WO2018096973A1 - Pulse frequency control circuit, microcontroller, dc-dc converter, and pulse frequency control method - Google Patents

Pulse frequency control circuit, microcontroller, dc-dc converter, and pulse frequency control method Download PDF

Info

Publication number
WO2018096973A1
WO2018096973A1 PCT/JP2017/040869 JP2017040869W WO2018096973A1 WO 2018096973 A1 WO2018096973 A1 WO 2018096973A1 JP 2017040869 W JP2017040869 W JP 2017040869W WO 2018096973 A1 WO2018096973 A1 WO 2018096973A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
period
circuit
rising
pulse
Prior art date
Application number
PCT/JP2017/040869
Other languages
French (fr)
Japanese (ja)
Inventor
勝幸 今村
剛明 本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780072838.3A priority Critical patent/CN110024288B/en
Priority to JP2018552512A priority patent/JP6826612B2/en
Publication of WO2018096973A1 publication Critical patent/WO2018096973A1/en
Priority to US16/421,080 priority patent/US10530252B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/64Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/017Adjustment of width or dutycycle of pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/04Shaping pulses by increasing duration; by decreasing duration
    • H03K5/05Shaping pulses by increasing duration; by decreasing duration by the use of clock signals or other time reference signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a pulse frequency control circuit for controlling the frequency of an output pulse, a microcomputer including the pulse frequency control circuit, a DCDC converter including the pulse frequency control circuit, and a pulse frequency control method for controlling the frequency of an output pulse.
  • a pulse frequency control circuit for controlling the frequency of an output pulse
  • a microcomputer including the pulse frequency control circuit
  • a DCDC converter including the pulse frequency control circuit
  • a pulse frequency control method for controlling the frequency of an output pulse.
  • a DCDC converter having a switching element capable of repeatedly switching between a conductive state and a non-conductive state is known.
  • control of the output voltage of the DCDC converter is performed by controlling a control signal composed of a pulse train applied to the switching element for repeatedly switching between a conductive state and a non-conductive state (see Patent Document 1). ).
  • the control of the control signal composed of such a pulse train includes a pulse duty control for controlling the duty ratio of the pulse train and a pulse frequency control for controlling the frequency of the pulse train.
  • a control circuit for performing the pulse frequency control when a reference clock signal serving as a reference is input, a pulse train having a cycle set to an arbitrary integer multiple of the clock cycle of the reference clock signal is output.
  • a pulse frequency control circuit capable of performing the following.
  • the conventional pulse frequency circuit cannot output a pulse train having a period in units shorter than the clock period of the reference clock signal.
  • the present invention has been made in view of such problems, and a pulse frequency control circuit, a microcomputer, and a DCDC converter capable of outputting a pulse train having a period shorter than the clock period of a reference clock signal. And a pulse frequency control method.
  • a pulse frequency control circuit specifies a selection circuit that acquires and selects a plurality of reference clocks having the same reference period and different phases, and a set period in units of a first period shorter than the reference period Based on the setting register for storing information to be stored and the information stored in the setting register, a rising edge rising at an interval of the setting period is selected from the rising edges of the plurality of reference clocks with respect to the selection circuit. And a control circuit that sequentially and repeatedly selects the rising decision edge, and the selection circuit repeatedly generates output pulses that rise at every timing of the rising decision edge to be selected, thereby outputting an output pulse train composed of the output pulses. It is characterized by that.
  • a microcomputer includes the pulse frequency control circuit and a setting unit that sets a value in the setting register.
  • the DCDC converter When the DCDC converter according to the present invention receives the microcomputer, a switching element that switches a DC input voltage in accordance with an output pulse train output from the selection circuit, and an input voltage that is switched by the switching element.
  • An energy conversion circuit that generates an electromotive force due to a current variation caused by the voltage variation of the input voltage and outputs a voltage corresponding to the electromotive force; and a DC output by rectifying and smoothing the voltage output from the energy conversion circuit
  • a rectifying / smoothing circuit that outputs a voltage, and the microcomputer further includes a comparison unit that compares the potential of the output voltage with a predetermined potential, and the setting unit is based on a result of comparison by the comparison unit. The setting is performed so that the potential of the output voltage approaches the predetermined potential.
  • a pulse frequency control method includes a selection circuit that acquires and selects a plurality of reference clocks having the same reference period and different phases, a pulse frequency control circuit that includes a setting register, and a control circuit.
  • a control method wherein the setting register stores information for specifying a setting period in units of a first period shorter than the reference period, and information stored in the setting step by the control circuit
  • the selection circuit Based on the control step, the selection circuit sequentially and repeatedly selects the rising edge rising at the set cycle interval as the rising determination edge from the plurality of reference clocks. By successively generating output pulses that rise at every decision edge timing, Characterized in that it comprises an output step for outputting the output pulse train consisting of output pulses.
  • the pulse frequency control circuit the microcomputer, the DCDC converter, and the pulse frequency control method, it is possible to output a pulse train having a cycle whose unit is a period shorter than the clock cycle of the reference clock signal.
  • FIG. 1 is a block diagram illustrating a configuration of a DCDC converter according to an embodiment.
  • FIG. 2 is a block diagram showing a configuration of the pulse frequency control circuit according to the embodiment.
  • FIG. 3 is a first timing diagram illustrating a specific example of an operation performed by the PWM phase adjustment circuit according to the embodiment in cooperation with another circuit.
  • FIG. 4 is a second timing diagram illustrating a specific example of an operation performed by the PWM phase adjustment circuit according to the embodiment in cooperation with another circuit.
  • FIG. 5 is a flowchart 1 of high-resolution pulse train output processing according to the embodiment.
  • FIG. 6 is a flowchart 2 of high-resolution pulse train output processing according to the embodiment.
  • FIG. 1 is a block diagram illustrating a configuration of a DCDC converter according to an embodiment.
  • FIG. 2 is a block diagram showing a configuration of the pulse frequency control circuit according to the embodiment.
  • FIG. 3 is a first timing diagram illustrating a specific example of an operation performed by the PWM phase
  • FIG. 7 is a first timing diagram illustrating a specific example of an operation performed by the PWM phase adjustment circuit according to the modification in cooperation with another circuit.
  • FIG. 8 is a second timing diagram illustrating a specific example of an operation performed by the PWM phase adjustment circuit according to the modification in cooperation with another circuit.
  • FIG. 9 is a block diagram showing a configuration of a DCDC converter according to another modification.
  • FIG. 10 is a block diagram showing a configuration of a DCDC converter according to another modification.
  • FIG. 1 is a block diagram showing a configuration of a DCDC converter 3 according to the present embodiment.
  • the DCDC converter 3 includes a switching element 31, an energy conversion circuit 32, a rectifying / smoothing circuit 33, and a microcomputer 2.
  • the switching element 31 is realized by a gallium nitride FET (Field Effective Transistor), and switches a DC input voltage according to a control signal (an output pulse train described later) output from the microcomputer 2.
  • switching refers to repeatedly switching between a conductive state and a non-conductive state.
  • the energy conversion circuit 32 is realized by a transformer, and when an input voltage switched by the switching element 31 is input, an electromotive force is generated due to a current variation caused by the voltage variation of the input voltage, and the generated electromotive force is generated.
  • the voltage according to is output.
  • the rectifying / smoothing circuit 33 is realized by one or more diodes and one or more capacitors, and rectifies and smoothes the voltage output from the energy conversion circuit 32 to output a DC output voltage.
  • the microcomputer 2 includes a comparison unit 21, a setting unit 22, and a pulse frequency control circuit 1.
  • the comparison unit 21 is realized by a comparator as an example, and compares the potential of the output voltage with a predetermined potential.
  • the setting unit 22 is realized by a processor (not shown) included in the microcomputer 2 executing a program stored in a memory (not shown) included in the microcomputer 2, and the pulse frequency control circuit 1. A value is set in a setting register (described later) included in. More specifically, the above setting is performed based on the result of comparison by the comparison unit 21 so that the potential of the output voltage approaches the predetermined potential.
  • FIG. 2 is a block diagram showing the configuration of the pulse frequency control circuit 1.
  • the pulse frequency control circuit 1 includes a reference clock generation circuit 11, a selection circuit 12, a setting register 13, a cumulative addition circuit 14, and a control circuit 15.
  • the reference clock generation circuit 11 generates a plurality of reference clocks acquired by a selection circuit 12 described later from a microcomputer clock (input reference clock) that the microcomputer 2 uses as a clock signal. More specifically, N reference clocks having the same period (reference period) as the input reference clock and having phases shifted from each other by 1 / N (N is an integer of 2 or more) are generated.
  • the reference clock generation circuit 11 is realized by a DLL (Delay Locked Loop) circuit as an example.
  • DLL Delay Locked Loop
  • the selection circuit 12 acquires and selects a plurality of reference clocks having the same reference period and different phases. More specifically, N reference clocks generated by the reference clock generation circuit 11 are acquired and selected.
  • the selection circuit 12 is controlled by a control circuit 15 (described later), thereby repeatedly selecting a rising determination edge (described later) from the rising edges of the plurality of reference clocks, and the timing of the rising determination edge to be selected.
  • the generated output pulse train is output by sequentially generating output pulses that rise every time.
  • the selection circuit 12 is also controlled by the control circuit 15 to select a corresponding falling decision edge (described later) for each rising decision edge to be selected, and an output pulse that rises at the timing of one rising decision edge. However, the output pulse is generated so as to fall at the timing of one falling decision edge corresponding to the one rising decision edge.
  • the setting register 13 stores information for specifying a set period in units of a period (first period) shorter than the reference period. More specifically, a cycle setting register (first register) 131 that stores first information for specifying an integer value M (M is an integer of 1 or more) when the set cycle is divided by the reference cycle; , A high-resolution period setting register (second register) 132 for storing second information specifying the decimal value L of the quotient (L is a decimal number of 0 or more and less than 1), and an integer value P (P is 1 or more and less than M) And a duty setting register (third register) 133 for storing third information for specifying an integer).
  • register values can be set at any time by the setting unit 22.
  • the cumulative addition circuit 14 accumulates L / 2 each time the output pulse output from the selection circuit 12 rises or falls based on the second information stored in the high resolution period setting register (second register) 132. In the case of addition and cumulative addition J (J is an integer of 0 or more) times, a cumulative addition value LL (J) is calculated.
  • the cumulative addition circuit 14 subtracts 1 from LL (J) to obtain a new LL (J) when LL (J) becomes 1 or more by cumulative addition of L / 2.
  • Information stored in the cycle setting register (first register) 131 is rewritten from information specifying M to information specifying M + 1.
  • the selection circuit 12 When the output pulse train output from the signal rises, the information stored in the cycle setting register (first register) 131 is rewritten from information specifying M + 1 to information specifying M.
  • the cumulative addition circuit 14 (4) stores information stored in the duty setting register (third register) 133 when LL (J) becomes 1 or more by cumulative addition of L / 2.
  • the information specifying P is rewritten to the information specifying P + 1.
  • the duty setting register (third register) 133 stores it. The information to be rewritten is changed from information specifying P + 1 to information specifying P.
  • the control circuit 15 determines a rising edge that rises at the interval of the set period from the rising edges of the plurality of reference clocks to the selection circuit 12. Are repeatedly selected. More specifically, (1) based on the first information stored in the period setting register (first register) 131, the normal pulse having a period of M times the reference period is sequentially generated, so that the normal A normal pulse train composed of pulses is generated, and (2) based on the second information stored in the high resolution period setting register (second register) 132, K is selected for the selection circuit 12 (K is an integer of 0 or more).
  • the rising edge of the reference clock that rises in a phase delayed by LL (2 ⁇ K) times the reference period from the first rising edge of the normal pulse is selected as the rising decision edge
  • the K + 1th time A phase delayed by a period LL (2 ⁇ (K + 1)) times the reference period from the rising edge of the normal pulse that rises next to the first rising edge
  • the rising decision edge is sequentially and repeatedly selected so that the rising edge of the reference clock rising at is selected as the rising decision edge.
  • control circuit 15 causes the selection circuit 12 to start the reference period LL (2) from the first rising edge of the normal pulse train based on the third information stored in the duty setting register (third register) 133.
  • the rising edge of the reference clock that rises with a phase delayed by a period of ( ⁇ K) times is selected as the first rising edge, it is further P + LL (2 ⁇ K + 1) times the reference period from the first rising edge.
  • the rising edge of the reference clock that rises with a phase delayed by the period is selected as the first falling decision edge corresponding to the first rising decision edge.
  • the control circuit 15 includes a PWM binary counter 151, a cycle control circuit 152, a PWM waveform generation circuit 153, and a PWM phase adjustment circuit 154.
  • the PWM binary counter 151 is a counter that increments the count value by 1 at the timing of the rising edge of the input microcomputer clock, and outputs the incremented count value at the timing of the rising edge of the next microcomputer clock.
  • the cycle control circuit 152 initializes the count value every time the count value of the PWM binary counter 151 matches the value of M ⁇ 1, based on the first information stored in the cycle setting register 131 sequentially and repeatedly. .
  • to initialize the count value means to set the count value to the initial value 0.
  • the PWM waveform generation circuit 153 rises at the timing when the initialized value is output from the PWM binary counter 151 based on the third information stored in the duty setting register 133 sequentially, and (2) PWM binary A normal pulse that falls at the timing when a value that matches the value of P is output from the counter 151 is repeatedly generated and output sequentially.
  • the PWM phase adjustment circuit 154 makes the first rise of the normal pulse to the selection circuit 12 for the Kth (K is an integer of 0 or more) times.
  • K is an integer of 0 or more
  • the rising edge of the reference clock that rises with a phase delayed by LL (2 ⁇ K) times the reference period from the edge is selected as the rising decision edge, and rises next to the first rising edge at the (K + 1) th time.
  • the rising decision edge is sequentially selected so that the rising edge of the reference clock rising in a phase delayed by LL (2 ⁇ (K + 1)) times the reference period from the rising edge of the normal pulse is selected as the rising decision edge. Let it be selected repeatedly.
  • the PWM phase adjustment circuit 154 sequentially repeats the third information stored in the duty setting register 133 to the selection circuit 12 from the first rising edge of the normal pulse train to the LL (2 ⁇ K)
  • the rising edge of the reference clock that rises with a phase delayed by a double period is selected as the first rising decision edge, it is further P + LL (2 ⁇ K + 1) times the reference period from the first rising edge.
  • the rising edge of the reference clock rising at a phase delayed by the period is selected as the first falling determination edge corresponding to the first rising determination edge.
  • 3 and 4 are timing charts showing a specific example of the operation performed by the PWM phase adjustment circuit 154 in cooperation with other circuits.
  • N is 5, M is 6, the first information specifying M is 5 indicating M ⁇ 1, and the second information specifying L and L is 0.2.
  • P is 3
  • the third information specifying P is 2 indicating P-1, and an example in which the period of the microcomputer clock is t is illustrated as a specific example.
  • the “reference point” indicates a time point when the PWM binary counter outputs 0 when the cumulative addition value LL calculated by the cumulative addition circuit 14 is zero.
  • FIG. 3 is a timing diagram including a period from the reference point to a point in time when 10 times the period of the microcomputer clock elapses.
  • FIG. 4 shows a period 25 times the period of the microcomputer clock from the reference point. It is a timing diagram including a period up to the time when elapses.
  • the reference clock generation circuit 11 has the same period as the microcomputer clock, and is five (that is, N) whose phases are shifted from each other by 0.2 t (that is, (1 / N) ⁇ t).
  • the reference clock is output. That is, the reference clock generation circuit 11 includes the 0th reference clock having the same phase as the microcomputer clock, the first reference clock having a phase delayed by 0.2 t from the microcomputer clock, and the first reference clock having a phase delayed by 0.4 t from the microcomputer clock. 2 reference clocks, a third reference clock having a phase delayed by 0.6 t from the microcomputer clock, and a fourth reference clock having a phase delayed by 0.8 t from the microcomputer clock are output.
  • the PWM waveform generation circuit 153 starts outputting a normal pulse that rises at a timing when 0 is output from the PWM binary counter 151.
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise to the 0th reference that rises with a phase (that is, the same phase) delayed by 0 t (that is, the value 0 ⁇ t of the cumulative addition value LL) from the timing of the rising edge of the normal pulse.
  • the rising edge of the clock is selected as the 0th rising determination edge.
  • the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated becomes the reference point.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the value 0 of the cumulative addition value LL, and sets the value of the cumulative addition value LL to 0.2.
  • the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 3 (that is, P) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 3t (that is, P ⁇ t).
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise to a first reference that rises with a phase delayed by 3.2 t (that is, (P value 3 + cumulative addition value LL value 0.2) ⁇ t) from the reference point.
  • the rising edge of the clock is selected as the 0th falling decision edge.
  • the selection circuit 12 generates the output pulse so that the timing of the falling edge of the output pulse to be generated is the timing delayed by 3.2 t from the reference point. Therefore, the duty of the output pulse generated by the selection circuit 12 is 3.2t (that is, (P + L / 2) ⁇ t).
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.4.
  • the PWM waveform generation circuit 153 starts outputting a new normal pulse that rises at a timing (first rising point in FIG. 3) when 0 is output from the PWM binary counter 151. For this reason, the period of the normal pulse output last time by the PWM waveform generation circuit 153 is 6t (that is, M ⁇ t).
