition, shape, size, CO 2 content, production method, etc. as long as it is a substance for oral intake including the CO 2 hydrate for oral intake of the present invention.
  • Examples of the substance for oral intake other than the CO 2 hydrate for oral intake of the present invention in the composite for oral intake of the present invention include foods and drinks such as frozen confectionery (for example, ice), confectionery, food, and beverage. Beverages and frozen desserts are preferred, among which beverages, ice desserts (eg ice) and ice creams are more preferred, among which ice desserts (eg ice) and ice creams are more preferred.
  • the food or drink preferably ice is frozen by coating the oral ingestion CO 2 hydrate in a film form.
  • the maximum CO 2 generation rate of the CO 2 hydrate for oral intake of the present invention is not particularly limited as long as it is less than 8 mL / second, and those skilled in the art will feel carbonation in the flavor design of the product to be used for such CO 2 hydrate.
  • a suitable maximum CO 2 generation rate can be set as appropriate.
  • the upper limit of the maximum CO 2 generation rate is 7.5 mL / second or less, 7 mL / second or less, Examples include 6 mL / second or less, 5 mL / second or less, and the lower limit includes 1 mL / second or more, 1.5 mL / second or more, 2 mL / second or more, 2.5 mL / second or more, 3 mL / second or more.
  • the maximum CO 2 generation rate of the oral intake composite of the present invention is usually slower than the maximum CO 2 generation rate of the oral intake CO 2 hydrate of the present invention contained in the composite. This is because the substance includes the CO 2 hydrate for oral intake of the present invention, and the substance other than the CO 2 hydrate in the composite usually has a lower CO 2 concentration than the CO 2 hydrate.
  • CO 2 hydrate by providing the coating film of ice (to cover the CO 2 hydrate in an ice film) mass is adjusted CO 2 hydrate as the maximum CO 2 generation rate is less than 8 mL / sec And the like to apply.
  • a thickness of 0 Preferred examples include CO 2 hydrate coated with an ice film of .6 to 50 mm (hereinafter also referred to as “ice film coated CO 2 hydrate”).
  • the shape of the CO 2 hydrate for oral intake of the present invention can be appropriately set according to the product design of the product to be used for the CO 2 hydrate for oral intake of the present invention.
  • a piece (lump) may be sufficient.
  • the shape of the composite for oral consumption of the present invention can be appropriately set according to the type, composition, etc. of the composite.
  • the shape of the composite examples thereof include a substantially spherical shape, a substantially ellipsoidal shape, a substantially polyhedral shape such as a substantially rectangular parallelepiped shape, or a shape further provided with irregularities in these shapes.
  • the size of the CO 2 hydrate for oral intake of the present invention can be appropriately set according to the product design of the product to be used for the CO 2 hydrate for oral intake of the present invention.
  • Examples of the maximum length of 2 hydrates include 1 to 100 mm, 2 to 50 mm, 3 to 30 mm, 4 to 25 mm, and 5 to 20 mm.
  • "the maximum length of the CO 2 hydrate for oral ingestion” are tied two points of the surface of the mass of CO 2 hydrate orally ingested, and, among the line segments passing through the center of gravity of the mass, It means the length of the longest line segment.
  • the size of the composite for oral intake of the present invention can be appropriately set according to the product design of the product to be used of the composite, for example, when the composite is an individual as a whole
  • the size of the composite include 1 to 200 mm, 3 to 100 mm, 5 to 80 mm, 7 to 50 mm, and 7 to 25 mm as the maximum length of CO 2 hydrate for oral intake.
  • the carbon dioxide content (CO 2 content) of the CO 2 hydrate for oral intake of the present invention is not particularly limited as long as the maximum CO 2 generation rate is less than 8 mL / second, and CO 2 for oral intake of the present invention.
  • the lower limit of the CO 2 content rate For example, 3% by weight or more, preferably 5% by weight or more, more preferably 7% by weight or more, further preferably 10% by weight or more, more preferably 12% by weight or more.
  • Examples of the upper limit of the CO 2 content include 28 weight% or less, 23 weight% or less, 18 weight% or less is mentioned.
  • CO 2 content of the case of the ice film covering CO 2 hydrate the ratio of the weight of CO 2 relative to the total weight of the ice film covering CO 2 hydrate containing ice film (%) To do.
  • the CO 2 hydrate for ingestion of the present invention was not ice film-coated CO 2 hydrate, but was adjusted so that the maximum CO 2 generation rate was less than 8 mL / second by adjusting the CO 2 content.
  • the lower limit of the CO 2 content is, for example, 1% by weight or more, preferably 2.5% by weight or more, more preferably 4% by weight or more, and the upper limit of the CO 2 content is, for example, Examples include 10% by weight or less, 8% by weight or less, and 6% by weight or less.
  • the carbon dioxide content (CO 2 content) of the composite for oral intake of the present invention is not particularly limited, and is appropriately set according to the product design of the product to be used for the CO 2 hydrate for oral intake of the present invention.
  • the lower limit of the CO 2 content is, for example, 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 7% by weight or more, more preferably 9% by weight or more.
  • Examples of the upper limit of the CO 2 content include 25% by weight or less, 20% by weight or less, and 15% by weight or less.
  • the CO 2 content of the oral intake composite of the present invention means the ratio (%) of the weight of CO 2 to the total weight of the oral intake composite of the present invention.
  • the CO 2 content in the CO 2 hydrate for oral intake of the present invention is determined by “the level of CO 2 partial pressure”, “degree of dehydration treatment”, “consolidation” when producing the CO 2 hydrate for oral intake of the present invention. It can be adjusted according to “whether or not to perform the molding process”, “the level of compaction pressure when the compacting process is performed”, “the thickness of the ice film”, and the like. For example, when making CO 2 hydrate, “increase the CO 2 partial pressure”, “increase the degree of dehydration”, “perform compaction processing”, “increase the compaction pressure when performing compaction processing “Yes,” the CO 2 content of the CO 2 hydrate can be increased.
  • CO 2 content of CO 2 hydrate for oral ingestion (sample weight before melting ⁇ sample weight after melting) / sample weight before melting)
  • CO 2 content in the oral ingestion composite of the present invention and CO 2 content in the oral ingestion for CO 2 hydrate of the present invention to be contained in the oral ingestion for composites, is contained in the oral ingestion for composites it can be adjusted by the mixing ratio or the like of the CO 2 hydrate orally ingested.
  • CO 2 content in the oral ingestion composite of the present invention can be calculated by the same method as CO 2 content of CO 2 hydrate orally ingested.
  • the CO 2 hydrate for oral intake of the present invention has a “low temperature condition”, “high pressure condition”, or “low temperature condition” for distribution and storage from the viewpoint of keeping it more stable for a longer period of time. It is preferable to hold
  • the upper limit temperature in the above “low temperature condition” is preferably 0 ° C. or less, more preferably ⁇ 5 ° C. or less, further preferably ⁇ 10 ° C. or less, more preferably ⁇ 15 ° C. or less, still more preferably ⁇ 20 ° C., More preferred is ⁇ 25 ° C., and the lower limit temperature in the “low temperature condition” is ⁇ 273 ° C. or higher, ⁇ 80 ° C. or higher, ⁇ 50 ° C. or higher, ⁇ 40 ° C. or higher, ⁇ 30 ° C. or higher, etc. It is done.
  • Examples of the lower limit pressure under the “high pressure condition” include 1050 hectopascals (hPa) or higher, preferably 1150 hPa or higher, more preferably 1300 hPa or higher, and even more preferably 1500 hPa or higher. As 15,000 hPa or less, 12000 hPa or less, 10000 hPa or less, 8000 hPa or less, 5000 hPa or less, etc. are mentioned. In addition, all the pressures described in this paragraph are expressed as absolute pressures.
  • the CO 2 hydrate for oral consumption of the present invention preferably includes the ice film-coated CO 2 hydrate of the present invention, and the oral film of the present invention includes the ice film of the present invention.
  • a composite for oral intake containing coated CO 2 hydrate is preferred.
  • Such an ice film-coated CO 2 hydrate is not particularly limited as long as it is a CO 2 hydrate coated with an ice film having a thickness of 0.6 to 50 mm, such as shape, size, CO 2 content, and production method.
  • the thickness of the ice film in the present invention is not particularly limited as long as it is 0.6 to 50 mm, but preferably 0.6 to 30 mm, more preferably 0.6 to 20 mm, still more preferably 0.7 to 5 mm, More preferred is 0.7 to 4 mm, and still more preferred is 0.8 to 3.5 mm.
  • the “ice film thickness” in the present specification means an average value of the ice film thickness covering the CO 2 hydrate, and the “ice film thickness” includes, for example, the ice film coating.
  • the average value of the thickness of the ice film at 3 to 10 (preferably 5) positions selected at random in the CO 2 hydrate ice film is included.
  • the ice film thickness at a position where the ice film coating CO 2 hydrate is present means the thickness of the ice film in the direction perpendicular to the plane when the surface of the ice film at the position is a plane. When is a curved surface, it means the thickness of the ice film perpendicular to the tangential plane of the ice film surface at that position.
  • one ice film-covered CO 2 hydrate includes two or more CO 2 hydrate lumps
  • the boundary surfaces of the ice films of the CO 2 hydrate lumps are adjacent to each other.
  • a perpendicular bisector that is a line segment connecting points on each surface of each CO 2 hydrate lump and having the shortest length is preferable.
  • the thickness of the ice film may be different depending on the position of the surface of the ice film covering CO 2 hydrate, but preferably is substantially uniform across the surface of the ice film covering CO 2 hydrate, the CO 2 hydrate
  • the ratio of the “thickness of the ice film at the thickest position” to the “thickness of the ice film at the thinnest position” is, for example, higher than 1.0 and lower than or equal to 5.0, preferably 1.0 to 4.0, more preferably Is preferably 1.0 to 3.0.
  • one ice film-coated CO 2 hydrate may contain one CO 2 hydrate chunk, or two or more CO 2 hydrate chunks, It preferably contains one CO 2 hydrate mass.
  • the CO 2 hydrate mass of 60% or more as a proportion may be an ice film-coated CO 2 hydrate, preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more. More preferably, it is preferable that the number of CO 2 hydrate blocks in a ratio of 95% or more, most preferably 100%, is ice film-coated CO 2 hydrate.
  • the ice film in the present invention is an ice film, and as such ice, it may be composed only of ice or may contain an arbitrary substance other than ice.
  • Such optional substances include one or more substances selected from the group consisting of thickeners, sweetening ingredients, emulsifiers and oils and fats, among which are selected from the group consisting of thickeners and sweetening ingredients. 1 type or 2 or more types of substances are preferably mentioned, and 1 type or 2 or more types of thickeners are more preferable, and 1 type or 2 or more types of thickeners containing at least xanthan gum are more preferable. Can be mentioned.
  • the ice film in the present invention includes a film formed by freezing food and drink such as frozen confectionery (for example, ice), confectionery, food, and beverage.
  • the above thickener means a substance that can improve the viscosity of food and drink by adding it to food and drink.
  • Such thickener includes xanthan gum, carrageenan, guar gum, tamarind gum, gellan gum, locust. Bean gum, tara gum, carboxymethylcellulose, pectin, pullulan, propylene glycol, gelatin, gum arabic, diytan gum, starch, dextrin, alginic acid, locust bean gum, etc., among which xanthan gum, pectin, guar gum, carrageenan, carboxymethylcellulose , Locust bean gum and the like are preferable, among which xanthan gum, pectin, and locust bean gum are more preferable.
  • One thickener may be used, or two or more thickeners may be used in combination.
  • the concentration of the thickener in the ice film is appropriately set according to the flavor design of the product to be used for the CO 2 hydrate for oral intake of the present invention. For example, it is higher than 0% by weight and lower than 5% by weight, preferably 0.01 to 4.5% by weight, more preferably 0.01 to 4.0% by weight, and still more preferably 0.05 to 0%. 0.6% by weight, more preferably 0.05 to 0.5% by weight, and still more preferably 0.1 to 0.5% by weight.
  • sweet ingredient refers to an ingredient exhibiting sweetness, such as brown sugar, white sugar, cassonade (red sugar), Wasanbon, sorghum sugar, maple sugar and other sugar-containing sugars.
  • Refined sugars such as salmon sugar (white disaccharide, medium disaccharide, granulated sugar, etc.), car sugar (super white sugar, tri-sugar etc.), processed sugar (corn sugar, ice sugar, powdered sugar, granulated sugar etc.), liquid sugar etc.
  • Monosaccharides (glucose, fructose, wood sugar, sorbose, galactose, isomerized sugar, etc.), disaccharides (sucrose cake, maltose, lactose, isomerized lactose, palatinose, etc.), oligosaccharides (fructooligosaccharides, maltooligosaccharides, isomaltoligosaccharides) , Galactooligosaccharides, coupling sugar, etc.), sugar alcohols (erythritol, sorbitol, xylitol, mannitol, maltitol, isomaltitol, lactitol)
  • saccharide sweeteners such as maltotriitol, isomaltoriitol, panitol, oligosaccharide alcohol, powdered reduced maltose starch syrup, etc., natural non-sugar sweeteners (stevia extract,
  • the total concentration of the sweetening components in the ice membrane should be appropriately set according to the flavor design of the product to be used for the oral ingestion CO 2 hydrate. For example, it is higher than 0% by weight and not more than 30% by weight, preferably 1 to 25% by weight.
  • the above-mentioned emulsifier refers to a substance having an emulsifying action, and as such an emulsifier, those that can be used for food can be widely adopted, for example, fatty acid monoglyceride, fatty acid diglyceride, fatty acid triglyceride, propylene glycol fatty acid ester, Sucrose fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, lecithin, quillaja saponin, yucca saponin, soybean saponin, modified starch (acid-degraded starch, oxidized starch, pregelatinized starch, grafted starch, carboxymethyl group, hydroxyalkyl group And the like, esterified starch obtained by reacting acetic acid, phosphoric acid and the like, crosslinked starch in which a polyfunctional group is bonded between hydroxyl groups of two or more starches, wet heat-treated starch, and the like.
  • the concentration of the emulsifier in the ice film can be appropriately set according to the flavor design of the product to be used for the ingestible CO 2 hydrate of the present invention. For example, it is higher than 0% by weight and not more than 0.5% by weight, preferably 0.001 to 0.5% by weight, more preferably 0.01 to 0.4% by weight, still more preferably 0.01 to 0.3%. % By weight.
  • the above fats and oils refer to esters of glycerin and fatty acids, and as such fats and oils, those that can be used for food can be widely adopted, for example, rapeseed oil, soybean oil, sunflower seed oil, cottonseed oil, peanut oil , Rice bran oil, corn oil, safflower oil, olive oil, kapok oil, sesame oil, evening primrose oil, palm oil, shea fat, monkey fat, cacao butter, palm oil, palm kernel oil and other vegetable oils; Animal fats such as pork fat, fish oil, whale oil, and the like, and further, fats and oils alone or in combination, or processed fats and oils subjected to curing, fractionation, transesterification and the like thereof. 1 type may be used for fats and oils, and 2 or more types may be used together.
  • the concentration of the fats and oils in the ice film can be appropriately set according to the flavor design of the product to be used for the oral ingestion CO 2 hydrate. For example, it is higher than 0 wt% and 40 wt% or less, preferably 0.01 to 35 wt%, more preferably 0.1 to 30 wt%, still more preferably 0.1 to 25 wt%, more preferably 0. 1 to 20% by weight, more preferably 0.1 to 18% by weight.
  • the concentration of an arbitrary component in the ice film in the present invention is measured by, for example, melting only the ice film and then applying a known method such as HPLC method, GC-MS method, LC-MS method to the solution. can do.
  • the ice film in the present invention may contain other components in addition to or without the above optional components.
  • Other components include pigments and fragrances.
  • an ice film may be formed with a raw material mixture of ice confectionery or ice cream as described later.
  • the method for coating the CO 2 hydrate with an ice film (that is, the method of providing an ice coating film on the CO 2 hydrate block) is not particularly limited as long as the CO 2 hydrate can be coated with the ice film.
  • CO 2 may be a method of pasting on the surface of the hydrate, but the CO 2 hydrate Since the surface of the CO 2 hydrate is brought into contact with “water” or “an aqueous solution or suspension containing an optional component” in that it can be more easily coated with an ice film having a more uniform thickness, A method of freezing the “aqueous solution or suspension containing an arbitrary component” is preferably mentioned.
  • a method of immersing in a turbid liquid (ii) a method of applying “water” or “an aqueous solution or suspension containing an optional component” to the surface of CO 2 hydrate, or (iii) “water” or “optional component” Or a method of spraying the surface of the CO 2 hydrate by spraying or atomizing the aqueous solution or suspension containing the liquid to the surface of the CO 2 hydrate, or (iv) “water” or “an aqueous solution or suspension containing an optional component” "a method in which contact with the surface of the CO 2 hydrate in the vaporized or atomized by ultrasonic vibrations and the like.
  • Method (iii) above and method (iv) Is preferred.
  • the “water” or “aqueous solution or suspension containing an optional component” is frozen.
  • the contact and the number of times of freezing the ice film before adjusting the ice film to a desired thickness are such that the maximum CO 2 generation rate of the obtained ice film-coated CO 2 hydrate is less than 8 mL / second. As long as there is no particular limitation, it may be once or twice or more.
  • the upper limit of the number of treatments cannot be generally specified because it depends on the target ice film thickness, the method of coating the ice film, etc., but it is 20 times or less, 15 times or less, 10 times or less, or 8 times or less. Can be mentioned.
  • the thickness of the ice film can be adjusted by the amount of “water” or “aqueous solution or suspension containing an optional component” to be brought into contact with the surface of the CO 2 hydrate, the number of times of contact, and the like.
  • the liquid temperature of “water” or “aqueous solution or suspension containing optional components” when the surface of CO 2 hydrate is brought into contact with “water” or “aqueous solution or suspension containing optional components” is particularly limited. However, it is possible to form an ice film having a more uniform thickness, avoid melting of CO 2 hydrate by the temperature of “water” or “aqueous solution or suspension containing an optional component”, etc. From the viewpoint, ⁇ 5 to 15 ° C. is preferable, 0 to 10 ° C. is more preferable, and 1 to 8 ° C. is further preferable.
  • the maximum CO 2 generation rate of the CO 2 hydrate used for the production of the ice film-coated CO 2 hydrate of the present invention (hereinafter also simply referred to as “CO 2 hydrate for ice film coating”) is 8 mL / second or more.
  • the maximum CO 2 generation rate of the CO 2 hydrate for ice film coating is preferably 8 mL / second or more, more preferably It is 10 mL / second or more, preferably 15 mL / second or less, more preferably 13 mL / second or less.
  • the shape, size, CO 2 content, production method, etc. of the CO 2 hydrate for ice film coating are not particularly limited.
  • the shape and size of the CO 2 hydrate for ice film coating are the shape and size obtained by removing the ice film in the CO 2 hydrate for oral intake of the present invention.
  • the size of the CO 2 hydrate for ice film coating can be appropriately set according to the flavor design of the product to be used for the CO 2 hydrate for oral intake of the present invention.
  • CO 2 for ice film coating Examples of the maximum hydrate length include 0.5 to 30 mm, 1 to 25 mm, and 2 to 20 mm.
  • the CO 2 content of the CO 2 hydrate for ice film coating is not particularly limited as long as the maximum CO 2 generation rate is less than 8 mL / second when the CO 2 hydrate for oral intake of the present invention is used.
  • the lower limit of the CO 2 content is, for example, 3% by weight or more, preferably 6% by weight or more, more preferably Is 8% by weight or more, more preferably 11% by weight or more, and more preferably 13% by weight or more.
  • Examples of the upper limit of the CO 2 content include 28% by weight or less and 25% by weight or less.
  • the method for producing CO 2 hydrate for ice film coating is not particularly limited as long as CO 2 hydrate can be produced, and the raw water is stirred while blowing CO 2 into the raw water under conditions that satisfy the CO 2 hydrate production conditions.
  • Ordinary methods such as a gas-liquid stirring method or a water spray method in which raw water is sprayed into CO 2 under conditions satisfying CO 2 hydrate production conditions can be used. Since the CO 2 hydrate produced by these methods is usually in the form of a slurry in which fine particles of CO 2 hydrate are mixed with unreacted water, dehydration is performed to increase the concentration of CO 2 hydrate. It is preferable to carry out the treatment.
  • CO 2 hydrate having a relatively low water content by dehydration can be compression-molded into a certain shape (for example, a spherical shape or a rectangular parallelepiped shape) by a pellet molding machine. preferable.
  • the compression-molded CO 2 hydrate may be used in the present invention as it is, or may be further crushed as necessary.
  • the method using raw water is relatively widely used, but fine ice (raw material ice) is used instead of water (raw water).
  • the CO 2 a low temperature, and can be used how disulfide under the conditions of low pressure CO 2 partial pressure for producing a CO 2 hydrate.
  • the “CO 2 hydrate production condition” is a condition in which the CO 2 partial pressure (CO 2 pressure) is higher than the equilibrium pressure of CO 2 hydrate at that temperature.
  • the above “conditions in which the partial pressure of CO 2 is higher than the equilibrium pressure of CO 2 hydrate” are shown in FIG. 2 of Non-Patent Document 1 (J. Chem. Eng. Data (1991) 36, 68-71) Equilibrium pressure curve of CO 2 hydrate disclosed in FIG. 7 and FIG. 15 of Patent Document 2 (J. Chem. Eng.
  • CO 2 hydrate generation conditions include a combination condition of “within a range of ⁇ 20 to 4 ° C.” and “within a range of carbon dioxide pressure of 1.8 to 4 MPa”, and a range of “ ⁇ 20 to ⁇ 4 ° C.”
  • the combination of “inside” and “within carbon dioxide pressure in the range of 1.3 to 1.8 MPa” can be mentioned.
  • the CO 2 hydrate for coating an ice film may be a CO 2 hydrate composed of only carbon dioxide and ice (hereinafter also referred to as “CO 2 hydrate containing no optional components and other components”).
  • You may contain the 1 type (s) or 2 or more types of substance selected from the group which consists of a thickener, a sweetening component, an emulsifier, fats and oils, a pigment
  • examples of the “pigment” include carotenoid pigments such as marigold pigments, flavonoid pigments such as safflower pigments, anthocyanin pigments, gardenia pigments, betanin pigments such as beet pigments, chlorella, chlorophyll, etc. However, it is not particularly limited to these.
  • the CO 2 hydrate for oral intake of the present invention may be accommodated in the packaging container or may not be accommodated.
  • a packaging container for example, a packaging container having the same shape and material as those usually used for beverage ice or the like can be used.
  • Examples of such packaging containers include resin bags such as polyethylene resins and resin cups.
  • the CO 2 hydrate for buccal intake of the present invention can be suitably used as a CO 2 hydrate for buccal intake because the sustained release of CO 2 is adjusted.
  • the CO 2 hydrate for oral consumption of the present invention may be used as it is as a frozen confectionery or ice confectionery, or may be added to a substance for oral consumption such as other frozen confectionery, confectionery, food, beverages and the like as follows:
  • the composition for oral intake of the present invention may be prepared by mixing, mixing, or sprinkling.
  • the oral intake composite of the present invention is a substance for oral intake including (including) the oral intake CO 2 hydrate of the present invention.
  • the oral intake CO of the present invention is included. containing 2 hydrate, frozen desserts (e.g. ice), confectionery, food and beverages products such as beverages, and among them, a beverage containing an oral intake for CO 2 hydrate of the present invention, frozen desserts (e.g., ice) are preferably mentioned Among these, beverages, ice confections (for example, ice), and ice creams containing the CO 2 hydrate for oral intake of the present invention are more preferable, and ice confections (for example, ice) containing the CO 2 hydrate for oral intake of the present invention are more preferable.
  • ice cream are more preferable.
  • one or more of the ice film covering CO 2 substances for oral ingestion comprising a hydrate of the present invention (preferably ices (e.g. Ice) and ice creams).
  • the individual “ice film-coated CO 2 hydrates of the present invention” contained in such oral intake substances preferably ice confectionery (eg ice), ice creams
  • the CO 2 hydrate for oral intake of the present invention makes a crackling sound when it melts, and the CO 2 gas pops out, so that a visual effect and an auditory effect can be obtained, and it is stimulating that a frozen confection can be played in the oral cavity.
  • a good texture can be obtained.
  • the oral ingestion composite (preferably ice confectionery, ice cream) of the present invention has a remarkable carbonic acid sensation possessed by the CO 2 hydrate for oral intake of the present invention, and other foods and beverages (preferably ice confectionery, ice cream).
  • Unprecedented texture and flavor can be brought together with the original flavor and texture.
  • frozen dessert examples include ice creams, ice confections, etc.
  • ice creams include ice cream, ice milk, lacto ice, etc.
  • the above ice desserts include popsicles, sleet, shaved ice, ice, Examples include sherbet, frozen yogurt and shake.
