WO2018096863A1 - Heat storage device, glass melting device, and glass article manufacturing method - Google Patents

Heat storage device, glass melting device, and glass article manufacturing method Download PDF

Info

Publication number
WO2018096863A1
WO2018096863A1 PCT/JP2017/038384 JP2017038384W WO2018096863A1 WO 2018096863 A1 WO2018096863 A1 WO 2018096863A1 JP 2017038384 W JP2017038384 W JP 2017038384W WO 2018096863 A1 WO2018096863 A1 WO 2018096863A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage chamber
storage device
heat
glass melting
Prior art date
Application number
PCT/JP2017/038384
Other languages
French (fr)
Japanese (ja)
Inventor
正巳 北野
山村 真司
純平 吉川
Original Assignee
Agcセラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcセラミックス株式会社 filed Critical Agcセラミックス株式会社
Priority to JP2018552476A priority Critical patent/JP6962928B2/en
Publication of WO2018096863A1 publication Critical patent/WO2018096863A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to a heat storage device for a glass melting furnace, a glass melting device having the heat storage device, and a method for producing a glass article using the glass melting device.
  • the introduction of the combustion air into the glass melting furnace is generally performed by passing through a heat storage device arranged in parallel with the glass melting furnace. Further, the exhaust gas generated by the combustion in the glass melting furnace is also passed through the heat storage device and discharged from the glass melting furnace to the external atmosphere. That is, in the heat storage device, the flow of combustion air and exhaust gas are in opposite directions.
  • the heat storage device used here has a heat storage body in which checker bricks are stacked inside, and stores the heat by passing high-temperature exhaust gas discharged along with combustion between the checker bricks, and the heat is stored.
  • the combustion air that is then fed into the glass melting furnace is heated by heat.
  • the heated combustion air is mixed with the fuel gas and burned inside the glass melting furnace, and maintains a predetermined high temperature state.
  • this operation only needs to distribute
  • Various configurations of such a heat storage device have been studied for the purpose of improving efficiency (see, for example, Patent Documents 1 and 2).
  • the heat exchangeable flow path is made longer than in the case of a heat storage device (single-pass heat storage device) having only one heat storage chamber. Therefore, the exhaust heat of the exhaust gas can be used efficiently.
  • a heat storage device having two heat storage chambers a heat storage device as shown in FIG. 7 can be considered.
  • the heat storage device 50 includes a first heat storage chamber 51 in which a heat storage body 51a is disposed, a second heat storage chamber 52 that is adjacent to the first heat storage chamber 51, and in which a heat storage body 52a is disposed,
  • the first heat storage chamber 51 is provided with a connection port 53 for connection with a glass melting furnace
  • the second heat storage chamber 52 is provided with a connection duct 54 for connection with an external atmosphere. It has been.
  • the 1st heat storage chamber 51 and the 2nd heat storage chamber 52 are mutually connected by the flow path 55 below each other.
  • the heat storage device 50 When discharging the exhaust gas generated in the glass melting furnace, the heat storage device 50 introduces the exhaust gas into the first heat storage chamber 51 from the connection port 53 connected to the glass melting furnace, and then introduces it. The exhaust gas is transferred to the second heat storage chamber 52 via the flow passage 55. The transferred exhaust gas flows through the second heat storage chamber 52 and is directly discharged from the connection duct 54 to the external atmosphere.
  • the exhaust gas is heated to a high temperature in the glass melting furnace, and the high temperature exhaust gas is circulated through the heat storage bodies 51a and 52a to store heat in the heat storage body by heat transfer.
  • exhaust gas since exhaust gas is high temperature, it tends to rise by buoyancy in the heat storage chamber. Accordingly, in the first heat storage chamber 51, exhaust gas accumulates from above, and transfer to the second heat storage chamber 52 starts when the exhaust gas accumulates to a position lower than the upper end of the opening of the flow passage 55.
  • the temperature of the exhaust gas introduced into the second heat storage chamber 52 is lowered due to contact with the first heat storage body 51a, it is still high temperature, so that it immediately moves to the second heat storage chamber 52. When it rises and reaches the vicinity of the ceiling of the second heat storage chamber 52, it is discharged as it is through the connection duct 54.
  • the combustion air when the combustion air is introduced into the glass melting furnace, the combustion air is taken into the second heat storage chamber 52 from the external atmosphere via the connection duct 54. At this time, contrary to the above, the combustion air is at a normal temperature at the beginning of introduction, and when it is taken into the second heat storage chamber 52, it tends to drop immediately. Therefore, in the second heat storage chamber, the combustion air flows downward near the connection duct 54, but does not flow much near the first heat storage chamber 51.
  • the second heat storage chamber 52 there is a drift that separates a portion where the exhaust gas exclusively circulates and a portion where the combustion air exclusively circulates. Due to this drift, there is a problem that the stored heat cannot be used efficiently and the energy efficiency is not improved as expected.
  • the temperature on the first heat storage chamber 51 side through which the exhaust gas flows is likely to be high,
  • the temperature on the side of the connection duct 54 through which the combustion air flows tends to be low. In this case, a temperature distribution occurs in the heat storage body 52a.
  • sodium sulfate Na 2 SO 4
  • the precipitated sodium sulfate induces embrittlement of the heat storage body 52a. Therefore, it is preferable in terms of the furnace material structure to reduce the precipitation range of the sodium sulfate heat storage bodies 51a and 52a. However, since a high temperature region of 880 ° C. or higher is generated in a wide range in the heat storage body 52a on the heat storage chamber 51 side, this sodium sulfate precipitation region is wide.
  • the heat storage body becomes brittle (the heat storage member becomes brittle) in this way, the heat storage capacity of the portion decreases, and the embrittled heat storage member cannot maintain its layered structure, causing the heat storage body itself to collapse. In some cases, the heat cannot be held at a predetermined arrangement position and the heat storage function itself cannot be achieved.
  • the present invention has been made to solve these problems, and can efficiently store heat in the heat storage body by the exhaust gas and heat the combustion air by the heat storage body.
  • An object is to provide a heat storage device that prevents deterioration and has a long service life.
  • a connection port for connecting to a glass melting kiln is provided above, a first heat storage chamber in which a heat storage body is disposed, an adjoining first heat storage chamber, and an external atmosphere Is connected to the second heat storage chamber, the first heat storage chamber and the second heat storage chamber are connected to each other below.
  • a cross-sectional area (S1) in the plane cross section of the first heat storage chamber and a cross-sectional area (S2) in the plane cross section of the second heat storage chamber. (S2 / S1) is 0.2 to 0.62.
  • the glass melting apparatus of the present invention includes a glass melting furnace and a pair of heat storage apparatuses of the present invention connected to the glass melting furnace and capable of alternately circulating combustion air and exhaust gas.
  • the method for producing a glass article of the present invention uses the glass melting apparatus of the present invention, and the glass raw material in the glass melting furnace while the combustion air and the exhaust gas are alternately circulated by the pair of heat storage devices. It melt
  • the heat storage to the heat storage body by the exhaust gas and the combustion air by the heat storage body can be efficiently performed, and the deterioration of the heat storage body can be suppressed to suppress the deterioration of the heat storage device itself.
  • the service life can be improved.
  • the heat storage apparatus since the heat storage apparatus is used, the heat storage and heating can be efficiently performed, and the energy used in glass melting and glass article manufacturing is further reduced. it can.
  • the heat storage device is used in connection with a glass melting kiln as in the case of conventionally used heat storage devices, and allows combustion air and exhaust gas to flow alternately.
  • This heat storage device stores the heat of the high-temperature exhaust gas in the heat storage body when circulating the exhaust gas from the glass melting furnace to the external atmosphere, and then stores the heat when circulating the combustion air from the external atmosphere to the glass melting furnace.
  • the combustion air can be heated by the generated heat.
  • FIG. 1 shows a schematic configuration of a heat storage device according to an embodiment of the present invention.
  • the heat storage device 10 shown in FIG. 1 includes a first heat storage chamber 11, a second heat storage chamber 12, a connection port 13 for connecting to a glass melting furnace provided in the first heat storage chamber 11, It has a connection duct 14 for connecting to an external atmosphere provided in the second heat storage chamber 12, and a flow passage 15 connecting the first heat storage chamber 11 and the second heat storage chamber 12. ing.
  • a connection duct 14 for connecting to an external atmosphere provided in the second heat storage chamber 12
  • a flow passage 15 connecting the first heat storage chamber 11 and the second heat storage chamber 12.
  • the first heat storage chamber 11 is a space in which the heat storage body 11a is disposed, and the gas flowing through the first heat storage chamber 11 is partitioned so as to come into contact with the heat storage body 11a. That is, the first heat storage chamber 11 is provided so as to circulate the combustion air and the exhaust gas as described above, and the internal space serves as a flow passage, and combustion that passes through the first heat storage chamber 11 is performed. When the working air and the exhaust gas pass through the first heat storage chamber 11, they come into contact with the heat storage body 11a and can exchange heat.
  • the heat storage body 11a is provided transversely in a direction perpendicular to the flow direction of the gas flowing through the first heat storage chamber 11, and heat is generated so that most of the flowing gas is in contact with the heat storage body 11a.
  • the exchange can be performed efficiently.
  • the first heat storage chamber 11 is provided with a connection port 13 as a connection port for connection to the glass melting furnace.
  • the connection port 13 connects the first heat storage chamber 11 and the inside of the glass melting kiln.
  • connection port 13 is provided above the first heat storage chamber.
  • “upward” means that the first heat storage chamber 11 is at a position higher than the heat storage body 11 a disposed inside the first heat storage chamber 11, for example.
  • the arrangement position of the connection port 13 is preferably a position close to the ceiling of the first heat storage chamber 11 or the ceiling so that the gas to be circulated does not stay in the first heat storage chamber 11.
  • the second heat storage chamber 12 is a space in which the heat storage body 12a is disposed, and the gas flowing through the second heat storage chamber 12 is partitioned so as to come into contact with the heat storage body 12a. That is, the second heat storage chamber 12 is provided so as to circulate the combustion air and the exhaust gas as described above, and the internal space serves as a flow passage, and the combustion that passes through the second heat storage chamber 12 is performed. When the working air and the exhaust gas pass through the first heat storage chamber 12, they come into contact with the heat storage body 12a and can exchange heat.
  • the heat storage body 12a is provided transversely in a direction perpendicular to the flow direction of the gas flowing through the second heat storage chamber 12, and heat is generated so that most of the flowing gas is in contact with the heat storage body 12a.
  • the exchange can be performed efficiently.
  • connection duct 14 as a connection port for connection to the external atmosphere.
  • the connection duct 14 connects the second heat storage chamber 12 and the external atmosphere, and movement of combustion air from the external atmosphere into the second heat storage chamber 12 and from the second heat storage chamber 12 to the external atmosphere. It is an opening that enables movement of exhaust gas.
  • connection duct 14 is provided above the second heat storage chamber 12.
  • the upper direction may be a position higher in the second heat storage chamber 12 than, for example, the heat storage body 12a disposed in the second heat storage chamber 12.
  • the arrangement position of the connection duct 14 is preferably close to the ceiling of the side wall of the second heat storage chamber 12 so that the gas to be circulated does not stay inside the second heat storage chamber 12, and may be provided on the ceiling. When provided on the ceiling, it may be provided in a chimney shape so that the flow path is formed in the vertical direction.
  • the above-described heat storage bodies 11a and 12a are not particularly limited as long as they are conventionally known heat storage bodies used in a heat storage device of a glass melting furnace.
  • the heat storage bodies 11a and 12a are generally formed by stacking heat storage members such as heat storage bricks (checker bricks). In the lamination, the gaps between the heat storage bricks are adjusted and stacked so that the gas can flow therethrough (in order to increase the heat storage efficiency).
  • heat storage bricks are stacked and arranged so as to be arranged in a lattice pattern, and a plurality of such lattice-like arrays are stacked.
  • the directions are alternately stacked depending on the number of stages, and the positions of the odd and even stages are different.
  • the heat storage bodies stacked in this way are stacked in a lattice shape when viewed from the front (side surface) and the plane, thereby forming a heat storage body.
  • the stacking method is not particularly limited as long as the heat storage function can be exhibited.
  • heat storage bricks used here those having high temperature and alkali resistance are used, and basic bonded bricks, alumina or alumina / zirconia / silica (AZS) electroformed bricks, and the like can be mentioned.
  • the electroformed brick can be used at any part as a whole in the heat storage chamber, but in the case of a bonded brick, it is preferable to select the material as follows according to the use part in the heat storage chamber.
  • the heat storage body 11a formed in the first heat storage chamber 11 it is preferable to use high-purity alumina or magnesia-bonded bricks because the glass raw material powder is scattered particularly at high temperatures.
  • the middle region of the heat storage element 11a it is preferable to use spinel bricks, magnesia bricks, or the like that are resistant to deterioration caused by precipitation of bow crystals.
  • the lower stage region of the heat storage body 11a it is necessary to use a clay brick or magnesia brick having a dense and low porosity because it needs strength to support the weight of the upper and middle heat storage bodies.
  • the strength to support the weight of the upper and middle heat storage members is similar to the lower region of the heat storage body 11a in the first heat storage chamber. Since it is necessary, it is preferable to use clay bricks or magnesia bricks which are dense and have low porosity.
  • the heat storage body 11a formed in the first heat storage chamber is preferably obtained by stacking heat storage bricks in a lattice shape. At this time, it is preferable that bricks having a thickness of 30 to 60 mm are laminated, and each opening portion serving as a gas flow path is partitioned so as to be 140 to 160 mm square. Generally, bricks such as a square shape or a cross shape are used.
  • the shape of the heat storage body 12a formed in the second heat storage chamber is different from that of the heat storage brick used in the first heat storage chamber, there is a glass flow path and a brick portion when viewed in plan. Are preferably obtained by laminating so that the opening serving as a gas flow path is 140 to 190 mm and the brick thickness is 30 to 90 mm (preferably 60 to 90 mm).
  • the heat storage body 12a of the second heat storage chamber can be further arranged in a stacked manner as will be described later with reference to FIGS. 4A and 4B.
  • first heat storage chamber 11 and the second heat storage chamber 12 are connected to each other by a flow passage 15 provided below.
  • the flow passage 15 is an opening that allows gas to flow from the first heat storage chamber 11 to the second heat storage chamber 12 and from the second heat storage chamber 12 to the first heat storage chamber 11.
  • the flow passage 15 is provided below both the first heat storage chamber 11 and the second heat storage chamber 12.
  • the lower position may be a position lower than the heat storage bodies 11a and 12a disposed inside the respective heat storage chambers.
  • the arrangement position of the flow passage 15 is preferably a position close to the bottom surface of each heat storage chamber so that the gas to be circulated does not stay inside the first heat storage chamber 11 and the second heat storage chamber 12.
  • the flow path 15 is not particularly limited as long as it has a size that allows gas to smoothly flow between the first heat storage chamber 11 and the second heat storage chamber 12.
  • connection port 13 and the connection duct 14 are provided upward, and the flow passage 15 is provided downward. Therefore, for example, the exhaust gas is introduced from the glass melting furnace to the upper side of the first heat storage chamber 11, moves downward while contacting the inside of the first heat storage chamber 11 with the heat storage body 11 a, and passes through the flow passage 15. Move to the second heat storage chamber 12. Further, the exhaust gas that has moved to the second heat storage chamber 12 moves upward while contacting the inside of the second heat storage chamber 12 with the heat storage body 12a, and is discharged from the connection duct 14 to the external atmosphere.
  • FIG. 2 is a cross-sectional view taken along the line AA of the heat storage device 10 shown in FIG. 1.
  • the area of the first heat storage chamber 11 in the plane cross section is S1
  • the second heat storage chamber 12 is flat.