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise the second reference clock that rises with a phase delayed by 0.4 t from the first rise point (that is, the value 0.4 ⁇ t of the cumulative addition value LL). The edge is selected as the first rising edge. Then, the selection circuit 12 generates the output pulse so that the rising edge timing of the generated output pulse is delayed by 0.4 t from the first rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.6.
  • the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 3 (that is, P) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 3t (that is, P ⁇ t).
  • the PWM phase adjustment circuit 154 rises to the selection circuit 12 with a phase delayed by 3.6 t (that is, (P value 3 + cumulative addition value LL value 0.6) ⁇ t) from the first rising point.
  • the rising edge of the third reference clock is selected as the first falling decision edge.
  • the selection circuit 12 starts generating a new output pulse so that the timing of the falling edge of the output pulse to be generated is 3.6 t delayed from the first rising point. For this reason, the duty of the output pulse generated by the selection circuit 12 is 3.2 t.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.8.
  • the PWM waveform generation circuit 153 starts a new normal operation that rises at the timing when the PWM binary counter 151 outputs 0 (second rising point in FIG. 4). Start pulse output. For this reason, the period of the normal pulse output last time by the PWM waveform generation circuit 153 is 6t (that is, M ⁇ t).
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to enter a fourth reference clock (see FIG. 4) that rises with a phase delayed by 0.8 t (that is, the value of the cumulative addition value LL of 0.8 ⁇ t) from the second rising point. 4) is selected as the second rising decision edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated is 0.8 t delayed from the second rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 1.
  • the cumulative addition circuit 14 subtracts 1 from the cumulative addition value LL to set the new cumulative addition value LL to 0, and the value stored in the cycle setting register 131. Is changed from 5 (ie, M ⁇ 1) to 6 (ie, M ⁇ 1 + 1), and the value stored in the duty setting register 133 is changed from 2 (ie, P ⁇ 1) to 3 (ie, P ⁇ ). Rewrite to 1 + 1).
  • the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 4 (that is, P + 1) is output from the PWM binary counter 151. Therefore, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 4t (that is, (P + 1) t).
  • the PWM phase adjustment circuit 154 rises to the selection circuit 12 with a phase delayed by 4t (that is, (P (that is, 3) + 1 + the value 0 of the cumulative addition value LL) ⁇ t) from the second rising point.
  • the rising edge of the reference clock is selected as the second falling decision edge.
  • the selection circuit 12 generates the output pulse so that the timing of the falling edge of the output pulse to be generated is the timing delayed by 4t from the second rising point. For this reason, the duty of the output pulse generated by the selection circuit 12 is 3.2 t.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.2.
  • the PWM binary counter 151 since the PWM binary counter 151 has M of 6, it continues counting until the count value becomes 6. Therefore, the PWM binary counter 151 outputs the count value 6 after outputting the count value 5, and then outputs the initial value 0.
  • the PWM waveform generation circuit 153 starts outputting a normal pulse that rises at a timing (third rising point in FIG. 4) when 0 is output from the PWM binary counter 151. For this reason, the period of the normal pulse last output by the PWM waveform generation circuit 153 is 7t.
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to start with a first reference clock (see FIG. 5) that rises with a phase delayed by 0.2 t (that is, the value 0.2 ⁇ t of the cumulative addition value LL) from the third rising point. 4) is selected as the third rising determination edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated is delayed by 0.2 t from the third rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
  • the cumulative addition circuit 14 rewrites the value stored in the cycle setting register 131 from 6 (ie, M ⁇ 1 + 1) to 5 (ie, M ⁇ 1), and changes the value stored in the duty setting register 133 to Rewrite from 3 (ie, P-1 + 1) to 2 (ie, P-1).
  • the PWM phase adjustment circuit 154 repeatedly performs the same operation, and in cooperation with other circuits, the duty is 3.2t (that is, (P + L / 2) ⁇ t) from the selection circuit 12 and the cycle is The selection circuit 12 is controlled so that the output pulse of 6.4t (that is, (M + L) ⁇ t) is continuously output.
  • the pulse frequency control circuit 1 configured as described above is configured so that the period setting register is set by the setting unit 22 when the period of the microcomputer clock that the microcomputer 2 uses as the clock signal is t.
  • 131 is set to M-1 (M is an integer equal to or greater than 1)
  • L is set to the high resolution cycle setting register 132 (L is a decimal number from 0 to less than 1)
  • the duty setting register 133 is set to P-1 (P is When an integer greater than or equal to 1 and less than M is set, an output pulse having a duty of (P + L / 2) ⁇ t and a cycle of (M + L) ⁇ t is continuously output.
  • L is a decimal number
  • the pulse period of the output pulse can be a period having a period shorter than the period of the microcomputer clock as a unit.
  • the pulse frequency control circuit 1 configured as described above performs high-resolution pulse train output processing as its characteristic operation.
  • This high-resolution pulse train output process is a process for outputting an output pulse train having a period in units shorter than the clock period of the input microcomputer clock.
  • 5 and 6 are flowcharts of the high-resolution pulse train output process.
  • the PWM binary counter 151 is initialized to 0, the cumulative addition value LL is initialized to 0, and the setting unit 22 causes the cycle setting register 131, the high-resolution cycle setting register 132, and the duty setting register 133 to be set. Is set by inputting a microcomputer clock to the pulse frequency control circuit 1.
  • the period setting register 131 stores the period.
  • the value to be stored is M-1 (M is an integer equal to or greater than 1)
  • the value stored in the high resolution cycle setting register 132 is L (L is a decimal number between 0 and less than 1)
  • the value stored in the duty setting register 133 is P ⁇ 1 (P is an integer of 1 or more and less than M).
  • the reference clock generation circuit 11 starts generating N reference clocks whose period is t and whose phases are shifted by 1 / N from each other.
  • the PWM binary counter 151 Starts counting the number of rising edges of the microcomputer clock. Thereafter, as long as the microcomputer clock is input, the reference clock generation circuit 11 continues to generate the N reference clocks, and the PWM binary counter 151 is initialized at times to detect the rising edge of the microcomputer clock. Continue to count the number.
  • the PWM binary counter 151 After the PWM binary counter 151 starts counting, when the count value matches M ⁇ 1, the PWM binary counter 151 initializes the count value and outputs the initial value 0 (step S5).
  • the PWM waveform generation circuit 153 starts generating a normal pulse that rises at an output timing of an initial value 0 (step S10).
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to reference the clock that rises with a phase delayed by LL ⁇ t after the normal pulse rises. Are selected as rising edge determination edges. Then, the selection circuit 12 starts generating an output pulse that rises at a timing delayed by LL ⁇ t after the normal pulse rises (step S15). Then, the cumulative addition circuit 14 cumulatively adds L / 2 to the cumulative addition value LL (step S20).
  • the cumulative addition circuit 14 determines whether or not the cumulative addition value LL is 1 or more (step S25).
  • step S25 when the cumulative addition value LL is not 1 or more (step S25: No), when the PWM binary counter 151 outputs the count value P-1 (step S30), the PWM waveform generation circuit 153 outputs the PWM binary value. The generated normal pulse falls at the timing when the counter 151 outputs the count value P-1 (step S35).
  • the PWM phase adjustment circuit 154 delays the selection circuit 12 by (P + LL) ⁇ t after the normal pulse rises.
  • the rising edge of the reference clock that rises at is selected as the falling edge determination edge.
  • the selection circuit 12 falls the output pulse to be generated at a timing delayed by (P + LL) ⁇ t after the normal pulse rises (step S40).
  • the cumulative addition circuit 14 cumulatively adds L / 2 to the cumulative addition value LL (step S45).
  • the cumulative addition circuit 14 determines whether or not the cumulative addition value LL is 1 or more (step S50).
  • step S50 when the cumulative addition value LL is not 1 or more (step S50: No), when the PWM binary counter 151 outputs the count value 0 (step S55), the pulse frequency control circuit 1 again performs step S10. Proceed to the process and continue the subsequent processes.
  • step S25 when the cumulative addition value LL is 1 or more (step S25: Yes), the cumulative addition circuit 14 subtracts 1 from the cumulative addition value LL to obtain a new cumulative addition value LL ( Simultaneously with step S100 (see FIG. 6), the value stored in the cycle setting register 131 is rewritten from M-1 to M, and the value stored in the duty setting register 133 is rewritten from P-1 to P (step S105).
  • the PWM waveform generation circuit 153 causes the generated normal pulse to fall at the timing when the count value P is output from the PWM binary counter 151 (step S115). ).
  • the PWM phase adjustment circuit 154 delays the selection circuit 12 by (P + 1 + LL) ⁇ t after the normal pulse rises.
  • the rising edge of the reference clock that rises at is selected as the falling edge determination edge.
  • the selection circuit 12 falls the generated output pulse at a timing delayed by (P + 1 + LL) ⁇ t after the normal pulse rises (step S120).
  • the cumulative addition circuit 14 cumulatively adds L / 2 to the cumulative addition value LL (step S125).
  • step S130 the PWM waveform generation circuit 153 starts generating a normal pulse that rises at the output timing of the initial value 0 (step S135).
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to reference the clock that rises with a phase delayed by LL ⁇ t after the normal pulse rises. Are selected as rising edge determination edges. Then, the selection circuit 12 starts generating an output pulse that rises at a timing delayed by LL ⁇ t after the normal pulse rises (step S140). Then, the cumulative addition circuit 14 rewrites the value stored in the cycle setting register 131 from M to M-1, and rewrites the value stored in the duty setting register 133 from P to P-1 (step S145).
  • step S145 the pulse frequency control circuit 1 proceeds to the process of step S20 (see FIG. 5) again and continues the subsequent processes.
  • step S50 when the cumulative addition value LL is 1 or more (step S50: Yes), the cumulative addition circuit 14 subtracts 1 from the cumulative addition value LL to obtain a new cumulative addition value LL ( Simultaneously with step S150 (see FIG. 6), the value stored in cycle setting register 131 is rewritten from M-1 to M, and the value stored in duty setting register 133 is rewritten from P-1 to P (step S155).
  • step S155 the pulse frequency control circuit 1 proceeds to the process of step S130 and continues the subsequent processes.
  • the pulse frequency control circuit 1 can output an output pulse train having a period whose unit is a period shorter than the period of the microcomputer clock. For this reason, by using this pulse frequency control circuit 1, the switching frequency control of the switching element 31 can be performed as compared with the case of using the conventional pulse frequency control circuit that outputs an output pulse train having a cycle that is an integral multiple of the cycle of the microcomputer clock. Can be realized with higher resolution.
  • the DCDC converter 3 according to the present embodiment using the pulse frequency control circuit 1 can control the output voltage with higher accuracy than the conventional DCDC converter using the conventional pulse frequency control device.
  • FIG. 7 and 8 are timing charts showing another specific example of the operation performed by the PWM phase adjustment circuit 154 in cooperation with other circuits.
  • N is 5, M is 6, the first information specifying M is 5 indicating M-1, and the second information specifying L and L is 0.2.
  • P is 2
  • the third information specifying P is 1 indicating P-1, and an example in which the period of the microcomputer clock is t is illustrated as a specific example.
  • the PWM waveform generation circuit 153 starts outputting a normal pulse that rises at a timing when 0 is output from the PWM binary counter 151.
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise to the 0th reference that rises with a phase (that is, the same phase) delayed by 0 t (that is, the value 0 ⁇ t of the cumulative addition value LL) from the timing of the rising edge of the normal pulse.
  • the rising edge of the clock is selected as the 0th rising determination edge.
  • the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated becomes the reference point.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the value 0 of the cumulative addition value LL, and sets the value of the cumulative addition value LL to 0.2.
  • the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 2 (that is, P) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 2t (that is, P ⁇ t).
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise to a first reference that rises with a phase delayed by 2.2 t (ie, (P value 2 + cumulative addition value LL value 0.2) ⁇ t) from the reference point.
  • the rising edge of the clock is selected as the 0th falling decision edge.
  • the selection circuit 12 generates the output pulse so that the timing of the falling edge of the output pulse to be generated is the timing delayed by 2.2 t from the reference point. Therefore, the duty of the output pulse generated by the selection circuit 12 is 2.2t (that is, (P + L / 2) ⁇ t).
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.4.
  • the PWM waveform generation circuit 153 starts outputting a new normal pulse that rises at a timing (first rising point in FIG. 7) when 0 is output from the PWM binary counter 151. For this reason, the period of the normal pulse output last time by the PWM waveform generation circuit 153 is 6t (that is, M ⁇ t).
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise the second reference clock that rises with a phase delayed by 0.4 t from the first rise point (that is, the value 0.4 ⁇ t of the cumulative addition value LL). The edge is selected as the first rising edge. Then, the selection circuit 12 generates the output pulse so that the rising edge timing of the generated output pulse is delayed by 0.4 t from the first rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.6.
  • the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 2 (that is, P) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 2t (that is, P ⁇ t).
  • the PWM phase adjustment circuit 154 rises to the selection circuit 12 with a phase delayed by 2.6 t (ie, (P value 2 + cumulative addition value LL value 0.6) ⁇ t) from the first rising point.
  • the rising edge of the third reference clock is selected as the first falling decision edge.
  • the selection circuit 12 starts generating a new output pulse so that the timing of the falling edge of the output pulse to be generated is 2.6 t delayed from the first rising point. For this reason, the duty of the output pulse generated by the selection circuit 12 is 2.2 t.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.8.
  • the PWM waveform generation circuit 153 starts a new normal operation that rises at the timing when the PWM binary counter 151 outputs 0 (second rising point in FIG. 8). Start pulse output. For this reason, the period of the normal pulse output last time by the PWM waveform generation circuit 153 is 6t (that is, M ⁇ t).
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to enter a fourth reference clock (see FIG. 4) that rises with a phase delayed by 0.8 t (that is, the value of the cumulative addition value LL of 0.8 ⁇ t) from the second rising point. 8) is selected as the second rising decision edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated is 0.8 t delayed from the second rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 1.
  • the cumulative addition circuit 14 subtracts 1 from the cumulative addition value LL to set the new cumulative addition value LL to 0, and the value stored in the cycle setting register 131. Is changed from 5 (ie, M ⁇ 1) to 6 (ie, M ⁇ 1 + 1), and the value stored in the duty setting register 133 is changed from 1 (ie, P ⁇ 1) to 2 (ie, P ⁇ ). Rewrite to 1 + 1).
  • the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 3 (that is, P + 1) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 3t (that is, (P + 1) t).
  • the PWM phase adjustment circuit 154 rises to the selection circuit 12 with a phase delayed by 3t from the second rising point (that is, (P (that is, 2) + 1 + the value 0 of the cumulative addition value LL) ⁇ t).
  • the rising edge of the reference clock is selected as the second falling decision edge.
  • the selection circuit 12 generates the output pulse so that the timing of the falling edge of the output pulse to be generated is 3 t delayed from the second rising point. For this reason, the duty of the output pulse generated by the selection circuit 12 is 2.2 t.
  • the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.2.
  • the PWM binary counter 151 since the PWM binary counter 151 has M of 6, it continues counting until the count value becomes 6. Therefore, the PWM binary counter 151 outputs the count value 6 after outputting the count value 5, and then outputs the initial value 0.
  • the PWM waveform generation circuit 153 starts outputting a normal pulse that rises at a timing (third rising point in FIG. 8) when 0 is output from the PWM binary counter 151. For this reason, the period of the normal pulse last output by the PWM waveform generation circuit 153 is 7t.
  • the PWM phase adjustment circuit 154 causes the selection circuit 12 to start with a first reference clock (see FIG. 5) that rises with a phase delayed by 0.2 t (that is, the value 0.2 ⁇ t of the cumulative addition value LL) from the third rising point. 8) is selected as the third rising edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated is delayed by 0.2 t from the third rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
  • the cumulative addition circuit 14 rewrites the value stored in the cycle setting register 131 from 6 (ie, M ⁇ 1 + 1) to 5 (ie, M ⁇ 1), and changes the value stored in the duty setting register 133 to Rewrite from 2 (ie, P-1 + 1) to 1 (ie, P-1).
  • the PWM phase adjustment circuit 154 repeatedly performs the same operation, and in cooperation with other circuits, the selection circuit 12 outputs a duty of 2.2t (that is, (P + L / 2) ⁇ t) and a cycle of The selection circuit 12 is controlled so that the output pulse of 6.4t (that is, (M + L) ⁇ t) is continuously output.
  • the pulse frequency control circuit 1 having the above configuration realizes output of an output pulse train having various duty ratios according to a combination of the M value and the P value. it can.
  • the DCDC converter 3 having the configuration shown in FIG. 1 has been described as an example of the DCDC converter according to the present invention.
  • the DCDC converter according to the present invention is not necessarily limited to the DCDC converter 3 having the configuration shown in FIG.
  • FIG. 9 is a block diagram showing a configuration of a DCDC converter 3A which is another example of the DCDC converter according to the present invention.
  • the DCDC converter 3A includes a switching element 91, an energy conversion circuit 92, a rectifying / smoothing circuit 93, and the microcomputer 2.
  • the DCDC converter 3 (see FIG. 1) according to the first embodiment is an example in which the energy conversion circuit 32 includes a transformer, whereas the DCDC converter 3A includes an energy conversion circuit 92 that includes a transformer.
  • This is an example of a so-called chopper type DCDC converter realized by including a coil.
  • FIG. 10 is a block diagram showing a configuration of a DCDC converter 3B which is still another example of the DCDC converter according to the present invention.
  • the DCDC converter 3B includes a first switching element 101A, a second switching element 101B, an energy conversion circuit 102, a rectifying / smoothing circuit 103, and a microcomputer 2A.
  • the DCDC converter 3 (see FIG. 1) according to the first embodiment is an example realized by including one switching element and a pulse frequency control circuit 1 that outputs one output pulse train.
  • the DCDC converter 3B is modified in part from the pulse frequency control circuit 1 according to the first embodiment so as to output two switching elements that switch at different phases and two output pulse trains with different phases.
  • the pulse frequency control circuit 1A is realized.
  • the pulse frequency control circuit 1 is described as being built in the microcomputer (microcomputer 2).
  • the pulse frequency control circuit according to the present invention is not necessarily limited to the configuration built in the microcomputer.
  • the pulse frequency control circuit 1 may be realized as a single semiconductor integrated circuit without being included in the microcomputer, or may be realized by being incorporated in an electronic component other than the microcomputer.
  • the present invention can be widely used in circuits that output pulses.