  • confectionery and food jelly, pudding, yogurt, nata de coco, agar, apricot tofu, tapioca, syrup, bee, fresh cream, millefeuille, marshmallow, fruit, chocolate, cheese, cookies, wafer, cake, tart, pie, cream puff,
  • Examples include moose, bavaroa, panna cotta, donut, waffle, baumkuchen, castella, kudari mochi, yokan, white ball, shiruko, zenzai, warabimochi, rice ball, and kinako.
  • Examples of the beverage include alcoholic beverages and non-alcoholic beverages.
  • Examples of such alcoholic beverages include sparkling liquors such as beer, sparkling liquor, and other sparkling liquors; Japanese sake; fruit liquors; distilled liquors; liqueurs;
  • Examples of the Japanese sake include Daiginjo sake, Junmai Daiginjo sake, Ginjo sake, Junmai Ginjo sake, Honjozo sake, Junmai sake and the like.
  • Examples of the fruit liquor include wine (fruit wine) such as grape wine (grape), apple wine (cider), and sweet fruit liquor such as sherry and port, among which wine is preferred. Among these, grape wine is more preferable, and white wine and rose wine are more preferable.
  • Examples of the distilled liquor include shochu, whiskey, vodka and spirits.
  • Examples of the liqueur include plum wine, cassis liqueur, orange liqueur, lemon liqueur, grapefruit liqueur, lime liqueur, apricot liqueur, strawberry liqueur, yogurt liqueur and the like.
  • Non-alcoholic beverages include water such as mineral water; carbonated beverages such as cola, ginger ale and cider; beer-taste beverages; fruit juice-containing beverages; vegetable juice-containing beverages; sports beverages; isotonic beverages; , Green tea, oolong tea, barley tea, shachu tea, etc .; cocoa drink; jelly drink; milk such as milk, low-fat milk, processed milk; milk drink; dairy drink; lactic acid bacteria drink; soy milk; Beauty drink agent; salmon and the like.
  • the oral ingestion composite of the present invention is a normal oral ingestion substance (preferably a food or drink, more preferably a beverage, ice confectionery (for example, ice cream) except that it contains the oral ingestion CO 2 hydrate of the present invention. ), Ice cream, more preferably ice confectionery (eg ice), ice cream).
  • a normal oral ingestion substance preferably a food or drink, more preferably a beverage, ice confectionery (for example, ice cream) except that it contains the oral ingestion CO 2 hydrate of the present invention.
  • Ice cream more preferably ice confectionery (eg ice), ice cream).
  • the aspect of containing the CO 2 hydrate for oral intake of the present invention is not particularly limited, and for example, the CO 2 hydride for oral intake of the present invention on a substance for oral intake.
  • the aspect in which the rate is carried may be sufficient, and the aspect in which a part or all of the CO 2 hydrate for oral intake of the present invention is embedded in the substance for oral intake may be used.
  • the oral container containing the oral intake CO 2 hydrate of the present invention is also included in the packaging container in which the oral intake substance and the oral intake CO 2 hydrate of the present invention are separately included. Included in “substances for use”.
  • the content of the CO 2 hydrate for oral intake of the present invention in the composite for oral intake of the present invention is not particularly limited, but is the total amount of the composite for oral intake of the present invention including the CO 2 hydrate for oral intake of the present invention. 3 wt% or more, 5 wt% or more, 10 wt% or more, 15 wt% or more, 20 wt% or more, and the upper limit is, for example, 100 wt% or less, 90 wt% or less, 80 wt% or less. Can be mentioned.
  • the method for producing the oral ingestion composite of the present invention is a method for making the oral ingestion CO 2 hydrate included in the oral ingestion substance in the usual method for producing an oral ingestion composite.
  • the method of adding and mixing the hydrate for oral intake of the invention is preferably mentioned.
  • the raw material mixture of ice confectionery or ice cream is cooled.
  • the method of adding and mixing the hydrate for oral intake of the present invention is preferably mentioned.
  • the above ice confectionery materials vary depending on the type of ice confectionery, but include sweetening ingredients; emulsifiers; stabilizers; fragrances; pigments, etc.
  • the above ice cream materials may also depend on the type of ice cream. Although different, for example, proteins such as skim milk powder and skim milk; edible fats and oils such as vegetable oils and milk fats; sweetening ingredients; emulsifiers; stabilizers; fragrances;
  • the above-mentioned ice creams may not be filled in corn, waffle dough, etc., but may be filled.
  • the oral ingestion composite of the present invention may or may not be accommodated in a packaging container.
  • a packaging container having the same shape and material as those normally used for the substance for oral intake can be used.
  • the method for producing CO 2 hydrate for oral intake of the present invention includes adjusting the maximum CO 2 generation rate to be less than 8 mL / sec in the production of CO 2 hydrate. As long as it is, there is no particular limitation.
  • an ice coating film is formed on the CO 2 hydrate mass.
  • a method of adjusting the maximum CO 2 generation rate to be less than 8 mL / second is preferable by providing a CO 2 hydrate, and the CO 2 hydrate is covered with an ice film having a thickness of 0.6 to 50 mm.
  • a method of adjusting the maximum CO 2 generation rate to be less than 8 mL / second is more preferable.
  • Korimaku and, a method of coating a CO 2 hydrate in an ice layer, the ice film covering CO 2 hydrate and the like are as described above.
  • CO 2 sustained release adjusting method of the present invention CO 2 sustained release method of adjusting CO 2 hydrate and the like of the present invention (CO 2 sustained release adjusting method of the present invention), in the production of CO 2 hydrate, maximum CO 2 generation rate is less than 8 mL / sec As long as it includes adjustment, there is no particular limitation.
  • a method of maximum CO 2 evolution rate of the above CO 2 hydrate is adjusted to be less than 8 mL / sec is not particularly limited, provided the coating film of ice CO 2 hydrate masses (CO 2 hydrate by the coating with ice film), a method of maximum CO 2 generation rate is adjusted to be less than 8 mL / sec, by adjusting the CO 2 content of CO 2 hydrate, maximum CO 2 evolution rate
  • the method of adjusting so that it may become less than 8 mL / second etc. is mentioned, Especially, from a viewpoint of obtaining more sufficient carbonic acid feeling from the viewpoint of obtaining carbon dioxide poisoning remarkably at the time of ingestion in an oral cavity, it is a CO 2 hydrate lump.
  • a method of maximum CO 2 generation rate is adjusted to be less than 8 mL / sec are preferably mentioned
  • methods maximum CO 2 generation rate is adjusted to be less than 8 mL / sec can be given more preferably.
  • Korimaku and, a method of coating a CO 2 hydrate in an ice layer, the ice film covering CO 2 hydrate and the like are as described above.
  • the flavor improving agent of the present invention is not particularly limited as long as it contains the CO 2 hydrate for oral intake of the present invention.
  • the CO 2 hydrate for oral intake of the present invention is as described above.
  • the flavor improving agent of the present invention can enhance the carbon dioxide feeling sufficient for food and drink while reducing the risk of carbon dioxide poisoning. That is, the flavor improving agent of the present invention can give a more sufficient carbonic sense to food and drink more safely.
  • the flavor improving agent of this invention can be used by making it contain in food-drinks.
  • the amount of the flavor improving agent of the present invention can be appropriately set according to the in flavor improving agent and concentration of the oral intake for CO 2 hydrate and the like of the present invention, the degree of carbonate feeling like which enhance the food products .
  • the concentration of the flavor improving agent of the present invention can be appropriately set according to the flavor design of the target product of the flavor improving agent of the present invention. 0.1 to 100% by weight, preferably 1 to 95% by weight, more preferably 5 to 90% by weight.
  • the flavor improving agent of the present invention may consist only of the CO 2 hydrate for oral intake of the present invention or the like, or may contain optional components other than the CO 2 hydrate for oral intake of the present invention. .
  • optional substances include thickeners, extenders and the like.
  • the flavor improving agent of the present invention can be produced, for example, by mixing an optional component with the CO 2 hydrate for oral intake of the present invention.
  • the flavor improving agent of this invention may be accommodated in the packaging container, and does not need to be accommodated.
  • a packaging container for example, a packaging container having the same shape and material as those usually used for beverage ice or the like can be used.
  • Examples of such packaging containers include resin bags such as polyethylene resins and resin cups.
  • CO 2 hydrate preparation prior literature Japanese Patent No. 3090687, JP-T 2004-512035, Patent No. 4,969,683 to the reference, was generated in the CO 2 hydrate. Specifically, CO 2 gas was blown into 4 L of water so as to be 3 MPa, and the hydrate formation reaction was allowed to proceed at 1 ° C. while stirring to prepare a sherbet-like slurry containing CO 2 hydrate. This sherbet-like slurry was cooled to ⁇ 20 ° C., recovered as CO 2 hydrate, and prepared to be 0.4 to 0.6 g per grain on liquid nitrogen. The CO 2 content of these CO 2 hydrates was 15 to 18%.
  • the viscosity was measured using a B-type viscometer (LVDV-II + Pro, manufactured by Brookfield) at a liquid temperature of 5 ° C. The viscosity was measured based on JIS Z8803. The produced viscous solution was stored at 5 ° C. and used for the coating treatment of CO 2 hydrate described later. In addition, ion-exchanged water was also stored at 5 ° C. and used for the coating treatment of CO 2 hydrate described later.
  • the thickness of the ice film was calculated based on the weight of the viscous solution or ion-exchanged water used for coating, assuming that one granular CO 2 hydrate used was a sphere having a diameter of 0.50 cm. For example, if the ion-exchanged water and granulated CO 2 hydrate 2.0g was 3.0g coatings for granular CO 2 hydrate is 4 tablets, one particle per ion exchange water is 0.75g coated It will be a thing. If the specific gravity of ice is 0.92 and the volume of 0.75 g of ion-exchanged water is calculated and the surface of a sphere having a diameter of 0.50 cm is uniformly coated, the diameter of the CO 2 hydrate grains increases by 0.18 cm. It will be done. This increased thickness for 0.18 cm was taken as an estimate of the ice film thickness.
  • CO 2 hydrate samples up CO 2 generation rate measurement test each CO 2 hydrate sample from the liquid nitrogen 10-15 minutes before being subjected to testing, and transferred to -20 ° C. conditions. Each CO 2 hydrate sample was confirmed to have a surface temperature of ⁇ 20 ° C. or higher by thermography (manufactured by FLIR, E40sc) before being subjected to the experiment.
  • a precision balance was installed in an incubator with a temperature of 37 ° C. and a humidity of 70%.
  • a stainless steel container (diameter: 110 mm, depth: 50 mm) containing 200 mL of water at a liquid temperature of 37 ° C. is placed on the weighing pan in the hood of the precision balance, and 10 mL of water at a liquid temperature of 37 ° C. is placed on the bottom of the stainless steel container.
  • Each CO 2 hydrate sample was added to the water in the beaker, and the change in weight was measured every 5 seconds for 10 minutes after the addition.
  • the CO 2 generation amount (mL) every 5 seconds was calculated.
  • the measurement test of calculating the CO 2 generation rate (mL / second) every 5 seconds from the CO 2 generation amount (mL) was repeated three times for each CO 2 hydrate sample.
  • the maximum value of the CO 2 generation rate (mL / second) every 5 seconds obtained by repeating the measurement test three times was defined as the maximum CO 2 generation rate (mL / second) of the CO 2 hydrate sample.
  • One model lung (Michigan Instruments, TTL model lung) was ventilated with a ventilator (COVIDIEN, Ventilator 840), and the other model lung was physically driven to simulate spontaneous breathing. .
  • oral cavity An oro-nasal cavity / laryopharynx (hereinafter referred to as “oral cavity”) model was connected to the model lung, and a capnometer (Ventrac, manufactured by NOVAMETRIX) was installed at the site corresponding to the larynx.
  • the oral cavity model is assumed to be an adult, and the physiological dead space (region in which no gas is exchanged with blood in the respiratory system) is set to 193 mL.
  • the scanning model the lung CO 2 production level during adult resting was flowed at a constant 200 mL / min of CO 2 gas.
  • Each CO 2 hydrate sample was put into the above breathing simulator oral model, and 5 mL of 37 ° C. water was injected into the oral model one minute after the input.
  • the CO 2 concentration (mmHg) in the exhaled gas is measured every 10 seconds from the time of water injection with the above-mentioned capnometer, and the average of the measured CO 2 concentration every 30 seconds from the start of measurement is the maximum CO 2 concentration in the model lung (mmHg). ).
  • the tidal volume of the driving side ventilator was changed to 400 mL, 600 mL, and 800 mL, and the measurement was performed.
  • Examples 1 to 3 0.1% of xanthan gum and 20% of granulated sugar with respect to 2.0 g of granular CO 2 hydrate (CO 2 content 16.8%; CO 2 content 0.34 g) produced by the method of [1] above.
  • % Viscous solution 5.0 to 6.0 g, or 3.0 to 4.0 g, or 1.0 to 2.0 g with a viscosity of 26.4 mPas (liquid temperature 6.1 ° C., rotation speed 50 rpm).
  • CO 2 hydrate samples for oral consumption that were coated by the method of [2] above were designated as Example 1, Example 2, and Example 3, respectively.
  • the thicknesses of the ice films covering the CO 2 hydrate samples for oral intake of Examples 1 to 3 are 2.5 to 3.1 mm, 1.6 to 2.2 mm, and 0.8 to 1.3 mm, respectively. Met.
  • Comparative Example 1 The granular CO 2 hydrate 2.0 g (CO 2 content 17.5%; CO 2 content 0.35 g) produced by the method [1] was used as the CO 2 hydrate sample of Comparative Example 1.
  • the maximum CO 2 generation rate was 10 mL / second or more, and the model The maximum CO 2 concentration in the lung exceeded 80 mmHg.
  • a CO 2 concentration in the lung of more than 80 mmHg is a concentration at which there is a high possibility of danger to the human body due to carbon dioxide poisoning.
  • CO 2 in the hydrate ice coating film provided CO 2 hydrate maximum CO 2 evolution rate of about 8 mL / sec less than the described embodiments 1-3 Sample The maximum CO 2 concentration in the model lung was maintained below 70 mmHg.
  • Examples 4 to 7 Xanthan gum was 0%, 0.01%, and 0.002% with respect to 2.0 g of granular CO 2 hydrate produced by the method of [1] (CO 2 content: 16.0%; CO 2 content: 0.32 g).
  • CO 2 content: 16.0%; CO 2 content: 0.32 g Each of the CO 2 hydrate samples for oral consumption coated with the method of [2] above using 3.0 to 4.0 g of viscous solutions dissolved to 1% or 0.5%, respectively. 4, Example 5 and Example 6.
  • the samples of Example 5 and Example 6 have a lower maximum CO 2 generation rate (mL / second) compared to the sample of Example 4, and the sample of Example 5 Compared to the sample of Example 6, the maximum CO 2 evolution rate (mL / sec) was even lower. From the results in Table 2, it was shown that the maximum CO 2 generation rate from the hydrate can be further reduced by adjusting the viscosity of the viscous solution used for the production of the coating ice film. From the results shown in Table 2, the concentration of xanthan gum is preferably 0.01 to 0.7% by weight, more preferably 0.01 to 0.6% by weight, still more preferably 0.05 to 0.6% by weight. %, More preferably 0.05 to 0.5% by weight, still more preferably 0.1 to 0.5% by weight.
  • CO 2 hydrate when it is taken into the mouth after being added to a food or drink, or when it is taken directly into the mouth, the risk of carbon dioxide poisoning is reduced, while having a sufficient carbonation sensation, for safer mouth intake.
  • CO 2 hydrate, or a composite containing the oral ingested CO 2 hydrate can be provided and is a unique texture to eat, or a pleasant throat feel to drink, or a CO 2 hydrate that looks even more delicious You can enjoy production effects.

Abstract

The present invention addresses the problem of providing: a CO2 hydrate for oral ingestion which is reduced in the risk of carbon dioxide intoxication when added to a food or beverage and then orally ingested through the food or beverage or orally ingested directly, and has a sufficient sensation of carbonated water and higher safety, and others; and methods for producing the CO2 hydrate and others. The present invention also addresses the problem of providing: a CO2 hydrate for oral ingestion, of which the sustained CO2 release is controlled so that the maximum CO2 generation rate upon the melting of the CO2 hydrate under an environment similar to human oral cavity can become less than 8 mL/sec., and others; and methods for producing the CO2 hydrate and others. The CO2 hydrate is characterized by being so adjusted that the maximum CO2 generation rate can become less than 8 mL/sec. (Definition of maximum CO2 generation rate (mL/sec)) The following test is repeated three times: the CO2 hydrate is sampled in such an amount that 0.3 to 0.36 g of CO2 is contained in the CO2 hydrate, then the sampled CO2 hydrate is added to 10 mL of water having a liquid temperature of 37ºC under an atmosphere having an atmospheric pressure at room temperature (37ºC) and at a humidity of 70%, then the change in weight of the solution is measured at intervals of 5 seconds for a total period of at least 30 seconds after the addition of the CO2 hydrate to calculate the amount (mL) of CO2 generated during every 5 seconds, and then a CO2 generation rate (mL/sec) during every 5 seconds is calculated from the generated amount (mL). The largest value, among the values for the CO2 generation rates (mL/sec) during every 5 seconds which are obtained by the repeated test, is employed as a maximum CO2 generation rate (mL/sec) for the CO2 hydrate.

Description

口腔摂取用CO2ハイドレートまたは該CO2ハイドレートを含む口腔摂取用複合物、及びそれらの製造方法CO2 hydrate for oral intake or composite for oral intake containing the CO2 hydrate, and methods for producing them
 本発明は、口腔摂取用COハイドレートまたは該COハイドレートを含む口腔摂取用複合物(以下、「口腔摂取用COハイドレート等」とも表示する。)、及びそれらの製造方法に関する。 The present invention relates to a CO 2 hydrate for oral intake or a composite for oral intake containing the CO 2 hydrate (hereinafter also referred to as “CO 2 hydrate for oral intake, etc.”) and a method for producing them.
 COハイドレート(二酸化炭素ハイドレート)という物質が知られている。COハイドレートとは、水分子の結晶体の空寸に二酸化炭素分子を閉じ込めた包接化合物をいう。結晶体を形成する水分子は「ホスト分子」、水分子の結晶体の空寸に閉じ込められている分子は「ゲスト分子」または「ゲスト物質」と呼ばれる。COハイドレートは、融解するとCO(二酸化炭素)と水に分解するため、融解時にCOを発生させる。COハイドレートは、COと水を、低温、かつ、高圧のCO分圧という条件にすることにより製造することができ、例えば、ある温度であること、及び、その温度におけるCOハイドレートの平衡圧力よりもCO分圧が高いことを含む条件(以下、「COハイドレート生成条件」とも表示する。)において製造することができる。上記の「ある温度であること、及び、その温度におけるCOハイドレートの平衡圧力よりもCO分圧が高い」条件は、非特許文献1のFigure 2.や、非特許文献2のFigure 7.やFigure 15.に開示されているCOハイドレートの平衡圧力曲線(例えば縦軸がCO圧力、横軸が温度を表す)において、かかる曲線の高圧側(COハイドレートの平衡圧力曲線において、例えば縦軸がCO圧力、横軸が温度を表す場合は、該曲線の上方)の領域内の温度とCO圧力の組合せの条件として表される。また、COハイドレートは、水の代わりに微細な氷をCOと、低温、かつ、低圧のCO分圧という条件下で反応させて製造することもできる。COハイドレートを製造する際のCOの圧力が高くなるほど、また、COと水の温度が低くなるほど、COハイドレートのCO濃度が高くなる傾向がある。COハイドレートのCO濃度は、COハイドレートの製法にもよるが、約3~28重量%程度とすることができ、炭酸水のCO濃度(約0.5重量%程度)と比較して顕著に高い。 A substance called CO 2 hydrate (carbon dioxide hydrate) is known. CO 2 hydrate refers to an inclusion compound in which carbon dioxide molecules are confined in the empty space of a water molecule crystal. A water molecule forming a crystal is called a “host molecule”, and a molecule trapped in the void of the crystal of the water molecule is called a “guest molecule” or “guest substance”. Since CO 2 hydrate decomposes into CO 2 (carbon dioxide) and water when melted, it generates CO 2 upon melting. CO 2 hydrate can be produced by making CO 2 and water into a condition of low temperature and high pressure CO 2 partial pressure, for example, at a certain temperature and CO 2 hydrate at that temperature. It can be manufactured under conditions including that the CO 2 partial pressure is higher than the rate equilibrium pressure (hereinafter also referred to as “CO 2 hydrate production conditions”). The above-mentioned conditions of “a certain temperature and the CO 2 partial pressure higher than the equilibrium pressure of CO 2 hydrate at that temperature” are shown in FIG. 2 of Non-Patent Document 1 and FIG. 7 of Non-Patent Document 2. And the equilibrium pressure curve of CO 2 hydrate disclosed in FIG. 15 (for example, the vertical axis represents CO 2 pressure and the horizontal axis represents temperature), the high pressure side of this curve (the equilibrium pressure curve of CO 2 hydrate) For example, when the vertical axis represents the CO 2 pressure and the horizontal axis represents the temperature, it is expressed as a condition of the combination of the temperature in the region (above the curve) and the CO 2 pressure. The CO 2 hydrate can also be produced by reacting fine ice instead of water with CO 2 under conditions of low temperature and low pressure CO 2 partial pressure. As the pressure of CO 2 in the production of CO 2 hydrate is increased, also, as the temperature of CO 2 and water is low, CO 2 concentration of CO 2 hydrate tends to be higher. CO 2 concentration of CO 2 hydrate, depending on the preparation of CO 2 hydrate, can be on the order of about 3-28 wt%, and the CO 2 concentration of the carbonated water (about 0.5 wt.%) Remarkably high compared.
 COハイドレートの用途として、例えば特許文献1には、COハイドレートを飲料に混合することにより、その飲料に炭酸を付与して、炭酸飲料を製造することが、特許文献2には、COハイドレートを氷で覆って形成した炭酸補充媒体を飲料に添加することによって、ぬるくなった飲料を冷却すると共に、気が抜けた飲料に炭酸ガスを補充することが、特許文献3には、COハイドレートを、カキ氷、アイスクリーム等の冷菓に混入することにより、該冷菓を喫食した者の口腔内でCOハイドレートが融解することとなり、その結果、該冷菓において、炭酸特有のシュワシュワ感の他、口中で冷菓が弾けるような刺激的な食感を発生させられることが開示されている。 As an application of CO 2 hydrate, for example, in Patent Document 1, by mixing CO 2 hydrate with a beverage, carbonic acid is given to the beverage to produce a carbonated beverage. Patent Document 3 discloses that a carbonated supplement medium formed by covering CO 2 hydrate with ice is added to a beverage to cool a slimmed beverage and to replenish carbon dioxide in a drained beverage. CO 2 hydrate is mixed with frozen confectionery such as oyster ice and ice cream, so that the CO 2 hydrate is melted in the oral cavity of the person who ate the frozen confectionery. In addition to the swooshing feeling, it is disclosed that an irritating texture can be generated such that a frozen dessert can be played in the mouth.