  • the area of the cross section is S2.
  • the ratio (S2 / S1) of the area S2 to the area S1 is 0.2 to 0.62, preferably 0.3 to 0.58, More preferably, it is 3 to 0.52.
  • the area S1 is represented by a hatched pattern
  • the area S2 is represented by a hatched pattern.
  • this ratio (S2 / S1) By setting this ratio (S2 / S1) to 0.62 or less, it is possible to suppress a decrease in efficiency of heat exchange due to drift, which has been a problem in the past, and to improve the utilization efficiency of heat energy. That is, by overlapping the exhaust gas flow path and the combustion air flow path in the second heat storage chamber 12, the efficiency of heat utilization by heat storage can be improved. Furthermore, this makes it possible to suppress embrittlement of the heat storage body and extend the life of the apparatus.
  • the ratio (S2 / S1) is set to 0.2 or more, the first heat storage chamber 11 is changed to the second heat storage chamber 12, and the second heat storage chamber 12 is changed to the first heat storage chamber 11. It is possible to suppress the amount of change in the flow rate of gas that can be circulated to a good range, prevent damage to the heat storage body due to the gas flow rate becoming too fast, or reduce wear, The circulation of the gas in the heat storage device can be made smooth.
  • the heat storage bodies 11a and 12a are formed in the first heat storage chamber 11 and the second heat storage chamber 12 so as to be disposed in the entire area of the flat cross section (transverse cross section of the flow path), respectively.
  • the area ratio is the same as the area where the heat storage elements 11a and 12a are formed.
  • the vertical (depth) in the flat section of the first heat storage chamber is L1
  • the horizontal (width) is W1
  • the vertical (depth) in the flat section of the second heat storage chamber is L2.
  • the aspect ratio (L2 / W2) of the second heat storage chamber is preferably 0.3 to 0.7.
  • the opening area (S3) of the flow passage 15 is preferably such that the ratio (S3 / S1) to the area (S1) of the flat cross section of the first heat storage chamber 11 is 0.1 to 0.4.
  • the ratio (S3 / S1) is 0.4 or less, when exhaust gas moves from the first heat storage chamber 11 to the second heat storage chamber 12, the flow velocity passing through the flow passage 15 can be increased.
  • the exhaust gas can be delivered to the heat storage body 12a (the heat storage body 12a on the connection duct 14 side) away from the flow passage 15.
  • the ratio (S3 / S1) to 0.1 or more, the flow rate of the exhaust gas passing through the flow passage 15 does not become too high, and the exhaust gas can be brought into contact with the entire heat storage body 12a. That is, it is possible to suppress a drift in which the exhaust gas mainly contacts the heat storage body 12a near the first heat storage chamber 11.
  • the opening upper end portion 15a of the flow passage 15 is preferably provided at a position 50 to 100 cm lower than the lower end of the heat storage body 12a disposed in the second heat storage chamber 12, and is 80 to 100 cm lower. Is more preferable. Further, the opening upper end portion 15a of the flow passage 15 is preferably provided 50 to 150 cm above the floor surface of the second heat storage chamber 12 and more preferably 80 to 120 cm above.
  • the opening upper end portion 15a of the flow passage 15 is the floor surface of the second heat storage chamber 12. Therefore, it is preferably provided at a position lower than 2/3 of H1, and more preferably provided at a position lower than 1/2.
  • the exhaust gas that has moved from the first heat storage chamber 11 to the second heat storage chamber 12 can be slightly delayed until it contacts the heat storage body 12a, and the exhaust gas that has flowed into the second heat storage chamber 12 thereby. Since this is diffused, this is also one method of suppressing drift.
  • a step may be provided between the floor surface of the first heat storage chamber 11 and the floor surface of the second heat storage chamber 12.
  • the floor surface of the second heat storage chamber 12 is preferably 15 to 50 cm higher than the floor surface of the first heat storage chamber 11, and more preferably 20 to 30 cm higher.
  • the opening area (S3) of the flow passage 15 flows through the higher floor surface of the floor surface of the first heat storage chamber 11 and the floor surface of the second heat storage chamber 12. An opening is defined as the lower surface of the.
  • the glass melting apparatus of one Embodiment of this invention has a glass melting kiln and a pair of said heat storage apparatus connected with this glass melting kiln.
  • a conventionally known glass melting furnace is used and is not particularly limited.
  • the heat storage device used here is the heat storage device of the present invention, for example, the heat storage device described above.
  • This heat storage device is capable of alternately circulating combustion air and exhaust gas, and is further provided as a pair with respect to the glass melting furnace.
  • the combustion air is circulated through one of the pair of heat storage devices, the atmosphere in the glass melting furnace can always be combusted by allowing the exhaust gas to circulate through the other. Thereby, the high temperature state can be stably maintained in the glass melting furnace.
  • the glass article manufacturing method of the present invention is characterized in that a glass article is manufactured using the glass melting apparatus.
  • the glass raw material is melted in a glass melting furnace by the same operation as a conventionally known method, and the melted glass raw material is solidified by cooling to obtain a glass article.
  • the point which uses the said glass melting apparatus as a glass melting apparatus is the characteristics.
  • combustion air and fuel are introduced into the glass melting kiln of the glass melting apparatus, and are burned to heat the glass melting kiln to a desired temperature. While maintaining the inside of the glass melting furnace at a predetermined temperature, the glass raw material is sufficiently melted by a known method, and the melted glass raw material is transferred from the glass melting furnace, cooled and solidified, and glass having a desired shape. Manufacture articles.
  • the pair of heat storage devices is used to maintain the temperature in the glass melting furnace at a high temperature so that the glass raw material remains in a molten state. That is, exhaust gas generated by combustion in the glass melting furnace is circulated to one heat storage device and discharged to the external atmosphere, and simultaneously, combustion air is circulated from the external atmosphere to the other heat storage device, Combustion air is introduced into the glass melting furnace.
  • the combustion air introduced here is mixed with fuel and burned in a glass melting furnace so that a predetermined high temperature state can be maintained.
  • the gas to be circulated in each heat storage device and the gas distribution direction are changed. That is, the combustion gas is circulated in the heat storage device in which the exhaust gas is circulated, and the exhaust gas is circulated in the heat storage device in which the combustion gas is circulated.
  • the operation of alternately changing the gas to be circulated and the gas flow direction at a predetermined timing is repeated. Thereby, the inside of a glass melting furnace can always maintain a desired high temperature state.
  • exhaust heat of exhaust gas is used for heating combustion air via the heat storage bodies 11a, 12a, so that heat energy can be effectively used to save energy and reduce costs in the manufacture of glass articles. Can be achieved.
  • connection duct 14 may be provided with a damper 21 that can change the flow direction of the combustion air.
  • the damper 21 is provided near the connection port between the second heat storage chamber 12 and the connection duct 14. The damper 21 only needs to be able to change the flow direction (take-in direction) of the combustion air when taking the combustion air into the second heat storage chamber 12 from the connection duct 14.
  • the damper 21 shown in FIG. 3A is a plate-like member that is fixed at the center so that both ends can move up and down, and the combustion air that is fed into the second heat storage chamber depending on the orientation of the plate-like member The direction of changes.
  • combustion air is taken in from the connecting duct 14 in a diagonally downward direction
  • the heat storage body 12a disposed inside the second heat storage chamber 12 contacts the heat storage body near the connection port of the connection duct 14 and moves downward.
  • the combustion air is circulated and taken in from the connection duct 14 in an obliquely upward direction, it contacts the heat storage body that is distant from the connection port of the connection duct 14 among the heat storage bodies 12a disposed inside the second heat storage chamber 12. Then it comes to circulate downward.
  • the flow path of the combustion air can be prevented from being unevenly distributed, and the temperature of the heat storage body can be made uniform.
  • FIG. 3B shows an example in which the connection duct 14 is provided on the ceiling of the second heat storage chamber 12. It is preferable to provide the connection duct 14 on the ceiling in this way because the plane position where the combustion air is taken in can be arbitrarily set. For example, it can be provided according to the strength of the upward flow of exhaust gas.
  • a damper 21 is provided as in FIG. 3A. At this time, the damper 21 is a plate-like member whose center is fixed so that both ends can be moved in the horizontal direction. The direction of the combustion air sent into the second heat storage chamber 12 changes depending on the direction of the member.
  • the temperature of the heat storage body can be made uniform without uneven distribution of the flow path of the combustion air.
  • FIG. 4A schematically shows a configuration example in the case where a rectangular parallelepiped heat-resistant brick is used as the heat storage member and the heat storage members are stacked in 13 stages.
  • the odd-numbered heat storage member is shown as 121a and the even-numbered heat storage member is shown as 121b.
  • the heat storage member 121a and the heat storage member 121b are the same heat storage member.
  • the heat storage member may be stacked in a staggered arrangement in which the stacked positions of the heat storage members are staggered.
  • the staggered arrangement is divided into odd and even stages. In other words, the stacking positions in a certain odd-numbered stage are in a state of being stacked alternately so as not to overlap when viewed in plan with the stacking positions of the adjacent odd-numbered stages ( ⁇ 2 stages in terms of the number of stages). .
  • At least one of the arrangement positions of the heat storage members in the odd stages and the arrangement positions of the heat storage members in the even stages may be the staggered arrangement.
  • the arrangement positions of the outer surfaces are aligned in consideration of the strength of the laminated structure and the like.
  • FIGS. 4A and 4B an example of the main flow of the exhaust gas in the heat storage body 12a shown in FIGS. 4A and 4B is indicated by a broken line.
  • the flow path fl1 is linearly formed in the vertical direction as it is, but in FIG. 4B, the flow path fl2 is blocked by the upper heat storage member and cannot be formed in a straight line. It is formed. Therefore, the flow path in the exhaust gas heat storage body 12a can be lengthened, and the chance of heat storage can be increased accordingly, and the efficiency of heat transfer can be improved.
  • the flow path fl2 is simply shown, and it does not actually have a beautiful wave shape. That is, branching is caused by a collision with a heat storage member, and further branching by a collision with an upper heat storage member. It becomes complicated.
  • the staggered portion may be a part of the heat storage body.
  • the arrangement pattern is repeated in the vertical direction so that the flow path length can be increased.
  • this arrangement is a structure in which the heat storage members are alternately stacked in the odd-numbered stage or the even-numbered stage. In other words, this is a stage one level higher than the arrangement of the heat storage member in the starting stage ( When the odd and even numbers are combined, the arrangement of the upper two stages is actually the middle of the pitch between the heat storage members in the starting stage (the arrangement position when viewed in plan), and the upper two stages (the odd and even stages) In total, the arrangement of the upper four stages) is the same as the heat storage member in the starting stage (arrangement position when viewed in plan).
  • the arrangement of the upper three stages (if the odd and even numbers are combined, the actual upper six stages) is the same as the upper one (arrangement position when viewed in plan).
  • the subsequent arrangement is repeated thereafter. That is, it can be said that this is a laminated structure in which layers are repeatedly laminated at a cycle of two stages.
  • a repeating structure may be provided with a period of three or more stages, for example, a period of 3 to 20 stages, in addition to repeated lamination with a period of two stages.
  • the cycle may be provided in a step shape, or the cycle may be provided in a wave shape.
  • the odd-numbered first step, the odd-numbered second step, and the odd-numbered third step are overlapped when viewed in plan.
  • An example is provided in which the fourth step of the odd number is the same as the first step, the fifth step is the same as the second step, and the sixth step is the same as the third step.
  • the first to third steps are the same as the above, but the fourth step is the same as the second step, and the fifth step is the first step.
  • the fifth and subsequent steps are provided in a wave shape that repeats the first to fourth steps. In this case, the repeating unit is four stages.
  • the heat storage member constituting the heat storage body may generally be a rectangular parallelepiped heat storage member.
  • the upper width is narrow on the side surface and the lower width is wide. You may use the thermal storage member which has such an inclination. If the heat storage member having such a shape is used, the heat storage member can be easily cleaned. That is, when a glass article is manufactured using the above-described heat storage device, combustion debris generated by combustion in the exhaust gas, compounds contained in the exhaust gas, and the like adhere to the heat storage member as dust. Such deposits increase according to the usage time, and the gas flow path becomes too narrow after a long period of use and eventually becomes blocked, and the heat storage device may not function sufficiently.
  • the heat storage member is a heat storage member having an inclination in which the upper width is narrow and the lower width is wide in the side cross section, but the heat storage member has no partial inclination. It is good also as a member.
  • the heat storage member in FIGS. 5C and 5D is a heat storage brick having a special shape in which there is no inclination at both ends and the central part in the width direction (the depth is the same in the height direction), and an inclination is provided between the two. By setting it as such a shape, the intensity
  • Example 1 A glass melting apparatus provided with a heat storage device having a first heat storage chamber and a second heat storage chamber having the configuration shown in FIG. 1 in a glass melting furnace via a connection port was obtained.
  • Table 1 shows the relationship between the parameters in these heat storage devices.
  • the glass melting kiln having a predetermined production amount in each example shown in Table 2 was used.
  • connection positions of the connection ducts in the second heat storage chamber are up (ceiling) in Examples 1 and 2, and side (upward) in Comparative Examples 1 and 2.
  • glass materials were melted to produce glass articles.
  • Table 1 shows the relationship of each parameter in the heat storage devices of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the fuel intensity per unit production amount was calculated from the relationship between the production amount of the glass melting kiln and the fuel used in each example, and are shown in Table 2 and FIG.
  • the glass melting apparatuses of Examples 1 and 2 are superior to the comparative example in the fuel consumption rate at the same production amount (x1). At this time, it can be said that the fuel consumption rate of the example is 5% or more lower than the approximate line of the comparative example.
  • the heat storage device according to one aspect of the present invention when used, even in a production facility with a relatively small production amount in which energy efficiency is likely to decrease, heat storage to the heat storage body by exhaust gas and combustion air by the heat storage body It is possible to achieve efficient heating. That is, it has been found that the heat storage device in the present embodiment has improved heat exchange efficiency and is useful for energy saving.
  • the present invention can be used as a heat storage device in melting of glass, and can be suitably used particularly for a glass production device that produces a small amount of various products with a relatively small production amount (pull).
  • the glass forming method after melting is a known method, for example, a sheet forming glass manufacturing method such as a float method, a down draw method, a fusion method, and a slot down method, as well as a press forming method and a press blow forming method. It can be used for glass production apparatuses such as blow-blow molding and casting.
  • the composition of glass is applicable to a well-known glass composition, soda-lime glass can be applied especially suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Air Supply (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Details (AREA)

Abstract

Provided is a heat storage device that can efficiently store heat in a heat storing body by utilizing exhaust gas, can efficiently heat combustion air using the heat storing body, and can suppress a situation in which the heat storing body becomes brittle. A heat storage device 10, which is for a glass melting furnace, comprises: a first heat storage chamber 11 in an upper part of which there is provided a connection port 13 for connecting to the glass melting furnace and inside of which a heat storing body 11a is disposed; a second heat storage chamber 12 which is adjacent to the first heat storage chamber 11, in an upper part of which there is provided a connection duct 14 for connecting to the outside atmosphere, and inside of which a heat storing body 12a is disposed; and a flow passage 15 that connects the first heat storage chamber 11 and the second heat storage chamber 12 to each other at the bottom of the chambers. A ratio (S2/S1) between the cross-sectional area (S1) of the first heat storage chamber 11 in a planar cross section and the cross-sectional area (S2) of the second heat storage chamber 12 in a planar cross section is 0.2-0.62.