Abstract

A pulse frequency control circuit (1) includes: a selection circuit (12) for acquiring and selecting a plurality of reference clocks having different phases with the same reference period; a setting register (13) for storing information specifying a set period a unit of which is a first period of time shorter than the reference period; and a control circuit (15) for controlling, on the basis of the information stored in the setting register (13), the selection circuit (12) to sequentially and repeatedly select, as rising determined edges, rising edges that rise at intervals of the set period from among rising edges of the plurality of reference clocks. The selection circuit (12) sequentially and repeatedly generates output pulses that rise at every timing of the selected rising determined edges, thereby outputting an output pulse train comprising the output pulses.

Description

パルス周波数制御回路、マイコン、DCDCコンバータ、及びパルス周波数制御方法Pulse frequency control circuit, microcomputer, DCDC converter, and pulse frequency control method
 本発明は、出力するパルスの周波数を制御するパルス周波数制御回路、そのパルス周波数制御回路を含むマイコン、そのパルス周波数制御回路を含むDCDCコンバータ、及び、出力するパルスの周波数を制御するパルス周波数制御方法に関する。 The present invention relates to a pulse frequency control circuit for controlling the frequency of an output pulse, a microcomputer including the pulse frequency control circuit, a DCDC converter including the pulse frequency control circuit, and a pulse frequency control method for controlling the frequency of an output pulse. About.
 従来、導通状態と非導通状態とを繰り返し切り替え可能なスイッチング素子を有するDCDCコンバータが知られている。 Conventionally, a DCDC converter having a switching element capable of repeatedly switching between a conductive state and a non-conductive state is known.
 一般に、このようなDCDCコンバータの出力電圧の制御は、スイッチング素子に印加する、導通状態と非導通状態とを繰り返し切り変えるためのパルス列からなる制御信号を制御することで行われる(特許文献1参照)。 In general, such control of the output voltage of the DCDC converter is performed by controlling a control signal composed of a pulse train applied to the switching element for repeatedly switching between a conductive state and a non-conductive state (see Patent Document 1). ).
 このようなパルス列からなる制御信号の制御には、パルス列のデューティ比を制御するパルスデューティ制御と、パルス列の周波数を制御するパルス周波数制御とがある。 The control of the control signal composed of such a pulse train includes a pulse duty control for controlling the duty ratio of the pulse train and a pulse frequency control for controlling the frequency of the pulse train.
 上記パルス周波数制御を行う制御回路として、従来、基準となる基準クロック信号が入力される場合に、その基準クロック信号のクロック周期に対して任意の整数倍に設定された周期のパルス列を出力することができるパルス周波数制御回路が知られている。 Conventionally, as a control circuit for performing the pulse frequency control, when a reference clock signal serving as a reference is input, a pulse train having a cycle set to an arbitrary integer multiple of the clock cycle of the reference clock signal is output. There is known a pulse frequency control circuit capable of performing the following.
特開2013-236295号公報JP 2013-236295 A
 上記従来のパルス周波数回路は、基準クロック信号のクロック周期よりも短い期間を単位とする周期のパルス列を出力することができない。 The conventional pulse frequency circuit cannot output a pulse train having a period in units shorter than the clock period of the reference clock signal.
 そこで、本発明は、係る問題に鑑みてなされたものであり、基準クロック信号のクロック周期よりも短い期間を単位とする周期のパルス列を出力することが可能なパルス周波数制御回路、マイコン、DCDCコンバータ、及びパルス周波数制御方法を提供することを目的とする。 Therefore, the present invention has been made in view of such problems, and a pulse frequency control circuit, a microcomputer, and a DCDC converter capable of outputting a pulse train having a period shorter than the clock period of a reference clock signal. And a pulse frequency control method.
 本発明に係るパルス周波数制御回路は、同一基準周期の、互いに位相が異なる複数の基準クロックを取得して選択する選択回路と、前記基準周期よりも短い第1期間を単位とする設定周期を特定する情報を記憶する設定レジスタと、前記設定レジスタに記憶される情報に基づいて、前記選択回路に対して、前記複数の基準クロックの立ち上がりエッジの中から、前記設定周期の間隔で立ち上がる立ち上がりエッジを、立ち上がり決定エッジとして逐次繰り返し選択させる制御回路とを備え、前記選択回路は、選択する立ち上がり決定エッジのタイミング毎に立ち上がる出力パルスを逐次繰り返し生成することにより、当該出力パルスからなる出力パルス列を出力することを特徴とする。 A pulse frequency control circuit according to the present invention specifies a selection circuit that acquires and selects a plurality of reference clocks having the same reference period and different phases, and a set period in units of a first period shorter than the reference period Based on the setting register for storing information to be stored and the information stored in the setting register, a rising edge rising at an interval of the setting period is selected from the rising edges of the plurality of reference clocks with respect to the selection circuit. And a control circuit that sequentially and repeatedly selects the rising decision edge, and the selection circuit repeatedly generates output pulses that rise at every timing of the rising decision edge to be selected, thereby outputting an output pulse train composed of the output pulses. It is characterized by that.
 本発明に係るマイコンは、上記パルス周波数制御回路と、前記設定レジスタに値を設定する設定部とを備えることを特徴とする。 A microcomputer according to the present invention includes the pulse frequency control circuit and a setting unit that sets a value in the setting register.
 本発明に係るDCDCコンバータは、上記マイコンと、前記選択回路から出力される出力パルス列に応じて、直流の入力電圧をスイッチングするスイッチング素子と、前記スイッチング素子によってスイッチングされた入力電圧が入力されると、当該入力電圧の電圧変動に起因する電流変動によって起電力を生じ、当該起電力に応じた電圧を出力するエネルギー変換回路と、前記エネルギー変換回路から出力される電圧を整流平滑して直流の出力電圧を出力する整流平滑回路とを備え、前記マイコンは、さらに、前記出力電圧の電位と所定の電位とを比較する比較部を含み、前記設定部は、前記比較部による比較の結果に基づいて、前記出力電圧の電位が前記所定の電位に近づくように、前記設定を行うことを特徴とする。 When the DCDC converter according to the present invention receives the microcomputer, a switching element that switches a DC input voltage in accordance with an output pulse train output from the selection circuit, and an input voltage that is switched by the switching element. An energy conversion circuit that generates an electromotive force due to a current variation caused by the voltage variation of the input voltage and outputs a voltage corresponding to the electromotive force; and a DC output by rectifying and smoothing the voltage output from the energy conversion circuit A rectifying / smoothing circuit that outputs a voltage, and the microcomputer further includes a comparison unit that compares the potential of the output voltage with a predetermined potential, and the setting unit is based on a result of comparison by the comparison unit. The setting is performed so that the potential of the output voltage approaches the predetermined potential.
 本発明に係るパルス周波数制御方法は、同一基準周期の、互いに位相が異なる複数の基準クロックを取得して選択する選択回路と、設定レジスタと、制御回路とを備えるパルス周波数制御回路が行うパルス周波数制御方法であって、前記設定レジスタが、前記基準周期よりも短い第1期間を単位とする設定周期を特定する情報を記憶する設定ステップと、前記制御回路が、前記設定ステップによって記憶される情報に基づいて、前記選択回路に対して、前記複数の基準クロックの中から、前記設定周期の間隔で立ち上がる立ち上がりエッジを、立ち上がり決定エッジとして逐次繰り返し選択させる制御ステップと前記選択回路が、選択する立ち上がり決定エッジのタイミング毎に立ち上がる出力パルスを逐次繰り返し生成することにより、当該出力パルスからなる出力パルス列を出力する出力ステップとを含むことを特徴とする。 A pulse frequency control method according to the present invention includes a selection circuit that acquires and selects a plurality of reference clocks having the same reference period and different phases, a pulse frequency control circuit that includes a setting register, and a control circuit. A control method, wherein the setting register stores information for specifying a setting period in units of a first period shorter than the reference period, and information stored in the setting step by the control circuit Based on the control step, the selection circuit sequentially and repeatedly selects the rising edge rising at the set cycle interval as the rising determination edge from the plurality of reference clocks. By successively generating output pulses that rise at every decision edge timing, Characterized in that it comprises an output step for outputting the output pulse train consisting of output pulses.
 上記パルス周波数制御回路、マイコン、DCDCコンバータ、及びパルス周波数制御方法によると、基準クロック信号のクロック周期よりも短い期間を単位とする周期のパルス列を出力することが可能となる。 According to the pulse frequency control circuit, the microcomputer, the DCDC converter, and the pulse frequency control method, it is possible to output a pulse train having a cycle whose unit is a period shorter than the clock cycle of the reference clock signal.
図1は、実施の形態に係るDCDCコンバータの構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of a DCDC converter according to an embodiment. 図2は、実施の形態に係るパルス周波数制御回路の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the pulse frequency control circuit according to the embodiment. 図3は、実施の形態に係るPWM位相調整回路が、他の回路と連携して行う動作の一具体例を示すタイミング図その1である。FIG. 3 is a first timing diagram illustrating a specific example of an operation performed by the PWM phase adjustment circuit according to the embodiment in cooperation with another circuit. 図4は、実施の形態に係るPWM位相調整回路が、他の回路と連携して行う動作の一具体例を示すタイミング図その2である。FIG. 4 is a second timing diagram illustrating a specific example of an operation performed by the PWM phase adjustment circuit according to the embodiment in cooperation with another circuit. 図5は、実施の形態に係る高分解能パルス列出力処理のフローチャートその1である。FIG. 5 is a flowchart 1 of high-resolution pulse train output processing according to the embodiment. 図6は、実施の形態に係る高分解能パルス列出力処理のフローチャートその2である。FIG. 6 is a flowchart 2 of high-resolution pulse train output processing according to the embodiment. 図7は、変形例に係るPWM位相調整回路が、他の回路と連携して行う動作の一具体例を示すタイミング図その1である。FIG. 7 is a first timing diagram illustrating a specific example of an operation performed by the PWM phase adjustment circuit according to the modification in cooperation with another circuit. 図8は、変形例に係るPWM位相調整回路が、他の回路と連携して行う動作の一具体例を示すタイミング図その2である。FIG. 8 is a second timing diagram illustrating a specific example of an operation performed by the PWM phase adjustment circuit according to the modification in cooperation with another circuit. 図9は、他の変形例に係るDCDCコンバータの構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of a DCDC converter according to another modification. 図10は、他の変形例に係るDCDCコンバータの構成を示すブロック図である。FIG. 10 is a block diagram showing a configuration of a DCDC converter according to another modification.
 以下、本発明の一態様に係るパルス周波数制御回路、マイコン、DCDCコンバータ、及びパルス周波数制御方法の具体例について、図面を用いて説明する。なお、以下に説明する実施の形態は、いずれも本発明における好ましい一具体例を示すものである。従って、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、並びに、工程の順序等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明における最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Specific examples of a pulse frequency control circuit, a microcomputer, a DCDC converter, and a pulse frequency control method according to one embodiment of the present invention are described below with reference to the drawings. Each of the embodiments described below shows a preferred specific example in the present invention. Accordingly, the numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, steps, and the like shown in the following embodiments are merely examples and are not intended to limit the present invention. Absent. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept in the present invention are described as arbitrary constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 (実施の形態)
 [1.構成]
 図1は、本実施の形態に係るDCDCコンバータ3の構成を示すブロック図である。
(Embodiment)
[1. Constitution]
FIG. 1 is a block diagram showing a configuration of a DCDC converter 3 according to the present embodiment.
 同図に示されるように、DCDCコンバータ3は、スイッチング素子31と、エネルギー変換回路32と、整流平滑回路33と、マイコン2とを含んで構成される。 As shown in the figure, the DCDC converter 3 includes a switching element 31, an energy conversion circuit 32, a rectifying / smoothing circuit 33, and a microcomputer 2.
 スイッチング素子31は、一例として、窒化ガリウムFET(Field Effective Transistor)によって実現され、マイコン2から出力される制御信号(後述の出力パルス列)に応じて、直流の入力電圧をスイッチングする。ここで、スイッチングとは、導通状態と非導通状態とを繰り返し切り替えることを言う。 As an example, the switching element 31 is realized by a gallium nitride FET (Field Effective Transistor), and switches a DC input voltage according to a control signal (an output pulse train described later) output from the microcomputer 2. Here, switching refers to repeatedly switching between a conductive state and a non-conductive state.
 エネルギー変換回路32は、一例として、トランスによって実現され、スイッチング素子31によってスイッチングされた入力電圧が入力されると、その入力電圧の電圧変動に起因する電流変動によって起電力を生じ、生じた起電力に応じた電圧を出力する。 As an example, the energy conversion circuit 32 is realized by a transformer, and when an input voltage switched by the switching element 31 is input, an electromotive force is generated due to a current variation caused by the voltage variation of the input voltage, and the generated electromotive force is generated. The voltage according to is output.
 整流平滑回路33は、一例として、1以上のダイオードと1以上のキャパシタとによって実現され、エネルギー変換回路32から出力される電圧を整流平滑して直流の出力電圧を出力する。 As an example, the rectifying / smoothing circuit 33 is realized by one or more diodes and one or more capacitors, and rectifies and smoothes the voltage output from the energy conversion circuit 32 to output a DC output voltage.
 マイコン2は、比較部21と、設定部22と、パルス周波数制御回路1とを含んで構成される。 The microcomputer 2 includes a comparison unit 21, a setting unit 22, and a pulse frequency control circuit 1.
 比較部21は、一例として、コンパレータによって実現され、出力電圧の電位と所定の電位とを比較する。 The comparison unit 21 is realized by a comparator as an example, and compares the potential of the output voltage with a predetermined potential.
 設定部22は、一例として、マイコン2に含まれるプロセッサ(図示せず)が、マイコン2に含まれるメモリ(図示せず)に記憶されるプログラムを実行することで実現され、パルス周波数制御回路1に含まれる設定レジスタ(後述)に値を設定する。より具体的には、比較部21による比較の結果に基づいて、出力電圧の電位が上記所定の電位に近づくように、上記設定を行う。 As an example, the setting unit 22 is realized by a processor (not shown) included in the microcomputer 2 executing a program stored in a memory (not shown) included in the microcomputer 2, and the pulse frequency control circuit 1. A value is set in a setting register (described later) included in. More specifically, the above setting is performed based on the result of comparison by the comparison unit 21 so that the potential of the output voltage approaches the predetermined potential.
 図2は、パルス周波数制御回路1の構成を示すブロック図である。 FIG. 2 is a block diagram showing the configuration of the pulse frequency control circuit 1.
 同図に示されるように、パルス周波数制御回路1は、基準クロック生成回路11と、選択回路12と、設定レジスタ13と、累積加算回路14と、制御回路15とを含んで構成される。 As shown in the figure, the pulse frequency control circuit 1 includes a reference clock generation circuit 11, a selection circuit 12, a setting register 13, a cumulative addition circuit 14, and a control circuit 15.
 基準クロック生成回路11は、マイコン2がクロック信号として利用するマイコンクロック(入力基準クロック)から、後述の選択回路12が取得する複数の基準クロックを生成する。より具体的には、入力基準クロックと同じ周期(基準周期)であって、互いに1/N(Nは2以上の整数)ずつ位相がずれているN個の基準クロックを生成する。 The reference clock generation circuit 11 generates a plurality of reference clocks acquired by a selection circuit 12 described later from a microcomputer clock (input reference clock) that the microcomputer 2 uses as a clock signal. More specifically, N reference clocks having the same period (reference period) as the input reference clock and having phases shifted from each other by 1 / N (N is an integer of 2 or more) are generated.
 基準クロック生成回路11は、一例として、DLL(Delay Locked Loop)回路によって実現される。 The reference clock generation circuit 11 is realized by a DLL (Delay Locked Loop) circuit as an example.
 選択回路12は、同一基準周期の、互いに位相が異なる複数の基準クロックを取得して選択する。より具体的には、基準クロック生成回路11によって生成されたN個の基準クロックを取得して選択する。 The selection circuit 12 acquires and selects a plurality of reference clocks having the same reference period and different phases. More specifically, N reference clocks generated by the reference clock generation circuit 11 are acquired and selected.
 さらに、選択回路12は、制御回路15(後述)によって制御されることで、上記複数の基準クロックの立ち上がりエッジの中から、立ち上がり決定エッジ(後述)を繰り返し選択し、選択する立ち上がり決定エッジのタイミング毎に立ち上がる出力パルスを逐次繰り返し生成することにより、生成した出力パルス列を出力する。 Further, the selection circuit 12 is controlled by a control circuit 15 (described later), thereby repeatedly selecting a rising determination edge (described later) from the rising edges of the plurality of reference clocks, and the timing of the rising determination edge to be selected. The generated output pulse train is output by sequentially generating output pulses that rise every time.
 また、選択回路12は、制御回路15によって制御されることで、選択する立ち上がり決定エッジ毎に、対応する立下り決定エッジ(後述)をも選択し、一の立ち上がり決定エッジのタイミングで立ち上がる出力パルスが、その一の立ち上がり決定エッジに対応する一の立下り決定エッジのタイミングで立ち下がるように、上記出力パルスの生成を行う。 The selection circuit 12 is also controlled by the control circuit 15 to select a corresponding falling decision edge (described later) for each rising decision edge to be selected, and an output pulse that rises at the timing of one rising decision edge. However, the output pulse is generated so as to fall at the timing of one falling decision edge corresponding to the one rising decision edge.
 設定レジスタ13は、基準周期よりも短い期間(第1期間)を単位とする設定周期を特定する情報を記憶する。より具体的には、上記設定周期を上記基準周期で除算する場合における商の整数値M(Mは1以上の整数)を特定する第1情報を記憶する周期設定レジスタ(第1レジスタ)131と、上記商の小数値L(Lは0以上1未満の小数)を特定する第2情報を記憶する高分解能周期設定レジスタ(第2レジスタ)132と、整数値P(Pは1以上M未満の整数)を特定する第3情報を記憶するデューティ設定レジスタ(第3レジスタ)133とを含んで構成される。 The setting register 13 stores information for specifying a set period in units of a period (first period) shorter than the reference period. More specifically, a cycle setting register (first register) 131 that stores first information for specifying an integer value M (M is an integer of 1 or more) when the set cycle is divided by the reference cycle; , A high-resolution period setting register (second register) 132 for storing second information specifying the decimal value L of the quotient (L is a decimal number of 0 or more and less than 1), and an integer value P (P is 1 or more and less than M) And a duty setting register (third register) 133 for storing third information for specifying an integer).
 これらレジスタの値は、設定部22によって随時設定可能となっている。 These register values can be set at any time by the setting unit 22.