 COハイドレートを保存、移送する場合、かかるCOハイドレートの分解を可能な限り抑制するという観点からは、保存・移送の際の温度は低いほど好ましいが、より低い温度条件下にCOハイドレートを保持するにはより高いコストが必要となる。そこで、より低コストで、COハイドレートの分解をより効率良く抑制する観点から、温度制御以外の方法でCOハイドレートの分解をより効果的に抑制し、その保存安定性、貯蔵安定性を向上させる手段が開発されてきた。そのような手段として、CO等のガスハイドレートにおいて知られている「自己保存効果(self-preservation effect)」という現象を利用する試みがなされている。ガスハイドレートの自己保存効果とは、本来はガスハイドレートが比較的速やかに分解するはずの温度条件及び圧力条件の領域内において、ある特異的な条件下でガスハイドレートの分解が非常に遅くなる効果をいう。自己保存効果のメカニズムはまだ完全には解明されていないが、ガスハイドレートの分解は吸熱反応であるため、ある特異的な条件下では、ガスハイドレートの分解により表面に生じた水が再び氷となり、ガスハイドレートの表面を氷膜が被覆することなり、その結果、ガスハイドレートの保存安定性、貯蔵安定性が向上すると考えられている。また、氷点下温度の大気圧下でガスハイドレートの表面が分解されてガス分子が気相中に放出され、ガスハイドレート表面を氷膜が被覆することにより、ガスハイドレートの保存安定性、貯蔵安定性が向上するとも考えられている。例えば、特許文献4には、ガスがCOガスであってもよいガスハイドレートの粒子を、その分解条件下に置き、該粒子の表面をわずかに融解させて、水を生成させ、かかる水を凍らせることによって、ガスハイドレートの自己保存性を高めることが開示されている。また、特許文献5には、メタン等のガスハイドレートをペレットに成型する工程の後に、加湿雰囲気下でかかるペレットの表面に氷膜を形成することにより、ガスハイドレートの運搬及び貯蔵効率を向上することが開示されている。また、特許文献6には、メタン等のガスハイドレートをペレットに成型する工程の後に、マイナスに帯電した原料水を前記ペレットに噴霧し、ペレット表面に10μmから500μmの薄くてかつ均一な水膜を形成し、それを冷却して氷膜とすることで、自己保存性を十分に発揮するガスハイドレートを製造できることが開示されている。しかし、自己保存性が関連する保存安定性や貯蔵安定性は、氷の融点未満の温度(約0℃未満)における保存安定性、貯蔵安定性であり、本発明のように、口腔内のような約37℃等の条件における炭酸ガスの徐放性とは直接関係しない別の次元の概念である。 CO 2 store hydrate, to transfer, from the viewpoint of suppressing such CO 2 as possible degradation of hydrates, the temperature during storage and transport is preferably as low, CO 2 in a lower temperature condition Higher costs are required to maintain hydrate. Therefore, at lower cost, CO 2 from a more efficient inhibition of the decomposition of hydrate, and more effectively suppress the decomposition of CO 2 hydrate by means other than temperature control, storage stability, storage stability Means have been developed to improve. As such means, an attempt has been made to use a phenomenon called “self-preservation effect” known in gas hydrates such as CO 2 . The self-preserving effect of gas hydrate means that the decomposition of gas hydrate is very slow under certain specific conditions in the region of temperature and pressure conditions where gas hydrate should originally decompose relatively quickly. The effect becomes. Although the mechanism of the self-preserving effect has not yet been fully elucidated, the decomposition of the gas hydrate is an endothermic reaction, so that under certain specific conditions, the water generated on the surface due to the decomposition of the gas hydrate is once again frozen. Thus, it is considered that an ice film covers the surface of the gas hydrate, and as a result, the storage stability and storage stability of the gas hydrate are improved. In addition, the surface of gas hydrate is decomposed at atmospheric pressure below the freezing point and gas molecules are released into the gas phase, and the surface of gas hydrate is covered with an ice film. It is also thought to improve stability. For example, in Patent Document 4, gas hydrate particles in which the gas may be CO 2 gas are placed under the decomposition conditions, and the surfaces of the particles are slightly melted to generate water. It is disclosed that the self-preserving property of the gas hydrate is enhanced by freezing the gas. In addition, Patent Document 5 improves the transportation and storage efficiency of gas hydrate by forming an ice film on the surface of the pellet in a humidified atmosphere after the step of forming a gas hydrate such as methane into a pellet. Is disclosed. Patent Document 6 discloses that after the step of forming a gas hydrate such as methane into a pellet, negatively charged raw material water is sprayed onto the pellet, and a thin and uniform water film of 10 μm to 500 μm is formed on the pellet surface. It is disclosed that a gas hydrate exhibiting sufficient self-preserving property can be produced by forming an ice and cooling it to form an ice film. However, the storage stability and storage stability related to self-storability are storage stability and storage stability at a temperature below the melting point of ice (less than about 0 ° C.). This is a concept of another dimension that is not directly related to the sustained release of carbon dioxide under conditions such as about 37 ° C.
 一方、COハイドレートに糖類を添加する例として、特許文献7には、ブドウ糖等の糖類を添加した炭酸ガスクラスハイドレートからなり、口に含むと発泡性と甘味を持つことを特徴とする冷菓が開示されており、非特許文献3には、炭酸ガスハイドレートの製造時にスクロース(ショ糖)を添加することにより、炭酸ガスハイドレートの保存性が低下することが開示されている。しかし、これらの文献は、COハイドレートを製造する際の水に糖類を添加するものであって、例えば、糖類を含む氷膜でCOハイドレートをコーティングすることを開示するものではない。
 他方、COハイドレートに増粘剤を添加する例として、特許文献8には、イナゴマメゴムやゼラチン等の安定剤を含むアイススラリーに、COハイドレート含有粒子を混合することにより、スプーンですくう事が可能なアイスを製造する方法が開示されている。また、特許文献9には、ペクチン等の増粘剤を含むフレーバー付きシロップ凍結物と混合する冷凍炭酸飲料の製造方法が開示されている。しかし、これらの文献は、COハイドレートを、増粘剤を含む凍結物に混合するものであって、例えば増粘剤を含む氷膜でCOハイドレートをコーティングすることを開示するものではない。
On the other hand, as an example of adding saccharides to CO 2 hydrate, Patent Document 7 is characterized by carbon dioxide class hydrate added with saccharides such as glucose and having foamability and sweetness when contained in the mouth. Frozen confection is disclosed, and Non-Patent Document 3 discloses that the storage stability of carbon dioxide hydrate is reduced by adding sucrose (sucrose) during the production of carbon dioxide hydrate. However, these documents is for adding sugar to water in the production of CO 2 hydrate, for example, does not disclose coating the CO 2 hydrate in an ice film containing saccharides.
On the other hand, as an example of adding a thickener to CO 2 hydrate, Patent Document 8 discloses a spoon by mixing CO 2 hydrate-containing particles with ice slurry containing stabilizers such as locust bean gum and gelatin. A method for producing ice that can be picked up is disclosed. Patent Document 9 discloses a method for producing a frozen carbonated beverage that is mixed with a frozen syrup with flavor containing a thickener such as pectin. However, these references, the CO 2 hydrate been made to mix the frozen material containing a thickening agent, it is intended to disclose coating the CO 2 hydrate in an ice film containing, for example, thickener Absent.
 高濃度のCOガスを吸入すると、二酸化炭素中毒が生じることが知られている。二酸化炭素中毒は数回の呼吸でも発生する場合があり、その症状としては、頭痛、めまい、不整脈、嘔気、呼吸困難、意識障害などが挙げられる。ラットにおいては、高濃度の二酸化炭素環境下に曝露することにより、不整脈や呼吸抑制を引き起こすことが知られている。しかし、ヒトの二酸化炭素中毒については、どのような条件・メカニズムで生じるのかなど、不明な部分が依然として多い。口腔摂取用COハイドレートを含む製品は発明者が知る限りは実用化された例はなく、COハイドレートを口腔摂取する際の二酸化炭素中毒リスクに関して、検討されたことはない。 It is known that inhalation of high concentration CO 2 gas causes carbon dioxide poisoning. Carbon dioxide poisoning can occur in several breaths, and symptoms include headache, dizziness, arrhythmia, nausea, dyspnea, and impaired consciousness. In rats, exposure to high concentrations of carbon dioxide is known to cause arrhythmia and respiratory depression. However, there are still many uncertainties regarding the conditions and mechanisms that cause human carbon dioxide poisoning. Products containing CO 2 hydrate for oral ingestion examples inventors have been commercialized knowledge is not, the CO 2 hydrate respect dioxide intoxication risks of oral ingestion, never been investigated.
特開2005-224146号公報JP 2005-224146 A 特許4969683公報Japanese Patent No. 4969683 特許4716921号公報Japanese Patent No. 4716921 特許5173736号公報Japanese Patent No. 517336 特許5153412号公報Japanese Patent No. 5153412 特許5052385号公報Japanese Patent No. 5052385 特開2008-237034号公報JP 2008-237034 A 特許4169165号公報Japanese Patent No. 4169165 特表2004-512035号公報Special table 2004-512035 gazette
 前述したような背景技術の状況下、本発明者らは口腔摂取用COハイドレートの様々な用途や、その実用化の態様についてさまざまな検討を具体的に進める為には、実用化した際の安全性、特に、口腔摂取する際の二酸化炭素中毒リスクについて詳細に検討した。その結果、従来の製造方法により製造した最大長5~20mmの粒状のCOハイドレート(CO含有率15~18%)を、1度に2~10g、口腔内に含んだ場合、従来の製造方法により製造したCOハイドレートは2gであっても、二酸化炭素中毒のリスクが十分に低いとはいえないことを見出した。このように、COハイドレートを口腔摂取する際に二酸化炭素中毒のリスクが重大な課題となることが新たにわかった。
 なお、当該COハイドレートを口腔摂取する際の二酸化炭素中毒リスクについては、ヒト口腔内に類似する環境下で、(A)の評価系での「最大CO発生速度(mL/秒)」、及び、(B)の評価系での「成人を想定したモデル肺内最大CO濃度(mmHg)」を用いて客観的に評価した。
(A)COを0.3~0.36g含有する量のCOハイドレートを、室温37℃、湿度70%の大気圧の雰囲気下で、液温37℃の10mLの水に添加し、添加から5秒毎に少なくとも30秒以上重量変化を測定して、5秒毎のCOの発生量(mL)をそれぞれ算出し、それらの発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという試験を、3回繰り返し、得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、そのCOハイドレートの最大CO発生速度(mL/秒)とする。
(B)人工呼吸器で駆動するモデル肺と;口腔モデルと;前記モデル肺と前記口腔モデルを連通して接続する連通管と、該連通管に設置されたカプノメータと;からなる死腔量が約200mLに調整された呼吸シミュレータを用いた。呼吸シミュレータの概要を図1に示す。具体的には、COハイドレートを口腔モデルに入れ、モデル成人肺を駆動させた際の連通管における呼気ガス中のCO濃度(mmHg)を測定する。このCO濃度(mmHg)を120秒以上測定して、その濃度の最大値をモデル肺内最大CO濃度(mmHg)とする。なお、実験実施中はモデル肺にCOガスを、生体内で生じる量と同等の200mL/分で供給した。
Under the background of the background art as described above, the present inventors have made practical use in order to carry out various studies on various uses of CO 2 hydrate for oral intake and its practical application. Were examined in detail, especially the risk of carbon dioxide poisoning when taken orally. As a result, when 2 to 10 g of granular CO 2 hydrate (CO 2 content 15 to 18%) having a maximum length of 5 to 20 mm manufactured by the conventional manufacturing method is included in the oral cavity at a time, It has been found that even if the amount of CO 2 hydrate produced by the production method is 2 g, the risk of carbon dioxide poisoning cannot be said to be sufficiently low. Thus, it has been newly found that the risk of carbon dioxide poisoning becomes a serious issue when ingesting CO 2 hydrate into the oral cavity.
Note that the carbon dioxide intoxication risks of oral intake of the CO 2 hydrate, in an environment similar to the human oral cavity, in the evaluation system (A) "maximum CO 2 generation rate (mL / sec)" The objective evaluation was performed using the “maximum CO 2 concentration in the model lung (assuming an adult) (mmHg)” in the evaluation system of (B).
The amount of CO 2 hydrate (A) CO 2 and contains 0.3 ~ 0.36 g, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, were added to water 10mL of liquid temperature 37 ° C., The change in weight is measured at least 30 seconds or more every 5 seconds from the addition, and the CO 2 generation amount (mL) is calculated every 5 seconds, and the CO 2 generation rate every 5 seconds is calculated from the generation amount (mL). The test of calculating (mL / second) was repeated three times, and the maximum value of the CO 2 generation rate (mL / second) obtained every 5 seconds was determined as the maximum CO 2 generation of the CO 2 hydrate. Speed (mL / sec).
(B) a dead lung volume comprising: a model lung driven by a ventilator; an oral model; a communication pipe connecting the model lung and the oral model in communication; and a capnometer installed in the communication pipe A breathing simulator adjusted to about 200 mL was used. An outline of the breathing simulator is shown in FIG. Specifically, CO 2 hydrate is put into the oral model, and the CO 2 concentration (mmHg) in the exhaled gas in the communication tube when the model adult lung is driven is measured. This CO 2 concentration (mmHg) is measured for 120 seconds or more, and the maximum value of the concentration is taken as the maximum CO 2 concentration (mmHg) in the model lung. During the experiment, CO 2 gas was supplied to the model lung at 200 mL / min equivalent to the amount generated in vivo.
 そこで、本発明が解決しようとする課題(課題(1))は、COハイドレートあるいはCOハイドレート複合物(以下、「COハイドレート等」とも表示する。)を食用あるいは飲用して独特な食感またはのど越し感、あるいは美味しく見える演出効果等を楽しむ目的で口腔摂取する際に、冷製飲食品にCOハイドレート等を添加した後、COハイドレート等の分解が進みつつあり、口に運ぶ段階で、当該COハイドレート等の分解により発生しつつあるCOガスを吸入した場合であっても、二酸化炭素中毒のリスクが従来よりも低減された、より安全性の高い口腔摂取用COハイドレート等を提供することである。
 また、本発明が解決しようとする課題(課題(2))は、上記目的でCOハイドレート等を口腔摂取した後、口腔内環境下でCOハイドレート等の分解が上記課題(1)の場合よりも急速に進むことにより発生する、上記課題(1)の場合よりも多量のCOガスを吸入した場合であっても、二酸化炭素中毒のリスクが従来よりも低減された、より安全性の高い口腔摂取用COハイドレート等を提供することである。
 さらに、本発明が解決しようとする課題(課題(3))は、二酸化炭素中毒のリスクが低減された、より安全性の高い口腔摂取用COハイドレート等の製造方法を提供することである。
 尚、上記課題(2)が解決されれば、上記課題(1)は当然解決されることとなる。なぜなら、COハイドレートの分解速度は、温度が高いほど速くなり、二酸化炭素中毒のリスクも高くなるところ、温度の高低は、冷製飲食品の温度<気温<口腔内の温度(~37℃)という関係であり、冷製飲食品に添加した際のCOハイドレート等の分解による二酸化炭素中毒のリスクは、口腔内で水分接触した際のCOハイドレート等の分解による二酸化炭素中毒のリスクよりも低くなるからである。
Therefore, an object of the present invention is to solve (problem (1)) is, CO 2 hydrate or CO 2 hydrate composite (hereinafter represented as "CO 2 hydrate and the like".) The edible or drinkable to Decomposition of CO 2 hydrate etc. is progressing after adding CO 2 hydrate etc. to cold food and drink when taking it into the mouth for the purpose of enjoying a unique texture or feeling over the throat, or a production effect that looks delicious. Yes, even when inhaling the CO 2 gas that is being generated by the decomposition of the CO 2 hydrate etc. at the stage of carrying it to the mouth, the risk of carbon dioxide poisoning has been reduced compared to the prior art. It is to provide a high CO 2 hydrate for oral intake.
In addition, the problem to be solved by the present invention (problem (2)) is that, after ingesting CO 2 hydrate or the like for the above purpose, decomposition of CO 2 hydrate or the like in the oral environment is the problem (1). Even when a larger amount of CO 2 gas is inhaled than in the case of the above problem (1), which is generated by proceeding more rapidly than in the case of the above, the risk of carbon dioxide poisoning is reduced more safely than before. It is to provide CO 2 hydrate and the like for oral intake having high properties.
Furthermore, the problem to be solved by the present invention (problem (3)) is to provide a safer method for producing CO 2 hydrate for oral intake that has a reduced risk of carbon dioxide poisoning. .
In addition, if the said subject (2) is solved, the said subject (1) will be solved naturally. This is because the decomposition rate of CO 2 hydrate increases as the temperature increases and the risk of carbon dioxide poisoning increases, and the temperature increases or decreases depending on the temperature of the cold food or drink <temperature <oral temperature (-37 ° C). The risk of carbon dioxide poisoning due to decomposition of CO 2 hydrate and the like when added to cold food and drink is the risk of carbon dioxide poisoning due to decomposition of CO 2 hydrate and the like when contacted with moisture in the oral cavity. This is because it is lower than the risk.
 本発明者らは、上記課題を解決するために鋭意検討したところ、肺内CO濃度が一定以上になると、二酸化炭素中毒により人体に危険が及ぶ可能性があり、動脈血炭酸ガス分圧が80~100mmHgでは意識が混迷することが知られているため(「呼吸管理に活かす呼吸生理 改訂版」(羊土社、瀧 健治 著、2011年12月1日発行)における高二酸化炭素血症に関する記載)、COハイドレート等を摂取しても肺内炭酸ガス分圧が80mmHg未満となるように制御することを着想した。
 鋭意検討した結果、ヒト口腔内に類似する環境下でのCOハイドレートの融解時の最大CO発生速度が8mL/秒 未満となるように口腔内での二酸化炭素の放出が緩やかである性質(以下、「CO徐放性」)を調整することによって肺内炭酸ガス分圧80mmHg未満に制御することができ、口腔摂取する際の二酸化炭素中毒リスクを顕著に低減しつつ、十分な炭酸感を有する口腔摂取用COハイドレートを得ることができることを見いだした。また、本発明者らは、COハイドレートを氷膜(増粘剤や甘味成分を含有する氷膜も含む)で被覆することや、被覆する氷膜の厚みや組成等を調整することにより、ヒト口腔内に類似する環境下でのCOハイドレートの融解時の最大CO発生速度をコントロールできることを見いだした。本発明者らは、これらの知見により、本発明を完成させるに至った。
The present inventors have made intensive studies in order to solve the above problems, the lung CO 2 concentration is above a certain, there is a possibility that personal injury by carbon dioxide intoxication, the arterial blood carbon dioxide partial pressure 80 It is known that consciousness is confused at ~ 100mmHg (Respiratory Physiology Revised Edition for Respiratory Management) (Yodosha, Kenji Tsuji, issued December 1, 2011) ), The idea was to control the carbon dioxide partial pressure in the lungs to be less than 80 mmHg even when CO 2 hydrate was ingested.
As a result of intensive investigation, the release of carbon dioxide in the oral cavity is slow so that the maximum CO 2 generation rate during melting of CO 2 hydrate in an environment similar to that in the human oral cavity is less than 8 mL / second. (Hereinafter referred to as “CO 2 sustained-release”) can be controlled to a carbon dioxide partial pressure of less than 80 mmHg in the lung, and the carbon dioxide poisoning risk when ingesting in the oral cavity is significantly reduced and sufficient carbon dioxide is obtained. It was found that a CO 2 hydrate for oral intake having a feeling can be obtained. In addition, the present inventors coated CO 2 hydrate with an ice film (including an ice film containing a thickener and a sweetening component), and adjusted the thickness and composition of the ice film to be coated. It was found that the maximum CO 2 generation rate at the time of melting of CO 2 hydrate under an environment similar to that in the human oral cavity can be controlled. The present inventors have completed the present invention based on these findings.
 なお、COハイドレートを氷膜で被覆することを開示する先行技術(特許文献4~6など)もあるが、これらの先行技術はあくまでも自己保存性、すなわち、氷の融点未満の温度(約0℃未満)における保存安定性、貯蔵安定性を向上させることを目的とする技術であり、本発明のように、ヒト口腔内に類似する環境下(例えば36~38℃)での融解時の最大CO発生速度を低下(CO徐放性を向上)させることを目的とする技術ではない。本発明者らは、複数個の小さなペレット状のCOハイドレートと、それと同量のCOを含む1個の大きめの塊状のCOハイドレートについて、保存安定性及びCO徐放性を比較したところ、塊状のCOハイドレートの方が保存安定性は高いにもかかわらず、CO徐放性はほぼ同程度か又は塊状のCOハイドレートの方がむしろ低かった(CO発生速度が速かった)ことを確認した。このことは、上述の保存安定性の向上と、上述のCO徐放性の向上が直接関係しないことを示している。 Although there are prior arts (Patent Documents 4 to 6 and the like) that disclose coating CO 2 hydrate with an ice film, these prior arts are merely self-preserving, that is, temperatures below the melting point of ice (about about This is a technique aiming to improve storage stability and storage stability at less than 0 ° C.), and at the time of melting in an environment similar to the human oral cavity (for example, 36 to 38 ° C.) as in the present invention. This is not a technique for reducing the maximum CO 2 generation rate (improving CO 2 sustained release). The present inventors have provided storage stability and sustained release of CO 2 with respect to a plurality of small pellets of CO 2 hydrate and one large block of CO 2 hydrate containing the same amount of CO 2. In comparison, although the storage stability of the bulk CO 2 hydrate is higher, the sustained release of CO 2 is almost the same, or the bulk CO 2 hydrate is rather lower (CO 2 generation) It was confirmed that the speed was high). This indicates that the above-described improvement in storage stability is not directly related to the above-described improvement in sustained CO 2 release.
 また、自己保存効果と氷膜の厚さの関係について述べると、例えば特許文献5の[0037]には、COハイドレートのペレット(小さな粒)の運搬効率を考慮すると、COハイドレートペレットに含まれる水は少ない方が好ましいため、COハイドレートペレットの表面に形成する氷膜は、自己保存効果を発揮する範囲で最も薄く形成することが望ましい旨が記載されている。実際、特許文献4~6などに開示されるような、自己保存性のための氷膜の場合、その厚さはせいぜい500μm程度以下(例えば特許文献6参照)である。 Further, when the described relationship between the thickness of the self-preserving effect and Korimaku, for example, in [0037] of Patent Document 5, in consideration of the efficiency of transportation of CO 2 hydrate pellets (small grain), CO 2 hydrate pellets Therefore, it is preferable that the ice film formed on the surface of the CO 2 hydrate pellet is desirably formed as thin as possible within a range that exhibits a self-preserving effect. Actually, in the case of an ice film for self-preserving properties as disclosed in Patent Documents 4 to 6 and the like, its thickness is at most about 500 μm or less (see, for example, Patent Document 6).
 また、特許文献2は、COハイドレートを氷で覆って形成した炭酸補充媒体を一応記載しているものの、明細書に開示しているのは、規定圧力で加圧した規定温度下でCOガスを水に混入させ、かかる水を攪拌してスラリー状としたものを、脱水を行わずに冷却して、氷の中にCOハイドレートを点在させたものなどである。しかし、この製法で製造したCOハイドレートは、氷の中だけでなく、氷の表面にもCOハイドレートが多く点在しているのであり、本発明のCO徐放性が調整された口腔摂取用COハイドレートの一態様である「氷の被覆膜が設けられたCOハイドレート」とは異なる。実際、本願の実施例では、比較例として、特許文献2に記載されているような、スラリー状のCOハイドレートを脱水せずに冷却したCOハイドレートを比較例サンプルとして用いているが、最大CO発生速度が高く、二酸化炭素中毒のリスクは十分に低いとはいえないことを確認した。 In addition, Patent Document 2 describes a carbon supplement medium formed by covering CO 2 hydrate with ice. However, the specification discloses that CO 2 is heated at a specified pressure under a specified temperature. A mixture of two gases mixed in water and stirring the water to form a slurry is cooled without dehydration, and is dispersed with CO 2 hydrate in ice. However, CO 2 hydrate prepared in this process, not only ice, on the surface of ice is than CO 2 hydrate is often scattered, CO 2 sustained release of the present invention is adjusted This is different from “CO 2 hydrate provided with an ice coating film” which is one embodiment of CO 2 hydrate for oral intake. In fact, in the present embodiment, as a comparative example, as described in Patent Document 2, although a slurry CO 2 hydrate is used CO 2 hydrate cooled without dehydrating the comparative sample It was confirmed that the maximum CO 2 generation rate is high and the risk of carbon dioxide poisoning cannot be said to be sufficiently low.
 すなわち、本発明は、
(1)下記で定義される最大CO発生速度が、8mL/秒 未満となるように調整されたことを特徴とする口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物: 
(最大CO発生速度(mL/秒)の定義)
0.3~0.36gのCOを含有する量のCOハイドレートを分取し、分取したCOハイドレートを、室温37℃、湿度70%の大気圧の雰囲気下で、液温37℃の10mLの水に添加し、添加から5秒毎に少なくとも30秒以上重量変化を測定して、5秒毎のCOの発生量(mL)をそれぞれ算出し、それらの発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという試験を、3回繰り返し、得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、前記COハイドレートの最大CO発生速度(mL/秒)とする;や、
(2)最大CO発生速度が8mL/秒 未満となるようにCOハイドレート塊に氷の被覆膜が設けられたことを特徴とする上記(1)に記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物や、
(3)氷の被覆膜が、厚さ0.6~50mmの氷膜であることを特徴とする上記(2)に記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物や、
(4)0.3~0.36gのCOを含有するCOハイドレートであることを特徴とする上記(1)~(3)のいずれかに記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物や、
(5)CO含有率が、3~28重量%であることを特徴とする上記(1)~(4)のいずれかに記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物や、
(6)氷の被覆膜が、増粘剤及び甘味成分からなる群から選択される1種又は2種以上の物質を含有していることを特徴とする上記(2)~(5)のいずれかに記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物や、
(7)氷の被覆膜に含まれる増粘剤の濃度が0.5重量%以下であり、及び/又は、氷の被覆膜に含まれる甘味成分濃度が20重量%以下であることを特徴とする上記(6)に記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物や、
(8)口腔摂取用複合物が、口腔摂取用COハイドレートを含む飲料、氷菓又はアイスクリーム類である上記(1)~(7)のいずれかに記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物に関する。
That is, the present invention
(1) CO 2 hydrate for ingestion, wherein the maximum CO 2 generation rate defined below is adjusted to be less than 8 mL / sec, or for ingestion containing the CO 2 hydrate Composite:
(Definition of maximum CO 2 generation rate (mL / sec))
0.3 was taken the amount of CO 2 hydrate containing CO 2 for ~ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value of the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate (mL / sec) of the CO 2 hydrate;
(2) The CO 2 hydrate for oral consumption according to (1) above, wherein an ice coating film is provided on the CO 2 hydrate lump so that the maximum CO 2 generation rate is less than 8 mL / sec. Or a complex for oral consumption containing the CO 2 hydrate,
(3) The CO 2 hydrate for oral consumption according to (2) above, or the CO 2 hydrate, wherein the ice coating film is an ice film having a thickness of 0.6 to 50 mm Oral ingestion compounds,
(4) CO 2 hydrate for oral consumption according to any one of (1) to (3) above, which is CO 2 hydrate containing 0.3 to 0.36 g CO 2 , or A composition for oral consumption containing the CO 2 hydrate,
(5) CO 2 content, 3 above, wherein the ~ 28 by weight% (1) to (4) oral ingestion for CO 2 hydrate of any one of or the CO 2 hydrate Including ingestible composites,
(6) The ice coating film contains one or more substances selected from the group consisting of a thickener and a sweetening component, according to the above (2) to (5), CO 2 hydrate for oral intake according to any of the above, or a composite for oral intake containing the CO 2 hydrate,
(7) The concentration of the thickener contained in the ice coating film is 0.5% by weight or less, and / or the sweetening ingredient concentration contained in the ice coating film is 20% by weight or less. CO 2 hydrate for oral intake according to the above (6), or a composite for oral intake containing the CO 2 hydrate,
(8) The oral intake CO 2 hydrate according to any one of the above (1) to (7), wherein the oral intake composite is a beverage, ice confectionery or ice cream containing an oral intake CO 2 hydrate, Alternatively, the present invention relates to a composite for oral consumption containing the CO 2 hydrate.