Description

蓄熱装置、ガラス溶解装置及びガラス物品の製造方法Heat storage device, glass melting device and method for manufacturing glass article
 本発明は、ガラス溶解窯用の蓄熱装置、該蓄熱装置を有するガラス溶解装置及び該ガラス溶解装置を用いたガラス物品の製造方法に関する。 The present invention relates to a heat storage device for a glass melting furnace, a glass melting device having the heat storage device, and a method for producing a glass article using the glass melting device.
 工業的なガラス製品の製造において、大量のガラス材料を、ガラス溶解窯を用いて溶解する。このガラス溶解窯は、その内部をガラスの溶融状態を維持するために高温状態に保つ必要がある。このような高温状態を維持するため、上記ガラス溶解窯の内部には燃焼用空気及び燃料が導入され、燃焼される。 In the manufacture of industrial glass products, a large amount of glass material is melted using a glass melting furnace. The glass melting kiln needs to be kept at a high temperature in order to maintain the molten state of the glass. In order to maintain such a high temperature state, combustion air and fuel are introduced into the glass melting furnace and burned.
 このとき、ガラス溶解窯の内部への燃焼用空気の導入は、一般に、ガラス溶解窯に並設された蓄熱装置を通過させて行われる。また、ガラス溶解窯の内部において燃焼により生じた排気ガスは、これも蓄熱装置を通過させて、ガラス溶解窯から外部雰囲気に排出される。すなわち、蓄熱装置において、燃焼用空気と排気ガスの流れは逆方向となる。 At this time, the introduction of the combustion air into the glass melting furnace is generally performed by passing through a heat storage device arranged in parallel with the glass melting furnace. Further, the exhaust gas generated by the combustion in the glass melting furnace is also passed through the heat storage device and discharged from the glass melting furnace to the external atmosphere. That is, in the heat storage device, the flow of combustion air and exhaust gas are in opposite directions.
 ここで用いられる蓄熱装置は、内部にチェッカーブリックを積み重ねた蓄熱体が配置されており、燃焼に伴って排出される高温の排気ガスをチェッカーブリック間に通過させることで蓄熱し、その蓄熱された熱により、次にガラス溶解窯内に送入する燃焼用空気を加熱する。加熱された燃焼用空気は、燃料ガスと混合されガラス溶解窯の内部で燃焼され、所定の高温状態を維持する。このように排気ガスの排熱を効率的に利用することで、ガラス溶融時の使用エネルギーを抑制し、製造コストを低減できる。また、この操作は蓄熱装置に気体を流通させるだけでよいため、簡便な操作により行うことができる。このような蓄熱装置の構成については効率向上を目的として種々検討されている(例えば、特許文献1,2等参照)。 The heat storage device used here has a heat storage body in which checker bricks are stacked inside, and stores the heat by passing high-temperature exhaust gas discharged along with combustion between the checker bricks, and the heat is stored. The combustion air that is then fed into the glass melting furnace is heated by heat. The heated combustion air is mixed with the fuel gas and burned inside the glass melting furnace, and maintains a predetermined high temperature state. As described above, by efficiently using the exhaust heat of the exhaust gas, the energy used when the glass is melted can be suppressed, and the manufacturing cost can be reduced. Moreover, since this operation only needs to distribute | circulate gas to a thermal storage apparatus, it can be performed by simple operation. Various configurations of such a heat storage device have been studied for the purpose of improving efficiency (see, for example, Patent Documents 1 and 2).
 また、燃焼排気ガスにより蓄熱体を加熱する際、偏流により蓄熱体の全体に亙って均一に燃焼排気ガスを通過させられない点を改善するため、蓄熱室内に詰め上げられた最上段の蓄熱部材を蓄熱室のポートマウス側から対向する側壁に向けて階段状に積み上げたものが知られている(例えば、特許文献3参照)。 In addition, when heating the heat accumulator with combustion exhaust gas, the uppermost heat accumulator packed in the heat accumulator chamber is improved in order to improve the point that the combustion exhaust gas cannot be passed uniformly over the entire heat accumulator due to drift. A member in which the members are stacked stepwise from the port mouth side of the heat storage chamber toward the opposite side wall is known (for example, see Patent Document 3).
特開平09-12315号公報JP 09-12315 A 米国特許第4372770号明細書U.S. Pat. No. 4,372,770 特開平08-157222号公報Japanese Patent Laid-Open No. 08-157222
 ところで、蓄熱室を2つ有する蓄熱装置(ダブルパス蓄熱装置)の場合には、蓄熱室を一つしか有さない蓄熱装置(シングルパス蓄熱装置)の場合に比べ、熱交換可能な流路を長くすることができるため、排気ガスの排熱を効率的に利用することができる場合がある。蓄熱室を2つ有する蓄熱装置としては、図7に示したような蓄熱装置が考えられる。この蓄熱装置50は、内部に蓄熱体51aが配置された第1の蓄熱室51と、第1の蓄熱室51と隣接し、内部に蓄熱体52aが配置された第2の蓄熱室52と、を有する。ここで、第1の蓄熱室51にはガラス溶解窯と接続するための接続ポート53が上方に設けられ、第2の蓄熱室52には外部雰囲気と接続するための接続ダクト54が上方に設けられている。また、第1の蓄熱室51と第2の蓄熱室52とは、それぞれ互いに下方で流通路55により接続されている。 By the way, in the case of a heat storage device (double-pass heat storage device) having two heat storage chambers, the heat exchangeable flow path is made longer than in the case of a heat storage device (single-pass heat storage device) having only one heat storage chamber. Therefore, the exhaust heat of the exhaust gas can be used efficiently. As a heat storage device having two heat storage chambers, a heat storage device as shown in FIG. 7 can be considered. The heat storage device 50 includes a first heat storage chamber 51 in which a heat storage body 51a is disposed, a second heat storage chamber 52 that is adjacent to the first heat storage chamber 51, and in which a heat storage body 52a is disposed, Have Here, the first heat storage chamber 51 is provided with a connection port 53 for connection with a glass melting furnace, and the second heat storage chamber 52 is provided with a connection duct 54 for connection with an external atmosphere. It has been. Moreover, the 1st heat storage chamber 51 and the 2nd heat storage chamber 52 are mutually connected by the flow path 55 below each other.
 この蓄熱装置50は、ガラス溶解窯内で生じた排気ガスを排出する際には、ガラス溶解窯と接続された接続ポート53から排気ガスを第1の蓄熱室51に導入し、次いで、導入した排気ガスを、流通路55を介して第2の蓄熱室52に移送する。移送された排気ガスは第2の蓄熱室52内を流れて、そのまま接続ダクト54から外部雰囲気に排出される。 When discharging the exhaust gas generated in the glass melting furnace, the heat storage device 50 introduces the exhaust gas into the first heat storage chamber 51 from the connection port 53 connected to the glass melting furnace, and then introduces it. The exhaust gas is transferred to the second heat storage chamber 52 via the flow passage 55. The transferred exhaust gas flows through the second heat storage chamber 52 and is directly discharged from the connection duct 54 to the external atmosphere.
 このとき、排気ガスはガラス溶解窯内で高温に加熱されており、この高温の排気ガスを蓄熱体51a,52aを流通させることで、熱移動により蓄熱体に蓄熱する。ところで、排気ガスは高温であるため蓄熱室内において浮力により上昇しやすい。したがって、第1の蓄熱室51では、上方から排気ガスが溜まっていき、流通路55の開口上端部よりも低い位置まで溜まったときに第2の蓄熱室52への移送が始まる。 At this time, the exhaust gas is heated to a high temperature in the glass melting furnace, and the high temperature exhaust gas is circulated through the heat storage bodies 51a and 52a to store heat in the heat storage body by heat transfer. By the way, since exhaust gas is high temperature, it tends to rise by buoyancy in the heat storage chamber. Accordingly, in the first heat storage chamber 51, exhaust gas accumulates from above, and transfer to the second heat storage chamber 52 starts when the exhaust gas accumulates to a position lower than the upper end of the opening of the flow passage 55.
 第2の蓄熱室52へ導入された排気ガスは、第1の蓄熱体51aとの接触により温度が低下しているが、依然として高温であるため、第2の蓄熱室52へ移動してすぐに上昇し、第2の蓄熱室52の天井付近に到達するとそのまま接続ダクト54を介して排出される。 Although the temperature of the exhaust gas introduced into the second heat storage chamber 52 is lowered due to contact with the first heat storage body 51a, it is still high temperature, so that it immediately moves to the second heat storage chamber 52. When it rises and reaches the vicinity of the ceiling of the second heat storage chamber 52, it is discharged as it is through the connection duct 54.
 このとき、排気ガスは、第1の蓄熱室51から第2の蓄熱室52に移動した瞬間に上方への移動が開始されるため、第2の蓄熱室52の中でも、第1の蓄熱室51寄りを上方に流通する。したがって、その反対側の、流通口55から離れた接続ダクト54寄りにはあまり流通しない。 At this time, since the exhaust gas starts to move upward at the moment when the exhaust gas moves from the first heat storage chamber 51 to the second heat storage chamber 52, the first heat storage chamber 51 among the second heat storage chambers 52. Circulate the side upwards. Therefore, it does not circulate so much near the connection duct 54 away from the circulation port 55 on the opposite side.
 一方、燃焼用空気をガラス溶解窯内へ導入する場合、外部雰囲気から接続ダクト54を介して燃焼用空気を第2の蓄熱室52に取込む。このとき、上記とは逆に、燃焼用空気は導入当初は常温程度であり、第2の蓄熱室52に取り込まれたとき、すぐに下降する傾向がある。したがって、第2の蓄熱室の中でも、接続ダクト54寄りを燃焼用空気が下方に流通するが、第1の蓄熱室51寄りにはあまり流通しない。 On the other hand, when the combustion air is introduced into the glass melting furnace, the combustion air is taken into the second heat storage chamber 52 from the external atmosphere via the connection duct 54. At this time, contrary to the above, the combustion air is at a normal temperature at the beginning of introduction, and when it is taken into the second heat storage chamber 52, it tends to drop immediately. Therefore, in the second heat storage chamber, the combustion air flows downward near the connection duct 54, but does not flow much near the first heat storage chamber 51.
 そのため第2の蓄熱室52において、専ら排気ガスが流通する部分と、専ら燃焼用空気が流通する部分と、が分かれてしまう偏流が生じていた。この偏流により、蓄熱した熱を効率的に利用できず、エネルギー効率が思ったほど向上しないという問題がある。 Therefore, in the second heat storage chamber 52, there is a drift that separates a portion where the exhaust gas exclusively circulates and a portion where the combustion air exclusively circulates. Due to this drift, there is a problem that the stored heat cannot be used efficiently and the energy efficiency is not improved as expected.
 また、上記のように排気ガスと燃焼用空気の流通路がずれてしまっている場合、第2の蓄熱室52において、排気ガスが流通する第1の蓄熱室51側の温度が高くなりやすく、燃焼用空気が流通する接続ダクト54側の温度が低くなりやすい。この場合、蓄熱体52aにおいて温度分布が生じてしまう。 Further, when the flow path of the exhaust gas and the combustion air has shifted as described above, in the second heat storage chamber 52, the temperature on the first heat storage chamber 51 side through which the exhaust gas flows is likely to be high, The temperature on the side of the connection duct 54 through which the combustion air flows tends to be low. In this case, a temperature distribution occurs in the heat storage body 52a.
 このとき、880℃以下となる部分では、排気ガス中に含まれるナトリウムイオン及び硫酸イオンから硫酸ナトリウム(NaSO)が析出し、蓄熱部材に付着し析出することで、チェッカーブリックのガスの流路を閉塞してしまうことがある。また、析出した硫酸ナトリウムは、蓄熱体52aの脆化を誘発する。よって、硫酸ナトリウムの蓄熱体51a及び52aでの析出範囲を小さくすることが炉材構成上好ましい。しかし、880℃以上の高温域が蓄熱室51側の蓄熱体52aに広範囲に発生するので、この硫酸ナトリウムの析出域が広範囲にわたってしまう。 At this time, sodium sulfate (Na 2 SO 4 ) is precipitated from sodium ions and sulfate ions contained in the exhaust gas at a portion where the temperature is 880 ° C. or lower, and adheres to the heat storage member and precipitates, thereby The flow path may be blocked. Further, the precipitated sodium sulfate induces embrittlement of the heat storage body 52a. Therefore, it is preferable in terms of the furnace material structure to reduce the precipitation range of the sodium sulfate heat storage bodies 51a and 52a. However, since a high temperature region of 880 ° C. or higher is generated in a wide range in the heat storage body 52a on the heat storage chamber 51 side, this sodium sulfate precipitation region is wide.
 このように蓄熱体が脆化(蓄熱部材が脆化)すると、その部分の蓄熱能が低下するのに加え、脆化した蓄熱部材がその積層構造を維持できなくなり崩れる等により、蓄熱体そのものを所定の配置位置に保持できず、蓄熱作用そのものを奏し得なくなる場合もある。 When the heat storage body becomes brittle (the heat storage member becomes brittle) in this way, the heat storage capacity of the portion decreases, and the embrittled heat storage member cannot maintain its layered structure, causing the heat storage body itself to collapse. In some cases, the heat cannot be held at a predetermined arrangement position and the heat storage function itself cannot be achieved.
 そこで、本発明は、これらの問題を解決すべくなされたものであり、排気ガスによる蓄熱体への蓄熱及び蓄熱体による燃焼用空気の加熱を効率的に行うことができ、かつ、蓄熱体の劣化を防止し使用寿命の長い蓄熱装置を提供することを目的とする。 Therefore, the present invention has been made to solve these problems, and can efficiently store heat in the heat storage body by the exhaust gas and heat the combustion air by the heat storage body. An object is to provide a heat storage device that prevents deterioration and has a long service life.
 本発明の蓄熱装置は、ガラス溶解窯と接続するための接続ポートが上方に設けられ、内部に蓄熱体が配置された第1の蓄熱室と、前記第1の蓄熱室と隣接し、外部雰囲気と接続するための接続ダクトが上方に設けられ、内部に蓄熱体が配置された第2の蓄熱室と、前記第1の蓄熱室と前記第2の蓄熱室とを、互いに下方で接続する流通路と、を有するガラス溶解窯用の蓄熱装置であって、前記第1の蓄熱室の平断面における断面積(S1)と前記第2の蓄熱室の平断面における断面積(S2)との比(S2/S1)が、0.2~0.62であることを特徴とする。 In the heat storage device of the present invention, a connection port for connecting to a glass melting kiln is provided above, a first heat storage chamber in which a heat storage body is disposed, an adjoining first heat storage chamber, and an external atmosphere Is connected to the second heat storage chamber, the first heat storage chamber and the second heat storage chamber are connected to each other below. And a cross-sectional area (S1) in the plane cross section of the first heat storage chamber and a cross-sectional area (S2) in the plane cross section of the second heat storage chamber. (S2 / S1) is 0.2 to 0.62.
 本発明のガラス溶解装置は、ガラス溶解窯と、前記ガラス溶解窯に接続され、燃焼用空気と排気ガスとを交互に流通可能にする一対の、本発明の蓄熱装置と、を有することを特徴とする。 The glass melting apparatus of the present invention includes a glass melting furnace and a pair of heat storage apparatuses of the present invention connected to the glass melting furnace and capable of alternately circulating combustion air and exhaust gas. And
 本発明のガラス物品の製造方法は、本発明のガラス溶解装置を用い、前記一対の蓄熱装置により前記燃焼用空気と前記排気ガスとを交互に流通させながら、前記ガラス溶解窯内でガラス原料を溶解し、溶解したガラス原料を冷却により固化させてガラス物品とする、ことを特徴とする。 The method for producing a glass article of the present invention uses the glass melting apparatus of the present invention, and the glass raw material in the glass melting furnace while the combustion air and the exhaust gas are alternately circulated by the pair of heat storage devices. It melt | dissolves and the glass raw material which melt | dissolved is solidified by cooling, It is characterized by the above-mentioned.
 本発明の蓄熱装置によれば、排気ガスによる蓄熱体への蓄熱及び蓄熱体による燃焼用空気の加熱を効率的に行うことができ、かつ、蓄熱体の劣化を抑制することにより蓄熱装置自体の使用寿命を向上させることができる。 According to the heat storage device of the present invention, the heat storage to the heat storage body by the exhaust gas and the combustion air by the heat storage body can be efficiently performed, and the deterioration of the heat storage body can be suppressed to suppress the deterioration of the heat storage device itself. The service life can be improved.
 本発明のガラス溶解装置及びガラス物品の製造方法によれば、上記蓄熱装置を用いているため、上記蓄熱及び加熱を効率的に行うことができ、ガラス溶解及びガラス物品製造における使用エネルギーをより低減できる。 According to the glass melting apparatus and the glass article manufacturing method of the present invention, since the heat storage apparatus is used, the heat storage and heating can be efficiently performed, and the energy used in glass melting and glass article manufacturing is further reduced. it can.
本発明の一実施形態である蓄熱装置の側断面図である。It is a sectional side view of the heat storage apparatus which is one Embodiment of this invention. 図1の蓄熱装置におけるA-A断面図である。It is AA sectional drawing in the thermal storage apparatus of FIG. ダンパーを設けた接続ダクトの側断面図である。It is a sectional side view of the connection duct which provided the damper. ダンパーを設けた他の接続ダクトの側断面図である。It is side sectional drawing of the other connection duct which provided the damper. 蓄熱体の積層構造の一例を示した側面図である。It is the side view which showed an example of the laminated structure of a thermal storage body. 蓄熱体の積層構造の他の例を示した側面図である。It is the side view which showed the other example of the laminated structure of a thermal storage body. 蓄熱部材の形状の一例を示した側面図である。It is the side view which showed an example of the shape of a thermal storage member. 図5Aの蓄熱部材の正面図である。It is a front view of the heat storage member of FIG. 5A. 蓄熱部材の形状の他の例を示した側面図である。It is the side view which showed the other example of the shape of a thermal storage member. 図5Cの蓄熱部材の正面図である。It is a front view of the heat storage member of FIG. 5C. 実施例における生産量と燃料原単位の関係を示すグラフである。It is a graph which shows the relationship between the production amount and fuel basic unit in an Example. 従来の一実施形態である蓄熱装置の側断面図である。It is a sectional side view of the heat storage apparatus which is one conventional embodiment.