 累積加算回路14は、高分解能周期設定レジスタ(第2レジスタ)132に記憶される第2情報に基づいて、選択回路12から出力される出力パルスが立ち上がる又は立ち下がる毎に、L/2を累積加算して、J(Jは0以上の整数)回累積加算した場合に、累積加算値LL(J)を算出する。 The cumulative addition circuit 14 accumulates L / 2 each time the output pulse output from the selection circuit 12 rises or falls based on the second information stored in the high resolution period setting register (second register) 132. In the case of addition and cumulative addition J (J is an integer of 0 or more) times, a cumulative addition value LL (J) is calculated.
 さらに、累積加算回路14は、L/2を累積加算することでLL(J)が1以上となった場合に、(1)LL(J)から1を減算して新たなLL(J)を算出すると共に、(2)周期設定レジスタ(第1レジスタ)131が記憶する情報を、Mを特定する情報からM+1を特定する情報へと書き換えて、(3)この書き換えの後において、選択回路12から出力される出力パルス列が立ち上がるときに、周期設定レジスタ(第1レジスタ)131が記憶する情報を、M+1を特定する情報からMを特定する情報へと書き換える。そして、さらに、累積加算回路14は、L/2を累積加算することでLL(J)が1以上となった場合に、(4)デューティ設定レジスタ(第3レジスタ)133が記憶する情報を、Pを特定する情報からP+1を特定する情報へと書き換えて、(5)この書き換えの後において、選択回路12から出力される出力パルス列が立ち上がるときに、デューティ設定レジスタ(第3レジスタ)133が記憶する情報を、P+1を特定する情報からPを特定する情報へと書き換える。 Further, the cumulative addition circuit 14 subtracts 1 from LL (J) to obtain a new LL (J) when LL (J) becomes 1 or more by cumulative addition of L / 2. (2) Information stored in the cycle setting register (first register) 131 is rewritten from information specifying M to information specifying M + 1. (3) After this rewriting, the selection circuit 12 When the output pulse train output from the signal rises, the information stored in the cycle setting register (first register) 131 is rewritten from information specifying M + 1 to information specifying M. Further, the cumulative addition circuit 14 (4) stores information stored in the duty setting register (third register) 133 when LL (J) becomes 1 or more by cumulative addition of L / 2. The information specifying P is rewritten to the information specifying P + 1. (5) After this rewriting, when the output pulse train output from the selection circuit 12 rises, the duty setting register (third register) 133 stores it. The information to be rewritten is changed from information specifying P + 1 to information specifying P.
 制御回路15は、設定レジスタ13に記憶される情報に基づいて、選択回路12に対して、上記複数の基準クロックの立ち上がりエッジの中から、上記設定周期の間隔で立ち上がる立ち上がりエッジを、立ち上がり決定エッジとして逐次繰り返し選択させる。より具体的には、(1)周期設定レジスタ(第1レジスタ)131に記憶される第1情報に基づいて、上記基準周期のM倍の周期の通常パルスを逐次繰り返し生成することにより、当該通常パルスからなる通常パルス列を生成し、(2)高分解能周期設定レジスタ(第2レジスタ)132に記憶される第2情報に基づいて、選択回路12に対して、K(Kは0以上の整数)回目に、上記通常パルスの第1立ち上がりエッジから、上記基準周期のLL(2×K)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、立ち上がり決定エッジとして選択させて、K+1回目に、上記第1立ち上がりエッジの次に立ち上がる上記通常パルスの立ち上がりエッジから、上記基準周期のLL(2×(K+1))倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、立ち上がり決定エッジとして選択させるように、立ち上がり決定エッジを逐次繰り返し選択させる。 Based on the information stored in the setting register 13, the control circuit 15 determines a rising edge that rises at the interval of the set period from the rising edges of the plurality of reference clocks to the selection circuit 12. Are repeatedly selected. More specifically, (1) based on the first information stored in the period setting register (first register) 131, the normal pulse having a period of M times the reference period is sequentially generated, so that the normal A normal pulse train composed of pulses is generated, and (2) based on the second information stored in the high resolution period setting register (second register) 132, K is selected for the selection circuit 12 (K is an integer of 0 or more). In the second time, the rising edge of the reference clock that rises in a phase delayed by LL (2 × K) times the reference period from the first rising edge of the normal pulse is selected as the rising decision edge, and the K + 1th time A phase delayed by a period LL (2 × (K + 1)) times the reference period from the rising edge of the normal pulse that rises next to the first rising edge The rising decision edge is sequentially and repeatedly selected so that the rising edge of the reference clock rising at is selected as the rising decision edge.
 さらに、制御回路15は、デューティ設定レジスタ(第3レジスタ)133に記憶される第3情報に基づいて、選択回路12に対して、通常パルス列の第1立ち上がりエッジから、上記基準周期のLL(2×K)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、第1立ち上がり決定エッジとして選択させた場合に、さらに、上記第1立ち上がりエッジから前記基準周期のP+LL(2×K+1)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、上記第1立ち上がり決定エッジに対応する第1立下り決定エッジとして選択させる。 Further, the control circuit 15 causes the selection circuit 12 to start the reference period LL (2) from the first rising edge of the normal pulse train based on the third information stored in the duty setting register (third register) 133. When the rising edge of the reference clock that rises with a phase delayed by a period of (× K) times is selected as the first rising edge, it is further P + LL (2 × K + 1) times the reference period from the first rising edge. The rising edge of the reference clock that rises with a phase delayed by the period is selected as the first falling decision edge corresponding to the first rising decision edge.
 制御回路15は、PWMバイナリカウンタ151と、周期制御回路152と、PWM波形生成回路153と、PWM位相調整回路154とを含んで構成される。 The control circuit 15 includes a PWM binary counter 151, a cycle control circuit 152, a PWM waveform generation circuit 153, and a PWM phase adjustment circuit 154.
 PWMバイナリカウンタ151は、入力されるマイコンクロックの立ち上がりエッジのタイミングで、1ずつカウント値をインクリメントするカウンタであって、インクリメントしたカウント値を、次のマイコンクロックの立ち上がりエッジのタイミングで出力する。 The PWM binary counter 151 is a counter that increments the count value by 1 at the timing of the rising edge of the input microcomputer clock, and outputs the incremented count value at the timing of the rising edge of the next microcomputer clock.
 周期制御回路152は、周期設定レジスタ131に記憶される第1情報に逐次繰り返し基づいて、PWMバイナリカウンタ151のカウント値とM-1の値とが一致する毎に、そのカウント値を初期化する。ここで、カウント値を初期化するとは、カウント値の値を初期値0にすることを言う。 The cycle control circuit 152 initializes the count value every time the count value of the PWM binary counter 151 matches the value of M−1, based on the first information stored in the cycle setting register 131 sequentially and repeatedly. . Here, to initialize the count value means to set the count value to the initial value 0.
 PWM波形生成回路153は、デューティ設定レジスタ133に記憶される第3情報に逐次繰り返し基づいて、(1)PWMバイナリカウンタ151から初期化された値が出力されるタイミングで立ち上がり、(2)PWMバイナリカウンタ151からPの値と一致する値が出力されるタイミングで立ち下がる通常パルスを逐次繰り返し生成して出力する。 The PWM waveform generation circuit 153 rises at the timing when the initialized value is output from the PWM binary counter 151 based on the third information stored in the duty setting register 133 sequentially, and (2) PWM binary A normal pulse that falls at the timing when a value that matches the value of P is output from the counter 151 is repeatedly generated and output sequentially.
 PWM位相調整回路154は、高分解能周期設定レジスタ132に記憶される第2情報に基づいて、選択回路12に対して、K(Kは0以上の整数)回目に、上記通常パルスの第1立ち上がりエッジから、上記基準周期のLL(2×K)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、立ち上がり決定エッジとして選択させて、K+1回目に、上記第1立ち上がりエッジの次に立ち上がる上記通常パルスの立ち上がりエッジから、上記基準周期のLL(2×(K+1))倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、立ち上がり決定エッジとして選択させるように、立ち上がり決定エッジを逐次繰り返し選択させる。 Based on the second information stored in the high resolution period setting register 132, the PWM phase adjustment circuit 154 makes the first rise of the normal pulse to the selection circuit 12 for the Kth (K is an integer of 0 or more) times. The rising edge of the reference clock that rises with a phase delayed by LL (2 × K) times the reference period from the edge is selected as the rising decision edge, and rises next to the first rising edge at the (K + 1) th time. The rising decision edge is sequentially selected so that the rising edge of the reference clock rising in a phase delayed by LL (2 × (K + 1)) times the reference period from the rising edge of the normal pulse is selected as the rising decision edge. Let it be selected repeatedly.
 さらに、PWM位相調整回路154は、デューティ設定レジスタ133に記憶される第3情報に逐次繰り返し基づいて、選択回路12に対して、通常パルス列の第1立ち上がりエッジから、上記基準周期のLL(2×K)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、第1立ち上がり決定エッジとして選択させた場合に、さらに、上記第1立ち上がりエッジから前記基準周期のP+LL(2×K+1)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、上記第1立ち上がり決定エッジに対応する第1立下り決定エッジとして選択させる。 Further, the PWM phase adjustment circuit 154 sequentially repeats the third information stored in the duty setting register 133 to the selection circuit 12 from the first rising edge of the normal pulse train to the LL (2 × K) When the rising edge of the reference clock that rises with a phase delayed by a double period is selected as the first rising decision edge, it is further P + LL (2 × K + 1) times the reference period from the first rising edge. The rising edge of the reference clock rising at a phase delayed by the period is selected as the first falling determination edge corresponding to the first rising determination edge.
 以下、PWM位相調整回路154が、他の回路と連携して行う動作について、図面を参照しながら、具体例を例示しながら説明する。 Hereinafter, the operation performed by the PWM phase adjustment circuit 154 in cooperation with other circuits will be described with reference to the drawings and specific examples.
 図3、図4は、PWM位相調整回路154が、他の回路と連携して行う動作の一具体例を示すタイミング図である。 3 and 4 are timing charts showing a specific example of the operation performed by the PWM phase adjustment circuit 154 in cooperation with other circuits.
 図3、図4では、Nが5であり、Mが6であり、Mを特定する第1情報がM-1を示す5であり、L及びLを特定する第2情報が0.2であり、Pが3であり、Pを特定する第3情報がP-1を示す2であり、マイコンクロックの周期がtである場合の例を具体例として例示している。 3 and 4, N is 5, M is 6, the first information specifying M is 5 indicating M−1, and the second information specifying L and L is 0.2. Yes, P is 3, the third information specifying P is 2 indicating P-1, and an example in which the period of the microcomputer clock is t is illustrated as a specific example.
 図3、図4において、「基準点」とは、累積加算回路14によって算出される累積加算値LLが0である場合において、PWMバイナリカウンタが0を出力する時点を示す。 3 and 4, the “reference point” indicates a time point when the PWM binary counter outputs 0 when the cumulative addition value LL calculated by the cumulative addition circuit 14 is zero.
 図3は、基準点から、マイコンクロックの周期の10倍の期間が経過する時点までの期間を含むタイミング図となっており、図4は、基準点から、マイコンクロックの周期の25倍の期間が経過する時点までの期間を含むタイミング図となっている。 FIG. 3 is a timing diagram including a period from the reference point to a point in time when 10 times the period of the microcomputer clock elapses. FIG. 4 shows a period 25 times the period of the microcomputer clock from the reference point. It is a timing diagram including a period up to the time when elapses.
 図3に示されるように、基準クロック生成回路11は、マイコンクロックと同じ周期であって、互いに0.2t(すなわち(1/N)×t)ずつ位相がずれた5個(すなわちN個)の基準クロックを出力する。すなわち、基準クロック生成回路11は、マイコンクロックと同位相の第0基準クロックと、マイコンクロックから0.2tだけ遅延した位相の第1基準クロックと、マイコンクロックから0.4tだけ遅延した位相の第2基準クロックと、マイコンクロックから0.6tだけ遅延した位相の第3基準クロックと、マイコンクロックから0.8tだけ遅延した位相の第4基準クロックとを出力する。 As shown in FIG. 3, the reference clock generation circuit 11 has the same period as the microcomputer clock, and is five (that is, N) whose phases are shifted from each other by 0.2 t (that is, (1 / N) × t). The reference clock is output. That is, the reference clock generation circuit 11 includes the 0th reference clock having the same phase as the microcomputer clock, the first reference clock having a phase delayed by 0.2 t from the microcomputer clock, and the first reference clock having a phase delayed by 0.4 t from the microcomputer clock. 2 reference clocks, a third reference clock having a phase delayed by 0.6 t from the microcomputer clock, and a fourth reference clock having a phase delayed by 0.8 t from the microcomputer clock are output.
 基準点において、PWM波形生成回路153は、PWMバイナリカウンタ151から0が出力されるタイミングで立ち上がる通常パルスの出力を開始する。 At the reference point, the PWM waveform generation circuit 153 starts outputting a normal pulse that rises at a timing when 0 is output from the PWM binary counter 151.
 そして、PWM位相調整回路154は、選択回路12に、通常パルスの立ち上がりエッジのタイミングから0t(すなわち、累積加算値LLの値0×t)だけ遅れた位相(すなわち同位相)で立ち上がる第0基準クロックの立ち上がりエッジを第0立ち上がり決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立ち上がりのエッジタイミングが基準点となるように、出力パルスの生成を開始する。そして、累積加算回路14は累積加算値LLの値0に、0.2(すなわち、L/2)を累積加算して、累積加算値LLの値を0.2とする。 Then, the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise to the 0th reference that rises with a phase (that is, the same phase) delayed by 0 t (that is, the value 0 × t of the cumulative addition value LL) from the timing of the rising edge of the normal pulse. The rising edge of the clock is selected as the 0th rising determination edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated becomes the reference point. Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the value 0 of the cumulative addition value LL, and sets the value of the cumulative addition value LL to 0.2.
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から3(すなわちP)が出力されるタイミングで、生成する通常パルスが立ち下がるように、通常パルスの生成を行う。このため、PWM波形生成回路153の生成する通常パルスのデューティは3t(すなわちP×t)となる。 Next, the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 3 (that is, P) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 3t (that is, P × t).
 一方、PWM位相調整回路154は、選択回路12に、基準点から3.2t(すなわち、(Pの値3+累積加算値LLの値0.2)×t)だけ遅れた位相で立ち上がる第1基準クロックの立ち上がりエッジを第0立下り決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立下りのエッジのタイミングが、基準点から3.2t遅延するタイミングとなるように、出力パルスの生成を行う。このため、選択回路12の生成する出力パルスのデューティは、3.2t(すなわち、(P+L/2)×t)となる。 On the other hand, the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise to a first reference that rises with a phase delayed by 3.2 t (that is, (P value 3 + cumulative addition value LL value 0.2) × t) from the reference point. The rising edge of the clock is selected as the 0th falling decision edge. Then, the selection circuit 12 generates the output pulse so that the timing of the falling edge of the output pulse to be generated is the timing delayed by 3.2 t from the reference point. Therefore, the duty of the output pulse generated by the selection circuit 12 is 3.2t (that is, (P + L / 2) × t).
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを0.4とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.4.
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から0が出力されるタイミング(図3中の第1立ち上がり点)で立ち上がる新たな通常パルスの出力を開始する。このため、PWM波形生成回路153によって前回出力された通常パルスの周期は6t(すなわち、M×t)となる。 Next, the PWM waveform generation circuit 153 starts outputting a new normal pulse that rises at a timing (first rising point in FIG. 3) when 0 is output from the PWM binary counter 151. For this reason, the period of the normal pulse output last time by the PWM waveform generation circuit 153 is 6t (that is, M × t).
 次に、PWM位相調整回路154は、選択回路12に、第1立ち上がり点から0.4t(すなわち、累積加算値LLの値0.4×t)だけ遅れた位相で立ち上がる第2基準クロックの立ち上がりエッジを、第1立ち上がり決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立ち上がりのエッジタイミングが第1立ち上がり点から0.4t遅延するタイミングとなるように、出力パルスの生成を行う。このため、選択回路12の生成する出力パルスの周期は、6.4tとなる。 Next, the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise the second reference clock that rises with a phase delayed by 0.4 t from the first rise point (that is, the value 0.4 × t of the cumulative addition value LL). The edge is selected as the first rising edge. Then, the selection circuit 12 generates the output pulse so that the rising edge timing of the generated output pulse is delayed by 0.4 t from the first rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを0.6とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.6.
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から3(すなわちP)が出力されるタイミングで、生成する通常パルスが立ち下がるように、通常パルスの生成を行う。このため、PWM波形生成回路153の生成する通常パルスのデューティは3t(すなわちP×t)となる。 Next, the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 3 (that is, P) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 3t (that is, P × t).
 次に、PWM位相調整回路154は、選択回路12に、第1立ち上がり点から3.6t(すなわち、(Pの値3+累積加算値LLの値0.6)×t)だけ遅れた位相で立ち上がる第3基準クロックの立ち上がりエッジを第1立下り決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立下りのエッジのタイミングが、第1立ち上がり点から3.6t遅延するタイミングとなるように、新たな出力パルスの生成を開始する。このため、選択回路12の生成する出力パルスのデューティは、3.2tとなる。 Next, the PWM phase adjustment circuit 154 rises to the selection circuit 12 with a phase delayed by 3.6 t (that is, (P value 3 + cumulative addition value LL value 0.6) × t) from the first rising point. The rising edge of the third reference clock is selected as the first falling decision edge. Then, the selection circuit 12 starts generating a new output pulse so that the timing of the falling edge of the output pulse to be generated is 3.6 t delayed from the first rising point. For this reason, the duty of the output pulse generated by the selection circuit 12 is 3.2 t.
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを0.8とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.8.
 以降の動作については、図4を参照しながら説明する。 The subsequent operation will be described with reference to FIG.
 累積加算回路14が累積加算値を0.8にした後において、PWM波形生成回路153は、PWMバイナリカウンタ151から0が出力されるタイミング(図4中の第2立ち上がり点)で立ち上がる新たな通常パルスの出力を開始する。このため、PWM波形生成回路153によって前回出力された通常パルスの周期は6t(すなわち、M×t)となる。 After the cumulative addition circuit 14 sets the cumulative addition value to 0.8, the PWM waveform generation circuit 153 starts a new normal operation that rises at the timing when the PWM binary counter 151 outputs 0 (second rising point in FIG. 4). Start pulse output. For this reason, the period of the normal pulse output last time by the PWM waveform generation circuit 153 is 6t (that is, M × t).
 次に、PWM位相調整回路154は、選択回路12に、第2立ち上がり点から0.8t(すなわち、累積加算値LLの値0.8×t)だけ遅れた位相で立ち上がる第4基準クロック(図4中には図示されず。)の立ち上がりエッジを、第2立ち上がり決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立ち上がりのエッジタイミングが第2立ち上がり点から0.8t遅延するタイミングとなるように、出力パルスの生成を開始する。このため、選択回路12の生成する出力パルスの周期は、6.4tとなる。 Next, the PWM phase adjustment circuit 154 causes the selection circuit 12 to enter a fourth reference clock (see FIG. 4) that rises with a phase delayed by 0.8 t (that is, the value of the cumulative addition value LL of 0.8 × t) from the second rising point. 4) is selected as the second rising decision edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated is 0.8 t delayed from the second rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを1とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 1.