 また、本発明は、
(9)COハイドレートの製造において、下記で定義される最大CO発生速度が8mL/秒未満となるように調整する工程を含むことを特徴とする、口腔摂取用COハイドレートまたは前記COハイドレートを含む口腔摂取用複合物の製造方法:
(最大CO発生速度(mL/秒)の定義)
0.3~0.36gのCOを含有する量のCOハイドレートを分取し、分取したCOハイドレートを、室温37℃、湿度70%の大気圧の雰囲気下で、液温37℃の10mLの水に添加し、添加から5秒毎に少なくとも30秒以上重量変化を測定して、5秒毎のCOの発生量(mL)をそれぞれ算出し、それらの発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという試験を、3回繰り返し、得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、前記COハイドレートの最大CO発生速度(mL/秒)とする;に関する。
The present invention also provides:
(9) In the production of CO 2 hydrate, maximum CO 2 generation rate, which is defined below is characterized in that it comprises a step of adjusting to be less than 8 mL / sec, for oral ingestion CO 2 hydrate or the Method for producing a composite for oral consumption containing CO 2 hydrate:
(Definition of maximum CO 2 generation rate (mL / sec))
0.3 was taken the amount of CO 2 hydrate containing CO 2 for ~ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value of the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate (mL / sec) of the CO 2 hydrate.
 さらに、本発明は、
(10)COハイドレートの製造において、下記で定義される最大CO発生速度が8mL/秒未満となるように調整する工程を含むことを特徴とする、口腔摂取用COハイドレートまたは前記COハイドレートを含む口腔摂取用複合物のCO徐放性調整方法:
(最大CO発生速度(mL/秒)の定義)
0.3~0.36gのCOを含有する量のCOハイドレートを分取し、分取したCOハイドレートを、室温37℃、湿度70%の大気圧の雰囲気下で、液温37℃の10mLの水に添加し、添加から5秒毎に少なくとも30秒以上重量変化を測定して、5秒毎のCOの発生量(mL)をそれぞれ算出し、それらの発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという試験を、3回繰り返し、得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、前記COハイドレートの最大CO発生速度(mL/秒)とする;に関する。
Furthermore, the present invention provides
(10) In the production of CO 2 hydrate, maximum CO 2 generation rate, which is defined below is characterized in that it comprises a step of adjusting to be less than 8 mL / sec, for oral ingestion CO 2 hydrate or the Method for adjusting CO 2 sustained release of composite for ingestion containing CO 2 hydrate:
(Definition of maximum CO 2 generation rate (mL / sec))
0.3 was taken the amount of CO 2 hydrate containing CO 2 for ~ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value among the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate (mL / sec) of the CO 2 hydrate.
 本発明によれば、飲食品に添加してから口腔摂取する場合や、直接口腔摂取する場合の二酸化炭素中毒リスクを低減しつつ、十分な炭酸感を有する、より安全性の高い口腔摂取用COハイドレート等、及び、それらの製造方法等を提供することができ、特に、ヒト口腔内に類似する環境下での融解時の最大CO発生速度が8mL/秒 未満となるようにCO徐放性が調整された口腔摂取用COハイドレート、または該COハイドレートを含む口腔摂取用複合物、及び、それらの製造方法等を提供することができる。 According to the present invention, a more safe CO for ingestion having sufficient carbon dioxide feeling while reducing the risk of carbon dioxide poisoning when ingested after being added to food or drink or when directly ingested. 2 hydrates and the like, and methods for producing them, and in particular, CO 2 such that the maximum CO 2 generation rate upon melting in an environment similar to that in the human oral cavity is less than 8 mL / second. It is possible to provide an oral intake CO 2 hydrate with controlled release properties, an oral intake composite containing the CO 2 hydrate, a production method thereof, and the like.
実施例で用いた呼吸シミュレータの概要を示す図である。測定項目は、呼気終末CO分圧である。COボンベは、成人安静時のCO産生量相当(200mL/分)のCOガスを供給し、人工呼吸器は、設定換気量でモデル肺を駆動する。It is a figure which shows the outline | summary of the respiration simulator used in the Example. The measurement item is end expiratory CO 2 partial pressure. The CO 2 cylinder supplies CO 2 gas equivalent to the amount of CO 2 production at the time of adult rest (200 mL / min), and the ventilator drives the model lung at the set ventilation.
 本発明は、下記で定義される最大CO発生速度(本明細書において、単に「最大CO発生速度」とも表示する。)が8mL/秒 未満となるように調整された口腔摂取用COハイドレート、または該COハイドレートを含む口腔摂取用複合物(以下、併せて「本発明の口腔摂取用COハイドレート等」ともいう)、及び、それらの製造方法(以下、「本発明の製造方法」とも表示する。)からなる。
(最大CO発生速度(mL/秒)の定義)
0.3~0.36gのCOを含有する量のCOハイドレートを分取し、分取したCOハイドレートを、室温37℃、湿度70%の大気圧の雰囲気下で、液温37℃の10mLの水に添加し、添加から5秒毎に少なくとも30秒以上重量変化を測定して、5秒毎のCOの発生量(mL)をそれぞれ算出し、それらの発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという試験を、3回繰り返し、得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、前記COハイドレート等の最大CO発生速度(mL/秒)とする。
The present invention, the maximum CO 2 (herein, simply "maximum CO 2 evolution rate" also displays.) Generation rate adjusted so that less than 8 mL / sec by oral ingestion for CO 2 as defined below Hydrate or a complex for oral intake containing the CO 2 hydrate (hereinafter also referred to as “CO 2 hydrate for oral intake of the present invention”) and a production method thereof (hereinafter “the present invention”) It is also indicated as “Manufacturing method”.
(Definition of maximum CO 2 generation rate (mL / sec))
0.3 was taken the amount of CO 2 hydrate containing CO 2 for ~ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value of the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate (mL / second) such as the CO 2 hydrate is set.
 本発明の口腔摂取用COハイドレートは、最大CO発生速度が8mL/秒 未満となるように調整されており、すなわち、CO徐放性が調整されている。最大CO発生速度が8mL/秒 未満となるように調整されている本発明の口腔摂取用COハイドレートは、二酸化炭素中毒に対する安全性の高い口腔摂取用COハイドレートである。また、本明細書において、「十分な炭酸感を有するCOハイドレート」とは、最大CO発生速度が1mL/秒 以上、より好ましくは1.5mL/秒 以上であるCOハイドレートを意味する。 The CO 2 hydrate for oral intake of the present invention is adjusted so that the maximum CO 2 generation rate is less than 8 mL / second, that is, the CO 2 sustained release property is adjusted. The CO 2 hydrate for oral consumption of the present invention that is adjusted so that the maximum CO 2 generation rate is less than 8 mL / second is a highly safe CO 2 hydrate for oral intake of carbon dioxide poisoning. Also, means in the present specification, "CO 2 hydrate having sufficient carbon feeling", the maximum CO 2 evolution rate is 1 mL / sec or more, the CO 2 hydrate is more preferably 1.5 mL / sec or more To do.
 また、本発明には、COハイドレートの製造において、最大CO発生速度が8mL/秒 未満となるように調整することを特徴とする口腔摂取用COハイドレート等のCO徐放性を調整する方法(以下、「本発明のCO徐放性調整方法」とも表示する。)も含まれる。 Further, the present invention is the manufacturing of CO 2 hydrate, maximum CO 2 generation rate 8 mL / oral intake for CO 2 hydrate and the like, characterized in that adjusted to be less than a second CO 2 sustained release (Hereinafter also referred to as “the CO 2 sustained release adjusting method of the present invention”).
 本発明において「COハイドレート(二酸化炭素ハイドレート)」とは、水分子の結晶体の空寸に二酸化炭素分子を閉じ込めた固体の包接化合物を意味する。COハイドレートは、通常、氷状の結晶体であり、例えば標準気圧条件下で、かつ、氷が融解するような温度条件下に置くと、融解しながら二酸化炭素を放出する。 In the present invention, “CO 2 hydrate (carbon dioxide hydrate)” means a solid inclusion compound in which carbon dioxide molecules are confined in the empty space of a crystal of water molecules. CO 2 hydrate is usually an icy crystal, and releases carbon dioxide while melting, for example, under standard atmospheric pressure conditions and under temperature conditions where ice melts.
1.<本発明の口腔摂取用COハイドレート等>
 本発明の口腔摂取用COハイドレートとは、最大CO発生速度が、8mL/秒 未満となるように調整された口腔摂取用COハイドレートである。本発明の口腔摂取用COハイドレートとしては、そのような口腔摂取用COハイドレートである限り、形状、大きさ、CO含有率、製造方法など特に制限されない。また、本発明の口腔摂取用複合物とは、本発明の口腔摂取用COハイドレートを包含する口腔摂取用の物質を意味する。本発明の口腔摂取用複合物としては、本発明の口腔摂取用COハイドレートを包含する口腔摂取用の物質である限り、組成、形状、大きさ、CO含有率、製造方法など特に制限されない。本発明の口腔摂取用複合物における、本発明の口腔摂取用COハイドレート以外の口腔摂取用の物質としては、冷菓(例えば氷)、菓子、食品、飲料などの飲食品が挙げられ、中でも、飲料、冷菓が好ましく挙げられ、中でも、飲料、氷菓(例えば氷)、アイスクリーム類がより好ましく挙げられ、中でも、氷菓(例えば氷)、アイスクリーム類がさらに好ましく挙げられる。なお、かかる飲食品の形態としては、該飲食品(好ましくは氷)が、本発明の口腔摂取用COハイドレートを膜状に被覆して凍結していることが好ましい。
1. <CO 2 hydrate for oral intake of the present invention>
The oral intake for CO 2 hydrate of the present invention, the maximum CO 2 generation rate, a CO 2 hydrate orally ingested, which is adjusted to be less than 8 mL / sec. The oral intake CO 2 hydrate of the present invention is not particularly limited as long as it is such oral intake CO 2 hydrate, such as shape, size, CO 2 content, and production method. The composite for oral consumption of the present invention means a substance for oral intake including the CO 2 hydrate for oral intake of the present invention. The composition for oral intake of the present invention is not particularly limited in terms of composition, shape, size, CO 2 content, production method, etc. as long as it is a substance for oral intake including the CO 2 hydrate for oral intake of the present invention. Not. Examples of the substance for oral intake other than the CO 2 hydrate for oral intake of the present invention in the composite for oral intake of the present invention include foods and drinks such as frozen confectionery (for example, ice), confectionery, food, and beverage. Beverages and frozen desserts are preferred, among which beverages, ice desserts (eg ice) and ice creams are more preferred, among which ice desserts (eg ice) and ice creams are more preferred. In addition, as a form of such food or drink, it is preferable that the food or drink (preferably ice) is frozen by coating the oral ingestion CO 2 hydrate in a film form.
 本発明の口腔摂取用COハイドレートの最大CO発生速度は8mL/秒 未満である限り特に制限されず、当業者であれば、かかるCOハイドレートの使用対象製品の香味設計における炭酸感等に応じて、好適な最大CO発生速度を適宜設定することができる。口腔摂取する際の二酸化炭素中毒リスクを低減することと、十分な炭酸感を得ることとのバランスの観点から、最大CO発生速度の上限として、7.5mL/秒 以下、7mL/秒 以下、6mL/秒 以下、5mL/秒 以下が挙げられ、下限として、1mL/秒 以上、1.5mL/秒 以上、2mL/秒 以上、2.5mL/秒 以上、3mL/秒以上が挙げられる。下限として挙げられるいずれかの数値と、上限として挙げられるいずれかの数値により表されるすべての組合せの数値範囲は本願明細書に開示されるが、好ましい数値範囲として、1~8mL/秒、1.5~7.5mL/秒、2~8mL/秒、2~7.5mL/秒などが挙げられる。なお、本発明の口腔摂取用複合物の最大CO発生速度は、該複合物に含まれる本発明の口腔摂取用COハイドレートの最大CO発生速度よりも通常遅い。本発明の口腔摂取用COハイドレートを包含する物質であり、該複合物におけるCOハイドレート以外の物質は、通常、COハイドレートよりもCO濃度が低いからである。 The maximum CO 2 generation rate of the CO 2 hydrate for oral intake of the present invention is not particularly limited as long as it is less than 8 mL / second, and those skilled in the art will feel carbonation in the flavor design of the product to be used for such CO 2 hydrate. In accordance with the above, a suitable maximum CO 2 generation rate can be set as appropriate. From the viewpoint of the balance between reducing the risk of carbon dioxide poisoning when ingested in the mouth and obtaining a sufficient carbonic sensation, the upper limit of the maximum CO 2 generation rate is 7.5 mL / second or less, 7 mL / second or less, Examples include 6 mL / second or less, 5 mL / second or less, and the lower limit includes 1 mL / second or more, 1.5 mL / second or more, 2 mL / second or more, 2.5 mL / second or more, 3 mL / second or more. The numerical ranges of all combinations represented by any numerical value listed as the lower limit and any numerical value listed as the upper limit are disclosed herein, but preferred numerical ranges are 1-8 mL / second, 1 5 to 7.5 mL / second, 2 to 8 mL / second, 2 to 7.5 mL / second, and the like. It should be noted that the maximum CO 2 generation rate of the oral intake composite of the present invention is usually slower than the maximum CO 2 generation rate of the oral intake CO 2 hydrate of the present invention contained in the composite. This is because the substance includes the CO 2 hydrate for oral intake of the present invention, and the substance other than the CO 2 hydrate in the composite usually has a lower CO 2 concentration than the CO 2 hydrate.
 上記の最大CO発生速度が8mL/秒 未満となるように調整された口腔摂取用COハイドレートとしては、COハイドレート塊に氷の被覆膜を設けて(すなわち、氷膜でCOハイドレートを被覆して)、最大CO発生速度が8mL/秒 未満となるように調整されたCOハイドレートや、CO含有率を調整することにより、最大CO発生速度が8mL/秒 未満となるように調整されたCOハイドレートなどが挙げられ、中でも、口腔摂取する際の二酸化炭素中毒リスクを顕著に低減しつつ、より十分な炭酸感を得る観点から、COハイドレート塊に氷の被覆膜を設ける(氷膜でCOハイドレートを被覆する)ことにより、最大CO発生速度が8mL/秒 未満となるように調整されたCOハイドレートが好適に挙げられる。COハイドレート塊に氷の被覆膜を設けることにより、最大CO発生速度が8mL/秒 未満となるように調整された口腔摂取用COハイドレートとして、具体的には、厚さ0.6~50mmの氷膜で被覆されたCOハイドレート(以下、「氷膜被覆COハイドレート」とも表示する。)が好適に挙げられる。 As the above-mentioned CO 2 hydrate for ingestion adjusted so that the maximum CO 2 generation rate is less than 8 mL / second, an ice coating film is provided on the CO 2 hydrate lump (that is, the CO 2 is formed on the ice film). 2 hydrate the coated), CO 2 and hydrate the maximum CO 2 generation rate is adjusted to be less than 8 mL / sec, by adjusting the CO 2 content, the maximum CO 2 evolution rate is 8 mL / CO 2 hydrate adjusted to be less than 1 second, and the like. Among them, from the viewpoint of obtaining a more sufficient carbon dioxide feeling while significantly reducing the risk of carbon dioxide poisoning when ingested in the oral cavity, CO 2 hydrate by providing the coating film of ice (to cover the CO 2 hydrate in an ice film) mass is adjusted CO 2 hydrate as the maximum CO 2 generation rate is less than 8 mL / sec And the like to apply. By providing an ice coating film on the CO 2 hydrate lump, as a CO 2 hydrate for oral intake adjusted so that the maximum CO 2 generation rate is less than 8 mL / second, specifically, a thickness of 0 Preferred examples include CO 2 hydrate coated with an ice film of .6 to 50 mm (hereinafter also referred to as “ice film coated CO 2 hydrate”).
 本発明の口腔摂取用COハイドレートの形状としては、本発明の口腔摂取用COハイドレートの使用対象製品の製品設計等に応じて適宜設定することができ、例えば、略球状;略楕円体状;略直方体形状等の略多面体形状;あるいは、これらの形状にさらに凹凸を備えた形状;などが挙げられ、また、COハイドレートの塊を適宜破砕して得られる様々な形状の破砕片(塊)であってもよい。本発明の口腔摂取用複合物の形状としては、該複合物の種類、組成等に応じて適宜設定することができ、例えば、該複合物が全体として個体である場合は、該複合物の形状としては、略球状;略楕円体状;略直方体形状等の略多面体形状;あるいは、これらの形状にさらに凹凸を備えた形状;などが挙げられる。 The shape of the CO 2 hydrate for oral intake of the present invention can be appropriately set according to the product design of the product to be used for the CO 2 hydrate for oral intake of the present invention. Body shapes; substantially polyhedron shapes such as a substantially rectangular parallelepiped shape; or shapes having irregularities in these shapes; and crushing in various shapes obtained by appropriately crushing a CO 2 hydrate lump. A piece (lump) may be sufficient. The shape of the composite for oral consumption of the present invention can be appropriately set according to the type, composition, etc. of the composite. For example, when the composite is an individual as a whole, the shape of the composite Examples thereof include a substantially spherical shape, a substantially ellipsoidal shape, a substantially polyhedral shape such as a substantially rectangular parallelepiped shape, or a shape further provided with irregularities in these shapes.
 本発明の口腔摂取用COハイドレートの大きさとしては、本発明の口腔摂取用COハイドレートの使用対象製品の製品設計等に応じて適宜設定することができ、例えば、口腔摂取用COハイドレートの最大長として1~100mm、2~50mm、3~30mm、4~25mm、5~20mmなどが挙げられる。本明細書において「口腔摂取用COハイドレートの最大長」とは、口腔摂取用COハイドレートのその塊の表面の2点を結び、かつ、その塊の重心を通る線分のうち、最も長い線分の長さを意味する。なお、本発明の口腔摂取用複合物の大きさとしては、かかる複合物の使用対象製品の製品設計等に応じて適宜設定することができ、例えば、該複合物が全体として個体である場合は、該複合物の大きさとしては、口腔摂取用COハイドレートの最大長として1~200mm、3~100mm、5~80mm、7~50mm、7~25mmなどが挙げられる。 The size of the CO 2 hydrate for oral intake of the present invention can be appropriately set according to the product design of the product to be used for the CO 2 hydrate for oral intake of the present invention. Examples of the maximum length of 2 hydrates include 1 to 100 mm, 2 to 50 mm, 3 to 30 mm, 4 to 25 mm, and 5 to 20 mm. In the present specification, "the maximum length of the CO 2 hydrate for oral ingestion" are tied two points of the surface of the mass of CO 2 hydrate orally ingested, and, among the line segments passing through the center of gravity of the mass, It means the length of the longest line segment. In addition, the size of the composite for oral intake of the present invention can be appropriately set according to the product design of the product to be used of the composite, for example, when the composite is an individual as a whole Examples of the size of the composite include 1 to 200 mm, 3 to 100 mm, 5 to 80 mm, 7 to 50 mm, and 7 to 25 mm as the maximum length of CO 2 hydrate for oral intake.
 本発明の口腔摂取用COハイドレートの二酸化炭素含有率(CO含有率)としては、最大CO発生速度が8mL/秒 未満である限り特に制限されず、本発明の口腔摂取用COハイドレートの使用対象製品の製品設計等に応じて適宜設定することができるが、本発明の口腔摂取用COハイドレートが氷膜被覆COハイドレートである場合、CO含有率の下限として例えば、3重量%以上、好ましくは5重量%以上、より好ましくは7重量%以上、さらに好ましくは10重量%以上、より好ましくは12重量%以上が挙げられ、CO含有率の上限として例えば、28重量%以下、23重量%以下、18重量%以下が挙げられる。なお、本明細書において、氷膜被覆COハイドレートである場合のCO含有率は、氷膜を含む氷膜被覆COハイドレートの全重量に対するCOの重量の割合(%)を意味する。一方、本発明の口腔摂取用COハイドレートが氷膜被覆COハイドレートではなく、CO含有率を調整することにより、最大CO発生速度が8mL/秒 未満となるように調整されたCOハイドレートである場合、CO含有率の下限として例えば、1重量%以上、好ましくは2.5重量%以上、より好ましくは4重量%以上が挙げられ、CO含有率の上限として例えば、10重量%以下、8重量%以下、6重量%以下が挙げられる。 The carbon dioxide content (CO 2 content) of the CO 2 hydrate for oral intake of the present invention is not particularly limited as long as the maximum CO 2 generation rate is less than 8 mL / second, and CO 2 for oral intake of the present invention. Although it can set suitably according to the product design etc. of the product for which hydrate is used, when the CO 2 hydrate for oral consumption of the present invention is ice film-coated CO 2 hydrate, the lower limit of the CO 2 content rate For example, 3% by weight or more, preferably 5% by weight or more, more preferably 7% by weight or more, further preferably 10% by weight or more, more preferably 12% by weight or more. Examples of the upper limit of the CO 2 content include 28 weight% or less, 23 weight% or less, 18 weight% or less is mentioned. Incidentally, herein interchangeably, CO 2 content of the case of the ice film covering CO 2 hydrate, the ratio of the weight of CO 2 relative to the total weight of the ice film covering CO 2 hydrate containing ice film (%) To do. On the other hand, the CO 2 hydrate for ingestion of the present invention was not ice film-coated CO 2 hydrate, but was adjusted so that the maximum CO 2 generation rate was less than 8 mL / second by adjusting the CO 2 content. In the case of CO 2 hydrate, the lower limit of the CO 2 content is, for example, 1% by weight or more, preferably 2.5% by weight or more, more preferably 4% by weight or more, and the upper limit of the CO 2 content is, for example, Examples include 10% by weight or less, 8% by weight or less, and 6% by weight or less.
 本発明の口腔摂取用複合物の二酸化炭素含有率(CO含有率)としては、特に制限されず、本発明の口腔摂取用COハイドレートの使用対象製品の製品設計等に応じて適宜設定することができるが、CO含有率の下限として例えば、1重量%以上、好ましくは3重量%以上、より好ましくは5重量%以上、さらに好ましくは7重量%以上、より好ましくは9重量%以上が挙げられ、CO含有率の上限として例えば、25重量%以下、20重量%以下、15重量%以下が挙げられる。なお、本明細書において、本発明の口腔摂取用複合物のCO含有率は、本発明の口腔摂取用複合物の全重量に対するCOの重量の割合(%)を意味する。 The carbon dioxide content (CO 2 content) of the composite for oral intake of the present invention is not particularly limited, and is appropriately set according to the product design of the product to be used for the CO 2 hydrate for oral intake of the present invention. However, the lower limit of the CO 2 content is, for example, 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 7% by weight or more, more preferably 9% by weight or more. Examples of the upper limit of the CO 2 content include 25% by weight or less, 20% by weight or less, and 15% by weight or less. In the present specification, the CO 2 content of the oral intake composite of the present invention means the ratio (%) of the weight of CO 2 to the total weight of the oral intake composite of the present invention.