 以下、本発明について詳細に説明する。
<蓄熱装置>
 本発明に係る蓄熱装置は、従来用いられている蓄熱装置と同様に、ガラス溶解窯と接続して用いられ、燃焼用空気及び排気ガスを交互に流通可能としたものである。この蓄熱装置は、ガラス溶解窯から外部雰囲気へ排気ガスを流通させる際、高温の排気ガスの熱を蓄熱体に蓄熱し、次いで、外部雰囲気からガラス溶解窯へ燃焼用空気を流通させる際、蓄熱した熱により燃焼用空気を加熱できるようになっている。
Hereinafter, the present invention will be described in detail.
<Heat storage device>
The heat storage device according to the present invention is used in connection with a glass melting kiln as in the case of conventionally used heat storage devices, and allows combustion air and exhaust gas to flow alternately. This heat storage device stores the heat of the high-temperature exhaust gas in the heat storage body when circulating the exhaust gas from the glass melting furnace to the external atmosphere, and then stores the heat when circulating the combustion air from the external atmosphere to the glass melting furnace. The combustion air can be heated by the generated heat.
 この排気ガスの流通と燃焼用空気の流通を交互に行うことで、蓄熱装置内部に設けられた蓄熱体により、蓄熱及び放熱を繰り返し行い、熱エネルギーを効率的に利用できる。これによって、ガラス溶解窯内での燃焼操作を低コストで効率的に行うことができる。 By alternately performing the flow of this exhaust gas and the flow of combustion air, heat storage and heat dissipation can be repeatedly performed by the heat storage body provided in the heat storage device, and heat energy can be used efficiently. Thereby, the combustion operation in the glass melting furnace can be efficiently performed at low cost.
 本発明の一実施形態である蓄熱装置の概略構成を図1に示した。この図1に示した蓄熱装置10は、第1の蓄熱室11と、第2の蓄熱室12と、第1の蓄熱室11に設けられたガラス溶解窯と接続するための接続ポート13と、第2の蓄熱室12に設けられた外部雰囲気と接続するための接続ダクト14と、第1の蓄熱室11と第2の蓄熱室12とを接続する流通路15と、を有して構成されている。以下、本発明の一実施形態を構成する各要素について詳細に説明する。 FIG. 1 shows a schematic configuration of a heat storage device according to an embodiment of the present invention. The heat storage device 10 shown in FIG. 1 includes a first heat storage chamber 11, a second heat storage chamber 12, a connection port 13 for connecting to a glass melting furnace provided in the first heat storage chamber 11, It has a connection duct 14 for connecting to an external atmosphere provided in the second heat storage chamber 12, and a flow passage 15 connecting the first heat storage chamber 11 and the second heat storage chamber 12. ing. Hereafter, each element which comprises one Embodiment of this invention is demonstrated in detail.
 第1の蓄熱室11は、内部に蓄熱体11aが配置されており、その内部を流通する気体が該蓄熱体11aと接触するように区画された空間である。すなわち、第1の蓄熱室11は、上記したように燃焼用空気と排気ガスを流通させるように設けられ、その内部空間が流通路となっており、この第1の蓄熱室11を通過する燃焼用空気及び排気ガスは、第1の蓄熱室11を通過する際、蓄熱体11aと接触し熱交換が可能となっている。 The first heat storage chamber 11 is a space in which the heat storage body 11a is disposed, and the gas flowing through the first heat storage chamber 11 is partitioned so as to come into contact with the heat storage body 11a. That is, the first heat storage chamber 11 is provided so as to circulate the combustion air and the exhaust gas as described above, and the internal space serves as a flow passage, and combustion that passes through the first heat storage chamber 11 is performed. When the working air and the exhaust gas pass through the first heat storage chamber 11, they come into contact with the heat storage body 11a and can exchange heat.
 したがって、蓄熱体11aは、第1の蓄熱室11内を流通する気体の流通方向に対して垂直方向に横断的に設けられ、流通する気体の大部分が蓄熱体11aと接触するようにして熱交換を効率的に行えるようになっている。 Therefore, the heat storage body 11a is provided transversely in a direction perpendicular to the flow direction of the gas flowing through the first heat storage chamber 11, and heat is generated so that most of the flowing gas is in contact with the heat storage body 11a. The exchange can be performed efficiently.
 また、この第1の蓄熱室11には、ガラス溶解窯に接続するための接続口として接続ポート13が設けられている。接続ポート13は、第1の蓄熱室11とガラス溶解窯の内部とを接続するもので、ガラス溶解窯から第1の蓄熱室11内への排気ガスの移動、第1の蓄熱室11内からガラス溶解窯への加熱された燃焼用空気の移動、を可能とする開口である。 In addition, the first heat storage chamber 11 is provided with a connection port 13 as a connection port for connection to the glass melting furnace. The connection port 13 connects the first heat storage chamber 11 and the inside of the glass melting kiln. The movement of exhaust gas from the glass melting kiln into the first heat storage chamber 11, from the inside of the first heat storage chamber 11. It is an opening that allows the movement of heated combustion air to the glass melting furnace.
 この接続ポート13は、第1の蓄熱室の上方に設けられる。ここで上方とは、第1の蓄熱室11において、例えば、第1の蓄熱室11の内部に配置された蓄熱体11aよりも高い位置であることを意味する。
 さらに、接続ポート13の配置位置は、流通させる気体が第1の蓄熱室11の内部に滞留しないように第1の蓄熱室11の天井に近い位置又は天井が好ましい。
The connection port 13 is provided above the first heat storage chamber. Here, “upward” means that the first heat storage chamber 11 is at a position higher than the heat storage body 11 a disposed inside the first heat storage chamber 11, for example.
Furthermore, the arrangement position of the connection port 13 is preferably a position close to the ceiling of the first heat storage chamber 11 or the ceiling so that the gas to be circulated does not stay in the first heat storage chamber 11.
 第2の蓄熱室12は、内部に蓄熱体12aが配置されており、その内部を流通する気体が該蓄熱体12aと接触するように区画された空間である。すなわち、第2の蓄熱室12は、上記したように燃焼用空気と排気ガスを流通させるように設けられ、その内部空間が流通路となっており、この第2の蓄熱室12を通過する燃焼用空気及び排気ガスは、第1の蓄熱室12を通過する際、蓄熱体12aと接触し熱交換が可能となっている。 The second heat storage chamber 12 is a space in which the heat storage body 12a is disposed, and the gas flowing through the second heat storage chamber 12 is partitioned so as to come into contact with the heat storage body 12a. That is, the second heat storage chamber 12 is provided so as to circulate the combustion air and the exhaust gas as described above, and the internal space serves as a flow passage, and the combustion that passes through the second heat storage chamber 12 is performed. When the working air and the exhaust gas pass through the first heat storage chamber 12, they come into contact with the heat storage body 12a and can exchange heat.
 したがって、蓄熱体12aは、第2の蓄熱室12内を流通する気体の流通方向に対して垂直方向に横断的に設けられ、流通する気体の大部分が蓄熱体12aと接触するようにして熱交換を効率的に行えるようになっている。 Therefore, the heat storage body 12a is provided transversely in a direction perpendicular to the flow direction of the gas flowing through the second heat storage chamber 12, and heat is generated so that most of the flowing gas is in contact with the heat storage body 12a. The exchange can be performed efficiently.
 また、この第2の蓄熱室12には、外部雰囲気と接続するための接続口として接続ダクト14が設けられている。接続ダクト14は、第2の蓄熱室12と外部雰囲気とを接続するもので、外部雰囲気から第2の蓄熱室12内への燃焼用空気の移動、第2の蓄熱室12内から外部雰囲気への排気ガスの移動、を可能とする開口である。 In addition, the second heat storage chamber 12 is provided with a connection duct 14 as a connection port for connection to the external atmosphere. The connection duct 14 connects the second heat storage chamber 12 and the external atmosphere, and movement of combustion air from the external atmosphere into the second heat storage chamber 12 and from the second heat storage chamber 12 to the external atmosphere. It is an opening that enables movement of exhaust gas.
 この接続ダクト14は、第2の蓄熱室12の上方に設けられる。ここで上方とは、第2の蓄熱室12において、例えば、第2の蓄熱室12の内部に配置された蓄熱体12aよりも高い位置であればよい。さらに、接続ダクト14の配置位置は、流通させる気体が第2の蓄熱室12の内部に滞留しないように第2の蓄熱室12の側壁の天井に近い位置が好ましく、天井に設けてもよい。天井に設ける場合は、鉛直方向に流路が形成されるように煙突状に設ければよい。 The connection duct 14 is provided above the second heat storage chamber 12. Here, the upper direction may be a position higher in the second heat storage chamber 12 than, for example, the heat storage body 12a disposed in the second heat storage chamber 12. Furthermore, the arrangement position of the connection duct 14 is preferably close to the ceiling of the side wall of the second heat storage chamber 12 so that the gas to be circulated does not stay inside the second heat storage chamber 12, and may be provided on the ceiling. When provided on the ceiling, it may be provided in a chimney shape so that the flow path is formed in the vertical direction.
 上記した蓄熱体11a,12aは、ガラス溶解窯の蓄熱装置に用いられる従来公知の蓄熱体であればよく、特に限定されるものではない。この蓄熱体11a,12aは、一般に、蓄熱用レンガ(チェッカーブリック)等の蓄熱部材を積層して形成されている。その積層にあたっては、内部を気体が流通可能なように(蓄熱効率を高めるように)蓄熱用レンガ同士の間隔を調整して積み上げる。このとき、典型的には、格子状に配列されるように蓄熱用レンガを重ねて並べ、その格子状の配列をさらに複数組積層すればよい。このとき、一般には段数によって向きを交互に重ねており、奇数段と偶数段とで、その配置位置が異なっている。このように積層した蓄熱体は、正面(側面)及び平面から見たときにいずれも格子状に積み重ねて蓄熱体が形成されている。しかしながら、積み重ねる手法は蓄熱機能を発揮できるものであれば特に限定されるものではない。 The above-described heat storage bodies 11a and 12a are not particularly limited as long as they are conventionally known heat storage bodies used in a heat storage device of a glass melting furnace. The heat storage bodies 11a and 12a are generally formed by stacking heat storage members such as heat storage bricks (checker bricks). In the lamination, the gaps between the heat storage bricks are adjusted and stacked so that the gas can flow therethrough (in order to increase the heat storage efficiency). At this time, typically, heat storage bricks are stacked and arranged so as to be arranged in a lattice pattern, and a plurality of such lattice-like arrays are stacked. At this time, in general, the directions are alternately stacked depending on the number of stages, and the positions of the odd and even stages are different. The heat storage bodies stacked in this way are stacked in a lattice shape when viewed from the front (side surface) and the plane, thereby forming a heat storage body. However, the stacking method is not particularly limited as long as the heat storage function can be exhibited.
 ここで用いられる蓄熱用レンガとしては、高温かつアルカリ耐性を有するものが用いられ、塩基性の結合レンガ、アルミナまたはアルミナ・ジルコニア・シリカ(AZS)質の電鋳レンガ等が挙げられる。電鋳レンガは、蓄熱室において全体的にどの部位でも使用可能であるが、結合レンガの場合には、蓄熱室における使用部位に応じて以下のように材質を選択することが好ましい。 As the heat storage bricks used here, those having high temperature and alkali resistance are used, and basic bonded bricks, alumina or alumina / zirconia / silica (AZS) electroformed bricks, and the like can be mentioned. The electroformed brick can be used at any part as a whole in the heat storage chamber, but in the case of a bonded brick, it is preferable to select the material as follows according to the use part in the heat storage chamber.
 第1の蓄熱室11に形成される蓄熱体11aの上段域においては、特に高温でガラス原料粉末が飛散してくることから、高純度のアルミナまたはマグネシア質の結合レンガを使用するのが好ましい。 In the upper region of the heat storage body 11a formed in the first heat storage chamber 11, it is preferable to use high-purity alumina or magnesia-bonded bricks because the glass raw material powder is scattered particularly at high temperatures.
 蓄熱体11aの中段域においては、ボウ晶の析出が原因となる劣化に強いスピネルレンガ、またはマグネシアレンガ等を使用するのが好ましい。蓄熱体11aの下段域においては、上段、中段の蓄熱体の重量を支える強度が必要なため、緻密で低気孔率の粘土質レンガまたはマグネシアレンガを使用するのが好ましい。 In the middle region of the heat storage element 11a, it is preferable to use spinel bricks, magnesia bricks, or the like that are resistant to deterioration caused by precipitation of bow crystals. In the lower stage region of the heat storage body 11a, it is necessary to use a clay brick or magnesia brick having a dense and low porosity because it needs strength to support the weight of the upper and middle heat storage bodies.
 また、第2の蓄熱室12に形成される蓄熱体12aの下段域においては、上記第1の蓄熱室における蓄熱体11aの下段域と同様に、上段、中段の蓄熱体の重量を支える強度が必要なため、緻密で低気孔率な粘土質レンガまたはマグネシアレンガを使用するのが好ましい。 Further, in the lower region of the heat storage body 12a formed in the second heat storage chamber 12, the strength to support the weight of the upper and middle heat storage members is similar to the lower region of the heat storage body 11a in the first heat storage chamber. Since it is necessary, it is preferable to use clay bricks or magnesia bricks which are dense and have low porosity.
 第2の蓄熱室12の中段~上段域においては、通常の粘土質レンガまたは低気孔率の粘土質レンガを使用するのが好ましい。 In the middle to upper stage of the second heat storage chamber 12, it is preferable to use ordinary clay bricks or clay bricks with low porosity.
 また、第1の蓄熱室に形成される蓄熱体11aは、蓄熱用レンガが格子状になるように積層して得られるものが好ましい。このとき、厚みが30~60mmのレンガが積層され、ガス流路となる各開口部分が140~160mm角となるように区切られることが好ましい。一般的にはロの字型や十字型等のレンガが使用される。 Further, the heat storage body 11a formed in the first heat storage chamber is preferably obtained by stacking heat storage bricks in a lattice shape. At this time, it is preferable that bricks having a thickness of 30 to 60 mm are laminated, and each opening portion serving as a gas flow path is partitioned so as to be 140 to 160 mm square. Generally, bricks such as a square shape or a cross shape are used.
 第2の蓄熱室に形成される蓄熱体12aは、第1の蓄熱室で用いられる蓄熱用レンガとは形状が異なるが、平面的に見たときに、ガラス流路とレンガ部分が存在することは同等であり、ガス流路となる開口部が140~190mmであって、レンガ厚みが30~90mm(好ましくは、60~90mm)、となるように積層して得られるものが好ましい。
 なお、第2の蓄熱室の蓄熱体12aは、さらに、後述する図4Aや図4Bで説明する積層配置とすることもできる。
Although the shape of the heat storage body 12a formed in the second heat storage chamber is different from that of the heat storage brick used in the first heat storage chamber, there is a glass flow path and a brick portion when viewed in plan. Are preferably obtained by laminating so that the opening serving as a gas flow path is 140 to 190 mm and the brick thickness is 30 to 90 mm (preferably 60 to 90 mm).
In addition, the heat storage body 12a of the second heat storage chamber can be further arranged in a stacked manner as will be described later with reference to FIGS. 4A and 4B.
 また、第1の蓄熱室11と第2の蓄熱室12とは、互いに下方に設けられた流通路15により接続されている。この流通路15は、第1の蓄熱室11から第2の蓄熱室12へ、および第2の蓄熱室12から第1の蓄熱室11へ、気体の流通を可能とする開口である。 Further, the first heat storage chamber 11 and the second heat storage chamber 12 are connected to each other by a flow passage 15 provided below. The flow passage 15 is an opening that allows gas to flow from the first heat storage chamber 11 to the second heat storage chamber 12 and from the second heat storage chamber 12 to the first heat storage chamber 11.
 この流通路15は、第1の蓄熱室11及び第2の蓄熱室12のいずれにおいても下方に設けられている。ここで、下方とは、第1の蓄熱室11及び第2の蓄熱室12において、例えば、それぞれの蓄熱室の内部に配置された蓄熱体11a,12aよりも低い位置であればよい。さらに、流通路15の配置位置は、流通させる気体が第1の蓄熱室11及び第2の蓄熱室12内部に滞留しないようにそれぞれの蓄熱室の底面に近い位置が好ましい。ここで、流通路15は、第1の蓄熱室11と第2の蓄熱室12との間で気体の流通を円滑に行うことができる大きさであればよく、特に限定されるものではない。 The flow passage 15 is provided below both the first heat storage chamber 11 and the second heat storage chamber 12. Here, in the first heat storage chamber 11 and the second heat storage chamber 12, for example, the lower position may be a position lower than the heat storage bodies 11a and 12a disposed inside the respective heat storage chambers. Furthermore, the arrangement position of the flow passage 15 is preferably a position close to the bottom surface of each heat storage chamber so that the gas to be circulated does not stay inside the first heat storage chamber 11 and the second heat storage chamber 12. Here, the flow path 15 is not particularly limited as long as it has a size that allows gas to smoothly flow between the first heat storage chamber 11 and the second heat storage chamber 12.
 上記したように、接続ポート13及び接続ダクト14を上方に、流通路15を下方に設けている。そのため、例えば、排気ガスは、ガラス溶解窯から第1の蓄熱室11の上方に導入され、第1の蓄熱室11内部を蓄熱体11aと接触しながら下方に移動し流通路15を通って第2の蓄熱室12に移動する。さらに、第2の蓄熱室12に移動した排気ガスは、第2の蓄熱室12内部を蓄熱体12aと接触しながら上方に移動し接続ダクト14から外部雰囲気に排出される。 As described above, the connection port 13 and the connection duct 14 are provided upward, and the flow passage 15 is provided downward. Therefore, for example, the exhaust gas is introduced from the glass melting furnace to the upper side of the first heat storage chamber 11, moves downward while contacting the inside of the first heat storage chamber 11 with the heat storage body 11 a, and passes through the flow passage 15. Move to the second heat storage chamber 12. Further, the exhaust gas that has moved to the second heat storage chamber 12 moves upward while contacting the inside of the second heat storage chamber 12 with the heat storage body 12a, and is discharged from the connection duct 14 to the external atmosphere.