 ここで、累積加算回路14は、累積加算値LLが1以上となったため、累積加算値LLから1を減算して新たな累積加算値LLを0にすると共に、周期設定レジスタ131が記憶する値を、5(すなわち、M-1)から、6(すなわち、M-1+1)に書き換えて、デューティ設定レジスタ133が記憶する値を、2(すなわち、P-1)から、3(すなわち、P-1+1)に書き換える。 Here, since the cumulative addition value LL becomes 1 or more, the cumulative addition circuit 14 subtracts 1 from the cumulative addition value LL to set the new cumulative addition value LL to 0, and the value stored in the cycle setting register 131. Is changed from 5 (ie, M−1) to 6 (ie, M−1 + 1), and the value stored in the duty setting register 133 is changed from 2 (ie, P−1) to 3 (ie, P−). Rewrite to 1 + 1).
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から4(すなわちP+1)が出力されるタイミングで、生成する通常パルスが立ち下がるように、通常パルスの生成を行う。このため、PWM波形生成回路153の生成する通常パルスのデューティは4t(すなわち、(P+1)t)となる。 Next, the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 4 (that is, P + 1) is output from the PWM binary counter 151. Therefore, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 4t (that is, (P + 1) t).
 一方、PWM位相調整回路154は、選択回路12に、第2立ち上がり点から4t(すなわち、(P(すなわち、3)+1+累積加算値LLの値0)×t)だけ遅れた位相で立ち上がる第1基準クロックの立ち上がりエッジを第2立下り決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立下りのエッジのタイミングが、第2立ち上がり点から4t遅延するタイミングとなるように、出力パルスの生成を行う。このため、選択回路12の生成する出力パルスのデューティは、3.2tとなる。 On the other hand, the PWM phase adjustment circuit 154 rises to the selection circuit 12 with a phase delayed by 4t (that is, (P (that is, 3) + 1 + the value 0 of the cumulative addition value LL) × t) from the second rising point. The rising edge of the reference clock is selected as the second falling decision edge. Then, the selection circuit 12 generates the output pulse so that the timing of the falling edge of the output pulse to be generated is the timing delayed by 4t from the second rising point. For this reason, the duty of the output pulse generated by the selection circuit 12 is 3.2 t.
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを0.2とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.2.
 ここで、PWMバイナリカウンタ151は、Mが6となっているため、カウント値が6になるまでカウントを続ける。このため、PWMバイナリカウンタ151は、カウント値5を出力した次にカウント値6を出力し、その後初期値0を出力する。 Here, since the PWM binary counter 151 has M of 6, it continues counting until the count value becomes 6. Therefore, the PWM binary counter 151 outputs the count value 6 after outputting the count value 5, and then outputs the initial value 0.
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から0が出力されるタイミング(図4中の第3立ち上がり点)で立ち上がる通常パルスの出力を開始する。このため、PWM波形生成回路153によって前回出力された通常パルスの周期は7tとなる。 Next, the PWM waveform generation circuit 153 starts outputting a normal pulse that rises at a timing (third rising point in FIG. 4) when 0 is output from the PWM binary counter 151. For this reason, the period of the normal pulse last output by the PWM waveform generation circuit 153 is 7t.
 次に、PWM位相調整回路154は、選択回路12に、第3立ち上がり点から0.2t(すなわち、累積加算値LLの値0.2×t)だけ遅れた位相で立ち上がる第1基準クロック(図4中には図示されず。)の立ち上がりエッジを、第3立ち上がり決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立ち上がりのエッジタイミングが第3立ち上がり点から0.2t遅延するタイミングとなるように、出力パルスの生成を開始する。このため、選択回路12の生成する出力パルスの周期は、6.4tとなる。 Next, the PWM phase adjustment circuit 154 causes the selection circuit 12 to start with a first reference clock (see FIG. 5) that rises with a phase delayed by 0.2 t (that is, the value 0.2 × t of the cumulative addition value LL) from the third rising point. 4) is selected as the third rising determination edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated is delayed by 0.2 t from the third rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
 そして、累積加算回路14は、周期設定レジスタ131が記憶する値を、6(すなわち、M-1+1)から、5(すなわち、M-1)に書き換えて、デューティ設定レジスタ133が記憶する値を、3(すなわち、P-1+1)から、2(すなわち、P-1)に書き換える。 Then, the cumulative addition circuit 14 rewrites the value stored in the cycle setting register 131 from 6 (ie, M−1 + 1) to 5 (ie, M−1), and changes the value stored in the duty setting register 133 to Rewrite from 3 (ie, P-1 + 1) to 2 (ie, P-1).
 以後、PWM位相調整回路154は同様の動作を繰り返し行うことで、他の回路と連携して、選択回路12から、デューティが3.2t(すなわち、(P+L/2)×t)で、周期が6.4t(すなわち、(M+L)×t)となる出力パルスを継続して出力させ続けるように、選択回路12を制御する。 Thereafter, the PWM phase adjustment circuit 154 repeatedly performs the same operation, and in cooperation with other circuits, the duty is 3.2t (that is, (P + L / 2) × t) from the selection circuit 12 and the cycle is The selection circuit 12 is controlled so that the output pulse of 6.4t (that is, (M + L) × t) is continuously output.
 上記一具体例を例示しながら説明したように、上記構成のパルス周波数制御回路1は、マイコン2がクロック信号として利用するマイコンクロックの周期がtである場合において、設定部22によって、周期設定レジスタ131にM-1(Mは1以上の整数)が設定され、高分解能周期設定レジスタ132にL(Lは0以上1未満の少数)が設定され、デューティ設定レジスタ133にP-1(Pは1以上M未満の整数)が設定されるときに、デューティが(P+L/2)×tで、周期が(M+L)×tとなる出力パルスを継続して出力し続ける。ここで、Lは小数であるため、この出力パルスのパルス周期は、マイコンクロックの周期よりも短い期間を単位とする周期になることができる。 As described with reference to the above specific example, the pulse frequency control circuit 1 configured as described above is configured so that the period setting register is set by the setting unit 22 when the period of the microcomputer clock that the microcomputer 2 uses as the clock signal is t. 131 is set to M-1 (M is an integer equal to or greater than 1), L is set to the high resolution cycle setting register 132 (L is a decimal number from 0 to less than 1), and the duty setting register 133 is set to P-1 (P is When an integer greater than or equal to 1 and less than M is set, an output pulse having a duty of (P + L / 2) × t and a cycle of (M + L) × t is continuously output. Here, since L is a decimal number, the pulse period of the output pulse can be a period having a period shorter than the period of the microcomputer clock as a unit.
 [2.動作]
 上記構成のパルス周波数制御回路1は、その特徴的な動作として、高分解能パルス列出力処理を行う。
[2. Operation]
The pulse frequency control circuit 1 configured as described above performs high-resolution pulse train output processing as its characteristic operation.
 この高分解能パルス列出力処理は、入力されるマイコンクロックのクロック周期よりも短い期間を単位とする周期からなる出力パルス列を出力する処理である。 This high-resolution pulse train output process is a process for outputting an output pulse train having a period in units shorter than the clock period of the input microcomputer clock.
 以下、この高分解能パルス列出力処理について図面を参照しながら説明する。 Hereinafter, this high-resolution pulse train output process will be described with reference to the drawings.
 図5、図6は、高分解能パルス列出力処理のフローチャートである。 5 and 6 are flowcharts of the high-resolution pulse train output process.
 高分解能パルス列出力処理は、PWMバイナリカウンタ151が0に初期化され、累積加算値LLが0に初期化され、設定部22によって、周期設定レジスタ131と高分解能周期設定レジスタ132とデューティ設定レジスタ133との値が設定された後において、パルス周波数制御回路1にマイコンクロックが入力されることで開始される。 In the high-resolution pulse train output processing, the PWM binary counter 151 is initialized to 0, the cumulative addition value LL is initialized to 0, and the setting unit 22 causes the cycle setting register 131, the high-resolution cycle setting register 132, and the duty setting register 133 to be set. Is set by inputting a microcomputer clock to the pulse frequency control circuit 1.
 ここでは、説明のために、マイコンクロックの周期がtで、基準クロックの数がN(Nは2以上の整数)で、高分解能パルス列出力処理が開始される時点において、周期設定レジスタ131が記憶する値がM-1(Mは1以上の整数)で、高分解能周期設定レジスタ132が記憶する値がL(Lは0以上1未満の小数)で、デューティ設定レジスタ133が記憶する値がP-1(Pは1以上M未満の整数)であるとする。 Here, for the sake of explanation, when the period of the microcomputer clock is t and the number of reference clocks is N (N is an integer of 2 or more) and the high-resolution pulse train output process is started, the period setting register 131 stores the period. The value to be stored is M-1 (M is an integer equal to or greater than 1), the value stored in the high resolution cycle setting register 132 is L (L is a decimal number between 0 and less than 1), and the value stored in the duty setting register 133 is P −1 (P is an integer of 1 or more and less than M).
 高分解能パルス列出力処理が開始されると、基準クロック生成回路11は、周期がtで、互いに1/Nずつ位相がずれているN個の基準クロックの生成を開始し、PWMバイナリカウンタ151は、マイコンクロックの立ち上がりエッジの数のカウントを開始する。以後、基準クロック生成回路11は、マイコンクロックが入力されている限り、上記N個の基準クロックを継続して生成し続け、PWMバイナリカウンタ151は、時々初期化されながら、マイコンクロックの立ち上がりエッジの数を継続してカウントし続ける。 When the high-resolution pulse train output processing is started, the reference clock generation circuit 11 starts generating N reference clocks whose period is t and whose phases are shifted by 1 / N from each other. The PWM binary counter 151 Starts counting the number of rising edges of the microcomputer clock. Thereafter, as long as the microcomputer clock is input, the reference clock generation circuit 11 continues to generate the N reference clocks, and the PWM binary counter 151 is initialized at times to detect the rising edge of the microcomputer clock. Continue to count the number.
 PWMバイナリカウンタ151がカウントを開始した後において、PWMバイナリカウンタ151は、カウント値がM-1と一致すると、カウント値が初期化されて、初期値0を出力する(ステップS5)。 After the PWM binary counter 151 starts counting, when the count value matches M−1, the PWM binary counter 151 initializes the count value and outputs the initial value 0 (step S5).
 すると、PWM波形生成回路153は、初期値0の出力タイミングで立ち上がる通常パルスの生成を開始する(ステップS10)。 Then, the PWM waveform generation circuit 153 starts generating a normal pulse that rises at an output timing of an initial value 0 (step S10).
 その後、通常パルスが立ち上がってから、LL×tだけ時間が経過した時点で、PWM位相調整回路154は、選択回路12に、通常パルスが立ち上がってから、LL×tだけ遅延した位相で立ち上がる基準クロックの立ち上がりエッジを立ち上がりエッジ決定エッジとして選択させる。すると、選択回路12は、通常パルスが立ち上がってから、LL×tだけ遅延したタイミングで立ち上がる出力パルスの生成を開始する(ステップS15)。そして、累積加算回路14は、累積加算値LLに、L/2を累積加算する(ステップS20)。 Thereafter, when the time LL × t has elapsed since the normal pulse rises, the PWM phase adjustment circuit 154 causes the selection circuit 12 to reference the clock that rises with a phase delayed by LL × t after the normal pulse rises. Are selected as rising edge determination edges. Then, the selection circuit 12 starts generating an output pulse that rises at a timing delayed by LL × t after the normal pulse rises (step S15). Then, the cumulative addition circuit 14 cumulatively adds L / 2 to the cumulative addition value LL (step S20).
 L/2を累積加算すると、累積加算回路14は、累積加算値LLが1以上であるか否かを判定する(ステップS25)。 When L / 2 is cumulatively added, the cumulative addition circuit 14 determines whether or not the cumulative addition value LL is 1 or more (step S25).
 ステップS25の処理において、累積加算値LLが1以上でない場合において(ステップS25:No)、PWMバイナリカウンタ151がカウント値P-1を出力すると(ステップS30)、PWM波形生成回路153は、PWMバイナリカウンタ151からカウント値P-1が出力されるタイミングで、生成する通常パルスを立ち下げる(ステップS35)。 In the process of step S25, when the cumulative addition value LL is not 1 or more (step S25: No), when the PWM binary counter 151 outputs the count value P-1 (step S30), the PWM waveform generation circuit 153 outputs the PWM binary value. The generated normal pulse falls at the timing when the counter 151 outputs the count value P-1 (step S35).
 一方、通常パルスが立ち上がってから、(P+LL)×tだけ時間が経過した時点で、PWM位相調整回路154は、選択回路12に、通常パルスが立ち上がってから、(P+LL)×tだけ遅延したタイミングで立ち上がる基準クロックの立ち上がりエッジを立下りエッジ決定エッジとして選択させる。すると、選択回路12は、通常パルスが立ち上がってから(P+LL)×tだけ遅延するタイミングで、生成する出力パルスを立ち下げる(ステップS40)。そして、累積加算回路14は累積加算値LLに、L/2を累積加算する(ステップS45)。 On the other hand, when the time of (P + LL) × t has elapsed since the normal pulse rises, the PWM phase adjustment circuit 154 delays the selection circuit 12 by (P + LL) × t after the normal pulse rises. The rising edge of the reference clock that rises at is selected as the falling edge determination edge. Then, the selection circuit 12 falls the output pulse to be generated at a timing delayed by (P + LL) × t after the normal pulse rises (step S40). Then, the cumulative addition circuit 14 cumulatively adds L / 2 to the cumulative addition value LL (step S45).
 L/2を累積加算すると、累積加算回路14は、累積加算値LLが1以上であるか否かを判定する(ステップS50)。 When L / 2 is cumulatively added, the cumulative addition circuit 14 determines whether or not the cumulative addition value LL is 1 or more (step S50).
 ステップS50の処理において、累積加算値LLが1以上でない場合において(ステップS50:No)、PWMバイナリカウンタ151がカウント値0を出力すると(ステップS55)、パルス周波数制御回路1は、再びステップS10の処理に進み、以降の処理を続ける。 In the process of step S50, when the cumulative addition value LL is not 1 or more (step S50: No), when the PWM binary counter 151 outputs the count value 0 (step S55), the pulse frequency control circuit 1 again performs step S10. Proceed to the process and continue the subsequent processes.
 ステップS25の処理において、累積加算値LLが1以上である場合には(ステップS25:Yes)、累積加算回路14は、累積加算値LLから1を減算して新たな累積加算値LLとする(ステップS100(図6参照))と共に、周期設定レジスタ131が記憶する値をM-1からMに書き換えて、デューティ設定レジスタ133が記憶する値をP-1からPに書き換える(ステップS105)。 In the process of step S25, when the cumulative addition value LL is 1 or more (step S25: Yes), the cumulative addition circuit 14 subtracts 1 from the cumulative addition value LL to obtain a new cumulative addition value LL ( Simultaneously with step S100 (see FIG. 6), the value stored in the cycle setting register 131 is rewritten from M-1 to M, and the value stored in the duty setting register 133 is rewritten from P-1 to P (step S105).
 その後、PWMバイナリカウンタ151がカウント値Pを出力すると(ステップS110)、PWM波形生成回路153は、PWMバイナリカウンタ151からカウント値Pが出力されるタイミングで、生成する通常パルスを立ち下げる(ステップS115)。 Thereafter, when the PWM binary counter 151 outputs the count value P (step S110), the PWM waveform generation circuit 153 causes the generated normal pulse to fall at the timing when the count value P is output from the PWM binary counter 151 (step S115). ).
 一方、通常パルスが立ち上がってから、(P+1+LL)×tだけ時間が経過した時点で、PWM位相調整回路154は、選択回路12に、通常パルスが立ち上がってから、(P+1+LL)×tだけ遅延したタイミングで立ち上がる基準クロックの立ち上がりエッジを立下りエッジ決定エッジとして選択させる。すると、選択回路12は、通常パルスが立ち上がってから(P+1+LL)×tだけ遅延するタイミングで、生成する出力パルスを立ち下げる(ステップS120)。そして、累積加算回路14は累積加算値LLに、L/2を累積加算する(ステップS125)。 On the other hand, when the time of (P + 1 + LL) × t has elapsed since the normal pulse rises, the PWM phase adjustment circuit 154 delays the selection circuit 12 by (P + 1 + LL) × t after the normal pulse rises. The rising edge of the reference clock that rises at is selected as the falling edge determination edge. Then, the selection circuit 12 falls the generated output pulse at a timing delayed by (P + 1 + LL) × t after the normal pulse rises (step S120). Then, the cumulative addition circuit 14 cumulatively adds L / 2 to the cumulative addition value LL (step S125).
 その後、PWMバイナリカウンタ151がカウント値0を出力すると(ステップS130)、PWM波形生成回路153は、初期値0の出力タイミングで立ち上がる通常パルスの生成を開始する(ステップS135)。 Thereafter, when the PWM binary counter 151 outputs a count value 0 (step S130), the PWM waveform generation circuit 153 starts generating a normal pulse that rises at the output timing of the initial value 0 (step S135).
 その後、通常パルスが立ち上がってから、LL×tだけ時間が経過した時点で、PWM位相調整回路154は、選択回路12に、通常パルスが立ち上がってから、LL×tだけ遅延した位相で立ち上がる基準クロックの立ち上がりエッジを立ち上がりエッジ決定エッジとして選択させる。すると、選択回路12は、通常パルスが立ち上がってから、LL×tだけ遅延したタイミングで立ち上がる出力パルスの生成を開始する(ステップS140)。そして、累積加算回路14は、周期設定レジスタ131が記憶する値をMからM-1に書き換えて、デューティ設定レジスタ133が記憶する値をPからP-1に書き換える(ステップS145)。 Thereafter, when the time LL × t has elapsed since the normal pulse rises, the PWM phase adjustment circuit 154 causes the selection circuit 12 to reference the clock that rises with a phase delayed by LL × t after the normal pulse rises. Are selected as rising edge determination edges. Then, the selection circuit 12 starts generating an output pulse that rises at a timing delayed by LL × t after the normal pulse rises (step S140). Then, the cumulative addition circuit 14 rewrites the value stored in the cycle setting register 131 from M to M-1, and rewrites the value stored in the duty setting register 133 from P to P-1 (step S145).
 ステップS145の処理が終わると、パルス周波数制御回路1は、再びステップS20の処理(図5参照)に進み、以降の処理を続ける。 When the process of step S145 is completed, the pulse frequency control circuit 1 proceeds to the process of step S20 (see FIG. 5) again and continues the subsequent processes.
 ステップS50の処理において、累積加算値LLが1以上である場合には(ステップS50:Yes)、累積加算回路14は、累積加算値LLから1を減算して新たな累積加算値LLとする(ステップS150(図6参照))と共に、周期設定レジスタ131が記憶する値をM-1からMに書き換えて、デューティ設定レジスタ133が記憶する値をP-1からPに書き換える(ステップS155)。 In the processing of step S50, when the cumulative addition value LL is 1 or more (step S50: Yes), the cumulative addition circuit 14 subtracts 1 from the cumulative addition value LL to obtain a new cumulative addition value LL ( Simultaneously with step S150 (see FIG. 6), the value stored in cycle setting register 131 is rewritten from M-1 to M, and the value stored in duty setting register 133 is rewritten from P-1 to P (step S155).
 ステップS155の処理が終わると、パルス周波数制御回路1は、ステップS130の処理に進み、以降の処理を続ける。 When the process of step S155 ends, the pulse frequency control circuit 1 proceeds to the process of step S130 and continues the subsequent processes.
 [3.まとめ]
 上述した通り、本実施の形態にかかるパルス周波数制御回路1は、マイコンクロックの周期よりも短い期間を単位とする周期の出力パルス列を出力することができる。このため、このパルス周波数制御回路1を利用することで、マイコンクロックの周期の整数倍の周期の出力パルス列を出力する従来のパルス周波数制御回路を利用する場合よりも、スイッチング素子31のスイッチング周波数制御を、より高い分解能で実現することができるようになる。
[3. Summary]
As described above, the pulse frequency control circuit 1 according to the present embodiment can output an output pulse train having a period whose unit is a period shorter than the period of the microcomputer clock. For this reason, by using this pulse frequency control circuit 1, the switching frequency control of the switching element 31 can be performed as compared with the case of using the conventional pulse frequency control circuit that outputs an output pulse train having a cycle that is an integral multiple of the cycle of the microcomputer clock. Can be realized with higher resolution.
 従って、パルス周波数制御回路1を利用する、本実施の形態に係るDCDCコンバータ3は、従来のパルス周波数制御装置を利用する従来のDCDCコンバータよりも、より精度よく出力電圧を制御することができる。 Therefore, the DCDC converter 3 according to the present embodiment using the pulse frequency control circuit 1 can control the output voltage with higher accuracy than the conventional DCDC converter using the conventional pulse frequency control device.
 (変形例)
 実施の形態では、PWM位相調整回路154が、他の回路と連携して行う動作について、図3、図4を用いて、Mが6であり、Pが3である場合、すなわち、デューティ比が50%となる場合を具体例に挙げて説明した。
(Modification)
In the embodiment, regarding the operation performed by the PWM phase adjustment circuit 154 in cooperation with other circuits, when M is 6 and P is 3 using FIGS. 3 and 4, that is, the duty ratio is The case of 50% has been described as a specific example.