 本発明の口腔摂取用COハイドレートにおけるCO含有率は、本発明の口腔摂取用COハイドレートを製造する際の「CO分圧の高低」、「脱水処理の程度」、「圧密成型処理を行うか否か」、「圧密成型処理する場合の圧密の圧力の高低」、「氷膜の厚さの程度」などにより調整することができる。例えば、COハイドレートを製造する際の「CO分圧を高くし」、「脱水処理の程度を上げ」、「圧密成型処理を行い」、「圧密成型処理する場合の圧密の圧力を高くする」と、COハイドレートのCO含有率を高くすることができる。なお、COハイドレートが融解すると、該COハイドレートに含まれていたCOが放出され、その分の重量が減少するので、口腔摂取用COハイドレートのCO含有率は、例えば、口腔摂取用COハイドレートを常温で融解させた際の重量変化から、下記式を用いて算出する事ができる。
(CO含有率)=(融解前のサンプル重量-融解後のサンプル重量)/融解前のサンプル重量)
The CO 2 content in the CO 2 hydrate for oral intake of the present invention is determined by “the level of CO 2 partial pressure”, “degree of dehydration treatment”, “consolidation” when producing the CO 2 hydrate for oral intake of the present invention. It can be adjusted according to “whether or not to perform the molding process”, “the level of compaction pressure when the compacting process is performed”, “the thickness of the ice film”, and the like. For example, when making CO 2 hydrate, “increase the CO 2 partial pressure”, “increase the degree of dehydration”, “perform compaction processing”, “increase the compaction pressure when performing compaction processing “Yes,” the CO 2 content of the CO 2 hydrate can be increased. Incidentally, when the CO 2 hydrate melts, the CO 2 CO 2 contained in the hydrate is released, so that amount of the weight is decreased, CO 2 content of CO 2 hydrate for oral ingestion, for example, From the change in weight when the CO 2 hydrate for oral intake is melted at room temperature, it can be calculated using the following formula.
(CO 2 content) = (sample weight before melting−sample weight after melting) / sample weight before melting)
 本発明の口腔摂取用複合物におけるCO含有率は、該口腔摂取用複合物に含有させる本発明の口腔摂取用COハイドレートにおけるCO含有率や、上記口腔摂取用複合物に含有させる口腔摂取用COハイドレートの配合比率等により調整することができる。本発明の口腔摂取用複合物におけるCO含有率は、口腔摂取用COハイドレートのCO含有率と同様の方法により算出することができる。 CO 2 content in the oral ingestion composite of the present invention, and CO 2 content in the oral ingestion for CO 2 hydrate of the present invention to be contained in the oral ingestion for composites, is contained in the oral ingestion for composites it can be adjusted by the mixing ratio or the like of the CO 2 hydrate orally ingested. CO 2 content in the oral ingestion composite of the present invention can be calculated by the same method as CO 2 content of CO 2 hydrate orally ingested.
 本発明の口腔摂取用COハイドレート等は、より長期間、より安定的に保つ観点から、流通や保管等の際に、「低温条件下」、又は「高圧条件下」、又は「低温条件下かつ高圧条件下」で保持することが好ましい。保持の簡便性の観点から、これらの中でも、「低温条件下」で保持することが好ましく、常圧で「低温条件下」で保持することがより好ましい。 The CO 2 hydrate for oral intake of the present invention has a “low temperature condition”, “high pressure condition”, or “low temperature condition” for distribution and storage from the viewpoint of keeping it more stable for a longer period of time. It is preferable to hold | maintain under "under high pressure conditions." Among these, from the viewpoint of simplicity of holding, it is preferable to hold under “low temperature conditions”, and it is more preferable to hold under normal pressure and “low temperature conditions”.
 上記の「低温条件下」における上限温度としては、好ましくは0℃以下、より好ましくは-5℃以下、さらに好ましくは-10℃以下、より好ましくは-15℃以下、さらに好ましくは-20℃、より好ましくは-25℃が挙げられ、上記の「低温条件下」における下限温度としては、-273℃以上、-80℃以上、-50℃以上、-40℃以上、-30℃以上などが挙げられる。 The upper limit temperature in the above “low temperature condition” is preferably 0 ° C. or less, more preferably −5 ° C. or less, further preferably −10 ° C. or less, more preferably −15 ° C. or less, still more preferably −20 ° C., More preferred is −25 ° C., and the lower limit temperature in the “low temperature condition” is −273 ° C. or higher, −80 ° C. or higher, −50 ° C. or higher, −40 ° C. or higher, −30 ° C. or higher, etc. It is done.
 上記の「高圧条件下」における下限圧力としては、1050ヘクトパスカル(hPa)以上、好ましくは1150hPa以上、より好ましくは1300hPa以上、さらに好ましくは1500hPa以上が挙げられ、上記の「高圧条件下」における上限圧力としては、15000hPa以下、12000hPa以下、10000hPa以下、8000hPa以下、5000hPa以下などが挙げられる。なお、本段落に記載された圧力はいずれも絶対圧力で表記している。 Examples of the lower limit pressure under the “high pressure condition” include 1050 hectopascals (hPa) or higher, preferably 1150 hPa or higher, more preferably 1300 hPa or higher, and even more preferably 1500 hPa or higher. As 15,000 hPa or less, 12000 hPa or less, 10000 hPa or less, 8000 hPa or less, 5000 hPa or less, etc. are mentioned. In addition, all the pressures described in this paragraph are expressed as absolute pressures.
(氷膜被覆COハイドレート)
 前述したように、本発明の口腔摂取用COハイドレートとしては、本発明の氷膜被覆COハイドレートが好適に挙げられ、本発明の口腔摂取用複合物としては、本発明の氷膜被覆COハイドレートを含む口腔摂取用複合物が好適に挙げられる。かかる氷膜被覆COハイドレートとしては、厚さ0.6~50mmの氷膜で被覆されたCOハイドレートである限り、形状、大きさ、CO含有率、製造方法など特に制限されない。
(Ice film coated CO 2 hydrate)
As described above, the CO 2 hydrate for oral consumption of the present invention preferably includes the ice film-coated CO 2 hydrate of the present invention, and the oral film of the present invention includes the ice film of the present invention. A composite for oral intake containing coated CO 2 hydrate is preferred. Such an ice film-coated CO 2 hydrate is not particularly limited as long as it is a CO 2 hydrate coated with an ice film having a thickness of 0.6 to 50 mm, such as shape, size, CO 2 content, and production method.
(氷膜)
 本発明における氷膜の厚さとしては、0.6~50mmである限り特に制限されないが、好ましくは0.6~30mm、より好ましくは0.6~20mm、さらに好ましくは0.7~5mm、より好ましくは0.7~4mm、さらに好ましくは0.8~3.5mmが挙げられる。
(Ice film)
The thickness of the ice film in the present invention is not particularly limited as long as it is 0.6 to 50 mm, but preferably 0.6 to 30 mm, more preferably 0.6 to 20 mm, still more preferably 0.7 to 5 mm, More preferred is 0.7 to 4 mm, and still more preferred is 0.8 to 3.5 mm.
 本明細書における「氷膜の厚さ」とは、そのCOハイドレートを被覆する氷膜の厚さの平均値を意味し、かかる「氷膜の厚さ」には、例えばその氷膜被覆COハイドレートの氷膜においてランダムに選択された3~10箇所(好ましくは5箇所)の位置における氷膜の厚さの平均値が含まれる。氷膜被覆COハイドレートのある位置における氷膜の厚さとは、その位置の氷膜表面が平面の場合はその平面に垂直方向の氷膜の厚さを意味し、その位置の氷膜表面が曲面の場合はその位置の氷膜表面の接平面に垂直方向の氷膜の厚さを意味する。また、1個の氷膜被覆COハイドレートが、2個又は3個以上のCOハイドレート塊を含んでいる場合の各COハイドレート塊の氷膜の境界面としては、隣り合う2個のCOハイドレート塊の各表面上の点を結ぶ線分であって、その長さが最短となる線分の垂直二等分面が好ましく挙げられる。 The “ice film thickness” in the present specification means an average value of the ice film thickness covering the CO 2 hydrate, and the “ice film thickness” includes, for example, the ice film coating. The average value of the thickness of the ice film at 3 to 10 (preferably 5) positions selected at random in the CO 2 hydrate ice film is included. The ice film thickness at a position where the ice film coating CO 2 hydrate is present means the thickness of the ice film in the direction perpendicular to the plane when the surface of the ice film at the position is a plane. When is a curved surface, it means the thickness of the ice film perpendicular to the tangential plane of the ice film surface at that position. Further, when one ice film-covered CO 2 hydrate includes two or more CO 2 hydrate lumps, the boundary surfaces of the ice films of the CO 2 hydrate lumps are adjacent to each other. A perpendicular bisector that is a line segment connecting points on each surface of each CO 2 hydrate lump and having the shortest length is preferable.
 氷膜の厚さは、氷膜被覆COハイドレートの表面の位置によって異なっていてもよいが、氷膜被覆COハイドレートの表面全体でおおむね均一であることが好ましく、そのCOハイドレートについて「最も薄い位置の氷膜の厚さ」に対する「最も厚い位置の氷膜の厚さ」の比率が例えば1.0より高く5.0以下、好ましくは1.0~4.0、より好ましくは1.0~3.0であることが好適に挙げられる。 The thickness of the ice film may be different depending on the position of the surface of the ice film covering CO 2 hydrate, but preferably is substantially uniform across the surface of the ice film covering CO 2 hydrate, the CO 2 hydrate The ratio of the “thickness of the ice film at the thickest position” to the “thickness of the ice film at the thinnest position” is, for example, higher than 1.0 and lower than or equal to 5.0, preferably 1.0 to 4.0, more preferably Is preferably 1.0 to 3.0.
 本明細書における「氷膜被覆COハイドレート」には、最大CO発生速度が8mL/秒 未満に調整されている限り、表面の少なくとも一部が氷膜で被覆されていないCOハイドレートも便宜上含まれるが、表面のすべてが氷膜で被覆されていることが好ましい。より具体的には、「氷膜被覆COハイドレートの全表面積」に対する、「氷膜被覆COハイドレートにおいて、表面が氷膜である部分の面積」の比率(%)が、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、より好ましくは93%以上、さらに好ましくは95%以上、より好ましくは97%以上、さらに好ましくは98%以上、より好ましくは99%以上、最も好ましくは100%であることが好適に挙げられる。 The "ice film covering CO 2 hydrate" as used herein, unless the maximum CO 2 generation rate is adjusted to less than 8 mL / sec, at least a portion of the surface is not covered with ice film CO 2 hydrate Is included for convenience, but it is preferable that the entire surface is covered with an ice film. More specifically, for "total surface area of the ice film covering CO 2 hydrate", "in an ice film covering CO 2 hydrate, the surface area of a portion glacial film" ratio of (%) is preferably 70 % Or more, more preferably 80% or more, further preferably 90% or more, more preferably 93% or more, still more preferably 95% or more, more preferably 97% or more, still more preferably 98% or more, more preferably 99%. As mentioned above, it is preferable that it is most preferably 100%.
 また、1個の氷膜被覆COハイドレートは、1個のCOハイドレート塊を含んでいてもよいし、2個又は3個以上のCOハイドレート塊を含んでいてもよいが、1個のCOハイドレート塊を含んでいることが好ましい。1個の氷膜被覆COハイドレートが、2個又は3個以上のCOハイドレート塊を含んでいる場合、1個の氷膜被覆COハイドレートに含まれるCOハイドレート塊の個数に対して、割合として60%以上の個数のCOハイドレート塊が氷膜被覆COハイドレートであればよいが、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、より好ましくは95%以上、最も好ましくは100%の割合の個数のCOハイドレート塊が氷膜被覆COハイドレートであることが好適に挙げられる。 In addition, one ice film-coated CO 2 hydrate may contain one CO 2 hydrate chunk, or two or more CO 2 hydrate chunks, It preferably contains one CO 2 hydrate mass. One ice film covering CO 2 hydrate, the number of two or if it contains 3 or more CO 2 hydrate mass, CO 2 hydrate mass contained in one of the ice film covering CO 2 hydrate On the other hand, the CO 2 hydrate mass of 60% or more as a proportion may be an ice film-coated CO 2 hydrate, preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more. More preferably, it is preferable that the number of CO 2 hydrate blocks in a ratio of 95% or more, most preferably 100%, is ice film-coated CO 2 hydrate.
 本発明における氷膜は氷の膜であり、かかる氷としては、氷のみから成っていてもよいし、氷以外の任意物質を含有していてもよい。かかる任意物質としては、増粘剤、甘味成分、乳化剤及び油脂からなる群から選択される1種又は2種以上の物質が挙げられ、中でも、増粘剤及び甘味成分からなる群から選択される1種又は2種以上の物質が好ましく挙げられ、中でも、1種又は2種以上の増粘剤がより好ましく挙げられ、中でも、少なくともキサンタンガムを含む1種又は2種以上の増粘剤がさらに好ましく挙げられる。なお、前述したように、本発明における氷膜には、冷菓(例えば氷)、菓子、食品、飲料などの飲食品が凍結してなる膜も含まれる。 The ice film in the present invention is an ice film, and as such ice, it may be composed only of ice or may contain an arbitrary substance other than ice. Such optional substances include one or more substances selected from the group consisting of thickeners, sweetening ingredients, emulsifiers and oils and fats, among which are selected from the group consisting of thickeners and sweetening ingredients. 1 type or 2 or more types of substances are preferably mentioned, and 1 type or 2 or more types of thickeners are more preferable, and 1 type or 2 or more types of thickeners containing at least xanthan gum are more preferable. Can be mentioned. As described above, the ice film in the present invention includes a film formed by freezing food and drink such as frozen confectionery (for example, ice), confectionery, food, and beverage.
 上記の増粘剤とは、飲食品に添加することにより飲食品の粘性を向上させることのできる物質のことをいい、かかる増粘剤には、キサンタンガム、カラギーナン、グアーガム、タマリンドガム、ジェランガム、ローカストビーンガム、タラガム、カルボキシメチルセルロース、ペクチン、プルラン、プロピレングリコール、ゼラチン、アラビアガム、ダイユータンガム、デンプン、デキストリン、アルギン酸、イナゴマメゴム、などが挙げられ、中でも、キサンタンガム、ペクチン、グアーガム、カラギナン、カルボキシメチルセルロース、ローカストビーンガムなどが好ましく挙げられ、中でも、キサンタンガム、ペクチン、ローカストビーンガムがより好ましく挙げられる。増粘剤は1種を用いてもよいし、2種以上を併用してもよい。 The above thickener means a substance that can improve the viscosity of food and drink by adding it to food and drink. Such thickener includes xanthan gum, carrageenan, guar gum, tamarind gum, gellan gum, locust. Bean gum, tara gum, carboxymethylcellulose, pectin, pullulan, propylene glycol, gelatin, gum arabic, diytan gum, starch, dextrin, alginic acid, locust bean gum, etc., among which xanthan gum, pectin, guar gum, carrageenan, carboxymethylcellulose , Locust bean gum and the like are preferable, among which xanthan gum, pectin, and locust bean gum are more preferable. One thickener may be used, or two or more thickeners may be used in combination.
 本発明における氷膜が増粘剤を含有する場合、かかる氷膜中の増粘剤の濃度としては、本発明の口腔摂取用COハイドレートの使用対象製品の香味設計に応じて適宜設定することができるが、例えば、0重量%より高く5重量%以下、好ましくは0.01~4.5重量%、より好ましくは0.01~4.0重量%、さらに好ましくは0.05~0.6重量%、より好ましくは0.05~0.5重量%、さらに好ましくは0.1~0.5重量%が挙げられる。 When the ice film in the present invention contains a thickener, the concentration of the thickener in the ice film is appropriately set according to the flavor design of the product to be used for the CO 2 hydrate for oral intake of the present invention. For example, it is higher than 0% by weight and lower than 5% by weight, preferably 0.01 to 4.5% by weight, more preferably 0.01 to 4.0% by weight, and still more preferably 0.05 to 0%. 0.6% by weight, more preferably 0.05 to 0.5% by weight, and still more preferably 0.1 to 0.5% by weight.
 上記の「甘味成分」とは、甘味を呈する成分のことをいい、かかる甘味成分には、黒砂糖、白下糖、カソナード(赤砂糖)、和三盆、ソルガム糖、メープルシュガーなどの含蜜糖、ザラメ糖(白双糖、中双糖、グラニュー糖など)、車糖(上白糖、三温糖など)、加工糖(角砂糖、氷砂糖、粉砂糖、顆粒糖など)、液糖などの精製糖、単糖類(ぶどう糖、果糖、木糖、ソルボース、ガラクトース、異性化糖など)、二糖類(蔗糖 、麦芽糖、乳糖、異性化乳糖、パラチノースなど)、オリゴ糖類(フラクトオリゴ糖、マルトオリゴ糖、イソマルトオリゴ糖、ガラクトオリゴ糖、カップリングシュガーなど)、糖アルコール類(エリスリトール、ソルビトール、キシリトール、マンニトール、マルチトール、イソマルチトール、ラクチトール、マルトトリイトール、イソマルトトリイトール、パニトール、オリゴ糖アルコール、粉末還元麦芽糖水飴)などのような糖質甘味料の他、天然非糖質甘味料(ステビア抽出物、カンゾウ抽出物等)や合成非糖質甘味料(アスパルテーム、アセスルファムK等)のような高甘味度甘味料などの甘味料が挙げられる。甘味成分は1種を用いてもよいし、2種以上を併用してもよい。 The above-mentioned “sweet ingredient” refers to an ingredient exhibiting sweetness, such as brown sugar, white sugar, cassonade (red sugar), Wasanbon, sorghum sugar, maple sugar and other sugar-containing sugars. , Refined sugars such as salmon sugar (white disaccharide, medium disaccharide, granulated sugar, etc.), car sugar (super white sugar, tri-sugar etc.), processed sugar (corn sugar, ice sugar, powdered sugar, granulated sugar etc.), liquid sugar etc. , Monosaccharides (glucose, fructose, wood sugar, sorbose, galactose, isomerized sugar, etc.), disaccharides (sucrose cake, maltose, lactose, isomerized lactose, palatinose, etc.), oligosaccharides (fructooligosaccharides, maltooligosaccharides, isomaltoligosaccharides) , Galactooligosaccharides, coupling sugar, etc.), sugar alcohols (erythritol, sorbitol, xylitol, mannitol, maltitol, isomaltitol, lactitol) In addition to saccharide sweeteners such as maltotriitol, isomaltoriitol, panitol, oligosaccharide alcohol, powdered reduced maltose starch syrup, etc., natural non-sugar sweeteners (stevia extract, licorice extract, etc.) Sweeteners such as high-intensity sweeteners such as sugar sweeteners (aspartame, acesulfame K, etc.) can be mentioned. One sweetening component may be used, or two or more sweetening components may be used in combination.
 本発明における氷膜が甘味成分を含有する場合、かかる氷膜中の甘味成分の合計濃度としては、本発明の口腔摂取用COハイドレートの使用対象製品の香味設計に応じて適宜設定することができるが、例えば、0重量%より高く30重量%以下、好ましくは1~25重量%が挙げられる。 When the ice membrane in the present invention contains a sweetening component, the total concentration of the sweetening components in the ice membrane should be appropriately set according to the flavor design of the product to be used for the oral ingestion CO 2 hydrate. For example, it is higher than 0% by weight and not more than 30% by weight, preferably 1 to 25% by weight.
 上記の乳化剤とは、乳化作用を有する物質のことをいい、かかる乳化剤としては、食用として使用できるものを広く採用することができ、例えば、脂肪酸モノグリセリド、脂肪酸ジグリセリド、脂肪酸トリグリセリド、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、レシチン、キラヤサポニン、ユッカサポニン、大豆サポニン、化工澱粉(酸分解澱粉、酸化澱粉、α化澱粉、グラフト化澱粉、カルボキシメチル基、ヒドロキシアルキル基等を導入したエーテル化澱粉、酢酸、リン酸等を反応させたエステル化澱粉、2ヶ所以上の澱粉の水酸基間に多官能基を結合させた架橋澱粉、湿熱処理澱粉等)などが挙げられる。乳化剤は1種を用いてもよいし、2種以上を併用してもよい。 The above-mentioned emulsifier refers to a substance having an emulsifying action, and as such an emulsifier, those that can be used for food can be widely adopted, for example, fatty acid monoglyceride, fatty acid diglyceride, fatty acid triglyceride, propylene glycol fatty acid ester, Sucrose fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, lecithin, quillaja saponin, yucca saponin, soybean saponin, modified starch (acid-degraded starch, oxidized starch, pregelatinized starch, grafted starch, carboxymethyl group, hydroxyalkyl group And the like, esterified starch obtained by reacting acetic acid, phosphoric acid and the like, crosslinked starch in which a polyfunctional group is bonded between hydroxyl groups of two or more starches, wet heat-treated starch, and the like. One type of emulsifier may be used, or two or more types may be used in combination.
 本発明における氷膜が乳化剤を含有する場合、かかる氷膜中の乳化剤の濃度としては、本発明の口腔摂取用COハイドレートの使用対象製品の香味設計に応じて適宜設定することができるが、例えば、0重量%より高く0.5重量%以下、好ましくは0.001~0.5重量%、より好ましくは0.01~0.4重量%、さらに好ましくは0.01~0.3重量%が挙げられる。 When the ice film in the present invention contains an emulsifier, the concentration of the emulsifier in the ice film can be appropriately set according to the flavor design of the product to be used for the ingestible CO 2 hydrate of the present invention. For example, it is higher than 0% by weight and not more than 0.5% by weight, preferably 0.001 to 0.5% by weight, more preferably 0.01 to 0.4% by weight, still more preferably 0.01 to 0.3%. % By weight.
 上記の油脂とは、グリセリンと脂肪酸のエステルのことをいい、かかる油脂としては、食用として使用できるものを広く採用することができ、例えば、ナタネ油、大豆油、ヒマワリ種子油、綿実油、落花生油、米糠油、コーン油、サフラワー油、オリーブ油、カポック油、胡麻油、月見草油、パーム油、シア脂、サル脂、カカオ脂、ヤシ油、パーム核油等の植物性油脂;並びに、乳脂、牛脂、豚脂、魚油、鯨油等の動物性油脂;が挙げられ、さらに、上記油脂類の単独または混合油、あるいはそれらの硬化、分別、エステル交換等を施した加工油脂も挙げられる。油脂は1種を用いてもよいし、2種以上を併用してもよい。 The above fats and oils refer to esters of glycerin and fatty acids, and as such fats and oils, those that can be used for food can be widely adopted, for example, rapeseed oil, soybean oil, sunflower seed oil, cottonseed oil, peanut oil , Rice bran oil, corn oil, safflower oil, olive oil, kapok oil, sesame oil, evening primrose oil, palm oil, shea fat, monkey fat, cacao butter, palm oil, palm kernel oil and other vegetable oils; Animal fats such as pork fat, fish oil, whale oil, and the like, and further, fats and oils alone or in combination, or processed fats and oils subjected to curing, fractionation, transesterification and the like thereof. 1 type may be used for fats and oils, and 2 or more types may be used together.
 本発明における氷膜が油脂を含有する場合、かかる氷膜中の油脂の濃度としては、本発明の口腔摂取用COハイドレートの使用対象製品の香味設計に応じて適宜設定することができるが、例えば、0重量%より高く40重量%以下、好ましくは0.01~35重量%、より好ましくは0.1~30重量%、さらに好ましくは0.1~25重量%、より好ましくは0.1~20重量%、さらに好ましくは0.1~18重量%が挙げられる。 When the ice film in the present invention contains fats and oils, the concentration of the fats and oils in the ice film can be appropriately set according to the flavor design of the product to be used for the oral ingestion CO 2 hydrate. For example, it is higher than 0 wt% and 40 wt% or less, preferably 0.01 to 35 wt%, more preferably 0.1 to 30 wt%, still more preferably 0.1 to 25 wt%, more preferably 0. 1 to 20% by weight, more preferably 0.1 to 18% by weight.
 本発明における氷膜中の任意成分の濃度は、例えば氷膜のみを融解した後、その溶液について、例えばHPLC法、GC-MS法、LC-MS法などの公知の方法を適用することにより測定することができる。 The concentration of an arbitrary component in the ice film in the present invention is measured by, for example, melting only the ice film and then applying a known method such as HPLC method, GC-MS method, LC-MS method to the solution. can do.
 本発明における氷膜は、上記の任意成分に加えて、又は、上記の任意成分を含まずに、その他成分を含んでいてもよい。その他成分としては、色素、香料が挙げられる。 The ice film in the present invention may contain other components in addition to or without the above optional components. Other components include pigments and fragrances.
 また、本発明の口腔摂取用COハイドレートを後述のように氷菓、アイスクリーム類等の冷菓として用いる場合、後述するような氷菓又はアイスクリーム類の原料混合物で氷膜を形成してもよい。 In addition, when the CO 2 hydrate for oral intake of the present invention is used as a frozen confectionery such as ice confectionery or ice cream as described later, an ice film may be formed with a raw material mixture of ice confectionery or ice cream as described later. .