 そして、この蓄熱装置10は、上記した第1の蓄熱室11と第2の蓄熱室12とを所定の関係とする点に特徴を有する。図2は、図1に示した蓄熱装置10のA-A断面図を示しており、この図2において、第1の蓄熱室11の平断面における面積をS1、第2の蓄熱室12の平断面の面積をS2としている。ここで、本発明の一実施形態においては、これらの面積S1に対する面積S2との比(S2/S1)が0.2~0.62であり、0.3~0.58が好ましく、0.3~0.52がさらに好ましい。なお、図2において、面積S1は斜線、面積S2は斜め格子、のハッチングパターンで表している。 The heat storage device 10 is characterized in that the first heat storage chamber 11 and the second heat storage chamber 12 have a predetermined relationship. FIG. 2 is a cross-sectional view taken along the line AA of the heat storage device 10 shown in FIG. 1. In FIG. 2, the area of the first heat storage chamber 11 in the plane cross section is S1, and the second heat storage chamber 12 is flat. The area of the cross section is S2. Here, in one embodiment of the present invention, the ratio (S2 / S1) of the area S2 to the area S1 is 0.2 to 0.62, preferably 0.3 to 0.58, More preferably, it is 3 to 0.52. In FIG. 2, the area S1 is represented by a hatched pattern, and the area S2 is represented by a hatched pattern.
 この比(S2/S1)を0.62以下とすることで、従来課題としていた偏流による熱交換の効率低下を抑制し、熱エネルギーの利用効率を向上させることができる。すなわち、第2の蓄熱室12における排気ガスの流路と燃焼用空気の流路とを重ねることで、蓄熱による熱利用の効率を向上させることができる。さらに、これにより、蓄熱体の脆化を抑制し、装置寿命を長くすることができる。 By setting this ratio (S2 / S1) to 0.62 or less, it is possible to suppress a decrease in efficiency of heat exchange due to drift, which has been a problem in the past, and to improve the utilization efficiency of heat energy. That is, by overlapping the exhaust gas flow path and the combustion air flow path in the second heat storage chamber 12, the efficiency of heat utilization by heat storage can be improved. Furthermore, this makes it possible to suppress embrittlement of the heat storage body and extend the life of the apparatus.
 また、上記比(S2/S1)を0.2以上とすることで、第1の蓄熱室11から第2の蓄熱室12へ、また、第2の蓄熱室12から第1の蓄熱室11へ、と流通可能な気体の流量の変化量を良好な範囲に抑制でき、気体の流速が速くなりすぎることによる、蓄熱体の損傷を防止したり、摩耗を低減したりすることが可能になり、蓄熱装置内の気体の流通を円滑なものとできる。 In addition, by setting the ratio (S2 / S1) to 0.2 or more, the first heat storage chamber 11 is changed to the second heat storage chamber 12, and the second heat storage chamber 12 is changed to the first heat storage chamber 11. It is possible to suppress the amount of change in the flow rate of gas that can be circulated to a good range, prevent damage to the heat storage body due to the gas flow rate becoming too fast, or reduce wear, The circulation of the gas in the heat storage device can be made smooth.
 なお、一般に、蓄熱体11a,12aは、第1の蓄熱室11及び第2の蓄熱室12にそれぞれ平断面(流路の横断面)の全領域に配置されるように形成されるため、上記面積の比はそのまま蓄熱体11a,12aが形成された面積と同じ関係となる。 In general, the heat storage bodies 11a and 12a are formed in the first heat storage chamber 11 and the second heat storage chamber 12 so as to be disposed in the entire area of the flat cross section (transverse cross section of the flow path), respectively. The area ratio is the same as the area where the heat storage elements 11a and 12a are formed.
 さらに、図2に示したように、第1の蓄熱室の平断面における縦(奥行)をL1、横(幅)をW1、第2の蓄熱室の平断面における縦(奥行)をL2、横(幅)をW2、としたとき、第2の蓄熱室の縦横比(L2/W2)は0.3~0.7が好ましい。このような縦横比とすることで、第2の蓄熱室14を流通する燃焼用空気及び排気ガスが円滑に流通でき、上記した排気ガスによる蓄熱、燃焼用空気の加熱をそれぞれより効率的にできる。 Further, as shown in FIG. 2, the vertical (depth) in the flat section of the first heat storage chamber is L1, the horizontal (width) is W1, and the vertical (depth) in the flat section of the second heat storage chamber is L2. When (width) is W2, the aspect ratio (L2 / W2) of the second heat storage chamber is preferably 0.3 to 0.7. By setting it as such an aspect ratio, the combustion air and exhaust gas which distribute | circulate the 2nd thermal storage chamber 14 can be distribute | circulated smoothly, and the above-mentioned heat storage by exhaust gas and the heating of combustion air can be made more efficient, respectively. .
 また、流通路15の開口面積(S3)は、上記した第1の蓄熱室11の平断面の面積(S1)に対する比(S3/S1)が0.1~0.4であることが好ましい。この比(S3/S1)を0.4以下とすることで、排気ガスが第1の蓄熱室11から第2の蓄熱室12に移動する際、流通路15を通過する流速を高めることができ、排気ガスを流通路15から離れた蓄熱体12a(接続ダクト14側の蓄熱体12a)まで届けることができる。また、比(S3/S1)を0.1以上とすることで、排気ガスの流通路15の通過における流速が高くなりすぎず、蓄熱体12aの全体に排気ガスを接触させることができる。すなわち、排気ガスが主に第1の蓄熱室11寄りの蓄熱体12aに接触するような偏流を抑制できる。 Further, the opening area (S3) of the flow passage 15 is preferably such that the ratio (S3 / S1) to the area (S1) of the flat cross section of the first heat storage chamber 11 is 0.1 to 0.4. By setting this ratio (S3 / S1) to 0.4 or less, when exhaust gas moves from the first heat storage chamber 11 to the second heat storage chamber 12, the flow velocity passing through the flow passage 15 can be increased. The exhaust gas can be delivered to the heat storage body 12a (the heat storage body 12a on the connection duct 14 side) away from the flow passage 15. Further, by setting the ratio (S3 / S1) to 0.1 or more, the flow rate of the exhaust gas passing through the flow passage 15 does not become too high, and the exhaust gas can be brought into contact with the entire heat storage body 12a. That is, it is possible to suppress a drift in which the exhaust gas mainly contacts the heat storage body 12a near the first heat storage chamber 11.
 また、この流通路15の開口上端部15aは、第2の蓄熱室12に配置された蓄熱体12aの下端よりも鉛直方向に50~100cm低い位置に設けられることが好ましく、80~100cm低い位置がより好ましい。
 また、この流通路15の開口上端部15aは、第2の蓄熱室12の床面から、鉛直方向に50~150cm上方に設けられることが好ましく、80~120cm上方に設けられることがより好ましい。
Further, the opening upper end portion 15a of the flow passage 15 is preferably provided at a position 50 to 100 cm lower than the lower end of the heat storage body 12a disposed in the second heat storage chamber 12, and is 80 to 100 cm lower. Is more preferable.
Further, the opening upper end portion 15a of the flow passage 15 is preferably provided 50 to 150 cm above the floor surface of the second heat storage chamber 12 and more preferably 80 to 120 cm above.
 また、第2の蓄熱室12の床面から蓄熱体12aの下端との距離をH1としたとき(図1参照)、流通路15の開口上端部15aは、第2の蓄熱室12の床面から、H1の2/3より低い位置に設けられることが好ましく、1/2より低い位置に設けられることがより好ましい。
 これにより、第1の蓄熱室11から第2の蓄熱室12に移動した排気ガスが、蓄熱体12aに接触するまでの時間を若干遅くでき、これにより第2の蓄熱室12に流入した排気ガスが拡散されるため、これも偏流抑制の一つの方法となる。
When the distance from the floor surface of the second heat storage chamber 12 to the lower end of the heat storage body 12a is H1 (see FIG. 1), the opening upper end portion 15a of the flow passage 15 is the floor surface of the second heat storage chamber 12. Therefore, it is preferably provided at a position lower than 2/3 of H1, and more preferably provided at a position lower than 1/2.
As a result, the exhaust gas that has moved from the first heat storage chamber 11 to the second heat storage chamber 12 can be slightly delayed until it contacts the heat storage body 12a, and the exhaust gas that has flowed into the second heat storage chamber 12 thereby. Since this is diffused, this is also one method of suppressing drift.
 また、第1の蓄熱室11の床面と第2の蓄熱室12の床面は段差が設けられてもよい。このとき、第2の蓄熱室12の床面が、第1の蓄熱室11の床面よりも15~50cm高いことが好ましく、20~30cm高いことがさらに好ましい。なお、床面に段差がある場合、流通路15の開口面積(S3)は、第1の蓄熱室11の床面と第2の蓄熱室12の床面のうち高い方の床面を流通路の下面として開口部が定まる。 Moreover, a step may be provided between the floor surface of the first heat storage chamber 11 and the floor surface of the second heat storage chamber 12. At this time, the floor surface of the second heat storage chamber 12 is preferably 15 to 50 cm higher than the floor surface of the first heat storage chamber 11, and more preferably 20 to 30 cm higher. In addition, when there is a step on the floor surface, the opening area (S3) of the flow passage 15 flows through the higher floor surface of the floor surface of the first heat storage chamber 11 and the floor surface of the second heat storage chamber 12. An opening is defined as the lower surface of the.
<ガラス溶解装置>
 本発明の一実施形態のガラス溶解装置は、ガラス溶解窯と、該ガラス溶解窯と接続された一対の上記蓄熱装置と、を有する。ここで用いるガラス溶解窯は、従来公知のガラス溶解窯が用いられ特に限定されるものではない。
<Glass melting device>
The glass melting apparatus of one Embodiment of this invention has a glass melting kiln and a pair of said heat storage apparatus connected with this glass melting kiln. As the glass melting furnace used here, a conventionally known glass melting furnace is used and is not particularly limited.
 また、ここで用いる蓄熱装置は、本発明の蓄熱装置であり、例えば、上記説明した蓄熱装置が挙げられる。この蓄熱装置は、燃焼用空気と排気ガスとを交互に流通可能するものであり、さらに、ガラス溶解窯に対して一対となるように設けられる。この一対に設けられた蓄熱装置により、一方に燃焼用空気を流通させている場合、他方には排気ガスを流通させるようにしてガラス溶解窯内の雰囲気を常に燃焼可能な状態とできる。これによりガラス溶解窯内において、高温状態を安定して維持できるようにしている。 Further, the heat storage device used here is the heat storage device of the present invention, for example, the heat storage device described above. This heat storage device is capable of alternately circulating combustion air and exhaust gas, and is further provided as a pair with respect to the glass melting furnace. When the combustion air is circulated through one of the pair of heat storage devices, the atmosphere in the glass melting furnace can always be combusted by allowing the exhaust gas to circulate through the other. Thereby, the high temperature state can be stably maintained in the glass melting furnace.
<ガラス物品の製造方法>
 本発明のガラス物品の製造方法は、上記ガラス溶解装置を用いてガラス物品を製造することを特徴とする。
<Method for producing glass article>
The glass article manufacturing method of the present invention is characterized in that a glass article is manufactured using the glass melting apparatus.
 このガラス物品の製造方法においては、従来公知の方法と同様の操作により、ガラス溶解窯内でガラス原料を溶解し、溶解したガラス原料を冷却により固化させてガラス物品とする。このとき、ガラス溶解装置として上記ガラス溶解装置を用いる点が特徴である。 In this method for producing a glass article, the glass raw material is melted in a glass melting furnace by the same operation as a conventionally known method, and the melted glass raw material is solidified by cooling to obtain a glass article. At this time, the point which uses the said glass melting apparatus as a glass melting apparatus is the characteristics.
 すなわち、まず、ガラス溶解装置のガラス溶解窯内に、燃焼用空気と燃料とを導入し、燃焼させてガラス溶解窯内を所望の温度に加熱する。ガラス溶解窯内を所定の温度に維持したまま、公知の方法によりガラス原料を十分に溶解し、溶解したガラス原料は、ガラス溶解窯から移送して、冷却して固化させ、所望の形状のガラス物品を製造する。 That is, first, combustion air and fuel are introduced into the glass melting kiln of the glass melting apparatus, and are burned to heat the glass melting kiln to a desired temperature. While maintaining the inside of the glass melting furnace at a predetermined temperature, the glass raw material is sufficiently melted by a known method, and the melted glass raw material is transferred from the glass melting furnace, cooled and solidified, and glass having a desired shape. Manufacture articles.
 このガラス物品の製造において、ガラス溶解窯内の温度をガラス原料が溶解状態を保つように高温に維持するのに、上記一対の蓄熱装置を使用する。すなわち、ガラス溶解窯内での燃焼により生じた排気ガスを、一方の蓄熱装置に流通させて外部雰囲気に排出するのと同時に、他方の蓄熱装置には外部雰囲気から燃焼用空気を流通させ、該燃焼用空気をガラス溶解窯内へ導入する。ここで導入された燃焼用空気は燃料と混合され、ガラス溶解窯内で燃焼され、所定の高温状態を維持できるようになっている。 In the production of this glass article, the pair of heat storage devices is used to maintain the temperature in the glass melting furnace at a high temperature so that the glass raw material remains in a molten state. That is, exhaust gas generated by combustion in the glass melting furnace is circulated to one heat storage device and discharged to the external atmosphere, and simultaneously, combustion air is circulated from the external atmosphere to the other heat storage device, Combustion air is introduced into the glass melting furnace. The combustion air introduced here is mixed with fuel and burned in a glass melting furnace so that a predetermined high temperature state can be maintained.
 この流れを所定時間行った後、今度は、各蓄熱装置において流通させる気体及び気体の流通方向を変更する。すなわち、排気ガスを流通させていた蓄熱装置においては燃焼用ガスを、燃焼用ガスを流通させていた蓄熱装置においては排気ガスを、それぞれ流通させるようにする。このように流通させる気体及び気体の流通方向を、所定のタイミングで交互に変更する操作を繰り返し行う。これによって、ガラス溶解窯の内部は、常に所望の高温状態を維持できる。 After performing this flow for a predetermined time, this time, the gas to be circulated in each heat storage device and the gas distribution direction are changed. That is, the combustion gas is circulated in the heat storage device in which the exhaust gas is circulated, and the exhaust gas is circulated in the heat storage device in which the combustion gas is circulated. The operation of alternately changing the gas to be circulated and the gas flow direction at a predetermined timing is repeated. Thereby, the inside of a glass melting furnace can always maintain a desired high temperature state.
 この操作を行うことで、高温の排気ガスと蓄熱体が接触すると、熱移動により蓄熱体に蓄熱され、次いで、この蓄熱された蓄熱体に燃焼用空気を接触させると、熱移動により常温である燃焼用空気が加熱される。この熱移動が、第1の蓄熱室11及び第2の蓄熱室12で行われる。 By performing this operation, when the high-temperature exhaust gas and the heat storage body come into contact with each other, heat is stored in the heat storage body by heat transfer, and then when the combustion air is brought into contact with the heat storage body thus stored, the heat transfer causes room temperature. The combustion air is heated. This heat transfer is performed in the first heat storage chamber 11 and the second heat storage chamber 12.
 このように、排気ガスの排熱を、蓄熱体11a,12aを介して燃焼用空気の加熱に利用することで、熱エネルギーを有効活用して、ガラス物品の製造において省エネルギー化、低コスト化、を図ることができる。 In this way, exhaust heat of exhaust gas is used for heating combustion air via the heat storage bodies 11a, 12a, so that heat energy can be effectively used to save energy and reduce costs in the manufacture of glass articles. Can be achieved.
(蓄熱装置の変形例)
 また、上記した蓄熱装置は、次に説明するような構成とすることもできる。
 接続ダクト14には、図3A及び3Bに示したように、燃焼用空気の流通方向を変更できるダンパー21を設けてもよい。このダンパー21は、第2の蓄熱室12と接続ダクト14の接続口付近に設けられる。このダンパー21は、燃焼用空気を接続ダクト14から第2の蓄熱室12に取り込む際に、燃焼用空気の流通方向(取込み方向)を変えられるようにできればよい。
(Modification of heat storage device)
Moreover, the above-described heat storage device can be configured as described below.
As shown in FIGS. 3A and 3B, the connection duct 14 may be provided with a damper 21 that can change the flow direction of the combustion air. The damper 21 is provided near the connection port between the second heat storage chamber 12 and the connection duct 14. The damper 21 only needs to be able to change the flow direction (take-in direction) of the combustion air when taking the combustion air into the second heat storage chamber 12 from the connection duct 14.
 例えば、図3Aに示したダンパー21は両端部が上下動可能なように中央部が固定された板状の部材であり、この板状部材の向きによって第2の蓄熱室内に送り込まれる燃焼用空気の方向が変化する。燃焼用空気が接続ダクト14から下斜め方向に取り込まれるときは、第2の蓄熱室12の内部に配置された蓄熱体12aのうち接続ダクト14の接続口寄りの蓄熱体と接触して下方に流通し、燃焼用空気が接続ダクト14から上斜め方向に取り込まれるときは、第2の蓄熱室12の内部に配置された蓄熱体12aのうち接続ダクト14の接続口から離れた蓄熱体と接触して下方に流通するようになる。 For example, the damper 21 shown in FIG. 3A is a plate-like member that is fixed at the center so that both ends can move up and down, and the combustion air that is fed into the second heat storage chamber depending on the orientation of the plate-like member The direction of changes. When combustion air is taken in from the connecting duct 14 in a diagonally downward direction, the heat storage body 12a disposed inside the second heat storage chamber 12 contacts the heat storage body near the connection port of the connection duct 14 and moves downward. When the combustion air is circulated and taken in from the connection duct 14 in an obliquely upward direction, it contacts the heat storage body that is distant from the connection port of the connection duct 14 among the heat storage bodies 12a disposed inside the second heat storage chamber 12. Then it comes to circulate downward.
 このように燃焼用空気を第2の蓄熱室12に取り込む際に流通方向を変えることで、燃焼用空気の流路を偏在させないようにでき、蓄熱体の温度も均一なものとできる。 Thus, by changing the flow direction when the combustion air is taken into the second heat storage chamber 12, the flow path of the combustion air can be prevented from being unevenly distributed, and the temperature of the heat storage body can be made uniform.