 これに対して、ここでは、PWM位相調整回路154が、他の回路と連携して行う動作について、デューティ比が50%とならない場合の具体例について、図面を参照しながら説明する。 On the other hand, here, a specific example in which the duty ratio does not become 50% will be described with reference to the drawings for the operation performed by the PWM phase adjustment circuit 154 in cooperation with other circuits.
 図7、図8は、PWM位相調整回路154が、他の回路と連携して行う動作の、他の一具体例を示すタイミング図である。 7 and 8 are timing charts showing another specific example of the operation performed by the PWM phase adjustment circuit 154 in cooperation with other circuits.
 図7、図8では、Nが5であり、Mが6であり、Mを特定する第1情報がM-1を示す5であり、L及びLを特定する第2情報が0.2であり、Pが2であり、Pを特定する第3情報がP-1を示す1であり、マイコンクロックの周期がtである場合の例を具体例として例示している。 7 and 8, N is 5, M is 6, the first information specifying M is 5 indicating M-1, and the second information specifying L and L is 0.2. Yes, P is 2, the third information specifying P is 1 indicating P-1, and an example in which the period of the microcomputer clock is t is illustrated as a specific example.
 基準点において、PWM波形生成回路153は、PWMバイナリカウンタ151から0が出力されるタイミングで立ち上がる通常パルスの出力を開始する。 At the reference point, the PWM waveform generation circuit 153 starts outputting a normal pulse that rises at a timing when 0 is output from the PWM binary counter 151.
 そして、PWM位相調整回路154は、選択回路12に、通常パルスの立ち上がりエッジのタイミングから0t(すなわち、累積加算値LLの値0×t)だけ遅れた位相(すなわち同位相)で立ち上がる第0基準クロックの立ち上がりエッジを第0立ち上がり決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立ち上がりのエッジタイミングが基準点となるように、出力パルスの生成を開始する。そして、累積加算回路14は累積加算値LLの値0に、0.2(すなわち、L/2)を累積加算して、累積加算値LLの値を0.2とする。 Then, the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise to the 0th reference that rises with a phase (that is, the same phase) delayed by 0 t (that is, the value 0 × t of the cumulative addition value LL) from the timing of the rising edge of the normal pulse. The rising edge of the clock is selected as the 0th rising determination edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated becomes the reference point. Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the value 0 of the cumulative addition value LL, and sets the value of the cumulative addition value LL to 0.2.
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から2(すなわちP)が出力されるタイミングで、生成する通常パルスが立ち下がるように、通常パルスの生成を行う。このため、PWM波形生成回路153の生成する通常パルスのデューティは2t(すなわちP×t)となる。 Next, the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 2 (that is, P) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 2t (that is, P × t).
 一方、PWM位相調整回路154は、選択回路12に、基準点から2.2t(すなわち、(Pの値2+累積加算値LLの値0.2)×t)だけ遅れた位相で立ち上がる第1基準クロックの立ち上がりエッジを第0立下り決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立下りのエッジのタイミングが、基準点から2.2t遅延するタイミングとなるように、出力パルスの生成を行う。このため、選択回路12の生成する出力パルスのデューティは、2.2t(すなわち、(P+L/2)×t)となる。 On the other hand, the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise to a first reference that rises with a phase delayed by 2.2 t (ie, (P value 2 + cumulative addition value LL value 0.2) × t) from the reference point. The rising edge of the clock is selected as the 0th falling decision edge. Then, the selection circuit 12 generates the output pulse so that the timing of the falling edge of the output pulse to be generated is the timing delayed by 2.2 t from the reference point. Therefore, the duty of the output pulse generated by the selection circuit 12 is 2.2t (that is, (P + L / 2) × t).
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを0.4とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.4.
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から0が出力されるタイミング(図7中の第1立ち上がり点)で立ち上がる新たな通常パルスの出力を開始する。このため、PWM波形生成回路153によって前回出力された通常パルスの周期は6t(すなわち、M×t)となる。 Next, the PWM waveform generation circuit 153 starts outputting a new normal pulse that rises at a timing (first rising point in FIG. 7) when 0 is output from the PWM binary counter 151. For this reason, the period of the normal pulse output last time by the PWM waveform generation circuit 153 is 6t (that is, M × t).
 次に、PWM位相調整回路154は、選択回路12に、第1立ち上がり点から0.4t(すなわち、累積加算値LLの値0.4×t)だけ遅れた位相で立ち上がる第2基準クロックの立ち上がりエッジを、第1立ち上がり決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立ち上がりのエッジタイミングが第1立ち上がり点から0.4t遅延するタイミングとなるように、出力パルスの生成を行う。このため、選択回路12の生成する出力パルスの周期は、6.4tとなる。 Next, the PWM phase adjustment circuit 154 causes the selection circuit 12 to rise the second reference clock that rises with a phase delayed by 0.4 t from the first rise point (that is, the value 0.4 × t of the cumulative addition value LL). The edge is selected as the first rising edge. Then, the selection circuit 12 generates the output pulse so that the rising edge timing of the generated output pulse is delayed by 0.4 t from the first rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを0.6とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.6.
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から2(すなわちP)が出力されるタイミングで、生成する通常パルスが立ち下がるように、通常パルスの生成を行う。このため、PWM波形生成回路153の生成する通常パルスのデューティは2t(すなわちP×t)となる。 Next, the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 2 (that is, P) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 2t (that is, P × t).
 次に、PWM位相調整回路154は、選択回路12に、第1立ち上がり点から2.6t(すなわち、(Pの値2+累積加算値LLの値0.6)×t)だけ遅れた位相で立ち上がる第3基準クロックの立ち上がりエッジを第1立下り決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立下りのエッジのタイミングが、第1立ち上がり点から2.6t遅延するタイミングとなるように、新たな出力パルスの生成を開始する。このため、選択回路12の生成する出力パルスのデューティは、2.2tとなる。 Next, the PWM phase adjustment circuit 154 rises to the selection circuit 12 with a phase delayed by 2.6 t (ie, (P value 2 + cumulative addition value LL value 0.6) × t) from the first rising point. The rising edge of the third reference clock is selected as the first falling decision edge. Then, the selection circuit 12 starts generating a new output pulse so that the timing of the falling edge of the output pulse to be generated is 2.6 t delayed from the first rising point. For this reason, the duty of the output pulse generated by the selection circuit 12 is 2.2 t.
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを0.8とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.8.
 以降の動作については、図8を参照しながら説明する。 The subsequent operation will be described with reference to FIG.
 累積加算回路14が累積加算値を0.8にした後において、PWM波形生成回路153は、PWMバイナリカウンタ151から0が出力されるタイミング(図8中の第2立ち上がり点)で立ち上がる新たな通常パルスの出力を開始する。このため、PWM波形生成回路153によって前回出力された通常パルスの周期は6t(すなわち、M×t)となる。 After the cumulative addition circuit 14 sets the cumulative addition value to 0.8, the PWM waveform generation circuit 153 starts a new normal operation that rises at the timing when the PWM binary counter 151 outputs 0 (second rising point in FIG. 8). Start pulse output. For this reason, the period of the normal pulse output last time by the PWM waveform generation circuit 153 is 6t (that is, M × t).
 次に、PWM位相調整回路154は、選択回路12に、第2立ち上がり点から0.8t(すなわち、累積加算値LLの値0.8×t)だけ遅れた位相で立ち上がる第4基準クロック(図8中には図示されず。)の立ち上がりエッジを、第2立ち上がり決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立ち上がりのエッジタイミングが第2立ち上がり点から0.8t遅延するタイミングとなるように、出力パルスの生成を開始する。このため、選択回路12の生成する出力パルスの周期は、6.4tとなる。 Next, the PWM phase adjustment circuit 154 causes the selection circuit 12 to enter a fourth reference clock (see FIG. 4) that rises with a phase delayed by 0.8 t (that is, the value of the cumulative addition value LL of 0.8 × t) from the second rising point. 8) is selected as the second rising decision edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated is 0.8 t delayed from the second rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを1とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 1.
 ここで、累積加算回路14は、累積加算値LLが1以上となったため、累積加算値LLから1を減算して新たな累積加算値LLを0にすると共に、周期設定レジスタ131が記憶する値を、5(すなわち、M-1)から、6(すなわち、M-1+1)に書き換えて、デューティ設定レジスタ133が記憶する値を、1(すなわち、P-1)から、2(すなわち、P-1+1)に書き換える。 Here, since the cumulative addition value LL becomes 1 or more, the cumulative addition circuit 14 subtracts 1 from the cumulative addition value LL to set the new cumulative addition value LL to 0, and the value stored in the cycle setting register 131. Is changed from 5 (ie, M−1) to 6 (ie, M−1 + 1), and the value stored in the duty setting register 133 is changed from 1 (ie, P−1) to 2 (ie, P−). Rewrite to 1 + 1).
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から3(すなわちP+1)が出力されるタイミングで、生成する通常パルスが立ち下がるように、通常パルスの生成を行う。このため、PWM波形生成回路153の生成する通常パルスのデューティは3t(すなわち、(P+1)t)となる。 Next, the PWM waveform generation circuit 153 generates a normal pulse so that the generated normal pulse falls at the timing when 3 (that is, P + 1) is output from the PWM binary counter 151. For this reason, the duty of the normal pulse generated by the PWM waveform generation circuit 153 is 3t (that is, (P + 1) t).
 一方、PWM位相調整回路154は、選択回路12に、第2立ち上がり点から3t(すなわち、(P(すなわち、2)+1+累積加算値LLの値0)×t)だけ遅れた位相で立ち上がる第1基準クロックの立ち上がりエッジを第2立下り決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立下りのエッジのタイミングが、第2立ち上がり点から3t遅延するタイミングとなるように、出力パルスの生成を行う。このため、選択回路12の生成する出力パルスのデューティは、2.2tとなる。 On the other hand, the PWM phase adjustment circuit 154 rises to the selection circuit 12 with a phase delayed by 3t from the second rising point (that is, (P (that is, 2) + 1 + the value 0 of the cumulative addition value LL) × t). The rising edge of the reference clock is selected as the second falling decision edge. Then, the selection circuit 12 generates the output pulse so that the timing of the falling edge of the output pulse to be generated is 3 t delayed from the second rising point. For this reason, the duty of the output pulse generated by the selection circuit 12 is 2.2 t.
 そして、累積加算回路14は、累積加算値LLに0.2(すなわち、L/2)を累積加算して、累積加算値LLを0.2とする。 Then, the cumulative addition circuit 14 cumulatively adds 0.2 (that is, L / 2) to the cumulative addition value LL, and sets the cumulative addition value LL to 0.2.
 ここで、PWMバイナリカウンタ151は、Mが6となっているため、カウント値が6になるまでカウントを続ける。このため、PWMバイナリカウンタ151は、カウント値5を出力した次にカウント値6を出力し、その後初期値0を出力する。 Here, since the PWM binary counter 151 has M of 6, it continues counting until the count value becomes 6. Therefore, the PWM binary counter 151 outputs the count value 6 after outputting the count value 5, and then outputs the initial value 0.
 次に、PWM波形生成回路153は、PWMバイナリカウンタ151から0が出力されるタイミング(図8中の第3立ち上がり点)で立ち上がる通常パルスの出力を開始する。このため、PWM波形生成回路153によって前回出力された通常パルスの周期は7tとなる。 Next, the PWM waveform generation circuit 153 starts outputting a normal pulse that rises at a timing (third rising point in FIG. 8) when 0 is output from the PWM binary counter 151. For this reason, the period of the normal pulse last output by the PWM waveform generation circuit 153 is 7t.
 次に、PWM位相調整回路154は、選択回路12に、第3立ち上がり点から0.2t(すなわち、累積加算値LLの値0.2×t)だけ遅れた位相で立ち上がる第1基準クロック(図8中には図示されず。)の立ち上がりエッジを、第3立ち上がり決定エッジとして選択させる。すると、選択回路12は、生成する出力パルスの立ち上がりのエッジタイミングが第3立ち上がり点から0.2t遅延するタイミングとなるように、出力パルスの生成を開始する。このため、選択回路12の生成する出力パルスの周期は、6.4tとなる。 Next, the PWM phase adjustment circuit 154 causes the selection circuit 12 to start with a first reference clock (see FIG. 5) that rises with a phase delayed by 0.2 t (that is, the value 0.2 × t of the cumulative addition value LL) from the third rising point. 8) is selected as the third rising edge. Then, the selection circuit 12 starts generating the output pulse so that the rising edge timing of the output pulse to be generated is delayed by 0.2 t from the third rising point. Therefore, the cycle of the output pulse generated by the selection circuit 12 is 6.4t.
 そして、累積加算回路14は、周期設定レジスタ131が記憶する値を、6(すなわち、M-1+1)から、5(すなわち、M-1)に書き換えて、デューティ設定レジスタ133が記憶する値を、2(すなわち、P-1+1)から、1(すなわち、P-1)に書き換える。 Then, the cumulative addition circuit 14 rewrites the value stored in the cycle setting register 131 from 6 (ie, M−1 + 1) to 5 (ie, M−1), and changes the value stored in the duty setting register 133 to Rewrite from 2 (ie, P-1 + 1) to 1 (ie, P-1).
 以後、PWM位相調整回路154は同様の動作を繰り返し行うことで、他の回路と連携して、選択回路12から、デューティが2.2t(すなわち、(P+L/2)×t)で、周期が6.4t(すなわち、(M+L)×t)となる出力パルスを継続して出力させ続けるように、選択回路12を制御する。 Thereafter, the PWM phase adjustment circuit 154 repeatedly performs the same operation, and in cooperation with other circuits, the selection circuit 12 outputs a duty of 2.2t (that is, (P + L / 2) × t) and a cycle of The selection circuit 12 is controlled so that the output pulse of 6.4t (that is, (M + L) × t) is continuously output.
 上記他の一具体例を例示しながら説明したように、上記構成のパルス周波数制御回路1は、Mの値とPの値との組み合わせに応じて、様々なデューティ比の出力パルス列の出力を実現できる。 As described above with reference to another specific example, the pulse frequency control circuit 1 having the above configuration realizes output of an output pulse train having various duty ratios according to a combination of the M value and the P value. it can.
 (補足)
 以上のように、本出願において開示する技術の例示として、実施の形態及び変形例について説明した。しかしながら本開示による技術は、これらに限定されず、適宜、変更、置き換え、付加、省略等を行った実施の形態にも適用可能である。
(Supplement)
As described above, the embodiments and the modification examples have been described as examples of the technology disclosed in the present application. However, the technology according to the present disclosure is not limited to these, and can be applied to embodiments in which changes, replacements, additions, omissions, and the like are appropriately performed.
 (1)実施の形態において、本発明に係るDCDCコンバータの一例として、図1に示される構成のDCDCコンバータ3を例示して説明した。 (1) In the embodiment, the DCDC converter 3 having the configuration shown in FIG. 1 has been described as an example of the DCDC converter according to the present invention.
 しかしながら、本発明に係るDCDCコンバータは、必ずしも図1に示される構成のDCDCコンバータ3に限定される必要はない。 However, the DCDC converter according to the present invention is not necessarily limited to the DCDC converter 3 having the configuration shown in FIG.
 以下に、本発明に係るDCDCコンバータの他の構成について、いくつか例示する。 Hereinafter, some examples of other configurations of the DCDC converter according to the present invention will be described.
 図9は、本発明に係るDCDCコンバータの他の一例であるDCDCコンバータ3Aの構成を示すブロック図である。 FIG. 9 is a block diagram showing a configuration of a DCDC converter 3A which is another example of the DCDC converter according to the present invention.
 同図に示されるように、DCDCコンバータ3Aは、スイッチング素子91と、エネルギー変換回路92と、整流平滑回路93と、マイコン2とを含んで構成される。 As shown in the figure, the DCDC converter 3A includes a switching element 91, an energy conversion circuit 92, a rectifying / smoothing circuit 93, and the microcomputer 2.
 実施の形態1に係るDCDCコンバータ3(図1参照)は、エネルギー変換回路32がトランスを含んで実現される例であるのに対して、このDCDCコンバータ3Aは、エネルギー変換回路92がトランスを含まずにコイルを含んで実現される、いわゆるチョッパ方式DCDCコンバータの例となっている。 The DCDC converter 3 (see FIG. 1) according to the first embodiment is an example in which the energy conversion circuit 32 includes a transformer, whereas the DCDC converter 3A includes an energy conversion circuit 92 that includes a transformer. This is an example of a so-called chopper type DCDC converter realized by including a coil.
 図10は、本発明に係るDCDCコンバータのさらなる他の一例であるDCDCコンバータ3Bの構成を示すブロック図である。 FIG. 10 is a block diagram showing a configuration of a DCDC converter 3B which is still another example of the DCDC converter according to the present invention.
 同図に示されるように、DCDCコンバータ3Bは、第1スイッチング素子101Aと、第2スイッチング素子101Bと、エネルギー変換回路102と、整流平滑回路103と、マイコン2Aとを含んで構成される。 As shown in the figure, the DCDC converter 3B includes a first switching element 101A, a second switching element 101B, an energy conversion circuit 102, a rectifying / smoothing circuit 103, and a microcomputer 2A.
 実施の形態1に係るDCDCコンバータ3(図1参照)は、1つのスイッチング素子と、1つの出力パルス列を出力するパルス周波数制御回路1とを含んで実現される例であるのに対して、このDCDCコンバータ3Bは、互いに異なる位相でスイッチングする2つのスイッチング素子と、互いに異なる位相の2つの出力パルス列を出力するように、実施の形態1に係るパルス周波数制御回路1からその一部の機能が変形されたパルス周波数制御回路1Aとを含んで実現される例となっている。 The DCDC converter 3 (see FIG. 1) according to the first embodiment is an example realized by including one switching element and a pulse frequency control circuit 1 that outputs one output pulse train. The DCDC converter 3B is modified in part from the pulse frequency control circuit 1 according to the first embodiment so as to output two switching elements that switch at different phases and two output pulse trains with different phases. In this example, the pulse frequency control circuit 1A is realized.
 (2)実施の形態において、パルス周波数制御回路1は、マイコン(マイコン2)に内蔵されているとして説明した。 (2) In the embodiment, the pulse frequency control circuit 1 is described as being built in the microcomputer (microcomputer 2).
 しかしながら、本発明に係るパルス周波数制御回路は、必ずしもマイコンに内蔵される構成に限定される必要はない。 However, the pulse frequency control circuit according to the present invention is not necessarily limited to the configuration built in the microcomputer.
 一例として、パルス周波数制御回路1は、マイコンに含まれずに単独の半導体集積回路として実現されても構わないし、マイコン以外の電子部品に内蔵されて実現されても構わない。 As an example, the pulse frequency control circuit 1 may be realized as a single semiconductor integrated circuit without being included in the microcomputer, or may be realized by being incorporated in an electronic component other than the microcomputer.
 本発明は、パルスを出力する回路に広く利用可能である。 The present invention can be widely used in circuits that output pulses.
 1、1A パルス周波数制御回路
 2、2A マイコン
 3、3A、3B DCDCコンバータ
 11 基準クロック生成回路
 12 選択回路
 13 設定レジスタ
 14 累積加算回路
 15 制御回路
 21 比較部
 22、22A 設定部
 31、91、101A、101B スイッチング素子
 32、92、102 エネルギー変換回路
 33、93、103 整流平滑回路
 131 第1レジスタ
 132 第2レジスタ
 133 第3レジスタ
 151 PWMバイナリカウンタ
 152 周期制御回路
 153 PWM波形生成回路
 154 PWM位相調整回路
DESCRIPTION OF SYMBOLS 1, 1A Pulse frequency control circuit 2, 2A Microcomputer 3, 3A, 3B DCDC converter 11 Reference clock generation circuit 12 Selection circuit 13 Setting register 14 Cumulative addition circuit 15 Control circuit 21 Comparison part 22, 22A Setting part 31, 91, 101A, 101B Switching element 32, 92, 102 Energy conversion circuit 33, 93, 103 Rectification smoothing circuit 131 1st register 132 2nd register 133 3rd register 151 PWM binary counter 152 Period control circuit 153 PWM waveform generation circuit 154 PWM phase adjustment circuit