(COハイドレートを氷膜で被覆する方法)
 COハイドレートを氷膜で被覆する方法(すなわち、COハイドレート塊に氷の被覆膜を設ける方法)としては、COハイドレートを氷膜で被覆することができる限り特に制限されず、例えば、COハイドレートの表面形状に合わせて作製した薄い氷(任意成分を含む氷を含む)を、COハイドレートの表面に貼り付ける方法であってもよいが、COハイドレートを厚さのより均一な氷膜でより簡便に被覆できる点で、COハイドレートの表面を「水」又は「任意成分を含む水溶液又は懸濁液」に接触させた後、かかる「水」又は「任意成分を含む水溶液又は懸濁液」を凍らせる方法が好ましく挙げられる。COハイドレートの表面を「水」又は「任意成分を含む水溶液又は懸濁液」に接触させる方法としては、例えば(i)COハイドレートを「水」又は「任意成分を含む水溶液又は懸濁液」に浸漬させる方法や、(ii)「水」又は「任意成分を含む水溶液又は懸濁液」をCOハイドレートの表面に塗布する方法や、(iii)「水」又は「任意成分を含む水溶液又は懸濁液」をスプレーや霧吹き等にて霧状、細粒状にしてCOハイドレートの表面に吹き付ける方法や、(iv)「水」又は「任意成分を含む水溶液又は懸濁液」を超音波振動器等により気化又は霧状にしてCOハイドレートの表面に接触させる方法等が挙げられ、中でも、COハイドレートを厚さのより均一な氷膜で被覆できる点で、上記の(iii)の方法や、(iv)の方法が好ましく挙げられる。
(Method of coating CO 2 hydrate with ice film)
The method for coating the CO 2 hydrate with an ice film (that is, the method of providing an ice coating film on the CO 2 hydrate block) is not particularly limited as long as the CO 2 hydrate can be coated with the ice film. , for example, a thin ice prepared in accordance with the surface shape of the CO 2 hydrate (including ice containing optional component), CO 2 may be a method of pasting on the surface of the hydrate, but the CO 2 hydrate Since the surface of the CO 2 hydrate is brought into contact with “water” or “an aqueous solution or suspension containing an optional component” in that it can be more easily coated with an ice film having a more uniform thickness, A method of freezing the “aqueous solution or suspension containing an arbitrary component” is preferably mentioned. As a method for bringing the surface of CO 2 hydrate into contact with “water” or “an aqueous solution or suspension containing an optional component”, for example, (i) CO 2 hydrate is converted into “water” or “an aqueous solution or suspension containing an optional component”. A method of immersing in a turbid liquid, (ii) a method of applying “water” or “an aqueous solution or suspension containing an optional component” to the surface of CO 2 hydrate, or (iii) “water” or “optional component” Or a method of spraying the surface of the CO 2 hydrate by spraying or atomizing the aqueous solution or suspension containing the liquid to the surface of the CO 2 hydrate, or (iv) “water” or “an aqueous solution or suspension containing an optional component” "a method in which contact with the surface of the CO 2 hydrate in the vaporized or atomized by ultrasonic vibrations and the like. Among these, from the viewpoint that can be coated with uniform ice film from the thickness of the CO 2 hydrate, Method (iii) above and method (iv) Is preferred.
 上記のCOハイドレートの表面を「水」又は「任意成分を含む水溶液又は懸濁液」に接触させた後、かかる「水」又は「任意成分を含む水溶液又は懸濁液」を凍らせる方法としては、特に制限されず、表面に「水」又は「任意成分を含む水溶液又は懸濁液」が接触したCOハイドレートを液体窒素等で冷却してもよいし、COハイドレートを予め十分に冷却しておき、その表面に接触した「水」又は「任意成分を含む水溶液又は懸濁液」が凍るようにしておいてもよい。 A method of freezing the “water” or “aqueous solution or suspension containing an optional component” after bringing the surface of the CO 2 hydrate into contact with “water” or “an aqueous solution or suspension containing the optional component” as is not particularly limited, and the CO 2 hydrate "water" or "aqueous solution or suspension containing the optional component" is in contact with the surface it may be cooled with liquid nitrogen or the like, in advance of CO 2 hydrate It may be sufficiently cooled so that “water” or “an aqueous solution or suspension containing an optional component” in contact with the surface is frozen.
 また、上記のCOハイドレートの表面を「水」又は「任意成分を含む水溶液又は懸濁液」に接触させた後、かかる「水」又は「任意成分を含む水溶液又は懸濁液」を凍らせる方法において、氷膜を所望の厚さに調整するまでに行う前記接触とそれを凍らせる処理の回数は、得られる氷膜被覆COハイドレートの最大CO発生速度が8mL/秒 未満である限り特に制限されず、1回でもよいし、2回以上であってもよい。また、上限の処理回数としては、目的とする氷膜の厚さや、氷膜の被覆方法等にもよるため一概に規定できないが、20回以下、15回以下、10回以下、8回以下が挙げられる。 Further, after bringing the surface of the CO 2 hydrate into contact with “water” or “an aqueous solution or suspension containing an optional component”, the “water” or “aqueous solution or suspension containing an optional component” is frozen. In this method, the contact and the number of times of freezing the ice film before adjusting the ice film to a desired thickness are such that the maximum CO 2 generation rate of the obtained ice film-coated CO 2 hydrate is less than 8 mL / second. As long as there is no particular limitation, it may be once or twice or more. Further, the upper limit of the number of treatments cannot be generally specified because it depends on the target ice film thickness, the method of coating the ice film, etc., but it is 20 times or less, 15 times or less, 10 times or less, or 8 times or less. Can be mentioned.
 氷膜の厚さは、COハイドレートの表面に接触させる「水」又は「任意成分を含む水溶液又は懸濁液」の量や、接触させる回数などにより調整することができる。 The thickness of the ice film can be adjusted by the amount of “water” or “aqueous solution or suspension containing an optional component” to be brought into contact with the surface of the CO 2 hydrate, the number of times of contact, and the like.
 COハイドレートの表面を「水」又は「任意成分を含む水溶液又は懸濁液」に接触させる際の「水」や「任意成分を含む水溶液又は懸濁液」の液温としては、特に制限されないが、より均一な厚さの氷膜を形成すること、「水」や「任意成分を含む水溶液又は懸濁液」の液温によって、COハイドレートが融解するのを回避すること等の観点から、-5~15℃が好ましく、0~10℃がより好ましく、1~8℃がさらに好ましい。 The liquid temperature of “water” or “aqueous solution or suspension containing optional components” when the surface of CO 2 hydrate is brought into contact with “water” or “aqueous solution or suspension containing optional components” is particularly limited. However, it is possible to form an ice film having a more uniform thickness, avoid melting of CO 2 hydrate by the temperature of “water” or “aqueous solution or suspension containing an optional component”, etc. From the viewpoint, −5 to 15 ° C. is preferable, 0 to 10 ° C. is more preferable, and 1 to 8 ° C. is further preferable.
(氷膜被覆COハイドレート作製用COハイドレート)
 本発明の氷膜被覆COハイドレートの作製に用いるCOハイドレート(以下、単に「氷膜被覆用COハイドレート」とも表示する。)の最大CO発生速度は、8mL/秒 以上であってもよく、より十分な炭酸感を有する口腔摂取用COハイドレートを得る観点から、氷膜被覆用COハイドレートの最大CO発生速度は、好ましくは8mL/秒 以上、より好ましくは10mL/秒 以上であり、また、好ましくは15mL/秒 以下、より好ましくは13mL/秒 以下であることが挙げられる。
(Ice film covering CO 2 hydrate fabrication CO 2 hydrate)
The maximum CO 2 generation rate of the CO 2 hydrate used for the production of the ice film-coated CO 2 hydrate of the present invention (hereinafter also simply referred to as “CO 2 hydrate for ice film coating”) is 8 mL / second or more. From the viewpoint of obtaining a CO 2 hydrate for oral intake that has a more sufficient carbonic sensation, the maximum CO 2 generation rate of the CO 2 hydrate for ice film coating is preferably 8 mL / second or more, more preferably It is 10 mL / second or more, preferably 15 mL / second or less, more preferably 13 mL / second or less.
 氷膜被覆用COハイドレートの形状、大きさ、CO含有率、製造方法など特に制限されない。氷膜被覆用COハイドレートの形状や、大きさは、本発明の口腔摂取用COハイドレートにおいて氷膜を除去した形状や、大きさとなる。氷膜被覆用COハイドレートの大きさとしては、本発明の口腔摂取用COハイドレートの使用対象製品の香味設計等に応じて適宜設定することができ、例えば、氷膜被覆用COハイドレートの最大長として0.5~30mm、1~25mm、2~20mmなどが挙げられる。 The shape, size, CO 2 content, production method, etc. of the CO 2 hydrate for ice film coating are not particularly limited. The shape and size of the CO 2 hydrate for ice film coating are the shape and size obtained by removing the ice film in the CO 2 hydrate for oral intake of the present invention. The size of the CO 2 hydrate for ice film coating can be appropriately set according to the flavor design of the product to be used for the CO 2 hydrate for oral intake of the present invention. For example, CO 2 for ice film coating Examples of the maximum hydrate length include 0.5 to 30 mm, 1 to 25 mm, and 2 to 20 mm.
 氷膜被覆用COハイドレートのCO含有率としては、本発明の口腔摂取用COハイドレートとしたときに最大CO発生速度が8mL/秒 未満である限り特に制限されず、本発明の口腔摂取用COハイドレートの使用対象製品の製品設計等に応じて適宜設定することができるが、CO含有率の下限として例えば、3重量%以上、好ましくは6重量%以上、より好ましくは8重量%以上、さらに好ましくは11重量%以上、より好ましくは13重量%以上が挙げられ、CO含有率の上限として例えば、28重量%以下、25重量%以下が挙げられる。 The CO 2 content of the CO 2 hydrate for ice film coating is not particularly limited as long as the maximum CO 2 generation rate is less than 8 mL / second when the CO 2 hydrate for oral intake of the present invention is used. Although it can be set as appropriate according to the product design of the target product of CO 2 hydrate for ingestion of the oral cavity, the lower limit of the CO 2 content is, for example, 3% by weight or more, preferably 6% by weight or more, more preferably Is 8% by weight or more, more preferably 11% by weight or more, and more preferably 13% by weight or more. Examples of the upper limit of the CO 2 content include 28% by weight or less and 25% by weight or less.
 氷膜被覆用COハイドレートの製造方法としては、COハイドレートを製造できる限り特に制限されず、COハイドレート生成条件を充たす条件下で原料水中にCOを吹き込みながら原料水を攪拌する気液攪拌方式や、COハイドレート生成条件を充たす条件下でCO中に原料水をスプレーする水スプレー方式等の常法を用いることができる。これらの方式で生成されるCOハイドレートは、通常、COハイドレートの微粒子が、未反応の水と混合しているスラリー状であるため、COハイドレートの濃度を高めるために、脱水処理を行うことが好ましい。脱水処理によって含水率が比較的低くなったCOハイドレート(すなわち、比較的高濃度のCOハイドレート)は、ペレット成型機で一定の形状(例えば球状や直方体状)に圧縮成型することが好ましい。圧縮成型したCOハイドレートは、そのまま本発明に用いてもよいし、必要に応じてさらに破砕等したものを用いてもよい。なお、氷膜被覆用COハイドレートの製造方法としては、前述のように、原料水を用いる方法が比較的広く用いられているが、水(原料水)の代わりに微細な氷(原料氷)をCOと、低温、かつ、低圧のCO分圧という条件下で反応させてCOハイドレートを製造する方法を用いることもできる。 The method for producing CO 2 hydrate for ice film coating is not particularly limited as long as CO 2 hydrate can be produced, and the raw water is stirred while blowing CO 2 into the raw water under conditions that satisfy the CO 2 hydrate production conditions. Ordinary methods such as a gas-liquid stirring method or a water spray method in which raw water is sprayed into CO 2 under conditions satisfying CO 2 hydrate production conditions can be used. Since the CO 2 hydrate produced by these methods is usually in the form of a slurry in which fine particles of CO 2 hydrate are mixed with unreacted water, dehydration is performed to increase the concentration of CO 2 hydrate. It is preferable to carry out the treatment. CO 2 hydrate having a relatively low water content by dehydration (ie, a relatively high concentration of CO 2 hydrate) can be compression-molded into a certain shape (for example, a spherical shape or a rectangular parallelepiped shape) by a pellet molding machine. preferable. The compression-molded CO 2 hydrate may be used in the present invention as it is, or may be further crushed as necessary. As described above, as a method for producing the CO 2 hydrate for ice film coating, the method using raw water is relatively widely used, but fine ice (raw material ice) is used instead of water (raw water). ) and the CO 2, a low temperature, and can be used how disulfide under the conditions of low pressure CO 2 partial pressure for producing a CO 2 hydrate.
 上記の「COハイドレート生成条件」は、前述したように、その温度におけるCOハイドレートの平衡圧力よりCO分圧(CO圧力)が高い条件である。上記の「COハイドレートの平衡圧力よりもCO分圧が高い条件」は、非特許文献1(J. Chem. Eng. Data (1991) 36, 68-71)のFigure 2.や、非特許文献2(J. Chem. Eng. Data (2008), 53, 2182-2188)のFigure 7.やFigure 15.に開示されているCOハイドレートの平衡圧力曲線(例えば縦軸がCO圧力、横軸が温度を表す)において、かかる曲線の高圧側(COハイドレートの平衡圧力曲線において、例えば縦軸がCO圧力、横軸が温度を表す場合は、該曲線の上方)の領域内のCO圧力と温度の組合せの条件として表される。COハイドレート生成条件の具体例として、「-20~4℃の範囲内」と「二酸化炭素圧力1.8~4MPaの範囲内」の組合せの条件や、「-20~-4℃の範囲内」と「二酸化炭素圧力1.3~1.8MPaの範囲内」の組合せの条件が挙げられる。 As described above, the “CO 2 hydrate production condition” is a condition in which the CO 2 partial pressure (CO 2 pressure) is higher than the equilibrium pressure of CO 2 hydrate at that temperature. The above “conditions in which the partial pressure of CO 2 is higher than the equilibrium pressure of CO 2 hydrate” are shown in FIG. 2 of Non-Patent Document 1 (J. Chem. Eng. Data (1991) 36, 68-71) Equilibrium pressure curve of CO 2 hydrate disclosed in FIG. 7 and FIG. 15 of Patent Document 2 (J. Chem. Eng. Data (2008), 53, 2182-2188) (for example, the vertical axis represents CO 2 pressure) , The horizontal axis represents temperature), the region on the high pressure side of this curve (in the equilibrium pressure curve of CO 2 hydrate, for example, the vertical axis represents CO 2 pressure, and the horizontal axis represents temperature, above the curve) It is expressed as a condition of a combination of CO 2 pressure and temperature. Specific examples of the CO 2 hydrate generation conditions include a combination condition of “within a range of −20 to 4 ° C.” and “within a range of carbon dioxide pressure of 1.8 to 4 MPa”, and a range of “−20 to −4 ° C.” The combination of “inside” and “within carbon dioxide pressure in the range of 1.3 to 1.8 MPa” can be mentioned.
 氷膜被覆用COハイドレートは、二酸化炭素と氷のみからなるCOハイドレート(以下、「任意成分及びその他成分を含有しないCOハイドレート」とも表示する。)であってもよいが、増粘剤、甘味成分、乳化剤、油脂、色素及び香料からなる群から選択される1種又は2種以上の物質を含んでいてもよい。上記の「色素」としては、例えば、マリーゴールド色素等のカロテノイド系色素、ベニバナ色素等のフラボノイド系色素、アントシアニン系色素、クチナシ色素類、ビート色素等のベタニン系色素、クロレラ、葉緑素等、カラメル色素等が挙げられるが、これらに特に限定されるものではない。 The CO 2 hydrate for coating an ice film may be a CO 2 hydrate composed of only carbon dioxide and ice (hereinafter also referred to as “CO 2 hydrate containing no optional components and other components”). You may contain the 1 type (s) or 2 or more types of substance selected from the group which consists of a thickener, a sweetening component, an emulsifier, fats and oils, a pigment | dye, and a fragrance | flavor. Examples of the “pigment” include carotenoid pigments such as marigold pigments, flavonoid pigments such as safflower pigments, anthocyanin pigments, gardenia pigments, betanin pigments such as beet pigments, chlorella, chlorophyll, etc. However, it is not particularly limited to these.
 本発明の口腔摂取用COハイドレート等は、包装容器内に収容されていてもよいし、収容されていなくてもよい。かかる包装容器としては、例えば、飲料用の氷などに通常用いられているものと同様の形状、材質等の包装容器を用いることができる。かかる包装容器として例えば、ポリエチレン樹脂等の樹脂製の袋や、樹脂製のカップが挙げられる。 The CO 2 hydrate for oral intake of the present invention may be accommodated in the packaging container or may not be accommodated. As such a packaging container, for example, a packaging container having the same shape and material as those usually used for beverage ice or the like can be used. Examples of such packaging containers include resin bags such as polyethylene resins and resin cups.
(本発明の口腔摂取用COハイドレートの用途、本発明の口腔摂取用複合物)
 本発明の口腔摂取用COハイドレートは、CO徐放性が調整されているので、口腔摂取用COハイドレートとして好適に用いることができる。本発明の口腔摂取用COハイドレートは、そのまま冷菓又は氷菓としてもよく、また、以下のように他の冷菓、菓子、食品、飲料などの飲食品等の口腔摂取用の物質に添加するか、混合・混和するか、又は振りかけることにより、本発明の口腔摂取用複合物としてもよい。
(Use of CO 2 hydrate for oral intake of the present invention, composite for oral intake of the present invention)
The CO 2 hydrate for buccal intake of the present invention can be suitably used as a CO 2 hydrate for buccal intake because the sustained release of CO 2 is adjusted. The CO 2 hydrate for oral consumption of the present invention may be used as it is as a frozen confectionery or ice confectionery, or may be added to a substance for oral consumption such as other frozen confectionery, confectionery, food, beverages and the like as follows: The composition for oral intake of the present invention may be prepared by mixing, mixing, or sprinkling.
 本発明の口腔摂取用複合物は、本発明の口腔摂取用COハイドレートを包含する(含む)口腔摂取用の物質であり、該口腔摂取用複合物としては、本発明の口腔摂取用COハイドレートを含む、冷菓(例えば氷)、菓子、食品、飲料などの飲食品が挙げられ、中でも、本発明の口腔摂取用COハイドレートを含む飲料、冷菓(例えば氷)が好ましく挙げられ、中でも、本発明の口腔摂取用COハイドレートを含む飲料、氷菓(例えば氷)、アイスクリーム類がより好ましく挙げられ、中でも、本発明の口腔摂取用COハイドレートを含む氷菓(例えば氷)、アイスクリーム類がさらに好ましく挙げられる。なお、本発明の口腔摂取用複合物の別の観点からの好ましい態様として、1個又は2個以上の本発明の氷膜被覆COハイドレートを含む口腔摂取用の物質(好ましくは氷菓(例えば氷)、アイスクリーム類)が挙げられ、中でも、かかる口腔摂取用の物質(好ましくは氷菓(例えば氷)、アイスクリーム類)に含まれる個々の「本発明の氷膜被覆COハイドレート」がそれぞれ1個のCOハイドレート塊を含んでいる、口腔摂取用の物質(好ましくは氷菓(例えば氷)、アイスクリーム類)がより好ましく挙げられる。 The oral intake composite of the present invention is a substance for oral intake including (including) the oral intake CO 2 hydrate of the present invention. As the oral intake composite, the oral intake CO of the present invention is included. containing 2 hydrate, frozen desserts (e.g. ice), confectionery, food and beverages products such as beverages, and among them, a beverage containing an oral intake for CO 2 hydrate of the present invention, frozen desserts (e.g., ice) are preferably mentioned Among these, beverages, ice confections (for example, ice), and ice creams containing the CO 2 hydrate for oral intake of the present invention are more preferable, and ice confections (for example, ice) containing the CO 2 hydrate for oral intake of the present invention are more preferable. ) And ice cream are more preferable. Incidentally, a preferred embodiment from another aspect of the oral ingestion composite of the present invention, one or more of the ice film covering CO 2 substances for oral ingestion comprising a hydrate of the present invention (preferably ices (e.g. Ice) and ice creams). Among them, the individual “ice film-coated CO 2 hydrates of the present invention” contained in such oral intake substances (preferably ice confectionery (eg ice), ice creams) are included. More preferably mentioned are substances for oral intake (preferably ice confectionery (for example, ice), ice creams) each containing one CO 2 hydrate mass.
 本発明の口腔摂取用COハイドレートは、その融解時にパチパチと音を立ててCOガスが飛び出すため、視覚的効果や聴覚的効果が得られる他、口腔内で冷菓が弾けるような刺激的な食感が得られる。また、本発明の口腔摂取用複合物(好ましくは氷菓、アイスクリーム類)は、本発明の口腔摂取用COハイドレートのもつ顕著な炭酸感が、他の飲食品(好ましくは氷菓、アイスクリーム類)本来の風味や食感と合わさって、従来にない食感・風味を醸し出すことができる。 The CO 2 hydrate for oral intake of the present invention makes a crackling sound when it melts, and the CO 2 gas pops out, so that a visual effect and an auditory effect can be obtained, and it is stimulating that a frozen confection can be played in the oral cavity. A good texture can be obtained. In addition, the oral ingestion composite (preferably ice confectionery, ice cream) of the present invention has a remarkable carbonic acid sensation possessed by the CO 2 hydrate for oral intake of the present invention, and other foods and beverages (preferably ice confectionery, ice cream). Class) Unprecedented texture and flavor can be brought together with the original flavor and texture.
 上記の冷菓としては、アイスクリーム類、氷菓などが挙げられ、かかるアイスクリーム類としては、アイスクリーム、アイスミルク、ラクトアイス等が挙げられ、上記の氷菓としては、アイスキャンデー、みぞれ、かき氷、氷、シャーベット、フローズンヨーグルト、シェイク等が挙げられる。菓子や食品としては、ゼリー、プリン、ヨーグルト、ナタデココ、寒天、杏仁豆腐、タピオカ、シロップ、蜜蜂、生クリーム、ミルフィーユ、マシュマロ、果実、チョコレート、チーズ、クッキー、ウェハース、ケーキ、タルト、パイ、シュークリーム、ムース、ババロア、パンナコッタ、ドーナツ、ワッフル、バームクーヘン、カステラ、葛きりもち、ようかん、白玉、しるこ、ぜんざい、わらびもち、おはぎ、きな粉等が挙げられる。 Examples of the frozen dessert include ice creams, ice confections, etc., and such ice creams include ice cream, ice milk, lacto ice, etc., and the above ice desserts include popsicles, sleet, shaved ice, ice, Examples include sherbet, frozen yogurt and shake. As confectionery and food, jelly, pudding, yogurt, nata de coco, agar, apricot tofu, tapioca, syrup, bee, fresh cream, millefeuille, marshmallow, fruit, chocolate, cheese, cookies, wafer, cake, tart, pie, cream puff, Examples include moose, bavaroa, panna cotta, donut, waffle, baumkuchen, castella, kudari mochi, yokan, white ball, shiruko, zenzai, warabimochi, rice ball, and kinako.
 上記の飲料としては、アルコール飲料や、非アルコール飲料が挙げられる。かかるアルコール飲料としては、ビール、発泡酒、その他の発泡性酒類等の発泡性酒類;日本酒;果実酒類;蒸留酒類;リキュール;等が挙げられる。上記の日本酒としては、大吟醸酒、純米大吟醸酒、吟醸酒、純米吟醸酒、本醸造酒、純米酒等が挙げられる。上記の果実酒類としては、ブドウのワイン(ブドウ酒)、リンゴのワイン(シードル)等のワイン(果実酒)や、シェリー、ポート等の甘味果実酒が挙げられ、中でも、ワインが好ましく挙げられ、中でもブドウのワインがより好ましく挙げられ、中でも、白ワイン、ロゼワインがより好ましく挙げられる。上記の蒸留酒としては、焼酎、ウイスキー、ウオッカ、スピリッツが挙げられる。上記のリキュールとしては、梅酒、カシスリキュール、オレンジリキュール、レモンリキュール、グレープフルーツリキュール、ライムリキュール、アンズリキュール、イチゴリキュール、ヨーグルトリキュール等が挙げられる。 </ RTI> Examples of the beverage include alcoholic beverages and non-alcoholic beverages. Examples of such alcoholic beverages include sparkling liquors such as beer, sparkling liquor, and other sparkling liquors; Japanese sake; fruit liquors; distilled liquors; liqueurs; Examples of the Japanese sake include Daiginjo sake, Junmai Daiginjo sake, Ginjo sake, Junmai Ginjo sake, Honjozo sake, Junmai sake and the like. Examples of the fruit liquor include wine (fruit wine) such as grape wine (grape), apple wine (cider), and sweet fruit liquor such as sherry and port, among which wine is preferred. Among these, grape wine is more preferable, and white wine and rose wine are more preferable. Examples of the distilled liquor include shochu, whiskey, vodka and spirits. Examples of the liqueur include plum wine, cassis liqueur, orange liqueur, lemon liqueur, grapefruit liqueur, lime liqueur, apricot liqueur, strawberry liqueur, yogurt liqueur and the like.