 また、図3Bには、接続ダクト14を第2の蓄熱室12の天井に設けた例を示した。このように接続ダクト14を天井に設けると、燃焼用空気の取り込む平面位置を任意に設定でき好ましい。例えば、排気ガスの上昇流の強弱に応じて設けることもできる。また、図3Bでは図3Aと同様に、ダンパー21を設けているが、このときダンパー21は両端部が水平方向に可動できるように中央部が固定された板状の部材であり、この板状部材の向きによって第2の蓄熱室12内に送り込まれる燃焼用空気の方向が変化する。 FIG. 3B shows an example in which the connection duct 14 is provided on the ceiling of the second heat storage chamber 12. It is preferable to provide the connection duct 14 on the ceiling in this way because the plane position where the combustion air is taken in can be arbitrarily set. For example, it can be provided according to the strength of the upward flow of exhaust gas. 3B, a damper 21 is provided as in FIG. 3A. At this time, the damper 21 is a plate-like member whose center is fixed so that both ends can be moved in the horizontal direction. The direction of the combustion air sent into the second heat storage chamber 12 changes depending on the direction of the member.
 したがって、燃焼用空気が接続ダクト14から第1の蓄熱室11寄りに取り込まれるときは、第2の蓄熱室12の内部に配置された蓄熱体12aのうち第1の蓄熱室11寄りの蓄熱体と接触しながら下方に流通し、燃焼用空気が接続ダクト14の第1の蓄熱室11から離れた側に取り込まれるときは、第2の蓄熱室12の内部に配置された蓄熱体のうち第1の蓄熱室11から離れた側の蓄熱体と接触しながら下方に流通するようになる。 Therefore, when combustion air is taken in from the connection duct 14 toward the first heat storage chamber 11, the heat storage body near the first heat storage chamber 11 among the heat storage bodies 12 a arranged inside the second heat storage chamber 12. When the combustion air is taken in to the side away from the first heat storage chamber 11 of the connection duct 14, the first of the heat storage bodies arranged in the second heat storage chamber 12. It comes to distribute | circulate below, contacting the thermal storage body of the side away from the 1 thermal storage chamber 11. FIG.
 このように燃焼用空気を第2の蓄熱室12に取り込む際に流通方向を変えることで、燃焼用空気の流路を偏在させることなく、蓄熱体の温度も均一なものとできる。 Thus, by changing the flow direction when the combustion air is taken into the second heat storage chamber 12, the temperature of the heat storage body can be made uniform without uneven distribution of the flow path of the combustion air.
 次に、蓄熱体12aの蓄熱部材の積層構造について説明する。 Next, the laminated structure of the heat storage member of the heat storage body 12a will be described.
 上記した蓄熱体12aは、高温ガスを流通させることで蓄熱し、次いで低温ガスを流通させることで放熱できるように積層されるものであり、一般的には側面から見たときに格子状に積み重ねられる(図4A)。この図4Aでは、蓄熱部材として直方体の耐熱レンガを使用し、この蓄熱部材を13段積み重ねた場合の、一構成例を概略的に示している。この図4Aでは、奇数段の蓄熱部材を121a、偶数段の蓄熱部材を121bとして示したが、蓄熱部材121aと蓄熱部材121bは同一の蓄熱部材である。 The above-described heat storage body 12a is stacked so that heat can be stored by circulating a high-temperature gas and then heat can be dissipated by circulating a low-temperature gas, and is generally stacked in a lattice shape when viewed from the side. (FIG. 4A). FIG. 4A schematically shows a configuration example in the case where a rectangular parallelepiped heat-resistant brick is used as the heat storage member and the heat storage members are stacked in 13 stages. In FIG. 4A, the odd-numbered heat storage member is shown as 121a and the even-numbered heat storage member is shown as 121b. However, the heat storage member 121a and the heat storage member 121b are the same heat storage member.
 また、蓄熱部材の他の積層構造としては、図4Bに示したように、蓄熱部材の積層位置が互い違いとなるような千鳥配置として積層してもよい。なお、千鳥配置は、奇数段、偶数段を分けて考える。すなわち、ある奇数段における積層位置が、隣の奇数段(段数で言えば±2段)の蓄熱部材の積層位置とは、平面視したときに重ならないように互い違いに積層されている状態である。 Further, as another stacked structure of the heat storage member, as shown in FIG. 4B, the heat storage member may be stacked in a staggered arrangement in which the stacked positions of the heat storage members are staggered. Note that the staggered arrangement is divided into odd and even stages. In other words, the stacking positions in a certain odd-numbered stage are in a state of being stacked alternately so as not to overlap when viewed in plan with the stacking positions of the adjacent odd-numbered stages (± 2 stages in terms of the number of stages). .
 千鳥配置とする場合、奇数段における蓄熱部材の配置位置及び偶数段における蓄熱部材の配置位置の少なくとも一方を千鳥配置とすればよい。このとき、蓄熱体12aの外周部分においては、積層構造の強度等を考慮し、外表面の配置位置は揃うようにすることが好ましい。 In the case of staggered arrangement, at least one of the arrangement positions of the heat storage members in the odd stages and the arrangement positions of the heat storage members in the even stages may be the staggered arrangement. At this time, in the outer peripheral portion of the heat storage body 12a, it is preferable that the arrangement positions of the outer surfaces are aligned in consideration of the strength of the laminated structure and the like.
 この千鳥配置のように、平面視における蓄熱部材の配置位置をずらすことで、流通する気体が蓄熱体の内部を流通する流路長を長くすることができ、蓄熱及び放熱の熱移動を効率的に行うことができる。例えば、図4A及び図4Bに示した蓄熱体12aにおける排気ガスの主な流れの一例を、それぞれ破線で示した。図4Aでは、流路fl1がそのまま鉛直方向上方に直線的に形成されるのに対し、図4Bでは、流路fl2が上段の蓄熱部材により妨げられて直線状に形成できないため、例えば、波状に形成される。したがって、排気ガスの蓄熱体12a内の流路を長くでき、それだけ蓄熱の機会を増やすことができ熱移動の効率を向上させることができる。 Like this staggered arrangement, by shifting the arrangement position of the heat storage member in plan view, the length of the flow path through which the circulating gas circulates inside the heat storage body can be lengthened, and the heat transfer of heat storage and heat dissipation is efficient. Can be done. For example, an example of the main flow of the exhaust gas in the heat storage body 12a shown in FIGS. 4A and 4B is indicated by a broken line. In FIG. 4A, the flow path fl1 is linearly formed in the vertical direction as it is, but in FIG. 4B, the flow path fl2 is blocked by the upper heat storage member and cannot be formed in a straight line. It is formed. Therefore, the flow path in the exhaust gas heat storage body 12a can be lengthened, and the chance of heat storage can be increased accordingly, and the efficiency of heat transfer can be improved.
 なお、図4Bでは簡略的に流路fl2を示しており、実際にはきれいに波状になるわけではない。すなわち、蓄熱部材との衝突で分岐し、さらにその上段の蓄熱部材との衝突で分岐し、というのを繰り返すと同時に、他の流路の分岐流と合流する等もあるため、実際の流れは複雑なものとなる。 In addition, in FIG. 4B, the flow path fl2 is simply shown, and it does not actually have a beautiful wave shape. That is, branching is caused by a collision with a heat storage member, and further branching by a collision with an upper heat storage member. It becomes complicated.
 また、このような互い違いとなる配置とする部分は蓄熱体の一部分でもよいが、設ける場合には、流路長を長くできるように鉛直方向に配置パターンが繰り返されるようにして設けることが好ましい。 In addition, the staggered portion may be a part of the heat storage body. However, when it is provided, it is preferable that the arrangement pattern is repeated in the vertical direction so that the flow path length can be increased.
 上記では互い違いとなる配置を説明したが、流路長を長くできるものであればこれに限られるものではない。すなわち、この配置は、奇数段又は偶数段において、蓄熱部材が互い違いに積層されている構造であり、これは、言い換えれば、起点となる段における蓄熱部材の配置に対し、1つ上の段(奇数偶数合わせると、実際には2つ上の段)の配置が、起点となる段における蓄熱部材間のピッチの真ん中(平面視したときの配置位置)であり、2つ上の段(奇数偶数合わせると、実際には4つ上の段)の配置が、起点となる段における蓄熱部材と同一(平面視した時の配置位置)となるものである。さらに、3つ上の段(奇数偶数合わせると、実際には6つ上の段)の配置が、1つ上の段と同一(平面視した時の配置位置)となるものであり、このような配置が以降繰り返される。すなわち、これは2段の周期で繰り返し積層されている積層構造と言える。 Although the alternate arrangement has been described above, the arrangement is not limited to this as long as the flow path length can be increased. That is, this arrangement is a structure in which the heat storage members are alternately stacked in the odd-numbered stage or the even-numbered stage. In other words, this is a stage one level higher than the arrangement of the heat storage member in the starting stage ( When the odd and even numbers are combined, the arrangement of the upper two stages is actually the middle of the pitch between the heat storage members in the starting stage (the arrangement position when viewed in plan), and the upper two stages (the odd and even stages) In total, the arrangement of the upper four stages) is the same as the heat storage member in the starting stage (arrangement position when viewed in plan). Furthermore, the arrangement of the upper three stages (if the odd and even numbers are combined, the actual upper six stages) is the same as the upper one (arrangement position when viewed in plan). The subsequent arrangement is repeated thereafter. That is, it can be said that this is a laminated structure in which layers are repeatedly laminated at a cycle of two stages.
 そして、本実施形態においては、さらに、2段の周期で繰り返し積層する以外にも、3段以上の周期、例えば、3~20段の周期として繰り返し構造を設けてもよい。このとき、周期の形成の方法は、周期を階段状に設けてもよいし、周期を波状に設けてもよい。ここで、例えば、3段の周期で階段状に設ける場合を例に考えると、奇数段の1段目、奇数段の2段目、奇数段の3段目、はそれぞれ平面視したときに重ならない配置であり、奇数段の4段目は1段目と同一、5段目は2段目と同一、6段目は3段目と同一、というように階段状に設ける例が挙げられる。 In the present embodiment, a repeating structure may be provided with a period of three or more stages, for example, a period of 3 to 20 stages, in addition to repeated lamination with a period of two stages. At this time, as a method of forming a cycle, the cycle may be provided in a step shape, or the cycle may be provided in a wave shape. Here, for example, in the case of providing a staircase with a period of three steps, the odd-numbered first step, the odd-numbered second step, and the odd-numbered third step are overlapped when viewed in plan. An example is provided in which the fourth step of the odd number is the same as the first step, the fifth step is the same as the second step, and the sixth step is the same as the third step.
 また、上記3段の周期で階段状に設ける構造と類似するものとしては、1~3段は上記と同一であるが、4段目を2段目と同一とし、5段目を1段目と同一とし、この5段目以降を1~4段目を繰り返す波状に設ける例が挙げられる。この場合、繰り返し単位は4段となる。 In addition, as a structure similar to the structure provided in a stepped manner with the period of three steps, the first to third steps are the same as the above, but the fourth step is the same as the second step, and the fifth step is the first step. In this example, the fifth and subsequent steps are provided in a wave shape that repeats the first to fourth steps. In this case, the repeating unit is four stages.
 また、蓄熱体を構成する蓄熱部材は、一般的には直方体の蓄熱部材を用いればよいが、例えば、図5A及び5Bに示したように、側面において上方の幅が狭く、下方の幅が広くなるような傾斜を有する蓄熱部材を用いてもよい。このような形状の蓄熱部材を用いると、蓄熱部材の清掃が容易となる。すなわち、上記した蓄熱装置を用いたガラス物品の製造を行うと、排気ガス中には燃焼に伴い生成した燃焼カスや、排気ガス中に含まれる化合物等がダストとして蓄熱部材に付着する。このような付着物は使用時間に応じて増大し、長時間の使用によっては気体の流通路が狭くなりすぎて、ついには閉塞し、蓄熱装置が十分に機能し得なくなる場合がある。 In addition, the heat storage member constituting the heat storage body may generally be a rectangular parallelepiped heat storage member. For example, as shown in FIGS. 5A and 5B, the upper width is narrow on the side surface and the lower width is wide. You may use the thermal storage member which has such an inclination. If the heat storage member having such a shape is used, the heat storage member can be easily cleaned. That is, when a glass article is manufactured using the above-described heat storage device, combustion debris generated by combustion in the exhaust gas, compounds contained in the exhaust gas, and the like adhere to the heat storage member as dust. Such deposits increase according to the usage time, and the gas flow path becomes too narrow after a long period of use and eventually becomes blocked, and the heat storage device may not function sufficiently.
 このような事態を生じさせないために、上記のような側面に傾斜を有する蓄熱部材を使用すると、ダストの蓄熱部材自体への堆積を抑制することができる。また、このようなダストを定期的な清掃によりメンテナンスする場合もあり、この場合には、通常第2の蓄熱室の接続ダストや、途中に設けた開閉可能な清掃用の窓等から、清掃用具を差し入れてダストを第2の蓄熱室の底部に落下させる。この清掃において、通常は上方から下方に向けて差し入れるため、清掃のしやすさ等においても有利である。 In order not to cause such a situation, if a heat storage member having an inclination on the side surface as described above is used, accumulation of dust on the heat storage member itself can be suppressed. In addition, there is a case where such dust is maintained by regular cleaning. In this case, a cleaning tool is usually used from the dust connected to the second heat storage chamber or an openable cleaning window provided in the middle. And let the dust fall to the bottom of the second heat storage chamber. In this cleaning, since it is usually inserted from the top to the bottom, it is advantageous in terms of ease of cleaning.
 また、蓄熱部材としては、図5C及び5Dに示したように、側断面において上方の幅が狭く、下方の幅が広くなるような傾斜を有する蓄熱部材であるが、部分的に傾斜のない蓄熱部材としてもよい。図5C及び5Dの蓄熱部材は、幅方向において両端と中央部の傾斜がなく(高さ方向に奥行が同一)、その間の部分に傾斜を設けた特殊形状の蓄熱用レンガである。このような形状とすることで、ダストの堆積を防止しつつ、蓄熱部材の強度も確保できる。この蓄熱部材を使用する場合、傾斜のない部分を他の蓄熱部材と積層するのが好ましい。 Further, as shown in FIGS. 5C and 5D, the heat storage member is a heat storage member having an inclination in which the upper width is narrow and the lower width is wide in the side cross section, but the heat storage member has no partial inclination. It is good also as a member. The heat storage member in FIGS. 5C and 5D is a heat storage brick having a special shape in which there is no inclination at both ends and the central part in the width direction (the depth is the same in the height direction), and an inclination is provided between the two. By setting it as such a shape, the intensity | strength of a thermal storage member is securable, preventing accumulation of dust. When using this heat storage member, it is preferable to laminate a portion having no inclination with another heat storage member.
 以下に、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらの記載によって何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these descriptions.
(実施例1~2)
 ガラス溶解窯に、接続ポートを介して図1に示した構成の第1の蓄熱室及び第2の蓄熱室を有する蓄熱装置を設けたガラス溶解装置を得た。これらの蓄熱装置における、各パラメータの関係について表1に示した。ここで、ガラス溶解窯は、表2に示した各例所定の生産量のものを用いた。
(Examples 1 and 2)
A glass melting apparatus provided with a heat storage device having a first heat storage chamber and a second heat storage chamber having the configuration shown in FIG. 1 in a glass melting furnace via a connection port was obtained. Table 1 shows the relationship between the parameters in these heat storage devices. Here, the glass melting kiln having a predetermined production amount in each example shown in Table 2 was used.
(比較例1~2)
 表2に示した各例所定の生産量のガラス溶解窯に、接続ポートを介して図7に示した構成の第1の蓄熱室及び第2の蓄熱室を有する蓄熱装置を設けたガラス溶解装置を得た。これらの蓄熱装置における、各パラメータの関係について表1に併せて示した。
(Comparative Examples 1 and 2)
The glass melting apparatus which provided the thermal storage apparatus which has the 1st thermal storage chamber of the structure shown in FIG. 7 and the 2nd thermal storage chamber via the connection port in the glass melting kiln of each example predetermined production amount shown in Table 2 Got. The relationship of each parameter in these heat storage devices is shown together in Table 1.
(比較例3~4)
 表2に示した各例所定の生産量のガラス溶解窯に、接続ポートを介して第1の蓄熱室を有する蓄熱装置(第2の蓄熱室を有しないシングルパスのもの)を設けたガラス溶解装置を得た。
(Comparative Examples 3 to 4)
Glass melting provided with a heat storage device having a first heat storage chamber (a single-pass one having no second heat storage chamber) via a connection port in a glass melting kiln having a predetermined production amount shown in Table 2 Got the device.
 なお、第2の蓄熱室における接続ダクトの接続位置は実施例1~2が上(天井)、比較例1~2が横(上方)、である。
 これら実施例1~2及び比較例1~4で得られたガラス溶解装置を用いて、ガラス原料を溶解してガラス物品を製造した。表1は実施例1~2、比較例1~2の蓄熱装置における、各パラメータの関係を示している。このとき、各例におけるガラス溶解窯の生産量と使用した燃料の関係から単位生産量当たりの燃料原単位を算出し、表2及び図6にまとめて示した。
Note that the connection positions of the connection ducts in the second heat storage chamber are up (ceiling) in Examples 1 and 2, and side (upward) in Comparative Examples 1 and 2.
Using the glass melting apparatus obtained in Examples 1 and 2 and Comparative Examples 1 to 4, glass materials were melted to produce glass articles. Table 1 shows the relationship of each parameter in the heat storage devices of Examples 1 and 2 and Comparative Examples 1 and 2. At this time, the fuel intensity per unit production amount was calculated from the relationship between the production amount of the glass melting kiln and the fuel used in each example, and are shown in Table 2 and FIG.
 表2及び図6からわかるように、比較例1~4のガラス溶解装置は、生産量が増え大型化するほど効率が向上し燃料原単位(y)を低減できる。比較例の燃料原単位は、一日当たりの生産量であるPull(T/Day)をx、ガラス1トンを溶かすのに必要な燃料である燃料原単位(GJ/T)をyとしたとき、以下の式(1)で近似することができる。