Claims (10)

  1.  同一基準周期の、互いに位相が異なる複数の基準クロックを取得して選択する選択回路と、
     前記基準周期よりも短い第1期間を単位とする設定周期を特定する情報を記憶する設定レジスタと、
     前記設定レジスタに記憶される情報に基づいて、前記選択回路に対して、前記複数の基準クロックの立ち上がりエッジの中から、前記設定周期の間隔で立ち上がる立ち上がりエッジを、立ち上がり決定エッジとして逐次繰り返し選択させる制御回路とを備え、
     前記選択回路は、選択する立ち上がり決定エッジのタイミング毎に立ち上がる出力パルスを逐次繰り返し生成することにより、当該出力パルスからなる出力パルス列を出力する
     パルス周波数制御回路。
    A selection circuit that acquires and selects a plurality of reference clocks having the same reference period and different phases, and
    A setting register that stores information for specifying a setting period in units of a first period shorter than the reference period;
    Based on information stored in the setting register, the selection circuit sequentially and repeatedly selects rising edges rising at the set cycle intervals as rising determination edges from among the rising edges of the plurality of reference clocks. A control circuit,
    The selection circuit outputs an output pulse train composed of the output pulses by repeatedly generating output pulses that rise at every timing of a rising determination edge to be selected.
  2.  前記制御回路は、前記基準周期のM(Mは1以上の整数)倍の周期の通常パルスを生成することにより、当該通常パルスからなる通常パルス列を生成し、
     所定の条件において、Mの値をI(Iは1以上の整数)に変更する
     請求項1に記載のパルス周波数制御回路。
    The control circuit generates a normal pulse of the normal pulse by generating a normal pulse having a period M (M is an integer of 1 or more) times the reference period,
    The pulse frequency control circuit according to claim 1, wherein the value of M is changed to I (I is an integer of 1 or more) under a predetermined condition.
  3.  前記複数の基準クロックは、前記基準周期の1/N(Nは2以上の整数)ずつ位相がずれているN個の基準クロックを含み、
     前記第1期間は、前記基準周期の1/Nであり、
     Mは、前記設定周期を前記基準周期で除算する場合における商の整数値であり、
     前記設定レジスタは、Mを特定する第1情報を記憶する第1レジスタと、前記商の小数値L(Lは0以上1未満の小数)を特定する第2情報を記憶する第2レジスタとを含み、
     前記制御回路は、前記第1レジスタに記憶される第1情報に基づいて、前記基準周期のM倍の周期の通常パルスを逐次繰り返し生成することにより、前記通常パルス列の生成を行い、
     前記パルス周波数制御回路は、さらに、前記第2レジスタに記憶される第2情報に基づいて、前記選択回路から出力される出力パルス列が立ち上がる又は立ち下がる毎に、L/2を累積加算して、J(Jは0以上の整数)回累積加算した場合に、累積加算値LL(J)を算出する累積加算回路を備え、
     前記制御回路は、前記第2レジスタに記憶される第2情報に基づいて、前記選択回路に対して、K(Kは0以上の整数)回目に、前記通常パルス列の第1立ち上がりエッジから、前記基準周期のLL(2×K)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、前記立ち上がり決定エッジとして選択させて、K+1回目に、前記第1立ち上がりエッジの次に立ち上がる前記通常パルス列の立ち上がりエッジから、前記基準周期のLL(2×(K+1))倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、前記立ち上がり決定エッジとして選択させることで、前記制御を行う
     請求項1又は2に記載のパルス周波数制御回路。
    The plurality of reference clocks include N reference clocks whose phases are shifted by 1 / N (N is an integer of 2 or more) of the reference period,
    The first period is 1 / N of the reference period,
    M is an integer value of a quotient when the set period is divided by the reference period.
    The setting register includes a first register that stores first information that specifies M, and a second register that stores second information that specifies the decimal value L of the quotient (L is a decimal number of 0 or more and less than 1). Including
    The control circuit generates the normal pulse train by sequentially and repeatedly generating a normal pulse having a period M times the reference period based on the first information stored in the first register,
    The pulse frequency control circuit further accumulates L / 2 each time the output pulse train output from the selection circuit rises or falls based on the second information stored in the second register, A cumulative addition circuit that calculates a cumulative addition value LL (J) when J (J is an integer of 0 or more) times of cumulative addition;
    The control circuit, based on the second information stored in the second register, from the first rising edge of the normal pulse train to the selection circuit at the Kth (K is an integer of 0 or more) times, The normal pulse train that rises next to the first rising edge at the (K + 1) th time by causing the rising edge of the reference clock that rises with a phase delayed by LL (2 × K) times the reference period to be selected as the rising edge. 2. The control is performed by selecting, as the rising decision edge, a rising edge of a reference clock that rises with a phase delayed by a period LL (2 × (K + 1)) times the reference period from the rising edge of the reference period. Or the pulse frequency control circuit of 2.
  4.  前記累積加算回路は、L/2を累積加算することでLL(J)が1以上となった場合には、(1)当該LL(J)から1を減算して新たなLL(J)を算出すると共に、(2)前記第1レジスタが記憶する情報を、Mを特定する情報からM+1を特定する情報へと書き換えて、(3)当該書き換えの後において、前記選択回路から出力される出力パルス列が最初に立ち上がるときに、前記第1レジスタが記憶する情報を、M+1を特定する情報からMを特定する情報へと書き換える
     請求項3記載のパルス周波数制御回路。
    When the LL (J) becomes 1 or more by cumulative addition of L / 2, the cumulative addition circuit subtracts 1 from the LL (J) to obtain a new LL (J). And (2) rewriting the information stored in the first register from information specifying M to information specifying M + 1, and (3) an output output from the selection circuit after the rewriting The pulse frequency control circuit according to claim 3, wherein when the pulse train first rises, the information stored in the first register is rewritten from information specifying M + 1 to information specifying M.
  5.  Mは、2以上の整数であり、
     前記設定レジスタは、さらに、整数値P(Pは1以上M未満の整数)を特定する第3情報を記憶する第3レジスタをも含み、
     前記制御回路は、前記第3レジスタに記憶される第3情報に基づいて、前記選択回路に対して、前記通常パルス列の第1立ち上がりエッジから、前記基準周期のLL(2×K)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、第1立ち上がり決定エッジとして選択させた場合に、さらに、前記第1立ち上がりエッジから前記基準周期のP+LL(2×K+1)倍の期間だけ遅れた位相で立ち上がる基準クロックの立ち上がりエッジを、前記第1立ち上がり決定エッジに対応する第1立下り決定エッジとして選択させ、
     前記選択回路は、生成する、前記第1立ち上がり決定エッジのタイミングで立ち上がる出力パルスが、前記第1立下り決定エッジのタイミングで立ち下がるように、前記出力パルスの生成を行う
     請求項4に記載のパルス周波数制御回路。
    M is an integer greater than or equal to 2,
    The setting register further includes a third register for storing third information for specifying an integer value P (P is an integer of 1 or more and less than M),
    Based on the third information stored in the third register, the control circuit has a period LL (2 × K) times the reference period from the first rising edge of the normal pulse train with respect to the selection circuit. When the rising edge of the reference clock that rises with a phase delayed by only one is selected as the first rising edge, the phase is further delayed from the first rising edge by a period P + LL (2 × K + 1) times the reference period. Selecting the rising edge of the reference clock rising at 1 as the first falling decision edge corresponding to the first rising decision edge,
    5. The output pulse generation according to claim 4, wherein the selection circuit generates the output pulse so that an output pulse generated at the timing of the first rising decision edge falls at the timing of the first falling decision edge. Pulse frequency control circuit.
  6.  前記累積加算回路は、L/2を累積加算することでLL(J)が1以上となった場合に、さらに、(1)前記第3レジスタが記憶する情報を、Pを特定する情報からP+1を特定する情報へと書き換えて、(2)当該書き換えの後において、前記選択回路から出力される出力パルス列が最初に立ち上がるときに、前記第3レジスタが記憶する情報を、P+1を特定する情報からPを特定する情報へと書き換える
     請求項5に記載のパルス周波数制御回路。
    The cumulative addition circuit further adds (1) information stored in the third register to P + 1 from information specifying P when LL (J) becomes 1 or more by cumulative addition of L / 2. (2) After the rewriting, when the output pulse train output from the selection circuit first rises, the information stored in the third register is changed from the information specifying P + 1. The pulse frequency control circuit according to claim 5, wherein P is rewritten into information for specifying P.
  7.  さらに、前記基準周期の入力基準クロックから、前記選択回路が取得する前記複数の基準クロックを生成する基準クロック生成回路を備える
     請求項1~6のいずれか1項に記載のパルス周波数制御回路。
    The pulse frequency control circuit according to any one of claims 1 to 6, further comprising a reference clock generation circuit that generates the plurality of reference clocks acquired by the selection circuit from an input reference clock having the reference period.
  8.  請求項1~7のいずれかに記載のパルス周波数制御回路と、
     前記設定レジスタに値を設定する設定部とを備える
     マイコン。
    A pulse frequency control circuit according to any one of claims 1 to 7,
    A microcomputer comprising: a setting unit that sets a value in the setting register.
  9.  請求項8に記載のマイコンと、
     前記選択回路から出力される出力パルス列に応じて、直流の入力電圧をスイッチングするスイッチング素子と、
     前記スイッチング素子によってスイッチングされた入力電圧が入力されると、当該入力電圧の電圧変動に起因する電流変動によって起電力を生じ、当該起電力に応じた電圧を出力するエネルギー変換回路と、
     前記エネルギー変換回路から出力される電圧を整流平滑して直流の出力電圧を出力する整流平滑回路とを備え、
     前記マイコンは、さらに、前記出力電圧の電位と所定の電位とを比較する比較部を含み、
     前記設定部は、前記比較部による比較の結果に基づいて、前記出力電圧の電位が前記所定の電位に近づくように、前記設定を行う
     DCDCコンバータ。
    A microcomputer according to claim 8;
    A switching element that switches a DC input voltage according to an output pulse train output from the selection circuit;
    When an input voltage switched by the switching element is input, an energy conversion circuit that generates an electromotive force due to current fluctuation caused by voltage fluctuation of the input voltage and outputs a voltage corresponding to the electromotive force;
    A rectifying / smoothing circuit that outputs a DC output voltage by rectifying and smoothing the voltage output from the energy conversion circuit;
    The microcomputer further includes a comparison unit that compares the potential of the output voltage with a predetermined potential.
    The setting unit performs the setting so that the potential of the output voltage approaches the predetermined potential based on a result of comparison by the comparison unit. DCDC converter.
  10.  同一基準周期の、互いに位相が異なる複数の基準クロックを取得して選択する選択回路と、設定レジスタと、制御回路とを備えるパルス周波数制御回路が行うパルス周波数制御方法であって、
     前記設定レジスタが、前記基準周期よりも短い第1期間を単位とする設定周期を特定する情報を記憶する設定ステップと、
     前記制御回路が、前記設定ステップによって記憶される情報に基づいて、前記選択回路に対して、前記複数の基準クロックの中から、前記設定周期の間隔で立ち上がる立ち上がりエッジを、立ち上がり決定エッジとして逐次繰り返し選択させる制御ステップと
     前記選択回路が、選択する立ち上がり決定エッジのタイミング毎に立ち上がる出力パルスを逐次繰り返し生成することにより、当該出力パルスからなる出力パルス列を出力する出力ステップとを含む
     パルス周波数制御方法。
    A pulse frequency control method performed by a pulse frequency control circuit including a selection circuit that acquires and selects a plurality of reference clocks having the same reference period and different phases, a setting register, and a control circuit,
    A setting step in which the setting register stores information for specifying a setting period in units of a first period shorter than the reference period;
    Based on the information stored in the setting step, the control circuit sequentially repeats the rising edge rising at the set cycle interval from the plurality of reference clocks as the rising determination edge with respect to the selection circuit. A pulse frequency control method comprising: a control step of selecting, and an output step of outputting an output pulse train composed of the output pulses by successively generating output pulses that rise every time the rising decision edge is selected by the selection circuit.
PCT/JP2017/040869 2016-11-28 2017-11-14 Pulse frequency control circuit, microcontroller, dc-dc converter, and pulse frequency control method WO2018096973A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780072838.3A CN110024288B (en) 2016-11-28 2017-11-14 Pulse frequency control circuit, microcontroller, DCDC converter and pulse frequency control method
JP2018552512A JP6826612B2 (en) 2016-11-28 2017-11-14 Pulse frequency control circuit, microcomputer, DCDC converter, and pulse frequency control method
US16/421,080 US10530252B2 (en) 2016-11-28 2019-05-23 Pulse-frequency control circuit, microcomputer, DC-to-DC converter, and pulse-frequency control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016230490 2016-11-28
JP2016-230490 2016-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/421,080 Continuation US10530252B2 (en) 2016-11-28 2019-05-23 Pulse-frequency control circuit, microcomputer, DC-to-DC converter, and pulse-frequency control method