 上記の非アルコール飲料としては、ミネラルウォーター等の水;コーラ、ジンジャエール、サイダー等の炭酸飲料;ビールテイスト飲料;果汁含有飲料;野菜汁含有飲料;スポーツ飲料;アイソトニック飲料;ニアウォーター;コーヒー飲料;紅茶、緑茶、ウーロン茶、麦茶、社仲茶等の茶飲料;ココア飲料;ゼリー飲料;牛乳、低脂肪乳、加工乳等の乳;乳飲料;乳性飲料;乳酸菌飲料;豆乳類;栄養ドリンク剤;美容ドリンク剤; 等が挙げられる。 Non-alcoholic beverages include water such as mineral water; carbonated beverages such as cola, ginger ale and cider; beer-taste beverages; fruit juice-containing beverages; vegetable juice-containing beverages; sports beverages; isotonic beverages; , Green tea, oolong tea, barley tea, shachu tea, etc .; cocoa drink; jelly drink; milk such as milk, low-fat milk, processed milk; milk drink; dairy drink; lactic acid bacteria drink; soy milk; Beauty drink agent; salmon and the like.
 本発明の口腔摂取用複合物としては、本発明の口腔摂取用COハイドレートを含んでいること以外は通常の口腔摂取用の物質(好ましくは飲食品、より好ましくは飲料、氷菓(例えば氷)、アイスクリーム類、さらに好ましくは氷菓(例えば氷)、アイスクリーム類)と変わるところはない。 The oral ingestion composite of the present invention is a normal oral ingestion substance (preferably a food or drink, more preferably a beverage, ice confectionery (for example, ice cream) except that it contains the oral ingestion CO 2 hydrate of the present invention. ), Ice cream, more preferably ice confectionery (eg ice), ice cream).
 本発明の口腔摂取用複合物において、本発明の口腔摂取用COハイドレートが含まれる態様としては特に制限されず、例えば、口腔摂取用の物質の上に本発明の口腔摂取用COハイドレートが載っている態様であってもよいし、口腔摂取用の物質の中に本発明の口腔摂取用COハイドレートの一部又は全部が埋め込まれているような態様であってもよい。また、包装容器内に口腔摂取用の物質と、本発明の口腔摂取用COハイドレートが別々に含まれている態様も、便宜上、「本発明の口腔摂取用COハイドレートを含む口腔摂取用の物質」に含まれる。 In the composite for oral intake of the present invention, the aspect of containing the CO 2 hydrate for oral intake of the present invention is not particularly limited, and for example, the CO 2 hydride for oral intake of the present invention on a substance for oral intake. The aspect in which the rate is carried may be sufficient, and the aspect in which a part or all of the CO 2 hydrate for oral intake of the present invention is embedded in the substance for oral intake may be used. In addition, for the sake of convenience, the oral container containing the oral intake CO 2 hydrate of the present invention is also included in the packaging container in which the oral intake substance and the oral intake CO 2 hydrate of the present invention are separately included. Included in “substances for use”.
 本発明の口腔摂取用複合物における本発明の口腔摂取用COハイドレートの含有量としては特に制限されないが、本発明の口腔摂取用COハイドレートを含む本発明の口腔摂取用複合物全量に対して、3重量%以上、5重量%以上、10重量%以上、15重量%以上、20重量%以上が挙げられ、上限として例えば100重量%以下、90重量%以下、80重量%以下が挙げられる。 The content of the CO 2 hydrate for oral intake of the present invention in the composite for oral intake of the present invention is not particularly limited, but is the total amount of the composite for oral intake of the present invention including the CO 2 hydrate for oral intake of the present invention. 3 wt% or more, 5 wt% or more, 10 wt% or more, 15 wt% or more, 20 wt% or more, and the upper limit is, for example, 100 wt% or less, 90 wt% or less, 80 wt% or less. Can be mentioned.
 本発明の口腔摂取用複合物の製造方法としては、口腔摂取用複合物の通常の製造方法において、本発明の口腔摂取用COハイドレートが口腔摂取用の物質に含まれるようにする方法である限り特に制限されず、例えば、飲食品等の口腔摂取用の物質の通常の製造方法において、該口腔摂取用の物質の通常の製造方法において、該口腔摂取用の物質の原料混合物に、本発明の口腔摂取用ハイドレートを添加・混和する方法が好ましく挙げられる。 The method for producing the oral ingestion composite of the present invention is a method for making the oral ingestion CO 2 hydrate included in the oral ingestion substance in the usual method for producing an oral ingestion composite. As long as it is not particularly limited, for example, in a normal production method of a substance for oral intake such as food and drink, in a normal production method of the substance for oral intake, The method of adding and mixing the hydrate for oral intake of the invention is preferably mentioned.
 本発明の口腔摂取用複合物が、氷菓又はアイスクリーム類である場合の製造方法についてより詳細に述べると、氷菓又はアイスクリーム類の通常の製造方法において、氷菓又はアイスクリーム類の原料混合物を冷却する際に本発明の口腔摂取用ハイドレートを添加・混和する方法が好ましく挙げられる。上記の氷菓の原料としては、氷菓の種類によっても異なるが、甘味成分;乳化剤;安定剤;香料;色素;等が挙げられ、上記のアイスクリーム類の原料としては、アイスクリーム類の種類によっても異なるが、例えば、脱脂粉乳、脱脂乳等のタンパク質;植物油脂、乳脂等の食用油脂;甘味成分;乳化剤;安定剤;香料;色素;等が挙げられる。 In more detail about the manufacturing method in case the compound for oral intake of this invention is ice confectionery or ice cream, in the normal manufacturing method of ice confectionery or ice cream, the raw material mixture of ice confectionery or ice cream is cooled. The method of adding and mixing the hydrate for oral intake of the present invention is preferably mentioned. The above ice confectionery materials vary depending on the type of ice confectionery, but include sweetening ingredients; emulsifiers; stabilizers; fragrances; pigments, etc. The above ice cream materials may also depend on the type of ice cream. Although different, for example, proteins such as skim milk powder and skim milk; edible fats and oils such as vegetable oils and milk fats; sweetening ingredients; emulsifiers; stabilizers; fragrances;
 上記のアイスクリーム類は、コーン、ワッフル生地などに充填されていなくてよいが、充填されていてもよい。 The above-mentioned ice creams may not be filled in corn, waffle dough, etc., but may be filled.
 本発明の口腔摂取用複合物は、包装容器内に収容されていてもよいし、収容されていなくてもよい。かかる包装容器としては、その口腔摂取用の物質に通常用いられているものと同様の形状、材質等の包装容器を用いることができる。 The oral ingestion composite of the present invention may or may not be accommodated in a packaging container. As such a packaging container, a packaging container having the same shape and material as those normally used for the substance for oral intake can be used.
2.<本発明の製造方法>
 本発明の口腔摂取用COハイドレート等の製造方法(本発明の製造方法)は、COハイドレートの製造において、最大CO発生速度が8mL/秒 未満となるように調整することを含んでいる限り、特に制限されない。
2. <Production method of the present invention>
The method for producing CO 2 hydrate for oral intake of the present invention (production method of the present invention) includes adjusting the maximum CO 2 generation rate to be less than 8 mL / sec in the production of CO 2 hydrate. As long as it is, there is no particular limitation.
 上記の最大CO発生速度が8mL/秒 未満となるように調整する方法としては、特に制限されないが、COハイドレート塊に氷の被覆膜を設ける(COハイドレートを氷膜で被覆する)ことにより、最大CO発生速度が8mL/秒 未満となるように調整する方法や、COハイドレートのCO含有率を調整することにより、最大CO発生速度が8mL/秒 未満となるように調整する方法などが挙げられ、中でも、口腔摂取する際の二酸化炭素中毒リスクを顕著に低減しつつ、より十分な炭酸感を得る観点から、COハイドレート塊に氷の被覆膜を設けることにより、最大CO発生速度が8mL/秒未満となるように調整する方法が好ましく挙げられ、COハイドレートを厚さ0.6~50mmの氷膜で被覆することにより、最大CO発生速度が8mL/秒 未満となるように調整する方法がより好ましく挙げられる。 As a method of maximum CO 2 generation rate described above is adjusted to be less than 8 mL / sec is not particularly limited, the coating providing a coating of ice on the CO 2 hydrate mass the (CO 2 hydrate in an ice film to) by, and how the maximum CO 2 generation rate is adjusted to be less than 8 mL / sec, by adjusting the CO 2 content of CO 2 hydrate, maximum CO 2 generation rate and less than 8 mL / sec In particular, from the viewpoint of obtaining a more sufficient carbon dioxide sensation while significantly reducing the risk of carbon dioxide poisoning when ingested in the mouth, an ice coating film is formed on the CO 2 hydrate mass. A method of adjusting the maximum CO 2 generation rate to be less than 8 mL / second is preferable by providing a CO 2 hydrate, and the CO 2 hydrate is covered with an ice film having a thickness of 0.6 to 50 mm. Thus, a method of adjusting the maximum CO 2 generation rate to be less than 8 mL / second is more preferable.
 氷膜や、氷膜でCOハイドレートを被覆する方法や、氷膜被覆用COハイドレート等については、前述したとおりである。 Korimaku and, a method of coating a CO 2 hydrate in an ice layer, the ice film covering CO 2 hydrate and the like are as described above.
3.<本発明のCO徐放性調整方法>
 本発明のCOハイドレート等のCO徐放性調整方法(本発明のCO徐放性調整方法)は、COハイドレートの製造において、最大CO発生速度が8mL/秒 未満となるように調整することを含んでいる限り、特に制限されない。
3. <CO 2 sustained release adjusting method of the present invention>
CO 2 sustained release method of adjusting CO 2 hydrate and the like of the present invention (CO 2 sustained release adjusting method of the present invention), in the production of CO 2 hydrate, maximum CO 2 generation rate is less than 8 mL / sec As long as it includes adjustment, there is no particular limitation.
 上記のCOハイドレートの最大CO発生速度が8mL/秒 未満となるように調整する方法としては、特に制限されないが、COハイドレート塊に氷の被覆膜を設ける(COハイドレートを氷膜で被覆する)ことにより、最大CO発生速度が8mL/秒 未満となるように調整する方法や、COハイドレートのCO含有率を調整することにより、最大CO発生速度が8mL/秒 未満となるように調整する方法などが挙げられ、中でも、口腔摂取する際の二酸化炭素中毒リスクを顕著に低減しつつ、より十分な炭酸感を得る観点から、COハイドレート塊に氷の被覆膜を設ける(COハイドレートを氷膜で被覆する)ことにより、最大CO発生速度が8mL/秒 未満となるように調整する方法が好ましく挙げられ、COハイドレートを厚さ0.6~50mmの氷膜で被覆することにより、最大CO発生速度が8mL/秒 未満となるように調整する方法がより好ましく挙げられる。 As a method of maximum CO 2 evolution rate of the above CO 2 hydrate is adjusted to be less than 8 mL / sec is not particularly limited, provided the coating film of ice CO 2 hydrate masses (CO 2 hydrate by the coating with ice film), a method of maximum CO 2 generation rate is adjusted to be less than 8 mL / sec, by adjusting the CO 2 content of CO 2 hydrate, maximum CO 2 evolution rate The method of adjusting so that it may become less than 8 mL / second etc. is mentioned, Especially, from a viewpoint of obtaining more sufficient carbonic acid feeling from the viewpoint of obtaining carbon dioxide poisoning remarkably at the time of ingestion in an oral cavity, it is a CO 2 hydrate lump. by providing the coating film of ice (CO 2 hydrate the coated ice film), a method of maximum CO 2 generation rate is adjusted to be less than 8 mL / sec are preferably mentioned By coating the CO 2 hydrate in an ice layer having a thickness of 0.6 ~ 50 mm, methods maximum CO 2 generation rate is adjusted to be less than 8 mL / sec can be given more preferably.
 氷膜や、氷膜でCOハイドレートを被覆する方法や、氷膜被覆用COハイドレート等については、前述したとおりである。 Korimaku and, a method of coating a CO 2 hydrate in an ice layer, the ice film covering CO 2 hydrate and the like are as described above.
4.<本発明の風味改善剤>
 本発明の風味改善剤は、本発明の口腔摂取用COハイドレート等を含んでいる限り、特に制限されない。本発明の口腔摂取用COハイドレート等については、前述したとおりである。本発明の風味改善剤は、二酸化炭素中毒リスクを低減しつつ、飲食品に十分な炭酸感を増強させることができる。すなわち、本発明の風味改善剤は、飲食品に対して、より安全に、かつ、より十分な炭酸感を与えることができる。
4). <Flavor improving agent of the present invention>
The flavor improving agent of the present invention is not particularly limited as long as it contains the CO 2 hydrate for oral intake of the present invention. The CO 2 hydrate for oral intake of the present invention is as described above. The flavor improving agent of the present invention can enhance the carbon dioxide feeling sufficient for food and drink while reducing the risk of carbon dioxide poisoning. That is, the flavor improving agent of the present invention can give a more sufficient carbonic sense to food and drink more safely.
 本発明の風味改善剤は、飲食品に含有させること等により使用することができる。本発明の風味改善剤の使用量は、その風味改善剤における本発明の口腔摂取用COハイドレート等の濃度や、飲食品において増強する炭酸感の程度等に応じて適宜設定することができる。 The flavor improving agent of this invention can be used by making it contain in food-drinks. The amount of the flavor improving agent of the present invention can be appropriately set according to the in flavor improving agent and concentration of the oral intake for CO 2 hydrate and the like of the present invention, the degree of carbonate feeling like which enhance the food products .
 本発明の風味改善剤中の、本発明の口腔摂取用COハイドレート等の濃度としては、本発明の風味改善剤の使用対象製品の香味設計に応じて適宜設定することができるが、例えば、0.1~100重量%、好ましくは1~95重量%の範囲内、より好ましくは5~90重量%の範囲内が挙げられる。 The concentration of the flavor improving agent of the present invention, such as CO 2 hydrate for oral intake of the present invention, can be appropriately set according to the flavor design of the target product of the flavor improving agent of the present invention. 0.1 to 100% by weight, preferably 1 to 95% by weight, more preferably 5 to 90% by weight.
 本発明の風味改善剤は、本発明の口腔摂取用COハイドレート等のみから成っていてもよいし、本発明の口腔摂取用COハイドレート等以外の任意成分を含有していてもよい。かかる任意物質としては、増粘剤、増量剤等が挙げられる。 The flavor improving agent of the present invention may consist only of the CO 2 hydrate for oral intake of the present invention or the like, or may contain optional components other than the CO 2 hydrate for oral intake of the present invention. . Such optional substances include thickeners, extenders and the like.
 本発明の風味改善剤は、例えば、本発明の口腔摂取用COハイドレート等と任意成分を混合することにより製造することができる。本発明の風味改善剤は、包装容器内に収容されていてもよいし、収容されていなくてもよい。かかる包装容器としては、例えば、飲料用の氷などに通常用いられているものと同様の形状、材質等の包装容器を用いることができる。かかる包装容器として例えば、ポリエチレン樹脂等の樹脂製の袋や、樹脂製のカップが挙げられる。 The flavor improving agent of the present invention can be produced, for example, by mixing an optional component with the CO 2 hydrate for oral intake of the present invention. The flavor improving agent of this invention may be accommodated in the packaging container, and does not need to be accommodated. As such a packaging container, for example, a packaging container having the same shape and material as those usually used for beverage ice or the like can be used. Examples of such packaging containers include resin bags such as polyethylene resins and resin cups.
 以下に、本発明を実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.
<方法>
[1]COハイドレートの調製
 先行文献(特許第3090687号、特表2004-512035、特許第4969683号)を参考に、COハイドレートの生成を行った。具体的には、4Lの水にCOガスを3MPaとなるように吹き込み、撹拌をしながら1℃でハイドレート生成反応を進行させ、COハイドレートを含むシャーベット状のスラリーを作製した。このシャーベット状のスラリーを、-20℃まで冷却した後、COハイドレートとして回収し、液体窒素上で1粒あたり0.4~0.6gとなるよう調製した。なお、これらのCOハイドレートのCO含有率は15~18%であった。
<Method>
[1] CO 2 hydrate preparation prior literature (Japanese Patent No. 3090687, JP-T 2004-512035, Patent No. 4,969,683) to the reference, was generated in the CO 2 hydrate. Specifically, CO 2 gas was blown into 4 L of water so as to be 3 MPa, and the hydrate formation reaction was allowed to proceed at 1 ° C. while stirring to prepare a sherbet-like slurry containing CO 2 hydrate. This sherbet-like slurry was cooled to −20 ° C., recovered as CO 2 hydrate, and prepared to be 0.4 to 0.6 g per grain on liquid nitrogen. The CO 2 content of these CO 2 hydrates was 15 to 18%.
[2]氷膜によるCOハイドレートの被覆
[2-1]被覆に用いる溶液の調製
 キサンタンガム(三栄源社製、ビストップD-3000-E-S)、ペクチン(三晶株式会社製、VIS-J-TF)、カラギナン(CP Kelco社製、CSM-2)またはグラニュー糖を、常温のイオン交換水に溶解させ、粘度1mPas~7500mPasの粘性溶液を作製した。粘度はB型粘度計(ブルックフィールド社製、LVDV-II+Pro)を用いて、粘性溶液の液温5℃で測定を行った。粘度の測定は、JIS Z8803に基づいて実施した。作製した粘性溶液は5℃で保管して、後述のCOハイドレートの被覆処理に使用した。また、イオン交換水も5℃で保管して、後述のCOハイドレートの被覆処理に使用した。
[2] Coating of CO 2 hydrate with ice film [2-1] Preparation of solution used for coating Xanthan gum (manufactured by Saneigen Co., Ltd., Vistop D-3000-ES), pectin (manufactured by Sanki Co., Ltd., VIS -J-TF), carrageenan (manufactured by CP Kelco, CSM-2) or granulated sugar was dissolved in ion-exchanged water at room temperature to prepare a viscous solution having a viscosity of 1 mPas to 7500 mPas. The viscosity was measured using a B-type viscometer (LVDV-II + Pro, manufactured by Brookfield) at a liquid temperature of 5 ° C. The viscosity was measured based on JIS Z8803. The produced viscous solution was stored at 5 ° C. and used for the coating treatment of CO 2 hydrate described later. In addition, ion-exchanged water was also stored at 5 ° C. and used for the coating treatment of CO 2 hydrate described later.
[2-2]氷膜によるCOハイドレートの被覆
 上記[1]の方法で製造した粒状のCOハイドレート2.0gを、液体窒素中で冷却して取り出し、上記[2-1]で調製した液温5℃の粘性溶液またはイオン交換水に浸漬した後、すみやかに液体窒素中で冷却することにより、COハイドレートの表面を粘性溶液の氷膜またはイオン交換水の氷膜でコーティングした。粘性溶液の氷膜またはイオン交換水の氷膜が、COハイドレート表面で所定の厚さとなるまで、このコーティング操作を繰り返し行い、口腔摂取用COハイドレートサンプルを得た。なお、得られた口腔摂取用COハイドレートサンプルはその表面のすべてが氷膜で被覆されていた。氷膜の厚さは、用いた粒状のCOハイドレート1粒を直径0.50cmの球と仮定し、コーティングに用いた粘性溶液またはイオン交換水の重量を元に算出した。例えば、粒状のCOハイドレート2.0gにイオン交換水を3.0gコーティングした場合、粒状のCOハイドレートは4粒であるため、1粒あたりイオン交換水が0.75gコーティングされている事となる。氷の比重を0.92として、イオン交換水0.75g分の体積を計算し、直径0.50cmの球の表面に均一にコーティングされたとすると、COハイドレート粒の直径は0.18cm増加したこととなる。この増加した0.18cm分の厚さを氷膜の厚さの推定値とした。
[2-2] Coating of CO 2 hydrate with ice film 2.0 g of granular CO 2 hydrate produced by the method of [1] above is cooled and taken out in liquid nitrogen. Coat the surface of CO 2 hydrate with an ice film of viscous solution or an ion-exchanged water film by immersing in the prepared viscous solution or ion-exchanged water at 5 ° C and then immediately cooling in liquid nitrogen. did. This coating operation was repeated until the ice film of the viscous solution or the ice film of ion-exchanged water had a predetermined thickness on the CO 2 hydrate surface to obtain a CO 2 hydrate sample for oral intake. The obtained CO 2 hydrate sample for ingestion was entirely covered with an ice film. The thickness of the ice film was calculated based on the weight of the viscous solution or ion-exchanged water used for coating, assuming that one granular CO 2 hydrate used was a sphere having a diameter of 0.50 cm. For example, if the ion-exchanged water and granulated CO 2 hydrate 2.0g was 3.0g coatings for granular CO 2 hydrate is 4 tablets, one particle per ion exchange water is 0.75g coated It will be a thing. If the specific gravity of ice is 0.92 and the volume of 0.75 g of ion-exchanged water is calculated and the surface of a sphere having a diameter of 0.50 cm is uniformly coated, the diameter of the CO 2 hydrate grains increases by 0.18 cm. It will be done. This increased thickness for 0.18 cm was taken as an estimate of the ice film thickness.
[3]COハイドレートサンプルの最大CO発生速度の測定試験
 各COハイドレートサンプルは、試験に供する10~15分前に液体窒素上から、-20℃条件下に移した。各COハイドレートサンプルは実験に供する前に、サーモグラフィー(FLIR社製、E40sc)を用いて、表面温度が-20℃以上となっていることを確認した。
[3] CO 2 hydrate samples up CO 2 generation rate measurement test each CO 2 hydrate sample from the liquid nitrogen 10-15 minutes before being subjected to testing, and transferred to -20 ° C. conditions. Each CO 2 hydrate sample was confirmed to have a surface temperature of −20 ° C. or higher by thermography (manufactured by FLIR, E40sc) before being subjected to the experiment.
 計測機器として、温度37℃、湿度70%のインキュベーター内に精密天秤を設置した。精密天秤のフード内の計量皿の上に、液温37℃の水200mLを入れたステンレス容器(直径110mm、深さ50mm)を置き、このステンレス容器内の底面に、液温37℃の水10mLを入れたビーカー(50mL容量、直径45mm、深さ75mm)を配置した。 As a measuring instrument, a precision balance was installed in an incubator with a temperature of 37 ° C. and a humidity of 70%. A stainless steel container (diameter: 110 mm, depth: 50 mm) containing 200 mL of water at a liquid temperature of 37 ° C. is placed on the weighing pan in the hood of the precision balance, and 10 mL of water at a liquid temperature of 37 ° C. is placed on the bottom of the stainless steel container. Was placed (50 mL capacity, diameter 45 mm, depth 75 mm).
 各COハイドレートサンプルを上記のビーカー内の水に添加し、添加から5秒毎に10分間重量変化を計測した。COハイドレートが融解すると、COハイドレートに含まれていたCOガスが放出され、その分の重量が減少する。その重量変化から、5秒毎のCO発生量(mL)を算出した。それらのCO発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという測定試験を、各COハイドレートサンプルについてそれぞれ3回繰り返した。測定試験を3回繰り返して得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、そのCOハイドレートサンプルの最大CO発生速度(mL/秒)とした。 Each CO 2 hydrate sample was added to the water in the beaker, and the change in weight was measured every 5 seconds for 10 minutes after the addition. When the CO 2 hydrate is melted, the CO 2 gas contained in the CO 2 hydrate is released, and the corresponding weight is reduced. From the weight change, the CO 2 generation amount (mL) every 5 seconds was calculated. The measurement test of calculating the CO 2 generation rate (mL / second) every 5 seconds from the CO 2 generation amount (mL) was repeated three times for each CO 2 hydrate sample. The maximum value of the CO 2 generation rate (mL / second) every 5 seconds obtained by repeating the measurement test three times was defined as the maximum CO 2 generation rate (mL / second) of the CO 2 hydrate sample.
[4]呼吸シミュレータを用いたモデル肺内最大CO濃度の測定試験
 成人の肺を含む気道系を模したモデル(呼吸シミュレータ:図1)を作製し、サンプルおよび換気条件を変え、呼気終末CO分圧を指標として肺内CO濃度上昇の程度を検討した。
 各COハイドレートサンプルは、試験に供する10~15分前に液体窒素上から、-20℃条件下に移した。モデル肺(ミシガン・インスツルメント社製、TTLモデル肺)の一方を人工呼吸器(COVIDIEN社製、Ventilator 840)で換気して、物理的に他方のモデル肺を駆動し、自発呼吸を模した。モデル肺に口鼻腔・喉咽頭(以下、「口腔」と表示する)モデルを接続し、喉頭に相当する部位にカプノメータ(NOVAMETRIX社製、Ventrac)を設置した。口腔モデルは成人を想定し生理学的死腔(呼吸器系システムにおいて血液とガス交換を行わない領域)を193mLに設定した。成人安静時のCO産生量に倣いモデル肺内にはCOガスを常時200mL/分で流入させた。
[4] Model lung maximum CO 2 concentration measurement test using a respiratory simulator A model (respiratory simulator: Fig. 1) simulating the airway system including the lungs of an adult was prepared, and the sample and ventilation conditions were changed. The degree of increase in pulmonary CO 2 concentration was examined using 2 partial pressure as an index.