    y=9.5038x-0.16   ・・・(1)
As can be seen from Table 2 and FIG. 6, in the glass melting apparatuses of Comparative Examples 1 to 4, as the production volume increases and the size increases, the efficiency improves and the fuel consumption rate (y) can be reduced. When the fuel intensity of the comparative example is x (Pull (T / Day) which is the production amount per day) and y is the fuel intensity (GJ / T) which is the fuel necessary to melt 1 ton of glass, It can be approximated by the following equation (1).

y = 9.5038x -0.16 (1)
 これに対して実施例1~2のガラス溶解装置は、同一の生産量(x1)における燃料原単位が比較例よりも優れていることがわかる。このとき、比較例の近似線に対して実施例は、5%以上燃料原単位が低いといえる。 On the other hand, it can be seen that the glass melting apparatuses of Examples 1 and 2 are superior to the comparative example in the fuel consumption rate at the same production amount (x1). At this time, it can be said that the fuel consumption rate of the example is 5% or more lower than the approximate line of the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、第1の蓄熱室と第2の蓄熱室との関係としてS2/S1を実施例のように0.62以下とすれば、比較例に比べて同一生産量(x1)における燃料原単位が向上する傾向にある。同様に、第2の蓄熱室の平断面における縦横比(L2/W2)を0.3~0.7、第1の蓄熱室の断面積(S1)と流通路の開口面積(S3)との比(S3/S1)を0.1~0.4、とすれば、比較例に比べて同一生産量(x1)における燃料原単位が向上する傾向にある。
 このように本願発明の一態様の蓄熱装置を用いた場合、エネルギーの効率が低下しやすい生産量の比較的小さい生産設備においても、排気ガスによる蓄熱体への蓄熱及び蓄熱体による燃焼用空気の加熱を効率的に行うことを実現できる。すなわち、本実施態様における蓄熱装置は、熱交換の効率が向上し省エネルギーに有用であることがわかった。
From the above results, if S2 / S1 is 0.62 or less as in the embodiment as a relationship between the first heat storage chamber and the second heat storage chamber, the fuel at the same production amount (x1) as compared with the comparative example. The basic unit tends to improve. Similarly, the aspect ratio (L2 / W2) in the plane section of the second heat storage chamber is 0.3 to 0.7, and the cross-sectional area (S1) of the first heat storage chamber and the opening area (S3) of the flow passage are When the ratio (S3 / S1) is 0.1 to 0.4, the fuel consumption rate at the same production amount (x1) tends to be improved as compared with the comparative example.
As described above, when the heat storage device according to one aspect of the present invention is used, even in a production facility with a relatively small production amount in which energy efficiency is likely to decrease, heat storage to the heat storage body by exhaust gas and combustion air by the heat storage body It is possible to achieve efficient heating. That is, it has been found that the heat storage device in the present embodiment has improved heat exchange efficiency and is useful for energy saving.
 本発明は、ガラスの溶解における蓄熱装置として利用でき、特に、比較的生産量(プル)が小さく、少量多品種生産を行うようなガラス製造装置に好適に用いることができる。また、溶解後のガラスの成形法は公知の方法、例えば、フロート法、ダウンドロー法、フュージョン法、スロットダウン法などのシート状のガラスの製造方法のみならず、プレス成形法、プレスブロー成形法、ブローブロー成形法、鋳造法等などのガラス製造装置に用いることができる。また、ガラスの組成は、公知のガラス組成に適用可能であるが、ソーダライムガラスが特に好適に適用できる。 The present invention can be used as a heat storage device in melting of glass, and can be suitably used particularly for a glass production device that produces a small amount of various products with a relatively small production amount (pull). Further, the glass forming method after melting is a known method, for example, a sheet forming glass manufacturing method such as a float method, a down draw method, a fusion method, and a slot down method, as well as a press forming method and a press blow forming method. It can be used for glass production apparatuses such as blow-blow molding and casting. Moreover, although the composition of glass is applicable to a well-known glass composition, soda-lime glass can be applied especially suitably.