Publications (1)

Publication Number Publication Date
WO2018096973A1 true WO2018096973A1 (en) 2018-05-31

Family

ID=62195952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040869 WO2018096973A1 (en) 2016-11-28 2017-11-14 Pulse frequency control circuit, microcontroller, dc-dc converter, and pulse frequency control method

Country Status (4)

Country Link
US (1) US10530252B2 (en)
JP (1) JP6826612B2 (en)
CN (1) CN110024288B (en)
WO (1) WO2018096973A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688672A (en) * 2019-10-17 2021-04-20 珠海零边界集成电路有限公司 Apparatus and method for generating PWM wave
CN111641404B (en) * 2020-05-12 2022-06-03 成都华微电子科技股份有限公司 Clock frequency spreading method and clock frequency spreading circuit
CN112383257B (en) * 2020-11-20 2022-06-17 深圳市海浦蒙特科技有限公司 Rotary transformer feedback signal frequency division method and system based on AD2S1210 rotary transformer decoding chip
CN115276621B (en) * 2022-07-07 2024-04-19 重庆御芯微信息技术有限公司 High-precision pulse width modulation method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218832A (en) * 1991-08-21 1993-08-27 Sony Corp Pulse control circuit
JP2000236241A (en) * 1999-02-16 2000-08-29 Kawasaki Steel Corp Semiconductor integrated circuit
JP2001001568A (en) * 1999-04-23 2001-01-09 Fuji Photo Film Co Ltd Pulse width modulating device and exposure device
JP2004032732A (en) * 2003-05-23 2004-01-29 Seiko Epson Corp Pwm control circuit, microcomputer, and electronic apparatus
JP2007329745A (en) * 2006-06-08 2007-12-20 Internatl Business Mach Corp <Ibm> Delay ratio adjusting circuit, delay pulse generating circuit, and pulse-width modulated pulse signals generating device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188691A (en) * 1992-12-18 1994-07-08 Toshiba Corp Pulse width controller
JP3329088B2 (en) * 1994-02-16 2002-09-30 株式会社デンソー Pulse generator, variable frequency oscillator and PLL device
JPH11177399A (en) * 1997-12-15 1999-07-02 Mitsubishi Electric Corp Clock delay circuit, oscillation circuit using the same, phase locked loop and clock generation circuit
JP2004147039A (en) * 2002-10-24 2004-05-20 Mega Chips Corp Clock synchronization circuit and clock synchronization system
JP4141988B2 (en) * 2004-06-29 2008-08-27 セイコーエプソン株式会社 Electro-optical device driving circuit, driving method, electro-optical device, and electronic apparatus
JP2006319399A (en) * 2005-05-10 2006-11-24 Nec Electronics Corp Pulse width modulation circuit and polyphase clock generating circuit
JP4704260B2 (en) * 2006-03-27 2011-06-15 富士通セミコンダクター株式会社 PWM output circuit
US8072253B2 (en) * 2006-09-13 2011-12-06 Nec Corporation Clock adjusting circuit and semiconductor integrated circuit device
US8125287B2 (en) * 2010-02-18 2012-02-28 Exar Corporation Extendable N-channel digital pulse-width/pulse-frequency modulator
TWI443521B (en) * 2010-03-26 2014-07-01 Nuvoton Technology Corp Bus interface, clock control device, and clock frequency control method of bus interface
US8570014B2 (en) * 2011-05-01 2013-10-29 Intersil Americas, Llc Advanced clock synchronization circuit for switch mode power supplies
JP2013236295A (en) * 2012-05-10 2013-11-21 Renesas Electronics Corp Semiconductor device, microcontroller and power supply device
JP5965223B2 (en) * 2012-06-29 2016-08-03 ルネサスエレクトロニクス株式会社 Clock correction circuit and clock correction method
US9007110B1 (en) * 2013-07-08 2015-04-14 Xilinx, Inc. Register circuits and methods of storing data in a register circuit
FR3025901A1 (en) * 2014-09-15 2016-03-18 St Microelectronics Crolles 2 DEVICE FOR GENERATING A CLOCK SIGNAL BY FREQUENCY MULTIPLICATION
TWI551053B (en) * 2015-01-14 2016-09-21 新唐科技股份有限公司 Pulcse width modulation signal generation circuit and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218832A (en) * 1991-08-21 1993-08-27 Sony Corp Pulse control circuit
JP2000236241A (en) * 1999-02-16 2000-08-29 Kawasaki Steel Corp Semiconductor integrated circuit
JP2001001568A (en) * 1999-04-23 2001-01-09 Fuji Photo Film Co Ltd Pulse width modulating device and exposure device
JP2004032732A (en) * 2003-05-23 2004-01-29 Seiko Epson Corp Pwm control circuit, microcomputer, and electronic apparatus
JP2007329745A (en) * 2006-06-08 2007-12-20 Internatl Business Mach Corp <Ibm> Delay ratio adjusting circuit, delay pulse generating circuit, and pulse-width modulated pulse signals generating device

Also Published As

Publication number Publication date
JPWO2018096973A1 (en) 2019-10-17
CN110024288A (en) 2019-07-16
US20190280598A1 (en) 2019-09-12
CN110024288B (en) 2023-06-06
JP6826612B2 (en) 2021-02-03
US10530252B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2018096973A1 (en) Pulse frequency control circuit, microcontroller, dc-dc converter, and pulse frequency control method
KR101243595B1 (en) Multi-output power supply device
US9502976B2 (en) Power supply circuit and control method for the same
JP5280807B2 (en) Switching power supply
JP2006042598A (en) Adaptive multimode system
JP5786368B2 (en) Digitally controlled switching power supply with input voltage detection circuit
JP2009213228A (en) Dc converter
JP2013198335A (en) Dc-dc converter and control circuit thereof
US9496788B2 (en) Multi-phase boost converter with phase self-detection and detecting circuit thereof
JP2013070509A (en) Power unit and light emitting element drive device
US11967904B2 (en) Polyphase power-supply device
JP5630895B2 (en) Switching power supply circuit
JP5303761B2 (en) Timing generation circuit and phase shift circuit
JP2007129853A (en) Power unit
JP2013236295A (en) Semiconductor device, microcontroller and power supply device
TWI631804B (en) Constant on-time switching converter and clock synchronization circuit
US9762174B2 (en) Increasing PWM resolution for digitally controlled motor control applications
JP5930769B2 (en) Load drive circuit
TWI569567B (en) Method and for generating pwm signals
JP5388912B2 (en) Pulse power supply device and pulse voltage generation method thereof
JP5599663B2 (en) Drive signal generation circuit, control device, switching power supply device, and control method
JP5957339B2 (en) Semiconductor device, switching power supply device including the same, and semiconductor device calibration method
JP6672195B2 (en) Power supply
WO2019187821A1 (en) Matrix converter control device, and power conversion system
JP2010171685A (en) Clock synchronization circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873196

Country of ref document: EP

Kind code of ref document: A1