Each CO 2 hydrate sample was transferred from above liquid nitrogen to −20 ° C. conditions 10-15 minutes prior to testing. One model lung (Michigan Instruments, TTL model lung) was ventilated with a ventilator (COVIDIEN, Ventilator 840), and the other model lung was physically driven to simulate spontaneous breathing. . An oro-nasal cavity / laryopharynx (hereinafter referred to as “oral cavity”) model was connected to the model lung, and a capnometer (Ventrac, manufactured by NOVAMETRIX) was installed at the site corresponding to the larynx. The oral cavity model is assumed to be an adult, and the physiological dead space (region in which no gas is exchanged with blood in the respiratory system) is set to 193 mL. The scanning model the lung CO 2 production level during adult resting was flowed at a constant 200 mL / min of CO 2 gas.
 上記の呼吸シミュレータ口腔モデル内に、各COハイドレートサンプルを投入し、投入から1分後に37℃の水5mLを口腔モデル内に注入した。水注入時から10秒毎に呼気ガス中のCO濃度(mmHg)を前述のカプノメータで測定し、測定開始から30秒毎のCO濃度測定値の平均をモデル肺内最大CO濃度(mmHg)とした。各CO2ハイドレートサンプルについて、駆動側人工呼吸器の一回換気量を400mL、600mL、800mLに変更して測定を行った。 Each CO 2 hydrate sample was put into the above breathing simulator oral model, and 5 mL of 37 ° C. water was injected into the oral model one minute after the input. The CO 2 concentration (mmHg) in the exhaled gas is measured every 10 seconds from the time of water injection with the above-mentioned capnometer, and the average of the measured CO 2 concentration every 30 seconds from the start of measurement is the maximum CO 2 concentration in the model lung (mmHg). ). About each CO2 hydrate sample, the tidal volume of the driving side ventilator was changed to 400 mL, 600 mL, and 800 mL, and the measurement was performed.
<結果>
[5]COハイドレート表面における氷膜の有無、厚さが、COハイドレートにおけるCOガスの徐放性に与える影響
 COハイドレート表面における氷膜の有無、厚さが、COハイドレートにおけるCOガスの徐放性に与える影響を調べるために、以下の実施例1~3のサンプル及び比較例1のサンプルについて、上記[3]の最大CO発生速度の測定試験、及び、上記[4]のモデル肺内最大CO濃度の測定試験を行った。
<Result>
[5] the presence or absence of ice film in CO 2 hydrate surface, thickness, presence or absence of ice film in effect CO 2 hydrate surface providing the sustained release of CO 2 gas in the CO 2 hydrate, thickness, CO 2 In order to investigate the effect of hydrate on the sustained release of CO 2 gas, the measurement test of the maximum CO 2 generation rate in [3] above for the samples of Examples 1 to 3 and Comparative Example 1 below, and The measurement test of the maximum CO 2 concentration in the model lung of the above [4] was conducted.
[5-1]実施例1~3
 上記[1]の方法で製造した粒状のCOハイドレート2.0g(CO含有率16.8%;CO含量0.34g)に対し、キサンタンガムを0.1%、およびグラニュー糖を20%となるよう溶かした粘度26.4mPas(液温6.1℃、回転数50rpm)の粘性溶液5.0~6.0g、または3.0~4.0g、または1.0~2.0gを用いて、上記[2]の方法でコーティングを行った口腔摂取用COハイドレートサンプルを、それぞれ実施例1、実施例2、実施例3とした。なお、実施例1~3の口腔摂取用COハイドレートサンプルを被覆する氷膜の厚さは、それぞれ2.5~3.1mm、1.6~2.2mm、0.8~1.3mmであった。
[5-1] Examples 1 to 3
0.1% of xanthan gum and 20% of granulated sugar with respect to 2.0 g of granular CO 2 hydrate (CO 2 content 16.8%; CO 2 content 0.34 g) produced by the method of [1] above. % Viscous solution 5.0 to 6.0 g, or 3.0 to 4.0 g, or 1.0 to 2.0 g with a viscosity of 26.4 mPas (liquid temperature 6.1 ° C., rotation speed 50 rpm). And CO 2 hydrate samples for oral consumption that were coated by the method of [2] above were designated as Example 1, Example 2, and Example 3, respectively. The thicknesses of the ice films covering the CO 2 hydrate samples for oral intake of Examples 1 to 3 are 2.5 to 3.1 mm, 1.6 to 2.2 mm, and 0.8 to 1.3 mm, respectively. Met.
[5-2]比較例1
 上記[1]の方法で製造した粒状のCOハイドレート2.0g(CO含有率17.5%;CO含量0.35g)を比較例1のCOハイドレートサンプルとした。
[5-2] Comparative Example 1
The granular CO 2 hydrate 2.0 g (CO 2 content 17.5%; CO 2 content 0.35 g) produced by the method [1] was used as the CO 2 hydrate sample of Comparative Example 1.
[5-3]最大CO発生速度、及び、モデル肺内最大CO濃度
 比較例1のCOハイドレートサンプルおよび実施例1~3の口腔摂取用COハイドレートサンプルのそれぞれについて、上記[3]の方法で最大CO発生速度(mL/秒)を測定し、及び、上記[4]の方法でモデル肺内最大CO濃度(mmHg)を測定した。これらの結果を表1に示す。
[5-3] Maximum CO 2 generation rate, and, for each model intrapulmonary maximum CO 2 concentration in Comparative Example 1 of CO 2 hydrate samples and Examples 1 to 3 for oral ingestion CO 2 hydrate samples, the [ The maximum CO 2 generation rate (mL / second) was measured by the method [3], and the maximum CO 2 concentration (mmHg) in the model lung was measured by the method [4]. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果に示されるとおり、COハイドレートをそのまま用いて、氷の被覆膜を設けなかった比較例1のサンプルでは、最大CO発生速度が10 mL/秒以上となり、また、モデル肺内最大CO濃度が80mmHgを超えた。80mmHgを超える肺内CO濃度は、二酸化炭素中毒により人体に危険が及ぶ可能性が高い濃度である。一方、表1の結果に示されるとおり、COハイドレートに氷の被覆膜を設けてCOハイドレートの最大CO発生速度を約8mL/秒 未満とした実施例1~3のサンプルでは、モデル肺内最大CO濃度は70mmHg以下に維持された。また、実施例3のサンプルと比較して、実施例1および2のサンプルの最大CO発生速度が低いことから、氷膜を厚くすることで、COハイドレートの最大CO発生速度が低下し、COハイドレートからのCO発生がより緩やかとなることが示された。すなわち、COハイドレートの氷膜が厚いほど、COの徐放性がより高いCOハイドレートとなることが示された。二酸化炭素中毒の発症し易さは、年齢、体重、特定の持病の有無等の個人差などの影響を受けるため、二酸化炭素中毒発生の危険性がある濃度を一概に規定することは困難であるが、本実験により、当該サンプルを口腔内に含んだ際の安全性確保のために有益な知見が得られた。 As shown in the results of Table 1, in the sample of Comparative Example 1 in which CO 2 hydrate was used as it was and no ice coating film was provided, the maximum CO 2 generation rate was 10 mL / second or more, and the model The maximum CO 2 concentration in the lung exceeded 80 mmHg. A CO 2 concentration in the lung of more than 80 mmHg is a concentration at which there is a high possibility of danger to the human body due to carbon dioxide poisoning. Meanwhile, as shown in the results of Table 1, CO 2 in the hydrate ice coating film provided CO 2 hydrate maximum CO 2 evolution rate of about 8 mL / sec less than the described embodiments 1-3 Sample The maximum CO 2 concentration in the model lung was maintained below 70 mmHg. Further, as compared with the sample of Example 3, since the lower the maximum CO 2 evolution rate of samples of Examples 1 and 2, by increasing the ice film, maximum CO 2 generation rate reduction of CO 2 hydrate It was shown that CO 2 generation from CO 2 hydrate becomes more gradual. That is, as the ice layer of CO 2 hydrate is thick, sustained release CO 2 that is higher CO 2 hydrate was shown. The ease of onset of carbon dioxide poisoning is affected by individual differences such as age, weight, and the presence or absence of specific diseases, so it is difficult to specify the concentration at which there is a risk of carbon dioxide poisoning. However, this experiment provided useful findings for ensuring safety when the sample was included in the oral cavity.
[6]COハイドレートを被覆する氷膜の組成の検討
 より高いCO徐放性を発揮する氷膜の組成を検討するために、以下の実施例4~7の口腔摂取用COハイドレートサンプルについて、上記[3]の最大CO発生速度の測定試験、及び、上記[4]のモデル肺内最大CO濃度の測定試験を行った。
[6] Examination of composition of ice film covering CO 2 hydrate In order to examine the composition of ice film exhibiting higher CO 2 sustained release property, the following CO 2 hydride for oral intake of Examples 4 to 7 For the rate sample, the measurement test for the maximum CO 2 generation rate in [3] and the measurement test for the maximum CO 2 concentration in the model lung in [4] were performed.
[6-1]実施例4~7
 上記[1]の方法で製造した粒状のCOハイドレート2.0g(CO含有率16.0%;CO含量0.32g)に対し、キサンタンガムを0%、0.01%、0.1%又は0.5%となるよう溶かした粘性溶液をそれぞれ3.0~4.0g用いて、上記[2]の方法でコーティングを行った口腔摂取用COハイドレートサンプルを、それぞれ実施例4、実施例5、実施例6とした。
[6-1] Examples 4 to 7
Xanthan gum was 0%, 0.01%, and 0.002% with respect to 2.0 g of granular CO 2 hydrate produced by the method of [1] (CO 2 content: 16.0%; CO 2 content: 0.32 g). Each of the CO 2 hydrate samples for oral consumption coated with the method of [2] above using 3.0 to 4.0 g of viscous solutions dissolved to 1% or 0.5%, respectively. 4, Example 5 and Example 6.
[6-2]最大CO発生速度、及び、モデル肺内最大CO濃度
 実施例4~6の各口腔摂取用COハイドレートサンプルについて、上記[3]の方法で最大CO発生速度(mL/秒)を測定し、及び、上記[4]の方法でモデル肺内最大CO濃度(mmHg)を測定した。また、COハイドレートのコーティングに用いた各粘性溶液の粘度を5℃で測定した。これらの結果を表2に示す。なお、粘度を測定する際のスピンドルの種類はいずれの実施例サンプルの場合も「SC4-18」を用い、角速度は実施例4、5のサンプルの場合は20.94rad/sとし、実施例6のサンプルの場合は0.63rad/sとした。
[6-2] Maximum CO 2 generation rate and model lung maximum CO 2 concentration For each oral ingestion CO 2 hydrate sample of Examples 4 to 6, the maximum CO 2 generation rate ( mL / second) and the maximum CO 2 concentration (mmHg) in the model lung was measured by the method of [4] above. Moreover, the viscosity of each viscous solution used for the coating of CO 2 hydrate was measured at 5 ° C. These results are shown in Table 2. The type of spindle used for measuring the viscosity is “SC4-18” for any of the examples, the angular velocity is 20.94 rad / s for the samples of Examples 4 and 5, and Example 6 is used. In the case of this sample, it was set to 0.63 rad / s.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果に示されるとおり、実施例5及び実施例6のサンプルは、実施例4のサンプルと比較して、最大CO発生速度(mL/秒)が低く、また、実施例5のサンプルは実施例6のサンプルと比較して、最大CO発生速度(mL/秒)がさらに低かった。表2の結果から、コーティング氷膜の作製に用いる粘性溶液の粘度を調整する事で、ハイドレートからの最大CO発生速度をより低下させることが可能であることが示された。また、表2の結果から、キサンタンガムの濃度としては、好ましくは0.01~0.7重量%、より好ましくは0.01~0.6重量%、さらに好ましくは0.05~0.6重量%、より好ましくは0.05~0.5重量%、さらに好ましくは0.1~0.5重量%であることが示された。 As shown in the results of Table 2, the samples of Example 5 and Example 6 have a lower maximum CO 2 generation rate (mL / second) compared to the sample of Example 4, and the sample of Example 5 Compared to the sample of Example 6, the maximum CO 2 evolution rate (mL / sec) was even lower. From the results in Table 2, it was shown that the maximum CO 2 generation rate from the hydrate can be further reduced by adjusting the viscosity of the viscous solution used for the production of the coating ice film. From the results shown in Table 2, the concentration of xanthan gum is preferably 0.01 to 0.7% by weight, more preferably 0.01 to 0.6% by weight, still more preferably 0.05 to 0.6% by weight. %, More preferably 0.05 to 0.5% by weight, still more preferably 0.1 to 0.5% by weight.
 本発明によれば、飲食品に添加してから口腔摂取する場合や、直接口腔摂取する場合の二酸化炭素中毒のリスクを低減しつつ、十分な炭酸感を有する、より安全性の高い口腔摂取用COハイドレート、または該口腔摂取用COハイドレートを含む複合物を提供でき、食して独特な食感、または飲用して心地良いのど越し感、あるいはより一層美味しく見えるCOハイドレートならではの演出効果等を楽しむことができる。 According to the present invention, when it is taken into the mouth after being added to a food or drink, or when it is taken directly into the mouth, the risk of carbon dioxide poisoning is reduced, while having a sufficient carbonation sensation, for safer mouth intake. CO 2 hydrate, or a composite containing the oral ingested CO 2 hydrate, can be provided and is a unique texture to eat, or a pleasant throat feel to drink, or a CO 2 hydrate that looks even more delicious You can enjoy production effects.

Claims (10)

  1.  下記で定義される最大CO発生速度が、8mL/秒 未満となるように調整されたことを特徴とする口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物。
    (最大CO発生速度(mL/秒)の定義)
    0.3~0.36gのCOを含有する量のCOハイドレートを分取し、分取したCOハイドレートを、室温37℃、湿度70%の大気圧の雰囲気下で、液温37℃の10mLの水に添加し、添加から5秒毎に少なくとも30秒以上重量変化を測定して、5秒毎のCOの発生量(mL)をそれぞれ算出し、それらの発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという試験を、3回繰り返し、得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、前記COハイドレートの最大CO発生速度(mL/秒)とする。
    A CO 2 hydrate for oral consumption, or a complex for oral consumption containing the CO 2 hydrate, wherein the maximum CO 2 generation rate defined below is adjusted to be less than 8 mL / second.
    (Definition of maximum CO 2 generation rate (mL / sec))
    0.3 was taken the amount of CO 2 hydrate containing CO 2 for ~ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value of the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate (mL / second) of the CO 2 hydrate is used.
  2.  最大CO発生速度が8mL/秒 未満となるようにCOハイドレート塊に氷の被覆膜が設けられたことを特徴とする請求項1に記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物。 The CO 2 hydrate for oral consumption according to claim 1, wherein an ice coating film is provided on the CO 2 hydrate lump so that the maximum CO 2 generation rate is less than 8 mL / sec, or A composite for oral consumption comprising CO 2 hydrate.
  3.  氷の被覆膜が、厚さ0.6~50mmの氷膜であることを特徴とする請求項2に記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物。 3. The oral ingestion CO 2 hydrate according to claim 2 or the oral ingestion composite comprising the CO 2 hydrate according to claim 2, wherein the ice coating film is an ice film having a thickness of 0.6 to 50 mm. object.
  4.  0.3~0.36gのCOを含有するCOハイドレートであることを特徴とする請求項1~3のいずれかに記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物。 0.3 to claims 1 to 3 either oral ingestion for CO 2 hydrate according to, which is a CO 2 hydrate containing CO 2 of 0.36 g, or the CO 2 hydrate Containing for oral consumption.
  5.  CO含有率が、3~28重量%であることを特徴とする請求項1~4のいずれかに記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物。 CO 2 content, 3, characterized in that to 28 by weight% claims 1 to 4 or oral ingestion for CO 2 hydrate according to or the CO oral ingestion composite containing 2 hydrate, .
  6.  氷の被覆膜が、増粘剤及び甘味成分からなる群から選択される1種又は2種以上の物質を含有していることを特徴とする請求項2~5のいずれかに記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物。 The oral cavity according to any one of claims 2 to 5, wherein the ice coating film contains one or more substances selected from the group consisting of a thickener and a sweetening ingredient. CO 2 hydrate for ingestion, or a composition for oral intake containing the CO 2 hydrate.
  7.  氷の被覆膜に含まれる増粘剤の濃度が0.5重量%以下であり、及び/又は、氷の被覆膜に含まれる甘味成分濃度が20重量%以下であることを特徴とする請求項6に記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物。 The concentration of the thickener contained in the ice coating film is 0.5% by weight or less, and / or the sweetness component concentration contained in the ice coating film is 20% by weight or less. The oral intake CO 2 hydrate according to claim 6 or a composite for oral intake containing the CO 2 hydrate.
  8.  口腔摂取用複合物が、口腔摂取用COハイドレートを含む飲料、氷菓又はアイスクリーム類である請求項1~7のいずれかに記載の口腔摂取用COハイドレート、または前記COハイドレートを含む口腔摂取用複合物。 Oral intake for composites, beverage containing CO 2 hydrate orally ingested edible ice or ice cream in a claims 1 to 7, or oral ingestion for CO 2 hydrate according to or the CO 2 hydrate, A composite for oral consumption comprising:
  9.  COハイドレートの製造において、下記で定義される最大CO発生速度が8mL/秒未満となるように調整する工程を含むことを特徴とする、口腔摂取用COハイドレートまたは前記COハイドレートを含む口腔摂取用複合物の製造方法。
    (最大CO発生速度(mL/秒)の定義)
    0.3~0.36gのCOを含有する量のCOハイドレートを分取し、分取したCOハイドレートを、室温37℃、湿度70%の大気圧の雰囲気下で、液温37℃の10mLの水に添加し、添加から5秒毎に少なくとも30秒以上重量変化を測定して、5秒毎のCOの発生量(mL)をそれぞれ算出し、それらの発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという試験を、3回繰り返し、得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、前記COハイドレートの最大CO発生速度(mL/秒)とする。
    In the production of CO 2 hydrate, the method includes a step of adjusting the maximum CO 2 generation rate defined below to be less than 8 mL / second, or a CO 2 hydrate for oral consumption or the CO 2 hydrate A method for producing a composite for oral consumption comprising a rate.
    (Definition of maximum CO 2 generation rate (mL / sec))
    0.3 was taken the amount of CO 2 hydrate containing CO 2 for ~ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value of the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate (mL / second) of the CO 2 hydrate is used.
  10.  COハイドレートの製造において、下記で定義される最大CO発生速度が8mL/秒未満となるように調整する工程を含むことを特徴とする、口腔摂取用COハイドレートまたは前記COハイドレートを含む口腔摂取用複合物のCO徐放性調整方法。
    (最大CO発生速度(mL/秒)の定義)
    0.3~0.36gのCOを含有する量のCOハイドレートを分取し、分取したCOハイドレートを、室温37℃、湿度70%の大気圧の雰囲気下で、液温37℃の10mLの水に添加し、添加から5秒毎に少なくとも30秒以上重量変化を測定して、5秒毎のCOの発生量(mL)をそれぞれ算出し、それらの発生量(mL)から5秒毎のCO発生速度(mL/秒)をそれぞれ算出するという試験を、3回繰り返し、得られた5秒毎のCO発生速度(mL/秒)のうち最大の値を、前記COハイドレートの最大CO発生速度(mL/秒)とする。
    In the production of CO 2 hydrate, the method includes a step of adjusting the maximum CO 2 generation rate defined below to be less than 8 mL / second, or a CO 2 hydrate for oral consumption or the CO 2 hydrate The method for adjusting CO 2 sustained release of a composite for oral consumption containing a rate.
    (Definition of maximum CO 2 generation rate (mL / sec))
    0.3 was taken the amount of CO 2 hydrate containing CO 2 for ~ 0.36 g, The separated CO 2 hydrate, in an atmosphere of atmospheric pressure at room temperature 37 ° C., 70% humidity, the liquid temperature Add to 10 mL of water at 37 ° C., measure the change in weight at least 30 seconds or more every 5 seconds from the addition, calculate the generation amount (mL) of CO 2 every 5 seconds, and calculate the generation amount (mL the test that calculates respective CO 2 evolution rate every 5 seconds (mL / sec) from), repeated three times, the maximum value of the CO 2 evolution rate every 5 seconds obtained (mL / sec), The maximum CO 2 generation rate (mL / second) of the CO 2 hydrate is used.
PCT/JP2017/041049 2016-11-24 2017-11-15 Co2 hydrate for oral ingestion or complex for oral ingestion containing said co2 hydrate, and methods respectively for producing those products WO2018096996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018552522A JP7058011B2 (en) 2016-11-24 2017-11-15 CO2 hydrate for oral ingestion or complex for oral ingestion containing the CO2 hydrate, and a method for producing them.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016227928 2016-11-24
JP2016-227928 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018096996A1 true WO2018096996A1 (en) 2018-05-31

Family

ID=62195984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041049 WO2018096996A1 (en) 2016-11-24 2017-11-15 Co2 hydrate for oral ingestion or complex for oral ingestion containing said co2 hydrate, and methods respectively for producing those products

Country Status (2)

Country Link
JP (1) JP7058011B2 (en)
WO (1) WO2018096996A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3090687B2 (en) * 1992-07-20 2000-09-25 ユニリーバー・ナームローゼ・ベンノートシャープ Gas hydrate production
JP2004512035A (en) * 2000-10-25 2004-04-22 ザ・コカ−コーラ・カンパニー Carbon dioxide-hydrate product and method for producing the same
JP2007306863A (en) * 2006-05-19 2007-11-29 Chugoku Electric Power Co Inc:The Frozen confectionery
JP4969683B2 (en) * 2010-12-16 2012-07-04 中国電力株式会社 Recyclable carbonated beverage and method for regenerating carbonated beverage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3090687B2 (en) * 1992-07-20 2000-09-25 ユニリーバー・ナームローゼ・ベンノートシャープ Gas hydrate production
JP2004512035A (en) * 2000-10-25 2004-04-22 ザ・コカ−コーラ・カンパニー Carbon dioxide-hydrate product and method for producing the same
JP2007306863A (en) * 2006-05-19 2007-11-29 Chugoku Electric Power Co Inc:The Frozen confectionery
JP4969683B2 (en) * 2010-12-16 2012-07-04 中国電力株式会社 Recyclable carbonated beverage and method for regenerating carbonated beverage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETERS, T. B. ET AL.: "Transfer process limited models for C02 perception in C02 hydrate desserts", JOURNAL OF FOOD ENGINEERING, vol. 115, 2013, pages 285 - 291, XP055504643 *

Also Published As

Publication number Publication date
JPWO2018096996A1 (en) 2019-10-17
JP7058011B2 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
CN108347962A (en) For reducing amorphous porous particle sugared in food
EP1749882A1 (en) Novel alcoholic beverage
ES2566644T3 (en) Procedure for producing a solid material from a solution of saccharides, and solid material
AU673807B2 (en) Hydrated lipophilic composition and method for obtaining same
JP7165057B2 (en) Frozen dessert containing ice containing high-concentration CO2 with improved cooling sensation when eaten
JP7152314B2 (en) Frozen dessert containing ice containing high-concentration CO2 with improved cool feeling and carbonated feeling at the time of eating
JP2021118751A (en) Proposal or manufacturing method of alcohol beverage having reduced alcohol feeling and improved scent
WO2018096996A1 (en) Co2 hydrate for oral ingestion or complex for oral ingestion containing said co2 hydrate, and methods respectively for producing those products
JP5119876B2 (en) Manufacturing method of centered gummy candy
JP7166173B2 (en) Frozen dessert containing ice containing high-concentration CO2 with suppressed unpleasant foaming feeling when eating
WO2015004923A1 (en) Frozen foaming-body beverage of non-beer alcoholic beverage or of soft drink
WO2013027700A1 (en) Food composition and manufacturing method for same
WO2022004433A1 (en) Chocolate
JPH089901A (en) Edible gelatin gel capable of being stored for long period
JP5596879B1 (en) Macaron confectionery and method for producing the same
JP2013509162A (en) Multiphase jelly-like beverage composition
JP4443385B2 (en) Whipped cream-like food containing egg white and method for producing the same
JPH05304906A (en) Silverberry and its production
CN107518238A (en) A kind of chrysanthemum brown sugar solid beverage and preparation method thereof
JP2018171000A (en) Foamable gel-like food, method of manufacturing foamable gel-like food in container
JP2002191301A (en) Foamy food
JP2018517435A (en) Alcohol-containing candy products
JP2013085518A (en) Frozen dessert coated with peelable jelly
JPS5913173B2 (en) Snack products based on casein
JP2016158512A (en) Manufacturing method of frozen dessert having jelly texture under freezing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873197

Country of ref document: EP

Kind code of ref document: A1