Claims (14)

  1.  ガラス溶解窯と接続するための接続ポートが上方に設けられ、内部に蓄熱体が配置された第1の蓄熱室と、
     前記第1の蓄熱室と隣接し、外部雰囲気と接続するための接続ダクトが上方に設けられ、内部に蓄熱体が配置された第2の蓄熱室と、
     前記第1の蓄熱室と前記第2の蓄熱室とを、互いに下方で接続する流通路と、を有するガラス溶解窯用の蓄熱装置であって、
     前記第1の蓄熱室の平断面における断面積(S1)に対する前記第2の蓄熱室の平断面における断面積(S2)の比(S2/S1)が、0.2~0.62であることを特徴とする蓄熱装置。
    A connection port for connecting to the glass melting furnace is provided above, a first heat storage chamber in which a heat storage body is disposed,
    A second heat storage chamber adjacent to the first heat storage chamber, provided with a connection duct for connecting to the external atmosphere, and having a heat storage body disposed therein;
    A heat storage device for a glass melting kiln having a flow path connecting the first heat storage chamber and the second heat storage chamber below each other,
    The ratio (S2 / S1) of the cross-sectional area (S2) in the flat cross section of the second heat storage chamber to the cross-sectional area (S1) in the flat cross section of the first heat storage chamber is 0.2 to 0.62. A heat storage device characterized by this.
  2.  前記第2の蓄熱室の平断面における縦横比(L2/W2)が、0.3~0.7である請求項1に記載の蓄熱装置。 The heat storage device according to claim 1, wherein an aspect ratio (L2 / W2) in a plane section of the second heat storage chamber is 0.3 to 0.7.
  3.  前記第1の蓄熱室の断面積(S1)に対する前記流通路の開口面積(S3)の比(S3/S1)が、0.1~0.4である請求項1又は2に記載の蓄熱装置。 The heat storage device according to claim 1 or 2, wherein a ratio (S3 / S1) of an opening area (S3) of the flow passage to a cross-sectional area (S1) of the first heat storage chamber is 0.1 to 0.4. .
  4.  前記流通路の上端部が、前記第2の蓄熱室の蓄熱体の下端よりも、鉛直方向に50~100cm低く設けられた請求項1~3のいずれか1項に記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 3, wherein an upper end portion of the flow passage is provided 50 to 100 cm lower in a vertical direction than a lower end of the heat storage body of the second heat storage chamber.
  5.  前記流通路の上端部が、前記第2の蓄熱室の床面から、鉛直方向に15~50cm上方に設けられた請求項1~4のいずれか1項に記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 4, wherein an upper end portion of the flow path is provided 15 to 50 cm above the floor surface of the second heat storage chamber in the vertical direction.
  6.  前記接続ダクトに、ダンパーが設けられている請求項1~5のいずれか1項に記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 5, wherein a damper is provided in the connection duct.
  7.  前記接続ダクトが、前記第2の蓄熱室の上面に接続されている請求項1~6のいずれか1項に記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 6, wherein the connection duct is connected to an upper surface of the second heat storage chamber.
  8.  前記蓄熱体は、その内部に気体を流通可能に蓄熱部材が積層して設けられており、
     前記第2の蓄熱室における前記蓄熱部材が、格子状に積層配置されている請求項1~7のいずれか1項に記載の蓄熱装置。
    The heat storage body is provided with a heat storage member laminated therein so that gas can flow therethrough,
    The heat storage device according to any one of claims 1 to 7, wherein the heat storage members in the second heat storage chamber are stacked in a lattice shape.
  9.  前記蓄熱体は、その内部に気体を流通可能に蓄熱部材が積層して設けられており、
     前記第2の蓄熱室における前記蓄熱体が、偶数段及び/又は奇数段において、隣接する偶数段及び/又は奇数段の前記蓄熱部材とは平面視における配置位置が重ならないように積層されている請求項8に記載の蓄熱装置。
    The heat storage body is provided with a heat storage member laminated therein so that gas can flow therethrough,
    The heat storage body in the second heat storage chamber is laminated so that the arrangement position in a plan view does not overlap with the even-numbered stage and / or the odd-numbered stage of the heat storage member in the even-numbered stage and / or odd-numbered stage. The heat storage device according to claim 8.
  10.  前記蓄熱体の偶数段及び/又は奇数段の前記蓄熱部材が、側面視において千鳥配置となるように積層されている請求項9に記載の蓄熱装置。 The heat storage device according to claim 9, wherein the heat storage members of the even-numbered stages and / or the odd-numbered stages of the heat storage bodies are stacked so as to have a staggered arrangement in a side view.
  11.  前記蓄熱体の偶数段及び/又は奇数段の前記蓄熱部材が、側面視において3~20段の周期で階段状又は波状にパターンを繰り返して積層されている請求項9に記載の蓄熱装置。 10. The heat storage device according to claim 9, wherein the heat storage members of the even-numbered stages and / or odd-numbered stages of the heat storage body are laminated by repeating a pattern in a stepped shape or a wave shape with a period of 3 to 20 steps in a side view.
  12.  前記蓄熱体を構成する蓄熱部材の断面が、台形形状である請求項1~11のいずれか1項に記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 11, wherein a cross section of the heat storage member constituting the heat storage body has a trapezoidal shape.
  13.  ガラス溶解窯と、
     前記ガラス溶解窯に接続され、燃焼用空気と排気ガスとを交互に流通可能にする一対の、請求項1~12のいずれか1項に記載の蓄熱装置と、
     を有することを特徴とするガラス溶解装置。
    A glass melting furnace,
    A pair of heat storage devices according to any one of claims 1 to 12, which are connected to the glass melting furnace and allow a combustion air and an exhaust gas to flow alternately.
    A glass melting apparatus comprising:
  14.  請求項13に記載のガラス溶解装置を用い、前記一対の蓄熱装置により前記燃焼用空気と前記排気ガスとを交互に流通させながら、前記ガラス溶解窯内でガラス原料を溶解し、溶解したガラス原料を冷却により固化させてガラス物品とする、ことを特徴とするガラス物品の製造方法。 The glass raw material which melt | dissolved and melt | dissolved the glass raw material in the said glass melting kiln, using the glass melting apparatus of Claim 13, and making the said combustion air and the said exhaust gas distribute | circulate alternately by a pair of said heat storage apparatus. The glass article is solidified by cooling to obtain a glass article.
PCT/JP2017/038384 2016-11-28 2017-10-24 Heat storage device, glass melting device, and glass article manufacturing method WO2018096863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018552476A JP6962928B2 (en) 2016-11-28 2017-10-24 Method for manufacturing heat storage device, glass melting device and glass article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016229917 2016-11-28
JP2016-229917 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018096863A1 true WO2018096863A1 (en) 2018-05-31

Family

ID=62195893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038384 WO2018096863A1 (en) 2016-11-28 2017-10-24 Heat storage device, glass melting device, and glass article manufacturing method

Country Status (2)

Country Link
JP (1) JP6962928B2 (en)
WO (1) WO2018096863A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701510A (en) * 2021-06-28 2021-11-26 四川思达能环保科技有限公司 Raw material smelting section flue gas treatment device in microcrystalline glass preparation process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480544U (en) * 1977-11-17 1979-06-07
JPS57161487A (en) * 1981-03-31 1982-10-05 Asahi Glass Co Ltd Construction of dry masonry brick structure for heat accumulating chamber
JPS58181731A (en) * 1982-04-20 1983-10-24 Asahi Glass Co Ltd Method for upgrading thermal efficiency of regenerator
JPH0651246U (en) * 1992-12-15 1994-07-12 修 竹崎 Checker block
JPH08217462A (en) * 1995-02-07 1996-08-27 Nippon Sheet Glass Co Ltd Heat accumulator for glass melting furnace
JPH0912315A (en) * 1995-06-28 1997-01-14 Toshiba Glass Co Ltd Regenerator of glass fusing furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480544U (en) * 1977-11-17 1979-06-07
JPS57161487A (en) * 1981-03-31 1982-10-05 Asahi Glass Co Ltd Construction of dry masonry brick structure for heat accumulating chamber
JPS58181731A (en) * 1982-04-20 1983-10-24 Asahi Glass Co Ltd Method for upgrading thermal efficiency of regenerator
JPH0651246U (en) * 1992-12-15 1994-07-12 修 竹崎 Checker block
JPH08217462A (en) * 1995-02-07 1996-08-27 Nippon Sheet Glass Co Ltd Heat accumulator for glass melting furnace
JPH0912315A (en) * 1995-06-28 1997-01-14 Toshiba Glass Co Ltd Regenerator of glass fusing furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PUBLICATION TECHNICAL REPORT FROM INSTITUTE OF INVENTION, PULICATION TECHNICAL NUMBER: NO. 2002-286, 4 January 2002 (2002-01-04), pages 1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701510A (en) * 2021-06-28 2021-11-26 四川思达能环保科技有限公司 Raw material smelting section flue gas treatment device in microcrystalline glass preparation process
CN113701510B (en) * 2021-06-28 2024-03-19 四川思达能环保科技有限公司 Raw material smelting section flue gas treatment device in microcrystalline glass preparation technology

Also Published As

Publication number Publication date
JPWO2018096863A1 (en) 2019-10-17
JP6962928B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6754653B2 (en) How to make checker bricks for hot air ovens
US9856162B2 (en) Glass melting tank having a doghouse, and method for heating the charge material in such glass melting tanks
KR20100017174A (en) Refractory product for a checker work element of a glass furnace regenerator
EP0687879B1 (en) Honeycomb Regenerator
WO2018096863A1 (en) Heat storage device, glass melting device, and glass article manufacturing method
JPS6217022A (en) Lattice for vertical regenerator of glass melting furnace
US4768578A (en) Regenerative heat exchange systems and refractory bricks therefore
US5127463A (en) Refractory brick segment for a heat regenerator
US20160231058A1 (en) Integral self-supporting refractory checker brick modules for glass furnace regenerator structures, and methods of forming same
CA2467098C (en) Refractory ceramic checker brick
KR102505371B1 (en) Calcination Vessel for Manufacture of Electrode Active Material
WO2018177998A1 (en) Inlet arrangement for collection of carry over for a vertical regenerator of an end-port furnace
KR101129756B1 (en) Silicon Carbide Sagger with enhanced Assembly and Method for Manufacturing the Same
JP2015059697A (en) Sagger
JP2024061018A (en) Firing unit laminate and firing method
KR20140082562A (en) Fireproof Container Improved in Circulation of Heat and Safety of Use
JP2639593B2 (en) Empty stack of refractories for heat storage
JPS5937588Y2 (en) Gitter bricks in glass tank kiln
JPH0231307B2 (en)
JPH0251430A (en) Dry masonry structure of refractory body for heat accumulating chamber
JP2007113051A (en) Manufacturing method of target material for sputtering target, and box used therefor
JPH10130707A (en) Stave cooler
JP3558178B2 (en) Refractory for heat exchange and its laminated structure
JPH0380728B2 (en)
KR950008594B1 (en) Refractories case

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874388

Country of ref document: EP

Kind code of ref document: A1